000151510 001__ 151510
000151510 005__ 20250310131044.0
000151510 0247_ $$2doi$$a10.3390/app15052600
000151510 0248_ $$2sideral$$a143157
000151510 037__ $$aART-2025-143157
000151510 041__ $$aeng
000151510 100__ $$aEgaña, Fernando
000151510 245__ $$aGeneralising the Machine Tool Integrated Inverse Multilateration Method for the Ambient Thermal Error Analysis of Large Machine Tools in Industrial Environments
000151510 260__ $$c2025
000151510 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151510 5203_ $$aThis study expands on prior research by generalising the machine tool integrated inverse multilateration methodology to evaluate ambient thermal effects on medium- and large-sized machine tools in industrial environments. This method integrates an absolute distance measurement device into the machine tool spindle, enabling an automated and robust multilateration scheme without requiring controlled environments, expensive thermal instruments, or specialised artifacts. Tests were conducted using a LEICA AT960™ laser tracker and wide-angle retro-reflectors (both from Hexagon Manufacturing Intelligence, Stockholm, Sweden) across two machine architectures, THERA™ (gantry type) and ZERO™ (bed type), building on earlier work with the ARION G™ (bridge type), all of them MTs manufactured by Zayer (Vitoria, Spain). Sequential experiments in varying ambient conditions demonstrated the reliability of the machine tool integrated inverse multilateration approach over extended periods, showing strong correlations between the measured errors and temperature variations. The results were validated using a first-order mathematical model and finite element method simulations, confirming thermal error evolution as a function of ambient temperature changes. This method’s adaptability to diverse machine architectures and industrial conditions highlights its potential for characterising and mitigating thermal errors in large machine tools. This work underscores the method’s effectiveness and utility for advancing thermal error analysis in practical manufacturing settings.
000151510 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000151510 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151510 700__ $$aMutilba, Unai
000151510 700__ $$0(orcid)0000-0001-7152-4117$$aYagüe-Fabra, José A.$$uUniversidad de Zaragoza
000151510 700__ $$aChekh, B. Ahmed
000151510 700__ $$aLopez, Susana
000151510 7102_ $$15002$$2515$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Ing. Procesos Fabricación
000151510 773__ $$g15, 5 (2025), 2600 [25 pp.]$$pAppl. sci.$$tApplied Sciences (Switzerland)$$x2076-3417
000151510 8564_ $$s12782015$$uhttps://zaguan.unizar.es/record/151510/files/texto_completo.pdf$$yVersión publicada
000151510 8564_ $$s2702323$$uhttps://zaguan.unizar.es/record/151510/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151510 909CO $$ooai:zaguan.unizar.es:151510$$particulos$$pdriver
000151510 951__ $$a2025-03-10-12:57:22
000151510 980__ $$aARTICLE