Universidad de Zaragoza

TRABAJO DE FIN DE MASTER

IDENTIFICACION UNIVOCA DE
FILIACIONES EN DATOS DE I+D-+1
UTILIZANDO HERRAMIENTAS DE
INTELIGENCIA ARTIFICIAL

Autor:

Mufioz Jordén, Davidf

Directores:

Iniguez Dieste, David? Duran Batalla, Juan Luis®

Ponente:

Alcald Nalvaiz, Jose Tomas*

Financiado por la Unién Europea-NextGenerationEU

Curso 2023/2024

1759379@unizar.es
tdavid.iniguez@bifi.es
$jduran@kampal.com
*jtalcala@unizar.es

Indice
1. Introduccién

2. Formulacién

2.1. Cadena del proceso L
2.2. Maestro de filiaciones
2.2.1. Fuente geografica
2.2.2. Maestro de filiaciones L
2.3. Regularizacion de la informacién de los articulos
2.4. Unificacién de autores e
2.4.1. Algoritmo de unificacién Lo
2.4.2. Unificaciéon de autores con C
2.4.3. Unificaciéon de autores con redes neuronales
2.5. Identificacién de filiaciones
2.5.1. Identificacion de filiaciones con similaridad por distancia de edicién
2.5.2. Identificacién de filiaciones con redes neuronales
2.6. Meétricas utilizadas

. Resolucién

3.1. Anaélisis de los articulos a analizar
3.2. Unificacion de autores e e
3.2.1. Construccién de un conjunto de entrenamiento sintético
3.2.2. Predicciones del dataset sintético sobre el modelo de C inicial
3.2.3. Entrenamiento sobre el modelo de C con un modelo de regresion lineal . .
3.2.4. Entrenamiento sobre el modelo de C con un modelo de regresion logistica
3.2.5. Ajuste fino sobre red neuronal utilizando una Contrastive Loss
3.2.6. Ajuste fino sobre red neuronal utilizando una Triplet Loss
3.2.7. Ajuste fino sobre red neuronal utilizando una Multiple Negatives Ranking

Loss . . . o e

3.2.8. Comparacién entre modelos con un conjunto de personas real

3.3. Identificacién de filiaciones
3.3.1. Creacion de un dataset manual
3.3.2. Identificacion de filiaciones con similaridad por distancia de edicién
3.3.3. Identificacion de filiaciones con redes neuronales. Creacién del algoritmo .
3.3.4. Identificacién de filiaciones con redes neuronales. Ajuste fino del modelo .

4. Conclusiones

Referencias

0~ S O

20
20
21
21
23
25
27
28
31

34
36
38
38
38
42
44

48

49

Resumen

Los investigadores firman de muchas formas diferentes y distintas revistas han establecido
también diferentes estandares en ese sentido. En este proyecto nos centraremos en la correcta
identificacion de las filiaciones, es decir, del centro al que pertenecen los investigadores y la
unificacion de investigadores. Un mismo investigador puede escribir el nombre del centro al
que pertenece de forma distinta en unas u otras publicaciones, y distintos investigadores de
un mismo centro van a escribirlo de forma distinta con total seguridad, més aun si queremos
trabajar a un nivel de detalle como facultad, departamento o instituto de investigacion. Por
otro lado, un investigador puede estar adscrito a varios centros de forma simultanea, o en
diferentes etapas de su vida profesional, lo que introduce el factor tiempo como una variable
mas a tener en cuenta. En este proyecto analizaremos distintas herramientas y algoritmos de
Inteligencia Artificial para identificar de forma univoca los distintos centros de investigacién,
y sus estructuras internas en algunos casos, asi como su asociacion a los investigadores en las
distintas etapas de su vida profesional. Para lograr este objetivo, se construird una cadena
completa donde descargaremos articulos cientificos de Web of Science (WoS), se procesard
y normalizard la informacién, se aplicard un proceso de regularizacién, y posteriormente
se aplicaran los diferentes algoritmos desarrollados con el fin de conseguir la unificacién de
autores e identificacién de filiaciones.

Researchers sign in many different ways, and different journals also have varying standards
in this regard. In this project we will focus on the identification of affiliations, i.e., the center
which the researchers belong to and the researcher unification. The same researcher may
write the name of the center differently in various publications, and different researchers
from the same center will certainly write it differently as well, especially if we aim to work at
a more granular level such as faculty, department, or research institute. On the other hand, a
researcher may be affiliated with several centers simultaneously or at different stages of their
professional life, which introduces the factor of time as an additional variable to consider. In
this project, we will analyze several tools and algorithms in Artificial Intelligence to uniquely
identify different research centers, and their internal structures in some cases, as well as their
association with researchers at different stages of their professional career. To achieve this
objective, a complete pipeline will be developed where we will download scientific papers
from Web of Science (WoS), process and normalize the information, apply a regularization
process, and subsequently apply the different developed algorithms with the objective of
achieving author unification and affiliation identification.

Agradecimientos

Quiero agradecer al apoyo de los directores del trabajo, asi como al equipo de Kampal que
me ha apoyado con su experiencia en estos problemas y facilitado con recursos de hardware para
poder realizar las pruebas de los diferentes modelos.

Siglas
ARI Adjusted Rand Index. 20, 37
ASCII American Standard Code for Information Interchange. 7, 9, 11

AUC Area Under the Curve. 19, 24, 27, 28, 31, 33-36, 45, 47
BERT Bidirectional Encoder Representations from Transformers. 15-17
CPU Central Processing Unit. 49

FMI Fowlkes-Mallows Index. 20, 37
FN False Negative. 19, 44, 46

FP False Positive. 19, 44, 46

GPT Generative Pre-trained Transformers. 15, 49

GPU Graphics Processing Unit. 37, 49
INE Instituto Nacional de Estadistica. 5, 6, 11

NLP Natural Language Processing. 14
NMI Normalized Mutual Information. 20, 37

NoSQL Not Structured Query Language. 8, 48
ORCID Open Researcher and Contributor ID. 36, 37
ROC Receiver Operating Characteristic. 19, 24, 26, 28, 30, 31, 33-35

SBERT Sentence BERT. 16

SQL Structured Query Language. 8, 48

TN True Negative. 19, 44, 46

TP True Positive. 19, 44, 46

WoS Web of Science. 1, 3, 4, 8, 12, 17, 41, 46

1. Introduccion

El interés por los datos ha crecido durante los tltimos anos por diferentes factores, como
pueden ser el aumento de la capacidad de computacién, su mayor asequibilidad, asi como las
soluciones efectivas implementadas y contrastadas basadas en modelos estadisticos. A raiz de
esto, hoy en dia estd en boca de todos el mundo de la ciencia de datos, llendndose periddicos
con titulares que incluyen “Machine Learning”, “Inteligencia Artificial”, “Big Data”, “Internet
of Things”, “Deep Learning”, “Computer Vision” y muchos més ejemplos.

Como consecuencia, en muchos ambitos se ha visto la importancia que tiene el almacena-
miento masivo de datos de forma que se puedan analizar con diferentes propositos como puede
ser inferir y estudiar relaciones entre variables o construir modelos predictivos de forma que
permita anticipar el valor esperado de una variable o la probabilidad de un suceso de que ocurra
dado un contexto que lo rodea.

Los modelos estadisticos cubren un gran abanico de posibilidades donde en funcién de lo
que se quiera modelar, unos se ajustan mejor a las necesidades del problema que otros. En el
caso de este trabajo tenemos que la base de partida es texto, por lo que muchos modelos que se
nos puedan ocurrir no son directamente aplicables debido a que las variables que manejan son
numéricas, bien sean variables continuas o discretas. Por tanto, requeriremos de modelos mas
especificos para nuestro problema.

Cuando un investigador publica un articulo cientifico, éste lo hace bajo el nombre de una
filiacién a la que pertenece o tiene alguin tipo de vinculo en el momento de la publicacién. Cada
investigador puede tener una o mas filiaciones en una publicacién, y no tienen por qué coincidir
entre publicaciones, pues puede haberse movido de filiacion, haber realizado una estancia en
otra o una colaboracién puntual, por ejemplo.

Existen bases de datos de publicaciones cientificas como Web of Science (WoS) o Scopus de
las cuales podemos obtener informacién sobre la actividad desarrollada por los investigadores
de miles de centros a nivel mundial, el problema de esta informacién es que su formato no esta

estandarizado ni para las personas ni paras las filiaciones.

Are estimated peer effects on smoking robust? Evidence from adolescent
students in Spain

Duarte, R. ; Escario, J—J.

Gender Differences in Cooperation: Experimental Evidence on High

"Departamento de Fisica Tedrica & Instituto de Biocomputacion y Fisica de Sistemas Complejos (BIFI), Universidad de Zaragoza, Schoo udents
Zaragoza, Spain

Alberto Molina, J.)Ignacio Gimenez-Nadal, J. ; (...); Sanchez, Angel
1 Instituto de Biocomputacién y Fisica de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain,

Departamento de Bioquimica y Biologia Molecular y
Celular, Facultad de Ciencias, and BIFI, Universidad de
Zaragoza, Pedro Cerbuna 12, 50009-Zaragoza, Spain.

(a) Ejemplo con tres extractos de tres publica-
ciones diferentes donde se ha publicado bajo el
nombre del BIFT.

The Consensus Functional Equation in Ag ent Theory
Candeal, Juan Carlos ; Indurain, Esteban
(b) Ejemplo con tres extractos de tres publica-

ciones diferentes donde ha participado la misma

persona.

Figura 1: Ejemplos extraidos de WoS.

En la Figura 1 se presenta un caso para personas y otro para filiaciones. En primer lugar, en

la Figura 1b podemos ver un ejemplo de una misma persona que ha trabajado en tres articulos

cientificos diferentes. Se observa cémo la forma de referenciar el nombre para la misma persona

es distinta en cada uno de los casos.

Por otra parte, en la Figura la se muestran tres extractos de articulos cientificos donde una

de las filiaciones participantes es el Instituto de Biocomputacion y Fisica de Sistemas Complejos

(BIFI). Vemos que, aunque para un humano es casi inmediato identificar el BIFI en los tres
casos, la cadena de texto completa en la que aparece dicha filiacion es totalmente distinta, lo
que dificulta hacer esa identificacién de manera automatizada.

El objetivo de este trabajo es que, dado un conjunto de articulos cientificos, seamos capaces
de identificar de manera univoca las filiaciones que han participado en cada uno de dichos
articulos, independientemente de como los autores o revistas hayan reflejado las mismas.

Para conseguir este objetivo, descargaremos un conjunto de articulos cientificos desde la base
de datos de Web of Science (WoS), y estandarizaremos la informacién de cada articulo obteniendo
para cada autor su nombre y la filiacién con la que ha firmado. Se dispondra también de un
maestro de filiaciones, el cual no es mas que un repositorio o base de datos con informacién
estandarizada paras las filiaciones nacionales, el cual nos servird como referencia a la hora de
identificar las diferentes filiaciones.

El resultado de este trabajo es la base para poder hacer estudios méas profundos sobre la
produccién cientifica de las diferentes filiaciones y personas, asi como de las relaciones entre
ellas.

En la segunda seccion se explicara toda la cadena operativa para poder conseguir este objeti-
vo, con sus diferentes partes. Se explicaran los distintos algoritmos desarrollados y las diferentes
etapas de la cadena. En la tercera seccién nos centraremos en los modelos matematicos utilizados
para resolver el problema y las pruebas realizadas. Por dltimo, en la cuarta secciéon tendremos
un apartado de conclusiones donde se hard un resumen de los resultados obtenidos, aspectos a
mejorar, y posibles vias de continuacién en el futuro.

2. Formulacion

El problema a resolver consiste en conseguir, dado un articulo cientifico, identificar de manera
univoca tanto los autores que han participado en él, como las filiaciones de los mismos.

En la Figura 2 se muestra un ejemplo tipico extraido de WoS de la informacién que se dispone
para un articulo cientifico. En él tenemos informacién como el titulo, resumen o palabras clave,
ademads de lo que concierne al problema que queremos resolver, que son sus autores y filiaciones
correspondientes.

2.1. Cadena del proceso

Como se ha comentado, la finalidad de este trabajo es la correcta identificacién de personas
y filiaciones. Para resolver este problema, se divide en tres grandes partes como se muestra en

la Figura 3. Lo que se hace en cada parte de esta cadena es:

1. Descarga. El repositorio bibliografico WoS tiene un buscador avanzado' donde se pueden
hacer busquedas con diferentes criterios. Descargaremos articulos entre 2019 y 2023 don-
de haya participado algin autor espanol (es decir, con al menos una filiacién con valor
“Spain” el campo direccién) y con teméticas en “Physics, Mathematical”, “Engineering,
Mechanical”, “Computer Science, Artificial Intelligence”, “Radiology, Nuclear Medicine
& Medical Imaging”, “Psychology, Psychoanalysis”, “Nutrition & Dietetics”, “Language
& Linguistics”, “Clinical Neurology”, “Materials Science, Paper € Wood” y “Energy &

'Enlace al buscador: https://www.webofscience.com/wos/woscc/advanced-search

https://www.webofscience.com/wos/woscc/advanced-search

Leaders among the leaders in Economics: a network analysis of the
Nobel Prize laureates

By Molina, JA (Molina, Jose Alberta) [11+ (25 2] ifiguez, b (iniguez, David) [2! - 141 ; Ruiz, G (Ruiz, Gonzalo) 2] ; Tarancen, &

LTaranmn‘AIlnnso]M 51

View Web of Science ResearcherlD and ORCID (provided by Clarivate)

Source APPLIED ECONOMICS LETTERS

Volume: 28 Issue: 7 Page: 584-58%
DOI: 10.1080/13504851.2020.1764478

Published APR 16 2021

Early Access MAY 2020

Indexed 2020-06-02

Document Type Article

Abstract We analyse the production and networks of Nobel laureates in Economics, employing the Normalized Impact Factor (NIF) of their

publications in the Journal of Citation Report (Economics), to identify the academic leaders among those laureates awarded
between 1969 and 2016. Our results indicate that direct collaborations among laureates are, in general, rare, but when we add all
the co-authors of the laureates, there appears a very large component containing 70% of the nodes, so that more than two thirds of
the laureates can be connected through only two steps. Deaton, Tirole, Arrow, and Stiglitz are identified as leaders according to the

total production of their respective networks.

Keywords Author Keywords: Nobel prize; Economics; impact factor; research production; complex networks
Keywords Plus: IMPACT; COLLABORATION; PRODUCTIVITY; PATTERNS

Author Information Corresponding Address: Molina, Jose Alberto (corresponding author)
« Univ Zaragoza, Dept Econ, Zaragoza, Spain

E-mail Addresses : jamalina@unizar.es
Addresses

- 1 Univ Zaragoza, Dept Econ, Zaragoza, Spain

2 st Biocomputat & Phys Complex Networks BIFI, Zaragoza, Spain
- 3 Inst Labor Econ IZA, Bonn, Germany

4 ARAID Fdn, Diputac Gen Aragon, Zaragoza, Spain

N Univ Zaragoza, Dept Theoret Phys, Zaragoza, Spain

E-mail Addresses : jamalina@unizar.es

Figura 2: Ejemplo de articulo ciéntifico. [1]

Fuels”. Posteriormente, se organizara la informacién en 4 tablas, una de personas, una de

filiaciones, una de articulos y otra que contenga la relacién entre estas tres anteriores.

2. Regularizacién. Como en muchos procesos se va a utilizar la distancia de Levenshtein como
métrica para comparar dos textos, es necesario hacer un proceso de depurado y norma-
lizacién sobre dichos textos a comparar que llamaremos “regularizacion”. Este proceso
se aplicard a los nombres y apellidos de personas, nombres de las filiaciones, y lugares.
Ademss, en el caso de los nombres y apellidos de personas, se dispondrd de un corpus de
nombres y personas obtenidos del INE? el cual nos ayudaréd a corregir posibles erratas en
los nombres y apellidos. Para las filiaciones, se intentard extraer el tipo al que corresponde
a partir del propio nombre, en concreto las clasificaremos como Universidad, Hospital,
Facultad, Escuela, Instituto, Centro, Departamento. Se utilizard un tipo especial llama-
do Otros para aquellas filiaciones que no correspondan a ninguna de las clasificaciones

anteriores.

3. Unificacion. En este punto se aplicardn diferentes algoritmos con el fin de ir unificando
tanto las personas como identificando las filiaciones contra el maestro mencionado ante-
riormente. Para las personas es muy interesante tener identificadas las filiaciones, pues a

2Disponible en https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=
1254736177009&menu=resultados&idp=1254734710990

https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177009&menu=resultados&idp=1254734710990
https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177009&menu=resultados&idp=1254734710990

Descarga Méritos Regularizacion Méritos Unificacion Méritos

Filiaciones Filiaciones regularizadas Filiaciones identificadas
Autores Autores regularizados Autores unificados
Relaciones Relaciones Relaciones

Figura 3: Visién a alto nivel de la cadena completa para resolver el problema.

la hora de compararlas es una informacion muy util saber si dos personas han trabajado
en la misma filiacién o no. Para filiaciones también es 1til tener las personas unificadas,
pues una misma persona, al firmar diferentes articulos, puede escribir la misma filiacién

de diferentes formas.

2.2. Maestro de filiaciones

Para tener un marco de referencia de filiaciones, dispondremos de lo que llamaremos un
maestro de filiaciones. En él se dispondra de diferente informacion para cada filiacion como
son diferentes formas de escritura del nombre, su ubicacién o ubicaciones geograficas y también
relaciones de dependencia de padres e hijos, esto es, dada una filiacién, tendremos las relaciones
con las filiaciones de las que depende, o las filiaciones que dependen de ella. Por ejemplo, dada la
Universidad de Zaragoza, tendremos como hijos todas sus facultades, departamentos y centros
que dependan de ella. De la misma forma, para un departamento de la Universidad de Zaragoza,
tendremos que es de la Universidad de Zaragoza. Noétese que el nombre de una universidad
es suficiente para identificarla, pero el nombre de un departamento o facultad no, ni siquiera
conociendo la ciudad a la que pertenecen, ya que puede haber dos filiaciones de este tipo con
el mismo nombre en el mismo lugar que no sean la misma por pertenecer a dos universidades
diferentes. Por tanto, en los casos de facultades y departamentos es necesario dar también la
universidad a la que pertenecen, pues “Facultad de Ciencias” es un nombre que se repetira entre

las facultades de diferentes universidades.

2.2.1. Fuente geografica

Una informacién util para complementar la informacion de las filiaciones, es su ubicacién
geografica. En el caso de las filiaciones nacionales, cada una estard en uno o mas municipios,
provincias y comunidad auténoma, como la UNED. Para ello se dispone de un catalogo de 253
paises a nivel mundial. En el caso particular de Espana se dispone de municipios junto con su
provincia y comunidad auténoma proveniente del Instituto Nacional de Estadistica (INE)3. Con

esto se construird un corpus de lugares de forma que para cada lugar tendremos:
= id_lugar: Identificador del lugar.
= tipo: Tipo de lugar, 0 pais, 1 comunidad auténoma, 2 provincia y 3 ciudad.

= Nombres: Lista de nombres del lugar.

3Datos disponibles en https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=
1254736177031&menu=ultiDatos&idp=1254734710990

https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177031&menu=ultiDatos&idp=1254734710990
https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177031&menu=ultiDatos&idp=1254734710990

= Nombres regularizados. Lista anterior, pero con el texto convertido a ASCII y en minuscu-
las.

» Padres: Lista de identificadores de lugares con un nivel superior (siendo el 0 el superior de
todos)

» Hijos: Lista de identificadores de lugares con un nivel inferior (siendo el 3 el inferior de
todos)

En total el corpus cuenta con 8455 registros, donde 253 corresponden a paises, 19 a comu-
nidades auténomas, 52 a provincias y 8131 a municipios. Todos los municipios del corpus son
espanoles. En la Figura 4 se muestra como se distribuyen estos municipios espanoles entre las

provincias.

NUmero de municipios por provincia

350

300

250

200

150

100

Figura 4: Distribucién del nimero de municipios por provincia en el corpus de lugares.

2.2.2. Maestro de filiaciones

El maestro de filiaciones contiene 17016 registros en total y todos son de ambito nacional.
En la Tabla 1 se muestra como se distribuyen en las diferentes clasificaciones disponibles.

Este maestro de filiaciones es fruto del trabajo de Kampal a lo largo de los anos. En él
hay una clasificacién por tipo de filiacién, se dispone de algunos acrénimos, CIFs e informacién
varia relacionada con cada filiaciéon. Nétese que por filiacién se entiende hasta un departamento
por si solo como puede ser “Departamento de Métodos Estadisticos”. Junto a cada tipo hay
asignado un nivel, el cual hace referencia a una jerarquizacién de las filiaciones. Como nivel 0
tenemos los tipos universidad, hospital y otros. Como nivel 1 estan las facultades, institutos,
centros y escuelas. Finalmente, como nivel 2 tenemos los departamentos. Esto tiene relacion con
otra informacién que disponemos en este maestro, que son las relaciones entre filiaciones. Para
cada filiacién tenemos cudles son sus “hijos” y “padres”. Por ejemplo, para la Universidad de
Zaragoza, sus hijos seran todas las facultades, departamentos, centros, institutos y escuelas que

Tipo Ntmero de filiaciones Nivel
Universidad 96 0
Hospital 81 0
Facultad 695 1
Instituto 618 1
Centro 1417 1
Escuela 467 1
Departamento 3319 2
Otros 11018 0

Total 17016

Tabla 1: Numero de filiaciones por tipo y en total en el maestro de filiaciones. También se

muestra el nivel de la filiacion, el cual hace referencia a la jerarquizacién de los diferentes tipos.

dependan de ella, mientras que para el Departamento de Métodos Estadisticos sus padres seran
la Facultad de Ciencias y la Universidad de Zaragoza.

Al ser éste un maestro completo con toda esta informacién, el objetivo del trabajo serd
comparar las filiaciones que descarguemos de WoS contra éste y asignarlas contra una filiacién
del mismo. Si no se encuentra ninguna filiacién del maestro con suficiente evidencia de que sean
la misma, significard que la filiacién que se quiere identificar no existe a nivel nacional o no es
ninguna de las que estan el maestro.

2.3. Regularizacién de la informacion de los articulos

La informacién que viene en cada articulo tiene un formato que puede tener pequenas va-
riaciones entre articulos y de acceso no inmediato para nuestro problema. Es por ello que lo
primero sera hacer un proceso que llamaremos regularizacion el cual consiste en estandarizar la
informacién en cada articulo de forma que toda ella esté estructurada de igual forma.

En este trabajo emplearemos “PySpark”*, que es una herramienta extensamente utilizada
en el &mbito del “Big Data”. Esta herramienta incorpora lenguaje SQL y NoSQL, permitiendo
organizar la informacién en “dataframes”, los cuales se pueden ver como tablas en un esquema
de bases de datos relacional con la ventaja de que en sus atributos o campos se pueden incluir
estructuras de datos m&s complejas que en los lenguajes SQL incorporando funcionalidades
propias de lenguajes NoSQL.

Tras la descarga de los diferentes articulos, se organizard la informacion en tres tablas con la
informacién de personas, articulos y filiaciones respectivamente y una cuarta tabla adicional que
contenga la relacion entre ellas. Para cada articulo, se extraerdan los autores que participan en
él, sus filiaciones y sus relaciones. Por ejemplo, en el articulo mostrado en la Figura 2 tenemos
una primera persona con tres referencias a filiaciones, la segunda con dos, la tercera con una y la
cuarta con otras dos. De esta forma, este articulo producira un registro en la tabla de articulos
y cuatro registros en la tabla de personas. En cuanto a las filiaciones, se introduce el concepto
de “participacién”.

Una participacién es una cadena completa que puede incluir una o varias filiaciones en ella

y que pueden tener relacién entre ellas. Por ejemplo, la primera participacién de la Figura 2 se

“Documentacién disponible en https://spark.apache.org/docs/latest/api/python/index.html

https://spark.apache.org/docs/latest/api/python/index.html

corresponderia con la cadena de texto “Univ Zaragoza, Dept Econ, Zaragoza, Spain”. De esta

participacion se generan dos registros en la tabla de filiaciones, uno para “Univ Zaragoza” y

otro para “Dept Econ”. Estos dos registros tendran un identificador de la filiacién tnico “f_id”

y un identificador Unico de la participacién “id_part”. De esta forma, en el articulo de ejemplo

hay cinco participaciones y cada una de ellas tiene dos filiaciones. La pentltima y dltima parte

de la

participacién son la ciudad y el pais, por lo que no se incluyen como filiaciones, sino que

se anaden como el lugar de esa participacién.

A

modo esquematico, se presenta en la Figura 5 el esquema relacional de la informacién para

los diferentes articulos.

arid £ integer —1|—

titulo _—
(s

nombres

rese;

orcid

1 doi

p_id 2 string fid» string
resumen *
< id_part
nombres_regularizados nombres
- Relacién O
rcher_id i nombres_regularizados
d§ p.id & string :
i) * localizaciones
ar_id £ string p
.) * clasificaciones
id_part £ string p

Figura 5: Esquema de las tablas que dispondremos con sus relaciones.

En este proceso de regularizacién también se procesa y enriquece la informacién para las

personas y filiaciones. En todo el proceso de regularizacién se convierten las cadenas de texto a

ASCII y minusculas para una mejor comparacioén entre ellas. De forma particular para personas

y filia

ciones se realiza lo siguiente:

Regularizacién de personas. Para las personas se realiza un proceso de regularizacion del
nombre. Este proceso consiste en corregir posibles erratas en los nombres y apellidos con
ayuda de un corpus de nombres y apellidos externo. Cada palabra en el nombre de la
persona se compara con este corpus para identificar si se trata de un nombre o un apellido
y corregir posibles erratas en el nombre. Para esto, se utiliza la distancia de Levenshtein®,
la cual es una distancia de edicién. Esto permite corregir pequenios errores del tipo “Davod”
que deberia ser “David” por ejemplo. Ademads, tener identificado el nombre en el corpus nos
ayudara en la unificaciéon de personas, pues, por ejemplo, aunque “Antonio” y “Antonia”
tengan distancia de Levenshtein 1 por diferenciarse en una letra, sabemos que son nombres
completamente distintos.

También en este punto se extraeran las palabras que se corresponden al nombre y las que
se corresponden al apellido, ademas de las iniciales, pues puede haber casos como “Munoz,
D.” donde no sabemos su nombre pero si su inicial que es “D”.

Regularizacion de filiaciones. En este proceso, ademéds de convertir el texto a ASCII y

mintsculas, se eliminan “stop words” y se intenta extraer una clasificacién a partir de las

*https://en.wikipedia.org/wiki/Levenshtein_distance

https://en.wikipedia.org/wiki/Levenshtein_distance

palabras que contiene la filiacién. Si contiene palabras como “universidad”, “universitat” o
“university”, se clasifica como Universidad, y ademés, la palabra se reemplaza por “univ”
para poder hacer una mejor comparacion en los siguientes procesos entre diferentes formas
de escritura. Lo mismo se hace para extraer la clasificacién de Departamento, Facultad,
Instituto, Escuela o Centro, las cuales se abrevian como “dept”, “fac”, “inst”, “sch” y “ctr”
respectivamente. En la Tabla 2 se muestra la conversion de las palabras que se abrevian.
En el caso de los articulos y algunas preposiciones, se eliminan de la cadena de texto.

Abreviatura | Palabra maestra | Equivalentes

univ Universidad panepistimio, univerzite, egyetemi, universi-
teit, haskola, univerzitet, universitario, uni-
versitaria, universite, universidade, universi-
tat, universidad, university, sveuciliste, uni-
versitate, univerzita, universitet, uniwersy-
tet, ollscoile, universita, universiteti, uniber-
tsitatea, agr-universitat

la, el, les, du, del, the, las, di, of, los, da, de,

a, y, en

ctr Centro center, centro, cntr, centre

politecn Politécnica politecnica, politecnico, polytecn

dept Departamento departamento, dep, depto, dpto, department,
departament

sch Escuela escuela, school, escola, colegio, xescuela

inst Instituto instituto, institute, institut, inst, insituto

fac Facultad facultad, faculty, facultat, xfacultad

hosp Hospital hospital, agr-hospital, hospitalaria, hospita-
lario

adm Administracién administration, administracion, administra-
cio

inf Infraestructura infraestructure, infraestructura

fund Fundacién fundacién, fundation, fundacio, fundacion,

agr-fundacio, fundaciones

asoc Asociacién asociacién, asociacion, aso, asoc
bib Biblioteca biblioteca, biblio, bilioteca
ud Unidad unidad, ud, udad

Tabla 2: Abreviaturas utilizadas en la regularizacién de las filiaciones. Las palabras que se
encuentren en la columna “Equivalentes” se sustituyen la palabra en la columna “Abre-

viatura”.

Ademds, para las filiaciones contamos muchas veces con su ciudad y pais, por lo que se
buscan estas ciudades y paises en el corpus de lugares que tenemos usando también la

distancia de Levenshtein para identificarlas en cada filiacién.

10

2.4. Unificacién de autores

Un autor publica articulos en repetidas ocasiones bajo las mismas filiaciones, pero las es-
cribe de manera distinta, por tanto, unificar autores nos permitira tener diferentes ejemplos de
escritura de una misma filiacién.

Como se puede ver en la Figura 1b una misma persona ha escrito su nombre como “Molina,
J-A”, “Alberto Molina, J.” 6 “Molina, Jose Alberto”. Mediante los algoritmos de regulariza-
cién implementados, somos capaces de extraer y estandarizar la informaciéon de estos nombres,

dividiéndolo en iniciales, nombres y apellidos.

Nombre de entrada | Iniciales Nombres regularizados Apellidos regularizados

Karakas, S. Pinar sp [(0,pinar)] [(1,karakas)]
Aguado-Linares, P p I [(0,aguado),(0,linares)]
Cuadrado, Jrge Pérez j [(0,jorge)] [(0,perez),(0,cuadrado)]

Tabla 3: Ejemplo del funcionamiento de la regularizacién de nombres de personas. Se convierte
el texto a ASCII en mintsculas, se extraen las iniciales del nombre, se corrigen posibles erratas y
se divide en nombres y apellidos. Los nombres y apellidos es una lista de duplas, donde el primer
elemento de la misma es un flag que significa que dicho nombre o apellido esté fuera del corpus
de nombres y apellidos. 1 indica que el nombre estd fuera del corpus y 0 que esta contenido en

el mismo.

En la Tabla 3 se muestra un ejemplo de como funciona este algoritmo de regularizacién para
tener una idea mas clara. El objetivo del algoritmo de regularizacién de nombres es estandarizar
la informacién para que toda tenga la misma estructura y sea maés sencilla la comparacién entre
personas. La informacién del nombre de una persona se divide en 3 grupos, las iniciales, los
nombres y los apellidos. Anadir las iniciales es necesario debido a que muchas veces los autores
escriben sus nombres acortados por la inicial, por lo que aunque no sepamos su nombre, si
sabemos su inicial, lo cual es de ayuda. Los nombres y apellidos pueden ser uno o varios por
persona, por lo que se almacenan listas de nombres y apellidos. Ademds, al disponer de un corpus
de nombres y apellidos a nivel nacional extraido del INE, podemos corregir erratas y ademaés
determinar si una cadena de texto se trata o no de un nombre o un apellido. Esto se puede
ver en la Tabla 3 en el ultimo ejemplo. El autor ha escrito su nombre con una errata, poniendo
“Jrge” en lugar de “Jorge”, que se puede corregir gracias al corpus de nombres. En segundo
lugar, tenemos la cadena de texto “Pérez”, que por el lugar que ocupa, se podria confundir con
un segundo nombre, sin embargo, de nuevo con la ayuda del corpus de nombres y apellidos,
determinamos que se trata de un apellido muy probablemente. Esto iltimo en ocasiones no es
posible, pues hay nombres como “Martin” que pueden ser un apellido perfectamente.

Por otra parte, gracias a la regularizacién de filiaciones y sus respectivos lugares, somos
capaces de recuperar con qué filiaciones ha firmado un autor y dénde, de esta forma, se anaden
como informacién a la persona una lista de filiaciones y otra de lugares. Los lugares obtenidos
tras el proceso de regularizacién estan bien identificados contra el corpus de lugares disponible
y ademds a cuatro niveles, ciudad, provincia, comunidad auténoma y pais. Para poder usar la
informacién de las filiaciones, primero se aplica el algoritmo presentado en 2.5.1 Identificacion de
filiaciones con similaridad por distancia de edicién que sirve para hacer una primera identificacion

de las mismas.

11

Ademds, existe la posibilidad de usar palabras clave las cuales vienen de la propia fuente.

Con todo esto se construyé un modelo que tiene estas 4 variables en un inicio: nombres
regularizados, lugares, filiaciones y palabras clave. Sin embargo, tras realizar diferentes pruebas
de distintos modelos, se decidié dejar de usar las palabras clave. El motivo es que no eran muy
relevantes en estos modelos, principalmente debido a que estas palabras clave provenientes de
WoS son muy especificas y no aportan mucha informacién a la hora de comparar dos personas
con dos articulos distintos. Ademads, ralentizaban el proceso.

De esta forma, se decidié usar tinicamente estas 3 variables, nombres regularizados, lugares y
filiaciones. Cada una de estas variables se subdivide en mas, quedando la siguiente informacion

para cada persona:
» Nombres regularizados (Lista).

e Iniciales (texto).

e Nombres (Lista de duplas, el primer elemento es un flag de si el nombre esté en el
corpus o no y el segundo el nombre)

e Apellidos (Lista de duplas, el primer elemento es un flag de si el apellido esta en el

corpus o no y el segundo el apellido)

» Lugares (Lista).

id_ciudad (entero).

e ciudad (texto).

e flag ciudad: 1 si estd desinformado, 0 si estd informado (entero).
e id_provincia (entero).

e provincia (texto).

e flag provincia: 1 si estd desinformado, 0 si estd informado (entero).
e id_ccaa (entero).

e ccaa (texto).

e flag ccaa: 1 si estd desinformado, 0 si esta informado (entero).

e id_pais (entero).

e pais (texto).

e flag pais: 1 si estd desinformado, 0 si estd informado (entero).
» Filiaciones (Lista)

e id nivel 0 (entero).

e nivel 0 (texto).

o flag nivel 0: 1 si estd desinformado, 0 si esta informado (entero).
e id nivel_1 (entero).

e nivel_1 (texto).

o flag nivel_1: 1 si estd desinformado, 0 si esta informado (entero).
e id nivel 2 (entero).

e nivel 2 (texto).

o flag nivel 2: 1 si estd desinformado, 0 si esta informado (entero).

12

2.4.1. Algoritmo de unificacion

Para unificar personas se implement6 un algoritmo que es comun a todos los modelos que
presentaremos, la tinica diferencia es el modelo que calcula la distancia entre dos personas. Sea
un conjunto de IV personas que deseamos unificar, no es viable calcular la matriz de todas las
distancias, ya que supondria un célculo de orden N2, y N va a ser un ntimero alto ya que se
quieren analizar grandes cantidades de informacién. El alcance de este algoritmo es el de unificar
millones o decenas de millones de personas, que son las que participan en la produccion cientifica
a nivel nacional e internacional. Esto supone hacer una enorme cantidad de operaciones y ademés
un almacenamiento masivo de datos.

Dado un conjunto de N personas se sigue como procede.
1. Se inicializa la lista de salida de personas unificadas con la primera persona del conjunto.
2. Se lee la siguiente persona del conjunto de personas de entrada.

3. Se recorre la lista de personas unificadas de salida y se calcula la distancia entre la persona
de entrada y las personas de la lista de salida.

4. Se toma la menor distancia de todas junto con el identificador de la lista de salida que se

corresponda.

a) Sila distancia es menor que un umbral, entonces se consideran que son la misma per-
sona y se actualiza dicho registro de la lista de salida anadiendo el identificador de la
persona de entrada y combinando la informaciéon de ambas personas para posteriores

comparaciones.

b) Sila distancia es mayor o igual al umbral, entonces no se ha encontrado una persona
igual y, por tanto, se anade a la lista final de personas unificadas.

5. Se vuelve al segundo punto hasta recorrer todo el conjunto de personas de entrada.

6. Se devuelven los clisteres formados, esto es, las personas que se deben unificar entre ellas.

2.4.2. Unificacién de autores con C

Los primeros modelos que se han probado estdan basados en un modelo elaborado en lenguaje
de programacién C. El motivo de usar este lenguaje de programacién es la eficiencia del mismo,
pues en lenguajes interpretados como Python la velocidad del algoritmo desciende considera-
blemente. Este modelo se basa en una media ponderada donde se calcula una distancia entre
nombres, otra entre lugares y otra entre filiaciones y se calcula una distancia final mediante la

> Bifid;
g i€V (1)

> Bifi

eV

formula

donde V' = {nombre, lugar, filiacién} es el conjunto de variables, 3; son los coeficientes asociados
a cada variable i, d; son las distancias calculadas para cada variable ¢ y f; es un flag que toma
valor 1 cuando esa variable ¢ estd informada y 0 cuando lo esta, todo con ¢ € V. La introduccion
de la variable f; es porque puede haber casos donde, por ejemplo, no tengamos la filiacién de

13

esa persona porque los algoritmos para detectar las filiaciones todavia no han sido capaces de
detectar ninguna filiacion.

No se entrara en detalles de como se calculan estas distancias, pues hay muchos detalles y se
podria extender mucho la explicacién. La base de la distancia en todos los casos es la distancia de
Damerau-Levenshtein, la cual se diferencia en que la transposicién de dos letras tiene distancia
1 mientras que con la distancia de Levenshtein tendria distancia 2. En orden de optimizar el
tiempo del célculo de la distancia, para los lugares y las filiaciones, no se tiene en cuenta el texto
de las mismas, sino los identificadores correspondientes. Cuando se comparan dos ciudades,
provincias, comunidades auténomas, paises o filiaciones entre niveles iguales, se toma distancia
0 si ambos identificadores son el mismo, y distancia 1 si no. De esta forma, la distancia entre,
por ejemplo, “palencia” y “valencia” es la misma que entre “palencia” y “zaragoza’”, siendo 1
en ambos casos.

En el caso de la distancia entre los nombres si se emplea la distancia de Damerau-Levenshtein
y ésta se normaliza por la longitud de la mayor cadena que se compara, asi, la distancia de
Damerau-Levenshtein entre “ejemplo” y “examples” es de 4/8 = 0.5, pues la distancia de
Damerau-Levenshtein es 4 y la longitud méaxima entre las dos cadenas es 8. Por otra parte,
se tienen en cuenta los flags asociados a los nombres, pues si dos nombres que se comparan
tienen el flag que indica que son nombres del corpus, hay una penalizacion en la distancia. La
distancia entre “mario” y “maria” no puede ser la misma que entre “mari” y “mario”. En ambos
casos la distancia es de 1/5 = 0.2, pero en el primer caso los dos son nombres del corpus y por
tanto sabemos que son diferentes, y en el segundo caso el primer nombre no esta en el corpus y
seguramente se trate de una errata en el mismo. También se tienen en cuenta otros aspectos y
soluciones especificas a patrones encontrados en los datos donde la distancia no se corresponde
con lo esperado en un principio.

La distancia entre palabras clave, aunque finalmente se han desechado, se basaba en la
distancia de Levenshtein normalizada también.

2.4.3. Unificacién de autores con redes neuronales

La distancia de Levenshtein tiene sus limitaciones para nuestro problema, pues es una distan-
cia de edicién. En la actualidad, cuando se trata de analizar texto, se recurre a redes neuronales
capaces de extraer informacién ya no solo de una palabra, sino del contexto o resto de palabras
que la rodea. Los modelos de redes neuronales que tratan sobre texto son conocidos como mode-
los de procesamiento de lenguaje natural, en inglés Natural Language Processing (NLP). Estos
modelos de procesamiento de lenguaje natural se basan en la tokenizacidn, la cual consiste en
dividir un texto en tokens. Existen diversas formas de tokenizar un texto, la primera forma que
se nos puede ocurrir es dividirlo por palabras, lo cual es una buena primera aproximacién. Otra
opcién podria ser dividirlo por letras, pero esta tokenizacién generaria muchisimos tokens por
cada texto, y ademas los tokens que se generarian no tendrian informacién seméntica, por lo
que no es aconsejable. Los tokenizadores también se pueden ajustar para que capturen cudl es

la mejor manera de tokenizar un texto. Un ejemplo de tokenizacion es
“This is how tokenization works”: [“this”, “is”, “how”, “token”, “##ization”, “works”].

En este ejemplo, ademas de dividir el texto en palabras, también se parte la palabra “toke-
nization” en “token” y “ization”, las dos # sirven para indicar que dicho token se ha partido del

14

texto anterior. Esto tiene sus ventajas, pues, por ejemplo, en otra palabra como “polarization”
ocurriria lo mismo dividéndolo en “polar” y “ization” y en la palabra “tokenize” se divide en
“token” y “ize”. Vemos asi como este tokenizador es capaz, de forma aproximada, de dividir
palabras en lexemas y morfemas, lo que le dota de un mayor entendimiento del lenguaje en si.

Qutput
Prababilities

)
=

Add & Norm

Multi-Head
Attention

Add & Norm

N

Add & Norm

Masked
Multi-Head
Attention
LY »

—)

Nx Add & Norm

Multi-Head
Attention

A)

(N

Positional Positional

Encoding ¥ Y Encoding
Input Output
Embedding Embedding

Inputs Quiputs
(shifted right)

Figura 6: Esquema de la arquitectura de un Transformers. Figura extraida de [2].

Para poner en contexto la arquitectura de los modelos que hemos usado en este proyecto,
vamos a hacer primero un pequeno repaso hablando de los Transformers. Los Transformers son
una arquitectura de redes neuronales presentada en 2017 por Vaswani et al.[2]. Esta arquitec-
tura se descompone principalmente en dos bloques, un codificador (encoder) y un decodificador
(decoder). El codificador convierte la secuencia de entrada, texto, a una representacién interna
en forma de vector. El decodificador, toma esta representacién interna y genera una secuencia
de salida, la cual se convierte a texto de nuevo. La clave de esta arquitectura es su mecanismo
de atencién Multi-Head Attention que permite al modelo determinar qué partes de la secuencia
de entrada son relevantes para cada token en la secuencia de salida. De manera visual, en la
Figura 6 se muestran estos dos bloques con su mecanismo de atencién.

A partir de la salida de los Transformers, Google desarrollé en 2018 un modelo de repre-
sentacién del lenguaje llamado BERT[3], siglas de Bidirectional Encoder Representations from
Transformers, el cual proviene del codificador del Transformers. La caracteristica de este modelo
es su bidireccionalidad. Otros modelos, como GPT, siglas de Generative Pre-trained Transfor-
mers, el cual proviene del decodificador del Transformers y que hoy en dia es ampliamente
conocido desde la salida de chatGPT, son unidireccionales. Mientras que en modelos como GPT
solo se tienen en cuenta los tokens a la izquierda de uno mismo, en BERT se tienen en cuenta
tanto los tokens a la izquierda como los que tiene a la derecha. Por tanto BERT lee el texto en
ambas direcciones, lo que permite capturar relaciones complejas y dependencias entre palabras
distanciadas en el texto.

Al introducir un par de frases en BERT, en primer lugar, se tokeniza cada una de las frases y
saca el embedding de cada token. El embedding es un vector que representa a dicho token, el cual
es propio de cada modelo de BERT y depende de cémo se haya preentrenado. También anade
un embedding para cada frase. Esto es una forma de que BERT sepa donde empieza y termina
cada una de las frases. Podria ser el embedding de la primera frase un vector de todo 0 y en la

15

segunda frase un vector de todo 1, por ejemplo. Como BERT por si solo no tiene informacién de
la posicién de cada token en el texto, se anaden embeddings que dan informacién de la posicién
del token en el texto. De forma adicional, BERT utiliza tres tokens especiales para esta tarea.
Para cada token de entrada, se suman el embedding del propio token, del segmento y de la
posicion para generar un embedding final. En la Figura 7 se muestra un ejemplo con las frases

“my dog is cute” y “he likes playing”.

o [en] (omy] [aoa] [t |[(cute) s][| ks |[oy] [waing (e

Token

Embeddings E.\:b&l” En-n.-| Emu|| B |Ecu1c Eisen |Ehc Eum||Epm| E.iing ‘E[ser'l
+* + + + + + + + + + +

cmeeaanes | B [E] [0 | (B B | B B |6] [6][)
-+ -+ +* - -+ -+ - +- + +* -+

fresarss | o || B[E][&][B[& |l]l & &][& || &

Figura 7: Representacién de la entrada en BERT. Los embeddings de entrada son la suma de los
embeddings de los tokens, los embedding de los segmentos y los embeddings de posicién. Figura
extraida de [3].

La arquitectura que usaremos en este trabajo se basa en BERT usando redes siamesas. En
2019 Nils Reimers e Iryna Gurevych sacaron una nueva arquitectura sobre la de BERT llamada
Sentence Transformers o SBERT[4]. En los Sentence Transformers se anade una capa de pooling
para generar un embedding de tamano fijo de la frase, llamado vector semantico. En nuestro
caso serd un vector semantico de 512 componentes. El pooling, o agrupacion, se puede hacer de
diferentes formas, en nuestro caso serd la media de todos los embeddings generados por el modelo
BERT para una frase, aunque se podria tomar el embedding de salida del token CLS. Para hacer
un ajuste fino y entrenar el BERT, se genera una red siamesa, es decir, una red compuesta de dos
copias de la red las cuales comparten los coeficientes, para poder asi generar vectores semanticos
de forma que representen el texto de entrada y se puedan comparar textos mediante similaridad

coseno, es decir, mediante el producto escalar normalizado de estos vectores.

Softmax classifier 1.1
3 4
(u, v, [u=v]} cosine-simiu, v}
/’/M\\-\ A
u v u v
f ! 4 4 [
poaling pocling pooling pocling
L) [4 [
BERT BERT BERT BERT
* *
Sentence A Sentence B Sentence A Sentence B

Figura 8: Arquitectura de los Sentence Tranformers en funcién del problema a resolver. En todas
las arquitecturas se tiene una red siamesa de BERT, se aplica una agrupacién o pooling para
sacar un vector semantico y se comparan dichos vectores en funcién del objetivo del problema.

Figura extraida de [4].

16

En la Figura 8 se muestra la arquitectura para un Sentence Transformers. En problemas
en los que queramos comparar pares de frases, la arquitectura consta de dos redes siamesas de
BERT, a las cuales se introduce una frase de la pareja a cada BERT por separado. Para cada
frase se sacan los embeddings de cada token de entrada como en la Figura 7 y se le aplica el
pooling para sacar un vector semantico para cada frase, @ y ¥ respectivamente. En funcién del
problema, y la funcién de pérdida que se use en el entrenamiento, se opera con estos dos vectores
para ver cuanto de parecido o diferentes son. En este trabajo también emplearemos funciones
de pérdida que, en lugar de trabajar con parejas de frases, trabajan con ternas. Las ternas estan
constituidas por una frase ancla, una frase positiva y una frase negativa. En este caso, en lugar
de usar redes siamesas, se usa una triple red, donde el esquema de la arquitectura es el mismo
que en las redes siamesas pero anadiendo una red BERT mads y teniendo al final tres vectores
semanticos. En todos los casos, los pesos de las redes BERT son compartidos en toda la red

completa.

2.5. Identificacion de filiaciones

El objetivo de estos procesos es que para cada entrada en la tabla de filiaciones de la Figura 5,
se aflada una columna donde se recoja el identificador, o identificadores, de la filiacion del maestro
presentado en el apartado 2.2 Maestro de filiaciones. De esta forma las filiaciones extraidas del
WoS se habrén identificado de forma univoca. Para este objetivo se emplearan dos estrategias
diferentes, la primera basada en una modificacién de la distancia de Levenshtein para comparar
conjuntos de palabras®. En la segunda estrategia se empleardn redes neuronales de procesamiento
lenguaje natural con el objetivo de capturar de una mejor forma la informacién de dicha filiacién.

2.5.1. Identificacion de filiaciones con similaridad por distancia de edicién

En el primer método para identificar filiaciones se usa como base la distancia de Levenshtein.
La distancia de Levenshtein” es una distancia de edicién que nos permite tener una métrica de
como de similares son dos cadenas de texto. Mide el nimero minimo de operaciones para pasar
de una cadena de texto a otra siendo estas operaciones la insercién, eliminaciéon o sustitucion
de un caracter. Como las filiaciones suelen ser una de cadena de texto de unas pocas palabras,
en lugar de la distancia de Levenshtein como tal, se usard una distancia de Levenshtein “por
palabras” de forma que dadas dos listas de palabras, por ejemplo [“dept”,“health”, “care”] y
[“care”, “hlth”, “department”], encuentra la ordenacién con menor distancia de Levenshtein sin
penalizar por mover de posicién las palabras de la lista. En este caso se emparejaria “dept” con
“department”, “care” con “care” y “health” con “hlth”, calculando las distancias de Levenshtein
de cada pareja para hacer un promedio con la longitud de dichas parejas.

En muchos casos, sobre todo a nivel de universidades, es suficiente con sacar la distancia
anterior, pues el nombre de las universidades no suele variar mucho entre firmantes. Sin embargo,
cuando tratamos de identificar facultades, centros, institutos, departamentos, hospitales u otras
filiaciones, el problema es més complejo. Las formas diferentes de escritura de una misma filiacion

aumentan. Ademds, encontramos el problema del idioma, en ocasiones los investigadores, por

SDocumentacién de la librerfa de Python en https://github.com/rapidfuzz/Levenshtein
"Més informacién sobre la distancia de Levenshtein en https://en.wikipedia.org/wiki/Levenshtein_
distance

17

https://github.com/rapidfuzz/Levenshtein
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance

ejemplo, escriben las filiaciones en espanol, otras veces en inglés, y minoritariamente en otros
idiomas como catalan, euskera, etc.

El algoritmo planteado para identificar las filiaciones es el siguiente:
1. De manera paralela se analiza cada participacién con todas sus filiaciones.

2. Se hace una primera pasada buscando acrénimos y filiaciones de nivel 0 (universidades,
hospitales y otros).

2.1 Busqueda de acrénimos mediante expresiones regulares. Si lo encontramos, se elimina
de la cadena. También se comprueba que el resto de la cadena se corresponda con la
misma filiacién del acrénimo.

2.2 Busqueda por distancia de Levenshtein filtrando por lugar y clasificacién.
2.3 Si no se encuentra a nadie, bisqueda filtrando por lugar solamente.

2.4 Si no se encuentra a nadie, busqueda filtrando por clasificacién.

3. Se hace una segunda pasada buscando filiaciones de nivel 1 y 2 (facultades, institutos,

centros, escuelas, y departamentos) apoyandonos en lo encontrado en el punto 2.

3.1 Busqueda por distancia de Levenshtein en filiaciones hijas de las filiaciones encontra-
das en el punto 2.

3.2 Si no se encuentra ninguna, bisqueda filtrando por lugar y clasificacion.
3.3 Si no se encuentra ninguna, busqueda filtrando por lugar solamente.

3.4 Si no se encuentra ninguna, busqueda filtrando por clasificacién.

La busqueda se basa en calcular la distancia de Levenshtein “por palabras” de la filiacion
con las del maestro que cumplan el filtro. Se toma la de menor distancia, y si estd por debajo
de un umbral, se considera que son la misma filiacion.

Comentar que este algoritmo se ha ido mejorando. Como grandes cambios se mencionan tres,
que posteriormente, en la seccion 3.3.2 Identificacién de filiaciones con similaridad por distancia
de edicién, se compararan. En la primera version, solo existia una pasada y se buscaban todo
tipo de filiaciones en la misma sin utilizar la informacién de las relaciones entre filiaciones del
maestro. En la segunda version se anadieron las dos pasadas buscando primero filiaciones de
nivel 0, pues una vez identificadas estas filiaciones en la primera pasada, se usan las relaciones
entre filiaciones del maestro para acotar mas la busqueda. Esto es muy 1til para facultades,
escuelas y departamentos, pues entre universidades se repiten los nombres y con la distancia de
Levenshtein podemos tener miultiples coincidencias para un mismo nombre y lugar. La tercera
mejora consistié en agregar como sinénimos al maestro de filiaciones los nombres traducidos al
inglés. Esto también ayudo a nivel de facultades y departamentos, pues “health science dept”
y “dept ciencias salud” tienen una distancia de Levenshtein grande entre si, aunque realmente

referencian la misma filiacion.

2.5.2. Identificacién de filiaciones con redes neuronales

De igual manera que con la unificaciéon de personas, se ha probado un modelo de Sentence
Transformers para calcular la similaridad entre dos filiaciones. El objetivo es desarrollar un
algoritmo similar al del apartado anterior para la identificacién de filiaciones por distancia de

18

edicion, pero usando redes neuronales y, por tanto, adaptando el algoritmo a éstas. Los modelos
de redes neuronales que se usan son los mismos que los presentados en 2.4.3 Unificacion de
autores con redes neuronales, donde estan explicados.

En el apartado 3.3.3 Identificacién de filiaciones con redes neuronales. Creacion del algorit-
mo se exponen las diferentes versiones del algoritmo y diferentes pruebas realizadas con estos
modelos.

2.6. Meétricas utilizadas

A lo largo de la resolucién se mediran las eficiencias de los modelos probados con diferentes
métricas. En este apartado se explicaran dichas métricas.

El primer conjunto de métricas es propio de problemas de clasificacién binaria. En estos
modelos tenemos una variable objetivo y que toma valor 0 6 1 y es conocido. Los modelos

predicen el valor ¢ de esta variable.

J
10

1| TP | FN
Y1o[Fp | TN

Tabla 4: Matriz de confusién. TP son los veraderos positivos, FN son los falsos negativos, FP
son los falsos positivos y TN son los verdaderos negativos.

Dependiendo de las cuatro opciones que hay, salen cuatro posibles casos englobados en lo
que se llama la matriz de confusién presentada en la Tabla 4. En nuestro contexto, el valor 1
representard cuando dos autores o dos filiaciones sean la misma y 0 cuando no. A partir de esta
matriz de confusion, usaremos las siguientes tres métricas mas para medir la bondad de nuestros

modelos

Precisi TP Recall TP F 5 Precision - Recall
ecision = ——— ecall = ——— score = .
RO = TP FP TP +FN 1 seor Precision + Recall

(2)

La primera, precision, mide cuénto acierta el modelo cuando predice ¢ = 1, mientras que el
recall o sensibilidad, mide cudntos casos con y = 1 acierta el modelo. A partir de estas dos, se
define el Fy score que no es més que la media armoénica de precision y recall.

Los modelos que desarrollaremos, dados dos autores o dos filiaciones, devolveran un ntmero
que medira la distancia o similaridad entre ambos. Por tanto, serd necesario poner un corte
sobre el cual por encima o debajo del mismo se considerard que ambas personas o filiaciones son
la misma, §§ = 1, o distintas § = 0. De esta forma, para un mismo modelo, sera necesario hacer
un estudio para ver cudl es el mejor corte. De aqui sale el concepto de curva ROC, Receiver
Operating Characteristic, la cual la construimos graficando el ratio de verdaderos positivos,
TP/(TP+FN), frente al ratio de falsos positivos, FP/(FP+TN), para diferentes cortes. De esta
curva podemos elegir el corte éptimo como el corte para el cual la diferencia entre el ratio de
verdaderos positivos y el ratio de falsos negativos es maxima, por ejemplo. También, se define
otra métrica a partir de esta curva ROC que es el area bajo la curva, AUC (Area Under the
Curve). Un modelo perfecto tendria un AUC de 1, mientras que un modelo aleatorio donde
predijese § = 1 o § = 0 con igual probabilidad independientemente de la entrada tendria un
AUC de 0.5. De esta forma, modelos con un AUC més cercano a 1 son mejores.

19

El segundo conjunto de métricas estda asociado a modelos de agrupacion o clustering. En
nuestro contexto, tendremos un conjunto de N datos que estan agrupados en K clisteres. Por
una parte, tendremos un vector ¢ de N componentes donde cada componente tomard el valor
del claster al que pertenece y; = k, i = 1,...,N, k € {1,...,K}. Los algoritmos y modelos
desarrollados hardn su prediccién de agrupacién gj, donde pueden predecir un nimero diferente
de clusteres K , v mediante la comparacién de estos dos vectores sacaremos diferentes métricas.

La primera métrica es el ARI, Adjusted Rand Index, el cual mide la similaridad entre dos
agrupaciones de clisteres considerando todas las parejas y contando parejas que estdn asigna-
das al mismo o diferente clister entre el valor predicho y el real. Un valor de 1 significa una
concordancia perfecta. La segunda métrica es el NMI, Normalized Mutual Information, la cual
se basa en la informacién mutua cuantificando la informacién compartida entre un cldster pre-
dicho y otro real. De nuevo, el mejor valor es 1 al estar normalizada. La tercera métrica es la
homogeneidad. Se dice que un cluster predicho es homogéneo si en él contiene solo miembros
de un solo cluster de los reales. Para esta métrica es, por tanto, necesario conocer los clisteres
reales. Una homogeneidad perfecta tiene valor 1. La cuarta y ultima métrica es el indice de
Fowlkes-Mallows, FMI. Esta métrica se define como la media geométrica entre la precision y

recall definidos anteriormente. Este indice va de 0 a 1, siendo 1 el mejor valor.

3. Resolucion

3.1. Analisis de los articulos a analizar

Para poner a prueba los modelos desarrollados, se han descargado articulos entre 2019 y 2023
donde haya participado algiin autor espanol (con filiacién espanola) y con temdticas en “Phy-
sics, Mathematical”, “Engineering, Mechanical”, “Computer Science, Artificial Intelligence”,
“Radiology, Nuclear Medicine & Medical Imaging”, “Psychology, Psychoanalysis”, “Nutrition
& Dietetics”, “Language € Linguistics”, “Clinical Neurology”, “Materials Science, Paper €
Wood” v “Energy & Fuels”. La idea es tener un conjunto de datos de diferentes anos para que
se repitan las personas entre anos, repartidos en diferentes tematicas y que no sea un volumen
excesivo con el fin de acortar tiempos para hacer pruebas.

Tras el proceso de regularizacién, donde identificamos el pais de las filiaciones, descarta-
mos todas aquellas que no sean espanolas para nuestros procesos. Tras este filtro, tenemos
53358 articulos, 183989 personas, 114042 participaciones y 238878 relaciones articulo-persona-
participacién. Recordamos que una participacién es una cadena completa donde puede haber
una o mas filiaciones. De estas participaciones salen 292432 filiaciones.

En la Figura 9 se muestra un pequeno anélisis del resultado de la regularizacién de personas.
En él se muestra la distribucion de las diferentes estructuras encontradas en los nombres regula-
rizados, donde una estructura es la pareja (niimero de nombres, niimero de apellidos). Podemos
ver como lo mas comun es un nombre y un apellido, seguido de un nombre y dos apellidos. Se
observan también varios casos donde no tenemos el nombre pero si uno o dos apellidos, aunque
la inicial del nombre si que la tenemos aunque no se muestre en la grafica.

Respecto a la filiaciones, en la Tabla 5 se muestran las clasificaciones de las de entrada
extraidas en el proceso de regularizaciéon. Se observa cémo hay muchas filiaciones que estan
categorizadas como “Otros”. En esta categoria la casuistica es muy grande, puede haber direc-

ciones como “Av Complutense 40”, unidades como “Alzheimers Dis & Other Cognit Disorders

20

80430

80000

70000
62238

60000
©
‘G 50000
f
[
340000
o
“-30000

20000

13171

10000 10605 6855 8766

489 5 422 10 64 854 79 1

0,1 0,2 0,3 0,4 1,1 1,2 1,3 1,4 2,1 2,2 2,3 3,1 3,2 3,3
Estructura del nombre completo

Figura 9: Distribucién de las diferentes estructuras en los nombres regularizados de las personas.

Una estructura es la pareja (niimero de nombres, nimero de apellidos).

Unit” o incluso acrénimos como “CSIC”.

Tipo Frecuencia
Universidad 65687
Departamento 45125
Instituto 23573
Escuela 5327
Facultad 9033
Hospital 26336
Centro 11240
Otros 106111

Tabla 5: Distribucién de los diferentes tipos de filiacion en los datos a analizar extraidos en el

proceso de regularizacién.

Comentar también que en el 94.0 % de los casos se tiene la ciudad de la filiacién. A nivel de
provincia, disponemos de ella en el 96.4 % de los casos. Si disponemos de la ciudad y/o de la

provincia, también conocemos la comunidad auténoma.

3.2. Unificacién de autores

En este apartado se comentan los modelos probados, como se han entrenado y qué resultados

han sacado.

3.2.1. Construccion de un conjunto de entrenamiento sintético

En el caso de las personas, debido al gran volumen de datos de entrada y la variabilidad que
los caracteriza, es muy dificil encontrar casos reales “de calidad”, esto es, casos dificiles donde
poder valorar si los algoritmos funcionan bien o no. Si cogemos dos personas aleatorias, es muy
probable que sean claramente distintas, una se puede llamar “Pedro Gutierrez” y la otra “Marta
Godes”, trabajar en filiaciones diferentes, y estar en ciudades diferentes. Dicho de otro modo,
coger un dataset aleatorio en el que se produzcan suficientes casos de unificacién implicaria que
éste fuera demasiado grande para manejarlo de forma manual. Es por ello que se recurre a la

generacién de un dataset sintético, esto es, lo creamos nosotros.

21

La ventaja de un dataset sintético es que podemos generar tantos registros como queramos,
de manera que haya suficiente volumen de datos para hacer estadistica y medir el funcionamiento
del modelo.

La estrategia para generar este dataset sintético es hacer ternas de personas. La primera,
llamada ancla (anchor en inglés), es la persona de referencia, la segunda es una persona con una
pequena modificacién de forma que se pueda considerar que es la misma persona que el ancla
(un caso positivo) y la tercera es una persona con una modificacién tal que ya no se puedan
considerar la misma persona que con el ancla (caso negativo). El motivo de este enfoque es
conseguir hacer casos dificiles, pues a partir de la misma persona podemos conseguir ejemplos
negativos que no sean tan obvios como si escogiéramos dos personas al azar.

De esta forma, se han desarrollado diferentes criterios para generar estos datos, intentando
plasmar los que utilizaria un humano para hacer esta labor.

Para generar los casos positivos, se admite una y solo una de las siguientes modificaciones:

= No cambiamos nada.

= Anadir inicial. Tomamos el nombre de la persona ancla y le anadimos una inicial. “José
Ramirez” pasa a “José L. Ramirez”.

= Anadir nombre. Afladimos un nombre a la persona ancla. “José Ramirez” pasa a “José

Luis Ramirez”

= Reducimos el nombre. Esto es, cogemos el nombre y lo convertimos a una inicial “David

Pérez” pasa a “D. Pérez”.

» Eliminamos el dltimo nombre (en caso de que tenga més de uno). “Francisco José” pasa a

“Francisco”.

» Eliminamos el ultimo apellido (en caso de que tenga méas de uno). “Pedro Martinez Lor”
pasa a “Pedro Martinez”.

= Pasamos el primer apellido a ultimo nombre. Esto es 1til para el algoritmo en C el cual
utiliza los nombres regularizados. Para las redes neuronales este cambio serd como no hacer
nada.

= Cambiar el lugar. Cambiamos ciudad, provincia o comunidad auténoma aleatoriamente de

la persona.

= Reducimos el lugar. Esto es, si tenemos informado hasta la ciudad, por ejemplo, dejamos

la ciudad desinformada. Se toma ciudad, provincia o comunidad auténoma aleatoriamente.
= Cambiar filiacién. Cambiamos aleatoriamente el nivel 0, 1 6 2 de la persona.

= Reducimos filiacién. Igual que con el lugar, si sabemos una filiacién de una persona has-
ta nivel 2 (departamento), lo dejamos hasta nivel 0 (universidad) por ejemplo. Se toma

aleatoriamente el nivel que se elimina.

Los casos negativos se pueden formar de dos maneras. Una de ellas es haciendo una variacién
en el nombre con los cambios anteriores y una variacién en el lugar o filiaciéon con los cambios

anteriores también. La otra manera es hacer uno de estos cambios

22

Cambiar nombre. “Pedro de la Rosa” pasa a “Antonio de la Rosa”

Cambiar iniciales (en el caso que no tenga nombre). “P. Bonilla” pasa a ”A. Bonilla”

Cambiar nombre pero mantener inicial. “Antonio Lépez” pasa a “Angel Lépez”

Cambiar apellido. “Fernando Alonso” pasa a “Fernando Cuquerella”

Cambiar ultimo apellido (si hay més de uno). “Rosa Grau Malrds” pasa a “Rosa Grau
Arenas”

De esta forma, se han tomado 40.000 personas aleatorias de las disponibles en nuestros datos
tras regularizar y se han hecho 5 ejemplos con cada una de ellas, por lo que se dispone 200.000
tripletas, lo que es un total de 200.000 casos positivos y 200.000 casos negativos. Se ha dividido
este conjunto en aproximadamente un 30 % para validar, y el resto para entrenar. Al hacer esta
divisién se ha tenido cuidado de agrupar todas las tripletas que provienen de la misma persona
ancla para que todas estén en el mismo conjunto, o validacién o entrenamiento.

3.2.2. Predicciones del dataset sintético sobre el modelo de C inicial

En primer lugar, analizaremos el funcionamiento del modelo en C inicial explicado en 2.4.2
Unificacién de autores con C, con unos parametros que venian de antemano y no se le ha realizado
ningin entrenamiento, sino que ha sido revisién humana la decisién de dichos pardmetros. Para
ello se calculan las distancias entre las personas con el modelo en C con los pardmetros por
defecto.

[E50 Negativo (200000)
35000 A [Positivo (200000)

30000 A

25000 1

20000 A

Frecuencia

15000 A

10000 4

5000 -

0.6 0.8 1.0

Distancia

Figura 10: Distribucién de distancias sobre todo el dataset sintético utilizando el modelo de C.

23

Curva ROC CorteD o Matriz confusién para corte 6ptimo % sobre total
1.04 - 45
.- () o ”»
[4 Pid
¢ e 40
4 n
4 0.2 g
0.8) P4 €
e 1=
" ’ o) 35
3 .’ £
2 ° 7 a
=1 ’
2 4 30
206 e 0.4
g 7 25
o e
B i
g 047 pid 0.6 20
o 4
=1 ,/
3
& ,,’ 8 15
021 "e AUC: 0.882 3
JRe == Clasificador aleatorio 0g 2
e @ Corte 6ptimo (0.16) 10
ol @ Corte0.15
001 @® Corte0.23 5
v v - - - v 1.0
0.0 0.2 0.4 0.6 0.8 1.0 Predicho diferentes Predicho iguales
Ratio falsos positivos
Matriz confusién para corte 0.15 % sobre total Matriz confusién para corte 0.23 % sobre total
45
0 40 0 35
o] g
€ g
o4 3
2 3 09
o o 30
30

Iguales
Iguales

Predicho diferentes Predicho iguales Predicho diferentes Predicho iguales

Figura 11: Curva ROC para el modelo de C inicial junto con diferentes matrices de confusién.
En la esquina superior izquierda la curva ROC. En la esquina superior derecha la matriz de
confusion para un corte de 0.16, el cual es el 6ptimo. Este corte 6ptimo se toma como el punto
para el cual la diferencia entre el ratio de verdaderos positivos y falsos negativos es maxima. En
la esquina inferior izquierda la matriz de confusién para un corte de 0.15. En la esquina inferior
derecha la matriz de confusién para un corte de 0.23. El corte refleja el umbral sobre el cual dos
personas se consideran la misma, de esta forma, si la distancia entre dos personas es menor al
umbral, se consideran la misma persona.

En la Figura 10 se muestra la distribucién de las distancias obtenidas con este modelo con las
200.000 tripletas mientras que en la Figura 11 se muestra la curva ROC para este modelo de C
con los pardmetros por defecto. Este modelo arroja un AUC de 0.882. En la Tabla 6 se dejan las
métricas de precision, recall y F; score. Podemos ver que este modelo, usando el corte éptimo,
deja bastantes casos sin unificar que si deberia unificar, pero, por contra, las personas que son
distintas si es capaz de discernirlas con claridad, por lo que, aunque deje personas sin unificar
es un modelo que no sobreunifica. Esto es muy importante para este problema, sobretodo en
etapas tempranas de la cadena. La sobreunificacién conlleva a stuper personas que acumulan
muchas entradas bajo un mismo identificador. Hay casos dificiles que en etapas tempranas del
proceso no se quieren unificar, como por ejemplo, dos autores pueden ser “A. Tarancén” de la
Universidad de Zaragoza, localizado en Zaragoza ciudad y otro “A. Tarancén” de la Universidad
de Barcelona localizado en Barcelona. Con esta informacion es dificil discernir si estos dos autores
son el mismo o no, un humano podria pensar que si, que Unicamente es una persona que se ha
movido de centro. Otra opcién, en este caso la real, ya que es un caso que tenemos controlado,
es que sean personas distintas, pues en verdad la primera persona es “Alfonso Tarancén” y la

24

segunda “Alberto Tarancén”. Si en una primera pasada se unifica erréneamente a estas dos
personas, se construye un autor con nombre “A. Tarancon” y filiaciones tanto la Universidad de
Zaragoza como la de Barcelona. Esto hace, por la forma acumulativa en la que esta disenado el
algoritmo, que si posteriormente vienen otras dos personas con el nombre bien, esto es “Alfonso
Tarancén” de la Universidad de Zaragoza y “Alberto Tarancén” de la Universidad de Barcelona,
ambas sean proximas a esta persona unificada con nombre “A. Tarancén” y podriamos terminar
con una persona con nombres “A. Tarancén”, “Alfonso Tarancén” y “Alberto Tarancon”, lo
cual seria erréneo.

Se presentan también las matrices de confusion con cortes 0.15 y 0.23. El corte de 0.15 es
el corte que se utilizaba para este modelo hasta la fecha, podemos ver cémo el corte utilizado
finalmente esta muy proximo y tiene unas métricas muy parecidas al 6ptimo que hemos obtenido
con el dataset sintético, por lo que podemos validar que el corte que se estaba usando hasta la
fecha era el mejor para este modelo.

El corte de 0.23 es un corte que se usa en etapas posteriores del proceso. Aqui hemos expuesto
el algoritmo de unificacién, pero no es el inico en el que se usa este modelo. En etapas posteriores,
una vez se ha hecho una primera unificacién de personas, resultan N personas unificadas con
varios articulos en ellas, diferentes nombres, diferentes localizaciones y diferentes filiaciones.
En una etapa posterior pueden llegar M personas nuevas, estas personas nuevas se comparan
con las personas unificadas previamente, y si estamos hablando que comparamos entre anos de
produccion cientifica a nivel nacional, lo méas probable es que la gran mayoria de personas nuevas
que lleguen ya estén en las personas unificadas previamente, por lo que se sube el umbral bajo
esta hipotesis. De nuevo, la finalidad de este dataset es tener una métrica sobre estos cortes que

son usados en produccién para conocer su buen funcionamiento.

Corte Precision Recall Fy score
0.15 0.731 0.941 0.823
0.16 0.733 0.941 0.824
0.23 0.780 0.713 0.745

Tabla 6: Métricas de precision, recall y Fq score para los diferentes cortes

3.2.3. Entrenamiento sobre el modelo de C con un modelo de regresion lineal

Lo primero que se plante6 fue intentar mejorar el modelo ya existente que estaba hecho en C
para obtener unos mejores resultados. Para ello, se adapté el cédigo para que devolviese tanto
la distancia total como la distancia entre nombres, lugares y filiaciones. El modelo de regresién

lineal propuesto es

d= BO + Bnombrednombre + Blugardlugar + 6ﬁldﬁl + ﬁﬂag ﬁlIﬁag fil (3)

donde B; con i € {0, nombre, lugar, fil, flag fil} son los coeficientes del modelo, d; con i €
{nombre, lugar, fil} son las distancias e Igag 1 €s una variable binaria que toma valor 1 cuando
la persona tiene la filiacién informada y 0 cuando no.

La introduccion de la variable binaria es necesaria para contemplar esos casos en los que
no tenemos informada la filiacién. En tales casos se pone dg = 0 e g, i1 = 1, de esta forma,
cuando comparamos informacién entre personas que no tienen filiacién, anadimos el término

Brag il cOmo penalizacion haciendo que suba la distancia entre personas.

25

Variable | Coeficiente Desv. Est. p-valor
Bo -0.1432 0.011 7x10738
Brombre 1.3586 0.004 0
Blugar 0.5157 0.002 0
Ba1 0.6276 0.020 1x107213
Bilag fil 0.1836 0.011 4x10~61

Tabla 7: Valores obtenidos para los coeficientes f3; con i € {0, nombre, lugar, fil, flag fil} junto

con su desviacion estandar y su p-valor para la regresion lineal.

En la Tabla 7 se muestran los coeficientes obtenidos tras entrenar. Los p-valores mostrados
estan asociados al test de Wald, el cual evaltia si dichos coeficientes son distintos de 0. Su hipdtesis
nula es, por tanto, que dicho coeficiente 5; = 0. Como todos los p-valores son practicamente 0,
se rechaza la hipdtesis nula de que los coeficientes 8; = 0 en todos los casos y confirmamos que
son estadisticamente significativos todos.

Noétese que todos los coeficientes son positivos, lo cual tiene sentido, pues a mayor distancia,
mayor se espera que sea la distancia total. También ocurre con el coeficiente asociado a si la
filiacién estd desinformada o no. Si no hay filiacién, hay un término constante de 0.18 en la
distancia. También se ve cémo el coeficiente asociado a la distancia del nombre es el que tiene
mayor peso. Esto es esperable también, pues para determinar si dos personas son la misma o no

lo mas importante es que el nombre sea muy parecido, si no, no son la misma.

Curva ROC Matriz confusion para corte 6ptimo % sobre total Curva ROC Matriz confusion para corte 6ptimo % sobre total

Corte Corte
o o.

0 .0

Diferentes

Ratio verdaderos positivos

ES

02 v AuC; 0.882

=~ Clasificador aleatorio
@ Corte ptimo (0.31)

00 02 04 06 08 10
Ratio falsos positivos

Predicho diferentes

Predicho iguales

(a) Curva ROC y matriz de confusién para el
corte 6ptimo para el conjunto de entrenamien-
to del dataset sintético generado para el modelo
de regresién lineal. El corte 6ptimo es calculado
como la mayor diferencia entre el ratio de ver-
daderos positivos y el ratio de falsos positivos.

02 v AuC: 0.882

=~ Clasificador aleatorio
@ Corte 6ptimo (0.31)

45
& 47.28

00 02 04 06 08 10 Predicho diferentes.

Ratio falsos positivos

Predicho iguales

(b) Curva ROC y matriz de confusién para el
corte éptimo para el conjunto de validacién del
dataset sintético generado para el modelo de
regresion lineal. El corte éptimo es calculado
como la mayor diferencia entre el ratio de ver-
daderos positivos y el ratio de falsos positivos.

Figura 12: Curvas ROC y matrices de confusion para los subconjuntos de entrenamiento y

validacion para el modelo de regresion lineal.

En la Figura 12 mostramos las curva ROC y matrices de confusién para el conjunto de
entrenamiento, Figura 12a, y el conjunto de validacién, Figura 12b. El area bajo la curva es de
0.882 en ambos casos y podemos ver que los resultados entre entrenamiento y validacién son

muy parecidos, lo que nos indica que no hay sobreajuste.

26

Conjunto ‘ Corte 6ptimo AUC Precision Recall Fiscore
Entrenamiento 0.31 0.882 0.695 0.982 0.814
Validacion 0.31 0.882 0.694 0.983 0.814

Tabla 8: Métricas sobre la matriz de confusién para el conjunto de entrenamiento y validacién
del modelo de regresion lineal.

En la Tabla 8 se muestran el corte 6ptimo, area bajo la curva, precision, recall y F; score para
el conjunto de entrenamiento y validacién. Podemos ver como todas las métricas son idénticas
entre conjuntos, lo que indica que no hay sobreajuste. Comparandolo con el modelo anterior,
aunque el F; score es parecido al corte éptimo para el otro modelo, vemos cémo la precision
baja mientras que el recall sube.

3.2.4. Entrenamiento sobre el modelo de C con un modelo de regresién logistica

Otra manera de enfocar este problema es como un problema de clasificaciéon, queremos de-
terminar si dos personas son la misma o no, lo que realmente es una variable de salida binaria.
Se decidié hacer una regresion lineal debido a que el cédigo en C estd preparado para hacer una
media ponderada, que se puede ver como una regresiéon lineal. En este apartado le daremos el
enfoque propio de un problema de clasificacion binaria. De esta forma, se ajusta un modelo de

regresion logistica el cual se formula como

Py =1X
IOg <})Ey,:0})z»;> = BO + Bnombrednombre + Blugardlugar + ﬂﬁldﬁl + ﬁﬂag ﬁlIﬂag fil (4)

donde X = (dnombre, dlugar, a1, Inag f1) son las mismas variables que las empleadas en la regresién
lineal e Y es la variable que determina si dos personas son diferentes (Y = 1) o son la misma
(Y = 0). Hacer hincapié en que Y = 1 significa que son distintas, pues, por analogia con el
modelo anterior, Y = 1 seria como tener distancia d = 1, lo que significa que las personas son

distintas.
Variable | Coeficiente Desv. Est. p-valor
Bo -4.5542 0.090 0
Bhnombre 11.29 0.047 0
Blugar 3.25 0.018 0
B 4.37 0.161 3x 107162
Bhiag fil 1.42 0.089 5x10757

Tabla 9: Valores obtenidos para los coeficientes 3; con i € {0, nombre, lugar, fil, flag fil} junto

con su desviacién estandar y su p-valor para la regresién logistica.

En la Tabla 9 se muestran los coeficientes obtenidos para el modelo de regresién logistica junto
con sus desviaciones estandar y su p-valor. De nuevo, todos los coeficientes son estadisticamente
significativos y diferentes a 0. Ademads, vemos como todos los coeficientes son positivos, lo que
tiene sentido, pues un aumento en la distancia, o tener desinformada la filiacién, implica que la
probabilidad de ser diferentes es mayor. También se ve cémo, de nuevo, el coeficiente asociado

al nombre es mucho mayor que los demés. La explicacion es la misma que en el caso anterior, la

27

distancia entre nombres juega un papel fundamental en determinar si dos personas son la misma

O 1no.

Curva ROC Corte | Matriz confusion para corte 6ptimo_% sobre total

0
1o '] - O/’
o’ /
/
/
/
. I'
B 02
08 . /
/ 4725
e ’ 5
/
J /
[24 7
06 / 04
/
/
/
/
/
/
/
0.4 / 06
/
/
/
/
/
/
/
02 / AUC: 0.882 3
I’ 08
/
/
/
/
/
0ol ? == Clasificador aleatorio
@ Corte 6ptimo (0.26)
10

00 02 08 10 Predicho diferentes Predicho iguales

Diferentes

Ratio verdaderos positivos

04
Ratio falsos positivos

(a) Curva ROC y matriz de confusién para el
corte 6ptimo para el conjunto de entrenamiento
del dataset sintético generado para el modelo de
regresion logistica. El corte 6ptimo es calculado
como la mayor diferencia entre el ratio de ver-
daderos positivos y el ratio de falsos positivos.

Curva ROC Corte | Matriz confusién para corte 6ptimo % sobre total

0
1o e w o a5
7 /
/
/
/
/
. / 02
08 . / £
/ H 4728
'z / 2
/
[} /
[g /
s / 04
/
/
/
/
/
/
/
/
/
2 0. / 0.6
/
/
/
/
/
/
/
02 / AUC: 0.883
l’ 08
/
/
/
/
/
0o d == Clasificador aleatorio
@ Corte 6ptimo (0.26)
10

00 02 04 06 08 10 Predicho diferentes. Predicho iguales
Ratio falsos positivos

(b) Curva ROC y matriz de confusién para el
corte 6ptimo para el conjunto de validacién del
dataset sintético generado para el modelo de
regresion logistica. El corte 6ptimo es calculado
como la mayor diferencia entre el ratio de ver-
daderos positivos y el ratio de falsos positivos.

Figura 13: Curvas ROC y matrices de confusién para los subconjuntos de entrenamiento y

validacion para el modelo de regresién logisitca.

En la Figura 13 mostramos las curva ROC y matrices de confusién para el conjunto de
entrenamiento, Figura 13a, y para el conjunto de validacién, Figura 13b. El drea bajo la curva
es de 0.882 y 0.883 respectivamente y podemos ver que los resultados entre entrenamiento y

validaciéon son muy parecidos, lo que nos indica que no hay sobreajuste igual que en el caso

anterior.
Conjunto Corte 6ptimo AUC Precision Recall Fiscore
Entrenamiento 0.26 0.882 0.706 0.947 0.809
Validacion 0.26 0.883 0.706 0.949 0.810

Tabla 10: Métricas sobre la matriz de confusién para el conjunto de entrenamiento y validacién

del modelo de regresion logistica.

Observamos en la Tabla 10 que las métricas obtenidas son muy parecidas a las del modelo
de regresién lineal y el modelo de C original, por lo que tampoco se ve una mejora clara sobre

el modelo base de C.

3.2.5. Ajuste fino sobre red neuronal utilizando una Contrastive Loss

En los siguientes apartados vamos a cambiar a modelos mucho més grandes de redes neuro-
nales. En todos utilizaremos un modelo de Sentence Transformer[4], en particular uno llamado
“distiluse-base-multilingual-cased-v178. La arquitectura y funcionamiento del mismo se detalla

en 2.4.3 Unificacién de autores con redes neuronales.

8Link al modelo: https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1

28

https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1

Utilizaremos el mismo dataset que los utilizados en los modelos de regresion lineal y logisti-
ca. En el apartado 2.4 Unificaciéon de autores explicamos la informacién disponible para cada
persona. El modelo desarrollado en C utiliza identificadores en lugar de texto para los lugares y
las filiaciones, sin embargo, para estos modelos utilizaremos el texto correspondiente. A partir
del nombre regularizado se reconstruye el nombre en forma de texto de forma que siempre sea
el nombre seguido de los apellidos, esto es, aunque la persona firmara originalmente un articulo
como “Ruiz, E.”, el nombre pasard a ser “e ruiz”’. La estrategia en este caso es condensar al
maximo toda la informacién en un vector seméntico de 512 componentes. Para ello, dada una
persona con diferentes nombres, lugares y filiaciones, se toma el nombre mas frecuente y se

construye una frase para esa persona con
“nombre [placed in lugares| [working in filiaciones].”

nombre es el nombre més frecuente para esa persona. Si la persona tienes lugares asociados,
se concatena el nombre con la cadena “placed in lugares” donde lugares es una cadena que se
forma concatenando ciudad, provincia, comunidad auténoma y pais. Si la persona tiene filiaciones
asociadas, se concatena la cadena “working in filiaciones” donde filiaciones es la cadena formada
concatenando la filiacion de nivel 0, nivel 1 y nivel 2. En caso que dicha persona tenga varios
lugares o filiaciones, se concatenan las mismas separandolas mediante comas.

Para verlo con ejemplos y que se entienda mejor, sea una persona llamada “Elisabet Llau-
rado”, con ciudad Reus y que trabaja en la Facultad de Medicina y Ciencias de la Salud de la

Universidad de Rovira i Virgili, su frase queda

“elisabet llaurado placed in reus tarragona cataluna espana working in univ rovira virgili fac

medicina ciencias salud”

Para una persona llamada “Roser Garcia Armengol”, con ciudad Badalona y Barcelona y

sin filiacién, la frase queda

“roser garcia armengol placed in badalona barcelona cataluna espana, barcelona barcelona
cataluna espana”

En el primer modelo utilizaremos una Contrastive Loss[5] o pérdida de contraste, esta pérdida
es ampliamente utilizada en el entrenamiento de modelos como Sentence Transformers, disenados
para generar embeddings significativos para oraciones. El objetivo principal de la Contrastive
Loss en este contexto es asegurar que las personas iguales (parejas positivas) tengan vectores
semdnticos cercanos, mientras que las personas diferentes (parejas negativas) tengan vectores
semanticos mas distantes.

Para entrenar con esta pérdida, se utilizan pares positivos y negativos de personas. La frase
asociada a cada persona del par pasa por la red neuronal de Sentence Transformer para generar
su vector seméantico, en nuestro caso de 512 componentes. Sean ¥ y U los vectores semanticos de
dos personas, entonces la funcién de pérdida para la Contrastive Loss, L¢, se calcula mediante

Lo =(1-y) %(D({[, 17))2 + y%(méx(o, m — D(i,7)))? (5)

donde la D(i,¥) es la distancia entre ambos vectores calculada como uno menos la similaridad

coseno

D(u,7) =1 — cos(u, V), (6)

29

y es una variable binaria que toma valor y = 1 si la pareja es negativa e y = 0 si la pareja
es positiva, y m es un hiperparametro llamado margen, el cual tomaremos como m = 0.5, que
modula cudnto de separados tienen que estar los casos negativos. Viendo la férmula de pérdida,
vemos que para las parejas positivas, y = 0, el segundo término es nulo y la funcién de pérdida
aumenta conforme aumenta la distancia entre pares positivos. Por contra, para parejas negativas
y = 1 y el primer término es nulo. En este caso la funcién de pérdida aumenta siempre que la
distancia entre la pareja esté por debajo del margen m, en otro caso es nula.

De esta forma, con esta pérdida forzamos a que personas similares tengan vectores semanti-
cos similares, mientras que personas diferentes tengan vectores semanticos a distancia m como

minimo en el mejor de los casos.

Conjunto entrenamiento Conjunto validacién
60000 { I Negativo (138935) 25000 1 m=3 Negativo (61065)
I Positivo (138935) I Positivo (61065)

50000 A
20000 1

40000 -
15000 -

30000 A

Frecuencia
Frecuencia

10000

20000 A

5000 -
10000 -

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Similaridad Similaridad

Figura 14: Distribucién de similaridades sobre el dataset sintético utilizando el modelo de Sen-
tence Transformers utilizando una Contrastive Loss. A la izquierda para el conjunto de entre-
namiento y a la derecha para el conjunto de validacién.

Para el entrenamiento se toma el margen de 0.5, se entrenan dos épocas y se utiliza un batch
de 16. En la Figura 14 se muestra la distribucion de distancias para el conjunto de entrenamiento
y el de validacién. Podemos ver, en contraste con la Figura 10 donde presentamos la distribucion
de distancias con el modelo de C inicial, como las distribuciones estdn mas diferenciadas y
agrupadas sobre un valor central.

Se ve en la Figura 15 el resultado del entrenamiento y cémo quedan las curvas ROC y matrices
de confusién para los cortes 6ptimos para el subconjunto de entrenamiento, Figura 15a, y para
el subconjunto de validacién, Figura 15b.

Las métricas sobre estos modelos mejoran respecto a los basados en C. En la Tabla 11
recogemos las métricas para el conjunto de entrenamiento y validacién. Se observa como todas
las métricas tienen un pequenio aumento, indicando un mejor resultado del entrenamiento. El
resultado entre entrenamiento y validacién no se ve tan parecido como ocurria en los modelos

basados en C, lo que podria indicar un cierto sobreajuste.

30

Curva ROC Matriz confusién para corte 6ptimo % sobre total Curva ROC Corte | Matriz confusion para corte 6ptimo % sobre total

o
10 M 10 ﬁ 4
I/ II
’ [4 ’
/ /
/ / 08
II /,
II II
w I/, w ,II
206 / : / o
< I’ ,I
/’ . /
I’ a II 0.2
I,I /,I
ot ¢ T e 01 ¥ T Ly
0.0 0.4 08 1.0 Predicho iguales Predicho diferentes. 0.0 0.2 0.4 0.8 1.0 oo Predicho iguales Predicho diferentes
(a) Curva ROC y matriz de confusién para el (b) Curva ROC y matriz de confusién para el
corte Optimo para el conjunto de entrenamien- corte 6ptimo para el conjunto de validacion del
to del dataset sintético generado para el modelo dataset sintético generado para el modelo de
de Sentence Transformers utilizando una Con- Sentence Transformers utilizando una Contras-
trastive Loss. El corte 6ptimo es calculado como tive Loss. El corte 6ptimo es calculado como
la mayor diferencia entre el ratio de verdaderos la mayor diferencia entre el ratio de verdaderos
positivos y el ratio de falsos positivos. positivos y el ratio de falsos positivos.

Figura 15: Curvas ROC y matrices de confusion para los subconjuntos de entrenamiento y

validacién para el modelo de Sentence Transformers utilizando una Contrastive Loss.

Conjunto Corte 6ptimo AUC Precision Recall Fjscore
Entrenamiento 0.73 0.992 0.973 0.933 0.953
Validacién 0.73 0.974 0.934 0.887 0.910

Tabla 11: Métricas sobre la matriz de confusién para el conjunto de entrenamiento y validacién

de la red neuronal de Sentence Transformer entrenado con la Contrastive Loss.

3.2.6. Ajuste fino sobre red neuronal utilizando una Triplet Loss

En este segundo ajuste, utilizaremos el mismo modelo que el anterior, un Sentence Trans-
former, pero en este caso utilizaremos una funcién de pérdida diferente llamada Triplet Loss|6]
o pérdida por ternas. La Triplet Loss es otra funcién de pérdida comunmente utilizada en mo-
delos como Sentence Transformers para aprender representaciones semanticas de oraciones. A
diferencia de la Contrastive Loss, que trabaja con pares de ejemplos (positivos y negativos), la
Triplet Loss trabaja con ternas de ejemplos, un ancla (persona de referencia), un caso positivo
(persona similar al ancla) y un caso negativo (persona diferente al ancla).

El objetivo de la Triplet Loss es que la distancia entre el ancla y el caso positivo sea menor
que la distancia entre el ancla y el caso negativo. En este contexto, se explica también por qué
decidimos generar un dataset sintético de esta forma, ya que de esta forma somos capaces de
agrupar ternas dificiles que el modelo aprende a diferenciar mejor que si le proporcionamos un
caso positivo y uno negativo por separado como veremos al comparar resultados entre modelos.
En la Figura 16 se muestra, de manera visual, cual es el objetivo de esta funcién de pérdida.
Conforme vamos entrenando el modelo, el caso positivo se acerca al ancla y el caso negativo se
aleja, teniendo asi el ancla y el caso positivo un vector semantico mas parecido que el ancla y el

caso negativo.

31

Anchor Anchor

Figura 16: Esquema de funcionamiento de la Triplet Loss.

La férmula para la funcién de pérdida Triplet Loss Ly es
Ly =méx [D (a@,p) — D (a@,) + m,0] (7)

donde @ es el vector semantico de la persona de referencia o ancla, p es el vector seméantico de
la persona para el caso positivo, 7 es el vector seméantico de la persona para el caso negativo,
D(i,) es la distancia definida igual que en el modelo anterior como 1 menos la similaridad
coseno y m, de nuevo, es un hiperparametro llamado margen que modula la diferencia minima
entre la distancia entre los vectores semanticos del positivo y negativo respecto al ancla para
que la pérdida sea cero, si la distancia es mayor que este margen entonces el funcién de pérdida
aumenta.

Para este modelo presentamos un ajuste de este hiperparametro para que se vea cémo afecta
al entrenamiento. Para ello pondremos diferentes valores de este hiperparametro y veremos su

efecto sobre la distribucién de similaridades y las métricas.

Margen 0.1 Margen 0.2

30000 R N
[Negativo (138935) [Negativo (138935)

25000 { HEEI Positivo (138935) 40000 1 mmm Positivo (138935)

1a

20000 A

1a

. -2 30000 -

15000 -
20000 A

Frecuenc
Frecuenc

10000 4

10000 4
5000 -

0 T T t u 0-
Similaridad Similaridad

Margen 0.3 Margen 0.7

40000
[0 Negativo (138935) [0 Negativo (138935)
I Positivo (138935) 40000 | B Positivo (138935)
30000

1a

30000 A
20000 A

Frecuencia
Frecuenc

20000 A

10000 10000

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Similaridad Similaridad

Figura 17: Comparativa de las distribuciones de la similaridad para el conjunto de entrenamiento
usando diferentes valores del hiperparametro de margen m de la funcién de pérdida Triplet Loss.

En la Figura 17 se muestran las distribuciones de similariades sobre el conjunto de entrena-
miento entrenando el modelo fijando el valor del margen m a 0.1, 0.2, 0.3 y 0.7 respectivamente.
De manera visual, se ve el efecto de este hiperpardametro, se observa cémo al aumentar el margen,

el valor medio de las distribuciones para los casos positivos y negativos se separa, mientras que

32

la dispersién de los mismos aumenta. En la Tabla 12 podemos ver esto numéricamente, donde
vemos cémo la desviacién estandar aumenta al aumentar el valor del margen m, especialmente
en la distribucién de los casos negativos. A su vez, se ve como aumenta también la diferencia
entre los valores medios de la distribucién de casos positivos y casos negativos conforme aumenta

m.

Margenm | 0.1 0.2 0.3 0.7
Casos positivos | 0.89 £0.08 0.89£0.09 0.88+0.10 0.89+0.11
Casos negativos | 0.64+0.11 0.51+0.14 0.57+0.14 0.50+0.20

Tabla 12: Media y desviacién estdandar de las distribuciones de similaridades presentadas en la

Figura 17 para el conjunto de entrenamiento con diferentes méargenes m.

En la Tabla 13 vemos las métricas de estos modelos con los diferentes margenes tanto para
el conjunto de entrenamiento como el de validacién. Se puede ver cémo una mala eleccién de
este hiperparametro conduce a un peor resultado en las métricas del modelo. Si nos fijamos en
el F1 score, que es la media armonica de precision y recall, observamos como m = 0.2 seria
la mejor eleccién para nuestro problema. Una elecciéon demasiado grande o pequena de este
parametro implica peores métricas. Esto se debe al solapamiento entre ambas distribuciones,
para valores demasiado pequenos de m, aunque la desviacién estandar disminuya, las medias
de las distribuciones son més cercanas haciendo que haya un mayor solapamiento entre las
distribuciones. Por contra, con un valor de m alto, las medias entre las distribuciones se separan
mas, pero como también aumenta la desviacién estandar, resulta en que sigue aumentando el
solapamiento entre las distribuciones. Es en un punto medio donde se compensan estos efectos

que encontramos el valor 6ptimo de m.

Margen m Conjunto Corte AUC Precision Recall Fyscore

01 entrenamiento 0.73 0.961 0.954 0.776 0.856
validacién 0.73 0.952 0.946 0.767 0.847

0.9 entrenamiento 0.73 0.989 0.949 0.940 0.945
validacién 0.73 0.969 0.909 0.898 0.903
entrenamiento 0.73 0.963 0.925 0.861 0.892

03 validacién 0.73 0.951 0.908 0.847 0.877
entrenamiento 0.73 0.962 0.905 0.879 0.892

07 validacién 0.73 0.947 0.882 0.859 0.870

Tabla 13: Métricas obtenidas para el mismo dataset de entrenamiento pero con diferentes valores
del hiperpardmetro de margen m usando la funcién de pérdida Triplet Loss.

Finalmente, tomamos como margen m = 0.2 y analizamos los resultados sobre este modelo.
En la Figura 18 mostramos las curvas ROC y matrices de confusion para el conjunto de en-
trenamiento y validacion respectivamente. Tanto en las graficas como en la Tabla 14 vemos un
comportamiento parecido al modelo anterior con la Contrastive Loss, por lo que a priori no hay

ninguna mejora sobre el anterior.

33

Curva ROC Matriz confusién para corte 6ptimo % sobre total Curva ROC Corte | Matriz confusion para corte 6ptimo % sobre total

0 45
10 r—, 10 »
I/ , II
/ '} /
,’ ,l 08
I’ I/
w /’ w ,II
206 / : / o
< I’ ’I
/’ . /
I’ a II 0.2
I,I /,I
ot ¢ T el o1 ¥ T Ly
0.0 0.4 08 1.0 Predicho iguales Predicho diferentes. 0.0 0.2 0.4 0.8 1.0 oo Predicho iguales Predicho diferentes
(a) Curva ROC y matriz de confusién para el (b) Curva ROC y matriz de confusién para el
corte Optimo para el conjunto de entrenamien- corte 6ptimo para el conjunto de validacion del
to del dataset sintético generado para el mo- dataset sintético generado para el modelo de
delo de Sentence Transformers utilizando una Sentence Transformers utilizando una Triplet
Triplet Loss. El corte 6ptimo es calculado como Loss. El corte 6ptimo es calculado como la ma-
la mayor diferencia entre el ratio de verdaderos yor diferencia entre el ratio de verdaderos posi-
positivos y el ratio de falsos positivos. tivos y el ratio de falsos positivos.

Figura 18: Curvas ROC y matrices de confusiéon para los subconjuntos de entrenamiento y

validacién para el modelo de Sentence Transformers utilizando una Triplet Loss.

Conjunto Corte 6ptimo AUC Precision Recall Fjscore
Entrenamiento 0.73 0.989 0.949 0.940 0.945
Validacién 0.73 0.969 0.909 0.898 0.903

Tabla 14: Métricas sobre la matriz de confusién para el conjunto de entrenamiento y validacién

de la red neuronal de Sentence Transformer entrenado con la Triplet Loss.

3.2.7. Ajuste fino sobre red neuronal utilizando una Multiple Negatives Ranking

Loss

Como tltima prueba de entrenamiento, probamos otra funcién de pérdida llamada Multiple
Negatives Ranking Loss[7]. Esta funcién de pérdida es una variante de la pérdida de ranking,
disenada para situaciones en las que se cuenta con un par de oraciones (una ancla y una positiva)
y se desea maximizar la similitud entre el par positivo mientras se minimiza la similitud con todas
las demads oraciones en el batch, tratdndolas como negativas. La finalidad del entrenamiento
es que el modelo que genera los vectores seméanticos de personas genere representaciones que
agrupen personas similares cerca unas de otras y separe personas diferentes en el espacio de
embeddings. Esta funcién de pérdida facilita este aprendizaje, aprovechando el hecho de que
en un batch de entrenamiento, los ejemplos que no son el par positivo pueden actuar como

negativos.

34

La féormula para la funcién de pérdida Multiple Negatives Ranking Loss La/ng es

donde @ es el vector semdntico de la persona ancla, p es el vector semédntico de la persona

positiva, U; es el vector semantico de las demds personas en el batch, consideradas negativas,

conj=1,...,N —1, N es el tamano del batch y S(i,?) es la similaridad coseno de los vectores

uy U

Curva ROC Corte Matriz confusion para corte 6ptimo % sobre total

Ratio verdaderos positivos

02 / AUC: 0979

g
3

=~ Clasificador aleatorio
@ Corte bptimo (0.66)

00 02 04 06 08 10 Predicho iguales Predicho diferentes
Ratio falsos positivos

(a) Curva ROC y matriz de confusién para el
corte optimo para el conjunto de entrenamien-
to del dataset sintético generado para el modelo
de Sentence Transformers utilizando una Mul-
tiple Negatives Ranking Loss. El corte 6ptimo
es calculado como la mayor diferencia entre el
ratio de verdaderos positivos y el ratio de falsos
positivos.

Curva ROC Corte | Matriz confusion para corte 6ptimo % sobre total

0
10 cop
/
/
/
/
/
/
/
/ 08
08 /
/ 44.30
/
/
/
/
/
” /
/
/ 05
/
/
/
/
/
/
/
/
/
$ / 04
/
/
/
/
/
/
! 45.03
02 7 AUC: 0.961
/ 02
/
/
/
/
/
/
ool 7 =~ Clasificador aleatorio
@ Corte 6ptimo (0.67)
00

00 02 04 06 08 10 Predicho iguales Predicho diferentes.
Ratio falsos positivos

(b) Curva ROC y matriz de confusién para el
corte 6ptimo para el conjunto de validacion del
dataset sintético generado para el modelo de
Sentence Transformers utilizando una Multiple
Negatives Ranking Loss. El corte 6ptimo es cal-
culado como la mayor diferencia entre el ratio
de verdaderos positivos y el ratio de falsos po-

sitivos.

Figura 19: Curvas ROC y matrices de confusion para los subconjuntos de entrenamiento y

validacion para el modelo de Sentence Transformers utilizando una Multiple Negatives Ranking

Loss.

En la Figura 19 vemos el resultado del entrenamiento con esta funcion de pérdida y en la

Tabla 15 las métricas asociadas al entrenamiento. A diferencia de los dos modelos anteriores, en

este el corte queda en 0.66, aunque las métricas quedan parecidas a las de los demas modelos.

Conjunto Corte 6ptimo AUC Precision Recall Fyscore
Entrenamiento 0.66 0.979 0.936 0.907 0.921
Validacién 0.67 0.961 0.902 0.882 0.892

Tabla 15: Métricas sobre la matriz de confusion para el conjunto de entrenamiento y validacion

de la red neuronal de Sentence Transformer entrenado con la Multiple Negatives Ranking Loss.

35

3.2.8. Comparacién entre modelos con un conjunto de personas real

En este apartado abordaremos una comparativa mas exhaustiva sobre la diferencia en la
eficiencia de estos modelos. En primer lugar, reunimos las métricas mostradas en los apartados
anteriores en la Tabla 16 a modo de resumen. Recuérdese que en los tres primeros modelos
probados, basados en C, se calculan distancias mientras que en los tres modelos posteriores
hechos con Sentence Transformer se calculan similaridades. Se nota un salto en las métricas
entre los modelos basados en C y distancias y los modelos de redes neuronales basados en
Sentence Transformer y similitudes, siendo las redes neuronales ligeramente mejor sobre los

modelos basados en C.

Modelo Conjunto Corte 6ptimo AUC Precision Recall Fiscore

Modelo de C Todo 0.16 0.882 0.733 0.941 0.824

o Entrenamiento 0.31 0.882 0.695 0.982 0.814
Regresiéon Lineal L,

Validacion 0.31 0.882 0.694 0.983 0.814

., . Entrenamiento 0.26 0.882 0.706 0.947 0.809
Regresiéon Logistica L

Validacién 0.26 0.883 0.706 0.949 0.810

. Entrenamiento 0.73 0.992 0.973 0.933 0.953
Contrastive Loss L

Validacion 0.74 0.974 0.934 0.887 0.910

. Entrenamiento 0.72 0.989 0.949 0.940 0.945
Triplet Loss Sy

Validacion 0.73 0.969 0.909 0.898 0.903

MNR Loss Entre?aam.i(/anto 0.66 0.979 0.936 0.907 0.921

Validacion 0.67 0.961 0.902 0.882 0.892

Tabla 16: Métricas de los diferentes modelos probados sobre el dataset sintético generado. Los
tres primeros modelos son los que basan en el modelo de C y los tres dltimos los modelos de
Sentence Transformers con las diferentes funciones de pérdida empleadas.

Sin embargo, someteremos a estos modelos a otro test para compararlos. Sobre los modelos
de regresion logistica y lineal no se profundizé mas, pues no presentaban una mejora sobre el
modelo de base de C. Para los modelos de redes neuronales, sabiendo que el modelo de C estd
probado sobre casos reales y es un punto de referencia, se decidié probarlos sobre un conjunto
de personas reales. Para ello, se tomaron todos los ORCID de las 183989 personas espanolas
presentes en nuestros datos. El ORCID, del inglés Open Researcher and Contributor ID, es
un codigo alfanumérico que identifica a un investigador. Es un identificador no tnico para un
investigador, pues el mismo investigador puede tener varios ORCID, aunque si es cierto que dos
investigadores no pueden compartir ORCID. Se filtraron los ORCID que se repitiesen en al menos
dos personas distintas y se filtraron las personas que tuviesen alguno de esos ORCID. De esta
forma, de las 183989 personas que tenemos en los datos descargados, quedan 82404 personas que
tienen al menos un ORCID que se repita al menos dos veces entre todas las personas. Agrupando
estas 82404 personas por ORCID, resultaban en 18837 personas unificadas tnicas. Esto significa
que, en media, cada persona unificada consta de 4.4 personas que se han unificado.

Por consiguiente, se aplico el algoritmo desarrollado para la unificacién de personas, tanto con
el modelo en C como con los tres modelos de redes neuronales de Sentence Transformers. En la
Tabla 17 se muestran los resultados obtenidos por cada modelo. Se observa que el modelo que se
acerca mas al nimero de personas final es el modelo entrenado con la funcién de pérdida Multiple

36

Modelo | N° personas ARI NMI Homogeneidad FMI
C 22513 0.949 0.992 0.999 0.950
CL 10820 0.129 0.899 0.833 0.247
TL 16698 0.733 0.973 0.959 0.749
MNRL 18826 0.926 0.990 0.988 0.927

Tabla 17: Métricas obtenidas al comparar los resultados de unificacién de personas por los
diferentes modelos con las unificaciones esperadas por ORCID. El primer modelo es el modelo
de C, sin regresién lineal ni logistica, los tres siguientes hacen referencia a las redes neuronales de
Sentence Transformer entrenadas con las funciones de pérdida de Contrastive Loss (CL), Triplet
Loss (TL) y Multiple Negatives Ranking Loss (MNRL) respectivamente.

Negatives Ranking Loss, mientras que los otros modelos tienden a sobreunificar, sobretodo el
modelo entrenado con la funcién de pérdida Contrastive Loss. Los modelos con mejores métricas
son el modelo de C y el modelo entrenado con la funcién de pérdida Multiple Ranking Loss.
Se observa cémo el modelo de C unifica menos, quedando mas personas al final del proceso.
Esto es motivo del corte puesto a 0.16. Como se ha explicado ya, este modelo es sensible a la
etapa de unificacién que nos encontremos, teniendo que ser conservadores en la primera pasada a
costa de unificar lo “evidente” y asi ganar informacién de cada persona conforme se le atribuyen
diferentes articulos con diferente informacion. Esto también se ve en la homogeneidad, donde
vemos que los clisteres formados con este modelo realmente son de personas que tienen que
estar en el mismo clister. Por otro lado, el modelo con la funcién de pérdida MNRL se acerca
mucho al nimero de personas esperado por el ORCID, manteniendo unas métricas en los demaés
indicadores muy parecidas al modelo de C.

Ademsds, otro aspecto importante es la velocidad del proceso de unificacién. Unificar estas
82404 personas de entrada con el modelo de C ha tardado 292 minutos, casi 5 horas con una
CPU Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz. Esto es debido a que este proceso de unifi-
cacién es un proceso cuadratico donde conforme se van analizando personas en el algoritmo y
se va poblando la lista de salida de personas unificadas, cada vez hay que hacer mas compara-
ciones. Para tener una idea, las 10000 primeras personas el algoritmo tarda 8 minutos, para las
20000 personas tarda 30 minutos, mas del doble debido a la componente cuadratica. En este
sentido, el uso de redes neuronales junto con GPUs ayuda y mucho a optimizar en tiempo este
algoritmo. Unificar estas 82404 personas con las redes neuronales es cuestién de 5-10 minutos
en una GPU NVIDIA GeForce RTX 3060. El algoritmo es el mismo, pero aqui la ventaja es que
toda la informacién de cada persona se almacena en un vector semantico de 512 componentes,
los cuales se precalculan antes de empezar el algoritmo, de forma que hacer una comparacién
entre dos personas resulta en hacer inicamente una similaridad coseno de dos vectores de 512
componentes, mientras que en el modelo en C, para sacar la distancia de nombre, lugar y filia-
cién, se recorren todas las combinaciones de nombre, lugares y filiaciones respectivamente, y en
cada comparacién, en el caso de nombres hay que calcular distancias de Levenshtein, lo que es
costoso computacionalmente.

Como conclusién, debido a que el modelo de C ha probado su eficiencia en otros proyectos,
no se tiene por qué descartar, ya que es un modelo mas interpretable que ayuda a entender el
peso que tiene cada variable en la unificacién de dos personas. Se pueden unir las virtudes de

ambos modelos, sacando candidatos a unificar con el modelo de red neuronal, para que asi, la

37

gran mayoria de comparaciones necesarias en el algoritmo las haga la red neuronal, y calculando
una distancia final con el modelo de C para terminar de determinar si hay que unificar la pareja
candidata o no.

3.3. Identificacion de filiaciones
3.3.1. Creacion de un dataset manual

Para poder comprobar las mejoras sobre los algoritmos, se tomaron 55 participaciones y se
etiquetaron a mano. Recordamos que el concepto de participacién es una cadena completa del
tipo “Univ Girona, Fac Sci, Dept Biol” la cual la dividimos por comas generando tres filiaciones,
en este caso, “Univ Girona”, ”Fac Sci” y ”Dept Biol”. De esta forma, de estas 55 participaciones
resultan 176 filiaciones. Cada una de estas filiaciones no se tiene por qué corresponder con una
filiacién del maestro, pues puede ser algo que directamente no esta en el mismo, como por ejemplo
una cadena tipo “unidad dermatologia”, o que tenga varias filiaciones en la cadena, como por
ejemplo “univ complutense madrid csic”, donde tenemos tanto la Universidad Complutense de
Madrid como el CSIC (Consejo Superior de Investigaciones Cientificas). Los primeros casos, en
los que la filiacién no se encuentre en el maestro, se etiquetaran como “Nada” y esperamos que
el algoritmo no asigne ninguna filiaciéon del maestro a dicha filiacién de entrada. En los segundos
casos, en los que hay méas de una filiaciéon en la cadena de texto, se espera que el algoritmo
identifique cada uno de ellos. Por este motivo, aunque en la entrada tendremos 176 filiaciones,
tenemos etiquetadas 194 filiaciones de salida como buenas.

Tipo de filiacién | Frecuencia en el conjunto de entrada
Universidad 49
Departamento 23
Instituto 20
Escuela 2
Facultad 18
Hospital 18
Centro 9
Otros 37

Tabla 18: Distribucién por tipo de las filiaciones de entrada en el proceso
En la Tabla 18 se recogen los tipos extraidos de la regularizacién para estas 176 filiaciones.

3.3.2. Identificacién de filiaciones con similaridad por distancia de edicién

En el apartado 2.5.1 Identificacién de filiaciones con similaridad por distancia de edicién se
explica el algoritmo utilizado para la identificacion de filiaciones de manera mas extensa. En este
apartado vamos a explicar tres mejoras sobre el algoritmo y cémo han afectado a los resultados.
ademaés de un ajuste del mismo con el pardmetro que tiene dicho algoritmo.

El algoritmo, para cada una de las participaciones, recorre las filiaciones que hay en la parti-
cipacion y las compara contra el maestro de filiaciones. En las primeras versiones del algoritmo,
se hacia una busqueda por cada filiacién, buscando en primer lugar acrénimos y seguidamente
comparando los nombres regularizados de la filiacion de entrada y las del maestro. Para ir mas

38

rapido y reducir el nimero de comparaciones, se hacen filtros al maestro, bien sea por lugares
geograficos o por el tipo de filiaciéon. El algoritmo tiene un tnico parametro que es el corte c.
Este corte es tal que si la distancia entre dos filiaciones es menor al mismo, se consideran la
misma filiaciéon. La distancia es calculada con una modificacién de la distancia de Levenshtein
“por palabras” mas adaptada al contexto de este problema, pues las cadenas a comparar son
largas.

En la primera versién del algoritmo no se estaba usando una informacién muy interesante
que disponemos en el maestro, que son las relaciones entre las filiaciones. Por ello, se actualizo el
algoritmo para hacer dos pasadas sobre todas las filiaciones de una participaciéon. En la primera
pasada se trata de identificar filiaciones de nivel 0 como universidades y hospitales. La estrategia
es la misma, buscar por acrénimos y por distancia para esta primera pasada.

Lo que se anadié nuevo al algoritmo es hacer una segunda pasada usando la informacion de la
primera. Si detectamos una universidad en la primera pasada nos es de gran ayuda, pues cuando
estemos buscando por ejemplo una facultad, ya nos quitamos el problema de que hay varias
facultades, escuelas o departamentos con el mismo nombre pero en diferentes universidades, y
buscaremos primero entre dichas filiaciones “hijas”. De esta forma, este segundo algoritmo usa
la jerarquizacién de las filiaciones del maestro.

La tercera mejora vino a través de indagar en los datos de entrada. Se pudo observar que en
ocasiones las filiaciones estaban escritas en inglés, lo que dificulta la comparacién por distancia
de Levenshtein, “dept ciencias salud” dista mucho de “health science dept”. Para solventar
estos casos, se anadieron al maestro de filiaciones las traducciones al inglés de los nombres
de las filiaciones. Para ello, se utilizé una red neuronal entrenada para la traduccién?, cuyo el
modelo de traduccién se llama “michaelfeil/ct2fast-opus-mt-es-en”, y el tokenizador es “Helsinki-

NLP /opus-mt-es-en”.

Algoritmo inicial Algoritmo jerarquizando sin traducciones Algoritmo jerarquizando con traducciones

Asignables

Asignables
Asignables

Real
Real
Real

n n n
< < <
o a a
© © ©
c c f=4
By 2 2
v v v
< < <
)))
=2 =2 =2

Asignados No Asignados Asignados No Asignados Asignados No Asignados
Predicho Predicho Predicho

Figura 20: Matrices de confusion para las diferentes versiones del algoritmo. A la izquierda la
primera version del algoritmo, en el centro tras introducir la jerarquizacion y a la derecha tras
anadir las traducciones a las filiaciones del maestro. Todos los algoritmos se han ejecutado con

corte ¢ = 0.15.

En la Figura 20 se muestran las matrices de confusion obtenidas para el algoritmo inicial, el
algoritmo jerarquizando anadiendo esta segunda pasada y el algoritmo jerarquizando tras anadir
las traducciones al maestro de filiaciones. Para sacar estas matrices de confusién se han tenido

en cuenta los siguientes criterios. Sea A el conjunto de filiaciones etiquetado a mano que se deben

9Enlace al repositorio: https://pypi.org/project/hf-hub-ctranslate2/

39

https://pypi.org/project/hf-hub-ctranslate2/

asignar a una filiacién de entrada y B el conjunto de filiaciones que ha asignado el algoritmo
a dicha filiacién de entrada, entonces los verdaderos positivos son aquellas filiaciones en ambos
conjuntos y que no sean “Nada”, es decir, |A N B \ {“Nada” }|. Los verdaderos negativos seran los
casos donde “Nada” esté en ambos conjuntos |[A N B N {“Nada”}|. Los falsos positivos serdn ele-
mentos que estén en B pero no en A y no sean “Nada”, esto es, |B '\ {4 U {“Nada” }}|. Los falsos
negativos seran elementos que estén en A pero no en B y no sean “Nada” |A\ {B U {“Nada” }}|.
Con estos criterios, se muestra en la Tabla 19 la precision, recall y Fy score para las diferentes
versiones del algoritmo. Se ve como las mejores métricas las obtiene el algoritmo nuevo con las

traducciones.

Algoritmo Precision Recall Fjscore
Inicial 0.568 0.595 0.581
Jerarquizando sin traducciones 0.825 0.835 0.830
Jerarquizando con traducciones 0.856 0.861 0.859

Tabla 19: Resultados de los diferentes algoritmos, todos con corte ¢ = (0.15.

El algoritmo tiene un pardmetro que es el corte ¢ por debajo del cual dos filiaciones se
consideran que son la misma o no. Para determinar el corte éptimo, se presentan las matrices

de confusién para tres pruebas en la Figura 21 con cortes de ¢ € {0.1,0.15,0.2}.

Corte 0.1 Corte 0.15 Corte 0.2

57.64 63.56

Asignables
)
Asignables
)
Asignables

Real
Real
Real

n n n
< < <
a a a
© © ©
c c c
o o 2
v v v
< < <
)))
=2 =2 =2

Asignados No Asignados Asignados No Asignados Asignados No Asignados
Predicho Predicho Predicho

Figura 21: Matrices de confusion para diferentes cortes ¢ con el algoritmo jerarquizando con
traducciones. A la izquierda con corte ¢ = 0.1, en el centro con corte 0.15 y a la derecha con
corte 0.2.

El corte 6ptimo sucede con ¢ = 0.15 como podemos ver tanto en las matrices de confusion
como en la Tabla 20.

Corte ¢ | Precisiéon Recall Fjscore

0.1 0.810 0.820 0.815
0.15 0.856 0.861 0.859
0.2 0.830 0.826 0.828

Tabla 20: Resultados del algoritmo jerarquizando con traducciones con diferentes cortes c.

En la Figura 22 se muestra un estudio por tipo de los aciertos y fallos del algoritmo jerar-
quizando con traducciones y corte ¢ = 0.15. Se observa cémo todas las universidades de entrada

40

han sido asignadas correctamente al maestro. Las universidades normalmente es lo mas sencillo
de detectar, pues su nombre no varia mucho entre espanol e inglés, tampoco tienen muchas for-
mas de escritura y también se pueden detectar mediante acrénimos. La mejora del algoritmo ha
afectado notablemente a departamentos, escuelas y facultades. El uso de la segunda pasada en
el algoritmo permite utilizar la informacién de la universidad, descartando facultades, escuelas
y departamentos que tienen el mismo nombre, e incluso lugar, pero son de diferente universidad.
Ademis, con el uso de las traducciones, también se consiguen asignar casos donde la filiacién de
entrada estaba escrita en inglés.

50 1 49
Aciertos
Fallos
40
2 301 28
2
s 21
o
201 18 18
15
10 4 9
5 4
2 2 2 3
0 T 0 T T T 0 T 0 T T
O o & N < & ©
«%‘b’b &Q’o B d {7&0 c&@ & ¢ (’%&
{\\42’ & @ N <« <&@ °
N &

Tipo Entrada

Figura 22: Aciertos y fallos por tipo de entrada usando el algoritmo nuevo con traducciones y
corte ¢ = 0.15.

Por tdltimo, se ha ejecutado este algoritmo sobre los datos descargados de WoS. Recordamos
que disponemos de 114042 participaciones en las cuales encontramos 292432 filiaciones a asignar
contra el maestro.

En la Tabla 5 se muestran la distribucién de estas 292432 filiaciones analizadas en los diferen-
tes tipos y en la Figura 23 se muestra el porcentaje de asignacion para cada tipo. El porcentaje
de asignacién mas alto se obtiene para universidades, mientras que el més bajo es para el tipo
“Otros”. Este bajo porcentaje en el tipo “Otros” es de esperar, pues en dicha categoria hay
filiaciones que realmente no lo son, como direcciones, unidades, grupos de investigacién y demés
casuistica. Para el resto de tipos vemos un porcentaje de asignacién del 65-80 % excepto por las
escuelas, que estd en el 47 %.

2.229
Asignado o %

N ignad
o asignado 80.10%

®
i<}
L

76.40%
71.12%
66.16% 65.92% 65.57%

-}
o
L

52.48%
47.52%

IN
o
L

33.84% 34.08% 34.43%
28.88%

19.90% 23.60%
.90%

Porcentaje de asignacién al maestro
~N
1S)
!

7.78%

T T T T T T T T
Centro Departamento Escuela Facultad Hospital Instituto Otros Universidad
Tipo de filiacion

Figura 23: Porcentajes de asignacién para los diferentes tipos de filiaciéon analizados.

41

3.3.3. Identificacién de filiaciones con redes neuronales. Creacion del algoritmo

Los resultados obtenidos con el algoritmo anterior usando la distancia de edicién han dado
muy buenos resultados, pero aun asi exploramos el uso de utilizar una red neuronal para este
problema. Los modelos de redes neuronales probados son los mismos que los usados para la
unificacion de autores, que son los Sentence Transformers. En el caso de las filiaciones solo
tendremos como variable el nombre de la propia filiacién con diferentes formas de escritura que
podamos tener de la misma. La informacion como el lugar o la clasificacién de la filiacion se
usara con otros fines como se mostrarda mas adelante, pero la comparacién entre dos filiaciones
se hard tUnica y exclusivamente comparando los nombres de las mismas.

Vamos a utilizar el mismo modelo preentrenado usado para personas, “distiluse-base-multilingual-
cased-v1”, elaborando un algoritmo para identificar las filiaciones del dataset manual contra el
maestro de filiaciones. Con la ayuda del dataset etiquetado a mano, mediremos qué algoritmo
es mejor manteniendo el mismo modelo.

Recordamos que una participacion es un conjunto de filiaciones que aparecen en la misma
cadena de texto. Como ejemplo para explicar los diferentes algoritmos desarrollados, tomaremos
la participacién “univ zaragoza, inst biocomp & fisica sistemas complejos, fac ciencias, dept fis
teo”, la cual tiene filiaciones “univ zaragoza”, “inst biocomp & fisica sistemas complejos”, “fac
ciencias” y “dept fis teo”.

El primer algoritmo desarrollado consiste en comparar toda la participacién contra el maes-
tro de filiaciones. Para ello, se toma cada filiacién del maestro y se forman frases mas largas
concatenando los nombres de una filiacién con nombres de filiaciones que dependiesen de esta.
Por ejemplo, para la Universidad de Zaragoza se forman frases como “Universidad de Zarago-
za”, “Universidad de Zaragoza, Facultad de Ciencias”, etcétera. De esta forma, si la frase del
maestro méas préxima a la participacién de entrada es “Universidad de Zaragoza, Facultad de
Ciencias, Departamento de Fisica Tedrica”, hemos identificado tres filiaciones del maestro para
esa participacién. Este es algoritmo llamado “Sin jerarquizar”.

En el siguiente algoritmo, llamado “Sin jerarquizar con expansiones”, consiste en incorporar
expansiones de algunas palabras. Usando la informacién en la Tabla 2, la cual es utilizada en
la regularizacion para abreviar algunas palabras para una mejor comparacién por distancia de
edicion, expandimos las palabras acortadas a la palabra maestra, pasando todos los “univ” a
“universidad” por ejemplo. El motivo de hacer esto es para ayudar a la comparacion. Por cémo
estd preentrenado el modelo, las abreviaturas como “dept”, “dpto.” o “dept.” no son comunes
para el tokenizador, lo que hace que al compararlos con palabras como “departamento” la
similaridad sea baja. En la Figura 24 se muestra un ejemplo de esto mismo. La similaridad
entre “departamento” y “department” es alta, asi como la similaridad entre las abreviaturas
“dept”, “dpto” y “dept”. Sin embargo, la similaridad entre estas abreviaturas y “departamento”
o “department” es la misma que con la palabra “hospital”, que no tiene nada que ver con el
resto.

En el tercer algoritmo, llamado “Jerarquico con participaciones”, se incorpora el uso de los
niveles asociados a las clasificaciones de las filiaciones. Dada una participacion, el proceso es

como sigue:

1. Busqueda de nivel 0. Se toman las filiaciones de entrada de la participacién y se comparan
con las filiaciones de nivel 0 del maestro.

2. Busqueda de nivel 1. Se toman las filiaciones de entrada de la participacién y se comparan

42

N3

dpto

dept.

department

departamento

hospital

Figura 24: Similaridades entre diferentes palabras con el modelo preentrenado “distiluse-base-
multilingual-cased-v1” de Sentence Transformers sin hacer ningin ajuste fino.

con las filiaciones de nivel 1 excepto escuelas y facultades del maestro.

3. Busqueda por relativos. Se toma la participacién de entrada. Para las filiaciones de nivel 0 y
1 encontradas en los anteriores puntos, construimos cadenas completas con sus filiaciones
hijas imitando lo que se hace en el algoritmo “Sin jerarquizar con expansiones” para

encontrar mas filiaciones de nivel 1 y 2.

Para ponerlo en contexto, tomemos la participacién de ejemplo nombrada al inicio. Ideal-
mente, en el primer paso, al tomar la filiaciéon de entrada “univ zaragoza”, encontrariamos la
Universidad de Zaragoza en el maestro. En el segundo paso, al tomar la filiacién de entrada “inst
biocomp & fisica sistemas complejos”, encontrariamos el Instituto de Biocomputacién y Fisica de
Sistemas Complejos en el maestro. Para el tercer punto, construiriamos las frases “Universidad
de Zaragoza, Facultad de ..., Departamento de ...” con las diferentes facultades y departamentos
de la Universidad de Zaragoza en el maestro, y encontrariamos que la participacién de entrada
“univ zaragoza, inst biocomp & fisica sistemas complejos, fac ciencias, dept fis teo” coincide
con “Universidad de Zaragoza, Facultad de Ciencias, Departamento de Fisica Tedrica”, por lo
que habriamos encontrado la Facultad de Ciencias y el Departamento de Fisica Teédrica de la
Universidad de Zaragoza en el maestro.

El algoritmo anterior observamos que no funcionaba muy bien para los niveles 1 y 2, por
lo que descartamos la idea del punto 3 de usar toda la participacion, usando en su lugar las
filiaciones, de ahi el nombre de “Jerarquico con filiaciones”. La modificacién sobre el algoritmo
anterior esta en el punto 3, donde ahora se compara cada filiacion de la participacién de entrada
con cada una de las filiaciones hijas de las filiaciones de nivel 0 y 1 encontradas en los puntos
anteriores. Asi, en el punto 3, idealmente, al buscar “fac ciencias” en las filiaciones hijas de la
Universidad de Zaragoza en el maestro, encontraremos la Facultad de Ciencias de la Universidad
de Zaragoza, y lo mismo sucedera para el departamento.

La dltima mejora consiste en la bisqueda de acrénimos en la participacién de entrada median-

43

te expresiones regulares antes del primer paso, identificando asi algunas filiaciones del maestro
que se usan en el ultimo punto y eliminando dichos acrénimos del texto de la participacién de
entrada.

En la Tabla 21 se muestran los resultados sobre el conjunto etiquetado a mano para los
diferentes algoritmos desarrollados. Se observa como cada actualizacién del algoritmo es una
mejora del mismo, siendo los cambios més notorios el uso de la jerarquizacién, dividiendo el
problema en busqueda de filiaciones por niveles, y la bisqueda de acrénimos.

Algoritmo Corte 6ptimo TP TN FP FN Precision Recall F; score
Sin jerarquizar 0.6 30 4 42 71 0.417 0.297 0.347
Sin jerarquizar 0.5 36 0 54 65 0.400 0.356 0.377
con expansiones
Jerarquico con 0.9 38 7 6 63 0.863 0.376 0.524
participaciones
Jerdrquico con 0.8 54 6 42 47 0.563 0.535 0.549

filiaciones

Usando 0.95 56 8 16 45 0.778 0.554 0.647
acrénimos

Tabla 21: Resultados de diferentes algoritmos en orden cronolégico de pruebas sobre el dataset
etiquetado a mano. El corte éptimo se ha tomado como el corte con el que el F score es maximo.

3.3.4. Identificacién de filiaciones con redes neuronales. Ajuste fino del modelo

Una vez implementadas las mejoras presentadas en el apartado anterior para el algoritmo
de identificacién de filiaciones, se opté por realizar un ajuste fino del modelo. Para ello, es
necesario un conjunto con el que realizar el ajuste fino del modelo. A continuacién, se muestran
los resultados sobre dos conjuntos de entrenamiento diferentes.

Para generar el primer conjunto de datos, se usé exclusivamente la informacién disponible
en el maestro de filiaciones. Para todas las filiaciones del maestro tenemos al menos dos formas
de escritura de la misma, pues contamos con el nombre en espanol y la traduccién en inglés,
y en ocasiones tenemos alguna adicional. De igual modo que en el conjunto de entrenamiento
sintético generado para autores, para filiaciones también se generaron ternas. Para generar cada
una de ellas, se elige una filiacién del maestro al azar y se toman, aleatoriamente, dos formas de
escrituras del nombre de la filiacién. La primera forma de escritura serd el ancla y la segunda
el caso positivo. Ademds, con una probabilidad del 20 % se desordenan las palabras del caso
positivo. Por ejemplo, si el caso positivo es “univ zaragoza”, se podria cambiar a “zaragoza
univ”. Para escoger un caso negativo, se escoge otra filiacién del maestro al azar y se toma una
de sus formas de escritura. Para la eleccion de esta otra filiacién, se mantiene el tipo de filiacién
con una probabilidad del 50 % y el lugar de la filiacién con un 50 % también. La idea de esto es
que el caso negativo sea parecido al positivo. Por ejemplo, una terna podria estar formada por
“univ barcelona” como ancla, “barcelona univ”’ como caso positivo y “univ autonoma barcelona”
como negativo si se mantienen el tipo y el lugar de la filiacién para la busqueda del caso negativo.

Con esta metodologia, se generaron alrededor de 100 mil ternas y se dividieron en 30 % para
validacién y 70 % para el ajuste fino del modelo. Todas las ternas provenientes de la misma

44

filiacion ancla estan en el mismo conjunto.

20000 1 B Negativo (99950)
I Positivo (99950)

17500 +

15000

Corte éptimo | 0.58
AUC 0.990
Precision 0.901
Recall 0.989
Fy score 0.943

ia

12500 4

10000 4

Frecuenci

7500 -

5000

2500 4

0.0 0.2 0.4 0.6 0.8 1.0
Similaridad
Figura 25: Distribucién de similaridades so- Tabla 22: Métricas sobre el primer conjunto
bre el primer conjunto de entrenamiento sin de entrenamiento sin hacer ajuste fino al
hacer un ajuste fino al modelo. modelo.

En la Figura 25 se muestra la distribucién de similaridades sobre este conjunto generado con
el modelo sin realizar ningtin ajuste fino. Se puede ver en la Tabla 22 como el modelo sin ajuste
fino ya tiene muy buenas métricas.

Para realizar el ajuste fino, se toma la funcién de pérdida Multiple Negatives Ranking Loss,
explicada en el apartado 3.2.7 Ajuste fino sobre red neuronal utilizando una Multiple Negatives
Ranking Loss. Se entrena el modelo una época, y se utiliza un tamano de batch de 16. Observamos
como la forma de la distribucién de similaridades cambia completamente tras el ajuste fino en
la Figura 26. Ademas, las métricas sobre dichas distribuciones son todavia mejores que con el

modelo sin entrenar.

Conjunto entrenamiento Conjunto validacién
[0 Negativo (70396) [0 Negativo (29554)
25000 { @ Positivo (70396) 10000 { E=H Positivo (29554)

20000 8000 1

15000 - 6000 -

Frecuencia
Frecuencia

10000 4 4000 -

5000 2000 -

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Similaridad Similaridad

Figura 26: Distribuciones de similaridad en el primer conjunto generado para entrenamiento y
validacion tras el ajuste fino del modelo.

Conjunto ‘ Corte 6ptimo AUC Precision Recall Fiscore
Entrenamiento 0.59 0.996 0.972 0.993 0.983
Validacién 0.48 0.994 0.931 0.993 0.961

Tabla 23: Métricas sobres los conjuntos de entrenamiento y validacién tras el ajuste fino del
modelo

Tras realizar este ajuste fino, ponemos a prueba el modelo con el dataset etiquetado a mano.

45

Para ello ejecutamos el algoritmo con diferentes cortes y vemos el rendimiento en cada uno de
esos casos. En la Tabla 24 se muestran los resultados. Guiandonos por el F; score, vemos que el
mejor corte es 0.8 con un valor del F; score de 0.708, lo cual es una mejora sobre el modelo sin
el ajuste fino, que tenfa un F; score de 0.647.

Corte | TP TN FP FN Precision Recall Fy score
0.05 | 78 0 160 23 0.328 0.772 0.460
0.10 | 78 0 160 23 0.328 0.772 0.460
0.20 | 78 0 154 23 0.336 0.772 0.468
0.30 | 78 0 148 23 0.345 0.772 0.477
0.40 | 78 2 140 23 0.358 0.772 0.489
0.50 | 76 3 113 25 0.402 0.752 0.524
0.60 | 75 6 8 26 0.475 0.743 0.579
0.70 | 73 7 51 28 0.589 0.723 0.649
0.80 | 69 8 25 32 0.734 0.683 0.708
0.90 | 59 8 19 42 0.756 0.584 0.659
0.95 | 55 8 18 46 0.753 0.545 0.632

Tabla 24: Métricas sobre el conjunto etiquetado a mano con diferentes cortes para el modelo con

el ajuste fino usando el primer conjunto de entrenamiento.

Analizando la Figura 26, observamos como el conjunto generado no tiene casos que den
informacién, pues el modelo ya es capaz de diferenciarlos bien de base. Por ello, se generd otro
conjunto para entrenar el modelo, pero esta vez buscando casos més dificiles. Los nombres que
disponemos en el maestro estan “correctamente” escritos, es decir, no contienen abreviaciones.
Sin embargo, las filiaciones que descargadas de WoS que entran al algoritmo generalmente estan
abreviadas. En lugar de escribir “Departamento de Psicologia“ se suelen encontrar situaciones
como “psico dept”. Las abreviaturas, como se ha mostrado en la Figura 24, son un problema para
el tokenizador, pues no sabe de primeras que “dept” y “departamento” son parecidos. Aunque
se expanden algunas palabras que tenemos en la Tabla 2, la casuistica es mucho mas grande. Por
ello, se ha decidido generar otro conjunto de entrenamiento, pero esta vez empleando el algoritmo
presentado en 3.3.2 Identificacion de filiaciones con similaridad por distancia de edicién, de forma
que encontremos, mediante este algoritmo, formas de escritura de las filiaciones donde habra
abreviaturas y por lo tanto una casuistica més variada y compleja.

De esta forma, el procedimiento para generar este segundo conjunto de entrenamiento es
parecido al anterior. Se toma una filiacién del maestro al azar. El ancla es una forma de escritura
de la filiaciéon que proviene del maestro, el caso positivo es una forma de escritura que se ha
encontrado gracias al algoritmo de identificaciéon por distancia de edicién. El caso negativo se
escoge igual que antes, pero en el 90 % de los casos la forma de escritura de la filiacién negativa es
también una forma de escritura encontrada mediante el algoritmo de identificacién de filiaciones.

De esta forma, se ejecuto el algoritmo de identificacion de filiaciones mediante distancia de
edicién sobre los datos descargados del WoS y posteriormente se generd este conjunto nuevo. En
este caso se generaron unas 58 mil ternas.

Se observa en la Figura 27 como la distribuciéon de similaridades entre casos positivos y
negativos tiene mayor solapamiento con el modelo sin entrenar que con el primer conjunto de
datos generado. Esto también se ve en la Tabla 25 donde el F; score es de 0.866 para este

46

[Negativo (57810)
6000+ M Positivo (57810)

5000

Corte 6ptimo | 0.55
AUC 0.960
Precision 0.779
Recall 0.976
Fq score 0.866

IS
=}
1=}
S

Frecuencia

w
=3
S
S

2000+

1000 A

0.0 0.2 0.4 0.6 0.8 1.0
Similaridad

Figura 27: Distribucion de similaridades so- Tabla 25: Métricas sobre el segundo conjun-
bre el segundo conjunto de entrenamiento to de entrenamiento sin hacer ajuste fino al
sin hacer un ajuste fino al modelo. modelo.
® Batch16 [}
0751 o Batch 32
® Batch 64 ! ®
070{ e Batch12s 4
[]
) 0.65 - °
g []
o 0.601 °
0.55 A !
[J
0.50 s [] e
UL s
0.65 0.‘10 0.‘20 0.‘30 0.210 0.1‘30 0.250 0.‘70 0.‘50 0.‘90 O.éS

Corte

Figura 28: F; score obtenido para diferentes cortes sobre el conjunto etiquetado a mano ha-
ciendo un ajuste fino al modelo con diferentes tamanos de batch con el segundo conjunto de

entrenamiento.

conjunto mientras que para el anterior era de 0.943.

El procedimiento para realizar el ajuste fino es el mismo que con el primer conjunto. En
esta ocasiéon, presentamos también una bisqueda del mejor tamano de batch de entrenamiento,
pues por cémo funciona la funcién de pérdida Multiple Negatives Ranking Loss, este hiper-
parametro es bastante relevante ya que modifica el nimero de casos negativos a positivos en el
entrenamiento.

En este caso, se han realizado diferentes ajustes finos al modelo modificando el tamafio de
batch a 16, 32, 64 y 128. Estos modelos, se han testeado sobre el conjunto etiquetado a mano
con diferentes cortes. En la Figura 28 se presenta el F; score obtenido en cada caso. Para todos
los modelos, el mejor corte se encuentra en 0.9, donde el tamano de batch no influye mucho
llegando todos los modelos a un F; score similar. Sin embargo, podemos ver en el corte 0.6 como
el tamano de batch si que afecta bastante al entrenamiento del modelo.

El mayor F; score se obtiene haciendo el ajuste fino con un tamaiio de batch de 32 y corte en
el algoritmo de 0.9, donde el valor del F; score es de 0.769. Con este conjunto de entrenamiento
hemos conseguido incrementar en 6 centésimas el F; score maximo respecto entrenando con el
primer conjunto de entrenamiento.

Resulta interesante observar cémo ha quedado la matriz de similariades presentada en la

47

Figura 24 tras realizar el ajuste fino del modelo. En la Figura 29 podemos observar que tras dicho
ajuste, las abreviaturas de las palabras son tan proximas a las palabras como entre ellas. De esta
forma, el modelo aprende que las abreviaturas “dept” o “dpto” son parecidas a “department”
o “departamento”, mientras que la palabra “hospital” ya queda como una palabra diferente al
resto.

dpto

dept.

department

departamento

hospital

Figura 29: Matriz de similaridades para diferentes palabras usando el modelo con el ajuste fino
sobre el segundo conjunto de entrenamiento.

4. Conclusiones

En este trabajo se ha desarrollado una herramienta completa desde la descarga de articulos
cientificos de Web of Science hasta la creacién de unas tablas maestras donde se unifican los
autores y se identifican las filiaciones. Para ello se han empleado tanto herramientas propias
del Big Data, como es PySpark para gestionar el volumen masivo de datos el cual incorpora
operaciones SQL y NoSQL, como herramientas de Inteligencia Artificial para los diferentes
algoritmos utilizados para la unificacién de autores y la identificacién de filiaciones contra un
maestro.

Se han explorado, tanto en la unificacién de autores como la identificacion de filiaciones, dos
herramientas distintas para resolver el problema. La primera usando una distancia de edicién
como es la de Levenshtein, y la segunda utilizando modelos de redes neuronales con arquitectura
Transformers mucho mas complejos que la distancia de edicién, y que ademads se encuentran en
el estado del arte actualmente en cuanto a problemas de procesamiento de lenguaje natural.

En cuanto a la unificacién de autores, existia un modelo previo en Kampal para comparar dos
personas. En este trabajo se ha desarrollado un modelo usando redes neuronales que obtiene unos
resultados muy similares, pero ademds, es mucho mas rapido, siendo capaces de reducir el tiempo
de procesamiento de un conjunto de entrada de 82404 autores de 5 horas a apenas 5-10 minutos.
Esto es gracias a dos factores. El primero es poder condensar toda la informacién de una persona

48

en un vector seméntico, y el segundo es el uso de GPUs. Realizar una comparacion mediante
distancias de edicién en CPU es mucho més costoso en tiempo que hacer una similaridad coseno
entre dos vectores con una GPU ya que el cilculo se hace de manera paralela. Sin embargo,
debido a esta condensacién de la informacion, es més dificil capturar algunos detalles como las
iniciales de un nombre que con la distancia de edicién se captura mejor.

En cuanto a la identificacién de filiaciones, se ha desarrollado un algoritmo usando distancias
de edicién y otro utilizando modelos de redes neuronales. En este caso los resultados obtenidos
con el algoritmo basado en distancias edicién han sido mejores que los obtenidos con el algoritmo
basado en redes neuronales. En el problema de unificaciéon de autores comentamos que hay
detalles como las iniciales del nombre que pueden afectar al rendimiento del modelo. En este
caso nos encontramos con el problema de que hay muchas mas formas diferentes de escritura
de una filiacién por las posibles abreviaturas de palabras, orden de las mismas, asi como por el
uso de diferentes idiomas, lo que complica todavia méas esta tarea. Como se ha mostrado, estas
posibles alteraciones, especialmente las abreviaturas, afectan al tokenizador del modelo.

Como posibles mejoras encontramos el disponer de un mejor conjunto de entrenamiento para
ambos problemas. En los dos casos el conjunto de entrenamiento con el que se realiza el ajuste
fino a las redes neuronales es generado a partir de casos sintéticos y no de casos reales. Es dificil
generar un conjunto de entrenamiento que disponga de toda la casuistica y variedad que nos
encontramos entre los autores y filiaciones que se descargan de Web of Science, por lo que trabajar
en mejorar estos conjuntos de entrenamiento es una linea muy interesante para poder mejorar el
resultado de estos modelos. También se pueden estudiar el rendimiento de otros modelos, en este
trabajo nos hemos basado en el modelo preentrenado “distiluse-base-multilingual-cased-v1” de
Sentence Transformers, pero se podria estudiar el uso de otros modelos también preentrenados
en los que quiza el tokenizador funcione mejor para estos problemas. Otra via de mejora consiste
en la utilizacién de modelos mucho méas grandes como puede ser GPT-4, apoyandonos en él para
generar estos conjuntos de entrenamiento. Esta técnica se puede ver como un caso particular
de Profesor-Alumno, donde la idea es que a partir de un modelo més grande, como es GPT-4,
ensenar a un modelo més pequeno, como son los que usamos nosotros. El objetivo de esta técnica
es igualar los resultados del Profesor con un modelo mas pequeno al tratarse de un problema

mas concreto.

49

Referencias

1]

J. A. Molina, D. Iniguez, G. Ruiz, and A. Tarancon, “Leaders among the leaders in econo-
mics: a network analysis of the nobel prize laureates,” APPLIED ECONOMICS LETTERS,
vol. 28, no. 7, pp. 584-589, APR 16 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023. [Online]. Available:
https://arxiv.org/abs/1706.03762

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” 2019.

N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese
bert-networks,” in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 11 2019. [Online].
Available: http://arxiv.org/abs/1908.10084

R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant
mapping,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), vol. 2, 2006, pp. 1735-1742.

F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding
for face recognition and clustering,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, Jun. 2015. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2015.7298682

M. Henderson, R. Al-Rfou, B. Strope, Y. hsuan Sung, L. Lukacs, R. Guo, S. Kumar,
B. Miklos, and R. Kurzweil, “Efficient natural language response suggestion for smart
reply,” 2017. [Online]. Available: https://arxiv.org/abs/1705.00652

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language unders-
tanding by generative pre-training,” 2018.

Y. Goldberg and O. Levy, “word2vec explained: deriving mikolov et al.’s negative-sampling
word-embedding method,” 2014. [Online]. Available: https://arxiv.org/abs/1402.3722

Y. Sun, Y. Zheng, C. Hao, and H. Qiu, “Nsp-bert: A prompt-based few-shot learner
through an original pre-training task-next sentence prediction,” 2022. [Online]. Available:
https://arxiv.org/abs/2109.03564

50

https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1908.10084
http://dx.doi.org/10.1109/CVPR.2015.7298682
https://arxiv.org/abs/1705.00652
https://arxiv.org/abs/1402.3722
https://arxiv.org/abs/2109.03564

	Introducción
	Formulación
	Cadena del proceso
	Maestro de filiaciones
	Fuente geográfica
	Maestro de filiaciones

	Regularización de la información de los artículos
	Unificación de autores
	Algoritmo de unificación
	Unificación de autores con C
	Unificación de autores con redes neuronales

	Identificación de filiaciones
	Identificación de filiaciones con similaridad por distancia de edición
	Identificación de filiaciones con redes neuronales

	Métricas utilizadas

	Resolución
	Análisis de los artículos a analizar
	Unificación de autores
	Construcción de un conjunto de entrenamiento sintético
	Predicciones del dataset sintético sobre el modelo de C inicial
	Entrenamiento sobre el modelo de C con un modelo de regresión lineal
	Entrenamiento sobre el modelo de C con un modelo de regresión logística
	Ajuste fino sobre red neuronal utilizando una Contrastive Loss
	Ajuste fino sobre red neuronal utilizando una Triplet Loss
	Ajuste fino sobre red neuronal utilizando una Multiple Negatives Ranking Loss
	Comparación entre modelos con un conjunto de personas real

	Identificación de filiaciones
	Creación de un dataset manual
	Identificación de filiaciones con similaridad por distancia de edición
	Identificación de filiaciones con redes neuronales. Creación del algoritmo
	Identificación de filiaciones con redes neuronales. Ajuste fino del modelo

	Conclusiones
	Referencias

