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1. Introducción
Uno de los métodos más utilizados para resolver un sistema lineal de ecuaciones Ax = b

consiste en descomponer la matriz A como producto de una matriz triangular inferior L
y una matriz triangular superior U y resolver los correspondientes sistemas triangulares.
Esta forma de descomponer una matriz se conoce como factorización LU . En este trabajo
vamos a considerar la matriz de Vandermonde V en nodos x0, . . . , xn. Aunque disponemos
de expresiones explícitas para la inversa de una matriz de Vandermonde, es habitual resolver
el sistema mediante una factorización LU . Se explorarán las conexiones de la fórmula de
interpolación de Newton con dichas factorizaciones triangulares. Como la fórmula de Newton
depende de la ordenación de los nodos, se analizará el condicionamiento de factorizaciones
triangulares asociadas a diferentes ordenaciones de los nodos.

En cualquier método numérico, además del coste computacional, es importante tener en
cuenta los errores de redondeo que se cometen. Una medida apropiada del error cometido
es el condicionamiento de una matriz A, que se denota por κ∞(A) y se define del siguiente
modo:

κ∞(A) := ‖A‖∞‖A−1‖∞.

Es bien conocido que la matriz de Vandermonde está mal condicionada. Además, se tiene
que κ∞(V ) ≤ κ∞(L)κ∞(U). El objetivo de este trabajo es analizar posibles factorizaciones
LU de V y ordenaciones de los nodos de forma que κ∞(L)κ∞(U) sea lo menor posible. Las
factorizaciones que vamos a considerar son dos: la primera está asociada a la fórmula de
Newton para la resolución del correspondiente problema de interpolación polinómica y la
segunda asociada a la eliminación gaussiana. Las ordenaciones que vamos a tomar son la
natural, la de Leja y, en el caso de tomar los nodos en el intervalo [−1, 1], proponemos una
nueva ordenación llamada central.

En la Sección 2 de este trabajo se introduce el problema de interpolación de Lagrange
y se define la matriz de colocación de un problema de interpolación respecto de una base
dada. A continuación en la Sección 3, se presenta el problema de interpolación de Lagrange
polinómico y se da la solución de éste a través de la fórmula de Lagrange y de la matriz de
Vandermonde. La Sección 4 comienza con la fórmula de Newton, que expresa el interpolante
mediante diferencias divididas y se presenta la factorización LU asociada. Se dan fórmulas
de recurrencia para calcular los elementos de las matrices triangulares L y U . Estas matrices
triangulares forman una factorización LU de la matriz de Vandermonde V donde U tiene unos
en la diagonal principal. En la siguiente Sección 5, se define el condicionamiento tradicional
κ∞(A) y el condicionamiento de Skeel de una matriz. La Sección 6 está dedicada a calcular las
inversas de las matrices L y U anteriores y se dan fórmulas explícitas que permiten calcular
los elementos de estas matrices por recurrencia. En la siguiente Sección 7, se define el concepto
de alta precisión relativa y se demuestra que los cálculos de L, L−1, U y U−1 se realizan con
alta precisión relativa. En la Sección 8 se introduce una nueva forma de ordenar los nodos:
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la ordenación de Leja, descrita por Reichel en [10]. La Sección 9 está dedicada a ejemplos
ilustrativos en los que se consideran distintos intervalos para tomar los nodos. Se consideran
nodos equidistantes y se toman distintas ordenaciones para ellos. Las secciones 10 y 11 están
dedicadas a los experimentos numéricos realizados. La primera de estas secciones recoge
resultados sobre los factores triangulares, mientras que la segunda compara los resultados de
los condicionamientos conjuntos. La última sección recoge las conclusiones extraídas de este
trabajo.

2. Problemas de interpolación y matrices de
colocación

En este trabajo queremos estudiar la factorización de matrices Vandermonde. Estas ma-
trices aparecen al plantear un problema de interpolación de Lagrange respecto de la base de
monomios.

Problema de interpolación de Lagrange. Sea U un espacio de funciones con dimU =
n + 1. Dados nodos x0, . . . , xn distintos y f0, . . . , fn, encontrar u ∈ U , con u(xi) = fi,
i = 0, . . . , n.

El interpolante puede obtenerse en distintos espacios y dentro del mismo espacio puede
expresarse en términos de diferentes bases. Si (u0, . . . , un) es una base ordenada de U , po-
demos expresar la solución u en términos de dicha base u =

∑n
i=0 aiui y el problema de

interpolación queda reducido a la resolución del sistema

M
(u0, . . . , un
x0, . . . , xn

)
a = f ,

donde a = (a0, . . . , an)T , f = (f0, . . . , fn)T y

M
(u0, . . . , un
x0, . . . , xn

)
= (uj(xi))i,j=0,...,n,

denota la matriz de colocación de la base en los nodos. Aquí nos apartamos del convenio
usual y consideramos que el primer índice de filas y columnas es 0 en lugar de 1, por lo que
la dimensión correspondiente a n es n + 1, para acomodar nuestros resultados al problema
de interpolación de grado n y a la notación de matrices de Vandermonde.

Más generalmente podemos plantear problemas de interpolación lineales respecto a una
sucesión de funcionales λ0, . . . , λn.

Problema de interpolación lineal general. Sea U un espacio de funciones de dimensión
n+ 1. Dados funcionales λ0, . . . , λn y f una función, encontrar u ∈ U , con λiu = λif ,
i = 0, . . . , n.

5



Introducimos la notación de matriz de colocación de un problema de interpolación respecto
a una sucesión de funcionales.

Definición. La matriz de colocación de una base (u0, . . . , un) respecto a una sucesión de
funcionales (λ0, . . . , λn) es

M
(u0, . . . , un
λ0, . . . , λn

)
= (λi(uj))i,j=0,...,n.

Una vez elegida una base, (u0, . . . , un), el problema de interpolación lineal general se
reduce a resolver el sistema

M
(u0, . . . , un
λ0, . . . , λn

)
a = M

( f

λ0, . . . , λn

)
,

expresando la solución en la forma u =
∑n
i=0 aiui.

Un problema de interpolación lineal general no tiene necesariamente solución única. La
condición necesaria y suficiente para que el problema admita una única solución es que el
determinante de la matriz de colocación respecto de una base sea distinto de cero.

3. Interpolación polinómica y matriz de
Vandermonde

Comencemos esta sección planteando el problema de interpolación de Lagrange polinó-
mico.

Problema de interpolación de Lagrange polinómico. Dados nodos x0, . . . , xn distin-
tos y f0, . . . , fn, encontrar p ∈ Pn, con p(xi) = fi, i = 0, . . . , n.

Sabemos que este problema tiene una única solución. Para resolverlo expresamos p(x) =∑n
i=0 cjx

j y reducimos el problema al sistema

V c = f ,

donde

V = V (x0, . . . , xn) := M
( 1, x, . . . , xn

x0, x1, . . . , xn

)
=



1 x0 · · · xn0

1 x1 · · · xn1
...

...

1 xn · · · xnn


es la matriz de Vandermonde en los nodos x0, . . . , xn, c = (c0, c1, . . . , cn)T , f = (f0, f1, . . . , fn)T .

Nuestro objetivo es estudiar la resolución del sistema V c = f , es decir, determinar los
coeficientes respecto de la base de monomios del interpolante.
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La solución del problema de Lagrange puede expresarse a través de la fórmula de Lagrange

p(x) =
n∑
i=0

fj lj(x), lj(x) =
∏
k 6=j

x− xk
xj − xk

.

Dado que la fórmula de Lagrange resuelve el problema de interpolación explícitamente en
términos de los datos f del segundo miembro, debe estar relacionado con la matriz inversa
de V .

Llamando l = (l0, . . . , ln)T a la base de Lagrange y t = (t0, . . . , tn)T a la base de monomios
tj(x) := xj , j = 0, . . . , n, podemos comparar las expresiones del interpolante respecto a ambas
bases

lT f = tT c.

Utilizando la relación c = V −1f obtenemos

lT f = tTV −1f ,

y, como esta relación debe verificarse para todo f , deducimos que

lT = tTV −1,

es decir, la matriz de cambio de base de la base de Lagrange respecto de la base de monomios
es la matriz inversa de Vandermonde. Considerando que

∏
k 6=j

(x− xk) = xn −
(∑
k 6=j

xi

)
xn−1 + · · ·

+ (−1)p
( ∑
k1<···<kp∈{0,...,n}\{j}

xk1 · · ·xkp

)
xn−p + · · ·+ (−1)n

∏
k 6=j

xk,

tenemos que el coeficiente de lj en xi es de la forma

v
(−1)
ij =

(−1)i
∑

#K=n−i,K⊆{0,...,n}\{j}
∏
k∈K xk∏

k 6=j(xj − xk) , (3.1)

obteniéndose el elemento (i, j) de la inversa de la matriz de Vandermonde.

4. Fórmula de Newton y factorización LU

La fórmula de Newton del interpolante polinómico

p(x) =
n∑
j=0

[x0, . . . , xj ]fωj(x)
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permite expresar el interpolante en términos del vector de diferencias divididas d = (d0, . . . , dn),
dj := [x0, . . . , xj ], j = 0, . . . , n, y la base de Newton ω = (ω0, . . . , ωn), con

ωj(x) = (x− x0) · · · (x− xj−1).

Cada elemento ωj de la base de Newton es un polinomio mónico de grado j con la
propiedad ωj(xi) = 0, si j > i. Esto implica que la matriz de colocación en los nodos
M
(

ω0,...,ωn

x0,x1,...,xn

)
es una matriz triangular inferior

L :=



1 0 0 · · · 0

1 x1 − x0 0 · · · 0

1 x2 − x0 (x2 − x0)(x2 − x1)
. . .

...
...

...
. . . 0

1 xn − x0 (xn − x0)(xn − x1) · · · (xn − x0) · · · (xn − xn−1)


,

cuyo elemento (i, j) es lij = ωj(xi) =
∏j−1
k=0(xi − xk), j ≤ i. Evaluando en cada punto la

expresión del polinomio de interpolación p = ωTd, obtenemos fi = ωT (xi)d, i = 0, . . . , n,
obteniéndose el sistema

Ld = f .

Es decir, el vector de diferencias divididas es la solución del sistema triangular Ld = f .
Podemos calcular los elementos de la matriz L por recurrencia, porque los elementos de

la columna j-ésima de la matriz L pueden obtenerse de la columna anterior de la siguiente
manera

lij = li,j−1(xi − xj−1), (4.1)

partiendo de li0 = 1, i = 0, . . . , n.
Si aplicamos la fórmula de Newton a cada monomio obtenemos

(1, . . . , xn) = (ω0(x), . . . , ωn(x))M
(

1, . . . , xn

[x0], [x0, x1], . . . , [x0, . . . , xn]

)
.

Teniendo en cuenta que [x0, . . . , xi]xj = 0 si i > j, se deduce que la matriz de cambio de base
entre la base de Newton y la base de monomios es la matriz triangular superior

U :=



1 x0 x2
0 · · · xn0

0 1 [x0, x1]x2 · · · [x0, x1]xn

0 0 1
. . .

...
...

...
. . . [x0, . . . , xn−1]xn

0 0 · · · 0 1


.
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Parece ser que para calcular uij := [x0, . . . , xi]xj es necesario realizar varias diferencias
y restas. Sin embargo, podemos obtener el valor uij en términos de los x0, . . . , xi utilizando
una relación en la que solo aparecen sumas de potencias de los nodos. De acuerdo con la regla
de Leibniz para diferencias divididas, tenemos

[x0, . . . , xi]xj = xi[x0, . . . , xi]xj−1 + [x0, . . . , xi−1]xj−1,

es decir

uij = ui−1,j−1 + xiui,j−1. (4.2)

Usando esas relaciones puede calcularse la fija i-ésima partiendo de la fila (i − 1)-ésima,
teniendo en cuenta que uii = 1, i = 0, . . . , n, y uij = 0, j < i. Se deduce la siguiente fórmula
para la fila i-ésima en términos de la fila (i− 1)-ésima

uij = ui−1,j−1 + xiui−1,j−2 + x2
iui−1,j−3 + · · ·+ xj−ii ui−1,i−1,

o equivalentemente

[x0, . . . , xi]xj =
j−i∑
k=0

xki [x0, . . . , xi−1]xj−1−k, j ≥ i.

Por inducción se demuestra que

uij = [x0, . . . , xi]xj =
∑

α0+···+αi=j−i
xα0

0 · · ·x
αi
i .

Si en la relación de cambio de bases tT = ωTU , tomamos matrices de colocación se deduce
que

M
( 1, x, . . . , xn

x0, x1, . . . , xn

)
= M

( ω0, . . . , ωn
x0, x1, . . . , xn

)
U,

lo que implica que

V = LU, (4.3)

es decir, las matrices L y U forman la factorización de Crout de la matriz de Vandermonde,
donde la matriz triangular superior U tiene unos en la diagonal.

La factorización LU se utiliza con frecuencia para resolver el sistema V c = f . Llamando
d al vector de diferencias divididas, tenemos

Ld = f, Uc = d,

y la solución del sistema con matriz de Vandermonde se reduce a la resolución consecutiva
de dos sistemas triangulares con matrices L y U . Estos sistemas intermedios relacionan la
solución con un vector intermedio d, el vector de las diferencias divididas y, por tanto, están
relacionados directamente con la fórmula de Newton de interpolación.
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5. Condicionamiento
Recordemos que el condicionamiento tradicional de una matriz es

κ∞(A) := ‖A‖∞‖A−1‖∞, ‖A‖∞ := máx
i=0,...,n

n∑
j=0
|aij |.

Mencionemos que también se usa el llamado condicionamiento de Skeel (véase [9]). El
condicionamiento de Skeel de una matriz A se denota por Cond(A) y se define como

Cond(A) = ‖|A−1||A|‖∞.

Se cumple que Cond(A) ≤ κ∞(A) y que, a diferencia del condicionamiento tradicional, el
condicionamiento de Skeel es invariante para escalados de fila (es decir, Cond(DA) = Cond(A)
para cualquier matriz diagonal D no singular).

Como V = LU , se tiene que κ∞(V ) ≤ κ∞(L)κ∞(U). Aunque disponemos de expresiones
explícitas para la inversa de una matriz de Vandermonde, es habitual resolver el sistema
mediante la factorización LU o utilizar un cálculo intermedio con diferencias divididas. Por
ello, estamos interesados en el condicionamiento de cada uno de los factores κ∞(L) y κ∞(U).

Para abordar el tratamiento de estos números es interesante disponer de expresiones
explícitas de las inversas, que realizaremos en la siguiente sección.

6. Cálculo de las inversas de las matrices
triangulares

Sean L y U las matrices triangulares que factorizan la matriz de Vandermonde obtenidas
en la sección 4.

La inversa de L está relacionada con el cambio de bases entre la base de Lagrange l y la
base de Newton ω. Comparando la fórmula de Lagrange y la fórmula de Newton obtenemos

l(x)T f = ω(x)Td

y sustituyendo d = L−1f , obtenemos la relación

l(x)T f = ω(x)TL−1f ,

válida para cualquier vector f , de donde se deduce que

l(x)T = ω(x)TL−1.
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Por tanto, la inversa de L−1 representa la matriz de cambio de base entre la base de Lagrange
y la base de Newton,

L−1 = M
( l0, l1, . . . , ln

[x0], [x0, x1], . . . , [x0, . . . , xn]

)
.

La fórmula anterior no proporciona explícitamente los elementos de L−1, sino que los describe
en términos de diferencias divididas. Una segunda opción consiste en utilizar la fórmula

[x0, . . . , xi]f =
i∑

j=0

f(xj)∏
k∈0,...,i\{j}(xj − xk) .

En aras a simplificar la notación, notemos que

ω′i(xj) =
∏

k∈{0,...,i}\{j}

(xj − xk),

lo que permite establecer la siguiente relación entre d y f

di =
i∑

j=0

f(xj)
ω′k(xj)

.

Teniendo en cuenta que d = L−1f , deducimos que el elemento (i, j) de la matriz L−1 es

l
(−1)
ij = 1

ω′i(xj)
= 1∏

k∈{0,...,i}\{j}(xj − xk)

cuando j ≤ i y 0 en caso contrario. Podemos calcular los l(−1)
ij , teniendo en cuenta que

l
(−1)
ii = 1

lii
, l

(−1)
ij = −

l
(−1)
i−1,j

xi − xj
, i > j. (6.1)

Para poder invertir la matriz U partimos de la relación de cambio de base entre la base
de Newton y la base de monomios

(ω0(x), . . . , ωn(x)) = (1, . . . , xn)U−1.

Expresando la base de Newton en términos de los monomios

ωj(x) = (x− x0) · · · (x− xj−1) =
j∑
i=0

(−1)j−i
( ∑

#K=j−i;K⊂{0,...,j−1}

∏
k∈K

xk

)
xi,

se obtiene el elemento (i, j) de la matriz U−1 en la forma

u
(−1)
ij = (−1)j−i

( ∑
#K=j−i;K⊂{0,...,j−1}

∏
k∈K

xk

)
.

Teniendo en cuenta que los u(−1)
ij , i = 0, . . . , j, son los coeficientes de ωj respecto a la base

de monomios (1, x, . . . , xj), podemos comparar los coeficientes de ωj(x) y (x − xj−1)ωj−1 y
deducir la recurrencia

u
(−1)
ii = 1, u

(−1)
ij = u

(−1)
i−1,j−1 − xj−1u

(−1)
i,j−1, i < j, (6.2)
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en el caso de la primera fila tenemos las relaciones

u
(−1)
00 = 1, u

(−1)
0j = −xj−1u

(−1)
0,j−1. (6.3)

Teniendo en cuenta las fórmulas (6.2) y (6.3) y que U−1 es triangular superior, podemos
determinar todos los elementos de U−1.

7. Alta precisión relativa

Una expresión X puede obtenerse con alta precisión relativa (HRA) si el error relativo
del valor calculado X̂ puede acotarse del siguiente modo ([2]):

||X− X̂||
||X|| ≤ Cu,

donde C es una constante positiva independiente de la precisión aritmética y u es la unidad
de redondeo.

Podemos asegurar que podemos calcular con alta precisión relativa los productos, cocientes
y sumas verdaderas (sumas de números del mismo signo) de expresiones que se pueden
calcular con alta precisión relativa. Sólo se permite efectuar operaciones de diferencia (sumas
de números de signo opuesto) con los datos iniciales del problema (ver [5]). La importancia
de poder asegurar alta precisión relativa proviene de que podemos asegurar que los errores
relativos son del orden de la unidad de redondeo, independientemente del condicionamiento
del problema. Para el concepto anterior, observemos que el cálculo de los elementos de la
inversa de una matriz de Vandermonde correspondiente a nodos positivos se puede realizar
con alta precisión relativa mediante de la fórmula (3.1). De hecho, el denominador producto
de diferencias de datos iniciales y el numerador suma términos del mismo signo, que a su vez
pueden calcularse con HRA.

Enunciemos ahora el siguiente resultado sobre las matrices L y U de la Sección 4:

Teorema 1. Los cálculos de L, U , L−1 y U−1 pueden hacerse con alta precisión relativa
cuando todos los nodos son positivos.

Comencemos justificando la afirmación sobre L. Ya hemos visto en (4.1) que, partiendo
de li0 = 1, i = 0, . . . , n, tenemos que

lij = li,j−1(xi − xj−1), j ≤ i.

Como la resta se aplica a los nodos xi (los datos iniciales), tenemos que L se calcula con
HRA.
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Los elementos de L−1 se pueden calcular como hemos deducido en (6.1):

l
(−1)
ii = 1

lii
, i = 0, . . . , n,

l
(−1)
ij =

l
(−1)
i−1,j

xj − xi
, i > j.

Claramente, también se calculan con HRA ya que la resta sólo afecta a los nodos.
Veamos ahora que los elementos de la matriz triangular superior U se calculan con alta

precisión relativa. Recordemos que uii = 1, para todo i = 0, . . . , n. Por (4.2) se tiene:

uij = ui−1,j−1 + xiui,j−1.

Si xi ≥ 0, para todo i = 0, . . . , n, vemos por inducción que los elementos de U son no negativos
y por tanto, los elementos de la suma anterior son todos mayores o iguales que cero. Es decir,
U también se calcula con HRA.

Por último, (6.2) y (6.3) nos dan los elementos de U−1.

u
(−1)
00 = 1, u

(−1)
0j = −xj−1u

(−1)
0,j−1,

u
(−1)
ii = 1,

(−1)(j−i)u
(−1)
ij = (−1)(j−i)u

(−1)
i−1,j−1 + xj−1(−1)(j−i)u

(−1)
i,j−1.

Como xi ≥ 0, para todo i = 0, . . . , n, se deduce por inducción que (−1)j−iu−1
ij , i ≤ j, son

positivos. Por tanto, los sumandos son del mismo signo y el cálculo de U−1 también se realiza
con HRA.

8. La ordenación de Leja
Cuando 0 < x0 < · · · < xn la matriz de Vandermonde tiene todos sus menores positivos,

es decir, se trata de una matriz totalmente positiva (TP). Una matriz es una matriz TP si y
sólo si tiene una factorización LU tal que L y U son TP (ver Cryer [3]). Algunas propiedades
de las matrices totalmente positivas indican que la eliminación gaussiana sin reordenación de
filas conduce a buenos resultados de estabilidad (ver [4] y [6]), lo que proporciona argumentos
para trabajar con los nodos ordenados de menor a mayor.

Sin embargo, otras ordenaciones de los nodos también pueden dar lugar a estabilidad
en los cálculos. Observamos que en la diagonal de la matriz L tenemos los pivotes de la
eliminación gaussiana. Mediante una estrategia de pivotaje parcial, se intenta maximizar en
cada paso los multiplicadores. Notemos que el pivotaje parcial equivale a reordenar los nodos
en el conjunto X. En [1] y [7] se muestra que esta forma de ordenar los nodos es esencialmente
el orden de Leja (la diferencia es que en el pivotaje parcial no se cambia el primer pivote).

El orden de Leja se consigue siguiendo la siguiente estrategia como señala Reichel en [10]:
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Orden de Leja.

(i) Inicialmente, se elige x0 un nodo cualquiera. No obstante para maximizar x1−x0 en el
segundo paso conviene elegir un punto extremo, el mínimo o el máximo.

(ii) En el segundo paso se elige x1 tal que

|x1 − x0| = máx
j=1,...,n

|xj − x0|.

El segundo punto x1 es el otro extremo (mínimo o máximo).

(iii) El el paso i-ésimo se selecciona xi tal que

i−1∏
k=0
|xi − xk| = máx

j=i,...,n

i−1∏
k=0
|xj − xk|.

De esta forma conseguimos que la diagonal en cada columna de L sea mayor que los elementos
extradiagonales, dando lugar a un buen número de condición para la matriz L (véase [8]).

El orden de Leja es un caso particular de selección de puntos propuesta por Leja en un
subconjunto compacto del campo complejo. En el caso de un compacto K en la recta real, se
elige primero un punto x0 (normalmente el mínimo o el máximo) y en cada paso se selecciona
xi ∈ K para el que la función

i−1∏
k=0
|x− xk|.

alcance su valor máximo. La ordenación de Leja, se obtiene cuando el compacto K es finito
y tiene cardinal n + 1, precisamente el número de nodos que utilizaremos para la matriz de
Vandermonde.

Reichel (ver [10]) demuestra que el condicionamiento de la fórmula de Newton definido
por interpolación en los puntos de Leja tiene un crecimiento subexponencial atendiendo al
número de puntos de interpolación.

Nuestro objetivo es comparar normas de L, U y L−1, U−1 para diferentes ordenaciones,
incluyendo el orden natural y el de Leja, para extraer conclusiones sobre la ordenación que
produce una factorización LU con mejores propiedades de condicionamiento.

Finalmene observar que la factorización LU descrita en la Sección 4 es la factorización de
Crout. La factorización de Doolittle asociada a la eliminación gaussiana es L̃Ũ con

L̃ := LD−1, Ũ = DU,

siendo
D := diag(1, ω1(x1), ω2(x2), . . . , ωn(xn)).

Observemos que L̃ tiene unos en la diagonal.

14



9. Ejemplos

Los siguientes ejemplos muestran las factorizaciones LU y L̃Ũ , sus normas y condiciona-
mientos. El dominioK es un intervalo cerrado en los dos casos: [0, 1] y [−1, 1]. Consideraremos
diferentes ordenaciones de los puntos equidistantes en el intervalo K.

9.1. K = [0, 1]
Tomemos K = [0, 1]. Los puntos equidistantes en este intervalo son de la forma:

xi = i

n
, i = 0, 1, . . . , n.

Para estos puntos vamos a tomar diferentes ordenaciones: el orden natural y el de Leja.

Orden natural

Comencemos con el orden natural y tomemos n = 3. Por tanto, los nodos son:

x0 = 0, x1 = 1
3 , x2 = 2

3 , x3 = 1.

La matriz de Vandermonde basada en estos nodos es

VN = V (x0, x1, x2, x3) =



1 0 0 0

1 1/3 1/9 1/27

1 2/3 4/9 8/27

1 1 1 1


.

Vamos a dar dos factorizaciones LU distintas para V . En la primera de ellas U tiene
unos en la diagonal, mientras que en la segunda es L la que tiene la diagonal de unos.

La primera factorización es:

VN = LU =



1 0 0 0

1 1/3 0 0

1 2/3 2/9 0

1 1 2/3 2/9





1 0 0 0

0 1 1/3 1/9

0 0 1 1

0 0 0 1


,

cuyas normas son:

||L||∞ = 2,8889, ||U ||∞ = 2,

||L−1||∞ = 36, ||U−1||∞ = 2.
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La siguiente factorización es:

VN = L̃Ũ =



1 0 0 0

1 1 0 0

1 2 1 0

1 3 3 1





1 0 0 0

0 1/3 1/9 1/27

0 0 2/9 2/9

0 0 0 2/9


,

y sus normas son:

||L̃||∞ = 8, ||Ũ ||∞ = 1,

||L̃−1||∞ = 8, ||Ũ−1||∞ = 9.

En la siguientes tablas podemos ver los condicionamientos de estas matrices.

κ∞(VN ) κ∞(L)κ∞(U) κ∞(L) κ∞(U)

216 416 104 4

κ∞(VN ) κ∞(L̃)κ∞(Ũ) κ∞(L̃) κ∞(Ũ)

216 576 64 9

Orden de Leja
Vamos a hacer un análisis similar al realizado con la ordenación natural. Tomamos
n = 3, los puntos equidistantes siguiendo la ordenación de Leja son:

x̃0 = 1, x̃1 = 0, x̃2 = 1
3 , x̃3 = 2

3 .

La matriz de Vandermonde en estos puntos es

VL = V (x̃0, x̃1, x̃2, x̃3) =



1 1 1 1

1 0 0 0

1 1/3 1/9 1/27

1 2/3 4/9 8/27


.

Análogamente al apartado anterior, vamos a dar dos factorizaciones LU distintas. La
primera de ellas:

VL = LU =



1 0 0 0

1 −1 0 0

1 −2/3 −2/9 0

1 −1/3 −2/9 −2/27





1 1 1 1

0 1 1 1

0 0 1 4/3

0 0 0 1


,
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||L||∞ = 2, ||U ||∞ = 4,

||L−1||∞ = 36, ||U−1||∞ = 2,3333.

La segunda factorización es:

VL = L̃Ũ =



1 0 0 0

1 1 0 0

1 2/3 1 0

1 1/3 1 1





1 1 1 1

0 −1 −1 −1

0 0 −2/9 −8/27

0 0 0 −2/9


,

||L̃||∞ = 3,3333, ||Ũ ||∞ = 4,

||L̃−1||∞ = 2,6667, ||Ũ−1||∞ = 22,5.

Las tablas mostradas a continuación recogen los condicionamientos de estas matrices:

κ∞(VL) κ∞(L)κ∞(U) κ∞(L) κ∞(U)

216 672 72 9,3333

κ∞(VL) κ∞(L̃)κ∞(Ũ) κ∞(L̃) κ∞(Ũ)

216 800 8,8889 90

9.2. K = [−1, 1]
El intervalo que vamos a considerar en esta sección es [−1, 1] y n = 3. En este intervalo

tomaremos las siguientes ordenaciones:

1. La ordenación natural.

2. La ordenación de Leja.

3. Los puntos ordenados crecientemente según su distancia a cero. Si el intervalo es [−1, 1],
esto equivale a ordenar según su distancia al centro del intervalo. Por ello, vamos a
llamarla ordenación central.

De la misma manera que en los ejemplos en [0, 1], consideraremos dos factorizaciones LU
distintas.

Orden natural

Tomando el orden natural tenemos que los nodos son:

x0 = −1, x1 = −1
3 , x2 = 1

3 , x3 = 1.

17



La matriz de Vandermonde sobre estos nodos es:

VN = V (x0, x1, x2, x3) =



1 −1 1 −1

1 −1/3 1/9 −1/27

1 1/3 1/9 1/27

1 1 1 1


.

Una de las factorizaciones es la siguiente:

VN = LU =



1 0 0 0

1 2/3 0 0

1 4/3 8/9 0

1 2 8/3 16/9





1 −1 1 −1

0 1 −4/3 13/9

0 0 1 −1

0 0 0 1


.

A continuación escribimos las normas de estas matrices y de sus inversas:

||L||∞ = 7,4444, ||U ||∞ = 4,

||L−1||∞ = 4,5, ||U−1||∞ = 2,4444.

La segunda factorización:

VN = L̃Ũ =



1 0 0 0

1 1 0 0

1 2 1 0

1 3 3 1





1 −1 1 −1

0 2/3 −8/9 26/27

0 0 8/9 −8/9

0 0 0 16/9


,

y sus normas son:

||L̃||∞ = 8, ||Ũ ||∞ = 4,

||L̃−1||∞ = 8, ||Ũ−1||∞ = 3,0625.

En las siguientes tablas podemos ver los condicionamientos de estas matrices.

κ∞(VN ) κ∞(L)κ∞(U) κ∞(L) κ∞(U)

18 327,5556 33,5 9,7778

κ∞(VN ) κ∞(L̃)κ∞(Ũ) κ∞(L̃) κ∞(Ũ)

18 784 64 12,25
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Orden de Leja

Siguiendo el mismo esquema que el utilizado con el orden natural vamos a ver el orden
de Leja. Los puntos equidistantes siguiendo el orden de Leja son:

x̃0 = 1, x̃1 = −1, x̃2 = −1
3 , x̃3 = 1

3 .

La matriz de Vandermonde en estos puntos es

VL = V (x̃0, x̃1, x̃2, x̃3) =



1 1 1 1

1 −1 1 −1

1 −1/3 1/9 −1/27

1 1/3 1/9 1/27


.

Análogamente al apartado anterior, vamos a dar dos factorizaciones LU distintas. La
primera de ellas:

VL = LU =



1 0 0 0

1 −2 0 0

1 −4/3 −8/9 0

1 −2/3 −8/9 −16/27





1 1 1 1

0 1 0 1

0 0 1 −1/3

0 0 0 1


,

||L||∞ = 3,222, ||U ||∞ = 4,

||L−1||∞ = 4,5, ||U−1||∞ = 3,3333.

La segunda factorización es:

VL = L̃Ũ =



1 0 0 0

1 1 0 0

1 2/3 1 0

1 1/3 1 1





1 1 1 1

0 −2 0 −2

0 0 −8/9 8/27

0 0 0 −16/27


,

||L̃||∞ = 3,3333, ||Ũ ||∞ = 4,

||L̃−1||∞ = 2,6667, ||Ũ−1||∞ = 3,1875.

Podemos ver los condicionamientos de estas matrices en las siguientes tablas:
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κ∞(VL) κ∞(L)κ∞(U) κ∞(L) κ∞(U)

18 193,3333 14,5 13,3333

κ∞(VL) κ∞(L̃)κ∞(Ũ) κ∞(L̃) κ∞(Ũ)

18 113,3333 8,8889 12,75

Orden central

Por último, tomemos los puntos ordenados crecientemente según su distancia a cero:

x̄0 = 1
3 , x̄1 = −1

3 , x̄2 = −1, x̄3 = 1.

La matriz de Vandermonde en estos puntos es

VL = V (x̄0, x̄1, x̄2, x̄3) =



1 1/3 1/9 1/27

1 −1/3 1/9 −1/27

1 −1 1 −1

1 1 1 1


.

La primera factorización es la siguiente:

VC = LU =



1 0 0 0

1 −2/3 0 0

1 −4/3 8/9 0

1 2/3 8/9 16/9





1 1/3 1/9 1/27

0 1 0 1/9

0 0 1 −1

0 0 0 1


,

||L||∞ = 4,3333, ||U ||∞ = 2,

||L−1||∞ = 4,5, ||U−1||∞ = 2.

A continuación escribimos la segunda factorización:

VC = L̃Ũ =



1 0 0 0

1 1 0 0

1 2 1 0

1 −1 1 1





1 1/3 1/9 1/27

0 −2/3 0 −2/27

0 0 8/9 −8/9

0 0 0 16/9


,
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||L̃||∞ = 4, ||Ũ ||∞ = 1,7778,

||L̃−1||∞ = 8, ||Ũ−1||∞ = 1,6875.

Comparemos los condicionamientos de estas matrices:

κ∞(VC) κ∞(L)κ∞(U) κ∞(L) κ∞(U)

18 78 19,5 4

κ∞(VC) κ∞(L̃)κ∞(Ũ) κ∞(L̃) κ∞(Ũ)

18 96 32 3

10. Experimentos numéricos: factores
triangulares

En esta sección vamos a comparar normas y condicionamientos de las matrices de las dos
factorizaciones LU propuestas para distintas ordenaciones. Para ello vamos a considerar dos
intervalos distintos. Los cálculos se han realizado en doble precisión con MATLAB.

10.1. Intervalo [0, 1]
En este caso K = [0, 1]. Denotemos por LU la factorización en la que U tiene unos en la

diagonal y por L̃Ũ la factorización en la que L̃ tiene unos en la diagonal.
Vamos a considerar puntos equidistantes en el intervalo [0, 1] con dos ordenaciones:

1. Orden natural

2. Orden de Leja

Comparemos primero las normas de L y L̃ con las dos ordenaciones.

||L||∞

n Natural Leja

3 2,8889 2

4 3,2188 2

5 3,5104 2,0112

9 4,4583 2,0425

19 6,1522 2,0498

||L̃||∞

n Natural Leja

3 8 3,3333

4 16 4

5 32 4,65

9 512 7,5726

19 5,2429× 105 11,7892
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Vemos que, tanto para ||L||∞ como para ||L̃||∞, es mejor la ordenación de Leja. Hemos
podido probar la siguiente proposición sobre ||L̃||∞ y ||L̃−1||∞:

Proposición 2. Sea V la matriz de Vandermonde en los nodos x0, x1, . . . , xn equidistantes
en [0, 1] con la ordenación natural, y la factorización L̃Ũ . Se tiene

||L̃||∞ = 2n

||L̃−1||∞ = 2n

Demostración.

Sea L = (lij)0≤i,j≤n la matriz resultante de la factorización LU con U con unos en la
diagonal. Ya hemos visto que lij = ωj(xi), por tanto:

l̃ij = ωj(xi)
ωj(xj)

=
∏j−1
k=0(xi − xk)∏j−1
k=0(xj − xk)

equidistantes= (i− j + 1)(i− j + 2) . . . (i− 0)
j(j − 1) . . . 1 =

(
i

j

)
Por tanto,

||L̃||∞ = máx
i=0,...,n

i∑
j=0
|l̃ij | = máx

i=0,...,n

i∑
j=0

(
i

j

)
= máx
i=0,...,n

2i = 2n

Denotemos por l(−1)
ij y por l̃(−1)

ij los elementos de L−1 y L̃−1 respectivamente.

l
(−1)
ij = 1

ω′i(xj)
=⇒ l̃

(−1)
ij = ω′i(xi)

ω′i(xj)
=

∏i−1
k=0(xi − xk)∏

k=0,...,i
k 6=j

(xj − xk)
equidistantes= (−1)i−j

(
i

j

)

Así,

||L̃−1||∞ = máx
i=0,...,n

i∑
j=0
|l̃(−1)
ij | = máx

i=0,...,n

i∑
j=0

(
i

j

)
= máx
i=0,...,n

2i = 2n

De la proposición anterior se deduce el valor del condicionamiento de L̃. Por tanto, κ(L̃) =
22n.

Veamos qué ocurre para las matrices triangulares superiores.

||U ||∞

n Natural Leja

3 2 4

4 2,5 5

5 3,2 6,5200

9 10,2469 36,2812

19 222,5312 2,1332× 103

||Ũ ||∞

n Natural Leja

3 1 4

4 1 5

5 1 6

9 1 10

19 1 20
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En contraste con lo que sucede con ||L||∞ y ||L̃||∞, vemos que para las normas de ||U ||∞
y ||Ũ ||∞ es preferible la ordenación natural.

Las siguientes tablas nos muestran los condicionamientos de estas matrices triangulares
de las dos factorizciones.

Natural Leja Natural Leja

n κ∞(L) κ∞(U)

3 104 72 4 9,3333

4 549,3333 341,3333 6,2500 16,875

5 2,9253× 103 1,6760× 103 11,5200 33,6432

9 2,4370× 106 1,1165× 106 138,6496 684,7808

19 5,2495× 1013 1,7479× 1013 1,0119× 105 1,5611× 106

Natural Leja Natural Leja

n κ∞(L̃) κ∞(Ũ)

3 64 8,8889 9 90

4 256 16 26,6667 480

5 1,0240× 103 14,88 88,5417 4,0625× 103

9 2,6214× 105 46,1569 1,3840× 104 9,0002× 106

19 2,7488× 1011 82,3227 7,1536× 109 7,6698× 1015

Vemos que κ∞(L) es mejor con la ordenación de Leja aunque con el orden natural se
obtienen resultados similares. En cambio, los mejores resultados para κ∞(U) se obtienen con
el orden natural. Para la factorización L̃Ũ obtenemos conclusiones análogas. Con el orden de
Leja κ∞(L̃) es más bajo, pero κ∞(Ũ) es mejor con el orden natural.

El hecho de que κ∞(L) y κ∞(L̃) sea menor para el orden de Leja es el esperado ya
que es bien conocido que el pivotaje parcial controla el tamaño de los elementos de la matriz
triangular inferior. Como ya hemos visto, el orden de Leja corresponde a seguir una estrategia
de pivotaje parcial.

En [9] se justifica el buen condicionamiento de Ũ , y por tanto de U , para nodos positivos
con la ordenación natural. En este artículo se prueba que si existe una estrategia de pivotaje
óptima para reducir el condicionamiento de Skeel de la matriz triangular superior U , entonces
esta estrategia coincide con el pivotaje parcial escalado para una norma ||.|| estrictamente
monótona y en [6] se prueba que dicha estrategia aplicada a la eliminación gaussiana de una
matriz TP no da lugar a cambio de filas. Una norma ||.|| se dice estrictamente monótona si,
para cualesquiera vectores u = (u1, . . . , un),v = (v1, . . . , vn) con |uj | ≥ |vj |, ∀j = 1, . . . , n
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entonces ||u|| ≥ ||v|| y si además para algún j |uj | > |vj | entonces ||u|| > ||v||. Así, los
resultados mencionados dan una justificación teórica del buen condicionamiento de U y Ũ
para el orden natural.

Para terminar esta sección, vamos a analizar los condicionamientos de las matrices de
las dos factorizaciones LU con la ordenación natural y de Leja de los puntos de Chebyshev
en [0, 1]. La matriz de Vandemonde está mejor condicionada para puntos de Chebyshev
como se muestra en el capítulo 21 de Higham [8] donde se recopilan resultados sobre los
condicionamientos de matrices de Vandermonde con distintas distribuciones de nodos. Las dos
siguientes tablas muestran los condicionamientos de las matrices de las dos factorizaciones.

Natural Leja Natural Leja

n κ∞(L) κ∞(U)

3 112,5004 80,4374 4,1537 8,8590

4 512,6342 327,1301 6,3730 20,0671

5 2,2857× 103 1,3061× 103 11,0868 26,1224

9 7,9909× 105 3,3996× 105 124,4100 642,6657

19 1,2943× 1012 3,5654× 1011 7,7281× 104 1,5873× 106

Natural Leja Natural Leja

n κ∞(L̃) κ∞(Ũ)

3 53,4558 9,3137 10,7657 94,4402

4 158,0263 17,7082 32,4371 568,3153

5 588,4486 24,9545 106,5281 2,1546× 103

9 8,0701× 104 47,3294 2,9425× 104 2,6893× 106

19 2,2591× 1010 149,7096 2,2093× 1011 8,7018× 1013

Se obtienen los mismos resultados que para puntos equidistantes. κ∞(L) es mejor con
el orden de Leja mientras que κ∞(U) lo es con el orden natural. Ocurre lo mismo para la
factorización L̃Ũ : κ∞(L̃) es mucho más bajo con Leja y con el orden natural se obtienen los
mejores resultados para κ∞(Ũ).

10.2. Intervalo [−1, 1]

Ahora el intervalo que vamos a considerar es el [−1, 1]. Vamos a tomar los puntos equi-
distantes en este intervalo con diferentes ordenaciones:

1. La ordenación natural, es decir, los puntos ordenados de menor a mayor.
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2. La ordenación de Leja.

3. La ordenación central, es decir, los puntos ordenados crecientemente según su distancia
a cero.

En este caso también vamos a comparar las dos factorizaciones: LU y L̃Ũ . La primera se
caracteriza por ser U la que tiene unos en la diagonal y en la segunda es la matriz triangular
inferior, L̃, la que tiene unos en la diagonal. Empecemos comparando las normas de las
matrices triangulares inferiores:

||L||∞

n Natural Leja Central

3 7,4444 3,2222 4,3333

4 10,5 3,625 5,75

5 14,3408 3,8032 6,5392

9 2,4315 4,07726 8,3627

19 429,8239 4,1264 12,9618

||L̃||∞

n Natural Leja Central

3 8 3,3333 4

4 16 4 8

5 32 4,65 13

9 512 7,5762 87

19 5,2429× 105 11,7892 9,899× 103

Con el orden de Leja es con el que se obtienen las mejores normas para ambas factoriza-
ciones. Esto es debido, de nuevo, a que el orden de Leja es similar a hacer pivotaje parcial y
el pivotaje parcial controla la norma de la matriz triangular inferior.

Las siguientes tablas muestran las normas de U y Ũ .

||U ||∞

n Natural Leja Central

3 4 4 2

4 6,125 5 2

5 9,0416 6 2,24

9 42,9016 10 3,6214

19 2,3971× 103 49,5469 9,0455

||Ũ ||∞

n Natural Leja Central

3 4 4 1,7778

4 5 5 1,5

5 6 6 1,2499

9 10 10 1,125

19 20 20 1,0556

En el caso de las matrices U y Ũ la ordenación que da mejores resultados sobre las normas
es la central. Además, vemos que la norma de Ũ disminuye cuando la dimensión del problema
crece.

Comparemos los condicionamientos de estas matrices con las diferentes ordenaciones:
natural, Leja y central. Primero veamos los de la factorización LU en la tabla mostrada a
continuación:
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Natural Leja Central Natural Leja Central

n κ∞(L) κ∞(U)

3 33,5 14,5 19,5 9,7778 13,3333 4

4 112 38,6667 61,3333 19,9063 15 4

5 373,4583 99,0417 101,2917 33,9964 20,352 5,376

9 4,5301× 104 4,348× 103 8,9283× 103 334,8425 48,6574 13,9491

19 6,9906× 109 6,7112× 107 2,1081× 108 1,2356× 105 878,1643 100,662

Vemos que en el caso de los condicionamientos ocurre lo mismo que con las normas. κ∞(L)
es menor con el orden de Leja y κ∞(U) con la central.

Realicemos el mismo análisis para la factorizacion L̃Ũ .

Natural Leja Central Natural Leja Central

n κ∞(L̃) κ∞(Ũ)

3 64 8,8889 32 12,25 12,75 3

4 256 16 128 29,1667 22,5 5,25

5 1,0204× 103 14,88 416 60,0703 85,9375 7,0796

9 2,6214× 105 46,1569 4,4544× 104 1,1775× 103 3,6329× 103 39,3594

19 2,7488× 1011 82,3227 5,1899× 109 1,646× 106 2,7007× 108 4,7657× 103

Los resultados obtenidos con esta factorización son los mismos que hemos visto para la
factorización LU . Con el orden de Leja κ∞(L̃) es el más bajo, mientras que para κ∞(Ũ) es
mejor el orden central.

Como ya hemos dicho en el apartado anterior, el problema de interpolación en puntos
de Chebyshev es un problema mejor condicionado. Vamos a comparar los condicionamientos
de las matrices triangulares de las factorizaciones LU y L̃Ũ de la matriz de Vandermonde
basada en los puntos de Chebyshev en el intervalo [−1, 1].
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Natural Leja Central Natural Leja Central

n κ∞(L) κ∞(U)

3 34,3288 18,5786 18,5786 8,9683 11,0692 3,7013

4 99,6629 39,4822 40,865 21,4886 12,947 4,8321

5 288,0861 77,3323 116,2017 39,9411 17,8965 7,5483

9 2,4997× 104 1,2542× 103 2,4966× 103 693,5977 60,0135 23,4927

19 2,1059× 109 1,2739× 106 3,7716× 106 1,0362× 106 1,9737× 103 470,56

Observando la tabla anterior, vemos que κ∞(L) es mejor con el orden de Leja aunque
para el orden central también se obtienen buenos resultados y similares a los del orden de
Leja. Sin embargo, para U es preferible la ordenación central. Veamos en la siguiente tabla
los condicionamientos de las matrices de la factorización L̃Ũ .

Natural Leja Central Natural Leja Central

n κ∞(L̃) κ∞(Ũ)

3 53,4558 10,4853 25,3137 11,6481 11,8059 3,3627

4 158,0263 17,7082 60,0689 28,8185 21,1049 4,4285

5 588,4486 26,2224 145,282 61,2865 53,6384 7,7313

9 8,0701× 104 47,3294 1,8387× 103 1,0379× 103 1,8972× 103 56,2671

19 2,2591× 1010 49,7096 1,1769× 106 1,9738× 106 9,9133× 106 4,76× 104

Vemos que para κ∞(Ũ) la mejor ordenación es la central. Sin embargo, con el orden de
Leja se obtienen mejores resultados para κ∞(L̃).

11. Experimentos numéricos:
condicionamiento conjunto

En la sección anterior hemos estudiado separadamente los comportamientos de cada uno
de los factores de la descomposición LU . Sin embargo, el condicionamiento de ambos incide
en la propagación del error en la resolución del sistema.

Para obtener una medida conjunta de ambos condicionamientos (κ∞(L) y κ∞(U)) pro-
ponemos como medida de comparación el producto de condicionamientos de ambas matrices.

En esta sección estudiaremos los condicionamientos conjuntos κ∞(L)κ∞(U) de las dos
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factorizaciones: la factorización LU relacionada con la fórmula de Newton y la factorización
L̃Ũ que está asociada a la eliminación gaussiana. Tomaremos distintas ordenaciones de los
puntos equidistantes como en la sección anterior. En las tablas de esta sección aparecerán el
condicionamiento de la matriz de Vandermonde V y el producto de condicionamientos de las
distintas ordenaciones y factorizaciones.

11.1. Intervalo [0, 1]

Comencemos con el intervalo [0, 1]. Las siguientes tablas muestran los resultados obtenidos
para la factorizaciones LU y L̃Ũ con nodos equidistantes:

Natural Leja

n κ∞(V ) κ∞(L)κ∞(U)

3 216 416 672

4 1,7067× 103 3,4333× 103 5,7600× 103

5 1,2500× 104 3,3700× 104 5,6386× 104

9 4,8184× 107 3,3789× 108 7,6455× 108

19 5,0877× 1016 5,3085× 1018 2,7287× 1019

Natural Leja

n κ∞(V ) κ∞(L̃)κ∞(Ũ)

3 216 576 800

4 1,7067× 103 6,8267× 103 7,6800× 103

5 1,2500× 104 9,0667× 104 6,0450× 104

9 4,8184× 107 3,6280× 109 4,1542× 108

19 5,0877× 1016 1,9664× 1021 6,3140× 1017

Los experimentos indican que con el orden natural se obtiene el menor producto de condi-
cionamientos para la factorización LU aunque los resultados son muy similares con el orden
de Leja. Para la factorización L̃Ũ es con la ordenación de Leja con la que se obtienen mejores
resultados.

Como ya hemos dicho en la sección anterior, la matriz de Vandermonde en nodos de
Chebyshev está mejor condicionada (véase [8]). Para obtener resultados más acertados haga-
mos el mismo análisis para puntos de Chebyshev:
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Natural Leja

n κ∞(V ) κ∞(L)κ∞(U)

3 236,8983 467,2919 712,5928

4 1,5777× 103 3,2670× 103 6,5645× 103

5 9,4792× 103 2,5341× 104 3,4119× 104

9 1,4029× 107 9,9415× 107 2,1848× 108

19 9,2568× 1014 1,0002× 1017 5,6594× 1017

Natural Leja

n κ∞(V ) κ∞(L̃)κ∞(Ũ)

3 236,8983 575,4895 879,5889

4 1,5777× 103 5,1259× 103 1,0064× 104

5 9,4792× 103 6,2686× 104 5,3768× 104

9 1,4029× 107 2,3746× 109 1,2728× 108

19 9,2568× 1014 4,9911× 1021 1,3027× 1016

Vemos que tomando puntos de Chebyshev el menor producto de condicionamientos se
obtiene con la factorización L̃Ũ con el orden de Leja. Sin embargo, no hay diferencias signifi-
cativas comparando con LU que justifiquen el uso de esta descomposición ya que la factoriza-
ción LU (U con unos en la diagonal) es más natural por el uso de diferencias divididas y está
más relacionada con la fórmula de Newton, además de dar lugar a un buen comportamiento
respecto al error para la evaluación del polinomio de interpolación (véase [7] y el capítulo 5
de [8]).

11.2. Intervalo [−1, 1]

Ahora el intervalo que vamos a considerar es el [−1, 1]. Vamos a tomar los puntos equi-
distantes en este intervalo con las tres ordenaciones: natural, Leja y la llamada central.

Vamos a comparar los productos de los condicionamientos de las matrices triangulares de
las factorizaciones LU con las diferentes ordenaciones. Comencemos con la factorización LU :
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Natural Leja Central

n κ∞(V ) κ∞(L)κ∞(U)

3 18 327,5556 193,3333 78

4 53,3333 2,2295× 103 580 245,3333

5 187,5 1,2696× 104 2,0157× 103 915,488

9 2,0562× 104 1,5169× 107 2,1156× 105 1,2454× 105

19 1,7511× 109 8,6376× 1014 5,8935× 1010 2,122× 1010

Con la ordenación central es con la que el producto de los condicionamientos, κ∞(L)κ∞(U),
es menor. Podemos ver que el producto de condicionamientos para el orden de Leja es seme-
jante al obtenido con el orden central.

Realicemos el mismo análisis para la factorización L̃Ũ . En la siguiente tabla vemos los
productos de estos condicionamientos:

Natural Leja Central

n κ∞(V ) κ∞(L̃)κ∞(Ũ)

3 18 784 113,3333 96

4 53,3333 7,4667× 103 360 672

5 187,5 6,1512× 104 1,2788× 103 2,9451× 103

9 2,0562× 104 3,0868× 108 1,6768× 105 1,7532× 106

19 1,7511× 109 4,5246× 1017 2,2233× 1010 2,4734× 1013

Con esta factorización sí podemos ver diferencias significativas de las tres ordenaciones.
En este caso, la ordenación de Leja es con la que se consigue que κ∞(L̃)κ∞(Ũ) sea menor.

Por tanto, hemos visto que para la factorización LU es mejor la ordenación central y
para L̃Ũ obtenemos mejores resultados con el orden de Leja. Además, el producto de los
condicionamientos en estos dos casos es casi idéntico. En el caso n = 19, κ∞(L)κ∞(U) =
2,122 × 1010 y κ∞(L̃)κ∞(Ũ) = 2,2233 × 1010. Sin embargo, la factorización LU , como ya
hemos señalado al final del apartado anterior en el que se estudia el intervalo [0, 1], es más
natural ya que está relacionada con la fórmula de Newton, involucra a las diferencias divididas
y resulta más adecuada para la evaluación del polinomio interpolante.

En el capítulo 21 de [8] Higham detalla cómo se comportan los condicionamientos en
función de la dimensión del problema. En el caso del intervalo [−1, 1] afirma que, cuando n
crece, κ∞(V ) es menor para puntos de Chebyshev que para puntos equiespaciados. Para tener
conclusiones más acertadas hagamos el mismo estudio tomando los puntos de Chebyshev en
el intervalo [−1, 1] con las 3 ordenaciones anteriores: natural, Leja y central.
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Veamos en la siguiente tabla el producto de condicionamientos de la factorización LU .

Natural Leja Central

n κ∞(V ) κ∞(L)κ∞(U)

3 18,6369 308,2145 205,6499 68,7653

4 46,9508 2,1416× 103 511,1747 197,4646

5 131,5733 1,1506× 104 1,384× 103 877,1201

9 6,7024× 103 1,7338× 107 7,5266× 104 5,8652× 104

19 6,3678× 107 2,1821× 1015 2,5143× 109 1,7748× 109

Para esta factorización el producto de condicionamientos, κ∞(L)κ∞(U), es mejor con la
ordenación central. Ésto también ocurría en el caso de puntos equidistantes en el intervalo
[−1, 1].

Veamos el producto de condicionamientos de la factorización L̃Ũ en la siguiente tabla:

Natural Leja Central

n κ∞(V ) κ∞(L̃)κ∞(Ũ)

3 18,6369 622,6565 123,7877 85,1214

4 46,9508 4,5541× 103 373,7304 266,0179

5 131,5733 3,6064× 104 1,4065× 103 1,1232× 103

9 6,7024× 103 8,3763× 107 8,9795× 104 1,0346× 105

19 6,3678× 107 4,4591× 1016 1,4841× 109 5,6091× 1010

Vemos que para la factorización L̃Ũ la ordenación que da el menor producto de condicio-
namientos es la de Leja. La diferencia con los resultados obtenidos con el orden central para
la factorización LU no es significativa. Parece conveniente utilizar la factorización de Crout,
más relacionada con la fórmula de Newton.

12. Conclusiones
El condicionamiento de las matrices de Vandermonde crece exponencialmente con el nú-

mero de nodos (véase capítulo 21 de [8]). En este trabajo se intenta buscar una factorización
LU de la matriz de Vandermonde V de forma que el producto de los condicionamientos de
estas matrices no diste mucho del condicionamiento de V .
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Una de las conclusiones que hemos obtenido es que, dada una matriz de Vandermonde V
basada en los nodos x0, . . . , xn tales que xi ≥ 0, i = 0, . . . , n podemos realizar su factorización
LU (asociada a la fórmula de Newton), de modo que el cálculo de L, L−1, U y U−1 puede
realizarse con alta precisión relativa.

En los experimentos numéricos hemos tomado dos factorizaciones distintas de la matriz
de Vandermonde V . Una de las factorizaciones tiene unos en la diagonal de U y la hemos
denotado por LU . La factorización LU está relacionada de forma natural con la fórmula de
interpolación de Newton. La segunda factorización analizada, L̃Ũ , se caracteriza por ser L̃ la
que tiene unos en la diagonal y está asociada a la eliminación gaussiana.

En el primer caso estudiado hemos tomado los puntos en el intervalo [0, 1] con dos ordena-
ciones distintas: natural y de Leja. Con la factorización LU , el producto de condicionamientos
es menor para la ordenación natural, aunque κ∞(L) sea mejor con Leja. La factorización L̃Ũ
con el orden de Leja da lugar al producto de condicionamientos ligeramente más bajo. Sin
embargo, no existen diferencias significativas cuando utilizamos el orden natural con la fac-
torización LU y ésta última es más natural dada su relación con la fórmula de Newton y con
las diferencias divididas.

En el caso del intervalo [−1, 1], además del orden natural y el de Leja, también hemos
propuesto otra ordenación llamada orden central. Hemos visto que para la factorización LU
es mejor la ordenación central y para L̃Ũ se obtienen los mejores resultados con el orden de
Leja. Los productos de los condicionamientos son casi idénticos en ambos casos por lo que
escogemos la factorización LU de la ordenación central por la misma razón que en el caso
[0, 1]: por su relación con las diferencias divididas, con la fórmula de Newton y porque es
adecuada para la evaluación del polinomio interpolante.
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