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Abstract
We propose procedures for draws in sports tournaments that will achieve balanced groups of
size 3.We start by developing an efficient algorithm that finds all possible balanced groupings;
that is, allocations of teams to groups such that the strength of all groups lies between two
bounds. The algorithm uses comparison results to discard large sets of unfeasible allocations
and backtracking. We then define pot-and-ball draws that randomly pick one of the balanced
groupings. Our draw procedures ensure that all groups are of (virtually) identical competitive
levels, thereby enhancing the overall fairness and interest of the tournament.

Keywords Assignment problem · Backtracking algorithm · Integer programming · Sports

1 Introduction

Designing a sports tournament is a far from trivial problem. There are a variety of choices
to be made, such as the structure (number of groups and/or knockout rounds), size of the
groups, one/two leg confrontations, seeding of participants, the way in which participants
are included in a group or matched in a knockout round and even the schedule of the matches.
The overall aim of the tournament is to be as successful as possible. Although there is no
established definition of a “successful tournament”, the ingredients include having many
interesting matches that attract large numbers of spectators and ensuring that some of the
best participants play in the final rounds. There are also a number of constraints that must
be respected. Aside from the obvious constraints of tournament duration and some logistic
issues, the organizer will impose some other restrictions. These may include avoiding certain
combinations of teams in the first rounds if, for instance, the opponents are from the same
regional area. Moreover, the tournament should be fair, in the sense that better participants
should have better chances of winning.
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While Operations Research has been used for decades to help organize good tournaments,
there has been increasing interest in recent years in the use of analytical tools for the study
and criticism of existing tournaments and the search for better designs (see Sect. 1.4 below).

Of all sports tournaments around the globe, the one that undoubtedly attracts most interest
is the FIFA (Fédération Internationale de Football Association) Men’s Soccer World Cup.
Played every four years by national teams, it is the most-viewed sports tournament in the
world; in 2022, it had a combined audience of around 5 billion viewers, with more than 1.5
billion spectators watching the final match between Argentina and France (FIFA, 2023c).
Since 1950, theWorld Cup has generally had a group round with groups of 4 teams, followed
by knockout rounds. The exceptions were the 1974, 1978 and 1982 editions, where different
arrangements were adopted. The 2026 World Cup, to be held in Canada, Mexico, and the
USA, will have 48 teams instead of the previous 32. Initially, there was a proposal for a
group stage with 16 groups of three teams each, where two teams from each group would
advance to the knockout stage (FIFA, 2017). This new organization of groups of 3 teams
instead of 4 raised some concerns. For instance, there was a real chance of collusion in the
last match of the group stage, where a specific result might lead to both contesting teams
advancing, as discussed by Guyon (2020). Finally, in March 2023, FIFA decided on a format
comprising 12 groups of 4 teams each (FIFA, 2023a), partly in response to concerns about
collusion. The top two teams from each group, along with the eight best third-place teams,
will progress to the knockout stage. This structure, however, introduces potential flaws such
as group advantage, arbitrariness, and a lack of initiative, as highlighted by Guyon (2018b)
in the analysis of the UEFA Euro 2016; see also Chapter 5 of Csató (2021b) and Guajardo
and Krumer (2024).

FIFA’s original decision to form 16 groups of 3 teams was our primary motivation for this
paper. Although FIFA will not use this format for the 2026 World Cup, our work remains
relevant as it can be applied to any sport and tournament featuring groups of 3 teams. Addi-
tionally, the solution we propose is valuable for future World Cups if FIFA considers the
3-team scheme again; it will become evident that a fair and balanced draw can be imple-
mented. Moreover, after the results in Stronka (2024), which provide a method to greatly
reduce the likelihood of collusion, the 3-team group option is indeed viable. It is important
to note that a key advantage of this structure is that with 2× 16 = 32 teams, the tournament
maintains symmetry, avoiding the aforementioned issues inherent in the framework with
12 groups of 4 teams. Another advantage of the 3-group scheme is that there would be 80
matches in total instead of 104, with the maximal number of matches for a team being 7
instead of 8. This is important to have a shorter competition and avoid overstraining players,
who already face a demanding game calendar, see (Guajardo and Krumer, 2024).

One of the aspects for which FIFA has been most criticized over the years is the draw to
determine the groups for the opening stage. The draw employs a pot-and-ball arrangement,
whereby the team names are placed in pots and then extracted sequentially to form the groups,
in such a way that each group contains a team from each pot. Before the 2018 World Cup,
the pots were formed using geographical criteria; thus, each group included teams from at
least three different confederations (see, e.g., Cea et al. (2020)). This pot structure was unfair,
since some teams had greater probabilities of ending up in a difficult group than other lower-
ranking countries. In addition, the result was imbalanced, that is, there was a high degree of
variability in the strength of the groups, a factor that was also regarded as unfair (see (Guyon,
2015)).

Following the recommendations of J.Guyon (see (Guyon, 2018a)), FIFAchanged the draw
system for the 2018 event. The pots are no longer filled on geographical criteria, but instead
on the basis of the teams’ relative rankings: the 8 teams occupying the highest positions in
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the world ranking are placed in the first pot; the next 8 highest-ranking teams are placed in
the second pot, and so on, and the draw is done applying geographical criteria. While this
has reduced the imbalance of the groups as compared to the previous arrangement, there
are still major differences in the strength of the groups. For instance, in the 2022 edition,
based on FIFA relative rankings as of March 31st , 2022 used for the draw (FIFA, 2022),
Group G, comprising Brazil (1), Switzerland (13), Serbia (21) and Cameroon (26) was a
very strong group, with teams’ rankings totaling 61, while Group H (Portugal (7), Uruguay
(12), South Korea (23) and Ghana (32)) was much weaker, with the four rankings totaling 74.
Furthermore, the draw was carried out when the identity of three teams was unknown, and
they were mistakenly placed in the weakest pot (Csató, 2023); in particular, this gave rise to
the strongest group: England (5), USA (14), Iran (18), Wales (16), totaling 53. The impact of
imbalanced groups in FIFA World Cups has been analyzed by (Lapré and Palazzolo, 2022),
Lapré and Palazzolo (2023). They demonstrate that even a small increase in the strength
of group opponents can drastically decrease the probability of reaching the quarter-finals.
Several proposals have appeared in the literature with draws that would reduce the differences
in strength across the groups, e.g. Guyon (2015), Laliena and López (2019), Cea et al. (2020),
but FIFA has not implemented any of them.

With 3-team groups, the problem of imbalance may be much more serious than in the 4-
team arrangement. This is recognized, for instance, by Cea et al. (2020), who, speaking about
the draw procedure for the group stage in the case of 3-team groups, state “Yet the drawing
procedure ought to change for the 2026 World Cup, with modifications not announced as of
the time of this writing, thus research efforts in this respect remain relevant”. For instance,
if the draw uses three pots filled by team rank, then one group might be formed by the
teams ranked 1, 17 and 33, totaling 51, and another group by the teams ranked 16, 32 and 48,
totaling 96. One way of reducing this difference would be to use an “S-curve-type” constraint
for the draw, similar to that suggested by Guyon (2015) for 4-team groups. In this S-curve
arrangement, Pots 1, 2 and 3 would be split into Pots 1A, 1B, 2A, 2B, 3A and 3B, of 8 teams
each, with the A-labeled sub-pots containing the strongest teams from their respective pot.
The groups would then be formed by choosing one team from each of Pots 1A, 2B, 3A or
one team from each of Pots 1B, 2A, 3B. A similar policy has been followed in the draw of
the 2023 FIBA Basketball World Cup (FIBA, 2023). Even this arrangement might result in
major differences between groups; for instance, two possible groups are 1-25-33, totaling 59
and 16-24-48 totaling 88.

1.1 Our goal

The goal of this paper is to propose draws that yield balanced groups of 3 teams. From here
on, we assume that there are 3 × g teams, where g is the number of groups, and each team
has a score (based on its absolute or relative ranking in a list of teams or its Elo ranking)
that is an (inverse) measure of its strength. By convention, we consider that lower scores
correspond to stronger teams, which is consistent with the idea of using rankings. We also
assume that the scores are integers and that two different teams cannot have the same score;
the latter assumption may be dropped with a slight modification of the algorithm and draw
procedures. If we use relative rankings as scores, each team will have an integer score of
between 1 and 3g; otherwise, each team will have an arbitrary positive integer score.

We also assume that there are g seeded teams, that is, each group contains one preassigned
seeded team. Seeding is very common in sports tournaments, as a means of preventing top
participants from being matched against one other in the opening rounds. For our draw, we
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assume that the best teams—those with the lowest scores—are seeded. Some tournaments
include exceptions; for instance, the winner of the last tournament or the host team may
be seeded, regardless of their strength. Nevertheless, it would be unusual for the reigning
champion to be a weak participant and, in the case of the host team, playing all the matches
at home would certainly give it some advantage (see, e.g., Clarke and Norman (1995)) and
it would be reasonable to assign it a lower (i.e. stronger) score. We shall therefore maintain
this assumption throughout the paper.

We define the overall score of a group as the sum of the scores of its three teams. The
definition is quite reasonable and has been used, for instance, in Guyon (2015) and Cea et
al. (2020) for groups of 4 teams. In Guyon (2015) and Laliena and López (2019), another
measure was also considered when dealing with 4-team groups, namely the sum of the score
of the three strongest teams in the group. The rationale is that 3 is one more than the number
of teams that will qualify for the next round. See Remark 1 in Laliena and López (2019) for a
discussion of this measure. Since in the present paper we stick to FIFA’s initial setting of two
teams qualifying for the next round, the two definitions—the sum of the scores of all teams
and the sum of the scores of the 2+1 strongest teams—coincide. If only one team qualifies,
the strength of the top two teams would probably be a better measure. Other measures, such
as weighted sums of the strengths of the teams, have been considered in the literature; see
Csató (2023).

Although our goal is to obtain balanced groups, sometimes an exact balance (i.e. all the
groups having the same score), is not attainable. For instance, in the 2026 World Cup, with
g = 16 and using relative rankings as scores, the sum of all scores is 48×49/2 = 876, which
is not a multiple of 16, so it is not possible for all the groups to have exactly the same score.
It is also likely that if we use other scores for the teams, such as absolute scores, it will not
be possible to find groups totaling the same score. Another shortcoming of exact balance,
when attainable, is that it substantially reduces the number of solutions and, consequently,
the degree of randomness of the draw. Therefore, rather than imposing that all groups must
have the same score, we set two bounds s and s and ask that all groups should have a score
between these two values. In the particular case of using relative ranks with 48 teams, since
876/16 = 73.5, we can set s = 73 and s = 74, but looser bounds are possible.

Mathematically speaking, the problem of finding all perfect solutions can be posed as
follows. Let E be a set of 3g integers; find all the partitions of E in g sets of 3 elements
such that the g lowest elements of E are in different subsets and the sum of the elements
of each subset is between s and s. The problem is similar to the classic equal-sum partition
problem which looks for partitions of a set into subsets of equal sum. The latter problem
is well-known in the combinatorics literature. See (Prodinger, 1982, 1984) and Cieliebak
et al. (2008). Since in our case, each subset has already a fixed element (the seed), we can
write the problem as the search for partitions of the set of the 2g largest elements of E into
g subsets of cardinality 2, such that the sum of Subset i is between s − score(seedi ) and
s − score(seedi ). With this in mind, our problem is close to the k−subset sum problem
in Antonopoulos et al. (2021), which determines whether there exist k disjoint subsets with
predefined sums. The aforementioned papers give algorithms to determine the existence of
such solutions and, in some particular cases, results about the asymptotic behavior of the
number of solutions. However, they do not give an algorithm to find all the partitions, which
is our objective here. Note also that we do not want all groups to have exactly the same sum
but to lie between two bounds.

Since there is a fixed element in each subset, the solutions to our problem are defined
by choosing which other two integers are in each group. A trivial algorithm would be to
enumerate all partitions of E in subsets of size 3 and retain those in which all the subsets
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add up between s and s. However, even for moderate values of g, the number of possible
partitions with the g lowest elements in different subsets is huge. For instance, if g = 16,
each partition corresponds to organizing the 32 elements {17, . . . , 48} into 16 subsets of size
2. There are

(32
2

)
ways to choose the elements for first subset; for each of those, there are

(30
2

)
ways to choose the elements for the second subset, and so on. Therefore, the number of

partitions is
∏16

i=1

(2i
2

) = 32!
216

∼ 4.01 × 1030, indicating that this approach is unrealistic.
A better option is to write the problem as a binary linear problem, in a similar way to

that used in Cea et al. (2020). While a single solution can be found by a computer in a few
milliseconds, the complete set of solutions is much harder to find. In the particular case
E = {1, . . . , 48} with s = 73 and s = 74, the number of partitions satisfying the conditions
above is ∼ 3.11× 1011, but we failed to find more than 5× 106 using this approach. Indeed,
the left-hand panel of Table 1 shows the time needed byGurobi 9.5.0 to find solutions running
on an Intel(R) Core(TM) i5-6600 3.3 GHz. See also Fig. 1. Note that while the first solutions
are found very quickly, the number of solutions per second decreases, and finding 4 × 106

solutions takes more than 55h. Thus, in all likelihood, the complete set of 3.11 × 1011

solutions cannot be found using this approach.
In the mathematical problem stated above we have not considered that some partitions

are not feasible solutions as groupings for the tournament because they do not satisfy the

Table 1 Time for finding solutions of the binary linear problem using Gurobi 9.5.0

Without geographical constraints With geographical constraints
Solutions Time (sec) Solutions/sec Solutions Time (sec) Solutions/sec

104 4.6 2193.0 104 7.3 1373.6

105 108.8 919.5 105 141.2 708.1

106 12379.1 80.8 106 13996.2 71.4

2 × 106 50199.9 39.8 2 × 106 55692.3 35.9

3 × 106 116894.8 25.7 3 × 106 124528.3 24.1

4 × 106 198488.6 20.2 4 × 106 215852.8 18.5
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Fig. 1 Time for finding solutions of the binary linear problem using Gurobi 9.5.0
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additional restrictions posed by the organizers, such as the geographical constraints imposed
in FIFA World Cups. There are two ways of dealing with these restrictions. The first is to
compute all the partitions, ignoring the restrictions, and later discard those which violate
the constraints. The other is to include the restrictions when looking for the partitions. This
second option can be implemented straightforwardly in the binary linear problem. As we
show below, in the particular case of the 2026 FIFA World Cup, there are ∼ 3.13 × 109 out
of 3.11 × 1011 solutions that satisfy the geographical constraints we consider in Sect. 1.3.
Inclusion of the restrictions in the binary linear problem is not of great help in finding all
the solutions by an optimizer, as the right-hand panel of Table 1 shows. The binary linear
programming option must therefore be discounted.

1.2 Our proposal

In this paper, we start from the ideas of Laliena and López (2019) to develop a new algorithm
that efficiently lists all perfect solutions., i.e., all groupings of teams that satisfy a balanced-
ness condition, together with other restrictions imposed by the organizer, such as seeding
or geographical constraints. Once all perfect solutions have been found, we present three
different pot-and-ball draw procedures that will pick one of these solutions at random. Both
the algorithm for listing all perfect solutions and the draw procedures are developed in a
general context and we then show their application to a particular case (see Sect. 1.3 below
for details).

The algorithm for finding all perfect solutions is given in Sect. 2 and has two parts. First, it
uses comparison results to discard large subsets of partitionswhich cannot contain any perfect
solution; it then uses backtracking to find all the solutions in the feasible region. Application
of the algorithm to the 2026 FIFA World Cup is shown in Sect. 2.3. If the geographical
constraints are not included, the number of perfect solutions is 311,229,091,808 and the
algorithm takes slightly less than 1,000h to find all of them on a Intel(R) Core(TM) i5-6600
3,3 GHz, or approximately 87,000 solutions per second. If the geographical constraints are
included, the number of perfect solutions is 3,128,263,466 and the time taken by the algorithm
to find them is around 24h (37,000 solutions per second).

Once all perfect solutions have been found by the algorithm, a draw procedure must
be performed to randomly pick one of them (Sect. 3). One possibility is to use a rejection
sampler, as described in Roberts and Rosenthal (2024), which does not require the list of
all perfect solutions. This method involves randomly generating groupings from the entire
(unrestricted) set of possible groupings until one satisfies the restrictions.While this rejection
sampler produces a grouping uniformly distributed over all perfect solutions, it is impractical
for use—specially in live shows—if the conditions for valid groupings are highly restrictive.
In such cases, the proportion of groupings that satisfy the constraints is very low, leading to
a high number of unsuccessful attempts before finding a suitable solution.

A more realistic approach, using the list of all perfect solutions, consists of picking a
number between 1 and the number of solutions. While this procedure is fair, since it assigns
equal probability to each solution, it lacks the emotion of pot-and-ball draws of the kind used
by FIFA and UEFA, which are broadcast live worldwide to a large audience. We therefore
define three different draw procedures based on pots and balls, all of which extract one
solution from the list of solutions found by the algorithm. These three procedures are similar
to those that have been used by FIFA and UEFA for many years, and any of them could
therefore be adopted by the tournament organizers in the future. We assess the fairness of the
procedures usingMonte Carlo simulation in the 2026World Cup by comparing the estimated
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probability of pairs of teams being in the same group with the proportion of perfect solutions
in which the teams are in the same group.

Since the present paper is directly related to our previous work (Laliena and López, 2019),
we highlight here the main differences between the two papers:

– Group size and score. In Laliena and López (2019) the size of the groups was 4 and the
score of a group was defined as the sum of the scores of the three strongest teams. In the
present paper, groups are of size 3 and their score is defined as the sum of the scores of
the three teams.

– Goal. In Laliena and López (2019) all groups were required to have the same score, while
here the scores of the groups must fall within specified upper and lower bounds.

– Algorithm. When we applied the algorithm in Laliena and López (2019) to the case of 8
groups of 4 teams in the 2014 World Cup, it took 1′45′′ to find all perfect solutions. In
that problem, the number of possible partitions of 32 teams into 8 groups with 8 seeded
teams was 24!/38 ∼ 9.5 × 1019. We now want to build an algorithm for groups of 3
teams and apply it to the case of the 2026 World Cup with 16 groups. The number of
possible partitions of 48 teams into 16 groups of 3 with 16 seeded teams is approximately
4.01 × 1030. Thus, the algorithm here needs to be much more efficient in order to solve
the problem in a reasonable amount of time. The present algorithm improves on Laliena
and López (2019) in all its parts, from the conditions for discarding sets of partitions
to the backtracking algorithm for finding particular solutions. We note that the ideas
behind our algorithm can be translated to the setting of groups of 4 teams, yielding a
much faster algorithm than that proposed there. In particular, the definition of a valid
change (Definition 9 below) can be used to broaden the concept of an invalid change
in Definition 5 of Laliena and López (2019). This, combined with a reformulation of
their Proposition 2, would enable a much faster elimination of unfeasible allocations.
Furthermore, the backtracking algorithmdevelopedhere could be applied as an alternative
to their enumerative approach.

– Drawprocedures. The pot-and-ball drawprocedure proposed inLaliena andLópez (2019)
for groups of size 4, called the 3-2-3 draw system, did not use the list of all perfect
solutions and did not guarantee that the result was one of them. Rather, it was a heuristic
algorithm which provided good results. In contrast, the draw procedures in the present
paper guarantee that the result is a perfect solution.

1.3 The case of 2026 world cup

In order to show the application of our algorithm and drawing procedures to a particular case,
we choose the original setting of the 2026 World Cup, where 48 teams had to be allocated
to 16 groups. Although, as of March 2023, the groups will have a size of 4, we believe this
example is valuable. It includes all the key elements of the general problem, such as seeded
teams and geographical constraints, and it is familiar to most readers.

We use the FIFA ranking to define the strength of teams, and the score of a team will be
its relative ranking (among the 48 participants). Other rankings, such as the World Football
Elo Rating (available at http://eloratings.net/) have been used in the literature; see (Chater et
al., 2021; Csató, 2023; Lapré and Palazzolo, 2023) or Stronka (2024). The use of absolute or
relative rankings for defining the strength of a team in a tournament is controversial but we
believe that relative rankings are better; as (Guyon, 2015) argues, the use of absolute FIFA
rankings can be misleading since the ranks can vary from 1 to more than 200. The ranking we
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use is the one released on December 23, 2021, the last published when we started considering
the problem (see FIFA, 2021).

Since the qualifying tournaments for the 2026 World Cup have yet to be held, the names
of the teams that will be included are still not known. However, the number of teams from
each geographical confederation has already been established, except for the last two places.
These two places will be assigned in a playoff tournament played by one team from each
confederation except UEFA (see FIFA (2018)). Thus, for this particular case, we take the
highest ranked teams in each confederation to be included in the World Cup; for the last two
places, we choose the best teams in confederations other than UEFA that have been left out.
The list of participants using these criteria, together with their absolute and relative ranks are
shown in Table B.1 of the Online Appendix.

The national teams from the three host countries will play in theWorld Cup (FIFA, 2023b),
and we assume that, as in previous editions, they will be seeded. As commented above, we
use relative ranks as scores; there is a slight change in the case of Canada, since it is a host
country and therefore assumed to be seeded, but it is not among the 16 strongest teams. We
set the score of Canada at 16 and the score of each team from Colombia to Nigeria as being
equal to their respective relative ranks plus 1. The geographical constraints FIFA used in
the last World Cups specify that no group can have two teams from the same confederation,
except for UEFA, and that every group must have at least one and at most two UEFA teams.
We adhere to these rules but remove the requirement of having at least one UEFA team per
group. This adjustment is justified because there are exactly 16 UEFA teams, matching the
number of groups, and enforcing this rule would significantly reduce randomness. We also
applied our algorithm using the rankings released on December 22, 2022 and December 21,
2023; see Tables B.2−3 in the Online Appendix.

1.4 Literature review

Operations research (OR) has been widely applied to sports for decades. Probably the best
overviews of OR applications in sports are provided byWright (2009), Wright (2014), Csató
(2021b), Lenten and Kendall (2022) and Devriesere et al. (2024). Recent research published
in OR journals has focused on the comparison and analysis of tournaments design. Scarf et
al. (2009) define several notions of success for a tournament and use simulations to evaluate
different tournament arrangements, e.g. with vs without seeds, group vs knockout stages.
Sziklai et al. (2022) compare tournament designs when the objective is to achieve the best
ranking of the participants. Csató et al. (2025) analyze the fairness of the allocation of berths
to each continent in FIFA World Cups. Csató (2021a) compares several arrangements for
the group stage of handball tournaments by studying the number of interesting matches and
the probability that good teams reach the final round. The role of seeding, which prevents
certain participants from playing one another in early stages of the tournament, has been
analyzed profusely. Scarf and Yusof (2011) investigate the effect of seeding policies for
several tournament structures and illustrate their results in the FIFAWorld Cup; Dagaev and
Suzdaltsev (2018) pose a discrete optimization problem to find a seeding that maximizes
spectators’ interest; Corona et al. (2019) use Monte Carlo simulation to study the effect of
the different seeding arrangements in the UEFA Champions League.

One interesting aspect in the design of tournaments is their strategyproofness. A tour-
nament is strategy-proof if participants cannot benefit from “tanking” (deliberately losing a
game in order to gain some advantage). Csató (2020) and Csató (2022) show that the UEFA
Champions League and the European qualifying tournament for FIFA World Cup are not
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strategy-proof and give suggestions for avoiding this problem. A closely related problem is
the risk of collusion, which may occur if a particular result of a game in the group stage
classifies the two opponents for the next round. Chater et al. (2021) analyze this problem and
propose several ways to minimize its occurrence, both when the groups are formed by 3 and
by 4 teams. In groups of 3 teams, the best strategy is to leave the strongest team out of the
final match. Guyon (2020) and Stronka (2024) also show that the risk of collusion is high
for the 3-team scheme and give potential solutions to reduce it. In particular, the solution
provided in Stronka (2024) could reduce the expected number of matches with high risk of
collusion in FIFA’s initial proposal for the 2026 World Cup from 5.5 to just 0.26.

Particular attraction has been paid to the issue of fairness of tournaments. Arlegi and
Dimitrov (2020) define fairness as letting stronger participants have better opportunities to
win the tournament. They give conditions for knockout tournaments to be fair and show real
examples of fair and unfair tournaments. Della Croce et al. (2022) use nonlinearmathematical
programming to define fair Grand Slam tennis tournaments, where fairness is related to
the number of times unseeded participants have been paired with seeded players in the
first round of recent tournaments. Boczoń and Wilson (2023) focus on the draw system for
knockout stages of a tournament and declare a draw procedure to be fair if teams have similar
probabilities of being matched with any potential partner. They consider the particular case
of the UEFA Champions League and quantify the distortions in match likelihoods caused
by the constraints imposed by UEFA. These distortions were previously analyzed for earlier
seasons of the tournament by Kiesl (2013) and Klößner and Becker (2013).

Fairness of draw procedures is also related to uniform distribution, that is, all the valid
results are equally likely. Roberts and Rosenthal (2024) argue that the sequential draw pro-
cedures used by UEFA and FIFA for group stages are not equally distributed. Actually, there
seems to be no straightforward sequential procedures based on pots and balls where all the
solutions are equally likely. They propose several sequential methods to extract a solution
uniformly based on multiple balls schemes or Metropolis algorithms. Csató (2024b) also
analyzes the problem of unequal probability of the outcome of the UEFA draw procedures.
He proposes several easy-to-implement modifications, such as changing the order of the pots,
so that the results are closer (although not equal) to the uniform distribution.

Closely related to the present work are papers in which the concept of fairness in a group
stage is based on balance, i.e., all the groups have similar strength. Imbalanced groups are seen
as being unfair, because teams in stronger groups have lower probabilities of advancing to the
next stage; for instance, Lapré and Palazzolo (2022), Lapré and Palazzolo (2023) quantify
the effect of imbalance in both the Women’s and Men’s FIFA World Cup. Guyon (2015)
proposes a draw procedure which uses an “S-curve-type” constraint to achieve balanced
groups. Although the procedure does not guarantee that all groups have the same ranking
total, it far outperforms FIFA’s procedure. Laliena and López (2019) study the formation
of 4-team groups and build an algorithm which finds all the possible groupings where all
the groups have the same score, defined as the sum of the scores of the three best teams.
Once all the possible groupings are found, one of them is selected using a random number
generator. They also devise an alternative draw procedure based on pots and balls which
produces groups with a similar score. Cea et al. (2020) propose the use of linear integer
programming to find balanced groups. They minimize the difference between the maximum
and the minimum range of the groups subject to the difference between the maximum and
minimum ranking sums being lower than a fixed value. They propose solving the problem
several times and picking one solution randomly.

The paper is organized as follows. The algorithm for listing all perfect solutions is
described in Sect. 2: the first part of the algorithm,which finds all valid configurations together
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with its mathematical justification, is in Sect. 2.1; the second part, which consists of finding
all the solutions arising from each valid configuration, is given in Sect. 2.2; an example of the
application of the algorithm to the particular case E = {1, . . . , 48} is provided in Sect. 2.3.
Section3 is devoted to the proposal of draw procedures, which randomly pick one of the
perfect solutions (Sects. 3.1, 3.2) and their comparison (Sect. 3.3).

2 A fast algorithm for enumerating all perfect solutions

Our goal is to devise a fair draw which produces groups with similar scores, defined as the
sum of the individual scores of the three teams in the group. To this end, we will proceed
as in Laliena and López (2019), by first enumerating all the possible groupings which fulfill
certain conditions, namely, the seeding and geographical constraints and a balance condition.
Then, a draw will be used to pick one of the perfect solutions. In this section we build an
algorithm to find all perfect solutions. First we establish some theoretical results which
reduce substantially the number of groupings to be checked. Our results improve on those of
Laliena and López (2019), finding sharper conditions which allow many more groupings to
be discarded in advance.

2.1 The first part of the algorithm: finding all valid configurations

Recall that the cardinal of E is 3g, which is the number of teams that must be accommodated
to g groups of 3 teams each. Since we are assuming a seeding rule, the g smallest elements
of E must be in different groups. We begin with the definition of grouping:

Definition 1 Agrouping x = (x1, . . . , xg) is a partition of E in g 3-tuples, x j = (� j ,m j , n j ),
for j = 1, . . . , g, such that:

(i) �1 < · · · < �g are the g smallest elements of E ,
(ii) m j < n j , for j = 1, . . . , g.

Each element x j of x is a group and the score of Group x j is defined as s j = � j +m j + n j ,
j = 1, . . . , g.

Ideally, all groups should have the same score, but in many occasions, this is not possible
since the sum of the scores of all the teams may not be a multiple of the number of groups g.
More generally, we will search for draws such that the scores of all the groups are between
two bounds. This leads to the following definition.

Definition 2 Given two integers s ≤ s, a grouping is a (s, s)-perfect solution if s ≤ s j ≤ s,
for all j = 1, . . . , g.

In what follows, we assume that s and s are fixed. Therefore, to avoid overburden notation,
we will write perfect solution instead of (s, s)-perfect solution when there is no risk of
confusion.

In a similar way to Laliena and López (2019), we divide set E into three subsets of size
g so the groups will be formed by taking an element from each subset. Obviously, due to
condition (i) of Definition 1, one of the subsets will be formed by the g smallest elements of
E . The objective of the next definitions and results is to determine which of these partitions
of E cannot define any perfect solution. This will reduce the number of the sets where perfect
solutions must be searched for.
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Definition 3 A configuration is a partition of E into three sets (B1, B2, B3)with card(B1) =
card(B2) = card(B3) = g and such that B1 is formed by the g smallest elements of E . A
configuration is admissible if there exists a grouping x = (x1, . . . , xg) such that � j ∈ B1,
m j ∈ B2 and n j ∈ B3, for all j = 1, . . . g.

The set B1 is formed by �1, . . . , �g , the g smallest elements of E . This set is fixed through-
out the paper and we assume �1 < · · · < �g . Note that condition (i i) in Definition 1 may
prevent a configuration from being admissible. Since B1 is fixed, a configuration is admis-
sible if and only if there is a matching between the elements of B2 and B3 such that each
element of B2 is smaller than the element of B3. We will relate this property with Hall’s mar-
riage problem, see (Hall, 1935), in Lemma 1 below. The relationship between the marriage
problem and draws in football has already been highlighted in Kiesl (2013) and Wallace and
Haigh (2013).

Definition 4 Let (B1, B2, B3) be an admissible configuration. We say that a grouping x is
generated by (B1, B2, B3) if � j ∈ B1, m j ∈ B2 and n j ∈ B3, for j = 1, . . . , g.

Note that every grouping is generated by a unique configuration, namely, B1 =
{�1, . . . , �g}, B2 = {m1, . . . ,mg}, B3 = {n1, . . . , ng}. Therefore, in order to find all per-
fect solutions, we may find all admissible configurations and, for each one, all groupings it
generates. We now define the concepts of basic configuration and change of teams.

Definition 5 The basic configuration is (B1, B0
2 , B

0
3 ) where max(B0

2 ) < min(B0
3 ).

That is, B0
2 is formed by the g smallest elements of E\B1 and B0

3 by the g largest elements
of E . The basic configuration is admissible since it generates, for instance, the grouping with
x j = (e( j), e(g+ j), e(2g+ j)), j = 1, . . . , g, where e(k) is the k smallest element of E .

Definition 6 Let r ∈ {1, . . . , g}. A change of r teams from the basic configura-
tion (B1, B0

2 , B
0
3 ) is c = ({ j1, . . . , jr }, {k1, . . . , kr }

)
, where { j1, . . . , jr } ⊆ B0

2 and
{k1, . . . , kr } ⊆ B0

3 . The result of the change c is the configuration (B1, Bc
2, B

c
3) given by

Bc
2 = B0

2 \ { j1, . . . , jr } ∪ {k1, . . . , kr } and Bc
3 = B0

3 \ {k1, . . . , kr } ∪ { j1, . . . , jr }.
Definition 7 A change c is admissible if the configuration (B1, Bc

2, B
c
3) is admissible.

A change is a swap of r teams between B0
2 and B

0
3 . For conveniencewewrite∅ for a change

of 0 teams (that is, no change). The result of change ∅ is (B1, B∅
2 , B∅

3 ) = (B1, B0
2 , B

0
3 ). We

now define a relation between changes. The relation will be defined explicitly for very similar
changes and then extended to the general case by transitivity.

Definition 8 (a) Let c = ({ j1, . . . , jr }, {k1, . . . , kr }
)
and c′ = {

( j ′1, . . . , j ′r ), (k′
1, . . . , k

′
r )}

be two changes such that either (i) there exists � ∈ {1, . . . , r} with j ′� < j�, j ′i = ji , for
all i 	= � and k′

i = ki for all i ∈ {1, . . . , r} or (i i) j ′i = ji for all i ∈ {1, . . . , r} and there
exists � ∈ {1, . . . , r} with k′

� > k�, k′
i = ki , for all i 	= �. We say that c′ is stronger than

c (and write c < c′).
(b) Let c = ({ j1, . . . , jr }, {k1, . . . , kr }

)
and c′ = {

( j ′1, . . . , j ′r+1), (k
′
1, . . . , k

′
r+1)} be two

changes such that { j1, . . . , jr } ⊂ { j ′1, . . . , j ′r+1} and {k1, . . . , kr } ⊂ {k′
1, . . . , k

′
r+1}. We

say that c′ is stronger than c (and write c < c′).
(c) Let c and c′ be two changes such that there exists a sequence of changes c = c1 < · · · <

cn = c′, with the order < defined in (a) and (b). We say that c′ is stronger than c (and
write c < c′).
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In the definition above, the order between changes is defined first (part (a)) for changes
which are equal except that a team taken from B0

2 in c is replaced by a smaller (better) team
in c′, or a team taken from B0

3 in c is replaced by a higher (worse) team in c′. Then it is
defined (part (b)) for changes which are equal except that change c′ has one more element
than change c. Last the relation is extended to other changes by using transitivity. It is clear
that any change c can be reached from change ∅ with a sequence of changes of the type (a)
and (b) such that ∅ = c1 < · · · < cn = c, so every change is stronger than the change ∅.

Lemma 1 The configuration (B1, B2, B3) is admissible if and only if

card
(
p↑)

≤ card
(
G

(
p↑))

, ∀ p ∈ B2, (1)

where, for p ∈ B2, p↑ = {k ∈ B2 : k ≥ p} and, for A ⊆ B2, G(A) = {k ∈ B3 ∃ j ∈
A wi th j < k}.

Proof It is a consequence of Hall’s marriage problem, see (Hall, 1935). By Definition 3, a
configuration is admissible if and only if each j ∈ B2 can be matched with a k ∈ B3 with
k > j . In other words, the configuration is admissible if and only if a marriage between
B2 and B3 is possible, where each element j in B2 can marry any element k of B3 with
k > j . Following Hall’s theorem, the necessary and sufficient condition for the existence of
a marriage is

card(A) ≤ card(G(A)), ∀ A ⊆ B2. (2)

It is obvious that if (2) holds, then so does (1), by taking A = p↑. Conversely, let A ⊆ B2

and let p = min(A). Then, card(A) ≤ card
(
p↑) ≤ card

(
G

(
p↑)) = card(G(A)) and

the result is proved. ��

We now give necessary and sufficient conditions for a change to be admissible and a
property to discard changes in our search for perfect solutions. For the next two results,
without loss of generality, we assume that E = {1, . . . , 3g} and B1 = {1, . . . , g}, B0

2 =
{g + 1, . . . , 2g}, B0

3 = {2g + 1, . . . , 3g}. We use the following notation: for a change
c = ({ j1, . . . , jr }, {k1, . . . , kr }) let yp = card ({i ∈ { j1, . . . , jr } : i < p}) for p = g +
1, . . . , 2g, and z p = card ({i ∈ {k1, . . . , kr } : i ≥ p}) for p = 2 g + 1, . . . , 3 g.

Proposition 1 (a) The change c = ({ j1, . . . , jr }, {k1, . . . , kr }) is admissible if and only if
the following conditions hold:

(i) for all p = g + 1, . . . , 2g, yp ≤ (p − g − 1)/2;
(ii) for all p = 2g + 1, . . . , 3g, z p ≤ (3g − p + 1)/2.

(b) If c and c′ are two changes with c < c′ and c is not admissible, then c′ is not admissible.

Proof (a) We first show that c is admissible if and only if the following conditions hold:

(i ′) for all p ∈ {g + 1, . . . , 2g} \ { j1, . . . , jr }, yp ≤ (p − g − 1)/2;
(i i ′) for all p ∈ {k1, . . . , kr }, z p ≤ (3g − p + 1)/2.

In order to prove it, we apply Lemma 1 to Bc
2 = {g + 1, . . . , 2g} \ { j1, . . . , jr } ∪

{k1, . . . , kr } and Bc
3 = {2g + 1, . . . , 3g} \ {k1, . . . , kr } ∪ { j1, . . . , jr }. Let p ∈ {g +

1, . . . , 2g} \ { j1, . . . , jr } and note that p↑ is formed by {k1, . . . , kr } and the elements in
{g + 1, . . . , 2g} which are greater than or equal to p and are not in { j1, . . . , jr }. Thus
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card
(
p↑) = r + (2g − p + 1) − (r − yp). Also, card

(
G

(
p↑)) = g − yp . Then,

condition (1) is

2g − p + 1 + yp ≤ g − yp ⇔ yp ≤ p−g−1
2 .

Let now p ∈ {k1, . . . , kr } and note that p↑ is formed by the elements of {k1, . . . , kr }
greater than or equal to p, whose cardinal is z p . We also have card

(
G

(
p↑)) = 3g −

p + 1 − z p . Thus, condition (1) is

z p ≤ 3g−p+1
2 ,

and we have proved that c is admissible if and only if (i ′) and (i i ′) hold. Since (i) and
(i i) trivially imply (i ′) and (i i ′), it only remains to prove the converse. Suppose then that
(i ′) and (i i ′) hold. In particular, taking p = min{k1, . . . , kr } we have

r = z p ≤ 3g − p + 1

2
≤ g

2
. (3)

Let now p ∈ {y1, . . . , yr }. Suppose first p < max ({g + 1, . . . , 2g} \ { j1, . . . , jr }) and
define p+ = min{i ∈ {g + 1, . . . , 2g} \ { j1, . . . , jr } : i > p}. We have yp+ = yp +
p+ − p; thus

yp = yp+ − (p+ − p) < yp+ − p+ − p

2
≤ p − g − 1

2

by (i ′). Otherwise, if p > max ({g + 1, . . . , 2g} \ { j1, . . . , jr }), we have r = yp +2g+
1 − p so, from (3),

yp = r − (2g + 1 − p) ≤ r − 2g + 1 − p

2
≤ p − g − 1

2
.

Let now p ∈ {2g + 1, . . . , 3g} \ {k1, . . . , kr }. If p > max{k1, . . . , kr } then z p = 0.
For p < max{k1, . . . , kr } define p+ = min{i ∈ {k1, . . . , kr } : i > p}; we have
z p = z p+ ≤ (3 g − p+ − 1)/2 < (3 g − p − 1)/2.

(b) It suffices to prove that if c is not admissible, then any change c′ as in parts (a) and (b)
of Definition 8 is not admissible. Consider (a), and assume that the changes are of the
form given in part (i), that is, there exists � ∈ {1, . . . , r} with j ′� < j�, j ′i = ji , for all
i 	= � and k′

i = ki for all i ∈ {1, . . . , r}. In this case, we have yp(c) ≤ yp(c′) for all
p ∈ {g + 1, . . . , 2g} and z p(c) = z p(c′) for all p = 2g + 1, . . . , 3g, so if the change
c violates either condition (i) or (i i) of the Proposition, so does c′. An analogous proof
works for the case (a)(i i) of Definition 8. For (b), it is immediate that yp(c) ≤ yp(c′)
for all p ∈ {g + 1, . . . , 2 g} and z p(c) ≤ z p(c′) for p = {2g + 1, . . . , 3g} and the proof
is complete.

��
Proposition 1 gives an easy way to check if a change is admissible. If a change c is

not admissible, then the configuration (B1, Bc
2, B

c
3) does not generate any solution nor does

(B1, Bc′
2 , Bc′

3 ) with c′ > c.
By (3), if (B1, Bc

2, B
c
3) is an admissible configuration, then r ≤ g/2, so we assume

r ≤ g/2 in the rest of the section. We now drop the assumption of B1 = {1, . . . , g},
B0
2 = {g + 1, . . . , 2g}, B0

3 = {2g + 1, . . . , 3g}; that is, E is an arbitrary set of 3g
integers and (B1, B0

2 , B
0
3 ) is the basic configuration as in Definition 5. Given a change

c = ({ j1, . . . , jr }, {k1, . . . , kr }), we assume, without loss of generality that j1 < · · · < jr
and k1 < · · · < kr .
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Definition 9 An admissible change c = ({ j1, . . . , jr }, {k1, . . . , kr }) is (s, s)−valid if, for all
n = 1, . . . , r , the following conditions hold:

g∑

i=g−n+1

�i +
n∑

i=1

ji

+ S({n largest elements o f B0
2 \ { j1, . . . , jr } smaller than jn}) ≥ ns, (4)

n∑

i=1

�i +
r∑

i=r−n+1

ki

+ S({n smallest elements o f B0
3 \ {k1, . . . , kr } greater than kr−n+1}) ≤ ns,

(5)

where S(A) stands for the sum of the elements of A. We say that an admissible change is
(s, s)−invalid if it is not (s, s)−valid. A configuration (B1, Bc

2, B
c
3) is (s, s)−valid if the

change c is (s, s)− valid.

By convention, the change ∅ is valid and the configuration (B1, B0
2 , B

0
3 ) is valid.

Remark 1 The sets inside the S symbol in Definition 9 are well defined since the change c is
admissible. As above, in the rest of the paper we will omit the prefix (s, s)− when speaking
about valid or invalid changes when there is no risk of confusion.

Proposition 2 If an admissible change c is invalid, then the configuration (B1, Bc
2, B

c
3) does

not generate any perfect solution.

Proof Suppose that c is invalid due to a violation of (a) in Definition 9 for some n. Let x
be a grouping generated by the configuration (B1, Bc

2, B
c
3). In the groups where the teams

j1, . . . , jn ∈ Bc
3 are, the teams of Bc

2 must have been chosen from the set B0
2 \ { j1, . . . , jr }

which are smaller than jn , due to condition (i i) in Definition 1. An upper bound for the sum
of the scores of these n groups is achieved by choosing the n largest elements of the set above
together with the n largest elements of B1. This upper bound is the LHS of (4), so, as the
condition is violated, the upper bound does not reach ns, so it is impossible that all n groups
have scores at least s. The proof for condition (b) in Definition 9 is analogous. ��
Proposition 3 Let c < c′ be two admissible changes. If c is invalid, then c′ is invalid.

Proof We show it for c < c′ in the setting of (a) and (b) in Definition 8 and the result for the
rest of changes follows from transitivity.

Suppose the changes c and c′ are as in condition (a)(i) of Definition 8. We consider two
particular choices for c and c′; the rest of the cases can be proved by transitivity. In the
first choice we assume that, for some q ∈ {2, . . . , r}, there is a gap between jq−1 and jq
(they are not consecutive values of the set B0

2 ) and change c′ is equal to change c except
for the element jq , which is included in change c and it is substituted by p( jq) in c′, where
p( jq) is the maximum of the elements in B0

2 which are smaller than jq . Note that p( jq) is
not equal to jq−1. Thus, in this case the changes are c = ({ j1, . . . , jr }, {k1, . . . , kr }) and
c′ = ({ j1, . . . , jq−1, p( jq), jq+1, . . . , jr }, {k1, . . . , kr }). In the second choice, q = 1 (note
that y1 cannot be the minimum of B0

2 since c is admissible) and change c′ is equal to change
c except for the element j1, which is included in change c and it is substituted by p( j1).

Let us see how the LHS of (4) is modified from c to c′. If n < q , then j ′1 + · · · + j ′n =
j1 +· · ·+ jn and the set of elements in B0

2 \{ j ′1, . . . , j ′r } smaller than j ′n is the same as the set
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of elements in B0
2 \ { j1, . . . , jr } smaller than jn , so the LHS of (4) is not changed. If n ≥ q ,

then j ′1 + · · · + j ′n = j1 + · · · + jn − jq + p( jq) and the set of elements in B0
2 \ { j ′1, . . . , j ′r }

smaller than j ′n is the same as B0
2 \{ j1, . . . , jr } smaller than jn except for, perhaps (depending

on the particular values of j1, . . . , jr , n and q), the swapping of p( jq) for jq . Thus, the LHS
of (4) for c′ is either equal to the LHS for c or it is decreased by the difference jq − p( jq).
Obviously, the LHS of (5) is not modified. Therefore, if c is invalid, then c′ is also invalid. A
similar proof applies for c and c′ in the conditions of (a)(i i) of Definition 8.

Suppose now that c and c′ are as in the conditions of (b) of Definition 8. Let c =
({ j1, . . . , jr }, {k1, . . . , kr }) and c = ({ j ′1, . . . , j ′r+1}, {k′

1, . . . , k
′
r+1}) and let q be the index

of the element in { j ′1, . . . , j ′r+1} \ { j1, . . . , jr }. Then,
j ′1 = j1 < · · · < j ′q−1 = jq−1 < j ′q < j ′q+1 = jq < · · · < j ′r+1 = jr .

The LHS of (4) is unchanged when moving from c to c′ if n < q . When n ≥ q , we have

j ′1 + · · · + j ′n = j1 + · · · + jq−1 + j ′q + jq + · · · + jn−1 < j1 + · · · + jn .

Also,
{
i ∈ B0

2 \ { j ′1, . . . , j ′r } smaller than j ′n
} ⊆ {

i ∈ B0
2 \ { j1, . . . , jr } smaller than jn

}

so the third term in the LHS of (4) for c′ is smaller than or equal to the corresponding one for
c. Therefore, if change c does not satisfy condition (4) neither does c′. A similar reasoning
works for (5). ��

Once we have established the theoretical results that allow us to discard many groupings
(all those not coming from a valid configuration), we describe the first step of the algorithm.

This first step identifies all the valid configurations (B1, B2, B3) using the results above.
Recall that every configuration can be written as (B1, Bc

2, B
c
3) for a certain change c, and all

the changes can be reached from ∅ using an increasing sequence of changes as in parts (a) or
(b) of Definition 8. Also, if a change is not admissible or invalid, then all changes greater than
it are also not admissible or invalid. The algorithm starts with configuration (B1, B0

2 , B
0
3 ),

which is admissible and (by convention) valid, and starts by checking which changes of one
element ({ j1}, {k1}) are admissible and valid. We begin with j1 = max(B0

2 ), k1 = min(B0
3 )

and continue by decreasing j1 and increasing k1. Note that if a change ({ j1}, {k1}) is not
admissible or invalid, there is no need to check any change ({ j ′1}, {k′

1}) with j ′1 ≤ j1 and
k′
1 ≥ k1. Once we have identified all the admissible and valid one-element changes, we
turn to the two-element changes ({ j1, j2}, {k1, k2}) such that all the changes ({ j1}, {k1}),
({ j2}, {k1}), ({ j1}, {k2}), ({ j2}, {k2}) are admissible and valid. This procedure is repeated
with three, four,. . . elements with a maximum of g/2. Of course, if there are no admissible
and valid changes of r elements, then there is no need to check the changes of more than r
elements.

2.2 The second step of the algorithm: finding all perfect solutions within each valid
configuration

Having identified all valid configurations, we have to find, for each one, all perfect solutions,
that is, all groupings where each group has a score between s and s. Note that different
configurations imply different groupings, so there is no risk of getting duplicated groupings.
Note also that, while no perfect solution can be obtained from a configuration which is not
valid, there is no guarantee that a valid configuration generates any perfect solution.
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Let (B1, B2, B3) be a valid configuration and let us see how to find all perfect solutions
it generates. First, and without loss of generality, we assume that the i-th element of B1 is in
Group i , i = 1, . . . , g. One possible way of finding all perfect solutions is to enumerate all
possible assignments of elements of B2 and B3 to the groups and check whether the resulting
groups have a score between s and s. However, if we are considering g = 16, the cardinals
of B2 and B3 are 16, so we need to check 16! × 16! ∼ 1.4 × 1026 possibilities. Although
many of these are not actually groupings, due to condition (i i) of Definition 1, we cannot
identify them in advance. Thus, the direct enumeration procedure is discarded; this contrasts
with the situation in Laliena and López (2019), where a much lower number of possibilities
arose, namely (8!)3 ∼ 6.6 × 1013.

Our algorithm to find all perfect solutions generated by a valid configuration is based on
backtracking. We need a preliminary step.

2.2.1 A preliminary step

Note that, if s = s, then all groups must have a score equal to s, but if s < s, then the groups
may have different scores, with the constraint that the sum of all scores must be equal to
S(E), the sum of the elements of E . So the preliminary step consists of computing, by direct
enumeration or dynamic programming, all possible decompositions of S(E) into g integer
values between s and s. Once this is done, for each decomposition we assign the terms to the
groups and, for each assignment, we run the backtracking algorithm below.

2.2.2 The backtracking algorithm

In this step, we have B2, B3 and the scores of all groups fixed (si , i = 1, . . . , g). Thus, a
solution will be defined by the assignment of each element of B2 to a Group i = 1, . . . , g,
since the element of B3 in the group will be the one needed for the score of the group to be
equal to si . We assume that the elements of B2 are arranged in increasing order. We define
an array with g rows representing the groups and g columns representing the elements of
B2. The element (i, j) of the array is the element of B3 such that, if its score is added to �i
(the score of the i-th team of B1) and the score of the j-th team of B2, it yields si , so long as
the element of B3 is greater than the j-th element of B2, in order to fulfill condition (i i) in
Definition 1. If no such element of B3 exists, then the element of the array is 0. Here, we can
include the geographical constraints: if Group i formed by the i-th team of B1, the j-th team
of B2 and the corresponding team of B3 whose score adds up to si violates a geographical
constraint, then the element of the array is 0. In Laliena and López (2019), the geographical
constraints were not included in the algorithm, which searched for all perfect solutions and
checked one by one whether they satisfied the constraints. Although we can proceed in the
same way here, the algorithm will be much faster if we include the constraints in this step,
since it will allow us to discard many unfeasible solutions directly.

Once the array is built, our problem is similar to the classic n-queens problem. If we think
of the array as a g×g board, such that there is a number (the value in the array) on each square,
we must place g queens on the board. Placing a queen on square (i, j) means that Group i
will be formed by the i-th element of B1, the j-th element of B2 and the corresponding team
of B3. The following constraints apply:

1. No two queens can be in the same row (only one team of B2 per group),
2. No two queens can be in the same column (no team of B2 can be in more than one group),
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3. Queens can only be placed on squares with a nonzero value (there must be a compatible
team of B3 such that the group formed by the i-th team of B1, the j-th team of B2 and
the team of B3 has score si and satisfies the geographical constraints),

4. All the queens must be placed on squares with different values (no team of B3 can be in
more than one group).

Our backtracking algorithm works very much like the one for the n-queens problem. It
goes as follows. Select the first row and place a queen on the leftmost available square (a
square with a nonzero value). Then let the values of all squares in the row and column and
in all squares that share the same value with the placed queen, be equal to zero. Proceed to
the next row and repeat the procedure; if on reaching the end of the board we have placed
g queens, then we have found a perfect solution. In such case, or if we have not reached
the end of the board, move one step (row) back and select the next available (to the right)
column to place the queen. When there are no more squares in which to place the queen in
the first row, we will have obtained all perfect solutions in the array. The differences with
the classic n-queens problem are: here there are some forbidden squares (those with a zero
value) and the condition about the diagonals in the n-queens problem is substituted by the
condition of squares having different values. A detailed example of the algorithm in a simple
case of 4 groups of 3 teams each is shown in Online Appendix A. It is worth pointing out
that backtracking can be used to replicate the draw procedure in FIFA World Cup since the
2018 edition, as at each draw the group where the selected team is placed depends on the
existence of a feasible arrangement from that moment on; see (Roberts and Rosenthal, 2024)
and Csató (2024a).

2.3 The particular case E = {1, . . . , 48}with s = 73, s = 74

In this section we show how we applied our algorithm to the 2026 World Cup Finals, with
g = 16 groups, using relative rankings as team scores, s = 73, s = 74 and the geographical
constraints as detailed in Sect. 1.3.

We apply the first part of the algorithm to identify all valid configurations. In this case,
B1 = {1, . . . , 16}, B0

2 = {17, . . . , 32}, B0
3 = {33, . . . , 48}. It is easy to see that the only

admissible and valid one-element changes are ({ j1}, {k1}) with j1 ∈ {29, 30, 31, 32} and
k1 ∈ {33, 34, 35, 36}. Indeed, for j1 = 29, condition (4) is 16 + 29 + 28 ≥ 73, but for
j1 = 28, the condition cannot be satisfied since 16 + 28 + 27 	≥ 73. Similar computations
work for k1.

In the case of two-element changes, they must be formed by pairs of elements in
{29, . . . , 32} and {33, . . . , 36}. It is straightforward to show that all changes taking two ele-
ments from the first set and two elements from the second are valid, except for the changes
where { j1, j2} = {29, 30} or {k1, k2} = {35, 36}. For instance, if { j1, j2} = {29, 31}, condi-
tion (4) is

(n = 1) 16 + 29 + 28 ≥ 73; (n = 2) 15 + 16 + 29 + 31 + 28 + 30 ≥ 146.

However, for { j1, j2} = {29, 30} condition (4) cannot be satisfied since

(n = 1) 16 + 29 + 28 ≥ 73; (n = 2) 15 + 16 + 29 + 30 + 27 + 28 	≥ 146.

Changes of three elements must be formed by three elements of {29, 30, 31, 32} which
do not include the pair (29, 30) and three elements of {33, 34, 35, 36} which do not include
the pair (35, 36). The valid changes are those where { j1, j2, j3} is either {29, 31, 32} or
{30, 31, 32} and those where {k1, k2, k3} is either {33, 34, 35} or {33, 34, 36}. Lastly, there
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are no four-element changes since the only candidate is ({29, 30, 31, 32}, {33, 34, 35, 36})
which is invalid because it includes {29, 30} and {35, 36}. Therefore, in the particular case
E = {1, . . . , 48} with s = 73 and s = 74 there are 1 + 4 × 4 + 5 × 5 + 2 × 2 = 45 valid
configurations.

Once we have all valid configurations, we proceed to the second step of the algorithm,
which is carried out 45 times, one for each valid configuration.

Fix a valid configuration. All decompositions of S(E) = 1176 into the sum of 16 integers
between 73 and 74 are given by 8 values of 73 and 8 values of 74. Therefore, the possible
assignments are defined by the selection of 8 groups with score 73 and 8 groups with score
74. This can be done in

(16
8

) = 1,024 ways, so the backtracking part of the algorithm must
be repeated 1,024 times, one for each assignment.

Each valid configuration and assignment of the si to the groups defines a different
array for the backtracking algorithm. For instance, taking B2 = {17, . . . , 31, 33}, B3 =
{32, 34, . . . , 48}, si = 73 for i = 1, . . . , 8 and si = 74 for i = 9, . . . , 16, the array is

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33

1 0 0 0 0 0 0 0 48 47 46 45 44 0 0 0 39

2 0 0 0 0 0 0 0 47 0 45 44 43 0 0 40 38

3 0 0 0 0 0 48 47 46 45 44 43 42 0 40 0 0

4 0 0 0 0 48 0 46 45 44 43 42 41 40 0 38 36

5 0 0 0 48 47 0 0 44 0 42 41 40 0 38 37 0

6 0 0 48 47 46 45 44 43 42 41 0 39 38 37 0 34

7 0 48 47 46 45 44 43 42 41 40 39 38 37 0 35 0

8 48 47 46 45 44 43 42 41 40 39 38 37 0 35 34 0

9 48 47 46 45 44 43 42 41 40 39 38 37 0 35 0 0

10 47 46 45 44 0 42 41 40 39 38 0 36 35 0 0 0

11 46 0 0 43 0 41 40 39 0 37 36 35 0 0 32 0

12 45 44 43 42 0 0 39 38 37 36 35 34 0 32 0 0

13 44 43 42 41 40 39 38 37 36 35 34 0 32 0 0 0

14 43 42 41 40 0 0 37 36 0 34 0 32 0 0 0 0

15 42 41 40 39 38 0 36 35 34 0 0 0 0 0 0 0

16 41 40 39 0 37 36 0 34 0 32 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where the row numbers are the teams in B1, the column numbers are the teams in B2 and the
numbers inside the array are the teams in B3. Note that for nonzero values the row number
i plus the column number j plus the value of ai j add up to 73 for i = 1, . . . , 8 and 74 for
i = 9, . . . , 16. The zeros in the array come from three different sources: (a) impossibility
to meet the score: for instance, the element (1, 1) corresponds to Team 1 from B1, Team 17
from B2, so there is no value in B3 such that the sum of scores is 73; (b) condition (ii) of
Definition 1: for instance, the element (9,16) corresponds to Team 9 from B1, Team 33 of
B2 so the element of B3 to give a score of 74 would be 32, which is smaller than 33; (c)
geographical constraints: for instance, the element (1,29) is 0 because it corresponds to Team
1 (Belgium), Team 29 (Morocco) and Team 43 (Côte d‘Ivoire), having two countries from
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Table 2 First solution found by the algorithm in the array defined by B2 = {17, . . . , 31, 33}, B3 =
{32, 34, . . . , 48}, si = 73 for i = 1, . . . , 8 and si = 74 for i = 9, . . . , 16.

A: BEL-SRB-NZL E: ARG-JPN-GHA I: DEN-ALG-PAR M: SUI-IRN-CMR

B: BRA-UKR-PAN F: ITA-AUS-NGA J: NED-POL-EGY N: MEX-COL-CIV

C: FRA-PER-CHN G: ESP-MAR-QAT K: USA-TUN-KOR O: CRO-SEN-CRC

D: ENG-CHI-JAM H: POR-SWE-UAE L: GER-WAL-MLI P: CAN-URU-KSA

CAF. Underlined numbers are the first solution found by the backtracking algorithm, which
is shown in Table 2. There are 65,594 perfect solutions arising from this array.

This procedure is repeated for the 1,024 assignments of si within the configuration, and
the procedure is repeated for each valid configuration. The number of perfect solutions
arising from each valid configuration is shown in Table 3. The numbers in the ‘Changes’
column of the table represent the teams that are swapped between B0

2 and B0
3 . For instance,

‘29,33’ means that team 29 (Morocco) is exchanged with team 33 (Australia), resulting in
B2 = {17, . . . , 28, 30, 31, 32, 33} and B3 = {29, 34, 35, . . . , 48}.

In the case of the rankings released in December 2022 and December 2023 (Tables B.2−3
of the Online Appendix), the number of perfect solutions are shown in Tables B.4−5. It
is worth noting how small changes in the list of countries can cause large changes in the
number of perfect solutions from each valid configuration; in particular, in the latter tables
there are valid configurations which do not give rise to any perfect solution, because of the
geographical constraints.

2.4 An improvement to the backtracking algorithm

Our choice of taking the rows as the groups i = 1, . . . , g, in increasing order, and the elements
of B2 as the columns also in increasing order, is arbitrary and may affect the speed of the
backtracking algorithm, especially due to the geographical constraints. As a general idea, an
array with fewer nonzero values in the first rows will be faster to analyze than other with
many nonzero values in the first rows. Consider this simplified example, with g = 6, such
that the array is represented by

⎛

⎜⎜⎜⎜⎜⎜
⎝

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ 0 0 0 0
∗ 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

where the values ∗ are all different nonzero numbers. It is clear that the only possible solution
is the placement of a queen on each of the elements (i, 7 − i), i = 1, . . . , 6. However, the
backtracking algorithmwill revise several options before finding this solution. If we had used
a different ordering of the rows, things would have been different. For instance, by reversing
the order, the array is
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ 0 0 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and the algorithm directly checks the only possible solution (and no other options).Moreover,
in our original version we decided to take B1 as the rows, B2 as the columns and B3 as the
elements in the array. However, we can exchange the roles of B1, B2 and B3 so that the
number of nonzero elements in the first rows of the array becomes small. This flexibility is
analogous to choosing the ordering of the pots in the proposal of Csató (2024b) for the FIFA
World Cup draw, designed to improve fairness. However, we change the roles of the pots
only to speed up the search for perfect solutions; the original order is maintained for our draw
proposals in Sect. 3.

We applied this improvement to our example of the FIFA 2026World Cup. In this case, we
chose B2 as the rows, B3 as the columns and B1 as the numbers inside the array; moreover, the
elements in B2 are rearranged so the number of zeros in the rows is decreasing. Application
of this modification in the backtracking algorithm resulted in a 73% decrease in the time
needed to find all perfect solutions as compared to our original setting (B1 as rows, B2 as
columns and B3 inside, with rows arranged in the natural order).

3 Draw procedures

Once we have obtained all perfect solutions, we need to devise a draw procedure to randomly
select one of them. Actually, in theory, there is no need to know all the perfect solutions
in advance, because the classic rejection method, as described in Sect. 2.1 of Roberts and
Rosenthal (2024), could be used.This involves drawing a number uniformly between1 and the
number of unrestricted groupings (meaning that we do not take into account the geographical
constraints or the balancedness condition). Then, check if the selected grouping fulfills the
requirements: if it does, we have the solution; otherwise, reject it and draw the grouping
again. However, in our case, this method cannot be used as, out of 4.01 × 1030 possible
solutions of the unrestricted draw, only 3,128,263,466 satisfy the conditions, that is, only one
out of 1.28 × 1021 draws would be accepted.

Using the list of all perfect solutions, a simple draw would be to choose a random number
from 1 to N , the number of perfect solutions. This can be achieved easily by choosing a
number between 0 and 9 for units, tens, hundreds, and so on, and rejecting the final number if
it is greater than N . We call this draw ‘Uniform Draw’. It is true that with the Uniform Draw,
all perfect solutions have the same probability of being selected so we can regard this draw
as fair, but it lacks the appeal of draws in which teams, represented by balls, are drawn from
pots in a globally broadcast spectacle. One way to add extra interest to this draw is to use
the Metropolis (swap) method (see Sect. 5.3 of Klößner and Becker (2013), and Sect. 7.1
of Roberts and Rosenthal (2024)). It is an iterative method that starts with a perfect solution
chosen uniformly. Then, at each step, it extracts two teams randomly from a pot; if the swap
of the chosen teams results in another perfect solution, then the swap move is performed;
otherwise, a new pair of teams is selected. This procedure is repeated until a pre-specified
number of swap moves has been made. If the initial solution was drawn uniformly, the result
of the procedure is also uniform over all perfect solutions.

123



Annals of Operations Research

However, the Metropolis (swap) method is very different from what FIFA has been doing
so far. Moreover, in our particular setting, due to the stringent conditions defining the perfect
solutions, only a few pairs of teams can be swapped from a perfect solution to result in
another perfect solution. More specifically, the probability of a successful swap is smaller
than 2/31. This bound arises because, once the first team (with score i , say) is chosen, the
second team must have a score of i − 1 or i + 1 to be a candidate for a successful swap.
In practice, the probability is much smaller. For instance, from the perfect solution in Table
2, the only successful swaps are POL↔JPN, GHA↔MLI, MAR↔ALG, QAT↔CRC and
SWE↔WAL—five swaps out of

(32
2

) = 496 possible two-team extractions. This results
in approximately a 1% likelihood of a successful swap, meaning that many unsuccessful
extractions of pairs of teams may be necessary before achieving a valid result. Therefore, we
believe that a draw method closer to the classic FIFA draws will be more appealing to the
general public.

We propose three different pot-and-ball drawing procedures that will extract one of the
perfect solutions. In these procedures, a complete list of all perfect solutions is needed. We
will describe the procedures in the particular case of E = {1, . . . , 48}, s = 73, s = 74 and
with the teams and geographical constraints set out in Sect. 1.3.

We compare our procedures by analyzing their closeness to the uniform distribution (the
UniformDraw), as this closeness is considered a measure of fairness (Csató, 2024a, b). Other
measures of fairness, such as using estimations of the probability of teams advancing to the
next stage, have been proposed in the literature (Csató, 2024a), but we do not consider them
here.

3.1 Drawing procedure 1

For this procedure we only need one pot, with 32 balls labeled with the numbers 17, . . . , 48.
Teams 1 to 16 are assigned to Groups A to P respectively. (A modification of this draw,
which may increase its closeness to the uniform distribution, would be to choose the groups
for teams 1 to 16 randomly.) Then the balls are extracted sequentially from the pot and each
team extracted is included in the first “available” group at that moment, starting with Group
A. Here an available group is a group with less than 3 teams and such that there is a perfect
solution with all the previously extracted teams in their corresponding groups plus the newly
extracted team in its group.

The practical implementation consists of extracting one ball and checking if it can be in
GroupA, by seeingwhether there is at least one perfect solution in which the team is in Group
A. If so, the team is included in Group A and all the perfect solutions in which the team is
not in Group A are discarded. If there is no solution with the team in Group A, then we move
to Group B, continuing until a group is found for the team. This procedure is repeated until
the pot is emptied.

3.2 Drawing procedures 2A and 2B

We call the two procedures in this section Draw 2A and Draw 2B because the latter is only a
slight variation of the former. The procedures are similar to that used heretofore by FIFA.We
have three pots (1, 2 and 3) whose composition is explained below. Groups will be formed
by one team from each pot in such a way that the score of the team from Pot 1 is smaller than
that of the team from Pot 2 which is in turn smaller than that of the team from Pot 3. Pot 1
will be formed by teams 1 to 16, which will be in groups A to P respectively. The procedure
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requires two sequential draws: a draw to decide the composition of Pots 2 and 3 and a draw
to form the groups from the pots.

The first draw yields a composition of Pots 2 and 3 which is compatible with the existence
of perfect solutions. These pots will act as the sets B2 and B3 in Sect. 2.1. Therefore, the
composition of the pots must be given by configurations (B1, B2, B3) which are valid and
generate perfect solutions. In our particular case, the valid configurations are those defined
in Table 3. Note that, in this case, all valid configurations generate perfect solutions. The
difference between Draw 2A and Draw 2B is only in the first draw defining the composition
of Pots 2 and 3.

The first draw should pick one of the valid configurations. This can be done in a number
of ways, but if we want to keep a pot-and-ball arrangement, one possibility is to introduce
balls labeled from 29 to 36 in a pot and extract four of them sequentially. These four teams
will be in Pot 2 together with teams 17, . . . , 28. Since not all possible 4-ball extractions are
feasible (that is, yield a valid configuration according to Table 3), a slight modification must
be included. It is easy to see that all extractions are feasible except for those where teams 29
and 30 are both in Pot 3 or teams 35 and 36 are both in Pot 2. Therefore, if at any extraction
Ball 35 or 36 is selected, then the other ball should be removed from the pot for the remaining
extractions; also, if after three extractions neither Ball 29 nor Ball 30 have been extracted,
then only those two balls must be in the pot for the last extraction. This procedure, which
uses pots and balls to define the composition of Pots 2 and 3 will be called Draw 2A.

Due to the nature of the draw defining the composition of Pots 2 and 3 in Draw 2A, all
the possible compositions of the pots will have similar probabilities. This contrasts with the
number of perfect solutions arising from the configurations (seeTable 3). This drawprocedure
may be expected to favor some solutions, especially those coming from configurations with
relatively few perfect solutions and so the procedure will be far removed from the Uniform
Draw, where all perfect solutions are equally likely. One way to overcome this problem is
to change the form in which Pots 2 and 3 are formed. Instead of using the pot-and-ball
arrangement described above, we can choose a composition of the pots with a probability
that is proportional to the number of perfect solutions in Table 3. We can do that using a
random number generator. This procedure, which uses a random number generator to define
the composition of Pots 2 and 3, will be called Draw 2B.

Once we have defined the composition of Pots 2 and 3, we move to the draw to form
the groups. This draw has 16 repetitions, one for each group. At each repetition a group is
formed in the following way. A ball i is extracted from Pot 1, determining the group to be
formed (A for i = 1, B for i = 2 and so on). Then balls in Pot 2 that are not compatible
with the extraction from Pot 1 are removed, i.e., the balls with teams which are not in the
same group as Team i in any perfect solution. A ball j is extracted from Pot 2. Now all balls
in Pot 3 with teams which are not in the same group together with i and j in any perfect
solution are removed from Pot 3. Note that in the particular example we are working with,
as s = 73 and s = 74, there will be only one or two balls remaining in Pot 3. A ball k is
then extracted from Pot 3, thus forming the group with Teams i, j, k. We now move to the
next repetition, for which all the balls, except for i, j, k are returned to their original pots
and all perfect solutions where Teams i, j, k are not in the same group are discarded. This
procedure is repeated until all groups are formed.
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3.3 Comparison of the drawing procedures

Wenowcompare the drawing procedures 1, 2A and 2Bdescribed in Sects. 3.1 and 3.2with the
Uniform Draw, in which all perfect solutions are equally likely. Ideally, we should compute
the probability of each perfect solution under the drawing procedures and compare it with
1/N , where N is the number of perfect solutions. This is not possible due to the large number
of perfect solutions, and because of the existence of multiple ways of obtaining a specific
solution, which makes the computations for each solution lengthy. We can therefore rely on
MonteCarlo simulation.However,we cannot estimate the probability of eachperfect solution,
because this would require a very large number of simulation runs in order to approximate
the probability by the frequency of occurrence of each one of the solutions (3,128,263,466
in this particular case).

Since a direct comparison of the probabilities of each solutionwith 1/N is not possible, we
can compare the draws by using a proxy. A good option (see Csató (2024a), Csató (2024b))
is to compare the proportion of times each pair of teams are in the same group under a
particular drawing procedure with the corresponding proportion using the Uniform Draw.
For the Uniform Draw, this is done by listing all the perfect solutions. See Table C.1 in the
Online Appendix; for instance Belgium and Paraguay are in the same group in approximately
11.2% of the perfect solutions. Note that for reasons of space, the entire array of pairs is not
shown in the table but since it is a symmetric array, all values can be read in it. An estimation
of the corresponding values for Draws 1, 2A and 2B is made using Monte Carlo simulation.
For each draw, we have performed 50,000 simulation runs and computed the proportion of
times each pair of teams are in the same group. The simulation error for a probability p is
given by

√
p(1 − p)/n and it is bounded above by 1/(2

√
n) = 0.0024. The results are in

Tables C.2−4 of the Online Appendix.
We compare Draws 1, 2A and 2B with the Uniform Draw by graphical and numerical

means. Figure2 shows three scatterplots, one for each drawing procedure. Each point is a
pair of teams represented by the proportion of times the pair is in the same group under the
Uniform Draw (X-axis) and under Draws 1, 2A and 2B (Y-axis). The closer the points are
to the line y = x , the more similar the draw is to the Uniform Draw. It is evident that Draw
2B is the best, followed by Draw 1 and, a long way behind, by Draw 2A. Additionally, see
the heatmaps in Tables C.2−C.4 (inspired by Csató (2024a)), where green indicates that the
value under a given draw is greater than under the Uniform Draw and red indicates that it
is smaller, with darker tones implying larger differences. This is corroborated numerically,
by computing the distance between the values of the arrays represented in Tables C.2−4
with the corresponding values in Table C.1 of the Online Appendix. We use, as a measure of
dissimilarity between the arrays, the chi-square statistic, defined as

∑

i∼ j

(prop times i, j together in Draw k − prop times i, j together in Uniform Draw)2

prop times i, j together in Uniform Draw
,

where i ∼ j means that Teams i and j are in the same group in at least one perfect solution,
and k =1, 2A, 2B. The values of this statistic are 10.77 for Draw 1, 33.41 for Draw 2A and
1.25 for Draw 2B, corroborating the conclusion that Draw 2B is the closest to the Uniform
Draw.

Other measures of dissimilarity between the matrices, such as the sum of the absolute or
relative deviations and the maximum of the absolute differences have also been computed,
all indicating the superiority of Draw 2B.
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Fig. 2 Scatterplots comparing the probabilities of every pair of teams playing together in Draws 1, 2A and 2B
with the Uniform Draw

3.4 Potential limitations of our procedures

Our algorithmprovides the groupings that are nedeed to create balanced draws. The algorithm
is fast and the draw procedures are well suited for a TV spectacle format. There are also some
potential drawbacks to our proposal:

– The number of perfect solutions is sensitive to the geographical constraints and the
choice of lower and upper bounds, which can be seen as arbitrary. Note, however, that
the degree of freedom given by the choice of bounds lets the organizer adjust them to
obtain an appropriate number of perfect solutions, based on the geographical constraints
and the allocation of teams in the tournament.

– Enumerating all perfect solutions can be computationally challenging. Nevertheless, our
algorithm is efficient, finding more than 109 solutions within 24h. As the number of
solutions depends on the chosen lower and upper bounds, these can be adjusted to prevent
excessively long running times.

– Transparency could be compromised by the large number of solutions. The pot-and-ball
draw procedures involve assigning teams to groups based on the existence of compatible
perfect solutions, which requires a computer-assisted search. This process is not transpar-
ent for the spectators watching the show. To mitigate this issue, a complete list of perfect
solutions and the corresponding code should be made publicly available in advance.

4 Conclusion

We have defined several draw procedures which give balanced solutions for the group stage
of tournaments where groups are of size 3. First, a fast algorithm is given for obtaining a
complete list of all perfect solutions (groupings where the sum of the scores of the teams
of all groups are between two bounds and where all groups satisfy the constraints imposed
by the organizer). This algorithm builds on that given in Laliena and López (2019) but it is
much faster since it checks sharper conditions, in order to discard large subsets of infeasible
groupings. One important aspect of having a list of all perfect solutions is that it can be refined
by imposing further conditions. For instance, in consonance with (Cea et al., 2020), we can
keep only those which minimize the difference between the ranges of the groups.
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Once the complete list of solutions is obtained, several methods are defined for randomly
picking one of them. The fairest method is to use a random number generator to obtain a
number between 1 and the number of perfect solutions. This method is fair, since all the
solutions have the same probability, but it is not exciting for the audience. We then provide
three different drawing procedures based on the sequential extraction of balls from pots
which maintain the traditional draw scheme used by FIFA and aim to align with transparency
principles, a key issue in the draws of sports tournaments (see (Boczoń and Wilson, 2023;
Roberts and Rosenthal, 2024)). The random parts of the draws are transparent because they
involve the extraction of balls from pots during a broadcast event. Transparency is less clear
for the deterministic steps of the draws–such as selectingwhich balls are placed in the pots for
each extraction and determining the group for the extracted team–as they rely on the whole
set of perfect solutions, which can be very large. This can be mitigated by publishing a list of
all perfect solutions before the draw, along with the algorithm’s code, allowing sophisticated
users to replicate the procedure and confirm that they obtain the same solution given the balls
extracted from the pots.

FIFA initially decided to use the 3-team scheme for the 2026World Cup but later changed
this due to concerns about collusion. However, the adopted scheme of 12 groups of 4 teams
also has its problems. Stronka (2024) demonstrated how the likelihood of collusion can be
reduced for groups of 3, and the present paper shows how balanced groups can be achieved.
In light of these developments, we believe the 3-team scheme should be preferred for future
World Cups.

Our draw procedures can be implemented in a similar way to that currently used by FIFA
and other tournament organizers. In particular, they are very well suited for a TV spectacle
format, and could therefore be adopted by FIFA. Of the three proposed methods, the one we
call 2B is the least biased, since it gives probabilities that are the closest to the uniform case.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10479-025-06497-9.
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