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1. Introduccion

Uno de los métodos mas utilizados para resolver un sistema lineal de ecuaciones Ax = b
consiste en descomponer la matriz A como producto de una matriz triangular inferior L
y una matriz triangular superior U y resolver los correspondientes sistemas triangulares.
Esta forma de descomponer una matriz se conoce como factorizacion LU. En este trabajo
vamos a considerar la matriz de Vandermonde V' en nodos z, ..., x,. Aunque disponemos
de expresiones explicitas para la inversa de una matriz de Vandermonde, es habitual resolver
el sistema mediante una factorizacion LU. Se explorardn las conexiones de la férmula de
interpolaciéon de Newton con dichas factorizaciones triangulares. Como la férmula de Newton
depende de la ordenacién de los nodos, se analizara el condicionamiento de factorizaciones
triangulares asociadas a diferentes ordenaciones de los nodos.

En cualquier método numeérico, ademas del coste computacional, es importante tener en
cuenta los errores de redondeo que se cometen. Una medida apropiada del error cometido
es el condicionamiento de una matriz A, que se denota por k. (A) y se define del siguiente
modo:

Koo(A) == HAHOOHA_l”oo'

Es bien conocido que la matriz de Vandermonde estd mal condicionada. Ademads, se tiene
que Koo(V) < Koo (L)koo(U). El objetivo de este trabajo es analizar posibles factorizaciones
LU de V y ordenaciones de los nodos de forma que koo (L)koo(U) sea lo menor posible. Las
factorizaciones que vamos a considerar son dos: la primera estd asociada a la féormula de
Newton para la resolucién del correspondiente problema de interpolaciéon polinémica y la
segunda asociada a la eliminacién gaussiana. Las ordenaciones que vamos a tomar son la
natural, la de Leja y, en el caso de tomar los nodos en el intervalo [—1, 1], proponemos una
nueva ordenacién llamada central.

En la Seccion 2 de este trabajo se introduce el problema de interpolacién de Lagrange
y se define la matriz de colocacién de un problema de interpolacién respecto de una base
dada. A continuacién en la Seccién 3, se presenta el problema de interpolacién de Lagrange
polinémico y se da la solucién de éste a través de la formula de Lagrange y de la matriz de
Vandermonde. La Seccién 4 comienza con la férmula de Newton, que expresa el interpolante
mediante diferencias divididas y se presenta la factorizacién LU asociada. Se dan férmulas
de recurrencia para calcular los elementos de las matrices triangulares L y U. Estas matrices
triangulares forman una factorizacién LU de la matriz de Vandermonde V donde U tiene unos
en la diagonal principal. En la siguiente Seccién 5, se define el condicionamiento tradicional
Koo(A) v el condicionamiento de Skeel de una matriz. La Seccién 6 estd dedicada a calcular las
inversas de las matrices L y U anteriores y se dan férmulas explicitas que permiten calcular
los elementos de estas matrices por recurrencia. En la siguiente Seccién 7, se define el concepto
de alta precisién relativa y se demuestra que los célculos de L, L™, U y U~ se realizan con

alta precision relativa. En la Seccién 8 se introduce una nueva forma de ordenar los nodos:



la ordenacién de Leja, descrita por Reichel en [10]. La Seccién 9 estd dedicada a ejemplos
ilustrativos en los que se consideran distintos intervalos para tomar los nodos. Se consideran
nodos equidistantes y se toman distintas ordenaciones para ellos. Las secciones 10 y 11 estan
dedicadas a los experimentos numéricos realizados. La primera de estas secciones recoge
resultados sobre los factores triangulares, mientras que la segunda compara los resultados de
los condicionamientos conjuntos. La tltima seccion recoge las conclusiones extraidas de este

trabajo.

2. Problemas de interpolacién y matrices de

colocacion

En este trabajo queremos estudiar la factorizacion de matrices Vandermonde. Estas ma-
trices aparecen al plantear un problema de interpolacién de Lagrange respecto de la base de

monomios.

Problema de interpolacién de Lagrange. Sea U un espacio de funciones con dim U =
n + 1. Dados nodos xy, ..., z, distintos y fo,..., fn, encontrar u € U, con u(x;) = f;,

1=0,...,n.

El interpolante puede obtenerse en distintos espacios y dentro del mismo espacio puede
expresarse en términos de diferentes bases. Si (ug, ..., u,) es una base ordenada de U, po-
demos expresar la soluciéon u en términos de dicha base u = Z?:o a;u; y el problema de
interpolacion queda reducido a la resolucién del sistema

M(U(),...,un)a:f’

LOye--sTpy

donde a = (ag,...,an)%, £ = (fo,.. ., f)T ¥

M(uo7 o 7un> = (u;(24))i,j=0,....n»

Loy---,Tn

denota la matriz de colocaciéon de la base en los nodos. Aqui nos apartamos del convenio
usual y consideramos que el primer indice de filas y columnas es 0 en lugar de 1, por lo que
la dimensién correspondiente a n es n + 1, para acomodar nuestros resultados al problema
de interpolacién de grado n y a la notacién de matrices de Vandermonde.

Maés generalmente podemos plantear problemas de interpolacion lineales respecto a una

sucesiéon de funcionales Ag, ..., A,.

Problema de interpolacién lineal general. Sea U un espacio de funciones de dimensién
n + 1. Dados funcionales Ag,..., A, v f una funcién, encontrar u € U, con \;u = \; f,

1=0,...,n.



Introducimos la notacién de matriz de colocacién de un problema de interpolacién respecto

a una sucesion de funcionales.

Definiciéon. La matriz de colocacion de una base (ug, ..., u,) respecto a una sucesidn de
funcionales (Ao, ..., An) €s

M(zg B i:) = (Ni(5))i j=0,...m-

Una vez elegida una base, (ug,...,u,), el problema de interpolacién lineal general se
reduce a resolver el sistema

UQy -+ + 5 Uy f
M0 ja= i ( ,
/\07~--a/\n )\Oa"'a)\’n
expresando la solucién en la forma v = > a;u;.
Un problema de interpolacién lineal general no tiene necesariamente solucién tnica. La

condicién necesaria y suficiente para que el problema admita una tnica solucién es que el

determinante de la matriz de colocacién respecto de una base sea distinto de cero.

3. Interpolacién polinémica y matriz de

Vandermonde

Comencemos esta seccion planteando el problema de interpolacién de Lagrange polind-

mico.

Problema de interpolacién de Lagrange polinémico. Dados nodos zo,...,z, distin-
tos y fo,..., fn, encontrar p € P,, con p(z;) = fi, i =0,...,n.

Sabemos que este problema tiene una tnica solucién. Para resolverlo expresamos p(x) =

n y . .
Y i ¢z’ y reducimos el problema al sistema

Ve=f{,
donde
1 i) xg
n
lLz,...,2" Lz - 2y
V:V(mm...,mn)::M( ):
Loy L1y---,Tn
1 =z, xn
es la matriz de Vandermonde en los nodos o, . .., Tp, ¢ = (co,¢1, ..., )T £ = (fo, f1,-- s ).

Nuestro objetivo es estudiar la resolucién del sistema Ve = f, es decir, determinar los

coeficientes respecto de la base de monomios del interpolante.



La solucién del problema de Lagrange puede expresarse a través de la férmula de Lagrange

pl@) =" fili(2), Gz) = [[ ——=
1=0

X — Xy
ki Tk

Dado que la féormula de Lagrange resuelve el problema de interpolacién explicitamente en
términos de los datos f del segundo miembro, debe estar relacionado con la matriz inversa
de V.

Llamando 1 = (ly, ...,[,)T alabase de Lagrange y t = (¢, ...,t,)” ala base de monomios
ti(z) := 27,5 =0,...,n, podemos comparar las expresiones del interpolante respecto a ambas
bases

17f =t'c.

Utilizando la relacién ¢ = V~'f obtenemos
17f = tTv 1,
y, como esta relacion debe verificarse para todo f, deducimos que
17 =Ty,

es decir, la matriz de cambio de base de la base de Lagrange respecto de la base de monomios

es la matriz inversa de Vandermonde. Considerando que

H(:U—J:k) =z" - (in)x”_1+-~-

k#j k#j

+ (-1 ( 3 phy -, )a" o+ (<1 [ o

k1<--<kp€{0,....,n}\{j} 7

tenemos que el coeficiente de [; en z* es de la forma

S _ D P gremnircqo, iy Hrerc 7
©j A ’
Hk;éj (; — k)

obteniéndose el elemento (i, 7) de la inversa de la matriz de Vandermonde.

(3.1)

4. Foérmula de Newton y factorizaciéon LU

La férmula de Newton del interpolante polinémico

n

p(x) = (w0, 2] fw;(x)

=0



permite expresar el interpolante en términos del vector de diferencias divididas d = (d, . .., d,),

d; == [zo,...,x;],7=0,...,n,y la base de Newton w = (wp, ...,wy), con
wj(z) = (x — o) -~ (x — xj-1).

Cada elemento w; de la base de Newton es un polinomio ménico de grado j con la

propiedad w;(z;) = 0, si j > i. Esto implica que la matriz de colocacién en los nodos
W0, Wn

es una matriz triangular inferior
L0y L1y T

1 0 0 e 0
1 z1—x 0 ‘e 0
L:=(1 29—20 (22—z0)(22—71) - ,
0
1 z,—2z0 (xp —xo)(xp —x1) -+ (T —0)  (Tp — Tp—1)
cuyo elemento (i,7) es l;; = w;(x;) = fc;é(xz — xk), jJ < i. Evaluando en cada punto la
expresién del polinomio de interpolacién p = w’'d, obtenemos f; = w?'(z;)d, i = 0,...,n,

obteniéndose el sistema,
Ld =f.

Es decir, el vector de diferencias divididas es la solucién del sistema triangular Ld = f.
Podemos calcular los elementos de la matriz L por recurrencia, porque los elementos de
la columna j-ésima de la matriz L pueden obtenerse de la columna anterior de la siguiente

manera
lij = lij—1(xs — xj-1), (4.1)

partiendo de l;o =1,7=0,...,n.

Si aplicamos la formula de Newton a cada monomio obtenemos

(1,...,2") = (wo(x),... 7wn(x))M<

1 x"l
[%0], [T0, %1, - - -, [0, - - - ,mn])

Teniendo en cuenta que [z, ..., z;]77 = 0sii > j, se deduce que la matriz de cambio de base

entre la base de Newton y la base de monomios es la matriz triangular superior

1 =z 3 g
0 1 [zo,21]2® -~ [0, z1]2™
Uw=10 0 1
[0y -y Tpo1]z™
0 O 0 1




Parece ser que para calcular u;; := [0, .. ,xi]xj es necesario realizar varias diferencias
y restas. Sin embargo, podemos obtener el valor u;; en términos de los x, ..., z; utilizando
una relacién en la que solo aparecen sumas de potencias de los nodos. De acuerdo con la regla

de Leibniz para diferencias divididas, tenemos
[To, ..., x]x! = z5[xo, ..., 2)a? ™ + [xo,. .., 2iq]a 7,
es decir
Uij = Uj—1,5—1 T Tils j—1- (42)

Usando esas relaciones puede calcularse la fija i-ésima partiendo de la fila (i — 1)-ésima,
teniendo en cuenta que u;; = 1,7 =0,...,n,y u;; =0, j <i. Se deduce la siguiente férmula

para la fila i-ésima en términos de la fila (i — 1)-ésima
— 2 J—i
Ujj = Uj—1,5-1 F TilUi—1j-2 + TjUi—15-3 ++ +T; Ui—1,4-1,

o equivalentemente

Jj—i
[0, ..., x5)2) = fo[mm xR >
k=0

Por induccién se demuestra que

_ j__ ag a;
wij = [To, ..., z5]a) = E xg®

ag+-tap=j—1i

Si en la relacién de cambio de bases t7 = w” U, tomamos matrices de colocacién se deduce

que
M( lLa,....2" ):M( Wo, - - -, Wn )U,

Lo, L1+, Tn Lo, T1y---5Tn

lo que implica que
V =1LU, (4.3)

es decir, las matrices L y U forman la factorizacién de Crout de la matriz de Vandermonde,
donde la matriz triangular superior U tiene unos en la diagonal.
La factorizaciéon LU se utiliza con frecuencia para resolver el sistema V¢ = f. Llamando

d al vector de diferencias divididas, tenemos
Ld=f, Uc=d,

y la solucién del sistema con matriz de Vandermonde se reduce a la resolucién consecutiva
de dos sistemas triangulares con matrices L y U. Estos sistemas intermedios relacionan la
solucién con un vector intermedio d, el vector de las diferencias divididas y, por tanto, estan

relacionados directamente con la férmula de Newton de interpolacién.



5. Condicionamiento

Recordemos que el condicionamiento tradicional de una matriz es
n
o) = Al A oer 1Alloe i= miéx 3™ Jag].
=0,....n £

Mencionemos que también se usa el llamado condicionamiento de Skeel (véase [9]). El

condicionamiento de Skeel de una matriz A se denota por Cond(A) y se define como
Cond(A) = [|ATH]Al[l s

Se cumple que Cond(A) < koo (A) v que, a diferencia del condicionamiento tradicional, el
condicionamiento de Skeel es invariante para escalados de fila (es decir, Cond(DA) = Cond(A)
para cualquier matriz diagonal D no singular).

Como V = LU, se tiene que Koo(V) < Koo(L) Koo (U). Aunque disponemos de expresiones
explicitas para la inversa de una matriz de Vandermonde, es habitual resolver el sistema
mediante la factorizaciéon LU o utilizar un célculo intermedio con diferencias divididas. Por
ello, estamos interesados en el condicionamiento de cada uno de los factores koo (L) ¥ Koo (U).

Para abordar el tratamiento de estos numeros es interesante disponer de expresiones

explicitas de las inversas, que realizaremos en la siguiente seccién.

6. Calculo de las inversas de las matrices

triangulares

Sean L y U las matrices triangulares que factorizan la matriz de Vandermonde obtenidas
en la seccion 4.
La inversa de L esté relacionada con el cambio de bases entre la base de Lagrange 1 y la

base de Newton w. Comparando la formula de Lagrange y la férmula de Newton obtenemos

y sustituyendo d = L~'f, obtenemos la relacién
1(z)Tf = w(z)T L,
valida para cualquier vector f, de donde se deduce que

1(2)" = w(@)TL™.

10



Por tanto, la inversa de L™! representa la matriz de cambio de base entre la base de Lagrange

y la base de Newton,

L—IZM( l07117'~~aln )
[Io], [l‘o,l‘l], ceey [aﬁo, e ,xn]

La férmula anterior no proporciona explicitamente los elementos de L™, sino que los describe

en términos de diferencias divididas. Una segunda opcién consiste en utilizar la férmula

[xo,...,xi]f_ f(l'])

a o HkEO,.A.,i\{j}(xj — k)

En aras a simplificar la notacién, notemos que

wiw)) = JI  (@—aw),
ke{0,....i}\ {5}

lo que permite establecer la siguiente relaciéon entre d y f
i
T
=3 f/ (z;)
=0 wy ()

Teniendo en cuenta que d = L~*f, deducimos que el elemento (i,5) de la matriz L~! es
o 1
w;(z;) er{o,...,z}\{j}(%‘ 1))

(1) _
15 =

cuando j < ¢y 0 en caso contrario. Podemos calcular los ll(;l), teniendo en cuenta que

-n_ 1 L1

— _ — _ 1—1,7 . .

l; L li; —_ma t>7. (6.1)
Para poder invertir la matriz U partimos de la relacién de cambio de base entre la base

de Newton y la base de monomios
(@ol@), .. won (@) = (L,...,a") U,

Expresando la base de Newton en términos de los monomios

J

wj(@) = (2 = w0) -+ (@ = w5-1) = D (=1)7( 3 [T o).

i=0 #K=j—i;KC{0,....j—1} k€K
se obtiene el elemento (4, j) de la matriz U~! en la forma

ufy ) = (-1 > IT=)

#K=5—i;KC{0,....,j—1} k€K

. -1) . . .
Teniendo en cuenta que los ugj ), 1=20,...,7, son los coeficientes de w; respecto a la base
de monomios (1,z,...,27), podemos comparar los coeficientes de w;(z) y (z —zj_1)wj—1 ¥

deducir la recurrencia

CU WD Y, i<, (6.2)

(=1) _
u; =1y, i,j—10

11



en el caso de la primera fila tenemos las relaciones

(=1 _ I Gt (=1 (6.3)

Ugp = = L, 0j —Lj—1Ug 51~

Teniendo en cuenta las formulas (6.2) y (6.3) y que U~! es triangular superior, podemos

determinar todos los elementos de U~!.

7. Alta precision relativa

Una expresion X puede obtenerse con alta precision relativa (HRA) si el error relativo

del valor calculado X puede acotarse del siguiente modo ([2]):

X = X]|

< Cu,
[1X]]

donde C es una constante positiva independiente de la precisién aritmética y w es la unidad
de redondeo.

Podemos asegurar que podemos calcular con alta precision relativa los productos, cocientes
y sumas verdaderas (sumas de nimeros del mismo signo) de expresiones que se pueden
calcular con alta precisién relativa. S6lo se permite efectuar operaciones de diferencia (sumas
de ntimeros de signo opuesto) con los datos iniciales del problema (ver [5]). La importancia
de poder asegurar alta precision relativa proviene de que podemos asegurar que los errores
relativos son del orden de la unidad de redondeo, independientemente del condicionamiento
del problema. Para el concepto anterior, observemos que el calculo de los elementos de la
inversa de una matriz de Vandermonde correspondiente a nodos positivos se puede realizar
con alta precision relativa mediante de la féormula (3.1). De hecho, el denominador producto
de diferencias de datos iniciales y el numerador suma términos del mismo signo, que a su vez
pueden calcularse con HRA.

Enunciemos ahora el siguiente resultado sobre las matrices L y U de la Seccion 4:

Teorema 1. Los cdlculos de L, U, L™' y U~! pueden hacerse con alta precision relativa

cuando todos los nodos son positivos.

Comencemos justificando la afirmacién sobre L. Ya hemos visto en (4.1) que, partiendo

deljp=1,7=0,...,n, tenemos que
lij=lij-(zi—zj-1), j<i

Como la resta se aplica a los nodos z; (los datos iniciales), tenemos que L se calcula con
HRA.



Los elementos de L™ se pueden calcular como hemos deducido en (6.1):

I S
’ lii

-1
L)

S
Y Tj — X4

, 1> .
Claramente, también se calculan con HRA ya que la resta sélo afecta a los nodos.
Veamos ahora que los elementos de la matriz triangular superior U se calculan con alta

precision relativa. Recordemos que u;; = 1, para todo ¢ =0, ...,n. Por (4.2) se tiene:
Uij = Uj—1,5—1 T TiUs j—1-

Sixz; > 0, paratodoi =0,...,n, vemos por induccién que los elementos de U son no negativos
y por tanto, los elementos de la suma anterior son todos mayores o iguales que cero. Es decir,
U también se calcula con HRA.

Por 1ltimo, (6.2) y (6.3) nos dan los elementos de U~1.
-1 -1 -1
U(()o = L, u(()j )= _xjflué,j—)la
ug;l) =1
(1 (1 N (1

(-nv z)u’gj ) = (-1 L)uz('fl,)jfl —&-xj,l(—l)(J Z)ug,jf)l'
-1
ij
positivos. Por tanto, los sumandos son del mismo signo y el cdlculo de U~! también se realiza
con HRA.

Como z; > 0, para todo i = 0,...,n, se deduce por induccién que (—1)7~y i < j, son

8. La ordenacién de Leja

Cuando 0 < xg < --- < x, la matriz de Vandermonde tiene todos sus menores positivos,
es decir, se trata de una matriz totalmente positiva (TP). Una matriz es una matriz TP siy
s6lo si tiene una factorizaciéon LU tal que Ly U son TP (ver Cryer [3]). Algunas propiedades
de las matrices totalmente positivas indican que la eliminacién gaussiana sin reordenacién de
filas conduce a buenos resultados de estabilidad (ver [4] y [6]), lo que proporciona argumentos
para trabajar con los nodos ordenados de menor a mayor.

Sin embargo, otras ordenaciones de los nodos también pueden dar lugar a estabilidad
en los cdlculos. Observamos que en la diagonal de la matriz L tenemos los pivotes de la
eliminacion gaussiana. Mediante una estrategia de pivotaje parcial, se intenta maximizar en
cada paso los multiplicadores. Notemos que el pivotaje parcial equivale a reordenar los nodos
en el conjunto X. En [1] y [7] se muestra que esta forma de ordenar los nodos es esencialmente
el orden de Leja (la diferencia es que en el pivotaje parcial no se cambia el primer pivote).

El orden de Leja se consigue siguiendo la siguiente estrategia como senala Reichel en [10]:

13



Orden de Leja.

(i) Inicialmente, se elige zyp un nodo cualquiera. No obstante para maximizar x; — ¢ en el

segundo paso conviene elegir un punto extremo, el minimo o el maximo.
(ii) En el segundo paso se elige x; tal que

|x1 — x| = _Erlléxn xj — ol

=1,...,

El segundo punto z; es el otro extremo (minimo o méximo).

(iii) El el paso i-ésimo se selecciona z; tal que
i1 i1
[T 1z — 2l = méx ] lw; —axl.
J=t,...,m
k=0 k=0

De esta forma conseguimos que la diagonal en cada columna de L sea mayor que los elementos
extradiagonales, dando lugar a un buen nimero de condicién para la matriz L (véase [8]).
El orden de Leja es un caso particular de seleccién de puntos propuesta por Leja en un
subconjunto compacto del campo complejo. En el caso de un compacto K en la recta real, se
elige primero un punto zy (normalmente el minimo o el méximo) y en cada paso se selecciona

x; € K para el que la funciéon
i—1

H | — xp].

k=0
alcance su valor maximo. La ordenacién de Leja, se obtiene cuando el compacto K es finito
y tiene cardinal n + 1, precisamente el nimero de nodos que utilizaremos para la matriz de
Vandermonde.

Reichel (ver [10]) demuestra que el condicionamiento de la férmula de Newton definido
por interpolaciéon en los puntos de Leja tiene un crecimiento subexponencial atendiendo al
numero de puntos de interpolacion.

Nuestro objetivo es comparar normas de L, U y L™!, U~! para diferentes ordenaciones,
incluyendo el orden natural y el de Leja, para extraer conclusiones sobre la ordenacién que
produce una factorizacién LU con mejores propiedades de condicionamiento.

Finalmene observar que la factorizacion LU descrita en la Seccion 4 es la factorizacién de

Crout. La factorizacion de Doolittle asociada a la eliminacién gaussiana es LU con

L:=LD™', U=DU,

siendo
D = diag(1,w1(1), wa(22), - .., wn(2n)).

Observemos que L tiene unos en la diagonal.

14



9. Ejemplos

Los siguientes ejemplos muestran las factorizaciones LU y LU, sus normas y condiciona-
mientos. El dominio K es un intervalo cerrado en los dos casos: [0, 1] y [—1, 1]. Consideraremos

diferentes ordenaciones de los puntos equidistantes en el intervalo K.

9.1. K =10,1]

Tomemos K = [0, 1]. Los puntos equidistantes en este intervalo son de la forma:

Ty = —, i=0,1,...,n.
n

Para estos puntos vamos a tomar diferentes ordenaciones: el orden natural y el de Leja.

Orden natural

Comencemos con el orden natural y tomemos n = 3. Por tanto, los nodos son:

T9g=0,77 = 3002 = 3,03 = 1.

La matriz de Vandermonde basada en estos nodos es

1 0 0 0

1 1/3 1/9 1/27
Vn = V(zo, 21,22, 23) =

1 2/3 4/9 8/27

1 1 1 1

Vamos a dar dos factorizaciones LU distintas para V. En la primera de ellas U tiene

unos en la diagonal, mientras que en la segunda es L la que tiene la diagonal de unos.

La primera factorizacién es:

1 0 0 0 1 0 0 0
1 1/3 0 0 0 1 1/3 1/9
Vi = LU = / /3 1/ ’
1 2/3 2/9 0 0 0 1 1
1 1 2/3 2/9 0 0 0 1
cuyas normas son:
[|IL]|o = 2,8889, NU]loo = 2,
HL_1H<><>:36> HU_lHOOZQ‘



La siguiente factorizacion es:

o0\ {1t 0 o o0
{11000 1/3 179 1727
ollo o 2/9 2/9
133 1/\0 o o 209
Yy Sus normas son:
1]l = 8, 10loo =1,
1L | =8, 1T loo = 9.

En la siguientes tablas podemos ver los condicionamientos de estas matrices.

Koo (VN) || Koo(L)koo(U) | Koo(L) | Koo(U)
216 416 104 4

Koo (VN) || Hoo (L)oo (U) | Koo(L) | Koo(U)
216 976 64 9

Orden de Leja
Vamos a hacer un analisis similar al realizado con la ordenaciéon natural. Tomamos

n = 3, los puntos equidistantes siguiendo la ordenacién de Leja son:

1 2
jozl,jl :O,i'g - §7§73 - g

La matriz de Vandermonde en estos puntos es

1 1 1 1
o 1 0 0 0
Vi = V(&o,%1,%2,%3) =
1 1/3 1/9 1/27
1 2/3 4/9 8/27

Analogamente al apartado anterior, vamos a dar dos factorizaciones LU distintas. La

primera de ellas:

1 0 0 0 111 1

1 -1 0 0 01 1 1
VL:LU: ’

1 —2/3 —2/9 0 0 0 1 4/3

1 —1/3 —2/9 —2/27/ \0 0 0 1
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I|L]|oe = 2, 1U]]oo = 4,
1L |oe = 36, U |oo = 2,3333.

La segunda factorizacién es:

1 0 0 0\ (1 1 1 1
. 1 1 0 o0fflo -1 -1 -1
vV, = LU = ,
1 2/3 1 0|0 0 —2/9 —8/27
1 1/3 1 1/ \0 o0 0 —-2/9
|L|| oo = 3,3333, 1U|]oo = 4,
I|L7 Yoo = 2,6667, 1T |oo = 22,5.

Las tablas mostradas a continuacién recogen los condicionamientos de estas matrices:

Koo (VL) || Koo(L)koo(U) | Koo(L) | Koo(U)
216 672 72 9,3333

Koo (VL) HOO(L)KOO(U) '%OO(IN/) Koo (U)
216 800 8,8889 90

9.2. K =[-1,1]

El intervalo que vamos a considerar en esta seccién es [—1,1] y n = 3. En este intervalo

tomaremos las siguientes ordenaciones:
1. La ordenacién natural.
2. La ordenacién de Leja.

3. Los puntos ordenados crecientemente segin su distancia a cero. Si el intervalo es [—1, 1],
esto equivale a ordenar segtin su distancia al centro del intervalo. Por ello, vamos a

llamarla ordenacion central.

De la misma manera que en los ejemplos en [0, 1], consideraremos dos factorizaciones LU

distintas.
Orden natural

Tomando el orden natural tenemos que los nodos son:

zo=—1,21 = 3T = T3 =1



La matriz de Vandermonde sobre estos nodos es:

1 —1 1 -1

1 —1/3 1/9 —1/27
Vn = V(zo, x1, 22, 23) =

1 1/3 1/9 1/27

1 1 1 1

Una de las factorizaciones es la siguiente:

1 0 0 0

—_
|
—
—
|
—_

123 0 0 0 1 -—4/3 139
Ve — LU — / /3 13/
1 4/3 8/9 0

()
o
—_
I
—_

(@)
(aw]
o
—_

1 2 8/3 16/9
A continuacién escribimos las normas de estas matrices y de sus inversas:

[ L[oo = 7,4444, 1U]|oe = 4,
1L oo = 4,5, 1U™ |0 = 2,4444.

La segunda factorizacién:

1000\ 1 -1 1 -1
0 2/3 —8/9 26/27
1 210||lo o 89 -9
0 0 0  16/9
Yy sus normas son:
I L]]oo = 8, 10]]s0 = 4,
1L oo = 8, 1T |oe = 3,0625.

En las siguientes tablas podemos ver los condicionamientos de estas matrices.

Koo (VN) || Hoo(L)hoo(U) | Keo(L) | Koo(U)
18 327,5556 33,5 9,7778

Koo (VN) || Koo (L) koo (U) | Koo(L) | Kool(U)
18 784 64 12,25
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Orden de Leja

Siguiendo el mismo esquema que el utilizado con el orden natural vamos a ver el orden

de Leja. Los puntos equidistantes siguiendo el orden de Leja son:

. {3 |z 1 . 1
To=1,01=—1,80=—2,T3 = .
0 1 2 307373
La matriz de Vandermonde en estos puntos es
1 1 1 1
1 -1 1 -1

Vi = V(&o,21,%2,%3) =
1 —1/3 1/9 —1/27

1 1/3 1/9 1/27

Andlogamente al apartado anterior, vamos a dar dos factorizaciones LU distintas. La
primera de ellas:

1 0 0 0 111 1
1 =2 0 0 010 1
Vi =LU = ’
1 —-4/3 -8/9 0 0 01 —-1/3
1 -2/3 —-8/9 -16/27 0 00 1
1Llloo = 3,222, U] = 4,
1L |oo = 4,5, 1U™Y|oe = 3,3333.
La segunda factorizacion es:
1 0 0 O 1 1 1 1
<~ 1 1 00 0 -2 0 —2
VL = LU = ,
1 2/3 10 0 0 -8/9 8/27
1 1/3 1 1 0 O 0 —16/27
I|1L|| oo = 3,3333, 1T]]o = 4,
1L |oo = 2,6667, 1T |0 = 3,1875.

Podemos ver los condicionamientos de estas matrices en las siguientes tablas:
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Koo(VL) || Foo(L)Eoo(U) | Koo(L) | Koo(U)
18 193,3333 14,5 13,3333

Keo(VL) HOO(L)KOO(ﬁ) ’im(f’) "%O(U)
18 113,3333 8,8889 12,75

Orden central

Por 1ltimo, tomemos los puntos ordenados crecientemente segiin su distancia a cero:

_ 1 _ _
, L1 = _571'2 = —1,.133:1.

La matriz de Vandermonde en estos puntos es

1 1/3 1/9 1/27

1 —1/3 1/9 —1/27
Vi = V(Zo, T1,%2,23) =

1 -1 1 —1

1 1 1 1

La primera factorizacién es la siguiente:

1 0 0 0 1 1/3 1/9 1/27
1 -2/3 0 0 0 1 0 1/9

VC:LU: )
1 —4/3 8/9 0 o 0 1 -1
1 2/3 8/9 16/9/\0 0o 0 1
1Ll = 4,3333, Ulloe =2,
127 oo = 4,5, 17 e = 2.

A continuacién escribimos la segunda factorizacién:

1 0 0 o0\ (1 1/3 1/9 1/27
.- 1 1 00 0 —2/3 0 -=2/27
VC = LU - )
1 2 10f]o o 89 -89
1 -1 1 1/\o o 0 16/9
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1Z]]oo = 4,
17 oo =8,

1|U|oe = 1,7778,
1T |0 = 1,6875.

Comparemos los condicionamientos de estas matrices:

10. Experimentos numéricos: factores

En esta seccién vamos a comparar normas y condicionamientos de las matrices de las dos
factorizaciones LU propuestas para distintas ordenaciones. Para ello vamos a considerar dos
intervalos distintos. Los célculos se han realizado en doble precision con MATLAB.

10.1.

En este caso K = [0, 1]. Denotemos por LU la factorizacién en la que U tiene unos en la

Koo(Ve) || Foo(L)koo(U) | Koo(L) | Keo(U)
18 78 19,5 4
Koo (Vo) || Koo (L)koo(U) | Koo(L) | Koo(U)
18 96 32 3

triangulares

Intervalo [0, 1]

diagonal y por LU la factorizacién en la que L tiene unos en la diagonal.

Vamos a considerar puntos equidistantes en el intervalo [0, 1] con dos ordenaciones:
1. Orden natural

2. Orden de Leja

Comparemos primero las normas de L y L con las dos ordenaciones.

Ll
n  Natural Leja
3 2,8889 2

4 3,2188 2

) 3,104  2,0112
9 44583  2,0425
19  6,1522  2,0498

Zloe
n Natural Leja
3 8 3,3333
4 16 4
5 32 4,65
9 512 7,5726
19  5,2429 x 105 11,7892




Vemos que, tanto para ||L||s, como para ||L||, es mejor la ordenacién de Leja. Hemos

podido probar la siguiente proposicién sobre ||L||oo ¥ [|L7"||oo:

Proposicion 2. Sea V' la matriz de Vandermonde en los nodos xg,x1,...,x, equidistantes

en [0,1] con la ordenacién natural, y la factorizacion LU. Se tiene
Lo = 2
1L oo = 2"
Demostracion.

Sea L = (lij)o<i,j<n la matriz resultante de la factorizacién LU con U con unos en la

diagonal. Ya hemos visto que l;; = w;(z;), por tanto:

Zi' _ (.dj(xi) _ Hi;é(fﬁz - xk) equidi;tantes (Z —j + 1)(Z —j —+ 2) e (7, — 0) _ (z)
T wi(ey) Ty — ) iG—1)...1 j

Por tanto,
i i i
[|IL]|oo = méx E |l;j] = max E () = méx 2'=2"
1=0,...,n < i=0,...,n 4 i 1=0,...,n
Jj=0 Jj=0

)

Denotemos por lg{l y por l~l(-;1) los elementos de L~! y L™! respectivamente.

I, i—1 ) o .
) _ wi(acz) _ k:O(‘TZ - l’k) equlditantes (_1>i—j (Z)
w;(w;) Hk:o,...,i(‘rj ) J
k£

(=1 _

Vo W)

<1
- lij

[ i .
71 = 3 ~(71) = 3 ¢ = 3 i: n
127 e = mpix D 10571 = i D 0@ i 2 =2
J= J=
O

De la proposicién anterior se deduce el valor del condicionamiento de L. Por tanto, x(L) =
22n,

Veamos qué ocurre para las matrices triangulares superiores.

U] loo 10100
n Natural Leja n  Natural Leja
3 2 4 3 1 4
4 2,5 5 4 1 5
5 3,2 6,5200 5 1 6
9 10,2469 36,2812 9 1 10
19 2225312 21332 x 103 19 1 20
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En contraste con lo que sucede con ||L||so ¥ ||L||o0, vemos que para las normas de ||U]|oo
v ||U]|so es preferible la ordenacién natural.

Las siguientes tablas nos muestran los condicionamientos de estas matrices triangulares
de las dos factorizciones.

Natural Leja Natural Leja
n Koo (L) Koo(U)
3 104 72 4 9,3333
4 549,3333 341,3333 6,2500 16,875
5 | 2,9253 x 10° | 1,6760 x 103 11,5200 33,6432
9 | 2,4370 x 10° | 1,1165 x 10° 138,6496 684,7808
19 | 5,2495 x 1013 | 1,7479 x 10'3 || 1,0119 x 10® | 1,5611 x 106
Natural Leja Natural Leja

n Koo (E) "500(0)

3 64 8,8889 9 90

4 256 16 26,6667 480

5 | 1,0240 x 103 | 14,88 88,5417 4,0625 x 103

9 | 2,6214 x 10° | 46,1569 || 1,3840 x 10* | 9,0002 x 10°

19 | 2,7488 x 10! | 82,3227 || 7,1536 x 10° | 7,6698 x 101°

Vemos que koo (L) es mejor con la ordenacién de Leja aunque con el orden natural se
obtienen resultados similares. En cambio, los mejores resultados para k.. (U) se obtienen con
el orden natural. Para la factorizacion LU obtenemos conclusiones andlogas. Con el orden de

Leja koo (L) es mas bajo, pero ks (U) es mejor con el orden natural.

El hecho de que koo(L) y /ioo(f/) sea menor para el orden de Leja es el esperado ya
que es bien conocido que el pivotaje parcial controla el tamano de los elementos de la matriz
triangular inferior. Como ya hemos visto, el orden de Leja corresponde a seguir una estrategia
de pivotaje parcial.

En [9] se justifica el buen condicionamiento de U, y por tanto de U, para nodos positivos
con la ordenacién natural. En este articulo se prueba que si existe una estrategia de pivotaje
Optima para reducir el condicionamiento de Skeel de la matriz triangular superior U, entonces
esta estrategia coincide con el pivotaje parcial escalado para una norma ||.|| estrictamente
monétona y en [6] se prueba que dicha estrategia aplicada a la eliminacién gaussiana de una
matriz TP no da lugar a cambio de filas. Una norma ||.|| se dice estrictamente mondtona si,
SUp), vV = (v1,..

para cualesquiera vectores u = (uq, .. ., Up) con |uj| > |vi], Vi =1,...,n

23



entonces |[u|| > ||v|| y si ademds para algin j |u;| > |v;| entonces ||u|| > [|v||. Asi, los
resultados mencionados dan una justificacién tedrica del buen condicionamiento de U y U
para el orden natural.

Para terminar esta seccién, vamos a analizar los condicionamientos de las matrices de
las dos factorizaciones LU con la ordenacion natural y de Leja de los puntos de Chebyshev
en [0,1]. La matriz de Vandemonde estd mejor condicionada para puntos de Chebyshev
como se muestra en el capitulo 21 de Higham [8] donde se recopilan resultados sobre los
condicionamientos de matrices de Vandermonde con distintas distribuciones de nodos. Las dos

siguientes tablas muestran los condicionamientos de las matrices de las dos factorizaciones.

Natural Leja Natural Leja
n Foo(L) Koo(U)
3 112,5004 80,4374 4,1537 8,8590
4 512,6342 327,1301 6,3730 20,0671
5 | 2,2857 x 103 | 1,3061 x 10? 11,0868 26,1224
9 | 7,9909 x 10° | 3,3996 x 105 124,4100 642,6657
19 | 1,2943 x 102 | 3,5654 x 10 || 7,7281 x 10* | 1,5873 x 10°
Natural Leja Natural Leja

n Foo(L) Koo (U)

3 53,4558 9,3137 10,7657 94,4402

4 158,0263 17,7082 32,4371 568,3153

5 588,4486 24,9545 106,5281 2,1546 x 103

9 | 8,0701 x 10* | 47,3294 2,9425 x 10* | 2,6893 x 108

19 | 2,2591 x 100 | 149,7096 || 2,2093 x 10! | 8,7018 x 10'3

Se obtienen los mismos resultados que para puntos equidistantes. ko, (L) es mejor con
el orden de Leja mientras que koo (U) lo es con el orden natural. Ocurre lo mismo para la
factorizacién LU: Koo (I~/) es mucho mas bajo con Leja y con el orden natural se obtienen los

mejores resultados para Koo (U).

10.2. Intervalo [—1,1]

Ahora el intervalo que vamos a considerar es el [—1,1]. Vamos a tomar los puntos equi-

distantes en este intervalo con diferentes ordenaciones:

1. La ordenacién natural, es decir, los puntos ordenados de menor a mayor.
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2. La ordenacion de Leja.

3. La ordenacién central, es decir, los puntos ordenados crecientemente segiin su distancia

a cero.

En este caso también vamos a comparar las dos factorizaciones: LU y LU. La primera se
caracteriza por ser U la que tiene unos en la diagonal y en la segunda es la matriz triangular
inferior, L, la que tiene unos en la diagonal. Empecemos comparando las normas de las

matrices triangulares inferiores:

ILloc Z1lc
n Natural Leja Central n Natural Leja Central
3 7,4444 3,2222  4,3333 3 8 3,3333 4
4 10,5 3,625 5,75 4 16 4 8
5 14,3408  3,8032  6,5392 5 32 4,65 13
9 2,4315  4,07726  8,3627 9 512 7,5762 87
19 429,8239 4,1264 12,9618 19 52429 x 10> 11,7892 9,899 x 103

Con el orden de Leja es con el que se obtienen las mejores normas para ambas factoriza-
ciones. Esto es debido, de nuevo, a que el orden de Leja es similar a hacer pivotaje parcial y

el pivotaje parcial controla la norma de la matriz triangular inferior.

Las siguientes tablas muestran las normas de U y U.

U]l oo 10l
n Natural Leja Central n  Natural Leja Central
3 4 4 2 3 4 4 1,7778
4 6,125 5 2 4 5 5 1,5
5 9,0416 6 2,24 5 6 6 1,2499
9 42,9016 10 3,6214 9 10 10 1,125
19 2,3971 x 103 49,5469  9,0455 19 20 20 1,0556

En el caso de las matrices U y U la ordenacién que da mejores resultados sobre las normas
es la central. Ademas, vemos que la norma de U disminuye cuando la dimensién del problema
crece.

Comparemos los condicionamientos de estas matrices con las diferentes ordenaciones:
natural, Leja y central. Primero veamos los de la factorizacién LU en la tabla mostrada a

continuacién:
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Natural Leja Central Natural Leja Central
n Koo(L) Koo(U)
3 33,5 14,5 19,5 9,7778 13,3333 4
4 112 38,6667 61,3333 19,9063 15 4
5 373,4583 99,0417 101,2917 33,9964 20,352 5,376
9 | 4,5301 x 10* | 4,348 x 10® | 8,9283 x 103 334,8425 48,6574 | 13,9491
19 | 6,9906 x 10° | 6,7112 x 107 | 2,1081 x 10® || 1,2356 x 10° | 878,1643 | 100,662

Vemos que en el caso de los condicionamientos ocurre lo mismo que con las normas. £oo (L)

es menor con el orden de Leja y koo (U) con la central.

Realicemos el mismo andlisis para la factorizacion LU.

Natural Leja Central Natural Leja Central
n Koo (L) Koo (U)
3 64 8,8889 32 12,25 12,75 3
4 256 16 128 29,1667 22,5 5,25
5 | 1,0204 x 10° | 14,88 416 60,0703 85,9375 7,0796
9 | 2,6214 x 10° | 46,1569 | 4,4544 x 10* || 1,1775 x 10® | 3,6329 x 103 39,3594
19 | 2,7488 x 10" | 82,3227 | 5,1899 x 10° || 1,646 x 10% | 2,7007 x 10% | 4,7657 x 103

Los resultados obtenidos con esta factorizacion son los mismos que hemos visto para la

factorizacién LU. Con el orden de Leja roo(L) es el mas bajo, mientras que para koo (U) es

mejor el orden central.

Como ya hemos dicho en el apartado anterior, el problema de interpolaciéon en puntos

de Chebyshev es un problema mejor condicionado. Vamos a comparar los condicionamientos

de las matrices triangulares de las factorizaciones LU y LU de la matriz de Vandermonde

basada en los puntos de Chebyshev en el intervalo [—1,1].
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Natural Leja Central Natural Leja Central
n Koo(L) Koo(U)
3 34,3288 18,5786 18,5786 8,9683 11,0692 3,7013
4 99,6629 39,4822 40,865 21,4886 12,947 4,8321
5 288,0861 77,3323 116,2017 39,9411 17,8965 7,5483
9 | 2,4997 x 10* | 1,2542 x 103 | 2,4966 x 103 693,5977 60,0135 23,4927
19 | 2,1059 x 10° | 1,2739 x 10° | 3,7716 x 106 || 1,0362 x 10° | 1,9737 x 103 | 470,56

Observando la tabla anterior, vemos que ko (L) es mejor con el orden de Leja aunque

para el orden central también se obtienen buenos resultados y similares a los del orden de

Leja. Sin embargo, para U es preferible la ordenacién central. Veamos en la siguiente tabla

los condicionamientos de las matrices de la factorizacién LU.

Natural Leja Central Natural Leja Central
n Koo(L) Foo (U)
3 53,4558 10,4853 25,3137 11,6481 11,8059 3,3627
4 158,0263 17,7082 60,0689 28,8185 21,1049 4,4285
5 588,4486 26,2224 145,282 61,2865 53,6384 7,7313
9 | 8,0701 x 10* | 47,3294 | 1,8387 x 10 || 1,0379 x 103 | 1,8972 x 10® | 56,2671
19 | 2,2591 x 1010 | 49,7096 | 1,1769 x 10° || 1,9738 x 10% | 9,9133 x 10° | 4,76 x 10*

Vemos que para koo (U) la mejor ordenacién es la central. Sin embargo, con el orden de

Leja se obtienen mejores resultados para oo (L).

11. Experimentos numéricos:

condicionamiento conjunto

En la seccién anterior hemos estudiado separadamente los comportamientos de cada uno

de los factores de la descomposiciéon LU. Sin embargo, el condicionamiento de ambos incide

en la propagaciéon del error en la resolucién del sistema.

Para obtener una medida conjunta de ambos condicionamientos (koo (L) ¥ Koo(U)) pro-

ponemos como medida de comparacién el producto de condicionamientos de ambas matrices.

En esta seccién estudiaremos los condicionamientos conjuntos ke (L)koo (U) de las dos
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factorizaciones: la factorizacion LU relacionada con la férmula de Newton y la factorizaciéon
LU que esta asociada a la eliminacién gaussiana. Tomaremos distintas ordenaciones de los
puntos equidistantes como en la seccion anterior. En las tablas de esta seccion apareceran el
condicionamiento de la matriz de Vandermonde V' y el producto de condicionamientos de las

distintas ordenaciones y factorizaciones.

11.1.

Comencemos con el intervalo [0, 1]. Las siguientes tablas muestran los resultados obtenidos

Intervalo [0, 1]

para la factorizaciones LU y LU con nodos equidistantes:

Natural Leja
n Koo (V) Koo (L)oo (U)
3 216 416 672
4 | 1,7067 x 103 | 3,4333 x 103 | 5,7600 x 103
5 | 1,2500 x 10* | 3,3700 x 10* | 5,6386 x 10*
9 | 4,8184 x 107 | 3,3789 x 10% | 7,6455 x 108
19 | 5,0877 x 106 | 5,3085 x 10'® | 2,7287 x 10'°
Natural Leja
n Koo(V) Foo(L) koo (U)
3 216 576 800
4 | 1,7067 x 10% | 6,8267 x 103 | 7,6800 x 103
5 | 1,2500 x 10* | 9,0667 x 10* | 6,0450 x 10*
9 | 4,8184 x 107 | 3,6280 x 10 | 4,1542 x 108
19 | 5,0877 x 106 | 1,9664 x 10%! | 6,3140 x 107

Los experimentos indican que con el orden natural se obtiene el menor producto de condi-
cionamientos para la factorizacion LU aunque los resultados son muy similares con el orden
de Leja. Para la factorizacién LU es con la ordenacién de Leja con la que se obtienen mejores

resultados.

Como ya hemos dicho en la seccién anterior, la matriz de Vandermonde en nodos de
Chebyshev estd mejor condicionada (véase [8]). Para obtener resultados més acertados haga-

mos el mismo andlisis para puntos de Chebysheuv:
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Natural Leja
n HOO(V) /foo(L)HOO(U)
3 236,8983 467,2919 712,5928
4 | 1,5777 x 10% | 3,2670 x 10®> | 6,5645 x 10>
5 | 9,4792 x 10% | 2,5341 x 10* | 3,4119 x 10*
9 | 1,4029 x 107 | 9,9415 x 107 | 2,1848 x 10®
19 | 9,2568 x 1014 | 1,0002 x 10'7 | 5,6594 x 10'7
Natural Leja
n Koo (V) Kw(i/)ﬁoo(ﬁ)
3 236,8983 575,4895 879,5889
4 | 1,5777 x 10% | 5,1259 x 103 | 1,0064 x 10*
5 | 9,4792 x 10® | 6,2686 x 10* | 5,3768 x 10*
9 | 1,4029 x 107 | 2,3746 x 10° | 1,2728 x 10®
19 | 9,2568 x 10 | 4,9911 x 102" | 1,3027 x 10'6

Vemos que tomando puntos de Chebyshev el menor producto de condicionamientos se
obtiene con la factorizacién LU con el orden de Leja. Sin embargo, no hay diferencias signifi-
cativas comparando con LU que justifiquen el uso de esta descomposicion ya que la factoriza-
cién LU (U con unos en la diagonal) es més natural por el uso de diferencias divididas y esta
mas relacionada con la férmula de Newton, ademas de dar lugar a un buen comportamiento
respecto al error para la evaluacién del polinomio de interpolacién (véase [7] y el capitulo 5
de [8]).

11.2. Intervalo [—1,1]

Ahora el intervalo que vamos a considerar es el [—1,1]. Vamos a tomar los puntos equi-

distantes en este intervalo con las tres ordenaciones: natural, Leja y la llamada central.

Vamos a comparar los productos de los condicionamientos de las matrices triangulares de

las factorizaciones LU con las diferentes ordenaciones. Comencemos con la factorizacién LU:
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Natural Leja Central
n Koo (V) Koo (L)koo(U)
3 18 327,5556 193,3333 78
4 53,3333 2,2295 x 10° 580 245,3333
5 187,5 1,2696 x 10* | 2,0157 x 10° 915,488
9 | 2,0562 x 10* | 1,5169 x 107 | 2,1156 x 10° | 1,2454 x 10°
19 | 1,7511 x 10° | 8,6376 x 10™ | 5,8935 x 10'° | 2,122 x 100

Con la ordenacién central es con la que el producto de los condicionamientos, koo (L) koo (U),
es menor. Podemos ver que el producto de condicionamientos para el orden de Leja es seme-
jante al obtenido con el orden central.

Realicemos el mismo anglisis para la factorizacién LU. En la siguiente tabla vemos los

productos de estos condicionamientos:

Natural Leja Central
n Koo(V) Koo (L)oo (U)
3 18 784 113,3333 96
4 53,3333 7,4667 x 103 360 672
5 187,5 6,1512 x 10* | 1,2788 x 10% | 2,9451 x 103
9 | 2,0562 x 10* | 3,0868 x 10% | 1,6768 x 10° | 1,7532 x 10°
19 | 1,7511 x 10° | 4,5246 x 10'7 | 2,2233 x 10'° | 2,4734 x 10'3

Con esta factorizacion si podemos ver diferencias significativas de las tres ordenaciones.
En este caso, la ordenacién de Leja es con la que se consigue que koo (L)koo(U) sea menor.

Por tanto, hemos visto que para la factorizacion LU es mejor la ordenacién central y
para LU obtenemos mejores resultados con el orden de Leja. Ademas, el producto de los
condicionamientos en estos dos casos es casi idéntico. En el caso n = 19, koo (L)koo(U) =
2,122 x 100 y koo (L)oo (U) = 2,2233 x 10'°. Sin embargo, la factorizacién LU, como ya
hemos senalado al final del apartado anterior en el que se estudia el intervalo [0, 1], es més
natural ya que esta relacionada con la férmula de Newton, involucra a las diferencias divididas
y resulta mas adecuada para la evaluacién del polinomio interpolante.

En el capitulo 21 de [8] Higham detalla cémo se comportan los condicionamientos en
funcién de la dimensién del problema. En el caso del intervalo [—1, 1] afirma que, cuando n
crece, Koo (V) es menor para puntos de Chebyshev que para puntos equiespaciados. Para tener
conclusiones mas acertadas hagamos el mismo estudio tomando los puntos de Chebyshev en

el intervalo [—1, 1] con las 3 ordenaciones anteriores: natural, Leja y central.
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Veamos en la siguiente tabla el producto de condicionamientos de la factorizacién LU.

Natural Leja Central
n Koo(V) Koo (L) Koo (U)
3 18,6369 308,2145 205,6499 68,7653
4 46,9508 2,1416 x 103 511,1747 197,4646
5 131,5733 1,1506 x 10* | 1,384 x 10° 877,1201
9 | 6,7024 x 103 | 1,7338 x 107 | 7,5266 x 10* | 5,8652 x 10*
19 | 6,3678 x 107 | 2,1821 x 10%° | 2,5143 x 107 | 1,7748 x 10°

Para esta factorizacion el producto de condicionamientos, £ (L)koo(U), es mejor con la

ordenacién central. Esto también ocurria en el caso de puntos equidistantes en el intervalo

~1,1].

Veamos el producto de condicionamientos de la factorizacién LU en la siguiente tabla:

Natural Leja Central
0| kee(V) Koo (L)oo (U)
3 18,6369 622,6565 123,7877 85,1214
4 46,9508 4,5541 x 10° 373,7304 266,0179
5 131,5733 3,6064 x 10* | 1,4065 x 10 | 1,1232 x 103
9 | 6,7024 x 10° | 8,3763 x 107 | 8,9795 x 10* | 1,0346 x 10°
19 | 6,3678 x 107 | 4,4591 x 106 | 1,4841 x 10° | 5,6091 x 10'°

Vemos que para la factorizacién LU la ordenaciéon que da el menor producto de condicio-
namientos es la de Leja. La diferencia con los resultados obtenidos con el orden central para
la factorizacion LU no es significativa. Parece conveniente utilizar la factorizacién de Crout,

mas relacionada con la formula de Newton.

12. Conclusiones

El condicionamiento de las matrices de Vandermonde crece exponencialmente con el ni-
mero de nodos (véase capitulo 21 de [8]). En este trabajo se intenta buscar una factorizacion
LU de la matriz de Vandermonde V' de forma que el producto de los condicionamientos de

estas matrices no diste mucho del condicionamiento de V.
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Una de las conclusiones que hemos obtenido es que, dada una matriz de Vandermonde V'
basada en los nodos xg, ..., x, tales que x; > 0,7 = 0,...,n podemos realizar su factorizacién
LU (asociada a la férmula de Newton), de modo que el calculo de L, L™!, U y U~! puede
realizarse con alta precisiéon relativa.

En los experimentos numéricos hemos tomado dos factorizaciones distintas de la matriz
de Vandermonde V. Una de las factorizaciones tiene unos en la diagonal de U y la hemos
denotado por LU. La factorizaciéon LU esté relacionada de forma natural con la formula de
interpolacién de Newton. La segunda factorizacién analizada, LU, se caracteriza por ser L la
que tiene unos en la diagonal y estd asociada a la eliminacién gaussiana.

En el primer caso estudiado hemos tomado los puntos en el intervalo [0, 1] con dos ordena-
ciones distintas: natural y de Leja. Con la factorizacién LU, el producto de condicionamientos
es menor para la ordenacién natural, aunque k(L) sea mejor con Leja. La factorizacién LU
con el orden de Leja da lugar al producto de condicionamientos ligeramente méas bajo. Sin
embargo, no existen diferencias significativas cuando utilizamos el orden natural con la fac-
torizacion LU y ésta dltima es més natural dada su relacién con la férmula de Newton y con
las diferencias divididas.

En el caso del intervalo [—1, 1], ademés del orden natural y el de Leja, también hemos
propuesto otra ordenacién llamada orden central. Hemos visto que para la factorizacion LU
es mejor la ordenacién central y para LU se obtienen los mejores resultados con el orden de
Leja. Los productos de los condicionamientos son casi idénticos en ambos casos por lo que
escogemos la factorizacién LU de la ordenacion central por la misma razén que en el caso
[0,1]: por su relacién con las diferencias divididas, con la férmula de Newton y porque es

adecuada para la evaluacién del polinomio interpolante.
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