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Resumen

El tipo de Homotoṕıa Racional de un espacio topológico es una simplificación de su

tipo de homotoṕıa, donde todos los grupos son tensorizados por Q. Pese a esta pérdida

de información, estudiar el tipo de homotoṕıa racional tiene la ventaja de ser tratable

computacionalmente. Gracias a Sullivan, dado un espacio topológico X que cumple

ciertas propiedades, se sabe teóricamente como obtener su tipo de homotoṕıa racional,

via la construcción de un álgebra commutativa diferencial graduada, llamada el modelo

minimal de Sullivan de X. Este álgebra viene acompañada de un quasi-isomorfismo al

álgebra de cocadenas singulares de X, denotada por C∗(X), y nos permite establecer

una equivalencia categórica entre tipos de homotoṕıa racional de espacios y clases de

isomorfismos de modelos de Sullivan:{
Tipos de Homotoṕıa

Racional

}
⇔
{
Clases de Isomorfismos
de Modelos de Sullivan

}
En este trabajo se presenta un método efectivo para el cálculo del modelo minimal

de Sullivan de un espacio topológico simplemente conexo, aśı como una implementación

de dicho método en un sistema de álgebra computacional. Para ilustrar dicho métodos,

se incluyen algunos ejemplos concretos para diferentes espacios.

Abstract

The rational homotopy type of a topological space is a simplified version of the

homotopy type where all homotopy groups are tensored by Q. Despite the lost

information, rational homotopy has the advantage of being constructive. Due to

Sullivan, for a particular topological space X that satisfies some conditions, it is

known theoretically how to obtain its rational homotopy type via the construction

of a commutative differential graded algebra, called the Sullivan model of X. This

algebra is quasi-isomorphic to the normalized singular cochain algebra of X, C∗(X),

and it allows us to establish a categorical equivalence between homotopy types of spaces

and isomorphism classes of Sullivan models:{
Rational homotopy
types of spaces

}
⇔
{

Isomorphim classes of
minimal Sullivan models

}
In this work it is presented an effective method to compute the Sullivan minimal

model for a simply-connected topological space, and an implementation of such method

in a Computer Algebra System. In order to illustrate such method, examples of some

computations are included.
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1 Introduction

One of the most important aims of Topology is to determine when two topological

spaces are equivalent, i.e., if there exists a homeomorphism between them. There is

not any methodology to find this equivalence, but mathematicians have other tools to

narrow the problem down. It can be reformulated as follow: maybe we can not say

whether two topological spaces are equivalent, but if we find some essencial property

that defines one space, and this property is not met by the other, then we could say

that these two spaces are not equivalent. This kind of properties are called invariants,

and one of the main lines of research in topology is to find and characterize these

invariants. Algebraic Topology is the field of mathematics that uses algebraic tools to

extract properties of topological spaces.

r

(a) Sphere S2 (b) Torus T2

Figure 1.1: Example of two different topological spaces of dimension 2.

In Topology, it is said that two continuous maps are homotopic if one can be

“continuously deformed” into the other. Homotopy theory is the study of continuous

maps between topological spaces. The homotopy groups, i.e., the groups of equivalence

classes of homotopic continuous maps, is a topological invariant and can be used to

determine, for example, if two topological spaces are not topologically the same, i.e.,

it does not exist an homeomorphism between them.

The mathematical context of the work presented here belongs to the realm of

Rational Homotopy Theory [3, 4, 6, 8, 9]. As the name suggests, it is a branch of

Homotopy Theory, and it begins with the discovery by Sullivan in the 1960’s that

simply connected topological spaces and continuous maps between them can themselves

be rationalized, i.e., given a simply connected space X, it is possible to construct (via

rationalization) a space XQ, such that

H∗(XQ) = H∗(X;Q)

π∗(XQ) = π∗(X)⊗Q,
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and given a map f : X → Y between simply connected topological spaces, there exists

an induced map fQ : XQ → YQ. We say that f is called a rational homotopy equivalence

[6, p. 110-111] if one of the following (equivalent) conditions is satisfied:

• π∗(f)⊗Q is an isomorphism,

• H∗(f ;Q) is an isomorphism,

• H∗(f ;Z)⊗Q is an isomorphism,

• The rationalized map fQ : XQ → YQ is a weak homotopy equivalence.

The rational homotopy type of a topological space X is the homotopy type of XQ,

and the rational homotopy class of a continuous map between two spaces f : X → Y is

the homotopy class of fQ : XQ −→ YQ. Rational Homotopy Theory is then the study

of properties that depend only on the rational homotopy type of a space or the rational

homotopy class of a map. Despite the lost information (see Tables 1.1, 1.2), rational

homotopy has the advantage of being remarkably computational.

π4 π5 π6 π7 π8 π9 π10 π11 π12

S4 Z Z2 Z2 Z× Z12 Z2 × Z2 Z2 × Z2 Z24 × Z3 Z5 Z2

S5 0 Z Z2 Z2 Z24 Z2 Z2 Z2 Z30

S6 0 0 Z Z2 Z2 Z24 0 Z Z2

Table 1.1: A subset of the homotopy groups of the spheres S4, S5 and S6 .

π4 π5 π6 π7 π8 π9 π10 π11 π12

S4 Z 0 0 Z 0 0 0 0 0
S5 0 Z 0 0 0 0 0 0 0
S6 0 0 Z 0 0 0 0 Z 0

Table 1.2: A subset of the rational homotopy groups of the spheres S4, S5 and S6. In
red color are shown the groups where some information is lost due to rationalization.

The main contribution of Sullivan was that he found how to obtain the rational

homotopy type of a simply connected topological space X, via the construction of a

commutative differential graded algebra, called the Sullivan model of X. This result is

summarized in what is known as the main theorem of Rational Homotopy:

Theorem 1.1 (Fundamental theorem of Rational Homotopy). Let X be a

simply-connected topological space of finite type, with Sullivan model (ΛV, d). Then,

for every k ≥ 0, the bilinear pairing

< ·, · >: V k ⊗ πk(X) −→ Q,
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is non-degenerate, and

ϑk : V
k ≃−→ HomZ(πk(X),Q) ≃ πk(X)⊗Q

is an isomorphism of Q-vector spaces.

This algebra allows us to establish a categorical equivalence between rational

homotopy types of spaces and isomorphism classes of Sullivan models:{
Rational homotopy
types of spaces

}
⇔
{

Isomorphim classes of
minimal Sullivan models

}
.

In this work it is presented an effective method to build the minimal Sullivan model

of a given topological space X. Furthermore, it is presented a concrete implementation

in a Computer Algebra System and examples of different computations.

1.1 Goals

The aim of this work is the analysis, development and implementation of an effective

method for the computation of the Sullivan model of a topological space given as a

simplicial complex. In particular, the specific goals of this work are:

1. Understand the basis of Rational Homotopy Theory and how is defined the

Sullivan model of a topological space.

2. Review the state of the art about previous works on effective methods for the

computation of minimal Sullivan algebras.

3. Identify why these methods can not be applied in the context of Sullivan models

of topological spaces and propose possible solutions and adaptations.

4. Develop the mathematical tools needed for the computation of such Sullivan

models.

5. Implement an effective method in a Computer Algebra System in order to test

the algorithm.

1.2 Structure of the document

The document has been organized as follows: Chapter 2 contains all the mathematical

background needed for the development and understanding of the presented work.

In Chapter 3 is presented the effective method developed for the computation of

the Sullivan minimal model of a given topological space. In Chapter 4 are shown

some computations for different topological spaces. In Chapter 5 are presented the
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conclusions and future work. Finally, in Appendix I, as a way to show the complexity of

the output for some topological spaces, the generators of degree 3 and their differentials

of the minimal model of the K3 surface are listed, and in Appendix II, an example of

an element of the algebra APL(K) for the K3 surface is included.
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2 Background

In this section are included all the mathematical objects and algorithms previously

defined in the literature and needed for the develompent and understanding of the work

presented in the next section. For a more extensive description see [3, 4, 6, 7, 8, 10].

2.1 Simplicial Complexes

(For a more detailed description see [5]).

Consider a continuous map f : (X, x0) → (Y, y0) between pointed topological

spaces. This map is called a weak homotopy equivalence if the induced map

π∗(f) : π∗(X, x0)→ π∗(Y, y0)

is an isomorphism. The spaces X and Y have the same weak homotopy type if there

is a finite chain of weak homotopy equivalences

X ← Z1 → · · · ← Zn → Y.

A cellular model or CW model for a space Y is a CW complex X together with a weak

homotopy equivalence f : X → Y . It is known that every space Y has a CW model

and this model is unique up to homotopy equivalence. Two important theorems are in

the foundations of Rational Homotopy Theory:

Theorem 2.2 (Whitehead [9, p. 346]). If a map f : X → Y between connected

CW complexes induces isomorphisms π∗(f) : π∗(X, x0) → π∗(Y, y0), ∀n, then f is a

homotopy equivalence.

Theorem 2.3 (Whitehead-Serre [6, p. 94]). Let f : X → Y be a map between simply

connected spaces. Then the following assertions are equivalent for a subring R of Q:

• π∗(f)⊗Z R is an isomorphism

• H∗(f,R) is an isomorphism

In this work, instead of using CW models, for computational reasons, these

structures are replaced by simplicial complexes. Let us recall that a simplicial

complex X of dimension n is a construction made up of some building blocks called

simplices, glued together along common faces, that are simplices of lower dimension

(see Figure 2.1).
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(a) 0-simplex (b) 1-simplex (c) 2-simplex (d) 3-simplex

Figure 2.1: Building blocks for simplicial complexes.

A simplicial complex can be seen as a collection of simplices satisfying the following

properties:

• every n-simplex has exactly n+ 1 faces.

• every face of a simplex of X is in X, and

• the intersection of any two simplices of X, is either a face of each them or the

empty set.

These constructions are used to model topological spaces. In this model, an

n-simplex is homeomorphic to a disc of dimension n, Dn.

Because Rational Homotopy theory is built upon the construction of CW models

and its singular homology, two important theorems have to be mentioned in order to

validate the use of simplicial complexes for the purpose of this work.

The first theorem asserts the existence of a homotopy equivalent simplicial complex

Y for every CW complex X:

Theorem 2.4 ([9, p. 182]). Every CW complex X is homotopy equivalent to a

simplicial complex Y , which can be chosen to be of the same dimension as X, finite if

X is finite, and countable if X is countable.

The second theorem is important because it allows us to work with the simplicial

homology of a given simplicial complex X, as if we were working with the singular

homology, object used in [6] for the building of the Rational Homotopy Theory’s corpus:

Theorem 2.5 (Equivalence of Simplicial and Singular Homology [9, p. 128]). Given

a simplicial complex, X, the simplicial homology and the singular homology of X are

isomorphic.

Given a simply connected space X, a simplicial complex Y homotopy equivalent to

a CW model of such space, and combining Theorems 2.3 and 2.5, we can study the

rational homotopy type of X through Y .
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2.2 The Rational Homotopy Type of a Topological Space

Although the work presented here can be read from a pure algebraic point of view, its

motivation comes from Rational Homotopy. For completeness, we now present a brief

introduction to the rational homotopy type of a topological space, without getting too

deep into technical details. Let us begin with some definitions:

Definition 2.6. A simply-connected topological space X is called rational if π∗(X) is a

Q-vector space. A rationalization of a simply-connected space X is a map φ : X → XQ

to a simply-connected rational space XQ such that φ induces an isomorphism:

π∗(X)⊗Q ≃−→ π∗(XQ).

Two important theorems are those related to the existence and uniqueness of the

rationalization of a simply-connected space:

Theorem 2.7 (existence, [6] p.109). For each simply-connected space X there is a

relative CW complex (XQ, X) (with neither 0-cells nor 1-cells) such that the inclusion

φ : X ↪→ XQ is a rationalization.

Theorem 2.8 (uniqueness, [6] p.109). Let (XQ, X) be a cellular rationalization and

f : X → Y a continuous map to a simply-connected rational space Y . Then f extends

over XQ to a map f̂ : XQ → Y . This map is unique up to homotopy, i.e., any two

extensions of f are homotopic relative to X.

X

XCW × I

XCW
Q

XQ ≡

ϕX

µX

Figure 2.2: Building XQ as the gluing of X and XCW
Q through the cylinder of XCW .

Summing up, in order to rationalize a simply-connected topological space X, we

need to build a relative CW complex, (XQ, X), in such a way that the inclusion is a
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rationalization. In order to do that, let XCW be the cellular model of X. As XCW is

itself a CW complex, it is possible to build a (full CW ) rational space XCW
Q where the

inclusion µX : XCW ↪→ XCW
Q is a rationalization [6].

Given a simply-connected space X, a CW model of the space (XCW , ϕX), and a

rationalization of such model (XCW
Q , µX), the rationalization of X is the space

XQ = X
⋃
ϕX

(XCW × I)
⋃
µX

XCW
Q ,

where (xcw, 0) goes to ϕX(x
cw) and (xcw, 1) goes to µX(x

cw) (see Figure 2.2). The

inclusion i : X → XQ induces isomorphisms in homology with coefficients in Q, and

by Theorem 2.3, also it induces the isomorphisms π∗(XQ) = π∗(X)⊗Q.

The rational homotopy type of a simply-connected space X is the homotopy type

of XQ, and the rational homotopy class of a map between simply-connected spaces

f : X → Y is the homotopy class of fQ : XQ −→ YQ. By Theorem 2.3, we know

that rational homotopy groups and rational homology groups are invariants of the

rational homotopy type. Also, if two spaces X and Y are CW complexes, so are

their rationalizations and, due to Theorem 2.2, we know that the weak homotopy

equivalence is a homotopy equivalence in the category of CW complexes. For two given

CW complexes, X, Y , we can say that such spaces have the same rational homotopy

type if and only if there is a homotopy equivalence between their rationalizations:

XQ
∼=−→ YQ.

In Figure 2.3 are summarized the relations between spaces, maps and their

rationalizations:

XQ YQ

X Y

XCW Y CW

XCW
Q Y CW

Q

Rationalization
i

fQ

f

i

weak homotopy
ϕX

fCW

Rationalization µY

equivalences ϕY

µX

i

fCW
Q

i

Figure 2.3: Rationalization of spaces and maps.
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As it is mentioned at the end of the introduction, the main contribution of Sullivan

was to obtain the rational homotopy type of a simply connected topological space X,

via the construction of a commutative differential graded algebra, called the Sullivan

model of X. This algebra allows us to establish a categorical equivalence between

rational homotopy types of spaces and isomorphism classes of Sullivan models:{
Rational homotopy
types of spaces

}
⇔
{

Isomorphim classes of
minimal Sullivan models

}
.

In the next sections are introduced all the algebraic objects needed to define the

Sullivan minimal model of a topological space.

2.3 Graded Commutative Differential Algebras

Definition 2.9. A graded ring is a ring R where the additive struture is a direct sum

of abelian groups

R =
⊕
i

Ri

and, for such decomposition, the product satisfies that

Ri ·Rj ⊂ Ri+j.

Remark. Every ring R can be endowed with a trivial graded structure where R0 = R

and Ri = 0,∀i ̸= 0. For the rest of the chapter, let R be a commutative ring endowed

with the trivial graded structure. Typically, R = Z,Q,R.

Definition 2.10. Let M be an R-module. We say that M is graded if there exists a

family of R-modules {Mi}i∈Z such that M =
⊕

i∈ZMi. This decomposition is called a

grading of M . An element e ∈ M is said to be homogeneous if e ∈ Mi for some i. In

such a case, we say that e has degree |e| = i.

Example 2.11. Let M = R⟨e1, e2, e3⟩ be a graded R-module, where |e1| = 1 and

|e2| = |e3| = 2. Then, M = M1 ⊕M2, where M1 = R⟨e1⟩ and M2 = R⟨e2, e3⟩.

Definition 2.12. The tensor product of two graded R-modules M =
⊕

i Mi and

N =
⊕

j Nj is a graded R-module M ⊗N where

(M ⊗N)k =
⊕
i+j=k

Mi ⊗Nj.

The definition of the tensor product of two graded R-modules will be relevant later

in the definition of an R-algebra. In particular, it will be important to take into account

the case of the tensor product of a graded R-module by itself, M ⊗M .
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Definition 2.13. A differential in a graded R-moduleM =
⊕

i∈ZMi is a homogeneous

linear map d : M →M of degree k, that is, d(Mi) ⊆Mi+k, such that d2 = 0.

In this context, when k is negative we use subscript notation and when k is positive

we use superscript notation. Usually, k ∈ {−1, 1}. We call the family of pairs

{(Mi, di)}i∈Z (or {(M i, di)}i∈Z) a complex, where di : Mi → Mi−1 is the restriction

of d to Mi (analogously, d
i : M i → M i+1 is the restriction of d to M i). When k = −1

the complex is represented as

· · · ←−Mi−1
di←−Mi

di+1←−Mi+1 ←− · · · ,

and when k = 1 as

· · · −→M i−1 di−1

−→M i di−→M i+1 −→ · · · .

Example 2.14. Let M = R⟨e1, e2, e3⟩ be the graded R-module defined in the Example

2.11. Define the differential of the generators as:

d(e1) = 0,
d(e2) = e1,
d(e3) = e1.

Extending by linearity, the differential of any other element of M is defined (note that

d2 = 0).

Let {(Mi, di)}i∈Z be a complex as above. If no ambiguity arises, we will simply

denote it by (M,d). Note that the condition d2 = 0 implies Im di+1 ⊆ Ker di and

both are R-submodules of Mi. Analogously, for complexes with differential of degree

1, Im di−1 ⊆ Ker di. This motivates the following definitions.

Definition 2.15. The ith-homology group of a complex (M,d) with differential of

degree −1, is defined as the quotient R-module

Hi(M,d) :=
Ker di
Im di+1

. (1)

The elements of Ker di are called (ith-)cycles and the elements of Im di+1 are called

(ith-)boundaries.

Definition 2.16. The ith-cohomology group of a complex (M,d) with differential of

degree 1, is defined as the quotient R-module

H i(M,d) :=
Ker di

Im di−1
. (2)

The elements of Ker di are called (ith-)cocycles and the elements of Im di−1 are called

(ith-)coboundaries.
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Example 2.17. Let us compute the homology groups in Example 2.14. First, as M

does not have elements of degree lower than 1 or greater than 2, Hi = 0,∀i /∈ {1, 2}.
In order to obtain H1, we need to compute the kernel of d1 and the image of d2. It is

easy to see that Ker d1 = M1 and Im d2 = M1, so computing the quotient we obtain

that H1 = 0.

Let us see what happens with H2. As there are no elements of degree 3 in M , the

image of d3 = 0. On the other hand, the kernel of d2 is a submodule generated by

the element e2 − e3, so we have that H2 is generated by the equivalence class of this

element. Summarizing, the homology groups of M are:

Hi(M,d) =

{
R⟨[e2 − e3]⟩ if i = 2

0 otherwise

}
.

Definition 2.18. A graded R-algebra A is a graded R-module, together with an

associative linear map of degree zero

(A⊗ A)k −→ Ak

x⊗ y 7→ xy

that has an identity 1 ∈ A0. This map is called product and satisfies the following

property:

xy ∈ Ai+j, ∀x ∈ Ai, ∀y ∈ Aj.

Definition 2.19. A morphism ϕ : A → B of graded R-algebras is a linear map of

degree zero such that ϕ(xy) = ϕ(x)ϕ(y) and ϕ(1) = 1. Notice that a morphism of

graded R-algebas preserves the degree.

Example 2.20. Let M and N be the graded R-algebras

• M = R⟨x1, x2⟩ with |x1| = 1, |x2| = 2,

• N = R⟨y1, y2, y3⟩ with |y1| = 1, |y2| = |y3| = 2.

We can define the morphism φ of graded R-algebras as follows:

φ :M −→ N

x1 7→ y1

x2 7→ y2 − y3.

Definition 2.21. A graded commutative algebra is a graded algebra, A, where the

product satisfies the property:

xy = (−1)ijyx, ∀x ∈ Ai, ∀y ∈ Aj.

11



It is important to remark that this algebra is not commutative, but graded

commutative. Also, the property does not work for non-homogeneous elements, i.e

when one of the factors is not homogeneous.

Example 2.22. Let A = Q⟨a, b, c⟩ with |a| and |c| odds and |b| even. Consider now

the non-homogeneous element a+ b and the products (a+ b) · c and c · (a+ b). In that

case, notice that the commutative law does not work, since

(a+ b) · c = a · c+ b · c,
c · (a+ b) = −a · c+ b · c,

and it means that, in general

(a+ b) · c ̸= ±c · (a+ b).

Definition 2.23. A graded commutative differential algebra (or GCDA), A, over a

ring R is a graded R-algebra, A =
⊕∞

i=0 A
i, together with an R-linear map dA : A→ A

that satisfies the following conditions:

• d2A = 0,

• dA(x) ⊆ Ai+1, ∀x ∈ Ai,

• dA(xy) = dA(x)y + (−1)ixdA(y), ∀x ∈ Ai, ∀y ∈ A.

From now on, we will asume that R = Q.

2.4 The Sullivan Minimal Model of a GCDA

Definition 2.24. Let V =
⊕

p≥1 V
p be a graded Q-vector space. We denote by

ΛV = (
⊗

V )/I, where
⊗

V is the tensor algebra of V , and I is the bilateral ideal

generated by {v ⊗ w + (−1)ijw ⊗ v | v ∈ V i, w ∈ V j}, and with the grading induced

by the one in V .

Given W a subspace of V , ΛnW will denote the image of W⊗ n· · · ⊗W in ΛV , and

Λ≥iV will be
⊕

n≥i Λ
nV .

Notation. If e1, . . . , en are a basis of the vector space V , then
∧
(e1, . . . , en) will denote

the algebra ΛV .

Definition 2.25. A GCDA (A, d) is said to be a Sullivan algebra if A ≃ ΛV , for some

graded Q-vector space V , that satisfies the following property:
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• There exists a filtration

V =
∞⋃
k=0

V (k)

of graded subspaces

V (0) ⊆ V (1) ⊆ V (2) ⊆ · · · ⊆ V

such that

d : V (0)→ Q

and

d : V (k)→ Λ(V (k − 1))

for k ≥ 1.

Definition 2.26. A Sullivan algebra is said to be minimal if

Im d ⊆ Λ≥2V, ∀v ∈ V.

Definition 2.27. A Sullivan i-minimal model (M,φ) of a GCDA (A, dA) is a minimal

Sullivan algebra (M,dM) together with an i-quasi-isomorphism:

φ : M −→ A,

i.e., a morphism φ such that, the induced morphisms

φj : Hj(M)
≃−→ Hj(A), (3)

are isomorphisms for j ≤ i, and a monomorphism for j = i+ 1.

Definition 2.28. A Sullivan minimal model (M,φ) of a GCDA (A, dA) is a Sullivan

i-minimal model (M,dM) for all i.

2.5 Effective Method for the Computation of the Minimal
Model of a finitely generated GCDA

Some implementations of effective methods for the computation of the minimal model

can be found in the literature for the case of finitely generated GCDAs. In [7] an

algorithm for the computation of the entire minimal model of a given Sullivan algebra

(not necessary minimal) through chain contractions is presented. On the other hand,

in [10] the authors present an algorithm for the computation of the minimal model (up

to degree i) of a (general) finitely generated GCDA. This algorithm takes as input a

finite presentation of a connected GCDA A (i.e. all generators are of positive degree),

and it outputs a presentation of its minimal model M up to a given degree, together

with the morphism φ : M → A. In this work we are going to follow the approach of

the latter reference. The adapted method is described in section 3.4.

13



2.5.1 Limitations of these methods

If the given GCDA A has generators of degree zero, then the homogeneous parts of

the algebra could be infinite dimensional. Since this method involves linear algebra

computations on the homogenous parts of A, the method does not work for this kind

of algebras. The main motivation of this work is to adapt the method to overcome this

limitation.

2.6 The Graded Commutative Differential Algebra APL(K)

A simplicial object K with values in a category C is a sequence {Kn}n≥0 of objects in

C, together with C-morphisms:

∂i : Kn → Kn−1, 0 ≤ i ≤ n,

sj : Kn → Kn+1, 0 ≤ j ≤ n,

where the morphism ∂i (respectively, sj) is called the i-face (respectively,

j-degeneration), and satisfy the identities:

∂i∂j = ∂j−1∂i, i < j,
sisj = sj+1si, i ≤ j,

∂isj =


sj−1∂i, i < j,
id, i = j, j + 1,
sj∂i−1, i > j + 1.

(4)

A simplicial set is a simplicial object with values in the category of sets. One way to

think of simplicial sets is as simplicial complexes where we allow degenerated simplices

(that is, simplices where two or more vertices may coincide). In particular, we will

think of simplicial sets as models for topological spaces.

Given a simplicial set K, we will construct a GCDA, denoted by APL(K). The

minimal model of the topological space modeled by K is defined as the minimal model

of this algebra. In the next sections are presented all the elements needed for the

construction of this algebra.

2.6.1 The cochain algebra (APL)n

First, consider the free graded commutative algebra
∧
(t0, . . . , tn, y0, . . . , yn), where the

generators ti have degree 0, and the generators yj have degree 1. The differential d is

given by

d(ti) = yi,

d(yj) = 0.

14



The cochain algebra (APL)n is defined as the quotient:

(APL)n =

∧
(t0, . . . , tn, y0, . . . , yn)

⟨
∑

ti − 1,
∑

yj⟩
. (5)

Notice that this algebra is actually isomorphic to
∧
(t1, . . . , tn, y1, . . . , yn). That is, the

relations allow us to express t0 in terms of t1, . . . , tn and y0 in terms of y1, . . . , yn. After

eliminating t0, y0, the expression of each element is unique. However, it is sometimes

more convenient to use also t0, y0 to write certain formulas, so we will use one expression

or the other depending on the context.

2.6.2 The simplicial cochain algebra APL

We define now a simplicial object in the category of cochain algebras, called the

simplicial cochain algebra APL = {(APL)n}n≥0 as follows:

• For each n ≥ 0, the cochain algebra (APL)n is the one defined above.

• The face and degeneration morphisms are the unique cochain algebra morphisms

∂i : (APL)n → (APL)n−1, 0 ≤ i ≤ n,

sj : (APL)n → (APL)n+1, 0 ≤ j ≤ n,

satisfying

∂i(tk) =


tk, k < i
0, k = i

tk−1, k > i
, sj(tk) =


tk, k < j

tk + tk+1, k = j
tk+1, k > j

(6)

The structure of the simplicial cochain algebra APL can be visualized in figure

2.4, where horizontally is represented the simplicial structure for a given dimension

n (subscript), and vertically the graded structure of the algebra (representing the

degree p, with superscript). This object has a triangular structure due to the vanishing

of the elements when p > n.
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0 (APL)
0
0 (APL)

0
1 (APL)

0
2 (APL)

0
3 · · ·

0 (APL)
1
1 (APL)

1
2 (APL)

1
3 · · ·

0 (APL)
2
2 (APL)

2
3 · · ·

0 (APL)
3
3 · · ·

∂i

d0A

∂i

d0A

∂i

d0A

∂i

d0A

∂i

∂i

d1A

∂i

d1A

∂i

d1A

∂i

∂i

d2A

∂i

d2A

∂i

∂i
∂i

Figure 2.4: The structure of the simplicial cochain algebra (APL)n.

2.6.3 The cochain algebra APL(K)

Let K be a simplicial set, and let APL = {(APL)n}n≥0 be the simplicial cochain algebra

defined earlier. Then

APL(K) =
⊕
p≥0

Ap
PL(K)

is the cochain algebra defined as follows:

• The homogenous part Ap
PL(K) is the set of simplicial set morphisms from K

to Ap
PL. That is, an element Φ ∈ Ap

PL(K) is a mapping that assigns to each

n-simplex σ ∈ Kn, an element Φ(σ) ∈ (Ap
PL)n, satisfying

Φ(∂i(σ)) = ∂i(Φ(σ))
Φ(sj(σ)) = sj(Φ(σ))

(7)

• Addition, scalar multiplication, product and the differential are induced by the

corresponding operations in the algebras (APL)n.

The structure of the cochain algebra APL(K), at some general dimension n and degree

p, can be visualized in figure 2.5. the horizontal direction corresponds to the simplicial

structure for a given dimension n (subscript), and the vertical direction corresponds to

the graded structure of the algebra (representing the degree p with superscript). As the

simplicial cochain algebra (APL)n is at the ground of this structure, all the elements of

Ap
PL(K)n will vanish when p > n. This is because it is not possible to assign non-zero

polynomial forms of degree greater than the dimension of the simplices.
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...
...

...

· · · Ap−1
PL (K)n−1 Ap−1

PL (K)n Ap−1
PL (K)n+1 · · ·

· · · Ap
PL(K)n−1 Ap

PL(K)n Ap
PL(K)n+1 · · ·

· · · Ap+1
PL (K)n−1 Ap+1

PL (K)n Ap+1
PL (K)n+1 · · ·

...
...

...

dp−2
A dp−2

A dp−2
A

...

∂i

dp−1
A

...

∂i

dp−1
A

...

∂i

dp−1
A

...

∂i

...

∂i

dpA

...

∂i

dpA

...

∂i

dpA

...

∂i

...

∂i

dp+1
A

...

∂i

dp+1
A dp+1

A

...

∂i
...

∂i

Figure 2.5: The structure of the cochain algebra APL(K).
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3 Effective method for the computation of the

Sullivan model of a topological space

Here we will see how to adapt the algorithm mentioned in section 2.5 to the case of

the algebra APL(K) for a finite simplicial set K (a simplicial set is said finite if it has

a finite number of non degenerated simplices). Note that the method as it is cannot

be used in this case because each homogenous part has infinite dimension due to the

nature of the underlying cochain algebra (APL)n that has generators ti of degree 0.

For a given simplicial complex K, there exists a quasi-isomorphism of cochain

complexes
∮

: APL(K) → C∗(K) that will be explained in section 3.1. Figure 3.1

summarizes the relationships between these objects and the Sullivan model (M,φ).

The precise definition of these maps can be found in [6]. In order to adapt the method

for the computation of the minimal Sullivan model, we need to define sections for the

maps
∮
and dA. The main contribution of this work is developed here.

Mp−1 Mp Mp+1 Hp(M)

Ap−1
PL (K) Ap

PL(K) Ap+1
PL (K) Hp(APL(K))

Cp−1(K) Cp(K) Cp+1(K) Hp(C∗(K))

φp−1

dp−1M

φp

dpM

φp+1
φp
∗ ∼=

∮ p−1

dp−1A

∮ p

dpA

∮ p+1
∮ p

∗
∼=

dp−1C dpC

Figure 3.1: Diagram with the structures and maps involved in the computation of the
Sullivan model of APL(K).

On the one hand, as it is not possible to work directly with the cohomology of

APL(K), we will make use of the simplicial cohomology in order to find representatives

of the cohomology generators of APL(K). In 3.2 we describe a section of
∮ p

that allows

us to find and element of APL(K) whose integral is a given cochain (see figure 3.2). It

follows that
∮ p ◦ Θp = IdCp .

Ap
PL(K) Cp(K)

∮ p

Θp

Figure 3.2: A section for the integral map.
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On the other hand, we will also need to find a (p − 1)-degree element of APL(K)

whose differential is a given exact element of degree p. In 3.3 we describe the section of

the differential used to find this element (see figure 3.3). It follows that dp−1
A ◦ dp−1

sec =

IdAp .

Ap−1
PL (K) Im(dp−1

A ) ⊆ Ap
PL(K)

dp−1
A

dp−1
sec

Figure 3.3: A section for the differential map of APL(K).

3.1 The integration map
∮

We define a linear map: ∫
n

: (APL)
n
n → Q

by setting∫
n

tk11 . . . tknn y1 . . . yn =

∫ 1

0

dt1· · ·
∫ 1−

∑n−1
1 ti

0

tk11 . . . tknn dtn =
k1!k2! . . . kn!

(k1 + · · ·+ kn + n)!
(8)

This linear map is not injective, but there is a section θn : Q→ (APL)
n
n given by

θn(c) = c · (n!) · y1 . . . yn. (9)

It is easy to see that (
∫
n
◦ θn) = id.

3.1.1 Integration map in APL(K)

We can use this map in APL(K) to construct a natural quasi-isomorphism of cochain

complexes ∮
: APL(K)→ C∗(K)

as follows. For a homogeneous element Φn
n ∈ APL(K)nn, its integral will be an element

of Cn(K), given by (∮
(Φn

n)

)
(σ) =

∫
n

Φn
n(σ) (10)

for every σ ∈ Kn. For homogeneous elements Φn
m ∈ APL(K)nm with n ̸= m, we define(∮

(Φn
m)
)
(σ) = 0. Then we extend to all APL(K) by linearity.

Ap−1
PL (K) Ap

PL(K)

Cp−1(K) Cp(K)

dp−1
A

∮ p−1 ∮ p

dp−1
C

Figure 3.4: The commutative diagram between APL(K) and C∗(K).
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3.2 Lift a cochain

Now we will define a linear map

Θ : C∗(K)→ A∗
PL(K)

satifying ∮
◦Θ = id.

In order to define this map, we need some auxiliary functions.

3.2.1 Propagate a simplex through the simplicial structure

Let I = (i1 < · · · < ik) be a strictly increasing sequence of k natural numbers between

0 and n + k. Let J I = (j0 < . . . < jn) be the result of eliminating the elements of I

from (0, . . . , n+ k).

Consider the following ring morphisms

ΥI : Q[t0, . . . , tn] −→ Q[t0, . . . , tn+k]
ti 7→ tji

(11)

and
∂I : (APL)n+k −→ (APL)n

f 7→ (∂i1 ◦ · · · ◦ ∂ik)(f)
(12)

Note that any sequence of k face maps is of this form.

For each element p = q(t0, . . . , tn) · y1 · · · yn ∈ (APL)
n
n, define

Γn,n+k
I (p) := ΥI(q)

n∑
l=0

(−1)ltjl(yj0 . . . ŷjl . . . yjn) (13)

and extend it to all (APL)
n
n by linearity.

The following results can be proven by direct computation (the details are left to the

reader):

Lemma 3.29. The linear map

Γn,n+k
I : (APL)

n
n → (APL)

n
n+k

is a section of ∂I .

Lemma 3.30. Let I ′ be another strictly increasing sequence of k natural numbers

between 0 and n+k different from I. Then the composition map ∂̄I′ ◦Γn,n+k
I is the zero

map.

Lemma 3.31. Let I ′ = (i1 < · · · < îl < . . . ik) be the result of eliminating one entry

in I, then Γn,n+k−1
I′ = ∂il ◦ Γ

n,n+k
I .
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These maps will be called propagation maps.

Now take a degree n cochain ϕ : Kn → Q that maps the nondegenerate simplex σ to

the number c, and the rest of the nondegenerate simplices to zero. We define Θ(ϕ) as

follows:

Θ(ϕ)(S) :=


θn(c) σ = S

Γ
n,dim(S)
I (θn(c)) σ = ∂̄I(S)

0 otherwise

(14)

and extend it to C∗(K) by linearity.

By the previous lemmas, it can checked that Θ(ϕ) ∈ APL(K) and that
∮
◦Θ = id.

3.3 Find a preimage by the differential of an exact element of
APL(K)

Consider an element Φ ∈ APL(K)p whose differential is zero and it has associated

the trivial class in cohomology. In this section we show how to obtain an element

Φ′ ∈ APL(K)p−1 where d(Φ′) = Φ.

Although APL(K) is not finitely generated, in order to compute a preimage by the

differential of Φ, we are going to see that it suffices to restrict the problem to a finite

dimensional subspace of APL(K).

3.3.1 Primitive basis of Φ(σ)

Let σ ∈ Kn and let Φ(σ) ∈ (APL)
p
n be a polynomial where n ≥ p. Then Φ(σ) =

∑
k qk

where the qk are monomials of the form

qk = ck · tl11 . . . tlnn yi1 . . . yip (15)

with ij ∈ {1, . . . , n}, ck ∈ Q. Notice that, after expressing t0 and y0 in terms of the

rest of variables, these expressions are unique.

For each monomial qk and each ij, we define the monomials

ξij(qk) := yi1 . . . ŷij . . . yip , (16)

Ψij(qk) := tl11 . . . t
lij+1

ij
. . . tlnn ξij(gk), (17)

and the primitive basis of a monomial as the set of terms

Ψ(qk) := {Ψij(qk)}j=1,...,p ∪ {ξij(qk)}j=1,...,p. (18)

Definition 3.32. The primitive basis of Φ(σ) is the set of pairs

Ψ(Φ(σ)) =
⋃
k

(Ψ(qk), σ) (19)
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Here we interpret the element (q, σ) as the map K → APL that sends σ to q and

the rest of the simplices to zero.

Definition 3.33. The primitive basis of Φ ∈ APL(K) is the set

Ψ(Φ) =
⋃
σ∈K

Ψ(Φ(σ)) (20)

3.3.2 Differential basis of Φ(σ)

Let m ∈ (APL)
p−1
n be a monomial of degree p−1, and let η(m) be the set of monomials

of degree p that appear in d(m).

Definition 3.34. The differential basis of Φ is the set of terms

Ω(Φ) =
⋃
σ∈K

{(a, σ) | a ∈ η(Ψ(Φ(σ)))} (21)

That is, Ω(Φ) contains the terms needed to express the differential of all elements

in Ψ(Φ). By construction, Φ lives in the vector space V f
Φ spanned by Ω(Φ).

The differential induces a linear map from the vector space V i
Φ spanned by Ψ(Φ) to

V f
Φ . Since they are both finite dimensional vector spaces, finding the preimage of an

element can be done by solving a system of linear equations.

However, in general, the elements of V i
Φ do not live in APL(K) because we cannot

ensure the compatibility with the face maps. Let us see how to fix this problem.

3.3.3 Restrictions of face maps

We are looking for an element χ ∈ APL(K) such that d(χ) = Φ. We can express the

element we are looking for as a linear combination

χ =
∑

Λ∈Ψ(Φ)

aΛ · Λ. (22)

By construction of Ω(Φ), the element d(χ) will be a certain linear combination

of the elements of Ω(Φ), where the coefficients depend linearly on the aΛ’s. So the

condition d(χ) = Φ will be given by an equality for each basis element.

Now the condition for χ ∈ APL(K) is the compatibility with the face maps. That

is, it must satisfy

(∂iχ)(σ) = χ(∂iσ) (23)

for every σ ∈ K. Again, this will give us a finite set of linear equations on the aΛ’s.

So by solving the complete system of linear equations we obtain the desired element χ.

Since we are assuming that Φ represents a trivial cohomology class, a solution to this

system of equations is granted to exist.
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3.3.4 An example of finding a preimage for a given exact element of APL(K)

In order to illustrate how this method works, let us begin with the an example. Consider

the simplicial complex K built with two 2-simplices glued together as it is represented

in figure 3.5. This simplicial complex models a disk D2:

1

0

2

3

F1

F2

Figure 3.5: Example of a simplicial complex of dimension 2 with 2 facets.

The space is contractible, so we know that it has no cohomology for degrees greater

than 0 (it has just one connected component so H0 = Z). This means that every closed

form in APL(K) is exact. Using that, consider the element of A2
PL(K):

φ2
2 : K2 −→ (APL)

2
2

F1 7→ y1y2
F2 7→ y1y2

which assing a polynomial for each facet of K and the polynomial 0 for each of its

faces. In order to find an element ω ∈ A1
PL(K) so that d(ω) = φ, we need to solve the

following system of linear equations:
d1,1 d1,2 · · · d1,n
...

...
...

...
...

...
...

...
dm,1 dm,2 · · · dm,n


︸ ︷︷ ︸

Diff matrix


x1

x2
...
xn


︸ ︷︷ ︸

var matrix

=


c1
c2
...
cm


︸ ︷︷ ︸

constant matrix

The main difficult is to construct the differential matrix, because it is a map, dp−1 :

Ap−1
PL (K) → Ap

PL(K), between vector spaces of infinite dimensions. In order to solve

this problem, we restrict such spaces to a finite subspaces determined by the generators

that appear in the given element φ(K). The variables of such system are the coefficients

of the generators of the vector space Ap−1
PL (K), the constant matrix is obtained by the

polynomials assigned to the given element and it is formed by the coefficients of such

elements using the basis the generators of the vector space Ap
PL(K) that appear in such

polynomials, plus a collection of zeros used for the simplicial restrictions. In figure 3.7

it is represented the structure of the differential matrix build with this method.
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(primitive basis) t1y2 y1 y2 t2y1

(monomial) y1y2

Figure 3.6: Example of the primitive basis of a monomial p ∈ (APL)
2.

As we mentioned above, it is necessary to determine the vector subspaces where

the differential is defined. In order to do so, for each monomial that appears in every

polynomial φ(σ), σ ∈ K, we compute all possible monomials in the preimage of this

element, and due to the relations of (APL)n, we add as extra terms, the basis of the

kernel of the differential without variables ti. We do it for each simplex, so the result

will be a list of monomials:

(0, 1, 2) : [y2, y1, t2y2, t1y2, t2y1, t1y1, t1t2y2, t1t2y1],
(1, 2) : [y1, t1y1, t

2
1y1],

(0, 2) : [y1, t1y1],
(0, 1) : [y1, t1y1],

(0, 2, 3) : [y2, y1, t2y2, t1y2, t2y1, t1y1, t1t2y2, t1t2y1],
(2, 3) : [y1, t1y1, t

2
1y1],

(0, 3) : [y1, t1y1]

In order to determine the vector subspace of Ap
PL(K), as we have a list of monomials

that forms the primitive basis for each simplex, we differentiate each monomial and

the images of such elements will form the basis of the differential for each simplex:

(0, 1, 2) : [y1y2, t2y1y2, t1y1y2],
(0, 2, 3) : [y1y2, t2y1y2, t1y1y2],

In our example, the differential matrix block for the simplex (0, 1, 2) is:

y2 y1 t2y2 t1y2 t2y1 t1y1 t1t2y2 t1t2y1( )y1y2 0 0 0 1 −1 0 0 0
t2y1y2 0 0 0 0 0 0 1 0
t1y1y2 0 0 0 0 0 0 0 −1

Using the differential basis, we can obtain the constant vector formed by the

coeficients of each polynomial assigned to each simplex. In our example:

(1, 0, 0, 1, 0, 0)

This would be enough for the computation of a preimage by the differential without

simplicial restrictions. The last part of the construction will be to add, for each pair of
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simplices, the face restrictions consisting of a set of homogeneous equations forcing the

system to fulfill the required conditions. In our example, the size of the block matrix

corresponding for such equations is 14× 28.

Now we are able to build the constant matrix consisting of the differential vector

plus a set of zeros corresponding to the homogeneous equations related to simplicial

restrictions:

(1, 0, 0,︸ ︷︷ ︸
DifF1

1, 0, 0,︸ ︷︷ ︸
DifF2

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸
Face restrictions

)

In our example, the dimension of the matrix for the whole linear system is 20× 28.

. . .
... . . . 0 . . . 0 0 · · · 0

· · · Simplex 1 · · · ...
. . .

...
...

. . .
...

. . .
...

. . . 0 · · · 0 0 . . . 0

0 · · · 0 . . .
... . . . 0 · · · 0

...
. . .

... · · · Simplex i · · · ...
. . .

...

0 · · · 0 . . .
...

. . . 0 · · · 0

0 · · · 0 0 · · · 0 . . .
... . . .

...
. . .

...
...

. . .
... · · · Simplex n · · ·

0 · · · 0 0 · · · 0 . . .
...

. . .

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·







simplicial

restrictions

Differential

Faces

Primitive basis

Figure 3.7: Matrix representation of the linear system used to find a preimage by the
differential.

Solving the system, we obtain a solution expressed in terms of the primitive basis

defined above

(
1

2
, 1, 0,

1

2
,−1

2
, 0, 0, 0, 0,

1

2
, 0,

1

2
,−1

2
, 0, 0, 0, 1, 0,

1

2
, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
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that expressed in terms of polynomial is (ω ∈ A1
PL(K)):

φ1
2(F1) = −1

2
t2y1 +

1
2
t1y2 +

1
2
y1

φ1
2(F2) = −1

2
t2y1 +

1
2
t1y2 + y1 +

1
2
y2

φ1
2([0, 1]) = y1

φ1
2([0, 2]) =

1
2
y1

3.4 Algorithm

Now we have the ingredients to give the complete algorithm. The input will be a

simplicial set of finite type K. The minimal model M will be constructed by adding

generators, and for each generator we stablish also its differential and image by the

map.

So the output will be a list of triplets (xd
i , d(x

d
i ), φ(x

d
i )), where

• xd
i is a generator of M of degree d.

• d(xd
i ) is a polynomial on the previous generators.

• φ(xd
i ) is an element of (APL(K))d.

This data will determine the free GCDA M with differential d, and a

quasi-isomorphism ϕ.

The algorithm works degree by degree. So we will obtain an increasing sequence of

i-minimal models. To simplify notation, we will refer to the model obtained so far in

each moment as M .

1. Let k0 > 0 be the smallest degree for which Hk0(K) is not trivial.

2. Take a basis [ak00 ], . . . , [ak0lk0
] of Hk0(K), with ak0i ∈ Ck0(K) (that is, the

cohomology elements are represented by simplicial cochains). For each cochain

ak0i , take a lifting Ak0
i = Θ(ak0i ) ∈ APL(K). For each of these elements, add to M

a generator of the same degree, xk0
i , with d(xk0

i ) = 0 and φ(xk0
i ) = Ak0

i .

At this moment, φ induces an isomorphism in cohomology at degree k0.

3. Now assume that we have already added generators of degree up to k− 1 in such

a way that φ is a (k− 1)-quasi-isomorphism. In order to increase the degree and

get a k-quasi-isomorphism, we add new generators to get also an isomorphism

φ∗
k : H

k(M)
≃−→ Hk(APL(K)), without changing the lower degree cohomologies.
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Notice that computing the cohomology of APL(K) directly cannot be done by

simple linear algebra, because the graded parts are infinite dimensional. So we

will use the isomorphism induced by
∮
and work in H∗(K).

This process has two steps. In the first step, we add generators of degree k − 1

until the map φ∗
k is injective. In the second step, we add generators of degree k

in order to make the map φ∗
k surjective:

3.1 If the map φ∗
k is already injective at degree k, we go to step 3.2. Otherwise,

consider the map φ∗ composed with the isomorphism
∮ ∗

. This is a linear

map from Hk(M) to Hk(K). This map can be built following these steps:

for each generator [mk
i ] of Hk(M), get a representative mk

i ∈ Mk and

compute cki = (
∮ k ◦φk)(mk

i ). The cochain cki is closed so it has associated

a cohomology class [cki ] = (
∮ ∗ ◦φ∗)([mk

i ]). Doing this for all generators of

Hk(M) we can construct the linear map (see Figure 3.8).

Mk Ak
pl(K) Ck

Hk(M) Hk(C)

φk

step 2

∮ k

step 3

step 4 classstep 1representative ∮ ∗◦φ∗

Figure 3.8: The injectivity of
∮ ∗ ◦ φ∗ is checked following the path from steps 1 to 4.

Now, take [zk0 ], . . . , [z
k
lk
] a basis of its kernel and consider representatives

zk0 , . . . , z
k
lk
∈ M . Compute Ck

j = φ(zkj ) ∈ APL(K)k. Since [zkj ] ∈ Ker(φ∗
k),

the element Ck
j must correspond to a trivial cohomology class, so there must

be an element Bk−1
j ∈ APL(K)k−1 such that d(Bk−1

j ) = Ck
j . This element

Bk−1
j can be computed as in section 3.3. So we add to Mk−1 the generators

yk−1
i with φ(yk−1

i ) = Bk−1
i and dM(yk−1

i ) = zki .

α1
1

...
...
...
... αm

1

α1
2

...
...
...
... αm

2

...
...
...
...
...

...

α1
n

...
...
...
... αm

n




H k(C )
basis

H k(M ) basis

φ∗([mk
1])

=
∮ ∗ ◦ φ∗

Figure 3.9: The linear map
∮ ∗ ◦φ∗. The column i corresponds to the coordinates of

the generator [mk
i ] ∈ Hk(M) in the basis of Hk(C). We are interested in the kernel of

this map.
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Notice that, after adding these generators, new elements of Ker(φ∗
k) could

have been added, so this step might be needed to be run iteratively until

the map φ∗
k is injective.

3.2 Once we have that φ∗
k is injective, we will add new generators of degree

k to make it surjective. Consider again the map ϕ∗
k composed with the

isomorphism
∮ ∗

. Take a basis [ak0], . . . , [a
k
lk
] of the complement of the image.

As before, each aki is a simplicial cochain that can be lifted to Ak
i := Θ(aki ) ∈

APL(K).

Add new generators of degree k to M , {xk
0, . . . , x

k
lk
}, with d(xk

i ) = 0 and

ϕ(xk
i ) = Ak

i .

In order to obtain an i-minimal model of (A, dA), repeat the steps 3.1 and 3.2

until k = i.
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4 Examples of computations

In this section are included some examples in order to illustrate the algorithm and its

output.

4.1 The minimal model of S1

The first example is the computation of the minimal model of the sphere of dimension

one, S1. This space can be modelled as a simplicial complex with the following

structure: three vertices or 0-simplices (named 0, 1 and 2), and three edges or

1-simplices (one for each pair of vertices). The orientation of the edges is given just

sorting the vertices in an increasing order (see Figure 4.1).

0

1 2

Figure 4.1: The simplicial complex representing S1 with the minimum number of
simplices.

For each 1-simplex, the faces are given by:

∂1([0, 1]) = ∂1([0, 2]) = [0]
∂0([0, 1]) = ∂1([1, 2]) = [1]
∂0([0, 2]) = ∂0([1, 2]) = [2]

In this trivial example, H1(K) is freely generated by the class of the cochain:

C1 : {[0, 1], [0, 2], [1, 2]} −→ Q
[0, 1] 7→ 1
[0, 2] 7→ 0
[1, 2] 7→ 0

So, the lifting of Θ(C1) is:

Θ(C1)([0, 1]) = y1
Θ(C1)([0, 2]) = 0
Θ(C1)([1, 2]) = 0

In this case, the minimal model will be generated by only one element of degree 1,

x1
0, with zero differential, and φ(x1

0) = Θ(C1). As the generator has odd degree, the

minimal model is trivial for degrees greater than 1 and the algorithm finishes. Notice

that, although the space is not simply connected, it is possible to compute the complete

minimal model of the space. This is because this example is trivial, but in general, if
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the space is not simply connected, usually we will find that the algorithm gets stuck

at some degree adding an infinite number of generators. This is the case of the next

example.

4.2 The minimal model of S1 ∧ S1

Consider now the space formed by the wedge of two S1, i.e., two circles are glued

together at a vertex (see Figure 4.2).

0

1

2

3

4

Figure 4.2: The simplicial complex representing the wedge of two S1.

In this case, H1(K) is freely generated by the classes of two cochains:

C1 : {a, b, c, d, e, f} −→ Q C2 : {a, b, c, d, e, f} −→ Q
[0, 1] 7→ 1 [0, 1] 7→ 0
[0, 2] 7→ 0 [0, 2] 7→ 0
[1, 2] 7→ 0 [1, 2] 7→ 0
[2, 3] 7→ 0 [2, 3] 7→ 1
[2, 4] 7→ 0 [2, 4] 7→ 0
[3, 4] 7→ 0 [3, 4] 7→ 0

So, the lifting of Θ(C1) is:

Θ(C1)([0, 1]) = y1
Θ(C1)([0, 2]) = 0
Θ(C1)([1, 2]) = 0
Θ(C1)([2, 3]) = 0
Θ(C1)([2, 4]) = 0
Θ(C1)([3, 4]) = 0

and the lifting of Θ(C2) is:

Θ(C2)([0, 1]) = 0
Θ(C2)([0, 2]) = 0
Θ(C2)([1, 2]) = 0
Θ(C2)([2, 3]) = y1
Θ(C2)([2, 4]) = 0
Θ(C2)([3, 4]) = 0
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The method begins building a GCDA with two generators of degree 1, named x1
0

and x1
1, with zero differential, and the morphism associates the generators with the

lifted elements:
φ(x1

0) = Θ(C1)
φ(x1

1) = Θ(C2)

The problem in this case arises when the algorithm tries to check injectivity at

degree 2. As the current generators have degree 1, the squares are zero, but it is not

the case of the cross product x1
0 ∗ x1

1. This element has degree 2 and it is easy to check

that its differential is zero. There is no element of degree 1 whose differential is x1
0 ∗ x1

1

so it means that this element is closed but not exact (i.e., it is a representative of a

non trivial cohomology class).

In order to make the induced morphism φ∗ injective, it is necessary to kill this

cohomology class (because the space has trivial cohomology for degrees greater than

one). In order to do this, a generator of degree one, y10 is added to the algebra with

differential exactly that element:

d(y10) = x1
0 ∗ x1

1

and, due to φ(x1
0 ∗ x1

1) = 0 (because there are no simplices of dimension greater than

one), the method just assings zero to the image of the new generator:

φ(y10) = 0

One could think that the problem has been solved but instead of that, now we have

two new elements of degree 2, y10 ∗x1
0 and y10 ∗x1

1 corresponding with two new non trivial

cohomology classes, so the problem remains and this dynamic just get worst as we add

new generators. This example illustrates the problem of computing the minimal model

of a non simply connected space.

Just to finish, it is worth noting that the problem is not that the minimal model does

not exists, the problem is that the minimal model has infinite generators of degree 1!
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4.3 The minimal model of T2

Consider now the usual triangulation of the torus:

a

b

a

b
c

v

v

v

v

F1

F2

It can be represented with the simplicial set K with the following non degenerate

simplices: one in dimension zero (called v), three in dimension one (a, b and c), and

two in dimension two F1, F2. The face maps are given by

• ∂0(a) = ∂1(a) = ∂0(b) = ∂1(b) = ∂0(c) = ∂1(c) = v

• ∂0(F1) = ∂2(F2) = b, ∂1(F1) = ∂1(F2) = c, ∂2(F1) = ∂0(F2) = a

It is easy to check that H1(K) is freely generated by the classes of two cochains:

C1 : {a, b, c} −→ Q C2 : {a, b, c} −→ Q
a 7→ 1 a 7→ 0
b 7→ 0 b 7→ 1
c 7→ 1 c 7→ 1

and H2(K) is freely generated by

D : {F1, F2} −→ Q
F1 7→ 1
F2 7→ 0

With this data, we can now run the algorithm:

1. Since H1(K) is not trivial, we start with k0 = 1.

2. We take the basis ⟨[C1], [C2]⟩ of H1(K). As a cochain, C1 can be expressed as

the sum C1 = C1a + C1c where:

C1a : {a, b, c} −→ Q C1c : {a, b, c} −→ Q
a 7→ 1 a 7→ 0
b 7→ 0 b 7→ 0
c 7→ 0 c 7→ 1

and by linearity we have that Θ(C1) = Θ(C1a)+Θ(C1c). Now, in order to obtain

Θ(C1a) we need to follow the steps mentioned above:
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(a) We compute θ1(1) = y1

(b) Now, we compute the propagations

Γ1,2
{1}(y1) = −t2y1 + t1y2 + y1

Γ1,2
{2}(y1) = −t2y1 + t1y2

So, the lifting of Θ(C1a) is:

Θ(C1a)(O) = 0
Θ(C1a)(a) = y1
Θ(C1a)(b) = 0
Θ(C1a)(c) = 0
Θ(C1a)(F1) = −t2y1 + t1y2 + y1
Θ(C1a)(F2) = −t2y1 + t1y2

Doing the analogous computations for C1c, C2b and C2c, we obtain the

corresponding liftings of Θ(C1) and Θ(C2):

Θ(C1)(O) = 0 Θ(C2)(O) = 0
Θ(C1)(a) = y1 Θ(C2)(a) = 0
Θ(C1)(b) = 0 Θ(C2)(b) = y1
Θ(C1)(c) = y1 Θ(C2)(c) = y1
Θ(C1)(F1) = y1 + y2 Θ(C2)(F1) = y2
Θ(C1)(F2) = y2 Θ(C2)(F2) = y1 + y2

Now, we add to our model two generators M = ⟨x1
0, x

1
1⟩ of degree 1 in such a way

that d(x1
i ) = 0 and φ(x1

i ) = Θ(Ci). At this moment, φ induces an isomorphism

at degree 1 given by φ∗([x1
i ]) = [Ci]. Once we have an isomorphism at degree 1,

we go to step 3 in order to check injectivity at degree 2.

3. At this point, the homogeneous part of degree 2 of M is generated by only one

element M2 = ⟨x1
0x

1
1⟩, because x1

i have odd degree and the square of each one is

zero. This generator is closed so it is associated with a cohomology class.

As we saw before, H2(K) is a one-dimensional vector space. So, (φ∗)2 is injective

if and only if the induced image of the generator [x1
0x

1
1] is non-zero. In order to

check this, we apply the integration map to its image C3 :
∮
(Θ(C1) ·Θ(C2)):

C3 : K2 −→ Q
F1 7→ −1

2

F2 7→ 1
2

but the image of the coboundary map is generated by the cochain

K2 −→ Q
F1 7→ 1
F2 7→ 1
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which is linearly independent with C3. So we already have an isomorphism

and this step of the algorithm is done. Since we have no more generators

in cohomology, the algorithm finishes and the minimal model of the torus is

M = ⟨x1
0, x

1
1⟩.

4.4 The K3 Surface

For the last example, a space with a higher order of complexity has been chosen.

This space is known as the K3 surface, it is simply connected and it is available an

implementation at the SageMath repository [2]. The simplicial complex has dimension

4 and it is build with 16 vertices and 288 facets (in this case, all facets are simplices

of dimension 4). In Table 4.1 are listed the number of simplices for each dimension. It

was constructed by Casella and Kühnel in [1]. The implementation in SageMath uses

the labeling from Spreer and Kühnel [11].

Dimension
0 1 2 3 4

Nº Simplices 16 120 560 720 288

Table 4.1: Number of simplices of the K3 Surface in each dimension.

The Betti numbers of the space are listed in Table 4.2. Omitting degree 0, the

cohomology has 22 generators of degree 2 and one generator of degree 4.

Degree
0 1 2 3 4

Nº of Cohomology
Generators

1 0 22 0 1

Table 4.2: Number of cohomology generators of the K3 surface for each degree.

Due to Terzić [12], it is known that:

Theorem 4.35. Let M be a closed oriented simply connected four-manifold and b2 its

second Betti number. Then:

1. If b2 = 0 then rk π4(M) = rk π7(M) = 1 and πp(M) is finite for p ̸= 4, 7,

2. If b2 = 1 then rk π2(M) = rk π5(M) = 1 and πp(M) is finite for p ̸= 2, 5,

3. If b2 = 2 then rk π2(M) = rk π3(M) = 2 and πp(M) is finite for p ̸= 2, 3,

4. If b2 > 2 then dimπ∗(M)⊗Q =∞ and

rk π2(M) = b2, rk π3(M) =
b2(b2 + 1)

2
− 1, rk π4(M) =

b2(b
2
2 − 4)

3
.

36



In particular, as the K3 surface has b2 = 22, and following the theorem 4.35, the

rank of the first homotopy groups are (see Table 4.3):

πn(K3)
1 2 3 4

rank 0 22 252 3520

Table 4.3: Rank of the first homotopy groups of K3.

The method is able to compute the 4-minimal model of the space. The

algorithm begins at degree 2, lifting the 22 cohomology generators to representatives

a2i ∈ A2
PL(K3) and adding the corresponding generators x2

i (with dM(x2
i ) = 0 and

φ(x2
i ) = a2i ) to the model. At this point, the minimal model induces isomorphism

in cohomology up to degree 2, but, due to the emptiness of the homogeneous part of

degree 3 of H3(K3) and M3, it also induces isomorphism at degree 3.

Now the algorithm checks injectivity at degree 4 and finds that:

1. The element (x2
0)

2 ∈M4 is a representative of the single generator of degree 4 of

H4(K3.

2. There are 252 elements generating the same number of cohomology classes in

H4(M).

Notice that (2) is coherent with the results of Theorem 4.35 and Table 4.3.

In order to make the induced morphism φ∗ injective at degree 4, the algorithm

adds as many generators as cohomology classes needs to kill, pointing the differential

of each new generator y3i ∈M3 to a representative of a different cohomology class. Due

to the extension, the generators and their differentials are included in Appendix I.

Once the algorithm has reached injectivity at degree 4 (and also surjectivity), the

method continues killing the rest of the non trivial cohomology classes for degree 5,

adding the corresponding generators y4i . In that case, as there are no simplices of

dimension 5, notice that d(y4i ) = 0,∀i. So, for our purposes, the interesting degrees of

the minimal model are degrees 2, 3 and 4, where the morphism φ carries information

about the APL(K3).
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5 Conclusions and Future Work

In this work it has been presented an effective method for the computation of the

Sullivan minimal model of a given topological space. In order to carry the work out,

it has been necessary to understand the basis of Rational Homotopy Theory and how

is defined the Sullivan model of a topological space.

For that purpose, a review of the state of the art about previous works on effective

methods for the computation of Sullivan minimal algebras has been made in order to

find possible obstacles on these methods when the homogeneous parts of the algebra of

interest are infinite dimensional. After that, viewing that these methods can not work

with this kind of algebras, a solution has been proposed, adapting the corresponding

parts of the algorithm. Last but not least, the method has been implemented in a

Computer Algebra System (SageMath). The source code of the implementation can

be found at https://riemann.unizar.es/git/calquezar/AplK.

As far as we know, it is the first time that such a method has been designed and

implemented in a Computer Algebra System. However, the development of this work

has pointed out some questions that, although they are beyond the scope of this work,

it will be necessary to address in the future. Some of these questions are listed below.

The kernel of the differential of APL(K).

During the development of this work, some key questions have arisen for which a

mathematical answer is needed. In particular, at the injectivity step of the algorithm

(see section 3.1), when the algorithm needs to find a preimage by the differential of an

element of APL(K), our method needs to add some kernel elements to the primitive

basis of each simplex, but it is not clear, for a generic element, how many elements one

needs to add in order to guarantee that the method finds a solution for the system. This

is an interesting point that should be reviewed in order to adjust the method properly

and to be sure that there are no unuseful terms that can worsen its performance.

∆-Complexes.

Other idea related to improve the computational performance is to adapt the method to

work with other useful constructions similar but different of simplicial complexes. For

example, ∆-Complexes are essentially a generalization of simplicial complexes where

it is not required the condition that each face of a simplex is unique. This relaxation

makes this construction more flexible and allows one to build equivalent complexes

with less number of simplices.
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An example to show the difference between simplicial complexes and ∆-complexes

is the following:

Example 5.36 (Cone). Consider the problem of modelling a cone C both as a

simplicial complex and ∆-complex. As a simplicial complex, consider the 3-simplex

of figure 2.1d and remove one face (i.e. remove one 2-simplex). This gives you a

collection of 3 simplices of dimension 2 and their faces (in total 13 simplices: four

0-simplices, six 1-simplices, and three 2-simplices), all glued in the same way they were

at the beginning. On the other hand, as a ∆-complex, it is possible to model this space

just taking the 2-simplex of the figure 2.1c and identifying two of its faces of dimension

1. This construction gives you a collection of one 2-simplex, two 1-simplices and two

0-simplices (in total 5 simplices).

Taking into account the following theorem:

Theorem 5.37 ([9, p. 107]). Every ∆-complex can be subdivided to be a simplicial

complex. In particular, every ∆-complex is homeomorphic to a simplicial complex.

we can extend the results presented in this work in order to make use of ∆-complexes.

Formality

Finally, the method presented in this work (and in particular the implementation in a

Computer Algebra System) allows us to tackle the interesting topic of formality from

a computational point of view.

Basically, a topological space is called formal if the minimal model of the space and

the model of the cohomology algebra are isomorphic (see Figure 5.1). On the other

hand, if the two models are not isomorphic, it is said that the space is not formal (see

Figure 5.2).

MA ≃MH

APL(K) H(K)

φA φH

Figure 5.1: Condition satisfied for a space to be formal.

MA MH

APL(K) H(K)

φA φH

Figure 5.2: If the minimal model of the space MA and the model of the cohomology
algebra MH are not isomorphic, it is said that the space is not formal.
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The key point in the algorithm to study if a space if formal is found at injectivity

step (see section 3.1). The main difference between computing the minimal model of

the cohomology algebra and the minimal model of the space is that in the former,

checking injectivity at degree p only involves three objects: the model in construction

M , its cohomology Hp(M), and the cohomology algebra Hp(K) (see Figure 5.3).

Mp

Hp(M) Hp(K)

φ
step 2step 1representative

φ∗

Figure 5.3: Working with a finitely generated GCDA. The injectivity of the morphism
φ∗ is checked combining steps 1 and 2.

However, for the computation of the minimal model of a space K, the algorithm

needs to use the algebra APL(K) in order to connect the cohomology of the model

H(M) and the cohomology of the space H(K) (see Figure 5.4). It is in this connection

where formality can be broken and it is an interesting question what kind of topological

structures do not satisfy this property.

Mp Ap
pl(K) Cp

Hp(M) Hp(C)

φ

step 2

∮ p

step 3

step 4 classstep 1representative ∮ ∗◦φ∗

Figure 5.4: Working with Apl(K). The injectivity of the morphism
∮ ∗ ◦ φ∗ is checked

following the path from steps 1 to 4.
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Appendix I: The homogeneous part of M 3 for the K3

surface

Following the Example 4.4, the list of generators of degree 3 of the minimal model of

the K3 surface are listed within their differentials (i.e, homogeneous elements of degree

4 in M).

Generator Differential
y30 (x2

1)
2 − (x2

21)
2

y31 (x2
0)

2 − (x2
21)

2

y32 x2
0x

2
3 − 1

2
(x2

21)
2

y33 x2
0x

2
1 − 1

2
(x2

21)
2

y34 x2
1x

2
2 − 1

2
(x2

21)
2

y35 x2
0x

2
2 − 1

2
(x2

21)
2

y36 (x2
2)

2 − (x2
21)

2

y37 x2
1x

2
3 − 1

2
(x2

21)
2

y38 x2
2x

2
3

y39 (x2
3)

2 − (x2
21)

2

y310 x2
0x

2
4 +

1
2
(x2

21)
2

y311 x2
1x

2
4 +

1
2
(x2

21)
2

y312 x2
2x

2
4 +

1
2
(x2

21)
2

y313 x2
3x

2
4

y314 (x2
4)

2 − (x2
21)

2

y315 x2
0x

2
5

y316 x2
1x

2
5 − 1

2
(x2

21)
2

y317 x2
2x

2
5

y318 x2
3x

2
5

y319 x2
4x

2
5 +

1
2
(x2

21)
2

y320 (x2
5)

2 − (x2
21)

2

y321 x2
0x

2
6 + (x2

21)
2

y322 x2
1x

2
6

y323 x2
2x

2
6

y324 x2
3x

2
6 + (x2

21)
2

y325 x2
4x

2
6 +

1
2
(x2

21)
2

y326 x2
1x

2
7

y327 x2
4x

2
7

y328 x2
5x

2
6 − 1

2
(x2

21)
2

y329 (x2
6)

2 − 3(x2
21)

2

y330 x2
0x

2
7 − (x2

21)
2

y331 x2
2x

2
7 − 1

2
(x2

21)
2

y332 x2
3x

2
7 − 1

2
(x2

21)
2

y333 x2
5x

2
7 +

1
2
(x2

21)
2

y334 (x2
7)

2 − 2(x2
21)

2

y335 x2
0x

2
8 − 1

2
(x2

21)
2

y336 x2
6x

2
7 + 2(x2

21)
2
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y337 x2
1x

2
8 +

1
2
(x2

21)
2

y338 x2
2x

2
8

y339 x2
3x

2
8 − 1

2
(x2

21)
2

y340 x2
4x

2
8

y341 x2
5x

2
8 +

1
2
(x2

21)
2

y342 x2
7x

2
8 − 3

2
(x2

21)
2

y343 (x2
8)

2 − 2(x2
21)

2

y344 x2
0x

2
9

y345 x2
1x

2
9 − 1

2
(x2

21)
2

y346 x2
6x

2
8 +

3
2
(x2

21)
2

y347 x2
2x

2
9

y348 x2
3x

2
9

y349 x2
4x

2
9

y350 x2
5x

2
9 − 1

2
(x2

21)
2

y351 x2
6x

2
9 − 1

2
(x2

21)
2

y352 x2
7x

2
9 +

1
2
(x2

21)
2

y353 x2
8x

2
9 + (x2

21)
2

y354 (x2
9)

2 − (x2
21)

2

y355 x2
1x

2
10

y356 x2
0x

2
10 − (x2

21)
2

y357 x2
3x

2
10 − 1

2
(x2

21)
2

y358 x2
2x

2
10 − 1

2
(x2

21)
2

y359 x2
4x

2
10 +

1
2
(x2

21)
2

y360 x2
5x

2
10

y361 x2
9x

2
10 +

1
2
(x2

21)
2

y362 x2
7x

2
10 − 3

2
(x2

21)
2

y363 x2
2x

2
11

y364 x2
6x

2
10 +

3
2
(x2

21)
2

y365 x2
8x

2
10 − 3

2
(x2

21)
2

y366 (x2
10)

2 − 2(x2
21)

2

y367 x2
0x

2
11 +

1
2
(x2

21)
2

y368 x2
1x

2
11 +

1
2
(x2

21)
2

y369 x2
3x

2
11 +

1
2
(x2

21)
2

y370 x2
4x

2
11 − 1

2
(x2

21)
2

y371 x2
5x

2
11 +

1
2
(x2

21)
2

y372 x2
7x

2
11 +

1
2
(x2

21)
2

y373 x2
6x

2
11 − 1

2
(x2

21)
2

y374 x2
8x

2
11

y375 x2
9x

2
11 +

1
2
(x2

21)
2

y376 (x2
11)

2 − (x2
21)

2

y377 x2
0x

2
12 +

1
2
(x2

21)
2

y378 x2
1x

2
12 +

1
2
(x2

21)
2

y379 x2
10x

2
11 +

1
2
(x2

21)
2

y380 x2
2x

2
12

y381 x2
3x

2
12 +

1
2
(x2

21)
2

y382 x2
4x

2
12 − 1

2
(x2

21)
2

46



y383 x2
5x

2
12 +

1
2
(x2

21)
2

y384 x2
6x

2
12

y385 x2
7x

2
12

y386 x2
8x

2
12

y387 x2
9x

2
12

y388 x2
10x

2
12 +

1
2
(x2

21)
2

y389 x2
11x

2
12 − 1

2
(x2

21)
2

y390 (x2
12)

2 − (x2
21)

2

y391 x2
0x

2
13 +

1
2
(x2

21)
2

y392 x2
1x

2
13 +

1
2
(x2

21)
2

y393 x2
2x

2
13 +

1
2
(x2

21)
2

y394 x2
3x

2
13

y395 x2
4x

2
13 − 1

2
(x2

21)
2

y396 x2
5x

2
13

y397 x2
9x

2
13

y398 x2
7x

2
13

y399 x2
8x

2
13 − 1

2
(x2

21)
2

y3100 x2
6x

2
13 +

1
2
(x2

21)
2

y3101 x2
11x

2
13

y3102 x2
10x

2
13

y3103 x2
12x

2
13

y3104 (x2
13)

2 − (x2
21)

2

y3105 x2
1x

2
14 − 1

2
(x2

21)
2

y3106 x2
2x

2
14

y3107 x2
0x

2
14 − 1

2
(x2

21)
2

y3108 x2
3x

2
14 − 1

2
(x2

21)
2

y3109 x2
5x

2
14 − 1

2
(x2

21)
2

y3110 x2
4x

2
14 +

1
2
(x2

21)
2

y3111 x2
6x

2
14

y3112 x2
8x

2
14 +

1
2
(x2

21)
2

y3113 x2
9x

2
14 − 1

2
(x2

21)
2

y3114 x2
7x

2
14

y3115 x2
10x

2
14

y3116 x2
11x

2
14 +

1
2
(x2

21)
2

y3117 x2
12x

2
14 +

1
2
(x2

21)
2

y3118 x2
13x

2
14 +

1
2
(x2

21)
2

y3119 (x2
14)

2 − (x2
21)

2

y3120 x2
0x

2
15 + 2(x2

21)
2

y3121 x2
2x

2
15 + (x2

21)
2

y3122 x2
1x

2
15 +

1
2
(x2

21)
2

y3123 x2
3x

2
15 +

3
2
(x2

21)
2

y3124 x2
4x

2
15 − 1

2
(x2

21)
2

y3125 x2
5x

2
15 − 1

2
(x2

21)
2

y3126 x2
6x

2
15 − 7

2
(x2

21)
2

y3127 x2
7x

2
15 + 3(x2

21)
2

y3128 x2
8x

2
15 + 2(x2

21)
2
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y3129 x2
9x

2
15 − 1

2
(x2

21)
2

y3130 x2
10x

2
15 +

5
2
(x2

21)
2

y3131 x2
11x

2
15 − (x2

21)
2

y3132 x2
12x

2
15 − 1

2
(x2

21)
2

y3133 x2
13x

2
15 − 1

2
(x2

21)
2

y3134 x2
14x

2
15 +

1
2
(x2

21)
2

y3135 x2
0x

2
16 − 5

2
(x2

21)
2

y3136 x2
1x

2
16 − 1

2
(x2

21)
2

y3137 (x2
15)

2 − 6(x2
21)

2

y3138 x2
2x

2
16 − (x2

21)
2

y3139 x2
3x

2
16 − 3

2
(x2

21)
2

y3140 x2
4x

2
16 +

1
2
(x2

21)
2

y3141 x2
5x

2
16 +

1
2
(x2

21)
2

y3142 x2
6x

2
16 + 4(x2

21)
2

y3143 x2
7x

2
16 − 7

2
(x2

21)
2

y3144 x2
9x

2
16 + (x2

21)
2

y3145 x2
8x

2
16 − 5

2
(x2

21)
2

y3146 x2
12x

2
16 +

1
2
(x2

21)
2

y3147 x2
10x

2
16 − 3(x2

21)
2

y3148 x2
13x

2
16 +

1
2
(x2

21)
2

y3149 x2
11x

2
16 + (x2

21)
2

y3150 x2
0x

2
17

y3151 x2
14x

2
16 − 1

2
(x2

21)
2

y3152 x2
2x

2
17

y3153 x2
1x

2
17 +

1
2
(x2

21)
2

y3154 x2
3x

2
17

y3155 (x2
16)

2 − 8(x2
21)

2

y3156 x2
15x

2
16 +

13
2
(x2

21)
2

y3157 x2
4x

2
17 − 1

2
(x2

21)
2

y3158 x2
5x

2
17 +

1
2
(x2

21)
2

y3159 x2
9x

2
17

y3160 x2
7x

2
17 − 1

2
(x2

21)
2

y3161 x2
6x

2
17 + (x2

21)
2

y3162 x2
8x

2
17 − 1

2
(x2

21)
2

y3163 x2
10x

2
17

y3164 x2
11x

2
17

y3165 x2
12x

2
17 − 1

2
(x2

21)
2

y3166 x2
13x

2
17

y3167 x2
14x

2
17

y3168 (x2
17)

2 − (x2
21)

2

y3169 x2
15x

2
17 + (x2

21)
2

y3170 x2
16x

2
17 − (x2

21)
2

y3171 x2
0x

2
18 +

1
2
(x2

21)
2

y3172 x2
2x

2
18 +

1
2
(x2

21)
2

y3173 x2
1x

2
18 +

1
2
(x2

21)
2

y3174 x2
3x

2
18 +

1
2
(x2

21)
2
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y3175 x2
5x

2
18

y3176 x2
4x

2
18 − 1

2
(x2

21)
2

y3177 x2
9x

2
18

y3178 x2
6x

2
18 − 1

2
(x2

21)
2

y3179 x2
7x

2
18 +

1
2
(x2

21)
2

y3180 x2
8x

2
18 +

1
2
(x2

21)
2

y3181 x2
11x

2
18 − 1

2
(x2

21)
2

y3182 x2
10x

2
18 +

1
2
(x2

21)
2

y3183 x2
12x

2
18 − 1

2
(x2

21)
2

y3184 x2
13x

2
18 − 1

2
(x2

21)
2

y3185 x2
14x

2
18 +

1
2
(x2

21)
2

y3186 x2
15x

2
18 − 3

2
(x2

21)
2

y3187 x2
17x

2
18

y3188 x2
16x

2
18 +

3
2
(x2

21)
2

y3189 (x2
18)

2 − (x2
21)

2

y3190 x2
0x

2
19 − 3

2
(x2

21)
2

y3191 x2
1x

2
19 − 1

2
(x2

21)
2

y3192 x2
2x

2
19 − 1

2
(x2

21)
2

y3193 x2
5x

2
19

y3194 x2
3x

2
19 − (x2

21)
2

y3195 x2
4x

2
19 +

1
2
(x2

21)
2

y3196 x2
9x

2
19 +

1
2
(x2

21)
2

y3197 x2
7x

2
19 − 2(x2

21)
2

y3198 x2
8x

2
19 − 3

2
(x2

21)
2

y3199 x2
6x

2
19 + 2(x2

21)
2

y3200 x2
10x

2
19 − 2(x2

21)
2

y3201 x2
11x

2
19 + (x2

21)
2

y3202 x2
12x

2
19 +

1
2
(x2

21)
2

y3203 x2
13x

2
19

y3204 x2
14x

2
19

y3205 x2
17x

2
19

y3206 x2
2x

2
20

y3207 x2
15x

2
19 +

7
2
(x2

21)
2

y3208 x2
16x

2
19 − 4(x2

21)
2

y3209 x2
18x

2
19 + (x2

21)
2

y3210 (x2
19)

2 − 3(x2
21)

2

y3211 x2
0x

2
20 +

1
2
(x2

21)
2

y3212 x2
1x

2
20 +

1
2
(x2

21)
2

y3213 x2
3x

2
20 +

1
2
(x2

21)
2

y3214 x2
4x

2
20

y3215 x2
5x

2
20 +

1
2
(x2

21)
2

y3216 x2
7x

2
20

y3217 x2
8x

2
20

y3218 x2
9x

2
20

y3219 x2
6x

2
20 − 1

2
(x2

21)
2

y3220 x2
10x

2
20
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y3221 x2
11x

2
20 − 1

2
(x2

21)
2

y3222 x2
13x

2
20

y3223 x2
14x

2
20 +

1
2
(x2

21)
2

y3224 x2
12x

2
20 − 1

2
(x2

21)
2

y3225 x2
18x

2
20

y3226 x2
17x

2
20 − 1

2
(x2

21)
2

y3227 x2
15x

2
20 − 1

2
(x2

21)
2

y3228 x2
16x

2
20 + (x2

21)
2

y3229 (x2
20)

2 − (x2
21)

2

y3230 x2
1x

2
21 +

1
2
(x2

21)
2

y3231 x2
0x

2
21

y3232 x2
19x

2
20 +

1
2
(x2

21)
2

y3233 x2
2x

2
21

y3234 x2
3x

2
21

y3235 x2
4x

2
21 − 1

2
(x2

21)
2

y3236 x2
5x

2
21 +

1
2
(x2

21)
2

y3237 x2
7x

2
21 − 1

2
(x2

21)
2

y3238 x2
8x

2
21 − (x2

21)
2

y3239 x2
6x

2
21 + (x2

21)
2

y3240 x2
9x

2
21 +

1
2
(x2

21)
2

y3241 x2
11x

2
21

y3242 x2
10x

2
21 − 1

2
(x2

21)
2

y3243 x2
12x

2
21 − 1

2
(x2

21)
2

y3244 x2
13x

2
21 − 1

2
(x2

21)
2

y3245 x2
14x

2
21 +

1
2
(x2

21)
2

y3246 x2
18x

2
21

y3247 x2
17x

2
21 − 1

2
(x2

21)
2

y3248 x2
15x

2
21 + (x2

21)
2

y3249 x2
16x

2
21 − (x2

21)
2

y3250 x2
20x

2
21 − 1

2
(x2

21)
2

y3251 x2
19x

2
21 − 1

2
(x2

21)
2

Table I.1: The generators of degree 3 of the model and their differentials.
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Appendix II: Example of an element p ∈ A3
PL(K3)

To illustrate how complicated the output is, we show an example of two elements of

A3
PL(K3) and A4

PL(K3).

During the computation of the minimal model of the K3 surface, at the injectivity

step (see section 3.1), the method finds an element of degree 4 (in particular, the

element x2
19x

2
21− 1

2
(x2

21)
2 ∈M4) that should kill in order to make the quasi-isomorphism

φ∗ injective at degree 4. The image of this element by the morphism φ is represented

in the following table:

Simplex p ∈ (APL)
4
n

(2, 3, 4, 5, 9) 4y1y2y3y4
(2, 3, 4, 9, 13) −4y1y2y3y4
(2, 3, 5, 6, 13) −4y1y2y3y4
(2, 3, 9, 13, 14) 4y1y2y3y4
(2, 3, 10, 13, 14) −4y1y2y3y4
(2, 4, 5, 9, 12) −8y1y2y3y4
(2, 4, 7, 12, 14) 4y1y2y3y4
(2, 4, 8, 9, 12) −4y1y2y3y4
(2, 4, 11, 12, 14) 4y1y2y3y4
(2, 6, 9, 11, 12) −4y1y2y3y4
(3, 4, 5, 7, 13) 4y1y2y3y4
(3, 4, 5, 7, 15) −4y1y2y3y4
(3, 4, 5, 8, 15) −8y1y2y3y4
(3, 4, 6, 7, 12) −4y1y2y3y4
(3, 4, 6, 7, 16) 8y1y2y3y4
(3, 4, 7, 12, 14) 4y1y2y3y4
(3, 4, 7, 14, 15) −4y1y2y3y4
(3, 4, 8, 14, 15) −4y1y2y3y4
(3, 5, 6, 8, 15) −4y1y2y3y4
(3, 5, 6, 13, 15) −4y1y2y3y4
(3, 5, 10, 13, 15) 4y1y2y3y4
(4, 5, 7, 9, 12) 4y1y2y3y4
(4, 5, 7, 9, 15) 4y1y2y3y4
(4, 5, 8, 9, 11) −4y1y2y3y4
(4, 5, 8, 9, 15) 8y1y2y3y4
(4, 7, 8, 9, 12) −4y1y2y3y4
(5, 6, 11, 13, 15) 4y1y2y3y4
(5, 8, 9, 13, 15) −4y1y2y3y4
(6, 7, 9, 10, 13) −4y1y2y3y4
(6, 7, 10, 13, 15) −4y1y2y3y4

Table II.1: The element of A4
PL(K3) corresponding to x2

19x
2
21 − 1

2
(x2

21)
2.

In order to make the induced morphims in cohomology injective, the algorithm adds
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the generator y3251 ∈M3 whose differential is precisely that element:

d3 : M3 −→ M4

y3251 → x2
19x

2
21 − 1

2
(x2

21)
2.

The last step is to find an element p ∈ A3
PL(K3) whose differential is the element

φ(x2
19x

2
21 − 1

2
(x2

21)
2) ∈ A4

PL(K3). This element is presented in the following table:

Simplex p ∈ (APL)
3
n

(1, 2, 3, 8, 12) 2y1y3y4 − 5y2y3y4
(1, 2, 4, 7, 11) y1y3y4
(1, 2, 5, 7, 13) −2y1y2y3 + 2y1y3y4
(1, 2, 5, 7, 15) −2y1y2y3 − 2y1y2y4
(1, 2, 5, 8, 10) −2y1y2y3 + 2y1y3y4
(1, 2, 5, 8, 14) −2y1y2y3 − 2y1y2y4
(1, 2, 5, 14, 15) −2y1y2y3 − 2y1y2y4
(1, 2, 6, 7, 9) −2y1y2y3 + y1y3y4
(1, 2, 6, 7, 13) −2y1y2y3 + 2y1y3y4
(1, 2, 7, 9, 11) y1y2y3 + y1y2y4
(1, 2, 8, 10, 12) 2y1y2y3 + 2y1y2y4
(1, 3, 4, 6, 10) y1y2y3 − 4y1y3y4
(1, 3, 4, 6, 14) y1y2y3
(1, 3, 5, 6, 9) 5y1y2y3 + 5y1y2y4
(1, 3, 5, 6, 11) 5y1y2y3 − 4y1y3y4
(1, 3, 5, 9, 12) 5y1y2y3 − 5y1y3y4
(1, 3, 6, 10, 11) −4y1y2y3 − 4y1y2y4
(1, 3, 8, 9, 12) −5y1y2y4 − 5y1y3y4
(2, 3, 4, 5, 9) −t4y1y2y3 + t3y1y2y4 − t2y1y3y4 + t1y2y3y4 + 3y1y2y3 + 4y1y2y4 − 2y2y3y4
(2, 3, 4, 5, 13) 3y1y2y3
(2, 3, 4, 9, 13) t4y1y2y3 − t3y1y2y4 + t2y1y3y4 − t1y2y3y4 + 4y1y2y3 − 5y1y3y4
(2, 3, 5, 6, 13) t4y1y2y3 − t3y1y2y4 + t2y1y3y4 − t1y2y3y4
(2, 3, 7, 8, 12) −7y1y2y4 − 7y1y3y4
(2, 3, 7, 12, 14) −7y1y2y3 + 7y1y3y4
(2, 3, 9, 13, 14) −t4y1y2y3 + t3y1y2y4 − t2y1y3y4 + t1y2y3y4 − 5y1y2y3 + 6y1y3y4
(2, 3, 10, 12, 14) 7y1y2y4 + 7y1y3y4
(2, 3, 10, 13, 14) t4y1y2y3 − t3y1y2y4 + t2y1y3y4 − t1y2y3y4 + 7y1y2y4 + 6y1y3y4
(2, 4, 5, 6, 10) −y1y3y4 − y2y3y4
(2, 4, 5, 9, 12) 2t4y1y2y3 − 2t3y1y2y4 + 2t2y1y3y4 − 2t1y2y3y4 − 2y1y2y3
(2, 4, 6, 10, 11) −y1y2y3 − y1y2y4
(2, 4, 6, 11, 12) −y1y2y3 + y1y3y4
(2, 4, 7, 8, 10) −y1y2y4 − y1y3y4
(2, 4, 7, 8, 12) y1y2y4
(2, 4, 7, 10, 11) −y1y2y3 − y1y2y4
(2, 4, 7, 12, 14) −t4y1y2y3 + t3y1y2y4 − t2y1y3y4 + t1y2y3y4 + y1y2y3
(2, 4, 8, 9, 10) −y1y2y3 − y1y2y4
(2, 4, 8, 9, 12) t4y1y2y3 − t3y1y2y4 + t2y1y3y4 − t1y2y3y4 − y1y2y3
(2, 4, 11, 12, 14) −t4y1y2y3 + t3y1y2y4 − t2y1y3y4 + t1y2y3y4 + y1y2y3
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(2, 5, 6, 10, 11) −y1y2y3 − y1y2y4
(2, 5, 6, 11, 13) −y1y2y3
(2, 6, 7, 9, 11) y1y2y3 − y1y3y4
(2, 6, 9, 11, 12) t4y1y2y3 − t3y1y2y4 + t2y1y3y4 − t1y2y3y4 − y1y2y3
(3, 4, 5, 7, 13) −t4y1y2y3 + t3y1y2y4 − t2y1y3y4 + t1y2y3y4 − y1y2y3 − 3y1y2y4 + y2y3y4
(3, 4, 5, 7, 15) t4y1y2y3 − t3y1y2y4 + t2y1y3y4 − t1y2y3y4 − y1y2y3
(3, 4, 5, 8, 11) −2y1y2y3
(3, 4, 5, 8, 15) 2t4y1y2y3 − 2t3y1y2y4 + 2t2y1y3y4 − 2t1y2y3y4 − 2y1y2y3
(3, 4, 6, 7, 12) t4y1y2y3 − t3y1y2y4 + t2y1y3y4 − t1y2y3y4 + 2y1y2y3 + 3y1y2y4
(3, 4, 6, 7, 16) −2t4y1y2y3 + 2t3y1y2y4 − 2t2y1y3y4 + 2t1y2y3y4 + 2y1y2y3
(3, 4, 6, 8, 14) −y1y2y4 − y1y3y4
(3, 4, 6, 10, 12) 3y1y2y3 + 3y1y2y4
(3, 4, 7, 12, 14) −t4y1y2y3 + t3y1y2y4 − t2y1y3y4 + t1y2y3y4 − y1y2y4
(3, 4, 7, 14, 15) t4y1y2y3 − t3y1y2y4 + t2y1y3y4 − t1y2y3y4 − y1y2y3
(3, 4, 8, 14, 15) t4y1y2y3 − t3y1y2y4 + t2y1y3y4 − t1y2y3y4 − y1y2y3
(3, 5, 6, 8, 11) −y1y2y3 − y1y2y4
(3, 5, 6, 8, 15) t4y1y2y3 − t3y1y2y4 + t2y1y3y4 − t1y2y3y4 − y1y2y3
(3, 5, 6, 13, 15) t4y1y2y3 − t3y1y2y4 + t2y1y3y4 − t1y2y3y4 − y1y2y3
(3, 5, 7, 13, 14) y1y2y3 − y1y3y4
(3, 5, 10, 13, 14) y1y2y3 − y1y3y4
(3, 5, 10, 13, 15) −t4y1y2y3 + t3y1y2y4 − t2y1y3y4 + t1y2y3y4 + y1y2y3
(4, 5, 7, 9, 12) −t4y1y2y3 + t3y1y2y4 − t2y1y3y4 + t1y2y3y4 + y1y2y3
(4, 5, 7, 9, 15) −t4y1y2y3 + t3y1y2y4 − t2y1y3y4 + t1y2y3y4 + y1y2y3
(4, 5, 8, 9, 11) t4y1y2y3 − t3y1y2y4 + t2y1y3y4 − t1y2y3y4 + y1y2y3 + 2y1y2y4
(4, 5, 8, 9, 15) −2t4y1y2y3 + 2t3y1y2y4 − 2t2y1y3y4 + 2t1y2y3y4 + y1y2y3
(4, 7, 8, 9, 12) t4y1y2y3 − t3y1y2y4 + t2y1y3y4 − t1y2y3y4 + y1y2y4
(5, 6, 11, 13, 15) −t4y1y2y3 + t3y1y2y4 − t2y1y3y4 + t1y2y3y4 + y1y2y3
(5, 8, 9, 13, 15) t4y1y2y3 − t3y1y2y4 + t2y1y3y4 − t1y2y3y4 + y1y2y4
(6, 7, 9, 10, 13) t4y1y2y3 − t3y1y2y4 + t2y1y3y4 − t1y2y3y4 − y1y3y4
(6, 7, 10, 13, 15) t4y1y2y3 − t3y1y2y4 + t2y1y3y4 − t1y2y3y4 − y1y2y3

(1, 2, 5, 7) −2y1y2y3
(1, 2, 5, 8) −2y1y2y3
(1, 2, 5, 14) −2y1y2y3
(1, 2, 5, 15) −2y1y2y3
(1, 2, 6, 7) −2y1y2y3
(1, 2, 7, 9) y1y2y3
(1, 2, 7, 11) y1y2y3
(1, 2, 7, 13) 2y1y2y3
(1, 2, 8, 10) 2y1y2y3
(1, 2, 8, 12) 2y1y2y3
(1, 3, 4, 6) y1y2y3
(1, 3, 5, 6) 5y1y2y3
(1, 3, 5, 9) 5y1y2y3
(1, 3, 6, 10) −4y1y2y3
(1, 3, 6, 11) −4y1y2y3
(1, 3, 8, 12) −5y1y2y3
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(1, 3, 9, 12) −5y1y2y3
(2, 3, 4, 5) 3y1y2y3
(2, 3, 4, 9) 4y1y2y3
(2, 3, 7, 12) −7y1y2y3
(2, 3, 8, 12) −7y1y2y3
(2, 3, 9, 13) −5y1y2y3
(2, 3, 10, 14) 7y1y2y3
(2, 3, 12, 14) 7y1y2y3
(2, 3, 13, 14) 6y1y2y3
(2, 4, 5, 9) −2y1y2y3
(2, 4, 6, 10) −y1y2y3
(2, 4, 6, 11) −y1y2y3
(2, 4, 7, 10) −y1y2y3
(2, 4, 7, 11) −y1y2y3
(2, 4, 7, 12) y1y2y3
(2, 4, 8, 9) −y1y2y3
(2, 4, 8, 10) −y1y2y3
(2, 4, 11, 12) y1y2y3
(2, 5, 6, 10) −y1y2y3
(2, 5, 6, 11) −y1y2y3
(2, 6, 7, 9) y1y2y3
(2, 6, 9, 11) −y1y2y3
(3, 4, 5, 7) −y1y2y3
(3, 4, 5, 8) −2y1y2y3
(3, 4, 5, 13) −3y1y2y3
(3, 4, 6, 7) 2y1y2y3
(3, 4, 6, 10) 3y1y2y3
(3, 4, 6, 12) 3y1y2y3
(3, 4, 6, 14) −y1y2y3
(3, 4, 7, 14) −y1y2y3
(3, 4, 8, 14) −y1y2y3
(3, 5, 6, 8) −y1y2y3
(3, 5, 6, 11) −y1y2y3
(3, 5, 6, 13) −y1y2y3
(3, 5, 7, 13) y1y2y3
(3, 5, 10, 13) y1y2y3
(3, 5, 13, 14) −y1y2y3
(4, 5, 7, 9) y1y2y3
(4, 5, 8, 9) y1y2y3
(4, 5, 8, 11) 2y1y2y3
(4, 7, 8, 12) y1y2y3
(5, 6, 11, 13) y1y2y3
(5, 8, 9, 15) y1y2y3
(6, 7, 10, 13) −y1y2y3

Table II.2: The element of A3
PL(K3) corresponding to generator y3251.
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