000152049 001__ 152049
000152049 005__ 20250326144155.0
000152049 0247_ $$2doi$$a10.3390/s21227479
000152049 0248_ $$2sideral$$a126826
000152049 037__ $$aART-2021-126826
000152049 041__ $$aeng
000152049 100__ $$0(orcid)0000-0001-9617-1004$$aVelázquez J.$$uUniversidad de Zaragoza
000152049 245__ $$aStudy on lt accuracy improvement by calibration based on network measurements
000152049 260__ $$c2021
000152049 5060_ $$aAccess copy available to the general public$$fUnrestricted
000152049 5203_ $$aLaser trackers (LT) are widely used to calibrate other machines. Nevertheless, very little is known about calibrating an LT. There are some standards that allow us to evaluate the LT per-formance. However, they require specialized equipment. A calibration procedure to improve the LT accuracy in an easy and fast way is presented in this paper. This method is based on network measurements where a set of reflectors were measured from different LT positions in a working environment. The methodology proposed deal with the lack of nominal data of the reflector mesh. A measurement scenario was defined, based on error parameter dependence on distances and an-gles, thus, obtaining those positions more sensitive to errors. The influence of the incidence angle of the laser beam on the reflector was characterized, revealing that its contribution to the LT measurement error can be up to 13 µm. Error kinematic parameters were identified to provide the optimum value of an objective function, where the reflector mesh nominal data were unknown. The calibration procedure was validated with nominal data, by measuring a set of reflectors located on a coordinate measuring machine. The findings of this study suggested that the LT accuracy can be improved up to 25%. Moreover, the method can be carried out by the LT user without requiring specialized equipment.
000152049 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T56-20R
000152049 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000152049 590__ $$a3.847$$b2021
000152049 591__ $$aCHEMISTRY, ANALYTICAL$$b29 / 87 = 0.333$$c2021$$dQ2$$eT2
000152049 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b19 / 64 = 0.297$$c2021$$dQ2$$eT1
000152049 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b95 / 274 = 0.347$$c2021$$dQ2$$eT2
000152049 592__ $$a0.803$$b2021
000152049 593__ $$aAnalytical Chemistry$$c2021$$dQ1
000152049 593__ $$aBiochemistry$$c2021$$dQ1
000152049 593__ $$aInstrumentation$$c2021$$dQ1
000152049 593__ $$aInformation Systems$$c2021$$dQ1
000152049 593__ $$aElectrical and Electronic Engineering$$c2021$$dQ1
000152049 594__ $$a6.4$$b2021
000152049 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000152049 700__ $$0(orcid)0000-0003-4360-080X$$aConte J.$$uUniversidad de Zaragoza
000152049 700__ $$0(orcid)0000-0002-3945-2595$$aMajarena A.C.$$uUniversidad de Zaragoza
000152049 700__ $$0(orcid)0000-0001-7316-0003$$aSantolaria J.$$uUniversidad de Zaragoza
000152049 7102_ $$15002$$2515$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Ing. Procesos Fabricación
000152049 773__ $$g21, 22 (2021), 7479 [17 pp.]$$pSensors$$tSensors$$x1424-8220
000152049 8564_ $$s3370838$$uhttps://zaguan.unizar.es/record/152049/files/texto_completo.pdf$$yVersión publicada
000152049 8564_ $$s2770362$$uhttps://zaguan.unizar.es/record/152049/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000152049 909CO $$ooai:zaguan.unizar.es:152049$$particulos$$pdriver
000152049 951__ $$a2025-03-26-13:54:02
000152049 980__ $$aARTICLE