000151989 001__ 151989
000151989 005__ 20250321155444.0
000151989 0247_ $$2doi$$a10.1016/j.jece.2021.105624
000151989 0248_ $$2sideral$$a126226
000151989 037__ $$aART-2021-126226
000151989 041__ $$aeng
000151989 100__ $$0(orcid)0000-0002-0990-0422$$aMartínez-Izquierdo L.$$uUniversidad de Zaragoza
000151989 245__ $$aPhase inversion method for the preparation of Pebax® 3533 thin film membranes for CO2/N2separation
000151989 260__ $$c2021
000151989 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151989 5203_ $$aThin film composite membranes of poly(ether-block-amide) copolymer Pebax® 3533 were prepared for the first time on asymmetric polysulfone supports by a phase inversion method. The casting solution concentration and the number of layers were varied to study their influence on the selective layer thickness and the gas separation performance. The casting solution concentrations of polymer dissolved in the 1-propanol/1-butanol mixture were 0.25, 0.5, 1.0 and 1.5 wt%. These conditions produced membranes with selective skin layers with thicknesses from 0.2 to 1.8 µm. All the membranes were characterized by scanning electron microscopy, thermogravimetric analysis and infrared spectroscopy. Furthermore, the intrinsic viscosity of all the casting solutions was studied to understand the effect of the polymer concentration on the homogeneity and the gas separation properties of the obtained membranes. In general, lower viscosity of casting solutions rendered to more defective skin layers, resulting in a higher number of layers required to obtain selective membranes. The gas separation performance was tested for the post-combustion 15/85 CO2/N2 mixture at 25-50 °C and under a feed pressure of 3 bar. The best separation performance was achieved with the 0.5 wt% casting solution membranes after the deposition of four polymer layers, obtaining a CO2 permeance of 127 GPU and a CO2/N2 selectivity of 21.4 at 35 °C, the same selectivity of the corresponding dense membrane but with much higher permeance.
000151989 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/T43-20R$$9info:eu-repo/grantAgreement/ES/MINECO-AEI-FEDER/MAT2016-77290-R$$9info:eu-repo/grantAgreement/ES/MINECO-AEI-FEDER/PID2019-104009RB-I00/AEI/10.13039/501100011033
000151989 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000151989 590__ $$a7.968$$b2021
000151989 591__ $$aENGINEERING, ENVIRONMENTAL$$b12 / 54 = 0.222$$c2021$$dQ1$$eT1
000151989 591__ $$aENGINEERING, CHEMICAL$$b20 / 142 = 0.141$$c2021$$dQ1$$eT1
000151989 592__ $$a1.042$$b2021
000151989 593__ $$aChemical Engineering (miscellaneous)$$c2021$$dQ1
000151989 593__ $$aWaste Management and Disposal$$c2021$$dQ1
000151989 593__ $$aPollution$$c2021$$dQ1
000151989 594__ $$a7.7$$b2021
000151989 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151989 700__ $$0(orcid)0000-0001-9595-0831$$aMalankowska M.
000151989 700__ $$0(orcid)0000-0002-4954-1188$$aTéllez C.$$uUniversidad de Zaragoza
000151989 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas J.$$uUniversidad de Zaragoza
000151989 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000151989 773__ $$g9, 4 (2021), 105624 [9 pp.]$$pJ. env. chem. eng.$$tJournal of Environmental Chemical Engineering$$x2213-3437
000151989 8564_ $$s2674375$$uhttps://zaguan.unizar.es/record/151989/files/texto_completo.pdf$$yVersión publicada
000151989 8564_ $$s2710681$$uhttps://zaguan.unizar.es/record/151989/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151989 909CO $$ooai:zaguan.unizar.es:151989$$particulos$$pdriver
000151989 951__ $$a2025-03-21-14:41:23
000151989 980__ $$aARTICLE