000151391 001__ 151391
000151391 005__ 20251017144630.0
000151391 0247_ $$2doi$$a10.1088/1367-2630/adaedc
000151391 0248_ $$2sideral$$a143095
000151391 037__ $$aART-2025-143095
000151391 041__ $$aeng
000151391 100__ $$aBertoldo, Elia
000151391 245__ $$aCosmic muon flux attenuation methods for superconducting qubit experiments
000151391 260__ $$c2025
000151391 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151391 5203_ $$aWe propose and demonstrate two practical mitigation methods to attenuate the cosmic muon flux, compatible with experiments involving superconducting qubits: shallow underground sites and device orientation. Using a specifically-built cosmic muon detector, we identify underground sites, widely present in urban environments, where significant attenuation of cosmic muon flux, up to a factor 35 for 100 m depths, can be attained. Furthermore, we employ two germanium wafers in an above-ground laboratory, each equipped with a particle sensor, to show how the orientation of a chip with respect to the sky affects the amount and type of energy deposited on the substrate by ionizing radiation. We observe that the horizontal detector sees more counts at lower energy, while the vertical one is impacted by more particles at higher energy. The methods here described proposed ways to directly understand and reduce the effects of cosmic rays on qubits by attenuating the source of this type of decoherence, complementing existing on-chip mitigation strategies. We expect that both on-chip and off-chip methods combined will become ubiquitous in quantum technologies based on superconducting qubit circuits.
000151391 536__ $$9info:eu-repo/grantAgreement/EC/H2020/899561/EU/ANNEALING-BASED VARIATIONAL QUANTUM PROCESSORS/AVaQus$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 899561-AVaQus$$9info:eu-repo/grantAgreement/ES/MICINN/PCI2019-111838-2$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-122140NB-C31$$9info:eu-repo/grantAgreement/ES/MICINN/RYC2019-028482-I
000151391 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000151391 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151391 700__ $$aPérez Sánchez, Victor
000151391 700__ $$0(orcid)0000-0002-9043-4691$$aMartínez, Maria$$uUniversidad de Zaragoza
000151391 700__ $$aMartínez, Manel
000151391 700__ $$aKhalife, Hawraa
000151391 700__ $$aForn-Díaz, Pol
000151391 7102_ $$12004$$2390$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Atóm.Molec.y Nucl.
000151391 773__ $$g27, 2 (2025), 023014 [15 pp.]$$pNew j. phys.$$tNew Journal of Physics$$x1367-2630
000151391 8564_ $$s2189122$$uhttps://zaguan.unizar.es/record/151391/files/texto_completo.pdf$$yVersión publicada
000151391 8564_ $$s2632491$$uhttps://zaguan.unizar.es/record/151391/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151391 909CO $$ooai:zaguan.unizar.es:151391$$particulos$$pdriver
000151391 951__ $$a2025-10-17-14:25:48
000151391 980__ $$aARTICLE