LLM-Driven Social Influence for Cooperative Behavior in Multi-Agent Systems
Resumen: This paper presents a novel approach to fostering cooperative behavior in multi-agent systems (MAS) through Large Language Model (LLM)-driven social influence.We propose a theoretical framework where agents’ decision-making processes are influenced not through direct action but by subtle, narrativedriven influences disseminated by LLMs. These influences guide agents toward cooperative behaviors, such as rural repopulation, without requiring explicit policy interventions. We introduce a formal model grounded in game theory and social network dynamics, where agents balance the direct benefits of action with the indirect payoffs of LLM-guided influence. Using NASH equilibrium and Evolutionarily Stable Strategies (ESS), we demonstrate how cooperative behaviors emerge even when agents remain inactive but are subtly influenced by LLMs. Our experimental simulations validate the model, showing a strong positive correlation between network centrality and influence propagation (r = 0.969, p < 0.006). Furthermore, temporal analysis reveals that the average influence increases from approximately 0.05–0.06 in the initial steps to 0.08–0.09 in later stages, indicating a cumulative and self-sustaining trend. In addition, the influence values exhibit a near-normal distribution (Shapiro–Wilk test, p = 0.285) and yield a large effect size (Cohen’s d = 4.530) when comparing agents with high versus low network centrality. Through visualization techniques and statistical metrics, we demonstrate the effectiveness of the proposed framework and identify promising directions for future research in AI-driven social influence. This study highlights the potential of LLM-driven narratives as a cost-effective, scalable alternative to traditional policy interventions, offering a new paradigm for promoting societal cooperation in areas such as rural repopulation, sustainability, and community development.
Idioma: Inglés
DOI: 10.1109/ACCESS.2025.3548451
Año: 2025
Publicado en: IEEE Access 13 (2025), [13 pp.]
ISSN: 2169-3536

Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2025-10-17-14:22:14)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Lenguajes y Sistemas Informáticos



 Registro creado el 2025-03-07, última modificación el 2025-10-17


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)