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Identificación uńıvoca de

filiaciones en datos de I+D+i

utilizando herramientas de

Inteligencia Artificial

Autor:
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Resumen

Los investigadores firman de muchas formas diferentes y distintas revistas han establecido

también diferentes estándares en ese sentido. En este proyecto nos centraremos en la correcta

identificación de las filiaciones, es decir, del centro al que pertenecen los investigadores y la

unificación de investigadores. Un mismo investigador puede escribir el nombre del centro al

que pertenece de forma distinta en unas u otras publicaciones, y distintos investigadores de

un mismo centro van a escribirlo de forma distinta con total seguridad, más aún si queremos

trabajar a un nivel de detalle como facultad, departamento o instituto de investigación. Por

otro lado, un investigador puede estar adscrito a varios centros de forma simultánea, o en

diferentes etapas de su vida profesional, lo que introduce el factor tiempo como una variable

más a tener en cuenta. En este proyecto analizaremos distintas herramientas y algoritmos de

Inteligencia Artificial para identificar de forma uńıvoca los distintos centros de investigación,

y sus estructuras internas en algunos casos, aśı como su asociación a los investigadores en las

distintas etapas de su vida profesional. Para lograr este objetivo, se construirá una cadena

completa donde descargaremos art́ıculos cient́ıficos de Web of Science (WoS), se procesará

y normalizará la información, se aplicará un proceso de regularización, y posteriormente

se aplicarán los diferentes algoritmos desarrollados con el fin de conseguir la unificación de

autores e identificación de filiaciones.

Researchers sign in many different ways, and different journals also have varying standards

in this regard. In this project we will focus on the identification of affiliations, i.e., the center

which the researchers belong to and the researcher unification. The same researcher may

write the name of the center differently in various publications, and different researchers

from the same center will certainly write it differently as well, especially if we aim to work at

a more granular level such as faculty, department, or research institute. On the other hand, a

researcher may be affiliated with several centers simultaneously or at different stages of their

professional life, which introduces the factor of time as an additional variable to consider. In

this project, we will analyze several tools and algorithms in Artificial Intelligence to uniquely

identify different research centers, and their internal structures in some cases, as well as their

association with researchers at different stages of their professional career. To achieve this

objective, a complete pipeline will be developed where we will download scientific papers

from Web of Science (WoS), process and normalize the information, apply a regularization

process, and subsequently apply the different developed algorithms with the objective of

achieving author unification and affiliation identification.
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me ha apoyado con su experiencia en estos problemas y facilitado con recursos de hardware para
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1. Introducción

El interés por los datos ha crecido durante los últimos años por diferentes factores, como

pueden ser el aumento de la capacidad de computación, su mayor asequibilidad, aśı como las

soluciones efectivas implementadas y contrastadas basadas en modelos estad́ısticos. A ráız de

esto, hoy en d́ıa está en boca de todos el mundo de la ciencia de datos, llenándose periódicos

con titulares que incluyen “Machine Learning”, “Inteligencia Artificial”, “Big Data”, “Internet

of Things”, “Deep Learning”, “Computer Vision” y muchos más ejemplos.

Como consecuencia, en muchos ámbitos se ha visto la importancia que tiene el almacena-

miento masivo de datos de forma que se puedan analizar con diferentes propósitos como puede

ser inferir y estudiar relaciones entre variables o construir modelos predictivos de forma que

permita anticipar el valor esperado de una variable o la probabilidad de un suceso de que ocurra

dado un contexto que lo rodea.

Los modelos estad́ısticos cubren un gran abanico de posibilidades donde en función de lo

que se quiera modelar, unos se ajustan mejor a las necesidades del problema que otros. En el

caso de este trabajo tenemos que la base de partida es texto, por lo que muchos modelos que se

nos puedan ocurrir no son directamente aplicables debido a que las variables que manejan son

numéricas, bien sean variables continuas o discretas. Por tanto, requeriremos de modelos más

espećıficos para nuestro problema.

Cuando un investigador publica un art́ıculo cient́ıfico, éste lo hace bajo el nombre de una

filiación a la que pertenece o tiene algún tipo de v́ınculo en el momento de la publicación. Cada

investigador puede tener una o más filiaciones en una publicación, y no tienen por qué coincidir

entre publicaciones, pues puede haberse movido de filiación, haber realizado una estancia en

otra o una colaboración puntual, por ejemplo.

Existen bases de datos de publicaciones cient́ıficas como Web of Science (WoS) o Scopus de

las cuales podemos obtener información sobre la actividad desarrollada por los investigadores

de miles de centros a nivel mundial, el problema de esta información es que su formato no está

estandarizado ni para las personas ni paras las filiaciones.

(a) Ejemplo con tres extractos de tres publica-

ciones diferentes donde se ha publicado bajo el

nombre del BIFI.

(b) Ejemplo con tres extractos de tres publica-

ciones diferentes donde ha participado la misma

persona.

Figura 1: Ejemplos extraidos de WoS.

En la Figura 1 se presenta un caso para personas y otro para filiaciones. En primer lugar, en

la Figura 1b podemos ver un ejemplo de una misma persona que ha trabajado en tres art́ıculos

cient́ıficos diferentes. Se observa cómo la forma de referenciar el nombre para la misma persona

es distinta en cada uno de los casos.

Por otra parte, en la Figura 1a se muestran tres extractos de art́ıculos cient́ıficos donde una

de las filiaciones participantes es el Instituto de Biocomputación y F́ısica de Sistemas Complejos
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(BIFI). Vemos que, aunque para un humano es casi inmediato identificar el BIFI en los tres

casos, la cadena de texto completa en la que aparece dicha filiación es totalmente distinta, lo

que dificulta hacer esa identificación de manera automatizada.

El objetivo de este trabajo es que, dado un conjunto de art́ıculos cient́ıficos, seamos capaces

de identificar de manera uńıvoca las filiaciones que han participado en cada uno de dichos

art́ıculos, independientemente de cómo los autores o revistas hayan reflejado las mismas.

Para conseguir este objetivo, descargaremos un conjunto de art́ıculos cient́ıficos desde la base

de datos de Web of Science (WoS), y estandarizaremos la información de cada art́ıculo obteniendo

para cada autor su nombre y la filiación con la que ha firmado. Se dispondrá también de un

maestro de filiaciones, el cual no es más que un repositorio o base de datos con información

estandarizada paras las filiaciones nacionales, el cual nos servirá como referencia a la hora de

identificar las diferentes filiaciones.

El resultado de este trabajo es la base para poder hacer estudios más profundos sobre la

producción cient́ıfica de las diferentes filiaciones y personas, aśı como de las relaciones entre

ellas.

En la segunda sección se explicará toda la cadena operativa para poder conseguir este objeti-

vo, con sus diferentes partes. Se explicarán los distintos algoritmos desarrollados y las diferentes

etapas de la cadena. En la tercera sección nos centraremos en los modelos matemáticos utilizados

para resolver el problema y las pruebas realizadas. Por último, en la cuarta sección tendremos

un apartado de conclusiones donde se hará un resumen de los resultados obtenidos, aspectos a

mejorar, y posibles v́ıas de continuación en el futuro.

2. Formulación

El problema a resolver consiste en conseguir, dado un art́ıculo cient́ıfico, identificar de manera

uńıvoca tanto los autores que han participado en él, como las filiaciones de los mismos.

En la Figura 2 se muestra un ejemplo t́ıpico extráıdo de WoS de la información que se dispone

para un art́ıculo cient́ıfico. En él tenemos información como el t́ıtulo, resumen o palabras clave,

además de lo que concierne al problema que queremos resolver, que son sus autores y filiaciones

correspondientes.

2.1. Cadena del proceso

Como se ha comentado, la finalidad de este trabajo es la correcta identificación de personas

y filiaciones. Para resolver este problema, se divide en tres grandes partes como se muestra en

la Figura 3. Lo que se hace en cada parte de esta cadena es:

1. Descarga. El repositorio bibliográfico WoS tiene un buscador avanzado1 donde se pueden

hacer búsquedas con diferentes criterios. Descargaremos art́ıculos entre 2019 y 2023 don-

de haya participado algún autor español (es decir, con al menos una filiación con valor

“Spain” el campo dirección) y con temáticas en “Physics, Mathematical”, “Engineering,

Mechanical”, “Computer Science, Artificial Intelligence”, “Radiology, Nuclear Medicine

& Medical Imaging”, “Psychology, Psychoanalysis”, “Nutrition & Dietetics”, “Language

& Linguistics”, “Clinical Neurology”, “Materials Science, Paper & Wood” y “Energy &

1Enlace al buscador: https://www.webofscience.com/wos/woscc/advanced-search
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Figura 2: Ejemplo de art́ıculo ciéntif́ıco. [1]

Fuels”. Posteriormente, se organizará la información en 4 tablas, una de personas, una de

filiaciones, una de art́ıculos y otra que contenga la relación entre estas tres anteriores.

2. Regularización. Como en muchos procesos se va a utilizar la distancia de Levenshtein como

métrica para comparar dos textos, es necesario hacer un proceso de depurado y norma-

lización sobre dichos textos a comparar que llamaremos “regularización”. Este proceso

se aplicará a los nombres y apellidos de personas, nombres de las filiaciones, y lugares.

Además, en el caso de los nombres y apellidos de personas, se dispondrá de un corpus de

nombres y personas obtenidos del INE2 el cual nos ayudará a corregir posibles erratas en

los nombres y apellidos. Para las filiaciones, se intentará extraer el tipo al que corresponde

a partir del propio nombre, en concreto las clasificaremos como Universidad, Hospital,

Facultad, Escuela, Instituto, Centro, Departamento. Se utilizará un tipo especial llama-

do Otros para aquellas filiaciones que no correspondan a ninguna de las clasificaciones

anteriores.

3. Unificación. En este punto se aplicarán diferentes algoritmos con el fin de ir unificando

tanto las personas como identificando las filiaciones contra el maestro mencionado ante-

riormente. Para las personas es muy interesante tener identificadas las filiaciones, pues a

2Disponible en https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=

1254736177009&menu=resultados&idp=1254734710990
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Méritos
Filiaciones regularizadas

Autores regularizados
Relaciones

Méritos
Filiaciones identificadas

Autores unificados
Relaciones

Méritos
Filiaciones

Autores
Relaciones

WoS
Regularización UnificaciónDescarga

Figura 3: Visión a alto nivel de la cadena completa para resolver el problema.

la hora de compararlas es una información muy útil saber si dos personas han trabajado

en la misma filiación o no. Para filiaciones también es útil tener las personas unificadas,

pues una misma persona, al firmar diferentes art́ıculos, puede escribir la misma filiación

de diferentes formas.

2.2. Maestro de filiaciones

Para tener un marco de referencia de filiaciones, dispondremos de lo que llamaremos un

maestro de filiaciones. En él se dispondrá de diferente información para cada filiación como

son diferentes formas de escritura del nombre, su ubicación o ubicaciones geográficas y también

relaciones de dependencia de padres e hijos, esto es, dada una filiación, tendremos las relaciones

con las filiaciones de las que depende, o las filiaciones que dependen de ella. Por ejemplo, dada la

Universidad de Zaragoza, tendremos como hijos todas sus facultades, departamentos y centros

que dependan de ella. De la misma forma, para un departamento de la Universidad de Zaragoza,

tendremos que es de la Universidad de Zaragoza. Nótese que el nombre de una universidad

es suficiente para identificarla, pero el nombre de un departamento o facultad no, ni siquiera

conociendo la ciudad a la que pertenecen, ya que puede haber dos filiaciones de este tipo con

el mismo nombre en el mismo lugar que no sean la misma por pertenecer a dos universidades

diferentes. Por tanto, en los casos de facultades y departamentos es necesario dar también la

universidad a la que pertenecen, pues “Facultad de Ciencias” es un nombre que se repetirá entre

las facultades de diferentes universidades.

2.2.1. Fuente geográfica

Una información útil para complementar la información de las filiaciones, es su ubicación

geográfica. En el caso de las filiaciones nacionales, cada una estará en uno o más municipios,

provincias y comunidad autónoma, como la UNED. Para ello se dispone de un catálogo de 253

páıses a nivel mundial. En el caso particular de España se dispone de municipios junto con su

provincia y comunidad autónoma proveniente del Instituto Nacional de Estad́ıstica (INE)3. Con

esto se construirá un corpus de lugares de forma que para cada lugar tendremos:

id lugar: Identificador del lugar.

tipo: Tipo de lugar, 0 páıs, 1 comunidad autónoma, 2 provincia y 3 ciudad.

Nombres: Lista de nombres del lugar.

3Datos disponibles en https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=

1254736177031&menu=ultiDatos&idp=1254734710990
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Nombres regularizados. Lista anterior, pero con el texto convertido a ASCII y en minúscu-

las.

Padres: Lista de identificadores de lugares con un nivel superior (siendo el 0 el superior de

todos)

Hijos: Lista de identificadores de lugares con un nivel inferior (siendo el 3 el inferior de

todos)

En total el corpus cuenta con 8455 registros, donde 253 corresponden a páıses, 19 a comu-

nidades autónomas, 52 a provincias y 8131 a municipios. Todos los municipios del corpus son

españoles. En la Figura 4 se muestra cómo se distribuyen estos municipios españoles entre las

provincias.
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Figura 4: Distribución del número de municipios por provincia en el corpus de lugares.

2.2.2. Maestro de filiaciones

El maestro de filiaciones contiene 17016 registros en total y todos son de ámbito nacional.

En la Tabla 1 se muestra cómo se distribuyen en las diferentes clasificaciones disponibles.

Este maestro de filiaciones es fruto del trabajo de Kampal a lo largo de los años. En él

hay una clasificación por tipo de filiación, se dispone de algunos acrónimos, CIFs e información

varia relacionada con cada filiación. Nótese que por filiación se entiende hasta un departamento

por śı solo como puede ser “Departamento de Métodos Estad́ısticos”. Junto a cada tipo hay

asignado un nivel, el cual hace referencia a una jerarquización de las filiaciones. Como nivel 0

tenemos los tipos universidad, hospital y otros. Como nivel 1 están las facultades, institutos,

centros y escuelas. Finalmente, como nivel 2 tenemos los departamentos. Esto tiene relación con

otra información que disponemos en este maestro, que son las relaciones entre filiaciones. Para

cada filiación tenemos cuáles son sus “hijos” y “padres”. Por ejemplo, para la Universidad de

Zaragoza, sus hijos serán todas las facultades, departamentos, centros, institutos y escuelas que

7



Tipo Número de filiaciones Nivel

Universidad 96 0

Hospital 81 0

Facultad 695 1

Instituto 618 1

Centro 1417 1

Escuela 467 1

Departamento 3319 2

Otros 11018 0

Total 17016

Tabla 1: Número de filiaciones por tipo y en total en el maestro de filiaciones. También se

muestra el nivel de la filiación, el cual hace referencia a la jerarquización de los diferentes tipos.

dependan de ella, mientras que para el Departamento de Métodos Estad́ısticos sus padres serán

la Facultad de Ciencias y la Universidad de Zaragoza.

Al ser éste un maestro completo con toda esta información, el objetivo del trabajo será

comparar las filiaciones que descarguemos de WoS contra éste y asignarlas contra una filiación

del mismo. Si no se encuentra ninguna filiación del maestro con suficiente evidencia de que sean

la misma, significará que la filiación que se quiere identificar no existe a nivel nacional o no es

ninguna de las que están el maestro.

2.3. Regularización de la información de los art́ıculos

La información que viene en cada art́ıculo tiene un formato que puede tener pequeñas va-

riaciones entre art́ıculos y de acceso no inmediato para nuestro problema. Es por ello que lo

primero será hacer un proceso que llamaremos regularización el cual consiste en estandarizar la

información en cada art́ıculo de forma que toda ella esté estructurada de igual forma.

En este trabajo emplearemos “PySpark”4, que es una herramienta extensamente utilizada

en el ámbito del “Big Data”. Esta herramienta incorpora lenguaje SQL y NoSQL, permitiendo

organizar la información en “dataframes”, los cuales se pueden ver como tablas en un esquema

de bases de datos relacional con la ventaja de que en sus atributos o campos se pueden incluir

estructuras de datos más complejas que en los lenguajes SQL incorporando funcionalidades

propias de lenguajes NoSQL.

Tras la descarga de los diferentes art́ıculos, se organizará la información en tres tablas con la

información de personas, art́ıculos y filiaciones respectivamente y una cuarta tabla adicional que

contenga la relación entre ellas. Para cada art́ıculo, se extraerán los autores que participan en

él, sus filiaciones y sus relaciones. Por ejemplo, en el art́ıculo mostrado en la Figura 2 tenemos

una primera persona con tres referencias a filiaciones, la segunda con dos, la tercera con una y la

cuarta con otras dos. De esta forma, este art́ıculo producirá un registro en la tabla de art́ıculos

y cuatro registros en la tabla de personas. En cuanto a las filiaciones, se introduce el concepto

de “participación”.

Una participación es una cadena completa que puede incluir una o varias filiaciones en ella

y que pueden tener relación entre ellas. Por ejemplo, la primera participación de la Figura 2 se

4Documentación disponible en https://spark.apache.org/docs/latest/api/python/index.html
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correspondeŕıa con la cadena de texto “Univ Zaragoza, Dept Econ, Zaragoza, Spain”. De esta

participación se generan dos registros en la tabla de filiaciones, uno para “Univ Zaragoza” y

otro para “Dept Econ”. Estos dos registros tendrán un identificador de la filiación único “f id”

y un identificador único de la participación “id part”. De esta forma, en el art́ıculo de ejemplo

hay cinco participaciones y cada una de ellas tiene dos filiaciones. La penúltima y última parte

de la participación son la ciudad y el páıs, por lo que no se incluyen como filiaciones, sino que

se añaden como el lugar de esa participación.

A modo esquemático, se presenta en la Figura 5 el esquema relacional de la información para

los diferentes art́ıculos.

Figura 5: Esquema de las tablas que dispondremos con sus relaciones.

En este proceso de regularización también se procesa y enriquece la información para las

personas y filiaciones. En todo el proceso de regularización se convierten las cadenas de texto a

ASCII y minúsculas para una mejor comparación entre ellas. De forma particular para personas

y filiaciones se realiza lo siguiente:

Regularización de personas. Para las personas se realiza un proceso de regularización del

nombre. Este proceso consiste en corregir posibles erratas en los nombres y apellidos con

ayuda de un corpus de nombres y apellidos externo. Cada palabra en el nombre de la

persona se compara con este corpus para identificar si se trata de un nombre o un apellido

y corregir posibles erratas en el nombre. Para esto, se utiliza la distancia de Levenshtein5,

la cual es una distancia de edición. Esto permite corregir pequeños errores del tipo “Davod”

que debeŕıa ser “David” por ejemplo. Además, tener identificado el nombre en el corpus nos

ayudará en la unificación de personas, pues, por ejemplo, aunque “Antonio” y “Antonia”

tengan distancia de Levenshtein 1 por diferenciarse en una letra, sabemos que son nombres

completamente distintos.

También en este punto se extraerán las palabras que se corresponden al nombre y las que

se corresponden al apellido, además de las iniciales, pues puede haber casos como “Muñoz,

D.” donde no sabemos su nombre pero śı su inicial que es “D”.

Regularización de filiaciones. En este proceso, además de convertir el texto a ASCII y

minúsculas, se eliminan “stop words” y se intenta extraer una clasificación a partir de las

5https://en.wikipedia.org/wiki/Levenshtein_distance
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palabras que contiene la filiación. Si contiene palabras como “universidad”, “universitat” o

“university”, se clasifica como Universidad, y además, la palabra se reemplaza por “univ”

para poder hacer una mejor comparación en los siguientes procesos entre diferentes formas

de escritura. Lo mismo se hace para extraer la clasificación de Departamento, Facultad,

Instituto, Escuela o Centro, las cuales se abrevian como “dept”, “fac”, “inst”, “sch” y “ctr”

respectivamente. En la Tabla 2 se muestra la conversión de las palabras que se abrevian.

En el caso de los art́ıculos y algunas preposiciones, se eliminan de la cadena de texto.

Abreviatura Palabra maestra Equivalentes

univ Universidad panepistimio, univerzite, egyetemi, universi-

teit, haskola, univerzitet, universitario, uni-

versitaria, universite, universidade, universi-

tat, universidad, university, sveuciliste, uni-

versitate, univerzita, universitet, uniwersy-

tet, ollscoile, universita, universiteti, uniber-

tsitatea, agr-universitat

la, el, les, du, del, the, las, di, of, los, da, de,

a, y, en

ctr Centro center, centro, cntr, centre

politecn Politécnica politecnica, politecnico, polytecn

dept Departamento departamento, dep, depto, dpto, department,

departament

sch Escuela escuela, school, escola, colegio, xescuela

inst Instituto instituto, institute, institut, inst, insituto

fac Facultad facultad, faculty, facultat, xfacultad

hosp Hospital hospital, agr-hospital, hospitalaria, hospita-

lario

adm Administración administration, administracion, administra-

cio

inf Infraestructura infraestructure, infraestructura

fund Fundación fundación, fundation, fundacio, fundacion,

agr-fundacio, fundaciones

asoc Asociación asociación, asociacion, aso, asoc

bib Biblioteca biblioteca, biblio, bilioteca

ud Unidad unidad, ud, udad

Tabla 2: Abreviaturas utilizadas en la regularización de las filiaciones. Las palabras que se

encuentren en la columna “Equivalentes” se sustituyen la palabra en la columna “Abre-

viatura”.

Además, para las filiaciones contamos muchas veces con su ciudad y páıs, por lo que se

buscan estas ciudades y páıses en el corpus de lugares que tenemos usando también la

distancia de Levenshtein para identificarlas en cada filiación.
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2.4. Unificación de autores

Un autor publica art́ıculos en repetidas ocasiones bajo las mismas filiaciones, pero las es-

cribe de manera distinta, por tanto, unificar autores nos permitirá tener diferentes ejemplos de

escritura de una misma filiación.

Como se puede ver en la Figura 1b una misma persona ha escrito su nombre como “Molina,

J-A”, “Alberto Molina, J.” ó “Molina, Jose Alberto”. Mediante los algoritmos de regulariza-

ción implementados, somos capaces de extraer y estandarizar la información de estos nombres,

dividiéndolo en iniciales, nombres y apellidos.

Nombre de entrada Iniciales Nombres regularizados Apellidos regularizados

Karakas, S. Pinar sp [(0,pinar)] [(1,karakas)]

Aguado-Linares, P p [] [(0,aguado),(0,linares)]

Cuadrado, Jrge Pérez j [(0,jorge)] [(0,perez),(0,cuadrado)]

Tabla 3: Ejemplo del funcionamiento de la regularización de nombres de personas. Se convierte

el texto a ASCII en minúsculas, se extraen las iniciales del nombre, se corrigen posibles erratas y

se divide en nombres y apellidos. Los nombres y apellidos es una lista de duplas, donde el primer

elemento de la misma es un flag que significa que dicho nombre o apellido está fuera del corpus

de nombres y apellidos. 1 indica que el nombre está fuera del corpus y 0 que está contenido en

el mismo.

En la Tabla 3 se muestra un ejemplo de cómo funciona este algoritmo de regularización para

tener una idea más clara. El objetivo del algoritmo de regularización de nombres es estandarizar

la información para que toda tenga la misma estructura y sea más sencilla la comparación entre

personas. La información del nombre de una persona se divide en 3 grupos, las iniciales, los

nombres y los apellidos. Añadir las iniciales es necesario debido a que muchas veces los autores

escriben sus nombres acortados por la inicial, por lo que aunque no sepamos su nombre, śı

sabemos su inicial, lo cual es de ayuda. Los nombres y apellidos pueden ser uno o varios por

persona, por lo que se almacenan listas de nombres y apellidos. Además, al disponer de un corpus

de nombres y apellidos a nivel nacional extráıdo del INE, podemos corregir erratas y además

determinar si una cadena de texto se trata o no de un nombre o un apellido. Esto se puede

ver en la Tabla 3 en el último ejemplo. El autor ha escrito su nombre con una errata, poniendo

“Jrge” en lugar de “Jorge”, que se puede corregir gracias al corpus de nombres. En segundo

lugar, tenemos la cadena de texto “Pérez”, que por el lugar que ocupa, se podŕıa confundir con

un segundo nombre, sin embargo, de nuevo con la ayuda del corpus de nombres y apellidos,

determinamos que se trata de un apellido muy probablemente. Esto último en ocasiones no es

posible, pues hay nombres como “Mart́ın” que pueden ser un apellido perfectamente.

Por otra parte, gracias a la regularización de filiaciones y sus respectivos lugares, somos

capaces de recuperar con qué filiaciones ha firmado un autor y dónde, de esta forma, se añaden

como información a la persona una lista de filiaciones y otra de lugares. Los lugares obtenidos

tras el proceso de regularización están bien identificados contra el corpus de lugares disponible

y además a cuatro niveles, ciudad, provincia, comunidad autónoma y páıs. Para poder usar la

información de las filiaciones, primero se aplica el algoritmo presentado en 2.5.1 Identificación de

filiaciones con similaridad por distancia de edición que sirve para hacer una primera identificación

de las mismas.
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Además, existe la posibilidad de usar palabras clave las cuales vienen de la propia fuente.

Con todo esto se construyó un modelo que tiene estas 4 variables en un inicio: nombres

regularizados, lugares, filiaciones y palabras clave. Sin embargo, tras realizar diferentes pruebas

de distintos modelos, se decidió dejar de usar las palabras clave. El motivo es que no eran muy

relevantes en estos modelos, principalmente debido a que estas palabras clave provenientes de

WoS son muy espećıficas y no aportan mucha información a la hora de comparar dos personas

con dos art́ıculos distintos. Además, ralentizaban el proceso.

De esta forma, se decidió usar únicamente estas 3 variables, nombres regularizados, lugares y

filiaciones. Cada una de estas variables se subdivide en más, quedando la siguiente información

para cada persona:

Nombres regularizados (Lista).

• Iniciales (texto).

• Nombres (Lista de duplas, el primer elemento es un flag de si el nombre está en el

corpus o no y el segundo el nombre)

• Apellidos (Lista de duplas, el primer elemento es un flag de si el apellido está en el

corpus o no y el segundo el apellido)

Lugares (Lista).

• id ciudad (entero).

• ciudad (texto).

• flag ciudad: 1 si está desinformado, 0 si está informado (entero).

• id provincia (entero).

• provincia (texto).

• flag provincia: 1 si está desinformado, 0 si está informado (entero).

• id ccaa (entero).

• ccaa (texto).

• flag ccaa: 1 si está desinformado, 0 si está informado (entero).

• id pais (entero).

• pais (texto).

• flag pais: 1 si está desinformado, 0 si está informado (entero).

Filiaciones (Lista)

• id nivel 0 (entero).

• nivel 0 (texto).

• flag nivel 0: 1 si está desinformado, 0 si está informado (entero).

• id nivel 1 (entero).

• nivel 1 (texto).

• flag nivel 1: 1 si está desinformado, 0 si está informado (entero).

• id nivel 2 (entero).

• nivel 2 (texto).

• flag nivel 2: 1 si está desinformado, 0 si está informado (entero).
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2.4.1. Algoritmo de unificación

Para unificar personas se implementó un algoritmo que es común a todos los modelos que

presentaremos, la única diferencia es el modelo que calcula la distancia entre dos personas. Sea

un conjunto de N personas que deseamos unificar, no es viable calcular la matriz de todas las

distancias, ya que supondŕıa un cálculo de orden N2, y N va a ser un número alto ya que se

quieren analizar grandes cantidades de información. El alcance de este algoritmo es el de unificar

millones o decenas de millones de personas, que son las que participan en la producción cient́ıfica

a nivel nacional e internacional. Esto supone hacer una enorme cantidad de operaciones y además

un almacenamiento masivo de datos.

Dado un conjunto de N personas se sigue como procede.

1. Se inicializa la lista de salida de personas unificadas con la primera persona del conjunto.

2. Se lee la siguiente persona del conjunto de personas de entrada.

3. Se recorre la lista de personas unificadas de salida y se calcula la distancia entre la persona

de entrada y las personas de la lista de salida.

4. Se toma la menor distancia de todas junto con el identificador de la lista de salida que se

corresponda.

a) Si la distancia es menor que un umbral, entonces se consideran que son la misma per-

sona y se actualiza dicho registro de la lista de salida añadiendo el identificador de la

persona de entrada y combinando la información de ambas personas para posteriores

comparaciones.

b) Si la distancia es mayor o igual al umbral, entonces no se ha encontrado una persona

igual y, por tanto, se añade a la lista final de personas unificadas.

5. Se vuelve al segundo punto hasta recorrer todo el conjunto de personas de entrada.

6. Se devuelven los clústeres formados, esto es, las personas que se deben unificar entre ellas.

2.4.2. Unificación de autores con C

Los primeros modelos que se han probado están basados en un modelo elaborado en lenguaje

de programación C. El motivo de usar este lenguaje de programación es la eficiencia del mismo,

pues en lenguajes interpretados como Python la velocidad del algoritmo desciende considera-

blemente. Este modelo se basa en una media ponderada donde se calcula una distancia entre

nombres, otra entre lugares y otra entre filiaciones y se calcula una distancia final mediante la

fórmula

d =

∑
i∈V

βifidi∑
i∈V

βifi
(1)

donde V = {nombre, lugar,filiación} es el conjunto de variables, βi son los coeficientes asociados

a cada variable i, di son las distancias calculadas para cada variable i y fi es un flag que toma

valor 1 cuando esa variable i está informada y 0 cuando lo está, todo con i ∈ V . La introducción

de la variable fi es porque puede haber casos donde, por ejemplo, no tengamos la filiación de
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esa persona porque los algoritmos para detectar las filiaciones todav́ıa no han sido capaces de

detectar ninguna filiación.

No se entrará en detalles de cómo se calculan estas distancias, pues hay muchos detalles y se

podŕıa extender mucho la explicación. La base de la distancia en todos los casos es la distancia de

Damerau-Levenshtein, la cual se diferencia en que la transposición de dos letras tiene distancia

1 mientras que con la distancia de Levenshtein tendŕıa distancia 2. En orden de optimizar el

tiempo del cálculo de la distancia, para los lugares y las filiaciones, no se tiene en cuenta el texto

de las mismas, sino los identificadores correspondientes. Cuando se comparan dos ciudades,

provincias, comunidades autónomas, páıses o filiaciones entre niveles iguales, se toma distancia

0 si ambos identificadores son el mismo, y distancia 1 si no. De esta forma, la distancia entre,

por ejemplo, “palencia” y “valencia” es la misma que entre “palencia” y “zaragoza”, siendo 1

en ambos casos.

En el caso de la distancia entre los nombres śı se emplea la distancia de Damerau-Levenshtein

y ésta se normaliza por la longitud de la mayor cadena que se compara, aśı, la distancia de

Damerau-Levenshtein entre “ejemplo” y “examples” es de 4/8 = 0.5, pues la distancia de

Damerau-Levenshtein es 4 y la longitud máxima entre las dos cadenas es 8. Por otra parte,

se tienen en cuenta los flags asociados a los nombres, pues si dos nombres que se comparan

tienen el flag que indica que son nombres del corpus, hay una penalización en la distancia. La

distancia entre “mario” y “maria” no puede ser la misma que entre “mari” y “mario”. En ambos

casos la distancia es de 1/5 = 0.2, pero en el primer caso los dos son nombres del corpus y por

tanto sabemos que son diferentes, y en el segundo caso el primer nombre no está en el corpus y

seguramente se trate de una errata en el mismo. También se tienen en cuenta otros aspectos y

soluciones espećıficas a patrones encontrados en los datos donde la distancia no se corresponde

con lo esperado en un principio.

La distancia entre palabras clave, aunque finalmente se han desechado, se basaba en la

distancia de Levenshtein normalizada también.

2.4.3. Unificación de autores con redes neuronales

La distancia de Levenshtein tiene sus limitaciones para nuestro problema, pues es una distan-

cia de edición. En la actualidad, cuando se trata de analizar texto, se recurre a redes neuronales

capaces de extraer información ya no solo de una palabra, sino del contexto o resto de palabras

que la rodea. Los modelos de redes neuronales que tratan sobre texto son conocidos como mode-

los de procesamiento de lenguaje natural, en inglés Natural Language Processing (NLP). Estos

modelos de procesamiento de lenguaje natural se basan en la tokenización, la cual consiste en

dividir un texto en tokens. Existen diversas formas de tokenizar un texto, la primera forma que

se nos puede ocurrir es dividirlo por palabras, lo cual es una buena primera aproximación. Otra

opción podŕıa ser dividirlo por letras, pero esta tokenización generaŕıa much́ısimos tokens por

cada texto, y además los tokens que se generaŕıan no tendŕıan información semántica, por lo

que no es aconsejable. Los tokenizadores también se pueden ajustar para que capturen cuál es

la mejor manera de tokenizar un texto. Un ejemplo de tokenización es

“This is how tokenization works”: [“this”, “is”, “how”, “token”, “##ization”, “works”].

En este ejemplo, además de dividir el texto en palabras, también se parte la palabra “toke-

nization” en “token” y “ization”, las dos # sirven para indicar que dicho token se ha partido del
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texto anterior. Esto tiene sus ventajas, pues, por ejemplo, en otra palabra como “polarization”

ocurriŕıa lo mismo dividéndolo en “polar” y “ization” y en la palabra “tokenize” se divide en

“token” y “ize”. Vemos aśı como este tokenizador es capaz, de forma aproximada, de dividir

palabras en lexemas y morfemas, lo que le dota de un mayor entendimiento del lenguaje en śı.

Figura 6: Esquema de la arquitectura de un Transformers. Figura extráıda de [2].

Para poner en contexto la arquitectura de los modelos que hemos usado en este proyecto,

vamos a hacer primero un pequeño repaso hablando de los Transformers. Los Transformers son

una arquitectura de redes neuronales presentada en 2017 por Vaswani et al.[2]. Esta arquitec-

tura se descompone principalmente en dos bloques, un codificador (encoder) y un decodificador

(decoder). El codificador convierte la secuencia de entrada, texto, a una representación interna

en forma de vector. El decodificador, toma esta representación interna y genera una secuencia

de salida, la cual se convierte a texto de nuevo. La clave de esta arquitectura es su mecanismo

de atención Multi-Head Attention que permite al modelo determinar qué partes de la secuencia

de entrada son relevantes para cada token en la secuencia de salida. De manera visual, en la

Figura 6 se muestran estos dos bloques con su mecanismo de atención.

A partir de la salida de los Transformers, Google desarrolló en 2018 un modelo de repre-

sentación del lenguaje llamado BERT[3], siglas de Bidirectional Encoder Representations from

Transformers, el cual proviene del codificador del Transformers. La caracteŕıstica de este modelo

es su bidireccionalidad. Otros modelos, como GPT, siglas de Generative Pre-trained Transfor-

mers, el cual proviene del decodificador del Transformers y que hoy en d́ıa es ampliamente

conocido desde la salida de chatGPT, son unidireccionales. Mientras que en modelos como GPT

solo se tienen en cuenta los tokens a la izquierda de uno mismo, en BERT se tienen en cuenta

tanto los tokens a la izquierda como los que tiene a la derecha. Por tanto BERT lee el texto en

ambas direcciones, lo que permite capturar relaciones complejas y dependencias entre palabras

distanciadas en el texto.

Al introducir un par de frases en BERT, en primer lugar, se tokeniza cada una de las frases y

saca el embedding de cada token. El embedding es un vector que representa a dicho token, el cual

es propio de cada modelo de BERT y depende de cómo se haya preentrenado. También añade

un embedding para cada frase. Esto es una forma de que BERT sepa dónde empieza y termina

cada una de las frases. Podŕıa ser el embedding de la primera frase un vector de todo 0 y en la
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segunda frase un vector de todo 1, por ejemplo. Como BERT por śı solo no tiene información de

la posición de cada token en el texto, se añaden embeddings que dan información de la posición

del token en el texto. De forma adicional, BERT utiliza tres tokens especiales para esta tarea.

Para cada token de entrada, se suman el embedding del propio token, del segmento y de la

posición para generar un embedding final. En la Figura 7 se muestra un ejemplo con las frases

“my dog is cute” y “he likes playing”.

Figura 7: Representación de la entrada en BERT. Los embeddings de entrada son la suma de los

embeddings de los tokens, los embedding de los segmentos y los embeddings de posición. Figura

extráıda de [3].

La arquitectura que usaremos en este trabajo se basa en BERT usando redes siamesas. En

2019 Nils Reimers e Iryna Gurevych sacaron una nueva arquitectura sobre la de BERT llamada

Sentence Transformers o SBERT[4]. En los Sentence Transformers se añade una capa de pooling

para generar un embedding de tamaño fijo de la frase, llamado vector semántico. En nuestro

caso será un vector semántico de 512 componentes. El pooling, o agrupación, se puede hacer de

diferentes formas, en nuestro caso será la media de todos los embeddings generados por el modelo

BERT para una frase, aunque se podŕıa tomar el embedding de salida del token CLS. Para hacer

un ajuste fino y entrenar el BERT, se genera una red siamesa, es decir, una red compuesta de dos

copias de la red las cuales comparten los coeficientes, para poder aśı generar vectores semánticos

de forma que representen el texto de entrada y se puedan comparar textos mediante similaridad

coseno, es decir, mediante el producto escalar normalizado de estos vectores.

Figura 8: Arquitectura de los Sentence Tranformers en función del problema a resolver. En todas

las arquitecturas se tiene una red siamesa de BERT, se aplica una agrupación o pooling para

sacar un vector semántico y se comparan dichos vectores en función del objetivo del problema.

Figura extráıda de [4].
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En la Figura 8 se muestra la arquitectura para un Sentence Transformers. En problemas

en los que queramos comparar pares de frases, la arquitectura consta de dos redes siamesas de

BERT, a las cuales se introduce una frase de la pareja a cada BERT por separado. Para cada

frase se sacan los embeddings de cada token de entrada como en la Figura 7 y se le aplica el

pooling para sacar un vector semántico para cada frase, u⃗ y v⃗ respectivamente. En función del

problema, y la función de pérdida que se use en el entrenamiento, se opera con estos dos vectores

para ver cuánto de parecido o diferentes son. En este trabajo también emplearemos funciones

de pérdida que, en lugar de trabajar con parejas de frases, trabajan con ternas. Las ternas están

constituidas por una frase ancla, una frase positiva y una frase negativa. En este caso, en lugar

de usar redes siamesas, se usa una triple red, donde el esquema de la arquitectura es el mismo

que en las redes siamesas pero añadiendo una red BERT más y teniendo al final tres vectores

semánticos. En todos los casos, los pesos de las redes BERT son compartidos en toda la red

completa.

2.5. Identificación de filiaciones

El objetivo de estos procesos es que para cada entrada en la tabla de filiaciones de la Figura 5,

se añada una columna donde se recoja el identificador, o identificadores, de la filiación del maestro

presentado en el apartado 2.2 Maestro de filiaciones. De esta forma las filiaciones extráıdas del

WoS se habrán identificado de forma uńıvoca. Para este objetivo se emplearán dos estrategias

diferentes, la primera basada en una modificación de la distancia de Levenshtein para comparar

conjuntos de palabras6. En la segunda estrategia se emplearán redes neuronales de procesamiento

lenguaje natural con el objetivo de capturar de una mejor forma la información de dicha filiación.

2.5.1. Identificación de filiaciones con similaridad por distancia de edición

En el primer método para identificar filiaciones se usa como base la distancia de Levenshtein.

La distancia de Levenshtein7 es una distancia de edición que nos permite tener una métrica de

cómo de similares son dos cadenas de texto. Mide el número mı́nimo de operaciones para pasar

de una cadena de texto a otra siendo estas operaciones la inserción, eliminación o sustitución

de un caracter. Como las filiaciones suelen ser una de cadena de texto de unas pocas palabras,

en lugar de la distancia de Levenshtein como tal, se usará una distancia de Levenshtein “por

palabras” de forma que dadas dos listas de palabras, por ejemplo [“dept”,“health”,“care”] y

[“care”, “hlth”, “department”], encuentra la ordenación con menor distancia de Levenshtein sin

penalizar por mover de posición las palabras de la lista. En este caso se emparejaŕıa “dept” con

“department”, “care” con “care” y “health” con “hlth”, calculando las distancias de Levenshtein

de cada pareja para hacer un promedio con la longitud de dichas parejas.

En muchos casos, sobre todo a nivel de universidades, es suficiente con sacar la distancia

anterior, pues el nombre de las universidades no suele variar mucho entre firmantes. Sin embargo,

cuando tratamos de identificar facultades, centros, institutos, departamentos, hospitales u otras

filiaciones, el problema es más complejo. Las formas diferentes de escritura de una misma filiación

aumentan. Además, encontramos el problema del idioma, en ocasiones los investigadores, por

6Documentación de la libreŕıa de Python en https://github.com/rapidfuzz/Levenshtein
7Más información sobre la distancia de Levenshtein en https://en.wikipedia.org/wiki/Levenshtein_

distance
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ejemplo, escriben las filiaciones en español, otras veces en inglés, y minoritariamente en otros

idiomas como catalán, euskera, etc.

El algoritmo planteado para identificar las filiaciones es el siguiente:

1. De manera paralela se analiza cada participación con todas sus filiaciones.

2. Se hace una primera pasada buscando acrónimos y filiaciones de nivel 0 (universidades,

hospitales y otros).

2.1 Búsqueda de acrónimos mediante expresiones regulares. Si lo encontramos, se elimina

de la cadena. También se comprueba que el resto de la cadena se corresponda con la

misma filiación del acrónimo.

2.2 Búsqueda por distancia de Levenshtein filtrando por lugar y clasificación.

2.3 Si no se encuentra a nadie, búsqueda filtrando por lugar solamente.

2.4 Si no se encuentra a nadie, búsqueda filtrando por clasificación.

3. Se hace una segunda pasada buscando filiaciones de nivel 1 y 2 (facultades, institutos,

centros, escuelas, y departamentos) apoyándonos en lo encontrado en el punto 2.

3.1 Búsqueda por distancia de Levenshtein en filiaciones hijas de las filiaciones encontra-

das en el punto 2.

3.2 Si no se encuentra ninguna, búsqueda filtrando por lugar y clasificación.

3.3 Si no se encuentra ninguna, búsqueda filtrando por lugar solamente.

3.4 Si no se encuentra ninguna, búsqueda filtrando por clasificación.

La búsqueda se basa en calcular la distancia de Levenshtein “por palabras” de la filiación

con las del maestro que cumplan el filtro. Se toma la de menor distancia, y si está por debajo

de un umbral, se considera que son la misma filiación.

Comentar que este algoritmo se ha ido mejorando. Como grandes cambios se mencionan tres,

que posteriormente, en la sección 3.3.2 Identificación de filiaciones con similaridad por distancia

de edición, se compararan. En la primera versión, solo exist́ıa una pasada y se buscaban todo

tipo de filiaciones en la misma sin utilizar la información de las relaciones entre filiaciones del

maestro. En la segunda versión se añadieron las dos pasadas buscando primero filiaciones de

nivel 0, pues una vez identificadas estas filiaciones en la primera pasada, se usan las relaciones

entre filiaciones del maestro para acotar más la búsqueda. Esto es muy útil para facultades,

escuelas y departamentos, pues entre universidades se repiten los nombres y con la distancia de

Levenshtein podemos tener múltiples coincidencias para un mismo nombre y lugar. La tercera

mejora consistió en agregar como sinónimos al maestro de filiaciones los nombres traducidos al

inglés. Esto también ayudo a nivel de facultades y departamentos, pues “health science dept”

y “dept ciencias salud” tienen una distancia de Levenshtein grande entre śı, aunque realmente

referencian la misma filiación.

2.5.2. Identificación de filiaciones con redes neuronales

De igual manera que con la unificación de personas, se ha probado un modelo de Sentence

Transformers para calcular la similaridad entre dos filiaciones. El objetivo es desarrollar un

algoritmo similar al del apartado anterior para la identificación de filiaciones por distancia de
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edición, pero usando redes neuronales y, por tanto, adaptando el algoritmo a éstas. Los modelos

de redes neuronales que se usan son los mismos que los presentados en 2.4.3 Unificación de

autores con redes neuronales, donde están explicados.

En el apartado 3.3.3 Identificación de filiaciones con redes neuronales. Creación del algorit-

mo se exponen las diferentes versiones del algoritmo y diferentes pruebas realizadas con estos

modelos.

2.6. Métricas utilizadas

A lo largo de la resolución se medirán las eficiencias de los modelos probados con diferentes

métricas. En este apartado se explicarán dichas métricas.

El primer conjunto de métricas es propio de problemas de clasificación binaria. En estos

modelos tenemos una variable objetivo y que toma valor 0 ó 1 y es conocido. Los modelos

predicen el valor ŷ de esta variable.

ŷ

1 0

y
1 TP FN

0 FP TN

Tabla 4: Matriz de confusión. TP son los veraderos positivos, FN son los falsos negativos, FP

son los falsos positivos y TN son los verdaderos negativos.

Dependiendo de las cuatro opciones que hay, salen cuatro posibles casos englobados en lo

que se llama la matriz de confusión presentada en la Tabla 4. En nuestro contexto, el valor 1

representará cuando dos autores o dos filiaciones sean la misma y 0 cuando no. A partir de esta

matriz de confusión, usaremos las siguientes tres métricas más para medir la bondad de nuestros

modelos

Precision =
TP

TP + FP
Recall =

TP

TP + FN
F1 score = 2

Precision · Recall
Precision + Recall

. (2)

La primera, precision, mide cuánto acierta el modelo cuando predice ŷ = 1, mientras que el

recall o sensibilidad, mide cuántos casos con y = 1 acierta el modelo. A partir de estas dos, se

define el F1 score que no es más que la media armónica de precision y recall.

Los modelos que desarrollaremos, dados dos autores o dos filiaciones, devolverán un número

que medirá la distancia o similaridad entre ambos. Por tanto, será necesario poner un corte

sobre el cual por encima o debajo del mismo se considerará que ambas personas o filiaciones son

la misma, ŷ = 1, o distintas ŷ = 0. De esta forma, para un mismo modelo, será necesario hacer

un estudio para ver cuál es el mejor corte. De aqúı sale el concepto de curva ROC, Receiver

Operating Characteristic, la cual la construimos graficando el ratio de verdaderos positivos,

TP/(TP+FN), frente al ratio de falsos positivos, FP/(FP+TN), para diferentes cortes. De esta

curva podemos elegir el corte óptimo como el corte para el cual la diferencia entre el ratio de

verdaderos positivos y el ratio de falsos negativos es máxima, por ejemplo. También, se define

otra métrica a partir de esta curva ROC que es el área bajo la curva, AUC (Area Under the

Curve). Un modelo perfecto tendŕıa un AUC de 1, mientras que un modelo aleatorio donde

predijese ŷ = 1 o ŷ = 0 con igual probabilidad independientemente de la entrada tendŕıa un

AUC de 0.5. De esta forma, modelos con un AUC más cercano a 1 son mejores.
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El segundo conjunto de métricas está asociado a modelos de agrupación o clustering. En

nuestro contexto, tendremos un conjunto de N datos que están agrupados en K clústeres. Por

una parte, tendremos un vector y⃗ de N componentes donde cada componente tomará el valor

del clúster al que pertenece yi = k, i = 1, ..., N , k ∈ {1, ...,K}. Los algoritmos y modelos

desarrollados harán su predicción de agrupación ⃗̂y, donde pueden predecir un número diferente

de clústeres K̂, y mediante la comparación de estos dos vectores sacaremos diferentes métricas.

La primera métrica es el ARI, Adjusted Rand Index, el cual mide la similaridad entre dos

agrupaciones de clústeres considerando todas las parejas y contando parejas que están asigna-

das al mismo o diferente clúster entre el valor predicho y el real. Un valor de 1 significa una

concordancia perfecta. La segunda métrica es el NMI, Normalized Mutual Information, la cual

se basa en la información mutua cuantificando la información compartida entre un clúster pre-

dicho y otro real. De nuevo, el mejor valor es 1 al estar normalizada. La tercera métrica es la

homogeneidad. Se dice que un clúster predicho es homogéneo si en él contiene solo miembros

de un solo clúster de los reales. Para esta métrica es, por tanto, necesario conocer los clústeres

reales. Una homogeneidad perfecta tiene valor 1. La cuarta y última métrica es el ı́ndice de

Fowlkes-Mallows, FMI. Esta métrica se define como la media geométrica entre la precision y

recall definidos anteriormente. Este ı́ndice va de 0 a 1, siendo 1 el mejor valor.

3. Resolución

3.1. Análisis de los art́ıculos a analizar

Para poner a prueba los modelos desarrollados, se han descargado art́ıculos entre 2019 y 2023

donde haya participado algún autor español (con filiación española) y con temáticas en “Phy-

sics, Mathematical”, “Engineering, Mechanical”, “Computer Science, Artificial Intelligence”,

“Radiology, Nuclear Medicine & Medical Imaging”, “Psychology, Psychoanalysis”, “Nutrition

& Dietetics”, “Language & Linguistics”, “Clinical Neurology”, “Materials Science, Paper &

Wood” y “Energy & Fuels”. La idea es tener un conjunto de datos de diferentes años para que

se repitan las personas entre años, repartidos en diferentes temáticas y que no sea un volumen

excesivo con el fin de acortar tiempos para hacer pruebas.

Tras el proceso de regularización, donde identificamos el páıs de las filiaciones, descarta-

mos todas aquellas que no sean españolas para nuestros procesos. Tras este filtro, tenemos

53358 art́ıculos, 183989 personas, 114042 participaciones y 238878 relaciones art́ıculo-persona-

participación. Recordamos que una participación es una cadena completa donde puede haber

una o más filiaciones. De estas participaciones salen 292432 filiaciones.

En la Figura 9 se muestra un pequeño análisis del resultado de la regularización de personas.

En él se muestra la distribución de las diferentes estructuras encontradas en los nombres regula-

rizados, donde una estructura es la pareja (número de nombres, número de apellidos). Podemos

ver cómo lo más común es un nombre y un apellido, seguido de un nombre y dos apellidos. Se

observan también varios casos donde no tenemos el nombre pero śı uno o dos apellidos, aunque

la inicial del nombre śı que la tenemos aunque no se muestre en la gráfica.

Respecto a la filiaciones, en la Tabla 5 se muestran las clasificaciones de las de entrada

extráıdas en el proceso de regularización. Se observa cómo hay muchas filiaciones que están

categorizadas como “Otros”. En esta categoŕıa la casúıstica es muy grande, puede haber direc-

ciones como “Av Complutense 40”, unidades como “Alzheimers Dis & Other Cognit Disorders
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Figura 9: Distribución de las diferentes estructuras en los nombres regularizados de las personas.

Una estructura es la pareja (número de nombres, número de apellidos).

Unit” o incluso acrónimos como “CSIC”.

Tipo Frecuencia

Universidad 65687

Departamento 45125

Instituto 23573

Escuela 5327

Facultad 9033

Hospital 26336

Centro 11240

Otros 106111

Tabla 5: Distribución de los diferentes tipos de filiación en los datos a analizar extráıdos en el

proceso de regularización.

Comentar también que en el 94.0% de los casos se tiene la ciudad de la filiación. A nivel de

provincia, disponemos de ella en el 96.4% de los casos. Si disponemos de la ciudad y/o de la

provincia, también conocemos la comunidad autónoma.

3.2. Unificación de autores

En este apartado se comentan los modelos probados, cómo se han entrenado y qué resultados

han sacado.

3.2.1. Construcción de un conjunto de entrenamiento sintético

En el caso de las personas, debido al gran volumen de datos de entrada y la variabilidad que

los caracteriza, es muy dif́ıcil encontrar casos reales “de calidad”, esto es, casos dif́ıciles donde

poder valorar si los algoritmos funcionan bien o no. Si cogemos dos personas aleatorias, es muy

probable que sean claramente distintas, una se puede llamar “Pedro Gutierrez” y la otra “Marta

Godes”, trabajar en filiaciones diferentes, y estar en ciudades diferentes. Dicho de otro modo,

coger un dataset aleatorio en el que se produzcan suficientes casos de unificación implicaŕıa que

éste fuera demasiado grande para manejarlo de forma manual. Es por ello que se recurre a la

generación de un dataset sintético, esto es, lo creamos nosotros.
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La ventaja de un dataset sintético es que podemos generar tantos registros como queramos,

de manera que haya suficiente volumen de datos para hacer estad́ıstica y medir el funcionamiento

del modelo.

La estrategia para generar este dataset sintético es hacer ternas de personas. La primera,

llamada ancla (anchor en inglés), es la persona de referencia, la segunda es una persona con una

pequeña modificación de forma que se pueda considerar que es la misma persona que el ancla

(un caso positivo) y la tercera es una persona con una modificación tal que ya no se puedan

considerar la misma persona que con el ancla (caso negativo). El motivo de este enfoque es

conseguir hacer casos dif́ıciles, pues a partir de la misma persona podemos conseguir ejemplos

negativos que no sean tan obvios como si escogiéramos dos personas al azar.

De esta forma, se han desarrollado diferentes criterios para generar estos datos, intentando

plasmar los que utilizaŕıa un humano para hacer esta labor.

Para generar los casos positivos, se admite una y solo una de las siguientes modificaciones:

No cambiamos nada.

Añadir inicial. Tomamos el nombre de la persona ancla y le añadimos una inicial. “José

Ramı́rez” pasa a “José L. Ramı́rez”.

Añadir nombre. Añadimos un nombre a la persona ancla. “José Ramı́rez” pasa a “José

Lúıs Ramı́rez”

Reducimos el nombre. Esto es, cogemos el nombre y lo convertimos a una inicial “David

Pérez” pasa a “D. Pérez”.

Eliminamos el último nombre (en caso de que tenga más de uno). “Francisco José” pasa a

“Francisco”.

Eliminamos el último apellido (en caso de que tenga más de uno). “Pedro Mart́ınez Lor”

pasa a “Pedro Mart́ınez”.

Pasamos el primer apellido a último nombre. Esto es útil para el algoritmo en C el cual

utiliza los nombres regularizados. Para las redes neuronales este cambio será como no hacer

nada.

Cambiar el lugar. Cambiamos ciudad, provincia o comunidad autónoma aleatoriamente de

la persona.

Reducimos el lugar. Esto es, si tenemos informado hasta la ciudad, por ejemplo, dejamos

la ciudad desinformada. Se toma ciudad, provincia o comunidad autónoma aleatoriamente.

Cambiar filiación. Cambiamos aleatoriamente el nivel 0, 1 ó 2 de la persona.

Reducimos filiación. Igual que con el lugar, si sabemos una filiación de una persona has-

ta nivel 2 (departamento), lo dejamos hasta nivel 0 (universidad) por ejemplo. Se toma

aleatoriamente el nivel que se elimina.

Los casos negativos se pueden formar de dos maneras. Una de ellas es haciendo una variación

en el nombre con los cambios anteriores y una variación en el lugar o filiación con los cambios

anteriores también. La otra manera es hacer uno de estos cambios
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Cambiar nombre. “Pedro de la Rosa” pasa a “Antonio de la Rosa”

Cambiar iniciales (en el caso que no tenga nombre). “P. Bonilla” pasa a ”A. Bonilla”

Cambiar nombre pero mantener inicial. “Antonio López” pasa a “Ángel López”

Cambiar apellido. “Fernando Alonso” pasa a “Fernando Cuquerella”

Cambiar último apellido (si hay más de uno). “Rosa Grau Malrás” pasa a “Rosa Grau

Arenas”

De esta forma, se han tomado 40.000 personas aleatorias de las disponibles en nuestros datos

tras regularizar y se han hecho 5 ejemplos con cada una de ellas, por lo que se dispone 200.000

tripletas, lo que es un total de 200.000 casos positivos y 200.000 casos negativos. Se ha dividido

este conjunto en aproximadamente un 30% para validar, y el resto para entrenar. Al hacer esta

división se ha tenido cuidado de agrupar todas las tripletas que provienen de la misma persona

ancla para que todas estén en el mismo conjunto, o validación o entrenamiento.

3.2.2. Predicciones del dataset sintético sobre el modelo de C inicial

En primer lugar, analizaremos el funcionamiento del modelo en C inicial explicado en 2.4.2

Unificación de autores con C, con unos parámetros que veńıan de antemano y no se le ha realizado

ningún entrenamiento, sino que ha sido revisión humana la decisión de dichos parámetros. Para

ello se calculan las distancias entre las personas con el modelo en C con los parámetros por

defecto.
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Figura 10: Distribución de distancias sobre todo el dataset sintético utilizando el modelo de C.
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Figura 11: Curva ROC para el modelo de C inicial junto con diferentes matrices de confusión.

En la esquina superior izquierda la curva ROC. En la esquina superior derecha la matriz de

confusión para un corte de 0.16, el cual es el óptimo. Este corte óptimo se toma como el punto

para el cual la diferencia entre el ratio de verdaderos positivos y falsos negativos es máxima. En

la esquina inferior izquierda la matriz de confusión para un corte de 0.15. En la esquina inferior

derecha la matriz de confusión para un corte de 0.23. El corte refleja el umbral sobre el cual dos

personas se consideran la misma, de esta forma, si la distancia entre dos personas es menor al

umbral, se consideran la misma persona.

En la Figura 10 se muestra la distribución de las distancias obtenidas con este modelo con las

200.000 tripletas mientras que en la Figura 11 se muestra la curva ROC para este modelo de C

con los parámetros por defecto. Este modelo arroja un AUC de 0.882. En la Tabla 6 se dejan las

métricas de precision, recall y F1 score. Podemos ver que este modelo, usando el corte óptimo,

deja bastantes casos sin unificar que śı debeŕıa unificar, pero, por contra, las personas que son

distintas śı es capaz de discernirlas con claridad, por lo que, aunque deje personas sin unificar

es un modelo que no sobreunifica. Esto es muy importante para este problema, sobretodo en

etapas tempranas de la cadena. La sobreunificación conlleva a súper personas que acumulan

muchas entradas bajo un mismo identificador. Hay casos dif́ıciles que en etapas tempranas del

proceso no se quieren unificar, como por ejemplo, dos autores pueden ser “A. Tarancón” de la

Universidad de Zaragoza, localizado en Zaragoza ciudad y otro “A. Tarancón” de la Universidad

de Barcelona localizado en Barcelona. Con esta información es dif́ıcil discernir si estos dos autores

son el mismo o no, un humano podŕıa pensar que śı, que únicamente es una persona que se ha

movido de centro. Otra opción, en este caso la real, ya que es un caso que tenemos controlado,

es que sean personas distintas, pues en verdad la primera persona es “Alfonso Tarancón” y la
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segunda “Alberto Tarancón”. Si en una primera pasada se unifica erróneamente a estas dos

personas, se construye un autor con nombre “A. Tarancon” y filiaciones tanto la Universidad de

Zaragoza como la de Barcelona. Esto hace, por la forma acumulativa en la que está diseñado el

algoritmo, que si posteriormente vienen otras dos personas con el nombre bien, esto es “Alfonso

Tarancón” de la Universidad de Zaragoza y “Alberto Tarancón” de la Universidad de Barcelona,

ambas sean próximas a esta persona unificada con nombre “A. Tarancón” y podŕıamos terminar

con una persona con nombres “A. Tarancón”, “Alfonso Tarancón” y “Alberto Tarancón”, lo

cual seŕıa erróneo.

Se presentan también las matrices de confusión con cortes 0.15 y 0.23. El corte de 0.15 es

el corte que se utilizaba para este modelo hasta la fecha, podemos ver cómo el corte utilizado

finalmente está muy próximo y tiene unas métricas muy parecidas al óptimo que hemos obtenido

con el dataset sintético, por lo que podemos validar que el corte que se estaba usando hasta la

fecha era el mejor para este modelo.

El corte de 0.23 es un corte que se usa en etapas posteriores del proceso. Aqúı hemos expuesto

el algoritmo de unificación, pero no es el único en el que se usa este modelo. En etapas posteriores,

una vez se ha hecho una primera unificación de personas, resultan N personas unificadas con

varios art́ıculos en ellas, diferentes nombres, diferentes localizaciones y diferentes filiaciones.

En una etapa posterior pueden llegar M personas nuevas, estas personas nuevas se comparan

con las personas unificadas previamente, y si estamos hablando que comparamos entre años de

producción cient́ıfica a nivel nacional, lo más probable es que la gran mayoŕıa de personas nuevas

que lleguen ya estén en las personas unificadas previamente, por lo que se sube el umbral bajo

esta hipótesis. De nuevo, la finalidad de este dataset es tener una métrica sobre estos cortes que

son usados en producción para conocer su buen funcionamiento.

Corte Precision Recall F1 score

0.15 0.731 0.941 0.823

0.16 0.733 0.941 0.824

0.23 0.780 0.713 0.745

Tabla 6: Métricas de precisión, recall y F1 score para los diferentes cortes

3.2.3. Entrenamiento sobre el modelo de C con un modelo de regresión lineal

Lo primero que se planteó fue intentar mejorar el modelo ya existente que estaba hecho en C

para obtener unos mejores resultados. Para ello, se adaptó el código para que devolviese tanto

la distancia total como la distancia entre nombres, lugares y filiaciones. El modelo de regresión

lineal propuesto es

d = β0 + βnombrednombre + βlugardlugar + βfildfil + βflag filIflag fil (3)

donde βi con i ∈ {0, nombre, lugar, fil, flag fil} son los coeficientes del modelo, di con i ∈
{nombre, lugar, fil} son las distancias e Iflag fil es una variable binaria que toma valor 1 cuando

la persona tiene la filiación informada y 0 cuando no.

La introducción de la variable binaria es necesaria para contemplar esos casos en los que

no tenemos informada la filiación. En tales casos se pone dfil = 0 e Iflag fil = 1, de esta forma,

cuando comparamos información entre personas que no tienen filiación, añadimos el término

βflag fil como penalización haciendo que suba la distancia entre personas.
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Variable Coeficiente Desv. Est. p-valor

β0 -0.1432 0.011 7×10−38

βnombre 1.3586 0.004 0

βlugar 0.5157 0.002 0

βfil 0.6276 0.020 1×10−213

βflag fil 0.1836 0.011 4×10−61

Tabla 7: Valores obtenidos para los coeficientes βi con i ∈ {0, nombre, lugar, fil, flag fil} junto

con su desviación estándar y su p-valor para la regresión lineal.

En la Tabla 7 se muestran los coeficientes obtenidos tras entrenar. Los p-valores mostrados

están asociados al test de Wald, el cual evalúa si dichos coeficientes son distintos de 0. Su hipótesis

nula es, por tanto, que dicho coeficiente βi = 0. Como todos los p-valores son prácticamente 0,

se rechaza la hipótesis nula de que los coeficientes βi = 0 en todos los casos y confirmamos que

son estad́ısticamente significativos todos.

Nótese que todos los coeficientes son positivos, lo cual tiene sentido, pues a mayor distancia,

mayor se espera que sea la distancia total. También ocurre con el coeficiente asociado a si la

filiación está desinformada o no. Si no hay filiación, hay un término constante de 0.18 en la

distancia. También se ve cómo el coeficiente asociado a la distancia del nombre es el que tiene

mayor peso. Esto es esperable también, pues para determinar si dos personas son la misma o no

lo más importante es que el nombre sea muy parecido, si no, no son la misma.
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(a) Curva ROC y matriz de confusión para el

corte óptimo para el conjunto de entrenamien-

to del dataset sintético generado para el modelo

de regresión lineal. El corte óptimo es calculado

como la mayor diferencia entre el ratio de ver-

daderos positivos y el ratio de falsos positivos.
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(b) Curva ROC y matriz de confusión para el

corte óptimo para el conjunto de validación del

dataset sintético generado para el modelo de

regresión lineal. El corte óptimo es calculado

como la mayor diferencia entre el ratio de ver-

daderos positivos y el ratio de falsos positivos.

Figura 12: Curvas ROC y matrices de confusión para los subconjuntos de entrenamiento y

validación para el modelo de regresión lineal.

En la Figura 12 mostramos las curva ROC y matrices de confusión para el conjunto de

entrenamiento, Figura 12a, y el conjunto de validación, Figura 12b. El área bajo la curva es de

0.882 en ambos casos y podemos ver que los resultados entre entrenamiento y validación son

muy parecidos, lo que nos indica que no hay sobreajuste.
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Conjunto Corte óptimo AUC Precision Recall F1score

Entrenamiento 0.31 0.882 0.695 0.982 0.814

Validación 0.31 0.882 0.694 0.983 0.814

Tabla 8: Métricas sobre la matriz de confusión para el conjunto de entrenamiento y validación

del modelo de regresión lineal.

En la Tabla 8 se muestran el corte óptimo, área bajo la curva, precision, recall y F1 score para

el conjunto de entrenamiento y validación. Podemos ver como todas las métricas son idénticas

entre conjuntos, lo que indica que no hay sobreajuste. Comparándolo con el modelo anterior,

aunque el F1 score es parecido al corte óptimo para el otro modelo, vemos cómo la precision

baja mientras que el recall sube.

3.2.4. Entrenamiento sobre el modelo de C con un modelo de regresión loǵıstica

Otra manera de enfocar este problema es como un problema de clasificación, queremos de-

terminar si dos personas son la misma o no, lo que realmente es una variable de salida binaria.

Se decidió hacer una regresión lineal debido a que el código en C está preparado para hacer una

media ponderada, que se puede ver como una regresión lineal. En este apartado le daremos el

enfoque propio de un problema de clasificación binaria. De esta forma, se ajusta un modelo de

regresión loǵıstica el cual se formula como

log

(
P (Y = 1|X⃗)

P (Y = 0|X⃗)

)
= β0 + βnombrednombre + βlugardlugar + βfildfil + βflag filIflag fil (4)

donde X⃗ = (dnombre, dlugar, dfil, Iflag fil) son las mismas variables que las empleadas en la regresión

lineal e Y es la variable que determina si dos personas son diferentes (Y = 1) o son la misma

(Y = 0). Hacer hincapié en que Y = 1 significa que son distintas, pues, por analoǵıa con el

modelo anterior, Y = 1 seŕıa como tener distancia d = 1, lo que significa que las personas son

distintas.

Variable Coeficiente Desv. Est. p-valor

β0 -4.5542 0.090 0

βnombre 11.29 0.047 0

βlugar 3.25 0.018 0

βfil 4.37 0.161 3×10−162

βflag fil 1.42 0.089 5×10−57

Tabla 9: Valores obtenidos para los coeficientes βi con i ∈ {0, nombre, lugar, fil, flag fil} junto

con su desviación estándar y su p-valor para la regresión loǵıstica.

En la Tabla 9 se muestran los coeficientes obtenidos para el modelo de regresión loǵıstica junto

con sus desviaciones estándar y su p-valor. De nuevo, todos los coeficientes son estad́ısticamente

significativos y diferentes a 0. Además, vemos cómo todos los coeficientes son positivos, lo que

tiene sentido, pues un aumento en la distancia, o tener desinformada la filiación, implica que la

probabilidad de ser diferentes es mayor. También se ve cómo, de nuevo, el coeficiente asociado

al nombre es mucho mayor que los demás. La explicación es la misma que en el caso anterior, la
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distancia entre nombres juega un papel fundamental en determinar si dos personas son la misma

o no.
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(a) Curva ROC y matriz de confusión para el

corte óptimo para el conjunto de entrenamiento

del dataset sintético generado para el modelo de

regresión loǵıstica. El corte óptimo es calculado

como la mayor diferencia entre el ratio de ver-

daderos positivos y el ratio de falsos positivos.
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(b) Curva ROC y matriz de confusión para el

corte óptimo para el conjunto de validación del

dataset sintético generado para el modelo de

regresión loǵıstica. El corte óptimo es calculado

como la mayor diferencia entre el ratio de ver-

daderos positivos y el ratio de falsos positivos.

Figura 13: Curvas ROC y matrices de confusión para los subconjuntos de entrenamiento y

validación para el modelo de regresión loǵısitca.

En la Figura 13 mostramos las curva ROC y matrices de confusión para el conjunto de

entrenamiento, Figura 13a, y para el conjunto de validación, Figura 13b. El área bajo la curva

es de 0.882 y 0.883 respectivamente y podemos ver que los resultados entre entrenamiento y

validación son muy parecidos, lo que nos indica que no hay sobreajuste igual que en el caso

anterior.

Conjunto Corte óptimo AUC Precision Recall F1score

Entrenamiento 0.26 0.882 0.706 0.947 0.809

Validación 0.26 0.883 0.706 0.949 0.810

Tabla 10: Métricas sobre la matriz de confusión para el conjunto de entrenamiento y validación

del modelo de regresión loǵıstica.

Observamos en la Tabla 10 que las métricas obtenidas son muy parecidas a las del modelo

de regresión lineal y el modelo de C original, por lo que tampoco se ve una mejora clara sobre

el modelo base de C.

3.2.5. Ajuste fino sobre red neuronal utilizando una Contrastive Loss

En los siguientes apartados vamos a cambiar a modelos mucho más grandes de redes neuro-

nales. En todos utilizaremos un modelo de Sentence Transformer[4], en particular uno llamado

“distiluse-base-multilingual-cased-v1”8. La arquitectura y funcionamiento del mismo se detalla

en 2.4.3 Unificación de autores con redes neuronales.

8Link al modelo: https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1
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Utilizaremos el mismo dataset que los utilizados en los modelos de regresión lineal y loǵısti-

ca. En el apartado 2.4 Unificación de autores explicamos la información disponible para cada

persona. El modelo desarrollado en C utiliza identificadores en lugar de texto para los lugares y

las filiaciones, sin embargo, para estos modelos utilizaremos el texto correspondiente. A partir

del nombre regularizado se reconstruye el nombre en forma de texto de forma que siempre sea

el nombre seguido de los apellidos, esto es, aunque la persona firmara originalmente un art́ıculo

como “Ruiz, E.”, el nombre pasará a ser “e ruiz”. La estrategia en este caso es condensar al

máximo toda la información en un vector semántico de 512 componentes. Para ello, dada una

persona con diferentes nombres, lugares y filiaciones, se toma el nombre más frecuente y se

construye una frase para esa persona con

“nombre [placed in lugares] [working in filiaciones].”

nombre es el nombre más frecuente para esa persona. Si la persona tienes lugares asociados,

se concatena el nombre con la cadena “placed in lugares” donde lugares es una cadena que se

forma concatenando ciudad, provincia, comunidad autónoma y páıs. Si la persona tiene filiaciones

asociadas, se concatena la cadena “working in filiaciones” donde filiaciones es la cadena formada

concatenando la filiación de nivel 0, nivel 1 y nivel 2. En caso que dicha persona tenga varios

lugares o filiaciones, se concatenan las mismas separándolas mediante comas.

Para verlo con ejemplos y que se entienda mejor, sea una persona llamada “Elisabet Llau-

rado”, con ciudad Reus y que trabaja en la Facultad de Medicina y Ciencias de la Salud de la

Universidad de Rovira i Virgili, su frase queda

“elisabet llaurado placed in reus tarragona cataluna espana working in univ rovira virgili fac

medicina ciencias salud”

Para una persona llamada “Roser Garćıa Armengol”, con ciudad Badalona y Barcelona y

sin filiación, la frase queda

“roser garcia armengol placed in badalona barcelona cataluna espana, barcelona barcelona

cataluna espana”

En el primer modelo utilizaremos una Contrastive Loss[5] o pérdida de contraste, esta pérdida

es ampliamente utilizada en el entrenamiento de modelos como Sentence Transformers, diseñados

para generar embeddings significativos para oraciones. El objetivo principal de la Contrastive

Loss en este contexto es asegurar que las personas iguales (parejas positivas) tengan vectores

semánticos cercanos, mientras que las personas diferentes (parejas negativas) tengan vectores

semánticos más distantes.

Para entrenar con esta pérdida, se utilizan pares positivos y negativos de personas. La frase

asociada a cada persona del par pasa por la red neuronal de Sentence Transformer para generar

su vector semántico, en nuestro caso de 512 componentes. Sean u⃗ y v⃗ los vectores semánticos de

dos personas, entonces la función de pérdida para la Contrastive Loss, LC , se calcula mediante

LC = (1− y)
1

2

(
D(u⃗, v⃗)

)2
+ y

1

2
(máx(0,m−D(u⃗, v⃗)))2 (5)

donde la D(u⃗, v⃗) es la distancia entre ambos vectores calculada como uno menos la similaridad

coseno

D(u⃗, v⃗) = 1− cos(u⃗, v⃗), (6)
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y es una variable binaria que toma valor y = 1 si la pareja es negativa e y = 0 si la pareja

es positiva, y m es un hiperparámetro llamado margen, el cual tomaremos como m = 0.5, que

modula cuánto de separados tienen que estar los casos negativos. Viendo la fórmula de pérdida,

vemos que para las parejas positivas, y = 0, el segundo término es nulo y la función de pérdida

aumenta conforme aumenta la distancia entre pares positivos. Por contra, para parejas negativas

y = 1 y el primer término es nulo. En este caso la función de pérdida aumenta siempre que la

distancia entre la pareja esté por debajo del margen m, en otro caso es nula.

De esta forma, con esta pérdida forzamos a que personas similares tengan vectores semánti-

cos similares, mientras que personas diferentes tengan vectores semánticos a distancia m como

mı́nimo en el mejor de los casos.
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Figura 14: Distribución de similaridades sobre el dataset sintético utilizando el modelo de Sen-

tence Transformers utilizando una Contrastive Loss. A la izquierda para el conjunto de entre-

namiento y a la derecha para el conjunto de validación.

Para el entrenamiento se toma el margen de 0.5, se entrenan dos épocas y se utiliza un batch

de 16. En la Figura 14 se muestra la distribución de distancias para el conjunto de entrenamiento

y el de validación. Podemos ver, en contraste con la Figura 10 donde presentamos la distribución

de distancias con el modelo de C inicial, como las distribuciones están más diferenciadas y

agrupadas sobre un valor central.

Se ve en la Figura 15 el resultado del entrenamiento y cómo quedan las curvas ROC y matrices

de confusión para los cortes óptimos para el subconjunto de entrenamiento, Figura 15a, y para

el subconjunto de validación, Figura 15b.

Las métricas sobre estos modelos mejoran respecto a los basados en C. En la Tabla 11

recogemos las métricas para el conjunto de entrenamiento y validación. Se observa cómo todas

las métricas tienen un pequeño aumento, indicando un mejor resultado del entrenamiento. El

resultado entre entrenamiento y validación no se ve tan parecido como ocurŕıa en los modelos

basados en C, lo que podŕıa indicar un cierto sobreajuste.
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(a) Curva ROC y matriz de confusión para el

corte óptimo para el conjunto de entrenamien-

to del dataset sintético generado para el modelo

de Sentence Transformers utilizando una Con-

trastive Loss. El corte óptimo es calculado como

la mayor diferencia entre el ratio de verdaderos

positivos y el ratio de falsos positivos.
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(b) Curva ROC y matriz de confusión para el

corte óptimo para el conjunto de validación del

dataset sintético generado para el modelo de

Sentence Transformers utilizando una Contras-

tive Loss. El corte óptimo es calculado como

la mayor diferencia entre el ratio de verdaderos

positivos y el ratio de falsos positivos.

Figura 15: Curvas ROC y matrices de confusión para los subconjuntos de entrenamiento y

validación para el modelo de Sentence Transformers utilizando una Contrastive Loss.

Conjunto Corte óptimo AUC Precision Recall F1score

Entrenamiento 0.73 0.992 0.973 0.933 0.953

Validación 0.73 0.974 0.934 0.887 0.910

Tabla 11: Métricas sobre la matriz de confusión para el conjunto de entrenamiento y validación

de la red neuronal de Sentence Transformer entrenado con la Contrastive Loss.

3.2.6. Ajuste fino sobre red neuronal utilizando una Triplet Loss

En este segundo ajuste, utilizaremos el mismo modelo que el anterior, un Sentence Trans-

former, pero en este caso utilizaremos una función de pérdida diferente llamada Triplet Loss[6]

o pérdida por ternas. La Triplet Loss es otra función de pérdida comúnmente utilizada en mo-

delos como Sentence Transformers para aprender representaciones semánticas de oraciones. A

diferencia de la Contrastive Loss, que trabaja con pares de ejemplos (positivos y negativos), la

Triplet Loss trabaja con ternas de ejemplos, un ancla (persona de referencia), un caso positivo

(persona similar al ancla) y un caso negativo (persona diferente al ancla).

El objetivo de la Triplet Loss es que la distancia entre el ancla y el caso positivo sea menor

que la distancia entre el ancla y el caso negativo. En este contexto, se explica también por qué

decidimos generar un dataset sintético de esta forma, ya que de esta forma somos capaces de

agrupar ternas dif́ıciles que el modelo aprende a diferenciar mejor que si le proporcionamos un

caso positivo y uno negativo por separado como veremos al comparar resultados entre modelos.

En la Figura 16 se muestra, de manera visual, cuál es el objetivo de esta función de pérdida.

Conforme vamos entrenando el modelo, el caso positivo se acerca al ancla y el caso negativo se

aleja, teniendo aśı el ancla y el caso positivo un vector semántico más parecido que el ancla y el

caso negativo.
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Figura 16: Esquema de funcionamiento de la Triplet Loss.

La fórmula para la función de pérdida Triplet Loss LT es

LT = máx
[
D (⃗a, p⃗)−D (⃗a, n⃗) +m, 0

]
(7)

donde a⃗ es el vector semántico de la persona de referencia o ancla, p⃗ es el vector semántico de

la persona para el caso positivo, n⃗ es el vector semántico de la persona para el caso negativo,

D(u⃗, v⃗) es la distancia definida igual que en el modelo anterior como 1 menos la similaridad

coseno y m, de nuevo, es un hiperparámetro llamado margen que modula la diferencia mı́nima

entre la distancia entre los vectores semánticos del positivo y negativo respecto al ancla para

que la pérdida sea cero, si la distancia es mayor que este margen entonces el función de pérdida

aumenta.

Para este modelo presentamos un ajuste de este hiperparámetro para que se vea cómo afecta

al entrenamiento. Para ello pondremos diferentes valores de este hiperparámetro y veremos su

efecto sobre la distribución de similaridades y las métricas.
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Figura 17: Comparativa de las distribuciones de la similaridad para el conjunto de entrenamiento

usando diferentes valores del hiperparámetro de margen m de la función de pérdida Triplet Loss.

En la Figura 17 se muestran las distribuciones de similariades sobre el conjunto de entrena-

miento entrenando el modelo fijando el valor del margen m a 0.1, 0.2, 0.3 y 0.7 respectivamente.

De manera visual, se ve el efecto de este hiperparámetro, se observa cómo al aumentar el margen,

el valor medio de las distribuciones para los casos positivos y negativos se separa, mientras que
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la dispersión de los mismos aumenta. En la Tabla 12 podemos ver esto numéricamente, donde

vemos cómo la desviación estándar aumenta al aumentar el valor del margen m, especialmente

en la distribución de los casos negativos. A su vez, se ve cómo aumenta también la diferencia

entre los valores medios de la distribución de casos positivos y casos negativos conforme aumenta

m.

Margen m 0.1 0.2 0.3 0.7

Casos positivos 0.89± 0.08 0.89± 0.09 0.88± 0.10 0.89± 0.11

Casos negativos 0.64± 0.11 0.51± 0.14 0.57± 0.14 0.50± 0.20

Tabla 12: Media y desviación estándar de las distribuciones de similaridades presentadas en la

Figura 17 para el conjunto de entrenamiento con diferentes márgenes m.

En la Tabla 13 vemos las métricas de estos modelos con los diferentes márgenes tanto para

el conjunto de entrenamiento como el de validación. Se puede ver cómo una mala elección de

este hiperparámetro conduce a un peor resultado en las métricas del modelo. Si nos fijamos en

el F1 score, que es la media armónica de precision y recall, observamos como m = 0.2 seŕıa

la mejor elección para nuestro problema. Una elección demasiado grande o pequeña de este

parámetro implica peores métricas. Esto se debe al solapamiento entre ambas distribuciones,

para valores demasiado pequeños de m, aunque la desviación estándar disminuya, las medias

de las distribuciones son más cercanas haciendo que haya un mayor solapamiento entre las

distribuciones. Por contra, con un valor de m alto, las medias entre las distribuciones se separan

más, pero como también aumenta la desviación estándar, resulta en que sigue aumentando el

solapamiento entre las distribuciones. Es en un punto medio donde se compensan estos efectos

que encontramos el valor óptimo de m.

Margen m Conjunto Corte AUC Precision Recall F1score

0.1
entrenamiento 0.73 0.961 0.954 0.776 0.856

validación 0.73 0.952 0.946 0.767 0.847

0.2
entrenamiento 0.73 0.989 0.949 0.940 0.945

validación 0.73 0.969 0.909 0.898 0.903

0.3
entrenamiento 0.73 0.963 0.925 0.861 0.892

validación 0.73 0.951 0.908 0.847 0.877

0.7
entrenamiento 0.73 0.962 0.905 0.879 0.892

validación 0.73 0.947 0.882 0.859 0.870

Tabla 13: Métricas obtenidas para el mismo dataset de entrenamiento pero con diferentes valores

del hiperparámetro de margen m usando la función de pérdida Triplet Loss.

Finalmente, tomamos como margen m = 0.2 y analizamos los resultados sobre este modelo.

En la Figura 18 mostramos las curvas ROC y matrices de confusión para el conjunto de en-

trenamiento y validación respectivamente. Tanto en las gráficas como en la Tabla 14 vemos un

comportamiento parecido al modelo anterior con la Contrastive Loss, por lo que a priori no hay

ninguna mejora sobre el anterior.
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Figura 18: Curvas ROC y matrices de confusión para los subconjuntos de entrenamiento y

validación para el modelo de Sentence Transformers utilizando una Triplet Loss.

Conjunto Corte óptimo AUC Precision Recall F1score

Entrenamiento 0.73 0.989 0.949 0.940 0.945

Validación 0.73 0.969 0.909 0.898 0.903

Tabla 14: Métricas sobre la matriz de confusión para el conjunto de entrenamiento y validación

de la red neuronal de Sentence Transformer entrenado con la Triplet Loss.

3.2.7. Ajuste fino sobre red neuronal utilizando una Multiple Negatives Ranking

Loss

Como última prueba de entrenamiento, probamos otra función de pérdida llamada Multiple

Negatives Ranking Loss[7]. Esta función de pérdida es una variante de la pérdida de ranking,

diseñada para situaciones en las que se cuenta con un par de oraciones (una ancla y una positiva)

y se desea maximizar la similitud entre el par positivo mientras se minimiza la similitud con todas

las demás oraciones en el batch, tratándolas como negativas. La finalidad del entrenamiento

es que el modelo que genera los vectores semánticos de personas genere representaciones que

agrupen personas similares cerca unas de otras y separe personas diferentes en el espacio de

embeddings. Esta función de pérdida facilita este aprendizaje, aprovechando el hecho de que

en un batch de entrenamiento, los ejemplos que no son el par positivo pueden actuar como

negativos.
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La fórmula para la función de pérdida Multiple Negatives Ranking Loss LMNR es

LMNR = − log


exp (S(⃗a, p⃗))

N−1∑
j=1

exp (S(⃗a, v⃗j))

 (8)

donde a⃗ es el vector semántico de la persona ancla, p⃗ es el vector semántico de la persona

positiva, v⃗j es el vector semántico de las demás personas en el batch, consideradas negativas,

con j = 1, ..., N − 1, N es el tamaño del batch y S(u⃗, v⃗) es la similaridad coseno de los vectores

u⃗ y v⃗.
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(b) Curva ROC y matriz de confusión para el

corte óptimo para el conjunto de validación del

dataset sintético generado para el modelo de

Sentence Transformers utilizando una Multiple

Negatives Ranking Loss. El corte óptimo es cal-

culado como la mayor diferencia entre el ratio

de verdaderos positivos y el ratio de falsos po-

sitivos.

Figura 19: Curvas ROC y matrices de confusión para los subconjuntos de entrenamiento y

validación para el modelo de Sentence Transformers utilizando una Multiple Negatives Ranking

Loss.

En la Figura 19 vemos el resultado del entrenamiento con esta función de pérdida y en la

Tabla 15 las métricas asociadas al entrenamiento. A diferencia de los dos modelos anteriores, en

este el corte queda en 0.66, aunque las métricas quedan parecidas a las de los demás modelos.

Conjunto Corte óptimo AUC Precision Recall F1score

Entrenamiento 0.66 0.979 0.936 0.907 0.921

Validación 0.67 0.961 0.902 0.882 0.892

Tabla 15: Métricas sobre la matriz de confusión para el conjunto de entrenamiento y validación

de la red neuronal de Sentence Transformer entrenado con la Multiple Negatives Ranking Loss.
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3.2.8. Comparación entre modelos con un conjunto de personas real

En este apartado abordaremos una comparativa más exhaustiva sobre la diferencia en la

eficiencia de estos modelos. En primer lugar, reunimos las métricas mostradas en los apartados

anteriores en la Tabla 16 a modo de resumen. Recuérdese que en los tres primeros modelos

probados, basados en C, se calculan distancias mientras que en los tres modelos posteriores

hechos con Sentence Transformer se calculan similaridades. Se nota un salto en las métricas

entre los modelos basados en C y distancias y los modelos de redes neuronales basados en

Sentence Transformer y similitudes, siendo las redes neuronales ligeramente mejor sobre los

modelos basados en C.

Modelo Conjunto Corte óptimo AUC Precision Recall F1score

Modelo de C Todo 0.16 0.882 0.733 0.941 0.824

Regresión Lineal
Entrenamiento 0.31 0.882 0.695 0.982 0.814

Validación 0.31 0.882 0.694 0.983 0.814

Regresión Loǵıstica
Entrenamiento 0.26 0.882 0.706 0.947 0.809

Validación 0.26 0.883 0.706 0.949 0.810

Contrastive Loss
Entrenamiento 0.73 0.992 0.973 0.933 0.953

Validación 0.74 0.974 0.934 0.887 0.910

Triplet Loss
Entrenamiento 0.72 0.989 0.949 0.940 0.945

Validación 0.73 0.969 0.909 0.898 0.903

MNR Loss
Entrenamiento 0.66 0.979 0.936 0.907 0.921

Validación 0.67 0.961 0.902 0.882 0.892

Tabla 16: Métricas de los diferentes modelos probados sobre el dataset sintético generado. Los

tres primeros modelos son los que basan en el modelo de C y los tres últimos los modelos de

Sentence Transformers con las diferentes funciones de pérdida empleadas.

Sin embargo, someteremos a estos modelos a otro test para compararlos. Sobre los modelos

de regresión loǵıstica y lineal no se profundizó más, pues no presentaban una mejora sobre el

modelo de base de C. Para los modelos de redes neuronales, sabiendo que el modelo de C está

probado sobre casos reales y es un punto de referencia, se decidió probarlos sobre un conjunto

de personas reales. Para ello, se tomaron todos los ORCID de las 183989 personas españolas

presentes en nuestros datos. El ORCID, del inglés Open Researcher and Contributor ID, es

un código alfanumérico que identifica a un investigador. Es un identificador no único para un

investigador, pues el mismo investigador puede tener varios ORCID, aunque śı es cierto que dos

investigadores no pueden compartir ORCID. Se filtraron los ORCID que se repitiesen en al menos

dos personas distintas y se filtraron las personas que tuviesen alguno de esos ORCID. De esta

forma, de las 183989 personas que tenemos en los datos descargados, quedan 82404 personas que

tienen al menos un ORCID que se repita al menos dos veces entre todas las personas. Agrupando

estas 82404 personas por ORCID, resultaban en 18837 personas unificadas únicas. Esto significa

que, en media, cada persona unificada consta de 4.4 personas que se han unificado.

Por consiguiente, se aplicó el algoritmo desarrollado para la unificación de personas, tanto con

el modelo en C como con los tres modelos de redes neuronales de Sentence Transformers. En la

Tabla 17 se muestran los resultados obtenidos por cada modelo. Se observa que el modelo que se

acerca más al número de personas final es el modelo entrenado con la función de pérdida Multiple
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Modelo Nº personas ARI NMI Homogeneidad FMI

C 22513 0.949 0.992 0.999 0.950

CL 10820 0.129 0.899 0.833 0.247

TL 16698 0.733 0.973 0.959 0.749

MNRL 18826 0.926 0.990 0.988 0.927

Tabla 17: Métricas obtenidas al comparar los resultados de unificación de personas por los

diferentes modelos con las unificaciones esperadas por ORCID. El primer modelo es el modelo

de C, sin regresión lineal ni loǵıstica, los tres siguientes hacen referencia a las redes neuronales de

Sentence Transformer entrenadas con las funciones de pérdida de Contrastive Loss (CL), Triplet

Loss (TL) y Multiple Negatives Ranking Loss (MNRL) respectivamente.

Negatives Ranking Loss, mientras que los otros modelos tienden a sobreunificar, sobretodo el

modelo entrenado con la función de pérdida Contrastive Loss. Los modelos con mejores métricas

son el modelo de C y el modelo entrenado con la función de pérdida Multiple Ranking Loss.

Se observa cómo el modelo de C unifica menos, quedando más personas al final del proceso.

Esto es motivo del corte puesto a 0.16. Como se ha explicado ya, este modelo es sensible a la

etapa de unificación que nos encontremos, teniendo que ser conservadores en la primera pasada a

costa de unificar lo “evidente” y aśı ganar información de cada persona conforme se le atribuyen

diferentes art́ıculos con diferente información. Esto también se ve en la homogeneidad, donde

vemos que los clústeres formados con este modelo realmente son de personas que tienen que

estar en el mismo clúster. Por otro lado, el modelo con la función de pérdida MNRL se acerca

mucho al número de personas esperado por el ORCID, manteniendo unas métricas en los demás

indicadores muy parecidas al modelo de C.

Además, otro aspecto importante es la velocidad del proceso de unificación. Unificar estas

82404 personas de entrada con el modelo de C ha tardado 292 minutos, casi 5 horas con una

CPU Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz. Esto es debido a que este proceso de unifi-

cación es un proceso cuadrático donde conforme se van analizando personas en el algoritmo y

se va poblando la lista de salida de personas unificadas, cada vez hay que hacer más compara-

ciones. Para tener una idea, las 10000 primeras personas el algoritmo tarda 8 minutos, para las

20000 personas tarda 30 minutos, más del doble debido a la componente cuadrática. En este

sentido, el uso de redes neuronales junto con GPUs ayuda y mucho a optimizar en tiempo este

algoritmo. Unificar estas 82404 personas con las redes neuronales es cuestión de 5-10 minutos

en una GPU NVIDIA GeForce RTX 3060. El algoritmo es el mismo, pero aqúı la ventaja es que

toda la información de cada persona se almacena en un vector semántico de 512 componentes,

los cuales se precalculan antes de empezar el algoritmo, de forma que hacer una comparación

entre dos personas resulta en hacer únicamente una similaridad coseno de dos vectores de 512

componentes, mientras que en el modelo en C, para sacar la distancia de nombre, lugar y filia-

ción, se recorren todas las combinaciones de nombre, lugares y filiaciones respectivamente, y en

cada comparación, en el caso de nombres hay que calcular distancias de Levenshtein, lo que es

costoso computacionalmente.

Como conclusión, debido a que el modelo de C ha probado su eficiencia en otros proyectos,

no se tiene por qué descartar, ya que es un modelo más interpretable que ayuda a entender el

peso que tiene cada variable en la unificación de dos personas. Se pueden unir las virtudes de

ambos modelos, sacando candidatos a unificar con el modelo de red neuronal, para que aśı, la
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gran mayoŕıa de comparaciones necesarias en el algoritmo las haga la red neuronal, y calculando

una distancia final con el modelo de C para terminar de determinar si hay que unificar la pareja

candidata o no.

3.3. Identificación de filiaciones

3.3.1. Creación de un dataset manual

Para poder comprobar las mejoras sobre los algoritmos, se tomaron 55 participaciones y se

etiquetaron a mano. Recordamos que el concepto de participación es una cadena completa del

tipo “Univ Girona, Fac Sci, Dept Biol” la cual la dividimos por comas generando tres filiaciones,

en este caso, “Univ Girona”, ”Fac Sci” y ”Dept Biol”. De esta forma, de estas 55 participaciones

resultan 176 filiaciones. Cada una de estas filiaciones no se tiene por qué corresponder con una

filiación del maestro, pues puede ser algo que directamente no está en el mismo, como por ejemplo

una cadena tipo “unidad dermatologia”, o que tenga varias filiaciones en la cadena, como por

ejemplo “univ complutense madrid csic”, donde tenemos tanto la Universidad Complutense de

Madrid como el CSIC (Consejo Superior de Investigaciones Cient́ıficas). Los primeros casos, en

los que la filiación no se encuentre en el maestro, se etiquetarán como “Nada” y esperamos que

el algoritmo no asigne ninguna filiación del maestro a dicha filiación de entrada. En los segundos

casos, en los que hay más de una filiación en la cadena de texto, se espera que el algoritmo

identifique cada uno de ellos. Por este motivo, aunque en la entrada tendremos 176 filiaciones,

tenemos etiquetadas 194 filiaciones de salida como buenas.

Tipo de filiación Frecuencia en el conjunto de entrada

Universidad 49

Departamento 23

Instituto 20

Escuela 2

Facultad 18

Hospital 18

Centro 9

Otros 37

Tabla 18: Distribución por tipo de las filiaciones de entrada en el proceso

En la Tabla 18 se recogen los tipos extráıdos de la regularización para estas 176 filiaciones.

3.3.2. Identificación de filiaciones con similaridad por distancia de edición

En el apartado 2.5.1 Identificación de filiaciones con similaridad por distancia de edición se

explica el algoritmo utilizado para la identificación de filiaciones de manera más extensa. En este

apartado vamos a explicar tres mejoras sobre el algoritmo y cómo han afectado a los resultados.

además de un ajuste del mismo con el parámetro que tiene dicho algoritmo.

El algoritmo, para cada una de las participaciones, recorre las filiaciones que hay en la parti-

cipación y las compara contra el maestro de filiaciones. En las primeras versiones del algoritmo,

se haćıa una búsqueda por cada filiación, buscando en primer lugar acrónimos y seguidamente

comparando los nombres regularizados de la filiación de entrada y las del maestro. Para ir más
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rápido y reducir el número de comparaciones, se hacen filtros al maestro, bien sea por lugares

geográficos o por el tipo de filiación. El algoritmo tiene un único parámetro que es el corte c.

Este corte es tal que si la distancia entre dos filiaciones es menor al mismo, se consideran la

misma filiación. La distancia es calculada con una modificación de la distancia de Levenshtein

“por palabras” más adaptada al contexto de este problema, pues las cadenas a comparar son

largas.

En la primera versión del algoritmo no se estaba usando una información muy interesante

que disponemos en el maestro, que son las relaciones entre las filiaciones. Por ello, se actualizó el

algoritmo para hacer dos pasadas sobre todas las filiaciones de una participación. En la primera

pasada se trata de identificar filiaciones de nivel 0 como universidades y hospitales. La estrategia

es la misma, buscar por acrónimos y por distancia para esta primera pasada.

Lo que se añadió nuevo al algoritmo es hacer una segunda pasada usando la información de la

primera. Si detectamos una universidad en la primera pasada nos es de gran ayuda, pues cuando

estemos buscando por ejemplo una facultad, ya nos quitamos el problema de que hay varias

facultades, escuelas o departamentos con el mismo nombre pero en diferentes universidades, y

buscaremos primero entre dichas filiaciones “hijas”. De esta forma, este segundo algoritmo usa

la jerarquización de las filiaciones del maestro.

La tercera mejora vino a través de indagar en los datos de entrada. Se pudo observar que en

ocasiones las filiaciones estaban escritas en inglés, lo que dificulta la comparación por distancia

de Levenshtein, “dept ciencias salud” dista mucho de “health science dept”. Para solventar

estos casos, se añadieron al maestro de filiaciones las traducciones al inglés de los nombres

de las filiaciones. Para ello, se utilizó una red neuronal entrenada para la traducción9, cuyo el

modelo de traducción se llama “michaelfeil/ct2fast-opus-mt-es-en”, y el tokenizador es “Helsinki-

NLP/opus-mt-es-en”.
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Algoritmo jerarquizando con traducciones

Figura 20: Matrices de confusión para las diferentes versiones del algoritmo. A la izquierda la

primera versión del algoritmo, en el centro tras introducir la jerarquización y a la derecha tras

añadir las traducciones a las filiaciones del maestro. Todos los algoritmos se han ejecutado con

corte c = 0.15.

En la Figura 20 se muestran las matrices de confusión obtenidas para el algoritmo inicial, el

algoritmo jerarquizando añadiendo esta segunda pasada y el algoritmo jerarquizando tras añadir

las traducciones al maestro de filiaciones. Para sacar estas matrices de confusión se han tenido

en cuenta los siguientes criterios. Sea A el conjunto de filiaciones etiquetado a mano que se deben

9Enlace al repositorio: https://pypi.org/project/hf-hub-ctranslate2/
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asignar a una filiación de entrada y B el conjunto de filiaciones que ha asignado el algoritmo

a dicha filiación de entrada, entonces los verdaderos positivos son aquellas filiaciones en ambos

conjuntos y que no sean “Nada”, es decir, |A ∩B \ {“Nada”}|. Los verdaderos negativos serán los

casos donde “Nada” esté en ambos conjuntos |A ∩B ∩ {“Nada”}|. Los falsos positivos serán ele-

mentos que estén en B pero no en A y no sean “Nada”, esto es, |B \ {A ∪ {“Nada”}}|. Los falsos
negativos serán elementos que estén en A pero no en B y no sean “Nada” |A \ {B ∪ {“Nada”}}|.
Con estos criterios, se muestra en la Tabla 19 la precision, recall y F1 score para las diferentes

versiones del algoritmo. Se ve cómo las mejores métricas las obtiene el algoritmo nuevo con las

traducciones.

Algoritmo Precisión Recall F1score

Inicial 0.568 0.595 0.581

Jerarquizando sin traducciones 0.825 0.835 0.830

Jerarquizando con traducciones 0.856 0.861 0.859

Tabla 19: Resultados de los diferentes algoritmos, todos con corte c = 0.15.

El algoritmo tiene un parámetro que es el corte c por debajo del cual dos filiaciones se

consideran que son la misma o no. Para determinar el corte óptimo, se presentan las matrices

de confusión para tres pruebas en la Figura 21 con cortes de c ∈ {0.1, 0.15, 0.2}.
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Figura 21: Matrices de confusión para diferentes cortes c con el algoritmo jerarquizando con

traducciones. A la izquierda con corte c = 0.1, en el centro con corte 0.15 y a la derecha con

corte 0.2.

El corte óptimo sucede con c = 0.15 como podemos ver tanto en las matrices de confusión

como en la Tabla 20.

Corte c Precisión Recall F1score

0.1 0.810 0.820 0.815

0.15 0.856 0.861 0.859

0.2 0.830 0.826 0.828

Tabla 20: Resultados del algoritmo jerarquizando con traducciones con diferentes cortes c.

En la Figura 22 se muestra un estudio por tipo de los aciertos y fallos del algoritmo jerar-

quizando con traducciones y corte c = 0.15. Se observa cómo todas las universidades de entrada
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han sido asignadas correctamente al maestro. Las universidades normalmente es lo más sencillo

de detectar, pues su nombre no vaŕıa mucho entre español e inglés, tampoco tienen muchas for-

mas de escritura y también se pueden detectar mediante acrónimos. La mejora del algoritmo ha

afectado notablemente a departamentos, escuelas y facultades. El uso de la segunda pasada en

el algoritmo permite utilizar la información de la universidad, descartando facultades, escuelas

y departamentos que tienen el mismo nombre, e incluso lugar, pero son de diferente universidad.

Además, con el uso de las traducciones, también se consiguen asignar casos donde la filiación de

entrada estaba escrita en inglés.
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Figura 22: Aciertos y fallos por tipo de entrada usando el algoritmo nuevo con traducciones y

corte c = 0.15.

Por último, se ha ejecutado este algoritmo sobre los datos descargados de WoS. Recordamos

que disponemos de 114042 participaciones en las cuales encontramos 292432 filiaciones a asignar

contra el maestro.

En la Tabla 5 se muestran la distribución de estas 292432 filiaciones analizadas en los diferen-

tes tipos y en la Figura 23 se muestra el porcentaje de asignación para cada tipo. El porcentaje

de asignación más alto se obtiene para universidades, mientras que el más bajo es para el tipo

“Otros”. Este bajo porcentaje en el tipo “Otros” es de esperar, pues en dicha categoŕıa hay

filiaciones que realmente no lo son, como direcciones, unidades, grupos de investigación y demás

casúıstica. Para el resto de tipos vemos un porcentaje de asignación del 65-80% excepto por las

escuelas, que está en el 47%.
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Figura 23: Porcentajes de asignación para los diferentes tipos de filiación analizados.
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3.3.3. Identificación de filiaciones con redes neuronales. Creación del algoritmo

Los resultados obtenidos con el algoritmo anterior usando la distancia de edición han dado

muy buenos resultados, pero aun aśı exploramos el uso de utilizar una red neuronal para este

problema. Los modelos de redes neuronales probados son los mismos que los usados para la

unificación de autores, que son los Sentence Transformers. En el caso de las filiaciones solo

tendremos como variable el nombre de la propia filiación con diferentes formas de escritura que

podamos tener de la misma. La información como el lugar o la clasificación de la filiación se

usará con otros fines como se mostrará más adelante, pero la comparación entre dos filiaciones

se hará única y exclusivamente comparando los nombres de las mismas.

Vamos a utilizar el mismo modelo preentrenado usado para personas, “distiluse-base-multilingual-

cased-v1”, elaborando un algoritmo para identificar las filiaciones del dataset manual contra el

maestro de filiaciones. Con la ayuda del dataset etiquetado a mano, mediremos qué algoritmo

es mejor manteniendo el mismo modelo.

Recordamos que una participación es un conjunto de filiaciones que aparecen en la misma

cadena de texto. Como ejemplo para explicar los diferentes algoritmos desarrollados, tomaremos

la participación “univ zaragoza, inst biocomp & fisica sistemas complejos, fac ciencias, dept fis

teo”, la cual tiene filiaciones “univ zaragoza”, “inst biocomp & fisica sistemas complejos”, “fac

ciencias” y “dept fis teo”.

El primer algoritmo desarrollado consiste en comparar toda la participación contra el maes-

tro de filiaciones. Para ello, se toma cada filiación del maestro y se forman frases más largas

concatenando los nombres de una filiación con nombres de filiaciones que dependiesen de esta.

Por ejemplo, para la Universidad de Zaragoza se forman frases como “Universidad de Zarago-

za”, “Universidad de Zaragoza, Facultad de Ciencias”, etcétera. De esta forma, si la frase del

maestro más próxima a la participación de entrada es “Universidad de Zaragoza, Facultad de

Ciencias, Departamento de F́ısica Teórica”, hemos identificado tres filiaciones del maestro para

esa participación. Este es algoritmo llamado “Sin jerarquizar”.

En el siguiente algoritmo, llamado “Sin jerarquizar con expansiones”, consiste en incorporar

expansiones de algunas palabras. Usando la información en la Tabla 2, la cual es utilizada en

la regularización para abreviar algunas palabras para una mejor comparación por distancia de

edición, expandimos las palabras acortadas a la palabra maestra, pasando todos los “univ” a

“universidad” por ejemplo. El motivo de hacer esto es para ayudar a la comparación. Por cómo

está preentrenado el modelo, las abreviaturas como “dept”, “dpto.” o “dept.” no son comunes

para el tokenizador, lo que hace que al compararlos con palabras como “departamento” la

similaridad sea baja. En la Figura 24 se muestra un ejemplo de esto mismo. La similaridad

entre “departamento” y “department” es alta, aśı como la similaridad entre las abreviaturas

“dept”, “dpto” y “dept”. Sin embargo, la similaridad entre estas abreviaturas y “departamento”

o “department” es la misma que con la palabra “hospital”, que no tiene nada que ver con el

resto.

En el tercer algoritmo, llamado “Jerárquico con participaciones”, se incorpora el uso de los

niveles asociados a las clasificaciones de las filiaciones. Dada una participación, el proceso es

como sigue:

1. Búsqueda de nivel 0. Se toman las filiaciones de entrada de la participación y se comparan

con las filiaciones de nivel 0 del maestro.

2. Búsqueda de nivel 1. Se toman las filiaciones de entrada de la participación y se comparan
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Figura 24: Similaridades entre diferentes palabras con el modelo preentrenado “distiluse-base-

multilingual-cased-v1” de Sentence Transformers sin hacer ningún ajuste fino.

con las filiaciones de nivel 1 excepto escuelas y facultades del maestro.

3. Búsqueda por relativos. Se toma la participación de entrada. Para las filiaciones de nivel 0 y

1 encontradas en los anteriores puntos, construimos cadenas completas con sus filiaciones

hijas imitando lo que se hace en el algoritmo “Sin jerarquizar con expansiones” para

encontrar más filiaciones de nivel 1 y 2.

Para ponerlo en contexto, tomemos la participación de ejemplo nombrada al inicio. Ideal-

mente, en el primer paso, al tomar la filiación de entrada “univ zaragoza”, encontraŕıamos la

Universidad de Zaragoza en el maestro. En el segundo paso, al tomar la filiación de entrada “inst

biocomp & fisica sistemas complejos”, encontraŕıamos el Instituto de Biocomputación y F́ısica de

Sistemas Complejos en el maestro. Para el tercer punto, construiŕıamos las frases “Universidad

de Zaragoza, Facultad de ..., Departamento de ...” con las diferentes facultades y departamentos

de la Universidad de Zaragoza en el maestro, y encontraŕıamos que la participación de entrada

“univ zaragoza, inst biocomp & fisica sistemas complejos, fac ciencias, dept fis teo” coincide

con “Universidad de Zaragoza, Facultad de Ciencias, Departamento de F́ısica Teórica”, por lo

que habŕıamos encontrado la Facultad de Ciencias y el Departamento de F́ısica Teórica de la

Universidad de Zaragoza en el maestro.

El algoritmo anterior observamos que no funcionaba muy bien para los niveles 1 y 2, por

lo que descartamos la idea del punto 3 de usar toda la participación, usando en su lugar las

filiaciones, de ah́ı el nombre de “Jerárquico con filiaciones”. La modificación sobre el algoritmo

anterior está en el punto 3, donde ahora se compara cada filiación de la participación de entrada

con cada una de las filiaciones hijas de las filiaciones de nivel 0 y 1 encontradas en los puntos

anteriores. Aśı, en el punto 3, idealmente, al buscar “fac ciencias” en las filiaciones hijas de la

Universidad de Zaragoza en el maestro, encontraremos la Facultad de Ciencias de la Universidad

de Zaragoza, y lo mismo sucederá para el departamento.

La última mejora consiste en la búsqueda de acrónimos en la participación de entrada median-
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te expresiones regulares antes del primer paso, identificando aśı algunas filiaciones del maestro

que se usan en el último punto y eliminando dichos acrónimos del texto de la participación de

entrada.

En la Tabla 21 se muestran los resultados sobre el conjunto etiquetado a mano para los

diferentes algoritmos desarrollados. Se observa cómo cada actualización del algoritmo es una

mejora del mismo, siendo los cambios más notorios el uso de la jerarquización, dividiendo el

problema en búsqueda de filiaciones por niveles, y la búsqueda de acrónimos.

Algoritmo Corte óptimo TP TN FP FN Precision Recall F1 score

Sin jerarquizar 0.6 30 4 42 71 0.417 0.297 0.347

Sin jerarquizar

con expansiones

0.5 36 0 54 65 0.400 0.356 0.377

Jerárquico con

participaciones

0.9 38 7 6 63 0.863 0.376 0.524

Jerárquico con

filiaciones

0.8 54 6 42 47 0.563 0.535 0.549

Usando

acrónimos

0.95 56 8 16 45 0.778 0.554 0.647

Tabla 21: Resultados de diferentes algoritmos en orden cronológico de pruebas sobre el dataset

etiquetado a mano. El corte óptimo se ha tomado como el corte con el que el F1 score es máximo.

3.3.4. Identificación de filiaciones con redes neuronales. Ajuste fino del modelo

Una vez implementadas las mejoras presentadas en el apartado anterior para el algoritmo

de identificación de filiaciones, se optó por realizar un ajuste fino del modelo. Para ello, es

necesario un conjunto con el que realizar el ajuste fino del modelo. A continuación, se muestran

los resultados sobre dos conjuntos de entrenamiento diferentes.

Para generar el primer conjunto de datos, se usó exclusivamente la información disponible

en el maestro de filiaciones. Para todas las filiaciones del maestro tenemos al menos dos formas

de escritura de la misma, pues contamos con el nombre en español y la traducción en inglés,

y en ocasiones tenemos alguna adicional. De igual modo que en el conjunto de entrenamiento

sintético generado para autores, para filiaciones también se generaron ternas. Para generar cada

una de ellas, se elige una filiación del maestro al azar y se toman, aleatoriamente, dos formas de

escrituras del nombre de la filiación. La primera forma de escritura será el ancla y la segunda

el caso positivo. Además, con una probabilidad del 20% se desordenan las palabras del caso

positivo. Por ejemplo, si el caso positivo es “univ zaragoza”, se podŕıa cambiar a “zaragoza

univ”. Para escoger un caso negativo, se escoge otra filiación del maestro al azar y se toma una

de sus formas de escritura. Para la elección de esta otra filiación, se mantiene el tipo de filiación

con una probabilidad del 50% y el lugar de la filiación con un 50% también. La idea de esto es

que el caso negativo sea parecido al positivo. Por ejemplo, una terna podŕıa estar formada por

“univ barcelona” como ancla, “barcelona univ” como caso positivo y “univ autonoma barcelona”

como negativo si se mantienen el tipo y el lugar de la filiación para la búsqueda del caso negativo.

Con esta metodoloǵıa, se generaron alrededor de 100 mil ternas y se dividieron en 30% para

validación y 70% para el ajuste fino del modelo. Todas las ternas provenientes de la misma
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filiación ancla están en el mismo conjunto.
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Figura 25: Distribución de similaridades so-

bre el primer conjunto de entrenamiento sin

hacer un ajuste fino al modelo.

Corte óptimo 0.58

AUC 0.990

Precision 0.901

Recall 0.989

F1 score 0.943

Tabla 22: Métricas sobre el primer conjunto

de entrenamiento sin hacer ajuste fino al

modelo.

En la Figura 25 se muestra la distribución de similaridades sobre este conjunto generado con

el modelo sin realizar ningún ajuste fino. Se puede ver en la Tabla 22 como el modelo sin ajuste

fino ya tiene muy buenas métricas.

Para realizar el ajuste fino, se toma la función de pérdida Multiple Negatives Ranking Loss,

explicada en el apartado 3.2.7 Ajuste fino sobre red neuronal utilizando una Multiple Negatives

Ranking Loss. Se entrena el modelo una época, y se utiliza un tamaño de batch de 16. Observamos

cómo la forma de la distribución de similaridades cambia completamente tras el ajuste fino en

la Figura 26. Además, las métricas sobre dichas distribuciones son todav́ıa mejores que con el

modelo sin entrenar.
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Figura 26: Distribuciones de similaridad en el primer conjunto generado para entrenamiento y

validación tras el ajuste fino del modelo.

Conjunto Corte óptimo AUC Precision Recall F1score

Entrenamiento 0.59 0.996 0.972 0.993 0.983

Validación 0.48 0.994 0.931 0.993 0.961

Tabla 23: Métricas sobres los conjuntos de entrenamiento y validación tras el ajuste fino del

modelo

Tras realizar este ajuste fino, ponemos a prueba el modelo con el dataset etiquetado a mano.
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Para ello ejecutamos el algoritmo con diferentes cortes y vemos el rendimiento en cada uno de

esos casos. En la Tabla 24 se muestran los resultados. Guiándonos por el F1 score, vemos que el

mejor corte es 0.8 con un valor del F1 score de 0.708, lo cual es una mejora sobre el modelo sin

el ajuste fino, que teńıa un F1 score de 0.647.

Corte TP TN FP FN Precision Recall F1 score

0.05 78 0 160 23 0.328 0.772 0.460

0.10 78 0 160 23 0.328 0.772 0.460

0.20 78 0 154 23 0.336 0.772 0.468

0.30 78 0 148 23 0.345 0.772 0.477

0.40 78 2 140 23 0.358 0.772 0.489

0.50 76 3 113 25 0.402 0.752 0.524

0.60 75 6 83 26 0.475 0.743 0.579

0.70 73 7 51 28 0.589 0.723 0.649

0.80 69 8 25 32 0.734 0.683 0.708

0.90 59 8 19 42 0.756 0.584 0.659

0.95 55 8 18 46 0.753 0.545 0.632

Tabla 24: Métricas sobre el conjunto etiquetado a mano con diferentes cortes para el modelo con

el ajuste fino usando el primer conjunto de entrenamiento.

Analizando la Figura 26, observamos como el conjunto generado no tiene casos que den

información, pues el modelo ya es capaz de diferenciarlos bien de base. Por ello, se generó otro

conjunto para entrenar el modelo, pero esta vez buscando casos más dif́ıciles. Los nombres que

disponemos en el maestro están “correctamente” escritos, es decir, no contienen abreviaciones.

Sin embargo, las filiaciones que descargadas de WoS que entran al algoritmo generalmente están

abreviadas. En lugar de escribir “Departamento de Psicoloǵıa“ se suelen encontrar situaciones

como “psico dept”. Las abreviaturas, como se ha mostrado en la Figura 24, son un problema para

el tokenizador, pues no sabe de primeras que “dept” y “departamento” son parecidos. Aunque

se expanden algunas palabras que tenemos en la Tabla 2, la casúıstica es mucho más grande. Por

ello, se ha decidido generar otro conjunto de entrenamiento, pero esta vez empleando el algoritmo

presentado en 3.3.2 Identificación de filiaciones con similaridad por distancia de edición, de forma

que encontremos, mediante este algoritmo, formas de escritura de las filiaciones donde habrá

abreviaturas y por lo tanto una casúıstica más variada y compleja.

De esta forma, el procedimiento para generar este segundo conjunto de entrenamiento es

parecido al anterior. Se toma una filiación del maestro al azar. El ancla es una forma de escritura

de la filiación que proviene del maestro, el caso positivo es una forma de escritura que se ha

encontrado gracias al algoritmo de identificación por distancia de edición. El caso negativo se

escoge igual que antes, pero en el 90% de los casos la forma de escritura de la filiación negativa es

también una forma de escritura encontrada mediante el algoritmo de identificación de filiaciones.

De esta forma, se ejecutó el algoritmo de identificación de filiaciones mediante distancia de

edición sobre los datos descargados del WoS y posteriormente se generó este conjunto nuevo. En

este caso se generaron unas 58 mil ternas.

Se observa en la Figura 27 como la distribución de similaridades entre casos positivos y

negativos tiene mayor solapamiento con el modelo sin entrenar que con el primer conjunto de

datos generado. Esto también se ve en la Tabla 25 donde el F1 score es de 0.866 para este

46



0.0 0.2 0.4 0.6 0.8 1.0
Similaridad

0

1000

2000

3000

4000

5000

6000

Fr
ec

ue
nc

ia
Negativo (57810)
Positivo (57810)

Figura 27: Distribución de similaridades so-

bre el segundo conjunto de entrenamiento

sin hacer un ajuste fino al modelo.

Corte óptimo 0.55

AUC 0.960

Precision 0.779

Recall 0.976

F1 score 0.866

Tabla 25: Métricas sobre el segundo conjun-

to de entrenamiento sin hacer ajuste fino al

modelo.
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Figura 28: F1 score obtenido para diferentes cortes sobre el conjunto etiquetado a mano ha-

ciendo un ajuste fino al modelo con diferentes tamaños de batch con el segundo conjunto de

entrenamiento.

conjunto mientras que para el anterior era de 0.943.

El procedimiento para realizar el ajuste fino es el mismo que con el primer conjunto. En

esta ocasión, presentamos también una búsqueda del mejor tamaño de batch de entrenamiento,

pues por cómo funciona la función de pérdida Multiple Negatives Ranking Loss, este hiper-

parámetro es bastante relevante ya que modifica el número de casos negativos a positivos en el

entrenamiento.

En este caso, se han realizado diferentes ajustes finos al modelo modificando el tamaño de

batch a 16, 32, 64 y 128. Estos modelos, se han testeado sobre el conjunto etiquetado a mano

con diferentes cortes. En la Figura 28 se presenta el F1 score obtenido en cada caso. Para todos

los modelos, el mejor corte se encuentra en 0.9, donde el tamaño de batch no influye mucho

llegando todos los modelos a un F1 score similar. Sin embargo, podemos ver en el corte 0.6 como

el tamaño de batch śı que afecta bastante al entrenamiento del modelo.

El mayor F1 score se obtiene haciendo el ajuste fino con un tamaño de batch de 32 y corte en

el algoritmo de 0.9, donde el valor del F1 score es de 0.769. Con este conjunto de entrenamiento

hemos conseguido incrementar en 6 centésimas el F1 score máximo respecto entrenando con el

primer conjunto de entrenamiento.

Resulta interesante observar cómo ha quedado la matriz de similariades presentada en la
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Figura 24 tras realizar el ajuste fino del modelo. En la Figura 29 podemos observar que tras dicho

ajuste, las abreviaturas de las palabras son tan próximas a las palabras como entre ellas. De esta

forma, el modelo aprende que las abreviaturas “dept” o “dpto” son parecidas a “department”

o “departamento”, mientras que la palabra “hospital” ya queda como una palabra diferente al

resto.
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Figura 29: Matriz de similaridades para diferentes palabras usando el modelo con el ajuste fino

sobre el segundo conjunto de entrenamiento.

4. Conclusiones

En este trabajo se ha desarrollado una herramienta completa desde la descarga de art́ıculos

cient́ıficos de Web of Science hasta la creación de unas tablas maestras donde se unifican los

autores y se identifican las filiaciones. Para ello se han empleado tanto herramientas propias

del Big Data, como es PySpark para gestionar el volumen masivo de datos el cual incorpora

operaciones SQL y NoSQL, como herramientas de Inteligencia Artificial para los diferentes

algoritmos utilizados para la unificación de autores y la identificación de filiaciones contra un

maestro.

Se han explorado, tanto en la unificación de autores como la identificación de filiaciones, dos

herramientas distintas para resolver el problema. La primera usando una distancia de edición

como es la de Levenshtein, y la segunda utilizando modelos de redes neuronales con arquitectura

Transformers mucho más complejos que la distancia de edición, y que además se encuentran en

el estado del arte actualmente en cuanto a problemas de procesamiento de lenguaje natural.

En cuanto a la unificación de autores, exist́ıa un modelo previo en Kampal para comparar dos

personas. En este trabajo se ha desarrollado un modelo usando redes neuronales que obtiene unos

resultados muy similares, pero además, es mucho más rápido, siendo capaces de reducir el tiempo

de procesamiento de un conjunto de entrada de 82404 autores de 5 horas a apenas 5-10 minutos.

Esto es gracias a dos factores. El primero es poder condensar toda la información de una persona
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en un vector semántico, y el segundo es el uso de GPUs. Realizar una comparación mediante

distancias de edición en CPU es mucho más costoso en tiempo que hacer una similaridad coseno

entre dos vectores con una GPU ya que el cálculo se hace de manera paralela. Sin embargo,

debido a esta condensación de la información, es más dif́ıcil capturar algunos detalles como las

iniciales de un nombre que con la distancia de edición se captura mejor.

En cuanto a la identificación de filiaciones, se ha desarrollado un algoritmo usando distancias

de edición y otro utilizando modelos de redes neuronales. En este caso los resultados obtenidos

con el algoritmo basado en distancias edición han sido mejores que los obtenidos con el algoritmo

basado en redes neuronales. En el problema de unificación de autores comentamos que hay

detalles como las iniciales del nombre que pueden afectar al rendimiento del modelo. En este

caso nos encontramos con el problema de que hay muchas más formas diferentes de escritura

de una filiación por las posibles abreviaturas de palabras, orden de las mismas, aśı como por el

uso de diferentes idiomas, lo que complica todav́ıa más esta tarea. Como se ha mostrado, estas

posibles alteraciones, especialmente las abreviaturas, afectan al tokenizador del modelo.

Como posibles mejoras encontramos el disponer de un mejor conjunto de entrenamiento para

ambos problemas. En los dos casos el conjunto de entrenamiento con el que se realiza el ajuste

fino a las redes neuronales es generado a partir de casos sintéticos y no de casos reales. Es dif́ıcil

generar un conjunto de entrenamiento que disponga de toda la casúıstica y variedad que nos

encontramos entre los autores y filiaciones que se descargan deWeb of Science, por lo que trabajar

en mejorar estos conjuntos de entrenamiento es una ĺınea muy interesante para poder mejorar el

resultado de estos modelos. También se pueden estudiar el rendimiento de otros modelos, en este

trabajo nos hemos basado en el modelo preentrenado “distiluse-base-multilingual-cased-v1” de

Sentence Transformers, pero se podŕıa estudiar el uso de otros modelos también preentrenados

en los que quizá el tokenizador funcione mejor para estos problemas. Otra v́ıa de mejora consiste

en la utilización de modelos mucho más grandes como puede ser GPT-4, apoyándonos en él para

generar estos conjuntos de entrenamiento. Esta técnica se puede ver como un caso particular

de Profesor-Alumno, donde la idea es que a partir de un modelo más grande, como es GPT-4,

enseñar a un modelo más pequeño, como son los que usamos nosotros. El objetivo de esta técnica

es igualar los resultados del Profesor con un modelo más pequeño al tratarse de un problema

más concreto.
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