000152224 001__ 152224
000152224 005__ 20260112133146.0
000152224 0247_ $$2doi$$a10.37190/abb-02463-2024-03
000152224 0248_ $$2sideral$$a143447
000152224 037__ $$aART-2024-143447
000152224 041__ $$aeng
000152224 100__ $$aSalimibani, Milad
000152224 245__ $$aAssessment of Material Properties in Key Components of the Porcine Crystalline Lens During Overshooting
000152224 260__ $$c2024
000152224 5060_ $$aAccess copy available to the general public$$fUnrestricted
000152224 5203_ $$aPurpose: The porcine eye serves as a valuable surrogate for studying human ocular anatomy and physiology because of its close resemblance. This study focuses on the influence of material properties, specifically Young’s modulus and Poisson’s ratio, on the crystalline lens overshooting amplitude during rapid eye rotation.
Methods:The Finite Element Method (FEM) is employed to explore various material property scenarios, and sensitivity analysis is conducted to assess their impact on the mechanical displacement of the crystalline lens apex. The measurements were made of three output parameters: maximum displacement, time of maximum displacement appearance , and stabilization time.
Results:The results highlight the significance of fine-tuning of the zonule’s material properties, particularly Young’s modulus, in achieving a reliable model. They suggest that fine-tuning of these parameters can lead to a highly reliable model, enabling in-depth research in the opto-dynamic simulations.
Conclusions: Having a complete examination of crystalline lens displacement in ex vivo porcine eye models and detailing crucial factors for accurate modeling will open the path for future studies especially in conditions affected by dynamic aspects of the crystalline lens or in in vivo research.
000152224 536__ $$9info:eu-repo/grantAgreement/EC/H2020/956720/EU/Opto-Biomechanical Eye Research Network/OBERON$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 956720-OBERON
000152224 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000152224 590__ $$a0.8$$b2024
000152224 592__ $$a0.195$$b2024
000152224 591__ $$aENGINEERING, BIOMEDICAL$$b111 / 124 = 0.895$$c2024$$dQ4$$eT3
000152224 593__ $$aBioengineering$$c2024$$dQ4
000152224 591__ $$aBIOPHYSICS$$b74 / 79 = 0.937$$c2024$$dQ4$$eT3
000152224 593__ $$aBiophysics$$c2024$$dQ4
000152224 593__ $$aBiomedical Engineering$$c2024$$dQ4
000152224 593__ $$aBiomaterials$$c2024$$dQ4
000152224 594__ $$a1.8$$b2024
000152224 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000152224 700__ $$aDahaghin, Ali
000152224 700__ $$aBoszczyk, Agnieszka
000152224 700__ $$0(orcid)0000-0002-6870-0594$$aGrasa, Jorge$$uUniversidad de Zaragoza
000152224 700__ $$aSiedlecki, Damian
000152224 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000152224 773__ $$g26, 4 (2024), [12 pp.]$$pACTA OF BIOENGINEERING AND BIOMECHANICS$$tACTA OF BIOENGINEERING AND BIOMECHANICS$$x1509-409X
000152224 8564_ $$s2263671$$uhttps://zaguan.unizar.es/record/152224/files/texto_completo.pdf$$yVersión publicada
000152224 8564_ $$s2479875$$uhttps://zaguan.unizar.es/record/152224/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000152224 909CO $$ooai:zaguan.unizar.es:152224$$particulos$$pdriver
000152224 951__ $$a2026-01-12-12:36:43
000152224 980__ $$aARTICLE