000151528 001__ 151528
000151528 005__ 20250313085758.0
000151528 0247_ $$2doi$$a10.1016/j.ijhydene.2011.11.066
000151528 0248_ $$2sideral$$a82180
000151528 037__ $$aART-2012-82180
000151528 041__ $$aeng
000151528 100__ $$0(orcid)0000-0001-7814-2277$$aRomero, E.$$uUniversidad de Zaragoza
000151528 245__ $$aMolibdenum addition to modified iron oxides for improving hydrogen separation in fixed bed by redox processes
000151528 260__ $$c2012
000151528 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151528 5203_ $$aA system to produce hydrogen with high purity and without CO2 emissions briefly consists of two operating units: production and separation. The coupling of the steam-iron process to the cracking of methane can manage that goal. However the steam-iron process needs an active and stable redox solid at moderate temperatures. The most suitable (pure iron oxide) suffers quick and strong deactivation mainly due to the structural changes upon reduction-oxidation cycles. Among those tested in our laboratory, one promising solid was proposed: 98 wt%Fe2O3–1.75 wt%Al2O3–0.25 wt%CeO2. In this work, the expensive and rare cerium has been substituted by molybdenum. After optimizing the Mo amount in the solid, the long lasting experiments show that the new triple oxide, 98 wt%Fe2O3–1.75 wt%Al2O3–0.25 wt%MoO3, in spite of some initial deactivation, maintains slightly better hydrogen production rates than the cerium sample. At temperature and conditions studied the Mo-solid was able to run, without coke formation, under real exhaust gas from natural gas thermocatalytic decomposition, producing about 8.1 g of high purity (>99.995%) hydrogen h−1 kg of solid−1. This means a natural gas processing of about 68 Nm3 h−1 1000 kg of solid−1 (at 67% conversion of methane to hydrogen).
000151528 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/CTQ2007-64320$$9info:eu-repo/grantAgreement/ES/MICINN/ENE2010-16789
000151528 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000151528 590__ $$a3.548$$b2012
000151528 591__ $$aENERGY & FUELS$$b16 / 80 = 0.2$$c2012$$dQ1$$eT1
000151528 591__ $$aCHEMISTRY, PHYSICAL$$b38 / 134 = 0.284$$c2012$$dQ2$$eT1
000151528 591__ $$aELECTROCHEMISTRY$$b7 / 26 = 0.269$$c2012$$dQ2$$eT1
000151528 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/submittedVersion
000151528 700__ $$aSoto, R.
000151528 700__ $$0(orcid)0000-0003-2898-1085$$aDurán, P.
000151528 700__ $$0(orcid)0000-0003-1940-9597$$aHerguido, J.$$uUniversidad de Zaragoza
000151528 700__ $$0(orcid)0000-0002-8383-4996$$aPeña, J.A.$$uUniversidad de Zaragoza
000151528 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000151528 773__ $$g37, 8 (2012), 6978-6984$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199
000151528 8564_ $$s670446$$uhttps://zaguan.unizar.es/record/151528/files/texto_completo.pdf$$yPreprint
000151528 8564_ $$s2656436$$uhttps://zaguan.unizar.es/record/151528/files/texto_completo.jpg?subformat=icon$$xicon$$yPreprint
000151528 909CO $$ooai:zaguan.unizar.es:151528$$particulos$$pdriver
000151528 951__ $$a2025-03-13-08:39:19
000151528 980__ $$aARTICLE