Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain

Rodríguez, Alejandro ; Ruiz-Botella, Manuel ; Martín-Loeches, Ignacio ; Jimenez Herrera, María ; Solé-Violan, Jordi ; Gómez, Josep ; Bodí, María ; Trefler, Sandra ; Papiol, Elisabeth ; Díaz, Emili ; Suberviola, Borja ; Vallverdu, Montserrat ; Mayor-Vázquez, Eric ; Albaya Moreno, Antonio ; Canabal Berlanga, Alfonso ; Sánchez, Miguel ; del Valle Ortíz, María ; Ballesteros, Juan Carlos ; Martín Iglesias, Lorena ; Marín-Corral, Judith ; López Ramos, Esther ; Hidalgo Valverde, Virginia ; Vidaur Tello, Loreto Vidaur ; Sancho Chinesta, Susana ; Gonzáles de Molina, Francisco Javier [...] Mostrar todos los autores (56)
Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain
Resumen: Background
The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes.

Methods
Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 ICUs in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient’s factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves.

Results
The database included a total of 2022 patients (mean age 64 [IQR 5–71] years, 1423 (70.4%) male, median APACHE II score (13 [IQR 10–17]) and SOFA score (5 [IQR 3–7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A (mild) phenotype (537; 26.7%) included older age (< 65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623, 30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C (severe) phenotype was the most common (857; 42.5%) and was characterized by the interplay of older age (> 65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications.

Conclusion
The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a “one-size-fits-all” model in practice.

Idioma: Inglés
DOI: 10.1186/s13054-021-03487-8
Año: 2021
Publicado en: Critical care 25 (2021), 63 [15 pp.]
ISSN: 1364-8535

Factor impacto JCR: 19.344 (2021)
Categ. JCR: CRITICAL CARE MEDICINE rank: 4 / 35 = 0.114 (2021) - Q1 - T1
Factor impacto CITESCORE: 14.2 - Medicine (Q1)

Factor impacto SCIMAGO: 3.218 - Critical Care and Intensive Care Medicine (Q1)

Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Area Medicina (Dpto. Medicina, Psiqu. y Derm.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2025-03-10-12:55:57)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Medicina



 Registro creado el 2025-03-10, última modificación el 2025-03-10


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)