000151992 001__ 151992 000151992 005__ 20250321155444.0 000151992 0247_ $$2doi$$a10.1107/S1600576721003861 000151992 0248_ $$2sideral$$a126252 000151992 037__ $$aART-2021-126252 000151992 041__ $$aeng 000151992 100__ $$aVicente Alvarez M.A. 000151992 245__ $$aA novel method to obtain integral parameters of the orientation distribution function of textured polycrystals from wavelength-resolved neutron transmission spectra 000151992 260__ $$c2021 000151992 5060_ $$aAccess copy available to the general public$$fUnrestricted 000151992 5203_ $$aA novel method to estimate integral parameters of the orientation distribution function (ODF) in textured polycrystals from the wavelength-resolved neutron transmission is presented. It is based on the expression of the total coherent elastic cross section as a function of the Fourier coefficients of the ODF. This method is broken down in detail for obtaining Kearns factors in hexagonal crystals, and other material properties that depend on the average of second- and fourth-rank tensors. The robustness of the method against three situations was analyzed: effects of sample misalignment, of cutoff value l max of the series expansion and of experimental standard deviation. While sample misalignment is shown not to be critical for the determination of Kearns factors and second-order-rank properties, it can be critical for fourth-rank and higher-order tensor properties. The effect of the cutoff value on the method robustness is correlated to the standard deviation of the experimental data. In order to achieve a good estimation of the Fourier coefficients, it is recommended that the experimental standard deviation be around 3-5% of the total scattering cross section of the material for the method to be stable. The method was applied for the determination of Kearns factors from transmission measurements performed at the instrument ENGIN-X (ISIS) on a Zr-2.5 Nb pressure tube along two sample directions and was shown to be able to estimate Kearns factors with an error below 5%. 000151992 536__ $$9info:eu-repo/grantAgreement/ES/CSIC/I-COOP-B20319$$9info:eu-repo/grantAgreement/ES/DGA/E11-17R$$9info:eu-repo/grantAgreement/ES/MICINN/PGC2018-099024-B-I00 000151992 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000151992 590__ $$a4.868$$b2021 000151992 591__ $$aCRYSTALLOGRAPHY$$b3 / 26 = 0.115$$c2021$$dQ1$$eT1 000151992 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b66 / 179 = 0.369$$c2021$$dQ2$$eT2 000151992 592__ $$a1.385$$b2021 000151992 593__ $$aBiochemistry, Genetics and Molecular Biology (miscellaneous)$$c2021$$dQ1 000151992 594__ $$a7.3$$b2021 000151992 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000151992 700__ $$0(orcid)0000-0002-8173-1846$$aLaliena V.$$uUniversidad de Zaragoza 000151992 700__ $$aMalamud F. 000151992 700__ $$aCampo J. 000151992 700__ $$aSantisteban J. 000151992 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada 000151992 773__ $$g54 (2021), 903-913$$pJ. appl. crystallogr.$$tJournal of Applied Crystallography$$x0021-8898 000151992 8564_ $$s1366118$$uhttps://zaguan.unizar.es/record/151992/files/texto_completo.pdf$$yPostprint 000151992 8564_ $$s2342229$$uhttps://zaguan.unizar.es/record/151992/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000151992 909CO $$ooai:zaguan.unizar.es:151992$$particulos$$pdriver 000151992 951__ $$a2025-03-21-14:41:27 000151992 980__ $$aARTICLE