000152172 001__ 152172
000152172 005__ 20250401114418.0
000152172 0247_ $$2doi$$a10.1016/j.seppur.2019.116347
000152172 0248_ $$2sideral$$a115706
000152172 037__ $$aART-2020-115706
000152172 041__ $$aeng
000152172 100__ $$aEtxeberria-Benavides, M.
000152172 245__ $$aPBI mixed matrix hollow fiber membrane: Influence of ZIF-8 filler over H2/CO2 separation performance at high temperature and pressure
000152172 260__ $$c2020
000152172 5060_ $$aAccess copy available to the general public$$fUnrestricted
000152172 5203_ $$aHigh performance and commercially attractive mixed-matrix membranes were developed for H2/CO2 separation via a scalable hollow fiber spinning process. Thin (~300 nm) and defect-free selective layers were successfully created with a uniform distribution of the nanosized (~60 nm) zeolitic-imidazole framework (ZIF-8) filler within the polymer (polybenzimidazole, PBI) matrix. These membranes were able to operate at high temperature (150 °C) and pressure (up to 30 bar) process conditions required in treatment of pre-combustion and syngas process gas streams. Compared with neat PBI hollow fibers, filler incorporation into the polymer matrix leads to a strong increase in H2 permeance from 65 GPU to 107 GPU at 150 °C and 7 bar, while the ideal H2/CO2 selectivity remained constant at 18. For mixed gas permeation, there is competition between H2 and CO2 transport inside ZIF-8 structure. Adsorption of CO2 in the nanocavities of the filler suppresses the transport of the faster permeating H2 and consequently decreases the H2 permeance with total feed pressure down to values equal to the pure PBI hollow fibers for the end pressure of 30 bar. Therefore, the improvement of fiber performance for gas separation with filler addition is compromised at high operating feed pressures, which emphasizes the importance of membrane evaluation under relevant process conditions.
000152172 536__ $$9info:eu-repo/grantAgreement/EC/FP7/608490/EU/Energy efficient MOF-based Mixed Matrix Membranes for CO2 Capture/M4CO2
000152172 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000152172 590__ $$a7.312$$b2020
000152172 591__ $$aENGINEERING, CHEMICAL$$b16 / 143 = 0.112$$c2020$$dQ1$$eT1
000152172 592__ $$a1.278$$b2020
000152172 593__ $$aFiltration and Separation$$c2020$$dQ1
000152172 593__ $$aAnalytical Chemistry$$c2020$$dQ1
000152172 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000152172 700__ $$aJohnson, T.
000152172 700__ $$aCao, S.
000152172 700__ $$0(orcid)0000-0002-9934-1707$$aZornoza, B.
000152172 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas, J.$$uUniversidad de Zaragoza
000152172 700__ $$0(orcid)0000-0001-6627-0079$$aSanchez-Lainez, J.
000152172 700__ $$aSabetghadam, A.
000152172 700__ $$aLiu, X.
000152172 700__ $$aAndres-Garcia, E.
000152172 700__ $$aKapteijn, F.
000152172 700__ $$aGascon, J.
000152172 700__ $$aDavid, O.
000152172 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000152172 773__ $$g237 (2020), 116347 [8 pp.]$$pSep. Purif. Technol.$$tSeparation and Purification Technology$$x1383-5866
000152172 8564_ $$s2076413$$uhttps://zaguan.unizar.es/record/152172/files/texto_completo.pdf$$yVersión publicada
000152172 8564_ $$s2577985$$uhttps://zaguan.unizar.es/record/152172/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000152172 909CO $$ooai:zaguan.unizar.es:152172$$particulos$$pdriver
000152172 951__ $$a2025-04-01-11:02:02
000152172 980__ $$aARTICLE