000151655 001__ 151655
000151655 005__ 20250319155217.0
000151655 0247_ $$2doi$$a10.1039/d1ma00245g
000151655 0248_ $$2sideral$$a126555
000151655 037__ $$aART-2021-126555
000151655 041__ $$aeng
000151655 100__ $$0(orcid)0000-0002-2866-9369$$aAina S.$$uUniversidad de Zaragoza
000151655 245__ $$aEarth-abundant non-toxic perovskite nanocrystals for solution processed solar cells
000151655 260__ $$c2021
000151655 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151655 5203_ $$aSemiconductor nanocrystals, used in quantum dot solar cells, are interesting materials for photovoltaics because they can be obtained in solution and can be composed of abundant elements. Moreover, as compared to other photovoltaic materials, nanomaterials show unique features due to their novel size- and shape-dependent properties such as band gap tuning, multiple exciton generation, and modulation of n- or p-type behaviour by doping or by modifying the ligands on the surface of the nanocrystals. Quantum dot solar cells, together with perovskite solar cells, are the latest incorporation to photovoltaic technologies and have already shown impressive progress in efficiencies and great promise as alternatives to commercial solar cells. However, in all cases, the highest efficiencies are obtained with materials that contain lead in their composition. To solve the problem of toxicity, several materials have been proposed as substitutes. In this review, we summarize some of the non-toxic alternatives that have been synthesized as nanocrystals and incorporated in photovoltaic solar cells, specifically: tin (Sn), germanium (Ge), bismuth (Bi), and antimony (Sb)-based materials. Our findings show that this field has been scarcely covered; there are very few reports on non-toxic perovskite nanocrystals incorporated in solar cells and in general, the efficiencies are still modest. However, this area deserves more attention since some nanocrystal-based solar cells already outperform bulk counterparts. For each case, we also discuss factors limiting efficiency, the approaches followed to overcome these limitations, and the possible solutions to improve efficiency.
000151655 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E47-20R$$9info:eu-repo/grantAgreement/ES/UZ-DGA/T57-20R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-107893RB-I00/AEI-10.13039-501100011033$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-104307GB-I00-AEI-10.13039-501100011033
000151655 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000151655 592__ $$a0.667$$b2021
000151655 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ2
000151655 593__ $$aChemistry (miscellaneous)$$c2021$$dQ2
000151655 594__ $$a2.0$$b2021
000151655 655_4 $$ainfo:eu-repo/semantics/review$$vinfo:eu-repo/semantics/publishedVersion
000151655 700__ $$0(orcid)0000-0001-9814-0834$$aVillacampa B.$$uUniversidad de Zaragoza
000151655 700__ $$0(orcid)0000-0003-2800-6845$$aBernechea M.
000151655 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000151655 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000151655 773__ $$g2, 13 (2021), 4140-4151$$pMater. adv.$$tMaterials Advances$$x2633-5409
000151655 8564_ $$s3246462$$uhttps://zaguan.unizar.es/record/151655/files/texto_completo.pdf$$yVersión publicada
000151655 8564_ $$s2785197$$uhttps://zaguan.unizar.es/record/151655/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151655 909CO $$ooai:zaguan.unizar.es:151655$$particulos$$pdriver
000151655 951__ $$a2025-03-19-14:20:10
000151655 980__ $$aARTICLE