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Resumen

El tipo de Homotopia Racional de un espacio topoldgico es una simplificacion de su
tipo de homotopia, donde todos los grupos son tensorizados por Q. Pese a esta pérdida
de informacién, estudiar el tipo de homotopia racional tiene la ventaja de ser tratable
computacionalmente. Gracias a Sullivan, dado un espacio topologico X que cumple
ciertas propiedades, se sabe tedricamente como obtener su tipo de homotopia racional,
via la construccién de un algebra commutativa diferencial graduada, llamada el modelo
minimal de Sullivan de X. Este dlgebra viene acompanada de un quasi-isomorfismo al
algebra de cocadenas singulares de X, denotada por C*(X), y nos permite establecer
una equivalencia categorica entre tipos de homotopia racional de espacios y clases de
isomorfismos de modelos de Sullivan:

Tipos de Homotopia Clases de Isomor fismos
Racional de Modelos de Sullivan

En este trabajo se presenta un método efectivo para el calculo del modelo minimal
de Sullivan de un espacio topolégico simplemente conexo, asi como una implementacién
de dicho método en un sistema de algebra computacional. Para ilustrar dicho métodos,

se incluyen algunos ejemplos concretos para diferentes espacios.

Abstract

The rational homotopy type of a topological space is a simplified version of the
homotopy type where all homotopy groups are tensored by Q. Despite the lost
information, rational homotopy has the advantage of being constructive. Due to
Sullivan, for a particular topological space X that satisfies some conditions, it is
known theoretically how to obtain its rational homotopy type via the construction
of a commutative differential graded algebra, called the Sullivan model of X. This
algebra is quasi-isomorphic to the normalized singular cochain algebra of X, C*(X),
and it allows us to establish a categorical equivalence between homotopy types of spaces

and isomorphism classes of Sullivan models:

Rational homotopy Isomorphim classes of
types of spaces minimal Sullivan models

In this work it is presented an effective method to compute the Sullivan minimal
model for a simply-connected topological space, and an implementation of such method
in a Computer Algebra System. In order to illustrate such method, examples of some

computations are included.
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1 Introduction

One of the most important aims of Topology is to determine when two topological
spaces are equivalent, i.e., if there exists a homeomorphism between them. There is
not any methodology to find this equivalence, but mathematicians have other tools to
narrow the problem down. It can be reformulated as follow: maybe we can not say
whether two topological spaces are equivalent, but if we find some essencial property
that defines one space, and this property is not met by the other, then we could say
that these two spaces are not equivalent. This kind of properties are called invariants,
and one of the main lines of research in topology is to find and characterize these
invariants. Algebraic Topology is the field of mathematics that uses algebraic tools to

extract properties of topological spaces.

(a) Sphere S? (b) Torus T2

Figure 1.1: Example of two different topological spaces of dimension 2.

In Topology, it is said that two continuous maps are homotopic if one can be
“continuously deformed” into the other. Homotopy theory is the study of continuous
maps between topological spaces. The homotopy groups, i.e., the groups of equivalence
classes of homotopic continuous maps, is a topological invariant and can be used to
determine, for example, if two topological spaces are not topologically the same, i.e.,
it does not exist an homeomorphism between them.

The mathematical context of the work presented here belongs to the realm of
Rational Homotopy Theory [3, 4, 6, 8, 9]. As the name suggests, it is a branch of
Homotopy Theory, and it begins with the discovery by Sullivan in the 1960’s that
simply connected topological spaces and continuous maps between them can themselves
be rationalized, i.e., given a simply connected space X, it is possible to construct (via

rationalization) a space Xg, such that

m.(Xo) = m(X) © Q,
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and given a map f : X — Y between simply connected topological spaces, there exists
an induced map fg : Xo — Yg. We say that f is called a rational homotopy equivalence
[6, p. 110-111] if one of the following (equivalent) conditions is satisfied:

7.(f) ® Q is an isomorphism,

H,.(f;Q) is an isomorphism,

H*(f;Z) ® Q is an isomorphism,

The rationalized map fg : Xgo — Y is a weak homotopy equivalence.

The rational homotopy type of a topological space X is the homotopy type of Xg,
and the rational homotopy class of a continuous map between two spaces f : X — Y is
the homotopy class of fgp : Xg — Y. Rational Homotopy Theory is then the study
of properties that depend only on the rational homotopy type of a space or the rational
homotopy class of a map. Despite the lost information (see Tables 1.1, 1.2), rational

homotopy has the advantage of being remarkably computational.

‘ Ty ‘ s ‘ 6 ‘ 7 ‘ 8 ‘ 9 ‘ 10 ‘ 11 ‘ T2
S4 Z Z2 ZQ 7, X Zlg ZQ X ZQ ZQ X Z2 Z24 X Z3 Z5 Z2
S50 | Z|Z Zsy Zioy Zsy Zy Zo | Zso
S0 0| Z Zsy Zs Zioy 0 Z | Zs

Table 1.1: A subset of the homotopy groups of the spheres S*, S® and S° .

|| s [ o [ |

4 Te | M7 8 ‘ 9 ‘ T10 ‘ 11 ‘ T12
st1z{o|0]z]0]0] O 0 0
Slof{z|0o]0]0]0] O 0 0
sstojojzjo|0l0O| O] Z]|O

Table 1.2: A subset of the rational homotopy groups of the spheres S*, S* and S°¢. In
red color are shown the groups where some information is lost due to rationalization.

The main contribution of Sullivan was that he found how to obtain the rational
homotopy type of a simply connected topological space X, via the construction of a
commutative differential graded algebra, called the Sullivan model of X. This result is

summarized in what is known as the main theorem of Rational Homotopy:

Theorem 1.1 (Fundamental theorem of Rational Homotopy). Let X be a

simply-connected topological space of finite type, with Sullivan model (AV,d). Then,
for every k > 0, the bilinear pairing

<> VP m(X) — Q,
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15 mon-degenerate, and
I 2 VF S Homg(m(X), Q) ~ m(X) @ Q
is an tsomorphism of Q-vector spaces.

This algebra allows us to establish a categorical equivalence between rational
homotopy types of spaces and isomorphism classes of Sullivan models:
Rational homotopy Isomorphim classes of
types of spaces minimal Sullivan models
In this work it is presented an effective method to build the minimal Sullivan model
of a given topological space X. Furthermore, it is presented a concrete implementation

in a Computer Algebra System and examples of different computations.

1.1 Goals

The aim of this work is the analysis, development and implementation of an effective
method for the computation of the Sullivan model of a topological space given as a

simplicial complex. In particular, the specific goals of this work are:

1. Understand the basis of Rational Homotopy Theory and how is defined the

Sullivan model of a topological space.

2. Review the state of the art about previous works on effective methods for the

computation of minimal Sullivan algebras.

3. Identify why these methods can not be applied in the context of Sullivan models

of topological spaces and propose possible solutions and adaptations.

4. Develop the mathematical tools needed for the computation of such Sullivan

models.

5. Implement an effective method in a Computer Algebra System in order to test

the algorithm.

1.2 Structure of the document

The document has been organized as follows: Chapter 2 contains all the mathematical
background needed for the development and understanding of the presented work.
In Chapter 3 is presented the effective method developed for the computation of
the Sullivan minimal model of a given topological space. In Chapter 4 are shown

some computations for different topological spaces. In Chapter 5 are presented the



conclusions and future work. Finally, in Appendix I, as a way to show the complexity of
the output for some topological spaces, the generators of degree 3 and their differentials
of the minimal model of the K3 surface are listed, and in Appendix II, an example of

an element of the algebra Apy(K) for the K3 surface is included.



2 Background

In this section are included all the mathematical objects and algorithms previously
defined in the literature and needed for the develompent and understanding of the work

presented in the next section. For a more extensive description see [3, 4, 6, 7, 8, 10].

2.1 Simplicial Complexes

(For a more detailed description see [5]).
Consider a continuous map f : (X,z9) — (Y,y0) between pointed topological

spaces. This map is called a weak homotopy equivalence if the induced map
7T*(f) : 7T*<X, ZE()) - 71—*(Yv? yO)

is an isomorphism. The spaces X and Y have the same weak homotopy type if there

is a finite chain of weak homotopy equivalences
X~y = —2,—Y

A cellular model or CW model for a space Y is a CW complex X together with a weak
homotopy equivalence f : X — Y. It is known that every space Y has a CW model
and this model is unique up to homotopy equivalence. Two important theorems are in

the foundations of Rational Homotopy Theory:

Theorem 2.2 (Whitehead [9, p. 346]). If a map f : X — Y between connected
CW complexes induces isomorphisms m.(f) : m(X,zo) — m(Y,%0), Vn, then f is a

homotopy equivalence.

Theorem 2.3 (Whitehead-Serre [6, p. 94]). Let f: X — Y be a map between simply

connected spaces. Then the following assertions are equivalent for a subring R of Q:
e m.(f)®z R is an isomorphism

e H.(f, R) is an isomorphism

In this work, instead of using CW models, for computational reasons, these
structures are replaced by simplicial complexes. Let us recall that a simplicial
complex X of dimension n is a construction made up of some building blocks called
simplices, glued together along common faces, that are simplices of lower dimension

(see Figure 2.1).
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(a) O-simplex (b) 1-simplex (c) 2-simplex (d) 3-simplex

Figure 2.1: Building blocks for simplicial complexes.

A simplicial complex can be seen as a collection of simplices satisfying the following

properties:
e cvery n-simplex has exactly n + 1 faces.
e every face of a simplex of X is in X, and

e the intersection of any two simplices of X, is either a face of each them or the

empty set.

These constructions are used to model topological spaces. In this model, an
n-simplex is homeomorphic to a disc of dimension n, D".

Because Rational Homotopy theory is built upon the construction of C'W models
and its singular homology, two important theorems have to be mentioned in order to
validate the use of simplicial complexes for the purpose of this work.

The first theorem asserts the existence of a homotopy equivalent simplicial complex

Y for every CW complex X:

Theorem 2.4 ([9, p. 182]). Every CW complex X is homotopy equivalent to a
simplicial complex Y, which can be chosen to be of the same dimension as X, finite if

X is finite, and countable if X s countable.

The second theorem is important because it allows us to work with the simplicial
homology of a given simplicial complex X, as if we were working with the singular

homology, object used in [6] for the building of the Rational Homotopy Theory’s corpus:

Theorem 2.5 (Equivalence of Simplicial and Singular Homology [9, p. 128]). Given
a simplicial complex, X, the simplicial homology and the singular homology of X are

1somorphic.

Given a simply connected space X, a simplicial complex Y homotopy equivalent to
a CW model of such space, and combining Theorems 2.3 and 2.5, we can study the

rational homotopy type of X through Y.



2.2 The Rational Homotopy Type of a Topological Space

Although the work presented here can be read from a pure algebraic point of view, its
motivation comes from Rational Homotopy. For completeness, we now present a brief
introduction to the rational homotopy type of a topological space, without getting too

deep into technical details. Let us begin with some definitions:

Definition 2.6. A simply-connected topological space X is called rational if 7.(X) is a
Q-vector space. A rationalization of a simply-connected space X is amap ¢ : X = Xg

to a simply-connected rational space Xq such that ¢ induces an isomorphism:
T.(X) ® Q = 7. (Xg).

Two important theorems are those related to the existence and uniqueness of the

rationalization of a simply-connected space:

Theorem 2.7 (existence, [6] p.109). For each simply-connected space X there is a
relative CW complex (Xq, X) (with neither 0-cells nor 1-cells) such that the inclusion

¢ : X = Xg 15 a rationalization.

Theorem 2.8 (uniqueness, [6] p.109). Let (Xg,X) be a cellular rationalization and
f: X =Y a continuous map to a simply-connected rational space Y. Then f extends
over Xqg to a map f : Xo = Y. This map is unique up to homotopy, i.e., any two

extensions of f are homotopic relative to X.

Figure 2.2: Building Xg as the gluing of X and X(SW through the cylinder of X¢W.

Summing up, in order to rationalize a simply-connected topological space X, we

need to build a relative CW complex, (Xg, X), in such a way that the inclusion is a
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rationalization. In order to do that, let X¢W be the cellular model of X. As X“W is
itself a C'W complex, it is possible to build a (full CW) rational space X§" where the
inclusion px : XW — XQ? W is a rationalization [6].

Given a simply-connected space X, a CW model of the space (X“W, ¢x), and a
rationalization of such model (X(g W ux), the rationalization of X is the space

Xo =X Jx" x| Jxg",
$x KX

where (z,0) goes to ¢x(z) and (1) goes to ux(x) (see Figure 2.2). The
inclusion ¢ : X — Xg induces isomorphisms in homology with coefficients in Q, and
by Theorem 2.3, also it induces the isomorphisms m,(Xg) = m.(X) ® Q.

The rational homotopy type of a simply-connected space X is the homotopy type
of Xq, and the rational homotopy class of a map between simply-connected spaces
f X — Y is the homotopy class of fg : Xog — Ygp. By Theorem 2.3, we know
that rational homotopy groups and rational homology groups are invariants of the
rational homotopy type. Also, if two spaces X and Y are CW complexes, so are
their rationalizations and, due to Theorem 2.2, we know that the weak homotopy
equivalence is a homotopy equivalence in the category of CW complexes. For two given
CW complexes, X,Y, we can say that such spaces have the same rational homotopy

type if and only if there is a homotopy equivalence between their rationalizations:
Xo = Yo.

In Figure 2.3 are summarized the relations between spaces, maps and their

rationalizations:
fo
XQ ” YQ
A Ko PRAIIN
| NV i7" |
| N Rationalization e |
| S 7 |
! ~o f o’ !
| X ——Y |
| |
| weak homotopy |
! i ox equivalences Py ! i
| few |
| XCW \ YCW |
I /) Q\ I
| ) ~ |
i Hx-~ Rationalization Y i
Joox cw RRFURN
XCW fQ N YCW
Q )

Figure 2.3: Rationalization of spaces and maps.



As it is mentioned at the end of the introduction, the main contribution of Sullivan
was to obtain the rational homotopy type of a simply connected topological space X,
via the construction of a commutative differential graded algebra, called the Sullivan
model of X. This algebra allows us to establish a categorical equivalence between

rational homotopy types of spaces and isomorphism classes of Sullivan models:

{Ratz’onal homotopy} { Isomorphim classes of }

types of spaces minimal Sullivan models

In the next sections are introduced all the algebraic objects needed to define the

Sullivan minimal model of a topological space.

2.3 Graded Commutative Differential Algebras

Definition 2.9. A graded ring is a ring R where the additive struture is a direct sum

R=Pr

and, for such decomposition, the product satisfies that

of abelian groups

R;-R; C Ryy;.

Remark. Every ring R can be endowed with a trivial graded structure where Ry = R
and R; = 0,Vi # 0. For the rest of the chapter, let R be a commutative ring endowed
with the trivial graded structure. Typically, R = 7Z, Q, R.

Definition 2.10. Let M be an R-module. We say that M is graded if there exists a
family of R-modules {M;};cz such that M = P

grading of M. An element e € M is said to be homogeneous if e € M; for some i. In

ez M;. This decomposition is called a

such a case, we say that e has degree |e| = i.

Example 2.11. Let M = R{ej,es,e3) be a graded R-module, where |e;| = 1 and
lea| = |es| = 2. Then, M = M; & M,, where M; = R{e;) and My = R(ey, e3).

Definition 2.12. The tensor product of two graded R-modules M = @D, M; and
N =, N; is a graded R-module M ® N where

(M@ N),= @ Mo N;.
itj=k

The definition of the tensor product of two graded R-modules will be relevant later
in the definition of an R-algebra. In particular, it will be important to take into account

the case of the tensor product of a graded R-module by itself, M @ M.
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Definition 2.13. A differential in a graded R-module M = €p,_, M; is a homogeneous

linear map d : M — M of degree k, that is, d(M;) C M.y, such that d* = 0.

In this context, when £ is negative we use subscript notation and when k is positive
we use superscript notation. Usually, & € {—1,1}. We call the family of pairs
{(M;,d;)}iez (or {(M*,d")}icz) a compler, where d; : M; — M;  is the restriction
of d to M; (analogously, d* : M* — M®! is the restriction of d to M*). When k = —1

the complex is represented as
d; dit1
"‘HM,L',1<—M¢<—M¢+1<— SR
and when k£ =1 as
i—1 A7 i dh il
e — M — M — M — -

Example 2.14. Let M = R(eq, es, e3) be the graded R-module defined in the Example
2.11. Define the differential of the generators as:

d(@l) = O,
d(eg) = €1,
d(eg) = e;.

Extending by linearity, the differential of any other element of M is defined (note that
d*=0).

Let {(M;,d;)}icz be a complex as above. If no ambiguity arises, we will simply
denote it by (M,d). Note that the condition d* = 0 implies Imd;,; C Kerd; and
both are R-submodules of M;. Analogously, for complexes with differential of degree
1, Imdi~! C Kerd’. This motivates the following definitions.

Definition 2.15. The ith-homology group of a complex (M,d) with differential of
degree —1, is defined as the quotient R-module

Kerd;
H;(M,d) = Tmdo,’

(1)

The elements of Kerd; are called (ith-)cycles and the elements of Imd; ; are called

(1th-)boundaries.

Definition 2.16. The ith-cohomology group of a complex (M, d) with differential of
degree 1, is defined as the quotient R-module

. Ker d"
H(M,d) = ——. 2
( Y ) Im dz_l ( )
The elements of Kerd' are called (1th-)cocycles and the elements of Imd,;_; are called

(ith-) coboundaries.
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Example 2.17. Let us compute the homology groups in Example 2.14. First, as M
does not have elements of degree lower than 1 or greater than 2, H; = 0,Vi ¢ {1,2}.
In order to obtain H;, we need to compute the kernel of d; and the image of dy. It is
easy to see that Kerd; = M; and Imd, = M;, so computing the quotient we obtain
that H; = 0.

Let us see what happens with Hs. As there are no elements of degree 3 in M, the
image of d3 = 0. On the other hand, the kernel of dy is a submodule generated by
the element e; — e3, so we have that Hs is generated by the equivalence class of this

element. Summarizing, the homology groups of M are:

mML@Z{M@—%Dif izz}'

0 otherwise

Definition 2.18. A graded R-algebra A is a graded R-module, together with an

associative linear map of degree zero
(A® A — AF
TRY— Y

that has an identity 1 € A°. This map is called product and satisfies the following

property:
ry € A Vr € A', Yy € AL

Definition 2.19. A morphism ¢ : A — B of graded R-algebras is a linear map of
degree zero such that ¢(zy) = ¢(z)p(y) and ¢(1) = 1. Notice that a morphism of
graded R-algebas preserves the degree.

Example 2.20. Let M and N be the graded R-algebras
o M = R{xy,x9) with |z1| = 1, |xe| = 2,
o N = R{y1,y2,y3) with [y1| =1, [y2| = |ys| = 2.
We can define the morphism ¢ of graded R-algebras as follows:

p:M — N
1= N

Lo = Y2 — Ys.

Definition 2.21. A graded commutative algebra is a graded algebra, A, where the
product satisfies the property:

vy = (—1)9yx, Vo € A, Yy € AJ.

11



It is important to remark that this algebra is not commutative, but graded
commutative. Also, the property does not work for non-homogeneous elements, i.e

when one of the factors is not homogeneous.

Example 2.22. Let A = Q(a, b, ¢) with |a| and |c| odds and |b| even. Consider now
the non-homogeneous element a 4+ b and the products (a +b) - ¢ and ¢- (a+b). In that

case, notice that the commutative law does not work, since

(a+b)-c = a-c+b-c
c-(a+b) = —a-c+b-c,

and it means that, in general
(a+0b)-c#xc-(a+Db).

Definition 2.23. A graded commutative differential algebra (or GCDA), A, over a
ring R is a graded R-algebra, A = @;°, A", together with an R-linear map ds : A — A

that satisfies the following conditions:
o &% =0,
o di(x) C A Ve A,

o di(zy) = da(x)y + (=1)wda(y), Vo € A%, Vy € A.
From now on, we will asume that R = Q.

2.4 The Sullivan Minimal Model of a GCDA

Definition 2.24. Let V = @FZIVP be a graded Q-vector space. We denote by
AV = (QV)/I, where @V is the tensor algebra of V, and I is the bilateral ideal
generated by {v @ w+ (-1)Yw @ v | v € V', w € V7}, and with the grading induced
by the one in V.

Given W a subspace of V, A"W will denote the image of W® o @W in AV, and
A2V will be D, A"V

Notation. If eq, ... e, are a basis of the vector space V', then A(ey,...,e,) will denote
the algebra AV.

Definition 2.25. A GCDA (A, d) is said to be a Sullivan algebra if A ~ AV, for some
graded Q-vector space V', that satisfies the following property:

12



e There exists a filtration

of graded subspaces

such that
d:V(0)—Q
and
d:V(k)—= AV(k-1))
for k> 1.

Definition 2.26. A Sullivan algebra is said to be minimal if
Imd C AZ%V, Vv eV.

Definition 2.27. A Sullivan i-minimal model (M, ) of a GCDA (A, d,) is a minimal

Sullivan algebra (M, dy) together with an i-quasi-isomorphism:
p: M — A,
i.e., a morphism ¢ such that, the induced morphisms
o HI(M) — H(A), (3)
are isomorphisms for 7 < ¢, and a monomorphism for j =7 + 1.

Definition 2.28. A Sullivan minimal model (M, ) of a GCDA (A,dy) is a Sullivan

i-minimal model (M, dy,) for all i.

2.5 Effective Method for the Computation of the Minimal
Model of a finitely generated GCDA

Some implementations of effective methods for the computation of the minimal model
can be found in the literature for the case of finitely generated GCDAs. In [7] an
algorithm for the computation of the entire minimal model of a given Sullivan algebra
(not necessary minimal) through chain contractions is presented. On the other hand,
in [10] the authors present an algorithm for the computation of the minimal model (up
to degree i) of a (general) finitely generated GCDA. This algorithm takes as input a
finite presentation of a connected GCDA A (i.e. all generators are of positive degree),
and it outputs a presentation of its minimal model M up to a given degree, together
with the morphism ¢ : M — A. In this work we are going to follow the approach of

the latter reference. The adapted method is described in section 3.4.
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2.5.1 Limitations of these methods

If the given GCDA A has generators of degree zero, then the homogeneous parts of
the algebra could be infinite dimensional. Since this method involves linear algebra
computations on the homogenous parts of A, the method does not work for this kind
of algebras. The main motivation of this work is to adapt the method to overcome this

limitation.

2.6 The Graded Commutative Differential Algebra Ap;(K)

A simplicial object K with values in a category € is a sequence {K,},>o of objects in

¢, together with €-morphisms:
ai:Kn%Kn—la OSZSnv

sj i Ky — Kppr, 0< 7 <m,

where the morphism 0; (respectively, s;) is called the i-face (respectively,

j-degeneration), and satisfy the identities:

&aj = 8j,18i, 1< j,

8iSj =  Sj+1Si, 1< 7,

5;-10;,  1<7, (4)
0;sj = id, 1=73,7+1,
5;0i—1, i>j+1L

A simplicial set is a simplicial object with values in the category of sets. One way to

think of simplicial sets is as simplicial complexes where we allow degenerated simplices

(that is, simplices where two or more vertices may coincide). In particular, we will
think of simplicial sets as models for topological spaces.

Given a simplicial set K, we will construct a GCDA, denoted by Ap(K). The

minimal model of the topological space modeled by K is defined as the minimal model

of this algebra. In the next sections are presented all the elements needed for the

construction of this algebra.

2.6.1 The cochain algebra (App),

First, consider the free graded commutative algebra A(to, ..., tn, Yo, .- ., Yn), where the
generators t; have degree 0, and the generators y; have degree 1. The differential d is

given by



The cochain algebra (Apy), is defined as the quotient:

/\(th"'7tnay07"'7yn)

Ar = =i T sy) )

Notice that this algebra is actually isomorphic to A(t1,...,tn, Y1, ---,Yys). That is, the
relations allow us to express ¢y in terms of ¢q, ..., t, and yo in terms of ¥, ..., y,. After
eliminating tg, yo, the expression of each element is unique. However, it is sometimes
more convenient to use also tg, yo to write certain formulas, so we will use one expression

or the other depending on the context.

2.6.2 The simplicial cochain algebra Ap,

We define now a simplicial object in the category of cochain algebras, called the

simplicial cochain algebra Ap;, = {(ApL)n}n>0 as follows:

e For each n > 0, the cochain algebra (App),, is the one defined above.

e The face and degeneration morphisms are the unique cochain algebra morphisms

O (Apr)n — (ApL)n-1, 0 <7 <,

sj : (Apr)n — (ApL)ny1, 0 < j <n,

satisfying
Oite) =3 0, k=i, si(ti)={tu+l1, k=] (6)
the1, k>1 thr1, k>

The structure of the simplicial cochain algebra Ap; can be visualized in figure
2.4, where horizontally is represented the simplicial structure for a given dimension
n (subscript), and vertically the graded structure of the algebra (representing the
degree p, with superscript). This object has a triangular structure due to the vanishing

of the elements when p > n.
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. 0; 9
02 (Apn)} £ (Aps); —— (Ap)} g (Ap)3 g

ld% ldg‘ o, A, % a
0 £ (Apy)} & (App)} g (Apr)3 g
ldi‘ o, s 1 o
0= G = =
@y % o

Figure 2.4: The structure of the simplicial cochain algebra (App),.

2.6.3 The cochain algebra Ap(K)

Let K be a simplicial set, and let Apr, = {(ApL)n}n>0 be the simplicial cochain algebra
defined earlier. Then
Ap(K) = P AR, (K)

p=>0

is the cochain algebra defined as follows:

e The homogenous part A%, (K) is the set of simplicial set morphisms from K
to A%,. That is, an element ® € A%, (K) is a mapping that assigns to each

n-simplex o € K,,, an element ®(0) € (A%, )n, satisfying

P(0;(0)) = 0;(P(0)) (7)

e Addition, scalar multiplication, product and the differential are induced by the

corresponding operations in the algebras (App ).

The structure of the cochain algebra Apy (K), at some general dimension n and degree
p, can be visualized in figure 2.5. the horizontal direction corresponds to the simplicial
structure for a given dimension n (subscript), and the vertical direction corresponds to
the graded structure of the algebra (representing the degree p with superscript). As the
simplicial cochain algebra (Apr), is at the ground of this structure, all the elements of
A%, (K),, will vanish when p > n. This is because it is not possible to assign non-zero

polynomial forms of degree greater than the dimension of the simplices.
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dP*2 dP 2 dp,2
0, ~ A 0, ~ A 0; ~ A 0,
— 1 <—1 — —
81 \rdiil 61 ~ diﬁl 81 \rdf;il 61
’ (_ A L(K)’ﬂ—l (_ A (K)n (— A (K)’fH-l —
0, vdp 0, vdg 0 \/di 0;
T 1 T 1 T 1 "L
et Ap+ (K)n—1 PN Ap+ (K)n APJF (K )t -
dp+1 di—‘-l dp+1

Figure 2.5: The structure of the cochain algebra App(K).
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3 Effective method for the computation of the
Sullivan model of a topological space

Here we will see how to adapt the algorithm mentioned in section 2.5 to the case of
the algebra App(K) for a finite simplicial set K (a simplicial set is said finite if it has
a finite number of non degenerated simplices). Note that the method as it is cannot
be used in this case because each homogenous part has infinite dimension due to the
nature of the underlying cochain algebra (Apy), that has generators ¢; of degree 0.
For a given simplicial complex K, there exists a quasi-isomorphism of cochain
complexes ¢ : App(K) — C*(K) that will be explained in section 3.1. Figure 3.1
summarizes the relationships between these objects and the Sullivan model (M, ¢).
The precise definition of these maps can be found in [6]. In order to adapt the method
for the computation of the minimal Sullivan model, we need to define sections for the

maps f and d4. The main contribution of this work is developed here.

d?t dP
Mt My M et HP(M)
1 1 1 ~Y
(pp (pp (ppr (pﬁ ~
dr! d”
APV RY A Ar (k) A Art (K HP(Ap, (K
o (K) —— Al (K) —— AP (K) (ApL(K))

1

§p71 39]7 §p+1 fp
! d’
crY(K) —S or(K) — ort(K) HP(C*(K))

Figure 3.1: Diagram with the structures and maps involved in the computation of the
Sullivan model of Apy(K).

On the one hand, as it is not possible to work directly with the cohomology of
Apr(K), we will make use of the simplicial cohomology in order to find representatives
of the cohomology generators of Apr(K). In 3.2 we describe a section of §” that allows
us to find and element of Apy(K) whose integral is a given cochain (see figure 3.2). It
follows that fp 0 OF = Idcw.

A, (K) s or(k)
er

Figure 3.2: A section for the integral map.

19



On the other hand, we will also need to find a (p — 1)-degree element of App(K)
whose differential is a given exact element of degree p. In 3.3 we describe the section of
the differential used to find this element (see figure 3.3). It follows that d% "o dr.t =
Id .

p—1

AT E) 2 Tm(d ) € A, (K)

N~

p—1
d& ec

Figure 3.3: A section for the differential map of App(K).

3.1 The integration map ¢

We define a linear map:
/ L (App)y — Q

by setting

1 IR Bkl k)
/7;1 n Y1 Yy o 1 o 1 n (k1++kn+n)' ()

This linear map is not injective, but there is a section 6, : Q — (Apr)? given by
On(c) =c-(n)-y1...Yn. (9)
It is easy to see that ([ o6,) = id.
3.1.1 Integration map in Ap.(K)

We can use this map in Apy(K) to construct a natural quasi-isomorphism of cochain

complexes
% . APL<K) — C*(K)

as follows. For a homogeneous element ' € App(K)7, its integral will be an element

of C"(K), given by
()@= om0 (10)

for every o € K,,. For homogeneous elements 7, € Ap(K)r with n # m, we define
(§(@7)) (o) = 0. Then we extend to all Apy(K) by linearity.

p—1

_ d
Ap (K) —— Ap(K)

e
orU(K) — s or(K)

Figure 3.4: The commutative diagram between App(K) and C*(K).
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3.2 Lift a cochain

Now we will define a linear map

0: C*(K) — Ab, (K)

%o@:id.

In order to define this map, we need some auxiliary functions.

satifying

3.2.1 Propagate a simplex through the simplicial structure

Let I = (i1 < --- < iy) be a strictly increasing sequence of k natural numbers between
0and n+ k. Let JI = (jo < ... < j,) be the result of eliminating the elements of I
from (0,...,n+ k).

Consider the following ring morphisms

Tr: Qoo ote] — Qlto,. .., tis]
I 0 i . 0 t]l +k (11)
and _
Or: (Apr)n+e — (ApL)n (12)
f = (O 000 9,)(f)

Note that any sequence of k£ face maps is of this form.
For each element p = q(to,...,tn) -1+ yn € (App)?, define

n

L) o= Tr(@) ) (D't (i - T - Yi) (13)
=0

and extend it to all (Apy)? by linearity.
The following results can be proven by direct computation (the details are left to the

reader):
Lemma 3.29. The linear map

L (App)n = (ApL)iy
is a section of 0.

Lemma 3.30. Let I' be another strictly increasing sequence of k natural numbers
between 0 and n+ k different from I. Then the composition map Oy OF?’nM is the zero

map.

Lemma 3.31. Let I' = (i1 < -+ < i < ...1) be the result of eliminating one entry

, k-1 k
in I, then I = 0, o TP,
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These maps will be called propagation maps.
Now take a degree n cochain ¢ : K,, — Q that maps the nondegenerate simplex o to

the number ¢, and the rest of the nondegenerate simplices to zero. We define O(¢) as

follows:
0, (c) o=2_S
O(¢)(S) == TP (g (c)) o =d;(S5) (14)
0 otherwise

and extend it to C*(K) by linearity.
By the previous lemmas, it can checked that ©(¢) € Apy,(K) and that § 0O = id.

3.3 Find a preimage by the differential of an exact element of
Apr(K)

Consider an element ® € Ap.(K)? whose differential is zero and it has associated
the trivial class in cohomology. In this section we show how to obtain an element
¢ € Apr(K)P~! where d(®') = ®.

Although Apy(K) is not finitely generated, in order to compute a preimage by the
differential of ®, we are going to see that it suffices to restrict the problem to a finite

dimensional subspace of Apy(K).

3.3.1 Primitive basis of ®(0)
Let 0 € K,, and let (o) € (ApL)E be a polynomial where n > p. Then ®(0) =5, g
where the ¢, are monomials of the form

G = B Y, (15)

with i; € {1,...,n}, ¢t € Q. Notice that, after expressing ¢y, and y, in terms of the
rest of variables, these expressions are unique.

For each monomial g, and each i;, we define the monomials

£1J<Qk) =Yy @] "-yip7 (16)

and the primitive basis of a monomial as the set of terms

W(gr) = {W;(ar) ti=1,..p U {&; (@) i1, p- (18)

Definition 3.32. The primitive basis of ®(o) is the set of pairs

¥(@(0)) = | J(W(g0), ) (19)

k
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Here we interpret the element (¢,0) as the map K — Apy that sends o to ¢ and

the rest of the simplices to zero.

Definition 3.33. The primitive basis of ® € Apy(K) is the set

U(@) = ¥(2(0)) (20)

3.3.2 Differential basis of ®(o)

Let m € (Apr)2~! be a monomial of degree p— 1, and let n(m) be the set of monomials

of degree p that appear in d(m).

Definition 3.34. The differential basis of ® is the set of terms

Q@) = |J{(a.0) | a € n(¥(P(0)))} (21)

oeK

That is, Q(®) contains the terms needed to express the differential of all elements
in W(®). By construction, ® lives in the vector space V; spanned by Q(®).

The differential induces a linear map from the vector space V3 spanned by ¥(®) to
Vq{ . Since they are both finite dimensional vector spaces, finding the preimage of an
element can be done by solving a system of linear equations.

However, in general, the elements of V7 do not live in Apz(K) because we cannot

ensure the compatibility with the face maps. Let us see how to fix this problem.

3.3.3 Restrictions of face maps

We are looking for an element x € App(K) such that d(x) = ®. We can express the

element we are looking for as a linear combination

X= > ar-A (22)
AW (®)

By construction of Q(®), the element d(x) will be a certain linear combination
of the elements of Q(®), where the coefficients depend linearly on the ay’s. So the
condition d(y) = ® will be given by an equality for each basis element.

Now the condition for x € App(K) is the compatibility with the face maps. That
is, it must satisfy

(9ix)(0) = x(9;0) (23)
for every 0 € K. Again, this will give us a finite set of linear equations on the a,’s.
So by solving the complete system of linear equations we obtain the desired element Y.
Since we are assuming that ® represents a trivial cohomology class, a solution to this

system of equations is granted to exist.
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3.3.4 An example of finding a preimage for a given exact element of Ap/ (K)

In order to illustrate how this method works, let us begin with the an example. Consider
the simplicial complex K built with two 2-simplices glued together as it is represented

in figure 3.5. This simplicial complex models a disk D?:

0 3

Fy
VC C 4
F

»
»

1 2

Figure 3.5: Example of a simplicial complex of dimension 2 with 2 facets.

The space is contractible, so we know that it has no cohomology for degrees greater
than 0 (it has just one connected component so H° = Z). This means that every closed

form in Apy(K) is exact. Using that, consider the element of A%, (K):

03: Ky — (ApL)3
Fy = Y1y
Fy — Y1Y2

which assing a polynomial for each facet of K and the polynomial 0 for each of its
faces. In order to find an element w € AL; (K) so that d(w) = ¢, we need to solve the

following system of linear equations:

d171 d1,2 U dl,n 1 C1
. . . . T Co
dm,l dm,2 T dm,n Tn Cm
~ -~ s N
Diff matrix var matrix constant matrix

The main difficult is to construct the differential matrix, because it is a map, d?~! :
AN K) — AP, (K), between vector spaces of infinite dimensions. In order to solve
this problem, we restrict such spaces to a finite subspaces determined by the generators
that appear in the given element ¢(K). The variables of such system are the coefficients
of the generators of the vector space A% '(K), the constant matrix is obtained by the
polynomials assigned to the given element and it is formed by the coefficients of such
elements using the basis the generators of the vector space A%, (K) that appear in such
polynomials, plus a collection of zeros used for the simplicial restrictions. In figure 3.7

it is represented the structure of the differential matrix build with this method.
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(primitive basis) —— t1ya Y1 Y2 Lot

\\//

Y1Y2

Figure 3.6: Example of the primitive basis of a monomial p € (Apr)%.

As we mentioned above, it is necessary to determine the vector subspaces where
the differential is defined. In order to do so, for each monomial that appears in every
polynomial ¢(0), o € K, we compute all possible monomials in the preimage of this
element, and due to the relations of (Apy),, we add as extra terms, the basis of the
kernel of the differential without variables t;. We do it for each simplex, so the result
will be a list of monomials:

(0,1,2) : [y2, Y1, taya, iy, tayr, trya, titaye, titay],

[
(1,2) : [y1, iy, ],
(0, 2) 1 [y, tal,
0,1) : [y1,tanl,
(0,2,3) : [Y2, Y1, tayo, t1ya, Loy, taya, tataya, titayn),
(2,3) : [y1,tay, ),
(0,3) = [y1, tayn]

In order to determine the vector subspace of A%, (K), as we have a list of monomials
that forms the primitive basis for each simplex, we differentiate each monomial and

the images of such elements will form the basis of the differential for each simplex:

(0,1,2) : [v1yz, tath Y2, t1y1Ya),
(0,2,3) : [y1y2, t2y1Y2, Lith Yol

In our example, the differential matrix block for the simplex (0, 1,2) is

Y2 Y1 tayz tiye toyr tiyr  titeys  titoyn

yiy2 /00 0 1 -1 0 0 0
tay1Y2 (O 0 0 0 0 0 1 0 )
tivaya \O O 0 0 0 0 0 -1

Using the differential basis, we can obtain the constant vector formed by the

coeficients of each polynomial assigned to each simplex. In our example:
(1,0,0,1,0,0)

This would be enough for the computation of a preimage by the differential without

simplicial restrictions. The last part of the construction will be to add, for each pair of
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simplices, the face restrictions consisting of a set of homogeneous equations forcing the
system to fulfill the required conditions. In our example, the size of the block matrix

corresponding for such equations is 14 x 28.

Now we are able to build the constant matrix consisting of the differential vector
plus a set of zeros corresponding to the homogeneous equations related to simplicial

restrictions:

(1,0,0,1,0,0.0,0,0,0,0,0,0,0,0,0,0,0,0,0)
S~ ~~ -

Difr,  Difp, Face restrictions

In our example, the dimension of the matrix for the whole linear system is 20 x 28.

Primitive basis

0 0 0 0
Simplex 1
............................... o .0 0 0
0 0 : 0 0
Differential 5 : D e Simplex i
0 0 : 0 0
0 0 0 0
Simplex n
0 0 0 0
Faces R .sin.li)'licial -
L h i"estl"‘iéétions o -

Figure 3.7: Matrix representation of the linear system used to find a preimage by the
differential.

Solving the system, we obtain a solution expressed in terms of the primitive basis
defined above

1 1 1 1 1 1 1
~,1,0,=,—= ~,0,=,—= 1,0, =
(27 ) 727 2707070707270727 27070707 7072707070707070707070>
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that expressed in terms of polynomial is (w € A}, (K)):

3.4 Algorithm

Now we have the ingredients to give the complete algorithm. The input will be a
simplicial set of finite type K. The minimal model M will be constructed by adding
generators, and for each generator we stablish also its differential and image by the
map.

d

So the output will be a list of triplets (¢, d(z¢), ¢(z¢)), where

d

e x¢ is a generator of M of degree d.

e d(z) is a polynomial on the previous generators.

%

e o(r?) is an element of (Ap(K))%

)

This data will determine the free GCDA M with differential d, and a
quasi-isomorphism ¢.

The algorithm works degree by degree. So we will obtain an increasing sequence of
t-minimal models. To simplify notation, we will refer to the model obtained so far in

each moment as M.

1. Let kg > 0 be the smallest degree for which H* (K) is not trivial.

2. Take a basis [af],..., [afkoo] of H*(K), with af € C*%(K) (that is, the
cohomology elements are represented by simplicial cochains). For each cochain
a¥ | take a lifting A¥ = ©(af*) € Ap.(K). For each of these elements, add to M

a generator of the same degree, z7°, with d(z/°) = 0 and @(z°) = AM.
At this moment, ¢ induces an isomorphism in cohomology at degree k.

3. Now assume that we have already added generators of degree up to k — 1 in such
a way that ¢ is a (k — 1)-quasi-isomorphism. In order to increase the degree and

get a k-quasi-isomorphism, we add new generators to get also an isomorphism

ot H*(M) — H*(Ap(K)), without changing the lower degree cohomologies.
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Notice that computing the cohomology of App(K) directly cannot be done by
simple linear algebra, because the graded parts are infinite dimensional. So we

will use the isomorphism induced by § and work in H*(K).

This process has two steps. In the first step, we add generators of degree k — 1
until the map ¢} is injective. In the second step, we add generators of degree k

in order to make the map ¢j surjective:

3.1 If the map ¢} is already injective at degree k, we go to step 3.2. Otherwise,
consider the map ¢* composed with the isomorphism f *. This is a linear
map from H*(M) to H*(K). This map can be built following these steps:

for each generator [mf] of H¥(M), get a representative m¥ € MP* and

compute & = (§* o) (mk

). The cochain ¢} is closed so it has associated

a cohomology class [c}] = (§ op*)([mF]). Doing this for all generators of

H*(M) we can construct the linear map (see Figure 3.8).

k k
k ¥ k § k
M step 2 APZ (K) step 3 O
representative]\step 1 step 4lclass
*OLP*
H¥(M) - Foe s HE(O)

Figure 3.8: The injectivity of ¢ " o0 ¢* is checked following the path from steps 1 to 4.

Now, take [24],...,[2/] a basis of its kernel and consider representatives
25,2 € M. Compute CF = ¢(2F) € App(K)*. Since [2}] € Ker(¢}),
the element CJ’?C must correspond to a trivial cohomology class, so there must
be an element B’]]i“’1 € Apr(K)* ! such that d(BJ]?’l) = CF. This element
Bj]?_1 can be computed as in section 3.3. So we add to M*~! the generators

yf_l with gp(yf‘l) = Bf_l and dM(yf_l) = 2k,

7

H*(M) basis

o* mk’]{ .
/W([_l\}\ af |11t ap
AL
al alt *
HY(C 2 2 L f O SO*
basis
ay, !

Figure 3.9: The linear map § “op*. The column i corresponds to the coordinates of
the generator [mF] € H*(M) in the basis of H*(C'). We are interested in the kernel of
this map.
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Notice that, after adding these generators, new elements of Ker(y}) could
have been added, so this step might be needed to be run iteratively until
the map ¢j is injective.

3.2 Once we have that ¢} is injective, we will add new generators of degree
k to make it surjective. Consider again the map ¢; composed with the
isomorphism §". Take a basis [af], ..., [af ] of the complement of the image.
As before, each af is a simplicial cochain that can be lifted to A¥ := ©(a}) €
Apr(K).

Add new generators of degree k to M, {zf,... 27}, with d(z}) = 0 and
olak) = AL

In order to obtain an i-minimal model of (A, d4), repeat the steps 3.1 and 3.2

until £ = 1.
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4 Examples of computations

In this section are included some examples in order to illustrate the algorithm and its

output.

4.1 The minimal model of S!

The first example is the computation of the minimal model of the sphere of dimension
one, S'. This space can be modelled as a simplicial complex with the following
structure: three vertices or 0O-simplices (named 0, 1 and 2), and three edges or
1-simplices (one for each pair of vertices). The orientation of the edges is given just

sorting the vertices in an increasing order (see Figure 4.1).

0

1 2

Figure 4.1: The simplicial complex representing S' with the minimum number of
simplices.

For each 1-simplex, the faces are given by:

01([0,1]) = 61([0,2]) = [0]
0o([0,2]) = 6o([1,2]) = [2]

Cy:{[0,1],[0,2],[1,2]} — Q
0, 1] =1
[0,2] — 0
[1,2] = 0

So, the lifting of ©(C}) is:

O(C)([1,2))= 0
In this case, the minimal model will be generated by only one element of degree 1,
x}, with zero differential, and ¢(z}) = ©(C}). As the generator has odd degree, the
minimal model is trivial for degrees greater than 1 and the algorithm finishes. Notice
that, although the space is not simply connected, it is possible to compute the complete

minimal model of the space. This is because this example is trivial, but in general, if
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the space is not simply connected, usually we will find that the algorithm gets stuck
at some degree adding an infinite number of generators. This is the case of the next

example.

4.2 The minimal model of S! A St

Consider now the space formed by the wedge of two S!, i.e., two circles are glued

together at a vertex (see Figure 4.2).

0 3

4

Figure 4.2: The simplicial complex representing the wedge of two S!.

In this case, H'(K) is freely generated by the classes of two cochains:

Ci:{a,b,c,dye, f} — Q Cy:{a,b,c,dye, f} — Q
0,1] =1 [0, 1] =0
[0, 2] — 0 [0, 2] — 0
1,2] — 0 1,2] — 0
2, 3] —~ 0 2,3] - 1
2, 4] —~ 0 2, 4] —~ 0
3, 4] — 0 (3,4] — 0
So, the lifting of ©(C}) is:
o(C1)([0,1]) =
o(C)([0,2]) = 0
o(C)([1,2))= 0
O(C1)([2,3])= 0
O(C)([2,4))= 0
O(C)([3,4))= 0

and the lifting of ©(Cy) is:

ORONORORON,

o e e i i R
N

— e S N S

AN AN AN AN N
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The method begins building a GCDA with two generators of degree 1, named x}
and z}, with zero differential, and the morphism associates the generators with the

lifted elements:
p(xg) = ©(C1)
p(x1) = O(Cy)

The problem in this case arises when the algorithm tries to check injectivity at
degree 2. As the current generators have degree 1, the squares are zero, but it is not
the case of the cross product z} * z}. This element has degree 2 and it is easy to check
that its differential is zero. There is no element of degree 1 whose differential is z{ * z1
so it means that this element is closed but not exact (i.e., it is a representative of a
non trivial cohomology class).

In order to make the induced morphism @x* injective, it is necessary to Kkill this
cohomology class (because the space has trivial cohomology for degrees greater than
one). In order to do this, a generator of degree one, 3} is added to the algebra with

differential exactly that element:

d(yp) = g * 7y
and, due to ¢(z} * x1) = 0 (because there are no simplices of dimension greater than

one), the method just assings zero to the image of the new generator:

(yy) = 0

One could think that the problem has been solved but instead of that, now we have
two new elements of degree 2, yg *x} and y*x] corresponding with two new non trivial
cohomology classes, so the problem remains and this dynamic just get worst as we add
new generators. This example illustrates the problem of computing the minimal model
of a non simply connected space.

Just to finish, it is worth noting that the problem is not that the minimal model does

not exists, the problem is that the minimal model has infinite generators of degree 1!
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4.3 The minimal model of T?

Consider now the usual triangulation of the torus:

v a v
F
bv@ < Q Ybh
Fy
v CT v

It can be represented with the simplicial set K with the following non degenerate
simplices: one in dimension zero (called v), three in dimension one (a, b and ¢), and

two in dimension two Fi, F5. The face maps are given by
[ ] ao(a) = 81<CL) = 80(6) = 81([)) = 80(6) = 81(6) =V
L] 80(F1) . 02(F2) = b, 81(F1) = 81(F2) = C, 82(F1) . 80(F2) =a

It is easy to check that H'(K) is freely generated by the classes of two cochains:

Cy:{a,b,cd — Q Cy:{a,b,c} — Q
a =1 a = 0
b — 0 b — 1
c =1 c =1

and H%(K) is freely generated by

With this data, we can now run the algorithm:

1. Since H'(K) is not trivial, we start with ko = 1.

2. We take the basis ([C1],[Cy]) of H(K). As a cochain, C; can be expressed as
the sum C; = (4, + (. where:

Ciq :{a,b,c} — Q Cie: {a,b,c} — Q
a — 1 a — 0
b — 0 b — 0
c = 0 c =1

and by linearity we have that ©(C,) = ©(C},) + O(C}.). Now, in order to obtain

O(C4,) we need to follow the steps mentioned above:
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(a) We compute 6,(1) =1

(b) Now, we compute the propagations

F?f}(yl) = —tayr +tiya + U1

F?;}(?Jl) = —tay1 + t1y2
So, the lifting of ©(C},) is:

@(Cla)<0) =0

O(Cw)(a) = wn

@(Cla)(b> - O

O(Cu)(c) = 0

O(Cia)(F1) = —tayr +tiya +
O(Cha)(F2) = —tayr +tiyp

Doing the analogous computations for Ci., Cs and Cs., we obtain the
corresponding liftings of ©(C}) and ©(Cs):

O(C1)(0) = 0 0(C2)(0) = 0
O(Ci)(a) = wu O(Cy)(a) 0
O(C)(b) = 0 O(Cs)(b) U1
O(Ci)(c) = m O(C2)(c) U1
O(C)(F1) = ity OCL)(F) = uo
O(C1)(F2) = o O(Co)(F2) = y1+y2

Now, we add to our model two generators M = (z, z{) of degree 1 in such a way
that d(z}) = 0 and ¢(z}) = ©(C;). At this moment, ¢ induces an isomorphism
at degree 1 given by ¢*([z}]) = [C;]. Once we have an isomorphism at degree 1,

we go to step 3 in order to check injectivity at degree 2.

. At this point, the homogeneous part of degree 2 of M is generated by only one
element M? = (z}z1), because x} have odd degree and the square of each one is
zero. This generator is closed so it is associated with a cohomology class.

As we saw before, H%(K) is a one-dimensional vector space. So, (¢*)? is injective
if and only if the induced image of the generator [x}z]] is non-zero. In order to
check this, we apply the integration map to its image Cs : $(©(C}) - O(Cy)):

CgIKQ — Q

F1 = —3
F2 - 3
but the image of the coboundary map is generated by the cochain
Ky, — Q
F1 = 1
F2 = 1
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which is linearly independent with C5. So we already have an isomorphism
and this step of the algorithm is done. Since we have no more generators
in cohomology, the algorithm finishes and the minimal model of the torus is
M = (z}, z}).

4.4 The K3 Surface

For the last example, a space with a higher order of complexity has been chosen.
This space is known as the K3 surface, it is simply connected and it is available an
implementation at the SageMath repository [2]. The simplicial complex has dimension
4 and it is build with 16 vertices and 288 facets (in this case, all facets are simplices
of dimension 4). In Table 4.1 are listed the number of simplices for each dimension. It
was constructed by Casella and Kiihnel in [1]. The implementation in SageMath uses

the labeling from Spreer and Kiihnel [11].

Dimension
0 1 2 3 4
’ N2 Simplices | 16 | 120 | 560 | 720 | 288

Table 4.1: Number of simplices of the K3 Surface in each dimension.

The Betti numbers of the space are listed in Table 4.2. Omitting degree 0, the

cohomology has 22 generators of degree 2 and one generator of degree 4.

Degree
0O(1,2 (3|4

17102210/ 1

N¢? of Cohomology
(Generators

Table 4.2: Number of cohomology generators of the K3 surface for each degree.

Due to Terzié¢ [12], it is known that:

Theorem 4.35. Let M be a closed oriented simply connected four-manifold and by its

second Betti number. Then:
1. If by =0 then rkmy(M) = rkm7(M) = 1 and m,(M) is finite for p # 4,7,
2. If by =1 then tkmy(M) = rkms(M) =1 and m,(M) is finite for p # 2,5,
3. If by =2 then rkmy(M) = rkms(M) = 2 and 7,(M) is finite for p # 2,3,

4. If by > 2 then dim 7, (M) ® Q = oo and

by +1)
N 2

ba(b3 — 4)

rk o (M) = by, k(M) 3

1, rkmy(M) =
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In particular, as the K3 surface has by = 22, and following the theorem 4.35, the
rank of the first homotopy groups are (see Table 4.3):

(K 3)
1] 2 3 4
rank | 0 | 22 | 252 | 3520

Table 4.3: Rank of the first homotopy groups of K3.

The method is able to compute the 4-minimal model of the space. The
algorithm begins at degree 2, lifting the 22 cohomology generators to representatives

a? € A%, (K3) and adding the corresponding generators z? (with dy(z?) = 0 and

@o(x?) = a?) to the model. At this point, the minimal model induces isomorphism
in cohomology up to degree 2, but, due to the emptiness of the homogeneous part of
degree 3 of H3(K3) and M?3, it also induces isomorphism at degree 3.

Now the algorithm checks injectivity at degree 4 and finds that:

1. The element (23)* € M* is a representative of the single generator of degree 4 of
HYK3.

2. There are 252 elements generating the same number of cohomology classes in

H(M).

Notice that (2) is coherent with the results of Theorem 4.35 and Table 4.3.

In order to make the induced morphism @* injective at degree 4, the algorithm
adds as many generators as cohomology classes needs to kill, pointing the differential
of each new generator y? € M? to a representative of a different cohomology class. Due
to the extension, the generators and their differentials are included in Appendix I.

Once the algorithm has reached injectivity at degree 4 (and also surjectivity), the
method continues killing the rest of the non trivial cohomology classes for degree 5,
adding the corresponding generators y}. In that case, as there are no simplices of
dimension 5, notice that d(y}) = 0, Vi. So, for our purposes, the interesting degrees of

the minimal model are degrees 2, 3 and 4, where the morphism ¢ carries information
about the Apr(K3).
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5 Conclusions and Future Work

In this work it has been presented an effective method for the computation of the
Sullivan minimal model of a given topological space. In order to carry the work out,
it has been necessary to understand the basis of Rational Homotopy Theory and how
is defined the Sullivan model of a topological space.

For that purpose, a review of the state of the art about previous works on effective
methods for the computation of Sullivan minimal algebras has been made in order to
find possible obstacles on these methods when the homogeneous parts of the algebra of
interest are infinite dimensional. After that, viewing that these methods can not work
with this kind of algebras, a solution has been proposed, adapting the corresponding
parts of the algorithm. Last but not least, the method has been implemented in a
Computer Algebra System (SageMath). The source code of the implementation can
be found at https://riemann.unizar.es/git/calquezar/AplK.

As far as we know, it is the first time that such a method has been designed and
implemented in a Computer Algebra System. However, the development of this work
has pointed out some questions that, although they are beyond the scope of this work,

it will be necessary to address in the future. Some of these questions are listed below.

The kernel of the differential of Ap;(K).

During the development of this work, some key questions have arisen for which a
mathematical answer is needed. In particular, at the injectivity step of the algorithm
(see section 3.1), when the algorithm needs to find a preimage by the differential of an
element of Apy(K), our method needs to add some kernel elements to the primitive
basis of each simplex, but it is not clear, for a generic element, how many elements one
needs to add in order to guarantee that the method finds a solution for the system. This
is an interesting point that should be reviewed in order to adjust the method properly

and to be sure that there are no unuseful terms that can worsen its performance.

A-Complexes.

Other idea related to improve the computational performance is to adapt the method to
work with other useful constructions similar but different of simplicial complexes. For
example, A-Complexes are essentially a generalization of simplicial complexes where
it is not required the condition that each face of a simplex is unique. This relaxation
makes this construction more flexible and allows one to build equivalent complexes

with less number of simplices.
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An example to show the difference between simplicial complexes and A-complexes

is the following:

Example 5.36 (Cone). Consider the problem of modelling a cone C' both as a
simplicial complex and A-complex. As a simplicial complex, consider the 3-simplex
of figure 2.1d and remove one face (i.e. remove one 2-simplex). This gives you a
collection of 3 simplices of dimension 2 and their faces (in total 13 simplices: four
O-simplices, six 1-simplices, and three 2-simplices), all glued in the same way they were
at the beginning. On the other hand, as a A-complex, it is possible to model this space
just taking the 2-simplex of the figure 2.1c¢ and identifying two of its faces of dimension
1. This construction gives you a collection of one 2-simplex, two 1-simplices and two

O-simplices (in total 5 simplices).
Taking into account the following theorem:

Theorem 5.37 (]9, p. 107]). Every A-complex can be subdivided to be a simplicial

complex. In particular, every A-complex is homeomorphic to a simplicial complex.

we can extend the results presented in this work in order to make use of A-complexes.

Formality

Finally, the method presented in this work (and in particular the implementation in a
Computer Algebra System) allows us to tackle the interesting topic of formality from
a computational point of view.

Basically, a topological space is called formal if the minimal model of the space and
the model of the cohomology algebra are isomorphic (see Figure 5.1). On the other
hand, if the two models are not isomorphic, it is said that the space is not formal (see
Figure 5.2).

My~ Mg
Apr(K) H(K)

Figure 5.1: Condition satisfied for a space to be formal.

M My
QOA\L @Hl
Apr(K) H(K)

Figure 5.2: If the minimal model of the space M4 and the model of the cohomology
algebra My are not isomorphic, it is said that the space is not formal.
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The key point in the algorithm to study if a space if formal is found at injectivity
step (see section 3.1). The main difference between computing the minimal model of
the cohomology algebra and the minimal model of the space is that in the former,
checking injectivity at degree p only involves three objects: the model in construction

M, its cohomology HP(M), and the cohomology algebra H?(K) (see Figure 5.3).

MP

Tepresentaw 1 st%(p\/‘
*

HP(M) B > HP(K)

Figure 5.3: Working with a finitely generated GCDA. The injectivity of the morphism
* is checked combining steps 1 and 2.

However, for the computation of the minimal model of a space K, the algorithm
needs to use the algebra App(K) in order to connect the cohomology of the model
H(M) and the cohomology of the space H(K) (see Figure 5.4). It is in this connection
where formality can be broken and it is an interesting question what kind of topological

structures do not satisfy this property.

@ $*
2 v AP s OP
M step 2 Apl <K) step 3 ¢
representative]\step 1 step 4J/cla35
§op
HP(M) —momee 8 » HP(C)

Figure 5.4: Working with A, (K). The injectivity of the morphism ¢" o ¢* is checked
following the path from steps 1 to 4.
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Appendix I: The homogeneous part of M? for the K3
surface

Following the Example 4.4, the list of generators of degree 3 of the minimal model of
the K3 surface are listed within their differentials (i.e, homogeneous elements of degree
4in M).

Generator Differential
Yo (#7)° — (731)°
v (73)* — (23,)°
Y5 wprs — 5(25)”
Y3 wpr] — 5(25)°
vi viwy — 5(25)°
ys gy — 5(23,)°
Yo (73)* — (3,)°
% airy — 5(x5)’
vs 373
Yo (23)? — (23,)°
Yio wgrs + 5(23,)°
Y rir] + 5(23,)°
?J?Q x%ﬁ + %($§1)2
y?:a x%xi
yi’4 (@21)2 — I%I)Q
9%5 x%x%

3/%6 :L‘fxg - %(wgly
y{} :L’%xg

?le))s x%x%

yi’g 5@2@% + %@%1)2
yg’o (ff%)Q — ($§1)2
y§1 x%x% + ('T%I)Q
ygz x%x%

Yas 375

y§4 w%*”c% + (xgl)Q
9:2))5 xix% + %@%1)2
ygﬁ x%x%

yg7 51542@%

ygs x%x% — %(x%l)z
ygg (x§>2 — 3(1?%1)2
3/::3))0 x%x% - (x%1)2
Y w377 — 5(25)°
?Jg’Q x%x% - %<x31)2
93?3 -’ng% + %(xgl)Z
y§4 (Ig)Q — 2@%1)2
y§’5 x%x% — %(x%ﬂz
ng 37%55% + 2(x%1)2
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y§’7 xlxg + %(5’731)2
ygs x%x%

Y3 T3TE — %( 5)°
yi’o xix%

921 x%x% + %@%1)2
yZ)Q x%x% — g<x31)2
3123 (x%)Q — 2(5531)2
Yis T3y

Yis airy — 5(25)°
Yis vgrg + 5(23,)°
?Ji’? x%x%

yis x%x%

yig mixé

ygo :ngg — %@%1)2
Z/gl 5’%1’3 - %(55%1)2
?ng x%mg + %(3751)2
?Jg’:& x%x% + (-’331)2
y§’4 (xg)z — ($%1)2
yg5 ﬁx%o

y§6 x%ﬁo — (xgl)z
Ysr T3 — %(33%1)2
Yss T5TTp — %(55%1)2
Y59 x5 + 5(23,)°
Yio T3,

yg1 x%ﬁo + %(55%1)2
yg2 x%ﬁo — %(xgl)Q
ygzz x%ﬁl

3/34 x%xfo + % 37%1)2
Yos w3y — 5(23,)°
yg’e (37%0)2 - 2(37%1)2
yg} 35355%1 + %@%1)2
ygs x%ﬁl + %(55%1)2
ygg x%ﬁl + %(Igl)Q
y?o Ii“”%l — %(Igl)Q
Z/?l xgxfl + %(3331>2
?J;)Q x%ﬁl + %($§1)2
?J?s -’f%x% - %(-’531)2
934 Igfﬂ

y% mgx%l + %(55%1)2
y§6 (x%)? — (xgl)z
y?? x%ﬁz + %(3531)2
3/;)8 x%ﬁz + %(x§1>2
Yo w0t + 5(75,)°
?Jgo 35353%2

931 x%x% + %(ffgl)Q
yg2 xiﬁz - %(xgl)z




3/53 x%ﬁz + %(3731>2
Yia L5y

Yss L7y

ygs 35355%2

yg’? ff?;x%

ygs x%oﬁz + ;(mgly
ygg I%lx%z — %(xgl)Q
3/30 (x%2>2 - (1’%1)2

Yor 2523 + 5(23,)°
?ng 93%”%3 + %(97%1)2
933 $%$%3 + %(Igl)Q
You T3T,

935 xzxiz %@%1)2
Yoo L5y

Yor T3y

Yos T3TT

?Jgg x%x% %(x%1)2
y:1300 x%x% + ;(‘T%l)2
y%m x%lx%:s

y%02 x%ox%

y%o:a 37%237%3

Yo (v73)” — (23,)°

Yios TiTy, — %(3521)2
yi’oe’ 35%5”%4

y§07 x%xi — %($%1)2
yi)’os x%xi — %('x%l)z
yil))Og ng%zi — %(xgl)Q
y%lo 112137%4 + %(3731>2
Yin T5Ty

yi’m 33355%4 + %(-73%1)2
yio’13 :ngi - %(5331)2
y?m ‘T%i

yi515 x%oxi

y%w x%lxi + %(1’%1)2
Yiir w023, + 5(23,)°
Yiis w1517, + 5(25)°
9%19 (1'%4)2 — (x§1)2

yio’2o $3x%5 + 2(23,)°
y?m x%x% + (x%1)2

y%22 x%x% + %(xgl)Q
Yias x5 + %(1531)2
y%24 xixfs - %(5’7%1)2
Yias T3TY5 — %(x%1)2
yi’% x%ﬁs - %(-T%l)Q
y§27 ﬁﬁs + 3(23,)°
y?zs x%ﬁs + 2(23,)°




3
y§29 T3
2 1
e > 125 5(1”%1)2
5 10715 + > (a3
- 13 5(9521 i
y3 11715 — 5
:1332 x? L 5 1(%1)2
) _
Y133 13390%5 ?(x§1)2
Y134 x2 55 - i(xgl)Z
y3 14075 + 5 (23
- L 2(%1)2
y3 0l16 — 2 (23
}))36 ) 2 (%1)2
2 _TI
e
i %52 - 6(95%1)2
y3 ToTig — 5
égg 5 3(51521 °
2 _
Voo, fol
Yia T2 56 - 5(1‘%1)2
y3 5716 + > (a3
142 xix? o)
é43 ] (%1)2
2 —7
Y144 x? 126 §<x%1)2
y3 9l1e T 2
o > 26 (3721)2
" §l1g — 2 (a3
§46 xf 3 21(%1 2
2
o - %6 + 5(95%1)2
y3 10716 — 3 5
}548 o (%1)2
, 13716 T 5 (23
}))49 1alg 2(9521 §
yéso 11276 + (1%1)2
7.2
Yis1 2%1;17
5 L14%7¢ (23
” 5(372 )2
2 2222 :
é53 — 2Ty
; T
Y154 T §(x2 >2
21
2 2222
i . 3217
y3 ($16)2 -
156 T1577 8($g )2
) 15716 T o 21
157 x2r? : o )2
yiss 31’17 — l< : 12
2
y3 .T5.T%7 + L %1)
159 5(3: :
3 2222 =
yé60 r3at mpy
2 1
Yi61 . 17 i(xZ :
; e 21
y sty + (23
162 g et )2
s 21
y3 sli7r — (23
163 §< )2
21
Y e
é64 %03317
Yies ] fllx%?
y3 12717 — (a3
166 i(x )2
2 222 21
ém %3%7
Yies i xMx%?
2
y3 (%7) — (23
}))69 L (%1)2
yém x55 57 + (3531)2
16417 —
. 26217 (5’7%1)2
y3 x0$18 —+ L 2
:1372 x%ﬁ %(-7321)2
yém xix;s + %(33%1)2
y174 sz%S * E(xgl)Q
22l + 5(23))?
2 21)




y%?s) x%ﬁs

Yite TiTYg — %(55%1)2
Yirr T5TTg

?fi’?S 55%95%8 - %(5531)2
y§79 x%ﬁs + %(55%1)2
yisso x%ﬁs + %(x%)?
y%Sl I%lx%S %(xgl)Q
9%82 x%ox%s + %(1’%1)2
Yiss T3Tig %(mgl)Q
9%84 x?:&ﬁs %(5551)2
yig’85 I%ﬂ%s + %($%1)2
Yise 235 1s %@%1)2
y%s? x%ﬂ%s

Yiss w162t + 5 (25))°
9%89 (:E%8>2 - (1%1)2

Yiao L5 T %(x%1)2
9%91 -’3%93%9 %(x%1)2
y:1392 $%$%9 — %@%1)2
Yios T3

y%94 xgﬁg — (xgl)z

Yios T3y + %(x31>2
Yios 1523 + 5(73,)°
Yoz x7ryy — 2(25,)°
?f;’gs x%xfg - %@%1)2
y§99 x%xfg + 2(23,)°
ygoo x%ox%g —2(23,)°
y§01 1’%115%9 + (x%)?
y§02 37%237%9 + %(1’%1)2
Y03 Ti3TT

9304 x%a@%g

Yos L7

ngG x%m%o

Yo w357 + 5(23,)°
ygos xlﬂ%g —4(23,)
y§09 x%Sx%Q + (33§1>2
Yo (279)* — 3(x3,)°
ygn 33(2)5”%0 + ;(37%1)2
ygm x%%o + %(I%1)2
y§13 m%x%o + %(55%1)2
y§’14 xix%o

Yo T35 + %(1531)2
3/%16 x%x%o

Yoz T3 T30

Yong L5 T30

9319 $%x§0 - %(5’3%1)2
ygzo x%oxgo
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y§21 x%lxgo - %(5’731)2
Yoo T35

Yns 23425 + 5 (25,)°
9324 x%ﬂ%o — %@%1)2
?Jg% ﬁsﬁo

yg% x%ﬂ%o — %(xgl)Q
?ng? I%sxgo - %(x%)Q
9328 55%63’330 + (33§1>2
Yo (730)” — (23,)°

9330 95%5”%1 + %(97%1)2
9331 I(2)$31

y§32 x%f)x%o + %(mgl)Q
y§33 xgxgl

y§34 x?’)x%l

y§35 5’7355%1 - %(5’7%1)2
Yo r3x5, + 5(23,)°
9337 5B$$%1 — %(x%1)2
y:2338 x%x%l — (W§1)2

ygz’)g ng%l + (x%I)Z

y§40 xgxgl + %(1'31)2
y§41 5’7%15’751

Yoo Tty — %(xgl)Q
Yoz Tl — %(3751)2
9344 x%3$§1 — %($31)2
9345 x%ﬂ%l + %(zgl)Q
yg46 x%sfgl

y§’47 x%ﬁ% — %(x§1)2
9348 x%{’)x%l + (33%1>2
Yoo ety — (13,)°
9350 x%oxgl - %(55%1)2
9351 1’%91‘%1 — %@%1)2

Table I.1: The generators of degree 3 of the model and their differentials.
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Appendix II: Example of an element p € A3, (K3)

To illustrate how complicated the output is, we show an example of two elements of
A3, (K3) and A%, (K3).
During the computation of the minimal model of the K3 surface, at the injectivity

step (see section 3.1), the method finds an element of degree 4 (in particular, the

element ?yz3, — 1(z%)? € M*) that should kill in order to make the quasi-isomorphism
©* injective at degree 4. The image of this element by the morphism ¢ is represented

in the following table:

Simplex p € (Apr):
(27 37 47 57 9) 4913/2933/4

(2.3, 4,9, 13) | — 41920391
(2, 3,5, 6, 13) —4y1Y2Y3ys
(2, 3,9, 13, 14) 441Y2Y3Y4
(2,3,10, 13, 14) | 441920391
(2,4,5,9,12) —8Y1Y2Y3Ya
(2,4, 7,12, 14) | 4y1yaysu
(2,4,8,9,12) —4y1Y2Y3Y4
(2,4, 11, 12, 14) 491 Y2Y3Y4
(2,6,9, 11, 12) | —4y112Y3y4

(3’ 4’ 57 77 13) 4y1y2y3y4
(3’ 4’ 57 77 15) _4y1y2y3y4
(37 47 5’ 87 15) _8y1y2y3y4
(37 47 67 77 12) _4y1y2y3y4
(37 47 67 77 16) 83/13/2:‘/33/4
( , 4,7, 12, 14) 4Y1Y2Y3Y4

, 14, 15) | —4y192y3v4
3,5,6,8,15) | —4y192y3y4
(3,5, 6,13,15) | —4y110y3y4

6
3.4, 7
(3,4,7,14,15) | —4y190y34
3. 4.8
(

(3, 5, 10, 13, 15) 4Y1Y2Y3Y4
(4,5,7,9,12) 4y1Yy2Y3Y4
(4,5,7,9, 15) 4Y1Y2Y3Ya
(4,5,8,9,11) | —4y192y3ys
(4, 5,8, 9, 15) 8Y1Y2Y3Y4
(4,7,8,9,12) —4Y1Y2Y3Ya

(5, 6, 11, 13, 15) 4Y1Y2Y3Y4
(5, 8,9, 13, 15) —4Y1Y2Y3Ya
(6, 7, 9, 10, 13) —4y1y2y3y4

(6, 7, 10, 13, 15) —4y1y2y3y4

Table II.1: The element of A}, (K3) corresponding to afqz3, — 2 (23,)%

In order to make the induced morphims in cohomology injective, the algorithm adds
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the generator y3; € M? whose differential is precisely that element:

. M O — M*
3 2 .2 1.2 \2
Yss1  —  TlgTg — 5(15)%

The last step is to find an element p € A3, (K3) whose differential is the element

(23573, — 2(2%)?) € A%, (K3). This element is presented in the following table:

2

Simplex p € (Apr)}
(1,2, 3,8, 12) 291Y3Y4 — DYaY3Ya
(1,2, 4,7, 11) Y1Y3Y4
(1,2,5,7,13) —2Y1Y2Y3 + 2Y1Y3Y4
(1, 2,5, 7, 15) —2Y1Y2Y3 — 2Y1Y2Ya
(1,2, 5,8, 10) —2y1Y2y3 + 201Y3Y4
(1,2, 5,8, 14) —2Y1Y2Y3 — 2Y1Y2Ys
(1, 2, 5, 14, 15) —2Y1Y2Y3 — 2Y1Y2Ys
(1,2,6,7,9) —2Y1Y2Y3 + Y1Y3Ys
(1,2,6,7,13) —2Y1Y2Y3 + 2Y1Y3Ya
(1,2,7,9,11) Y1Y2Ys + Y1Y2ya
(1, 2, 8, 10, 12) 2y192y3 + 2Y1Y2Ya
(1, 3, 4, 6, 10) Y1Y2Ys — 4Y1Ysya
(1, 3,4, 6, 14) Y1y2ys3
(1,3,5,6,9) OY1Y2Ys + SY1Y2Ys
(1, 3,5, 6, 11) 5Y1Y2y3 — 4Y1Y3Y4
(1, 3,5,9,12) OY1Y2Y3 — dY1Y3Ya
(1, 3, 6, 10, 11) —4y1Y2y3 — 4Y142ya
(1, 3,8, 9, 12) —OY1Y2Ya — DY1Y3Ya
(2,3,4,5,9) | —tay1yoys + t3y1yoya — tat1ysya + t1yaysys + 3y1yays + 4y1y2ya — 2Y2y3ya
(2,3, 4,5, 13) 3Y1Y2Ys3
(2,3,4,9,13) tay1yays — tsyiyoys + bayiysys — tiyoysys + 4y1yoys — DY1Ysya
(2, 3,5,6, 13) LaY1Y2Ys — 13y1Y2Ys + toy1Y3ys — 11Y2yYsys
(2,3,7,8,12) —TY1Y2ys — TY1Y3Ys
(2,3,7,12, 14) —Ty1y2y3 + TY1Y3Ya
(2, 3,9, 13, 14) —t431Y2y3 + t3y1y2Ya — tay1ysya + t1yaysya — Sy132ys + 641Y3ys
(2, 3, 10, 12, 14) Ty1y2ys + TY1Ysys
(2, 3, 10, 13, 14) tay1y2ys — t3y1Yaya + Loyiysya — tiyaysya + Ty1yays + 641Y3Ys
(2, 4, 5, 6, 10) —Y1Y3Ya — Y2Y3Ya
(2,4,5,9,12) 2t4y1Y2y3 — 2t311Y2Ya + 26291Y3Ya — 261Y2Y3Ys — 2019293
(2, 4, 6, 10, 11) —Y1Y2Y3 — Y1Y2Ya
(2,4, 6,11, 12) —Y1Y2Y3 + Y1Y3ya
(2,4,7,8,10) —Y1Y2Ys — Y1Y3Ya
(2,4, 7,8, 12) Y1Y2Ya
(2,4, 7,10, 11) —Y1Y2Y3 — Y1Y2lYa
(2, 4,7, 12, 14) —tay1Y2y3 + L391Y2Ys — La1Y3Ya + t1Y2Y3Ya + Y1Y2ys3
(2,4, 8,9, 10) —Y1Y2Y3 — Y1Y2Ya
(2,4,8,9,12) tay1y2ys — tsyryaya + tarysys — tiyaysys — Y1y2ys
(2, 4, 11, 12, 14) —tay1y2ys + t3y1Yays — tal1Ysya + T1aysys + Y1Yays
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Lay1y2y3 — L3y1Y2Ya + L201Y3Ys — t1Y2Y3Ys — Y1Y2Y3
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Lay1y2y3 — L3y1Y2Ya + L2y1Y3Ys — t1Y2Y3Ys — Y1Y2Y3

—Y1Y2Y3 — Y1Y2Ya

Lay1y2y3 — L3y1y2Ys + Loy1Y3ys — t1Y2Y3Ys — Y1Y2Y3

tay1Y2ys — L3y1yaya + L2y1Y3ys — t1Y2Y3Ys — Y1Y2U3

Y1Y2Y3 — Y1Y3Ya

Y1Y2Y3 — Y1Y3Ys

—14Y1Y2Y3 + t3Y1Y2ys — Loy1Y3ys + t1Yoysys + Y1Y2Y3

—ta1Y2Yy3 + t3y1Yays — tay1y3ys + t1y2Yy3Ys + Y1Y2Y3

—tay1y2y3 + t391Y2Ys — t2y1Y3ys + L1Y2y3ys + Y1Y2y3

tay1Y2ys — L3y1Yeya + L2y1Y3ys — t1Y2y3ys + Y1Y2ys + 2y1Y2ya

—2t4y1Y2Y3 + 2t3Y1Y2ys — 2t2y1y3ys + 2L1y2y3Ys + Y1Y2Y3

t421Y2ys — L3y1Yoyas + L2y1y3ys — t1Y2Yy3Ya + Y1Y2Ya

—14Y1Y2Ys + t3Y1Y2ys — Loy1Y3ys + t1Yoysys + Y1Y2Y3

tay1Y2y3 — L3y1y2Ya + t2y1Y3Ys — t1Y2Y3Ya + Y1Y2Ya

Lay1y2y3 — L3y1Y2Ys + t2y1Y3Ys — t1Y2Y3Ys — Y1Y3Ya

1 tay1Yoys — t3y1Yala + tay1Ysys — t1yoYsys — Y1YoYs3
(17 2,5, 7) —2Y1Y2Y3
(17 2,5, 8) —2Y1Y2Y3
(1,2, 5, 14) —2Y1Y2Y3
(1,2, 5, 15) —2Y1Y2Y3
(1,2,6,7) —2Y1Y2Y3
(1? 2, 7, 9) Y1Y2Ys3
(17 27 77 11) Y1Y2Y3
(17 2,7, 13) 2y1Y2Y3
(17 2, 8, 10) 2y1Y2Y3
(17 2,8, 12) 291923
(1? 37 47 6) Y1Y2ys
(17 3, 5, 6) 5Y1Y2Y3
(1, 3,5,9) OY1Y2Y3
(17 37 67 10) _4yly293
(1, 3, 6, 11) —4y1y2y3
(17 3, 8, 12) —5Y1Y2Y3
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Table I1.2: The element of A%, (K3) corresponding to generator y3s, .
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