000151400 001__ 151400 000151400 005__ 20251017144630.0 000151400 0247_ $$2doi$$a10.1007/s43037-024-00400-7 000151400 0248_ $$2sideral$$a143119 000151400 037__ $$aART-2025-143119 000151400 041__ $$aeng 000151400 100__ $$0(orcid)0000-0001-9211-4475$$aGarcía-Lirola, Luis C.$$uUniversidad de Zaragoza 000151400 245__ $$aProjective tensor products where every element is norm-attaining 000151400 260__ $$c2025 000151400 5060_ $$aAccess copy available to the general public$$fUnrestricted 000151400 5203_ $$aIn this paper we analyse when every element of attains its projective norm. We prove that this is the case if X is the dual of a subspace of a predual of an space and Y is 1-complemented in its bidual under approximation property assumptions. This result allows us to provide some new examples where X is a Lipschitz-free space. We also prove that the set of norm-attaining elements is dense in if, for instance, and Y is any Banach space, or if X has the metric -property and Y is a dual space with the RNP. 000151400 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-137294NB-I00$$9info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2021-122126NB-C31$$9info:eu-repo/grantAgreement/ES/DGA/E48-23R 000151400 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es 000151400 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000151400 700__ $$aGuerrero-Viu, Juan$$uUniversidad de Zaragoza 000151400 700__ $$aRueda Zoca, Abraham 000151400 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático 000151400 773__ $$g19, 2 (2025), 20 pp.$$pBanach Journal of Mathematical Analysis$$tBanach Journal of Mathematical Analysis$$x2662-2033 000151400 8564_ $$s550900$$uhttps://zaguan.unizar.es/record/151400/files/texto_completo.pdf$$yVersión publicada 000151400 8564_ $$s1033576$$uhttps://zaguan.unizar.es/record/151400/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000151400 909CO $$ooai:zaguan.unizar.es:151400$$particulos$$pdriver 000151400 951__ $$a2025-10-17-14:26:01 000151400 980__ $$aARTICLE