000151473 001__ 151473 000151473 005__ 20251017144619.0 000151473 0247_ $$2doi$$a10.1039/d1dt00597a 000151473 0248_ $$2sideral$$a126632 000151473 037__ $$aART-2021-126632 000151473 041__ $$aeng 000151473 100__ $$0(orcid)0000-0003-2260-676X$$aPérez-Bitrián A. 000151473 245__ $$aHydrogen bonding to metals as a probe for an inverted ligand field 000151473 260__ $$c2021 000151473 5060_ $$aAccess copy available to the general public$$fUnrestricted 000151473 5203_ $$aElectron-rich, late transition metals are known to act as hydrogen-bonding (HBd) acceptors. In this regard, Pt(ii) centres in square-planar environments are particularly efficient. It is however puzzling that no convincing experimental evidence is currently available for the isoelectronic neighbour Au(iii) being involved in HBd interactions. We report now on the synthesis and characterisation of two series of isoleptic and isoelectronic (d8) compounds [(CF3)3Pt(L)]-and (CF3)3Au(L), where the L ligands are based on the quinoline frame and have been selected to favour HBd with the metal centre. Strong HBd interactions were actually found in the Pt(ii) compounds, based on structural and spectroscopic evidence, and they were further confirmed by theoretical calculations. In contrast, no evidence was obtained in the Au(iii) case. In order to find the reason underlying this general disparity, we undertook a detailed theoretical analysis of the model systems [(CF3)3Pt(py)]-and (CF3)3Au(py). This study revealed that the filled dz2orbital is the HOMO in the case of Pt(ii), but is buried in the lower energy levels in the case of Au(iii). The sharply different electronic configurations involve ligand-field inversion on going from Pt to the next element Au. This is not a gradual but an abrupt change, which invalidates Au(iii) as a HBd-acceptor wherever ligand-field inversion occurs. 000151473 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E17-20R$$9info:eu-repo/grantAgreement/ES/MECD/FPU15-03940$$9info:eu-repo/grantAgreement/ES/MICIU-FEDER/PGC2018-094749-B-I00 000151473 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es 000151473 590__ $$a4.569$$b2021 000151473 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b7 / 46 = 0.152$$c2021$$dQ1$$eT1 000151473 592__ $$a0.864$$b2021 000151473 593__ $$aInorganic Chemistry$$c2021$$dQ1 000151473 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000151473 700__ $$0(orcid)0000-0002-2492-625X$$aBaya M.$$uUniversidad de Zaragoza 000151473 700__ $$0(orcid)0000-0003-0341-7699$$aCasas J.M.$$uUniversidad de Zaragoza 000151473 700__ $$0(orcid)0000-0002-4808-574X$$aMartín A. 000151473 700__ $$0(orcid)0000-0001-9045-5102$$aMenjón B. 000151473 7102_ $$12010$$2760$$aUniversidad de Zaragoza$$bDpto. Química Inorgánica$$cÁrea Química Inorgánica 000151473 773__ $$g50, 16 (2021), 5465-5472$$pDalton Trans.$$tDalton Transactions$$x1477-9226 000151473 8564_ $$s1374800$$uhttps://zaguan.unizar.es/record/151473/files/texto_completo.pdf$$yVersión publicada 000151473 8564_ $$s2658002$$uhttps://zaguan.unizar.es/record/151473/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000151473 909CO $$ooai:zaguan.unizar.es:151473$$particulos$$pdriver 000151473 951__ $$a2025-10-17-14:20:57 000151473 980__ $$aARTICLE