000151382 001__ 151382
000151382 005__ 20250307114716.0
000151382 0247_ $$2doi$$a10.3390/nano11061435
000151382 0248_ $$2sideral$$a127269
000151382 037__ $$aART-2021-127269
000151382 041__ $$aeng
000151382 100__ $$aGonzález-Domínguez J.M.
000151382 245__ $$aWaterborne graphene-and nanocellulose-based inks for functional conductive films and 3d structures
000151382 260__ $$c2021
000151382 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151382 5203_ $$aIn the vast field of conductive inks, graphene-based nanomaterials, including chemical derivatives such as graphene oxide as well as carbon nanotubes, offer important advantages as per their excellent physical properties. However, inks filled with carbon nanostructures are usually based on toxic and contaminating organic solvents or surfactants, posing serious health and environmental risks. Water is the most desirable medium for any envisioned application, thus, in this context, nanocellulose, an emerging nanomaterial, enables the dispersion of carbon nanomaterials in aqueous media within a sustainable and environmentally friendly scenario. In this work, we present the development of water-based inks made of a ternary system (graphene oxide, carbon nanotubes and nanocellulose) employing an autoclave method. Upon controlling the experimental variables, low-viscosity inks, high-viscosity pastes or self-standing hydrogels can be obtained in a tailored way. The resulting inks and pastes are further processed by spray-or rod-coating technologies into conductive films, and the hydrogels can be turned into aerogels by freeze-drying. The film properties, with respect to electrical surface resistance, surface morphology and robustness, present favorable opportunities as metal-free conductive layers in liquid-phase processed electronic device structures.
000151382 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E47-20R$$9info:eu-repo/grantAgreement/ES/DGA/T03-20R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-104272RB-C51/AEI/10.13039/501100011033$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-104307GB-I00-AEI-10.13039-501100011033$$9info:eu-repo/grantAgreement/ES/MINECO/BES-2017-080020$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ENE2016-79282-C5-1-R
000151382 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000151382 590__ $$a5.719$$b2021
000151382 591__ $$aPHYSICS, APPLIED$$b37 / 161 = 0.23$$c2021$$dQ1$$eT1
000151382 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b53 / 108 = 0.491$$c2021$$dQ2$$eT2
000151382 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b55 / 179 = 0.307$$c2021$$dQ2$$eT1
000151382 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b109 / 344 = 0.317$$c2021$$dQ2$$eT1
000151382 592__ $$a0.839$$b2021
000151382 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ1
000151382 593__ $$aChemical Engineering (miscellaneous)$$c2021$$dQ1
000151382 594__ $$a6.6$$b2021
000151382 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151382 700__ $$aBaigorri A.
000151382 700__ $$aÁlvarez-Sánchez M.Á.
000151382 700__ $$aColom E.
000151382 700__ $$0(orcid)0000-0001-9814-0834$$aVillacampa B.$$uUniversidad de Zaragoza
000151382 700__ $$0(orcid)0000-0002-3134-8566$$aAnsón-Casaos A.
000151382 700__ $$0(orcid)0000-0001-8158-1270$$aGarcía-Bordejé E.
000151382 700__ $$0(orcid)0000-0002-8654-7386$$aBenito A.M.
000151382 700__ $$aMaser W.K.
000151382 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000151382 773__ $$g11, 6 (2021), 1435 [18 pp.]$$pNanomaterials  (Basel)$$tNanomaterials$$x2079-4991
000151382 8564_ $$s6337258$$uhttps://zaguan.unizar.es/record/151382/files/texto_completo.pdf$$yVersión publicada
000151382 8564_ $$s2779546$$uhttps://zaguan.unizar.es/record/151382/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151382 909CO $$ooai:zaguan.unizar.es:151382$$particulos$$pdriver
000151382 951__ $$a2025-03-07-09:33:31
000151382 980__ $$aARTICLE