000152048 001__ 152048
000152048 005__ 20250326144155.0
000152048 0247_ $$2doi$$a10.3390/microorganisms9112335
000152048 0248_ $$2sideral$$a126823
000152048 037__ $$aART-2021-126823
000152048 041__ $$aeng
000152048 100__ $$0(orcid)0000-0001-9771-4912$$aEzquerra-Aznárez J.M.$$uUniversidad de Zaragoza
000152048 245__ $$aOvercoming the prokaryote/eukaryote barrier in tuberculosis treatment: A prospect for the repurposing and use of antiparasitic drugs
000152048 260__ $$c2021
000152048 5060_ $$aAccess copy available to the general public$$fUnrestricted
000152048 5203_ $$aAntimicrobial resistance, the so-called silent pandemic, is pushing industry and academia to find novel antimicrobial agents with new mechanisms of action in order to be active against susceptible and drug-resistant microorganisms. In the case of tuberculosis, the need of novel anti-tuberculosis drugs is specially challenging because of the intricate biology of its causative agent, Mycobacterium tuberculosis. The repurposing of medicines has arisen in recent years as a fast, low-cost, and efficient strategy to identify novel biomedical applications for already approved drugs. This review is focused on anti-parasitic drugs that have additionally demonstrated certain levels of anti-tuberculosis activity; along with this, natural products with a dual activity against parasites and against M. tuberculosis are discussed. A few clinical trials have tested antiparasitic drugs in tuberculosis patients, and have revealed effective dose and toxicity issues, which is consistent with the natural differences between tuberculosis and parasitic infections. However, through medicinal chemistry approaches, derivatives of drugs with anti-parasitic activity have become successful drugs for use in tuberculosis therapy. In summary, even when the repurposing of anti-parasitic drugs for tuberculosis treatment does not seem to be an easy job, it deserves attention as a potential contributor to fuel the anti-tuberculosis drug pipeline.
000152048 536__ $$9info:eu-repo/grantAgreement/ES/MCIU/FPU18-03873
000152048 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000152048 590__ $$a4.926$$b2021
000152048 591__ $$aMICROBIOLOGY$$b54 / 137 = 0.394$$c2021$$dQ2$$eT2
000152048 592__ $$a0.862$$b2021
000152048 593__ $$aMicrobiology (medical)$$c2021$$dQ2
000152048 593__ $$aMicrobiology$$c2021$$dQ2
000152048 594__ $$a4.1$$b2021
000152048 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000152048 700__ $$aAlmeida da Silva P.E.
000152048 700__ $$0(orcid)0000-0003-2076-844X$$aAínsa J.A.$$uUniversidad de Zaragoza
000152048 7102_ $$11011$$2630$$aUniversidad de Zaragoza$$bDpto. Microb.Ped.Radio.Sal.Pú.$$cÁrea Microbiología
000152048 773__ $$g9, 11 (2021), 2335 [16 pp.]$$pMicroorganisms$$tMicroorganisms$$x2076-2607
000152048 8564_ $$s2610145$$uhttps://zaguan.unizar.es/record/152048/files/texto_completo.pdf$$yVersión publicada
000152048 8564_ $$s2770339$$uhttps://zaguan.unizar.es/record/152048/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000152048 909CO $$ooai:zaguan.unizar.es:152048$$particulos$$pdriver
000152048 951__ $$a2025-03-26-13:54:01
000152048 980__ $$aARTICLE