000151631 001__ 151631
000151631 005__ 20250319155217.0
000151631 0247_ $$2doi$$a10.1016/j.jcou.2025.103046
000151631 0248_ $$2sideral$$a143333
000151631 037__ $$aART-2025-143333
000151631 041__ $$aeng
000151631 100__ $$0(orcid)0000-0003-2484-2504$$aGarcía Mariaca, Alexander$$uUniversidad de Zaragoza
000151631 245__ $$aTechno-economic analysis of integrating an on-board CCS system and a PtG technology in a heavy vehicle fleet
000151631 260__ $$c2025
000151631 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151631 5203_ $$aDecarbonising the heavy-duty transport sector requires switching internal combustion engine (ICE) fuel from fossil to synthetic fuels. In this context, on-board carbon capture and storage (OCCS) in ICEs could provide the CO2 needed by Power-to-gas (PtG) technologies to produce synthetic natural gas (SNG), which is then consumed again by the vehicle fleet, closing in this way the carbon loop. This study presents a techno-economic analysis of a heavy-duty vehicle fleet integrating an OCCS system with a PtG plant. The OCCS system operates by temperature swing adsorption where two sorbents, PPN-6-CH2-DETA and zeolite 13X, are evaluated at carbon capture rates (CCR) of 70 % and 100 %. A fifth scenario examined the effect of varying the H2:CO2 ratio in the methanation plant at 100 % CCR using PPN-6-CH2-DETA. Both systems were simulated using Aspen Plus and AVL Boost softwares. Moreover, a sensitivity analysis was conducted considering three key performance indicators: the CO2 tax, natural gas (NG), and electricity prices. The results indicate that the carbon abatement cost reaches a break-even point at 150 €/tCO₂ for a fleet size of 400 vehicles. However, the capital expenditures do not achieve payback within 20 years due to the high operational expenditures and low incomes in the evaluated scenarios. The sensitivity analyses show that the CO2 tax and the NG price must be higher than 400 €/tCO₂ and 160 €/MWh, respectively, to compensate for the current electricity price and allow the proposed systems to be techno-economic feasible.
000151631 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-125137OB-I00
000151631 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000151631 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151631 700__ $$0(orcid)0000-0002-7743-0426$$aPerpiñán, Jorge
000151631 700__ $$aCarreño Sayago, Uriel Fernando
000151631 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000151631 773__ $$g93 (2025), 103046 [11 pp.]$$pJ. CO2 util.$$tJournal of CO2 Utilization$$x2212-9820
000151631 8564_ $$s2445551$$uhttps://zaguan.unizar.es/record/151631/files/texto_completo.pdf$$yVersión publicada
000151631 8564_ $$s2598765$$uhttps://zaguan.unizar.es/record/151631/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151631 909CO $$ooai:zaguan.unizar.es:151631$$particulos$$pdriver
000151631 951__ $$a2025-03-19-14:19:39
000151631 980__ $$aARTICLE