000151373 001__ 151373
000151373 005__ 20251017144628.0
000151373 0247_ $$2doi$$a10.1038/s41598-025-88533-z
000151373 0248_ $$2sideral$$a143070
000151373 037__ $$aART-2025-143070
000151373 041__ $$aeng
000151373 100__ $$aJiménez-López, M. Carmen
000151373 245__ $$aNovel cisplatin-magnetoliposome complex shows enhanced antitumor activity via Hyperthermia
000151373 260__ $$c2025
000151373 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151373 5203_ $$aThere are several methods to improve cancer patient survival rates by inducing hyperthermia in tumor tissues, which involves raising their temperature above 41 °C. These methods utilize different energy sources to deliver heat to the target region, including light, microwaves or radiofrequency electromagnetic fields. We have developed a new, magnetically responsive nanocarrier, consisting of liposomes loaded with magnetic nanoparticles and cis-diamminedichloroplatinum (II) (CDDP), commonly known as Cisplatin. The resulting magnetoliposome (ML) is rapidly internalized by lung and pancreas tumor cell lines, stored in intracellular vesicles, and capable of inducing hyperthermia under magnetic fields. The ML has no significant toxicity both in vitro and in vivo and, most importantly, enhances cell death by apoptosis after magnetic hyperthermia. Remarkably, mice bearing induced lung tumors, treated with CDDP-loaded nanocarriers and subjected to an applied electromagnetic field, showed an improved survival rate over those treated with either soluble CDDP or hyperthermia alone. Therefore, our approach of magnetic hyperthermia plus CDDP-ML significantly enhances in vitro cell death and in vivo survival of treated animals.
000151373 536__ $$9info:eu-repo/grantAgreement/EC/H2020/101007629 /EU/Nanomaterials for Enzymatic Control of Oxidative Stress Toxicity and Free Radical Generation/NESTOR$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 101007629 -NESTOR$$9info:eu-repo/grantAgreement/ES/MCIU/RTC-2017-6620-1
000151373 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000151373 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151373 700__ $$0(orcid)0000-0002-9198-5882$$aMoreno-Maldonado, Ana Carolina$$uUniversidad de Zaragoza
000151373 700__ $$aMartín-Morales, Natividad
000151373 700__ $$aO’Valle, Francisco
000151373 700__ $$0(orcid)0000-0003-0681-8260$$aIbarra, M. Ricardo$$uUniversidad de Zaragoza
000151373 700__ $$0(orcid)0000-0003-1558-9279$$aGoya, Gerardo F.$$uUniversidad de Zaragoza
000151373 700__ $$aMolina, Ignacio J.
000151373 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000151373 773__ $$g15, 1 (2025), 4780 [14 pp.]$$pSci. rep. (Nat. Publ. Group)$$tScientific reports (Nature Publishing Group)$$x2045-2322
000151373 8564_ $$s3151939$$uhttps://zaguan.unizar.es/record/151373/files/texto_completo.pdf$$yVersión publicada
000151373 8564_ $$s2068788$$uhttps://zaguan.unizar.es/record/151373/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151373 909CO $$ooai:zaguan.unizar.es:151373$$particulos$$pdriver
000151373 951__ $$a2025-10-17-14:24:56
000151373 980__ $$aARTICLE