000151534 001__ 151534
000151534 005__ 20251017144608.0
000151534 0247_ $$2doi$$a10.1016/j.cej.2025.160506
000151534 0248_ $$2sideral$$a143184
000151534 037__ $$aART-2025-143184
000151534 041__ $$aeng
000151534 100__ $$aQuirós-Ovies, Ramiro
000151534 245__ $$aContinuous exfoliation of 2H-MoS2 in a microwave-heated microfluidic contactor
000151534 260__ $$c2025
000151534 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151534 5203_ $$aMicrowave (MW)-assisted exfoliation of molybdenum disulfide (MoS2) has been demonstrated to produce exceptionally large area (in the µm2 range), ultrathin (< 4 layers) flakes operating in the batch mode. Here, we develop a continuous system capable of producing few-layer MoS2 flakes of similar quality to those obtained through the batch procedure but with enhanced efficiency and scalability. The proposed microfluidic-based method introduces a controlled, stable, and reproducible process for exfoliating MoS2 in a liquid medium. By optimizing parameters such as flow rate, channel geometry, power of the MW heating and solvent selection, we were able to consistently achieve flake sizes in the µm range and thicknesses below 6 nm, comparable to those obtained via batch MW exfoliation. The continuous nature of the system allows for scalable production, addressing one of the major limitations of batch processes. While developed for MoS2 flakes, it can be translated to any two-dimensional (2D) material with suitable microwave-absorbing properties, potentially paving the way for the continuous production of a wide variety of large-area ultrathin flakes.
000151534 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/CEX2020-001039-S$$9info:eu-repo/grantAgreement/ES/MICINN/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/MICINN/PDC2022-133866-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-127847OB-I00$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2017-86060-P$$9info:eu-repo/grantAgreement/ES/MINECO/PID2020-116661RB-I00
000151534 540__ $$9info:eu-repo/semantics/embargoedAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000151534 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000151534 700__ $$aSabanés, Natalia Martín
000151534 700__ $$aGarcía-Pérez, Cristina
000151534 700__ $$aBernardo-Gavito, Ramón
000151534 700__ $$aGranados, Daniel
000151534 700__ $$aPérez, Emilio M.
000151534 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaría, Jesús$$uUniversidad de Zaragoza
000151534 700__ $$0(orcid)0000-0002-6873-5244$$aSebastian, Víctor$$uUniversidad de Zaragoza
000151534 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000151534 773__ $$g508 (2025), 160506 [11 pp.]$$pChem. eng. j.$$tChemical Engineering Journal$$x1385-8947
000151534 8564_ $$s1842932$$uhttps://zaguan.unizar.es/record/151534/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2026-02-19
000151534 8564_ $$s1638720$$uhttps://zaguan.unizar.es/record/151534/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2026-02-19
000151534 909CO $$ooai:zaguan.unizar.es:151534$$particulos$$pdriver
000151534 951__ $$a2025-10-17-14:15:59
000151534 980__ $$aARTICLE