000151352 001__ 151352
000151352 005__ 20250307114715.0
000151352 0247_ $$2doi$$a10.1109/ACCESS.2021.3123867
000151352 0248_ $$2sideral$$a127148
000151352 037__ $$aART-2021-127148
000151352 041__ $$aeng
000151352 100__ $$0(orcid)0000-0001-9131-0861$$aDíez Señorans G.$$uUniversidad de Zaragoza
000151352 245__ $$aDigitization algorithms in ring oscillator physically unclonable functions as a main factor achieving hardware security
000151352 260__ $$c2021
000151352 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151352 5203_ $$aSince the discovery of the physical random functions and their subsequent refinement into physical unclonable functions (PUF), a great effort has been made in developing and characterizing these objects attending to their physical properties as well as conceiving a myriad of different examples in the search for a better application-specificity and suitability. However, comparatively little time has been devoted to the analysis of entropy extraction algorithms beyond the recognition of some limitations due to the environment influencing the PUF behavior. In this article we focus on well known PUF candidates based on ring oscillator delay, which are ideal for FPGA prototyping due to their tolerance to asymmetries in routing. We have studied the impact that different digitization algorithms of the responses have over their security properties. Specifically, we have analyzed the response probability distributions that arise from some popular techniques of digitization called "compensated measuring" methods, highlighting their lack of uniformity and how this might translate into cryptanalytically exploitable vulnerabilities. Furthermore, we propose a new family of digitization schemes named k-modular that exhibit both uniformity in response distribution and high entropy density on both physical and response space.
000151352 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2020-114110RA-I00$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/TEC2017-85867-R
000151352 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000151352 590__ $$a3.476$$b2021
000151352 591__ $$aCOMPUTER SCIENCE, INFORMATION SYSTEMS$$b79 / 163 = 0.485$$c2021$$dQ2$$eT2
000151352 591__ $$aTELECOMMUNICATIONS$$b43 / 92 = 0.467$$c2021$$dQ2$$eT2
000151352 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b105 / 274 = 0.383$$c2021$$dQ2$$eT2
000151352 592__ $$a0.927$$b2021
000151352 593__ $$aEngineering (miscellaneous)$$c2021$$dQ1
000151352 593__ $$aComputer Science (miscellaneous)$$c2021$$dQ1
000151352 594__ $$a6.7$$b2021
000151352 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151352 700__ $$0(orcid)0000-0001-8648-6248$$aGarcía Bosque M.$$uUniversidad de Zaragoza
000151352 700__ $$0(orcid)0000-0002-8236-825X$$aSánchez Azqueta C.$$uUniversidad de Zaragoza
000151352 700__ $$0(orcid)0000-0003-0182-7723$$aCelma Pueyo, S.$$uUniversidad de Zaragoza
000151352 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000151352 7102_ $$15008$$2250$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Electrónica
000151352 773__ $$g9 (2021), 147343-147356$$pIEEE Access$$tIEEE Access$$x2169-3536
000151352 8564_ $$s4567339$$uhttps://zaguan.unizar.es/record/151352/files/texto_completo.pdf$$yVersión publicada
000151352 8564_ $$s2708042$$uhttps://zaguan.unizar.es/record/151352/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151352 909CO $$ooai:zaguan.unizar.es:151352$$particulos$$pdriver
000151352 951__ $$a2025-03-07-09:32:52
000151352 980__ $$aARTICLE