000151203 001__ 151203 000151203 005__ 20250227101504.0 000151203 0247_ $$2doi$$a10.1021/acsnano.4c14727 000151203 0248_ $$2sideral$$a143043 000151203 037__ $$aART-2025-143043 000151203 041__ $$aeng 000151203 100__ $$aRisch, Felix 000151203 245__ $$aPosition-sensitive domain-by-domain switchable ferroelectric memristor 000151203 260__ $$c2025 000151203 5060_ $$aAccess copy available to the general public$$fUnrestricted 000151203 5203_ $$aDomain-wall electronics based on the tunable transport in reconfigurable ferroic domain interfaces offer a promising platform for in-memory computing approaches and reprogrammable neuromorphic circuits. While conductive domain walls have been discovered in many materials, progress in the field is hindered by high-voltage operations, stability of the resistive states and limited control over the domain wall dynamics. Here, we show nonvolatile memristive functionalities based on precisely controllable conductive domain walls in tetragonal Pb(Zr,Ti)O3 thin films within a two-terminal parallel-plate capacitor geometry. Individual submicron domains can be manipulated selectively by position-sensitive low-voltage operations to address distinct resistive states with nanoampere-range conduction readout. Quantitative phase-field simulations reveal a complex pattern of interpenetrating a- and c-domain associated with the formation of 2D conducting layers at the intertwined regions and the emergence of 3D percolation channels of extraordinary high conductivity. Subnanometer resolution polarization mapping experimentally proves the existence of such extensive segments of charged tail-to-tail domain walls with unconventional structure at the ferroelastic-ferroelectric domain boundaries. 000151203 536__ $$9info:eu-repo/grantAgreement/ES/AEI/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/DGA/E13-23R$$9info:eu-repo/grantAgreement/ES/DGA-FEDER E28-23R$$9info:eu-repo/grantAgreement/EC/H2020/ 861153/EU/Materials for Neuromorphic Circuits/MANIC$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 861153-MANIC$$9info:eu-repo/grantAgreement/EC/H2020/872631 /EU/Memristive and multiferroic materials for emergent logic units in nanoelectronics/MELON$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 872631 -MELON$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-112914RB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2023-147211OB-C22 000151203 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000151203 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000151203 700__ $$aKoutsogiannis, Panagiotis 000151203 700__ $$aTikhonov, Yuri 000151203 700__ $$aRazumnaya, Anna G. 000151203 700__ $$0(orcid)0000-0002-6761-6171$$aMagén, César 000151203 700__ $$0(orcid)0000-0002-0111-8284$$aPardo, José A.$$uUniversidad de Zaragoza 000151203 700__ $$aLukyanchuk, Igor 000151203 700__ $$aStolichnov, Igor 000151203 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal. 000151203 773__ $$g19, 7 (2025), 6993-7004$$pACS Nano$$tACS NANO$$x1936-0851 000151203 8564_ $$s10168283$$uhttps://zaguan.unizar.es/record/151203/files/texto_completo.pdf$$yVersión publicada 000151203 8564_ $$s3334651$$uhttps://zaguan.unizar.es/record/151203/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000151203 909CO $$ooai:zaguan.unizar.es:151203$$particulos$$pdriver 000151203 951__ $$a2025-02-27-09:27:39 000151203 980__ $$aARTICLE