000151280 001__ 151280
000151280 005__ 20250307114714.0
000151280 0247_ $$2doi$$a10.1088/1751-8121/abdfa5
000151280 0248_ $$2sideral$$a124096
000151280 037__ $$aART-2021-124096
000151280 041__ $$aeng
000151280 100__ $$0(orcid)0000-0003-4480-6535$$aCariñena, J.F.$$uUniversidad de Zaragoza
000151280 245__ $$aSuperintegrability of three-dimensional Hamiltonian systems with conformally Euclidean metrics. Oscillator-related and Kepler-related systems
000151280 260__ $$c2021
000151280 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151280 5203_ $$aWe study four particular three-dimensional natural Hamiltonian systems defined in conformally Euclidean spaces. We prove their superintegrability and we obtain, in the four cases, the maximal number of functionally independent integrals of motion. The two first systems are related to the three-dimensional isotropic oscillator and the superintegrability is quadratic. The third system is obtained as a continuous deformation of an oscillator with ratio of frequencies 1:1:2 and with three additional nonlinear terms of the form k 2/x 2, k 3/y 2 and k 4/z 2, and the fourth system is obtained as a deformation of the Kepler Hamiltonian also with these three particular nonlinear terms. These third and fourth systems are superintegrable but with higher-order constants of motion. The four systems depend on a real parameter in such a way that they are continuous functions of the parameter (in a certain domain of the parameter) and in the limit of such parameter going to zero the Euclidean dynamics is recovered.
000151280 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E48-20R$$9info:eu-repo/grantAgreement/ES/MINECO/PGC2018-098265-B-C31
000151280 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000151280 590__ $$a2.331$$b2021
000151280 591__ $$aPHYSICS, MATHEMATICAL$$b14 / 56 = 0.25$$c2021$$dQ1$$eT1
000151280 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b45 / 86 = 0.523$$c2021$$dQ3$$eT2
000151280 592__ $$a0.76$$b2021
000151280 593__ $$aMathematical Physics$$c2021$$dQ1
000151280 593__ $$aStatistics and Probability$$c2021$$dQ1
000151280 593__ $$aStatistical and Nonlinear Physics$$c2021$$dQ1
000151280 593__ $$aPhysics and Astronomy (miscellaneous)$$c2021$$dQ1
000151280 594__ $$a4.0$$b2021
000151280 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000151280 700__ $$0(orcid)0000-0002-8402-2332$$aRañada, M.F.$$uUniversidad de Zaragoza
000151280 700__ $$aSantander, M.
000151280 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000151280 773__ $$g54, 10 (2021), 105201 [24 pp.]$$pJournal of Physics A-Mathematical and Theoretical$$tJournal of Physics A-Mathematical and Theoretical$$x1751-8113
000151280 8564_ $$s462261$$uhttps://zaguan.unizar.es/record/151280/files/texto_completo.pdf$$yPostprint
000151280 8564_ $$s1370033$$uhttps://zaguan.unizar.es/record/151280/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000151280 909CO $$ooai:zaguan.unizar.es:151280$$particulos$$pdriver
000151280 951__ $$a2025-03-07-09:31:14
000151280 980__ $$aARTICLE