000152017 001__ 152017
000152017 005__ 20250403144231.0
000152017 0247_ $$2doi$$a10.1016/j.lwt.2025.117650
000152017 0248_ $$2sideral$$a143355
000152017 037__ $$aART-2025-143355
000152017 041__ $$aeng
000152017 100__ $$0(orcid)0009-0004-4690-6884$$aGonzález-Martínez, Belén$$uUniversidad de Zaragoza
000152017 245__ $$aGrape mistelles are much better than grape C18-extracts to study grape aromatic potential
000152017 260__ $$c2025
000152017 5060_ $$aAccess copy available to the general public$$fUnrestricted
000152017 5203_ $$aThe aromatic compositions of hydrolysates containing grape aroma precursors obtained by two different procedures were compared. The first procedure used simply diluted mistelle, while the second employed a reconstituted C18 extract of the original mistelle containing both aromatic precursors and polyphenols. Hydrolysis was carried out under strict anoxic conditions at 75 °C and pH 3.5 for varying times (0–190 h). Varietal aroma compounds were analysed by GC-SCD (volatile sulphur compounds, VSCs), GC-MS (minor volatile compounds) and HPLC-MS (polyfunctional mercaptans, PFM’s). Odorants were additionally controlled by GC-O. Aromas and aroma precursors lost during sample extraction were also investigated. Results revealed that polar precursors of relevant varietal aroma compounds, including DMS, limonene, dihydromyrcenol, geraniol, linalool, β-ionone, γ-nonalactone and vinylphenols are lost during C18 extraction, which demonstrates that traditional aroma precursor research has missed a significant fraction of precursors. On the other hand, hydrolysed mistelles accumulated high levels of H2S and DMS, low levels of MH due to the presence of sugars, and developed detectable levels of amino acid related odorants, such as phenylacetaldehyde and 2-acetylpyrazine. While this explains why mistelles are not the best choice for sensory evaluation, also demonstrates that they are much better for the chemical assessment of grape aromatic potential.
000152017 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2021-126031OB-C21$$9info:eu-repo/grantAgreement/ES/DGA/T29
000152017 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000152017 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000152017 700__ $$0(orcid)0000-0002-4093-900X$$ade-la-Fuente-Blanco, Arancha$$uUniversidad de Zaragoza
000152017 700__ $$0(orcid)0000-0002-7967-7254$$aPeña, Cristina$$uUniversidad de Zaragoza
000152017 700__ $$0(orcid)0000-0002-4353-2483$$aFerreira, Vicente$$uUniversidad de Zaragoza
000152017 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000152017 773__ $$g222 (2025), 117650 [11 pp.]$$pLebensm.-Wiss. Technol.$$tLWT-FOOD SCIENCE AND TECHNOLOGY$$x0023-6438
000152017 8564_ $$s6828769$$uhttps://zaguan.unizar.es/record/152017/files/texto_completo.pdf$$yVersión publicada
000152017 8564_ $$s2622558$$uhttps://zaguan.unizar.es/record/152017/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000152017 909CO $$ooai:zaguan.unizar.es:152017$$particulos$$pdriver
000152017 951__ $$a2025-04-03-14:39:51
000152017 980__ $$aARTICLE