000152046 001__ 152046
000152046 005__ 20250326144155.0
000152046 0247_ $$2doi$$a10.2196/27336
000152046 0248_ $$2sideral$$a126653
000152046 037__ $$aART-2021-126653
000152046 041__ $$aeng
000152046 100__ $$aVanegas E.
000152046 245__ $$aForce-sensitive mat for vertical jump measurement to assess lower limb strength: Validity and reliability study
000152046 260__ $$c2021
000152046 5060_ $$aAccess copy available to the general public$$fUnrestricted
000152046 5203_ $$aBackground: Vertical jump height is widely used in health care and sports fields to assess muscle strength and power from lower limb muscle groups. Different approaches have been proposed for vertical jump height measurement. Some commonly used approaches need no sensor at all; however, these methods tend to overestimate the height reached by the subjects. There are also novel systems using different kind of sensors like force-sensitive resistors, capacitive sensors, and inertial measurement units, among others, to achieve more accurate measurements. Objective: The objective of this study is twofold. The first objective is to validate the functioning of a developed low-cost system able to measure vertical jump height. The second objective is to assess the effects on obtained measurements when the sampling frequency of the system is modified. Methods: The system developed in this study consists of a matrix of force-sensitive resistor sensors embedded in a mat with electronics that allow a full scan of the mat. This mat detects pressure exerted on it. The system calculates the jump height by using the flight-time formula, and the result is sent through Bluetooth to any mobile device or PC. Two different experiments were performed. In the first experiment, a total of 38 volunteers participated with the objective of validating the performance of the system against a high-speed camera used as reference (120 fps). In the second experiment, a total of 15 volunteers participated. Raw data were obtained in order to assess the effects of different sampling frequencies on the performance of the system with the same reference device. Different sampling frequencies were obtained by performing offline downsampling of the raw data. In both experiments, countermovement jump and countermovement jump with arm swing techniques were performed. Results: In the first experiment an overall mean relative error (MRE) of 1.98% and a mean absolute error of 0.38 cm were obtained. Bland-Altman and correlation analyses were performed, obtaining a coefficient of determination equal to R2=.996. In the second experiment, sampling frequencies of 200 Hz, 100 Hz, and 66.6 Hz show similar performance with MRE below 3%. Slower sampling frequencies show an exponential increase in MRE. On both experiments, when dividing jump trials in different heights reached, a decrease in MRE with higher height trials suggests that the precision of the proposed system increases as height reached increases. Conclusions: In the first experiment, we concluded that results between the proposed system and the reference are systematically the same. In the second experiment, the relevance of a sufficiently high sampling frequency is emphasized, especially for jump trials whose height is below 10 cm. For trials with heights above 30 cm, MRE decreases in general for all sampling frequencies, suggesting that at higher heights reached, the impact of high sampling frequencies is lesser.
000152046 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T49-20R$$9info:eu-repo/grantAgreement/ES/UZ/UZCUD2019-TEC-02
000152046 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000152046 590__ $$a4.948$$b2021
000152046 591__ $$aHEALTH CARE SCIENCES & SERVICES$$b21 / 110 = 0.191$$c2021$$dQ1$$eT1
000152046 591__ $$aMEDICAL INFORMATICS$$b11 / 31 = 0.355$$c2021$$dQ2$$eT2
000152046 592__ $$a1.362$$b2021
000152046 593__ $$aHealth Informatics$$c2021$$dQ1
000152046 594__ $$a8.2$$b2021
000152046 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000152046 700__ $$aSalazar Y.
000152046 700__ $$0(orcid)0000-0002-1561-0536$$aIgual R.$$uUniversidad de Zaragoza
000152046 700__ $$0(orcid)0000-0001-7550-6688$$aPlaza I.$$uUniversidad de Zaragoza
000152046 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000152046 7102_ $$15009$$2535$$aUniversidad de Zaragoza$$bDpto. Ingeniería Eléctrica$$cÁrea Ingeniería Eléctrica
000152046 773__ $$g9, 4 (2021), e27336 [15 pp.]$$pJMIR mHealth uHealth$$tJMIR mHealth and uHealth$$x2291-5222
000152046 8564_ $$s2765951$$uhttps://zaguan.unizar.es/record/152046/files/texto_completo.pdf$$yVersión publicada
000152046 8564_ $$s2553006$$uhttps://zaguan.unizar.es/record/152046/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000152046 909CO $$ooai:zaguan.unizar.es:152046$$particulos$$pdriver
000152046 951__ $$a2025-03-26-13:53:58
000152046 980__ $$aARTICLE