000152099 001__ 152099
000152099 005__ 20250326144155.0
000152099 0247_ $$2doi$$a10.1111/maps.13763
000152099 0248_ $$2sideral$$a126768
000152099 037__ $$aART-2021-126768
000152099 041__ $$aeng
000152099 100__ $$aAlsemgeest J.
000152099 245__ $$aHydrothermal alteration at the basalt-hosted Vista Alegre impact structure, Brazil
000152099 260__ $$c2021
000152099 5060_ $$aAccess copy available to the general public$$fUnrestricted
000152099 5203_ $$aHydrothermal systems provide a possible habitat for early life and are key targets in the quest for life outside Earth. In impact craters on Mars, hydrous minerals can represent products of impact-generated hydrothermal systems (IGHS) or minerals already present in the crust and exposed during impact-caused excavation. Because of its basaltic target rock, similar in composition to Martian crust, the Vista Alegre impact structure in Brazil is one of the very few analog structures that may reveal the origin of these minerals, if evidence of hydrothermal alteration is established. This work presents the results of a systematic search for evidence of hydrothermal alteration at the Vista Alegre impact structure. Four types of alteration were identified, all within a 2.5–3.0 km radius from the crater center: a zircon-bearing melt veinlet, two sets of hydrothermal veins consisting predominantly of calcite and chabazite, and local alteration comprising saponite. Thermodynamic modeling suggests subsequent heating and cooling for each of the hydrothermal vein sets. Combined thermodynamic and spectrometric evidence indicates that development of a vigorous IGHS is unlikely. If similar processes occur on Mars, hydrous minerals are more likely preimpact phases exposed by excavation, rather than being formed through an IGHS.
000152099 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000152099 590__ $$a2.89$$b2021
000152099 591__ $$aGEOCHEMISTRY & GEOPHYSICS$$b41 / 87 = 0.471$$c2021$$dQ2$$eT2
000152099 592__ $$a1.104$$b2021
000152099 593__ $$aSpace and Planetary Science$$c2021$$dQ1
000152099 593__ $$aGeophysics$$c2021$$dQ1
000152099 594__ $$a4.6$$b2021
000152099 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000152099 700__ $$aBrouwer F.M.
000152099 700__ $$0(orcid)0000-0003-1463-1682$$aAuqué L.F.$$uUniversidad de Zaragoza
000152099 700__ $$aHauser N.
000152099 700__ $$aReimold W.U.
000152099 7102_ $$12000$$2685$$aUniversidad de Zaragoza$$bDpto. Ciencias de la Tierra$$cÁrea Petrología y Geoquímica
000152099 773__ $$g56, 12 (2021), 2155-2174$$pMeteorit. planet. sci.$$tMETEORITICS & PLANETARY SCIENCE$$x1086-9379
000152099 8564_ $$s4819569$$uhttps://zaguan.unizar.es/record/152099/files/texto_completo.pdf$$yVersión publicada
000152099 8564_ $$s2579333$$uhttps://zaguan.unizar.es/record/152099/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000152099 909CO $$ooai:zaguan.unizar.es:152099$$particulos$$pdriver
000152099 951__ $$a2025-03-26-13:55:09
000152099 980__ $$aARTICLE