000151651 001__ 151651
000151651 005__ 20250319155217.0
000151651 0247_ $$2doi$$a10.3390/app15041724
000151651 0248_ $$2sideral$$a143234
000151651 037__ $$aART-2025-143234
000151651 041__ $$aeng
000151651 100__ $$0(orcid)0000-0002-2887-2105$$aMartínez Ruiz, Ignacio$$uUniversidad de Zaragoza
000151651 245__ $$aIoB Internet of Things (IoT) for Smart Built Environment (SBE): Understanding the Complexity and Contributing to Energy Efficiency; A Case Study in Mediterranean Climates
000151651 260__ $$c2025
000151651 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151651 5203_ $$aTo meet the 2050 targets about climate change and decarbonization, accomplishing thermal comfort, Internet of Things (IoT) ecosystems are key enabling technologies to move the Built Environment (BE) towards Smart Built Environment (SBE). The first contributions of this paper conceptualise SBE from its dynamic and adaptative perspectives, considering the human habitat, and enunciate SBE as a multidimensional approach through six ways of inhabiting: defensive, projective, scientific, thermodynamic, subjective, and complex. From these premises, to analyse the performance indicators that characterise these multidisciplinary ways of inhabiting, an IoT-driven methodology is proposed: to deploy a sensor infrastructure to acquire experimental measurements; analyse data to convert them into context-aware information; and make knowledge-based decisions. Thus, this work tackles the inefficiency and high energy consumption of public buildings with the challenge of balancing energy efficiency and user comfort in dynamic scenarios. As current systems lack real-time adaptability, this work integrates an IoT-driven approach to enhance energy management and reduce discrepancies between measured temperatures and normative thresholds. Following the energy efficiency directives, the obtained results contribute to the following: understanding the complexity of the SBE by analysing its thermal performance, quantifying the potential of energy saving, and estimating its economic impact. The derived conclusions show that IoT-driven solutions allow the generation of real-data-based models on which to enhance SBE knowledge, by increasing energy efficiency and guaranteeing user comfort while minimising environmental effects and economic impact.
000151651 536__ $$9info:eu-repo/grantAgreement/ES/UZ/EQUZ-2022-TEC-11$$9info:eu-repo/grantAgreement/ES/UZ/SGI-171481$$9info:eu-repo/grantAgreement/ES/UZ/2000-0074 SAMCA
000151651 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000151651 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151651 700__ $$0(orcid)0000-0001-5137-2478$$aCano Suñén, Enrique$$uUniversidad de Zaragoza
000151651 700__ $$0(orcid)0000-0002-7396-7840$$aMarco Marco, Álvaro
000151651 700__ $$0(orcid)0000-0002-0544-0182$$aFernández Cuello, Ángel$$uUniversidad de Zaragoza
000151651 7102_ $$15015$$2110$$aUniversidad de Zaragoza$$bDpto. Arquitectura$$cÁrea Construc. Arquitectónicas
000151651 7102_ $$15004$$2545$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Ingeniería Mecánica
000151651 7102_ $$15008$$2560$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Ingeniería Telemática
000151651 773__ $$g15, 4 (2025), 1724 [26 pp.]$$pAppl. sci.$$tApplied Sciences (Switzerland)$$x2076-3417
000151651 8564_ $$s6044535$$uhttps://zaguan.unizar.es/record/151651/files/texto_completo.pdf$$yVersión publicada
000151651 8564_ $$s2687734$$uhttps://zaguan.unizar.es/record/151651/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151651 909CO $$ooai:zaguan.unizar.es:151651$$particulos$$pdriver
000151651 951__ $$a2025-03-19-14:20:04
000151651 980__ $$aARTICLE