000152100 001__ 152100
000152100 005__ 20250326144155.0
000152100 0247_ $$2doi$$a10.1073/pnas.1203295109
000152100 0248_ $$2sideral$$a82188
000152100 037__ $$aART-2012-82188
000152100 041__ $$aeng
000152100 100__ $$0(orcid)0000-0002-5060-7658$$aAlvarez Baños, R.$$uUniversidad de Zaragoza
000152100 245__ $$aThermodynamic glass transition in a spin glass without time-reversal symmetry
000152100 260__ $$c2012
000152100 5060_ $$aAccess copy available to the general public$$fUnrestricted
000152100 5203_ $$aSpin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.
000152100 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/FIS2009-12648-C03-02$$9info:eu-repo/grantAgreement/ES/MICINN/FIS2010-16587$$9info:eu-repo/grantAgreement/ES/MICINN/TEC2010-19207
000152100 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000152100 590__ $$a9.737$$b2012
000152100 591__ $$aMULTIDISCIPLINARY SCIENCES$$b4 / 57 = 0.07$$c2012$$dQ1$$eT1
000152100 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000152100 700__ $$0(orcid)0000-0002-7934-7271$$aCruz, A.$$uUniversidad de Zaragoza
000152100 700__ $$aFernandez, L.A.
000152100 700__ $$0(orcid)0000-0003-2903-3044$$aGil-Narvion, J.M.
000152100 700__ $$aGordillo-Guerrero, A.
000152100 700__ $$aGuidetti, M.
000152100 700__ $$0(orcid)0000-0003-2916-5493$$aIñiguez, D.
000152100 700__ $$0(orcid)0000-0002-0340-5199$$aMaiorano, A.
000152100 700__ $$aMarinari, E.
000152100 700__ $$0(orcid)0000-0002-3376-0327$$aMartin-Mayor, V.
000152100 700__ $$aMonforte-Garcia, J.$$uUniversidad de Zaragoza
000152100 700__ $$0(orcid)0000-0002-3613-3302$$aMuñoz-Sudupe, A.
000152100 700__ $$0(orcid)0000-0002-0795-8743$$aNavarro, D.$$uUniversidad de Zaragoza
000152100 700__ $$aParisi, G.
000152100 700__ $$0(orcid)0000-0001-8425-7345$$aPerez-Gaviro, S.
000152100 700__ $$aRuiz-Lorenzo, J.J.
000152100 700__ $$aSchifano, S.F.
000152100 700__ $$0(orcid)0000-0002-5967-2827$$aSeoane, B.$$uUniversidad de Zaragoza
000152100 700__ $$0(orcid)0000-0003-2772-3762$$aTarancon, A.$$uUniversidad de Zaragoza
000152100 700__ $$0(orcid)0000-0002-1819-4785$$aTellez, P.
000152100 700__ $$aTripiccione, R.
000152100 700__ $$0(orcid)0000-0001-7276-2942$$aYllanes, D.
000152100 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000152100 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000152100 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000152100 773__ $$g109, 17 (2012), 6452-6456$$pProc. Natl. Acad. Sci.$$tProceedings of the National Academy of Sciences of the United States of America$$x0027-8424
000152100 8564_ $$s307540$$uhttps://zaguan.unizar.es/record/152100/files/texto_completo.pdf$$yVersión publicada
000152100 8564_ $$s3670831$$uhttps://zaguan.unizar.es/record/152100/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000152100 909CO $$ooai:zaguan.unizar.es:152100$$particulos$$pdriver
000152100 951__ $$a2025-03-26-13:55:10
000152100 980__ $$aARTICLE