
Trabajo Fin de Máster

Estimación del riesgo de uso de libreŕıas de terceros en el
desarrollo de software

Estimation of the risk of using third-party libraries in software
development

Autor

Freddy Hernán Mart́ınez Quiñones

Director

Francisco Javier López Pellicer

Escuela de Ingenieŕıa y Arquitectura
2024

Repositorio de la Universidad de Zaragoza - Zaguan
http://zaguan.unizar.es

Agradecimientos

A la Universidad de Zaragoza, por ofrecer un plan de estudios que permite conciliar la vida profesional
y académica.
A los profesores del máster, quienes han mantenido un nivel académico alto mientras demostraban
una notable comprensión de las necesidades de los estudiantes que también tienen responsabilidades
profesionales.
Al profesor Javier, por su gúıa y orientación durante el desarrollo de este trabajo. Su acompañamiento
fue esencial para definir y dar dirección a este proyecto.
A mi esposa Sara, quien me ha apoyado y acompañado en todos mis proyectos en los últimos casi
diez años. Sin su paciencia y sacrificio, este logro no habŕıa sido posible.

II

Resumen

El uso de libreŕıas de terceros es una práctica común en el desarrollo de software, esta permite
agilizar el proceso de construcción a costa de la pérdida de la propiedad del código. Esta falta de
control conlleva riesgos que vale la pena evaluar antes de incluir una dependencia en un proyecto, los
más evidentes son las posibles vulnerabilidades y exposiciones comunes (CVE’s) en el código fuente,
aunque existen otros riesgos menos evidentes que pueden afectar la viabilidad a largo plazo de una
libreŕıa.
Por ese motivo, este trabajo aborda el desarrollo de una herramienta de apoyo en la selección de
libreŕıas de terceros, la cual permite obtener información relevante sobre las dependencias de un
proyecto durante todo su ciclo de vida.
Para ello, la herramienta recopila información de los repositorios donde se aloja el código fuente
y los registros dónde se publican las dependencias, compara las métricas obtenidas con los valores
establecidos por el usuario para considerar una libreŕıa segura y emite mensajes de advertencia sobre
los hallazgos, permitiendo aśı evaluar el estado de las dependencias del proyecto.

III

Índice general

1. Introducción 1
1.1. Riesgos asociados al uso de libreŕıas de terceros . 1
1.2. Técnicas y herramientas de detección de riesgos 3

1.2.1. Detección de vulnerabilidades y exposiciones comunes 3
1.2.2. Detección de otros riesgos . 4

1.3. Objetivos . 5
1.4. Alcance . 5
1.5. Metodoloǵıa . 6
1.6. Organización de la memoria . 7

2. Análisis 8
2.1. Enfoque del problema . 8
2.2. Métricas . 9
2.3. Fuentes de datos . 10
2.4. Indicadores . 11
2.5. Evaluación de indicadores . 12
2.6. Interfaz de usuario . 13
2.7. Alternativas arquitecturales . 14
2.8. Requerimientos del sistema . 15

2.8.1. Requerimientos funcionales . 16
2.8.2. Requerimientos no funcionales . 16

3. Diseño 18
3.1. Arquitectura del sistema . 18
3.2. Sistema central . 19

3.2.1. Interfaz Indicador . 19
3.2.2. Componente de Registro . 20
3.2.3. Componente Ejecutor . 20

3.3. Mecanismo de extracción de datos . 21
3.3.1. Componente Builder . 21
3.3.2. Componente Director . 22

3.4. Sistema de reporte . 23
3.5. Resultado final . 24

4. Desarrollo 26
4.1. Sistema central . 26
4.2. Mecanismo de extracción de datos . 28
4.3. Sistema de reporte . 29
4.4. Buenas prácticas de desarrollo . 29

IV

5. Pruebas funcionales de la herramienta 31
5.1. Pruebas locales y uso de la herramienta . 31
5.2. Validación con otros proyectos . 33
5.3. Validación con otras herramientas de SCA . 34
5.4. Validación con otros usuarios . 34

6. Conclusiones 38
6.1. Objetivos alcanzados . 38
6.2. Trabajo futuro . 39
6.3. Reflexión personal . 39

Glosario 40

Referencias 42

Anexos 45

A. Lista de métricas detallada 46

B. ¿Cómo dar soporte a otros lenguajes? 49

C. ¿Cómo crear otros reportes? 52

D. ¿Cómo añadir nuevos indicadores? 53

E. Cronograma del proyecto 54

V

Lista de Tablas

2.1. Lista de métricas candidatas. 10
2.2. Fuentes de datos y métricas extráıdas. 11

VI

Lista de Figuras

1.1. Conflictos entre dependencias transitivas. 2

2.1. Flujo de información para la toma de decisiones. 9

3.1. Componentes principales del sistema bajo el enfoque de la arquitectura hexagonal. . 19
3.2. Interfaz “Indicador” con ejemplos de implementaciones concretas. 20
3.3. Sistema central de la herramienta, encargado de orquestar la evaluación. 21
3.4. Primera aproximación del mecanismo de extracción de datos. 22
3.5. Mecanismo de extracción de datos. 23
3.6. Componentes involucrados en la generación de reportes. 24
3.7. Interacción entre los componentes principales de la aplicación. 25

4.1. Reporte de la cobertura de pruebas unitarias de la herramienta. 30

5.1. Reporte en consola ejecutando el proyecto durante desarrollo. 32
5.2. Interacción con la herramienta. 32
5.3. Ejemplo de libreŕıa con pocas descargas y mucho tiempo sin actualizar. 33
5.4. Libreŕıa abandonada por los mantenedores. 33
5.5. Resultados iniciales del análisis de las tres herramientas SCA. 35
5.6. Resultados del análisis tras la actualización de las dependencias del proyecto. 36
5.7. Reporte en formato de tabla en HTML. 37

E.1. Cronograma del trabajo realizado. 54

VII

1. Introducción

Una particularidad de la informática (que no se suele ver en otras ingenieŕıas), es que para construir
un producto de software, las piezas que se utilizan son también software. Clases, interfaces y funciones
se agrupan para formar módulos, paquetes, libreŕıas, frameworks y otros artefactos que se pueden
publicar, compartir y reutilizar indefinidamente. Esta capacidad de reutilización permite evitar la
duplicación de esfuerzos, siguiendo el conocido principio de “no re-inventar la rueda”. Bajo esta
premisa, cuando un desarrollador de software se enfrenta a un problema, suele ser más fácil buscar
una solución existente que resolver el problema desde cero. Descargar e integrar una libreŕıa que da
solución al problema se entiende como la v́ıa más rápida y efectiva, incluso para funciones triviales [1].

Esta práctica tiene ventajas evidentes, como reducir el tiempo y los costes de desarrollo, además del
aporte de flexibilidad para abordar nuevos requerimientos [2]. Sin embargo, también conlleva varios
riesgos que, a largo plazo, pueden afectar negativamente al producto, al proyecto y/o al equipo.
Este proyecto busca entender estos riesgos, darles visibilidad y ayudar a mitigarlos.

1.1. Riesgos asociados al uso de libreŕıas de terceros

Al construir un producto de software, los desarrolladores frecuentemente recurren a libreŕıas de
terceros para agilizar el proceso. Estas libreŕıas, conocidas como dependencias directas del proyecto,
pueden incluir sus propias dependencias, que se denominan dependencias indirectas o transitivas. La
cantidad de dependencias en un proyecto puede variar según el lenguaje de programación, pero en
términos generales, un proyecto t́ıpico puede incluir decenas de dependencias directas y, a través de
ellas, llegar a tener cientos de dependencias transitivas [3]. Estas dependencias, junto con el código
propietario y cualquier herramienta utilizada para la creación y distribución del producto, pasan a
hacer parte de lo que se conoce como la cadena de suministro de software [4].

El uso de libreŕıas de terceros conlleva una serie de riesgos que pueden afectar tanto la calidad como
la seguridad del proyecto. Estos riesgos abarcan desde conflictos de versiones entre dependencias
transitivas hasta la inserción de código malicioso. Aunque muchos de estos problemas son comunes
y están bien documentados, los desarrolladores no suelen actualizar ni verificar regularmente la
seguridad de las dependencias en sus proyectos [5]. A continuación se exponen algunos ejemplos y
se explica su relevancia:

Conflictos de versiones de dependencias transitivas: ocurre cuando dos o más libreŕıas
usadas en un proyecto comparten una dependencia común, pero requieren versiones diferentes
de esta [6]. Este escenario es problemático porque podŕıa no existir una versión de la depen-
dencia transitiva que incluya todas las caracteŕısticas necesarias para que las demás libreŕıas
funcionen correctamente. Además, muchos gestores de paquetes no permiten la coexistencia
de dos versiones diferentes de una misma dependencia en un proyecto, lo que puede provocar
el mal funcionamiento de alguna de las libreŕıas implicadas (aquellas que no disponen de la

1

1.1. Riesgos asociados al uso de libreŕıas de terceros

versión correcta de su dependencia). Este tipo de conflicto se puede presentar al introducir
una nueva dependencia, como se muestra en la figura 1.1a; aunque, a menudo ocurre cuando
una dependencia directa se actualiza junto con sus propias dependencias, mientras que otras
libreŕıas en el proyecto que comparten esas dependencias no se actualizan. Esto puede bloquear
la posibilidad de actualizar ciertas partes del proyecto, limitando la evolución del software. En
la figura 1.1a se ilustra este escenario, la libreŕıa “B” no se puede actualizar hasta que la “A”
tenga soporte para la última versión de la libreŕıa compartida “C”.

(a) Conflicto causado por nueva dependencia directa. (b) Actualización bloqueada por conflicto.

Figura 1.1: Conflictos entre dependencias transitivas.

Inserción de vulnerabilidades y exposiciones comunes (CVE’s): hay dos escenarios prin-
cipales en los que las dependencias pueden introducir CVE’s en un proyecto. En primer lugar,
un desarrollador podŕıa incluir una libreŕıa que ya contenga vulnerabilidades conocidas; sin
embargo, el escenario más común es la aparición de nuevas vulnerabilidades en libreŕıas de
terceros después de haber sido integradas en el proyecto. A través de la investigación exhaus-
tiva y pruebas sistemáticas de diversas piezas de software, expertos en seguridad informática
identifican y reportan constantemente nuevas vulnerabilidades, que pueden impactar una o
varias de las dependencias de un proyecto, haciendo todo el proyecto vulnerable. Un caso muy
conocido de este problema fue el descubrimiento de la vulnerabilidad Log4Shell de la libreŕıa
Log4j, una libreŕıa de código abierto ampliamente utilizada en proyectos de Java [7]. Cuando
este escenario se presenta, las únicas v́ıas de solución son esperar a que los mantenedores re-
suelvan la vulnerabilidad y publiquen una nueva versión, o eliminar la dependencia del proyecto.
Aunque en la mayoŕıa de los casos los mantenedores corrigen las vulnerabilidades, se ha visto
que estas persisten en los proyectos por falta de un adecuado manejo de las dependencias [5].
Eliminación de la libreŕıa de los registros públicos: el Registro de softwares es el lugar
donde se publican los paquetes y libreŕıas listos para ser descargados y usados. Aśı como
una persona u organización puede publicar una libreŕıa, puede también eliminarla del registro.
Esto puede representar un problema grave para todos los proyectos que dependan de ella, ya
que seŕıa necesario reemplazarla o construir la funcionalidad que esta expone. Además, si la
eliminación se realiza de forma repentina el proyecto puede quedar bloqueado, al no ser posible
instalar dependencias, no es posible compilar ni ejecutar flujos de trabajo para el despliegue
del producto. Un caso muy conocido de este escenario es el llamado “incidente de left-pad”
[8], donde gran cantidad de proyectos alrededor del mundo se vieron afectados, incluso en
compañ́ıas como Meta, Netflix y Spotify. Actualmente, algunos registros cuentan con poĺıticas
de eliminación de paquetes para ayudar a reducir estos escenarios.
Sabotaje de la libreŕıa por parte de sus mantenedores: consiste en la introducción de
código en una libreŕıa que provoca fallos o comportamientos no deseados en las aplicaciones

2

1.2. Técnicas y herramientas de detección de riesgos

que dependen de ella. Esta práctica se ha hecho común recientemente como herramienta de
protesta, popularizando los términos “hacktivismo” y “protestware” [9], llamando la atención
de la comunidad para tratar este problema como un problema de seguridad. Un ejemplo de este
tipo de protesta fue el caso de las libreŕıas de JavaScript “colors” y “faker”, cuyo propietario
saboteó en 2022 a modo de protesta [10].
Ataque a la cadena de suministro de software: este escenario se caracteriza por la
inyección de código malicioso en un paquete de software con la intención de hacer vulnerables
a los proyectos que dependen de este [11]. Este es un riesgo mucho mayor que el de la aparición
de vulnerabilidades, ya que muchas veces estos ataques no son detectados por herramientas
automáticas y el impacto económico puede llegar a ser enorme. En la revisión hecha por Ohm
y su equipo [11] se analizan 174 paquetes con código malicioso que fueron usados en ataques
reales entre noviembre de 2015 y noviembre de 2019. Un ejemplo reciente de este escenario
fue el malware incorporado en la libreŕıa node-ipc en 2022, el cual sobrescrib́ıa los ficheros
en el sistema del usuario [12], este estaba dirigido a sistemas en Rusia y Bielorrusia como acto
de “hacktivismo” [9].

Estos riesgos ponen en evidencia que, para incluir una dependencia en un proyecto, no basta con que
esta contenga la funcionalidad requerida, sino que el equipo de desarrollo necesita también saber
que esta libreŕıa es mantenida de forma activa, y que puede confiar en su autenticidad e integridad
a largo plazo.
Por otro lado, el mantenimiento continuo de las libreŕıas implica que quienes las usan en sus proyectos
deben estar al tanto de las actualizaciones, lo que lleva a otro problema común en el desarrollo de
software: los equipos no mantienen las dependencias de sus proyectos actualizadas, porque perciben
esta tarea como un esfuerzo extra[13]. Esta tendencia se convierte fácilmente en un ćırculo vicioso:
a medida que un proyecto crece también lo hace su lista de dependencias, el riesgo de conflictos
aumenta y mantener las dependencias actualizadas se hace cada vez más costoso, de modo que los
desarrolladores se hacen más reacios a hacerlo. Es aqúı donde adquiere relevancia el desarrollo de
herramientas automáticas que ayuden a los desarrolladores a gestionar y mantener las dependencias
de sus proyectos.

1.2. Técnicas y herramientas de detección de riesgos

A continuación se exploran algunas técnicas y herramientas que permiten gestionar y mitigar los
riesgos asociados a componentes de terceros mencionados anteriormente. Para empezar, se men-
cionan aquellas técnicas enfocadas en la detección de vulnerabilidades y exposiciones comunes y,
posteriormente, se mencionan algunas herramientas que sirven para mitigar otros de estos riesgos.

1.2.1. Detección de vulnerabilidades y exposiciones comunes

Para empezar, vale la pena mencionar la técnica SAST (Static Application Security Testing), que
generalmente se enfoca en la detección de vulnerabilidades en el código propio del proyecto. Como el
foco principal de este trabajo son los componentes externos de un proyecto, esta técnica en si misma
puede resultar poco relevante. Sin embargo, śı pueden resultar interesantes aquellas herramientas que
realicen análisis estático de código sobre las dependencias del proyecto, como se verá más adelante.
Por otro lado, las tecnoloǵıas DAST (Dynamic Application Security Testing) śı incluyen las dependen-
cias del proyecto. Al realizar pruebas de “caja negra” simulando ataques sobre una versión funcional
del sistema, pueden detectar vulnerabilidades y problemas de lógica en todas las partes que integran

3

1.2. Técnicas y herramientas de detección de riesgos

el producto en tiempo de ejecución. Sin embargo, el principal problema de estas tecnoloǵıas en el
contexto de este proyecto, es la incapacidad de señalar la fuente del problema detectado, lo que im-
plica un esfuerzo adicional para determinar si el problema es del código propio o de una dependencia
externa [14]. Otras desventajas de esta técnica son la dificultad para automatizar las pruebas [15]
y la incapacidad de prevenir los riesgos, ya que estas herramientas se ejecutan al final del ciclo de
desarrollo, cuando las vulnerabilidades ya están en producción.

Otra metodoloǵıa que vale la pena mencionar es IAST (Interactive Application Security Testing), la
cual combina técnicas de SAST y DAST para crear un mecanismo de análisis de vulnerabilidades
rápido y altamente automatizado [16]. IAST ofrece grandes ventajas frente a SAST y DAST en
términos de flexibilidad y velocidad, además, al tener un enfoque de “caja blanca” puede señalar en
qué parte de la aplicación en ejecución se presenta una vulnerabilidad. Las principales desventajas de
esta técnica son: la dificultad de implementación, las posibles incompatibilidades entre los agentes
IAST y las tecnoloǵıas usadas en el proyecto y, la más importante, que el alcance de las pruebas
está determinado por los casos de prueba que construyan los desarrolladores [17].

Para completar las técnicas de análisis de vulnerabilidades, se debe hablar del Análisis de Compo-
sición de Software. SCA (Software Composition Analysis) es un término general que engloba las
metodoloǵıas y herramientas de seguridad que escanean los componentes de código abierto utiliza-
dos en un proyecto, con la intención de evaluar la seguridad, el cumplimiento de las licencias y la
calidad del código [18]. Esta técnica adopta herramientas de SAST para analizar de forma estática
el código de las dependencias del proyecto. Actualmente existe una gran oferta de herramientas con
capacidades de SCA, lo que muestra la creciente preocupación de la comunidad por mantener segura
la cadena de suministro de software [4]. Entre las más conocidas se puede encontrar herramientas
como Snyk, OWASP dependency-check y Dependabot, que en términos generales, permiten detectar
vulnerabilidades en dependencias tanto directas como transitivas, pueden ejecutar auditoŕıas de se-
guridad, generar reportes y sugerir o aplicar actualizaciones para resolver estos problemas, mejorando
la seguridad global del proyecto.

Un listado exhaustivo de herramientas de análisis de vulnerabilidades se encuentra en la documen-
tación de la fundación OWASP [19], donde se agrupan según sus capacidades y las técnicas que
aplican (SAST, DAST, IAST y/o SCA). Todas estas técnicas y herramientas son de gran utilidad
para mantener un proyecto libre de vulnerabilidades y exposiciones comunes. Sin embargo, estas
herramientas dejan de lado muchos de los riesgos mencionados anteriormente.

1.2.2. Detección de otros riesgos

Si bien existe una amplia gama de técnicas y herramientas enfocadas en la detección de vulnerabi-
lidades y exposiciones comunes, no existe una oferta de herramientas similar que permita gestionar
riesgos como el conflicto de versiones o el sabotaje de una libreŕıa. Aún aśı, a continuación se
presentan las herramientas relacionadas que se han podido encontrar.

Algunos gestores de paquetes tienen la capacidad de señalar conflictos entre dependencias transitivas,
por ejemplo, el comando npm audit permite analizar dependencias de proyectos de JavaScript,
mientras que en Python es posible usar pip check. Además, estos incorporan funcionalidades de
auditoŕıa que les permiten detectar vulnerabilidades en dependencias y resolverlas (cuando es posible)
actualizando versiones.

También es posible encontrar algunas iniciativas individuales que buscan proporcionar una visión más
amplia sobre la gestión de dependencias. Por ejemplo, el paquete libs-inspector genera un reporte
con la descripción y sugerencias de actualización de las dependencias del proyecto. Mientras que el
paquete deps-updater actualiza automáticamente todos los paquetes obsoletos. Estas herramientas

4

https://snyk.io/
https://jeremylong.github.io/DependencyCheck/
https://github.com/dependabot
https://docs.npmjs.com/cli/v6/commands/npm-audit
https://pip.pypa.io/en/stable/cli/pip_check/
https://github.com/GoncharIgor/libs-inspector
https://github.com/sqlzzy/deps-updater

1.3. Objetivos

son útiles para mantener las dependencias actualizadas y evitar la introducción de riesgos debido a
versiones obsoletas.

Por último, un enfoque más innovador lo presenta el proyecto DEAN [20], el cual se enfoca en el
análisis automático de riesgos mediante la evaluación de métricas relacionadas con los repositorios
donde se aloja el código fuente, en vez del análisis estático del código. Este análisis busca una visión
más amplia de los riesgos asociados con la introducción de dependencias, planteando la posibilidad de
estimar algunos riesgos en base a las interacciones de los usuarios con el repositorio de un proyecto,
con la intención de abordar situaciones como el abandono de ese proyecto. Fue este proyecto el que
sirvió como inspiración para el desarrollo de la herramienta propuesta en este trabajo.

1.3. Objetivos

El objetivo de este proyecto es desarrollar una herramienta de código abierto que facilite a la co-
munidad de desarrolladores la gestión y mantenimiento de las dependencias en sus proyectos de
software. Esta herramienta debe brindar información relevante sobre las dependencias, permitiendo
a los usuarios tomar acciones preventivas ante riesgos que no se abordan con otras herramientas
ya establecidas. Estos riesgos son el abandono de la libreŕıa, su eliminación del registro público, el
sabotaje de la libreŕıa y la introducción intencionada de código malicioso (ataque a la cadena de
suministro).

Para ello, se propone un enfoque basado en el análisis de métricas de la interacción humana con
los proyectos, tomando como modelo la idea planteada en DEAN para establecer indicadores que
permitan estimar los riesgos mencionados. Se dará prioridad a los componentes de código abierto,
siguiendo la metodoloǵıa de Análisis de Composición de software (SCA).

Los objetivos espećıficos para el desarrollo de la herramienta incluyen:

Definición de métricas e indicadores: teniendo en cuenta los riesgos que se desean abordar,
identificar y seleccionar un conjunto de métricas claras y cuantificables. Estas deben permitir
la detección de señales (indicadores) que evidencien la presencia de estos riesgos.

Identificación de fuentes de datos: investigar y seleccionar las fuentes de datos necesarias
para obtener la información requerida por las métricas definidas.

Diseño de una arquitectura flexible y extensible: diseñar y desarrollar una arquitectura
de sistema que facilite la extensión y la incorporación de nuevas funcionalidades, como nuevos
indicadores y fuentes de datos, sin requerir un rediseño significativo de la herramienta.

Implementación de una versión inicial de la herramienta: construir una primera versión
de la herramienta que incorpore las funcionalidades principales. Esta debe ser fácil de instalar
y usar, minimizando las barreras para su adopción. Además, debe incluir una interfaz que
permita a los desarrolladores obtener informes detallados y comprensibles, que les permita
analizar fácilmente sus proyectos.

1.4. Alcance

El alcance inicial definido para este proyecto, siguiendo los objetivos planteados, incluye:

La primera versión de la herramienta será implementada en JavaScript y se enfocará en de-
pendencias de este mismo lenguaje. El soporte para otros lenguajes queda fuera del alcance

5

1.5. Metodoloǵıa

de este proyecto. Esta decisión está fundamentada en diversos motivos: en primer lugar, apro-
vechar la familiaridad con el lenguaje y su ecosistema; por otro lado, la gran comunidad de
desarrolladores de JavaScript puede facilitar la obtención de retroalimentación con respecto a
la utilidad de la herramienta; por último, los proyectos de JavaScript suelen tener una gran
cantidad de dependencias, tanto directas como transitivas, comparados con otros lenguajes
de programación [3].

Integrar datos tanto del registro público donde se exponen estas dependencias como del repo-
sitorio donde se aloja el código fuente, en este caso, se habla de npm y GitHub para artefactos
de JavaScript. Se escogen estas fuentes de datos porque el análisis de composición de soft-
ware se enfoca en componentes de código abierto, por lo que analizar libreŕıas publicadas en
registros privados o alojadas en repositorios privados tendŕıa poca relevancia.

Identificar y evaluar al menos cuatro indicadores, que hagan uso de distintos datos de las
fuentes mencionadas y que sean relevantes a la hora de determinar si una libreŕıa corre el riesgo
de ser abandonada, saboteada o eliminada del registro público. Se determinó que esta es la
cantidad ḿınima para demostrar que el sistema es suficientemente flexible para incorporar otros
indicadores en el futuro. Además, se puede considerar una cantidad adecuada de dimensiones
para tomar decisiones relacionadas con la incorporación de dependencias, mitigando el impacto
de los sesgos que se puedan generar en alguna de estas dimensiones. Si se puede sacar la misma
conclusión de varios indicadores, esta conclusión es más fuerte que una basada en uno solo
indicador.

La herramienta no debe requerir procesos de compilación ni la descarga de software adicional
para ser usada. Para reducir en lo posible las barreras para incluir esta herramienta en el ciclo
de vida de proyectos reales, esta debe estar lista para ser usada tras su descarga. Para el caso
de desarrolladores de JavaScript, esto significa poder aprovechar las herramientas de desarrollo
habitual: Node.js y npm.

Se debe implementar al menos un sistema de reporte, siendo la consola de comandos la primera
elección para mostrar los resultados de la evaluación de indicadores. Se decide iniciar con esta
interfaz porque es un medio t́ıpico en el que muchas herramientas muestran sus hallazgos,
permite mostrar información en tiempo real y se integra bien dentro de muchos procesos
automáticos. Sin embargo, el sistema debe ser fácil de extender a otros medios de reporte,
como la generación de archivos HTML o JSON.

1.5. Metodoloǵıa

Dado que este trabajo se planteó como un proyecto de software experimental para el desarrollo del
prototipo, se propuso desde el inicio el uso de una metodoloǵıa iterativa, basada en pequeños ciclos
de análisis, diseño, desarrollo y pruebas, lo que permite abordar el proyecto de forma incremental,
utilizando como hitos los objetivos espećıficos mencionados anteriormente. Las metodoloǵıas itera-
tivas de desarrollo de software permiten la mejora gradual y continua de un producto de manera
práctica y eficiente [21]. Estas técnicas han demostrado ser efectivas a lo largo del tiempo [22]
y resultan particularmente útiles para el desarrollo de prototipos [23], ya que permite comprender
mejor diferentes aspectos del sistema, como sus requerimientos y las compensaciones entre diferen-
tes estrategias de diseño [23], y promueve la creación de un producto fácilmente modificable [21].
Además, para efectos de este trabajo, esta práctica permite revisar y discutir los avances al final de
cada iteración.

6

1.6. Organización de la memoria

1.6. Organización de la memoria

A continuación se describe en detalle el proceso que llevó al desarrollo de la herramienta propuesta.
En el caṕıtulo 2 se explica el análisis que permitió la identificación de datos relevantes, la definición
de métricas y la elaboración de indicadores para la evaluación de riesgos. Posteriormente, en el
caṕıtulo 3, se sintetiza el proceso de diseño que llevó a la definición de un software suficientemente
simple y flexible, es decir, fácil de leer y de extender. En el caṕıtulo 4 se detalla cómo se abordaron
los requerimientos durante el desarrollo de la herramienta. Después, en el caṕıtulo 5 se explica cuáles
fueron las pruebas funcionales realizadas para validar la herramienta y se muestran ejemplos de los
resultados obtenidos. Por último, en el caṕıtulo 6 se explica el aporte del trabajo y se valora el
cumplimiento de los objetivos.

7

2. Análisis

Como se explicó en el caṕıtulo 1, la incorporación de dependencias introduce riesgos que pueden
afectar la estabilidad y seguridad de un proyecto a largo plazo, por lo que se necesitan herramientas
que permitan mitigar esos riesgos sin impactar negativamente el flujo de trabajo de los equipos
de desarrollo. Además, la mayoŕıa de las herramientas de Análisis de Composición de Software
disponibles en el mercado se enfocan en la detección de vulnerabilidades, tal como se expone en la
sección 1.2.1, dejando de lado escenarios como el abandono de una libreŕıa, el sabotaje de la misma
o su eliminación del registro público.

Estos últimos escenarios son particularmente dif́ıciles de predecir, ya que van más allá de la inspección
del código fuente de las libreŕıas. Sin embargo, existen patrones en la interacción humana con los
proyectos que pueden servir como indicadores de estos riesgos. Por ejemplo, si un proyecto tiene
un solo mantenedor y una base de usuarios pequeña, es mucho más propenso a ser abandonado o
eliminado que si tiene un equipo de mantenimiento robusto y una comunidad de usuarios grande y
activa. Este tipo de patrones es lo que este proyecto busca identificar y analizar, para poder brindar
a los desarrolladores una visión más amplia del estado de las dependencias de un proyecto.

A continuación, se explican el enfoque con el que se abordó el problema de detección de riesgos,
se presentan los conceptos de métricas e indicadores y se describe la relación entre estos. Poste-
riormente, se profundiza en el concepto de métrica y se presenta una lista de métricas candidatas
para la creación de indicadores. A continuación, se habla de las fuentes de datos y de la información
extráıda para la creación de esas métricas. En la sección 2.4 se profundiza en los indicadores y se
expone la lista de indicadores generados a partir de los datos recuperados. Después se habla del sis-
tema de evaluación definido para esos indicadores, para presentarlos a los usuarios de forma clara y
coherente. En la sección 2.7 se hace una breve mención al planteamiento de arquitectura del sistema
y, por último, se enumeran los requisitos del sistema identificados durante el proceso de análisis.

2.1. Enfoque del problema

Como se mencionó anteriormente, se desea brindar información a los desarrolladores sobre los riesgos
asociados a las dependencias de sus proyectos. Además, esa información debe complementar la que
ofrecen las herramientas de análisis de composición de software disponibles en el mercado. Para
lograrlo, se propone un análisis de las dependencias desde una perspectiva global, que permita
anticipar escenarios como el abandono o el sabotaje de la libreŕıa.

Para determinar si una libreŕıa es confiable, se debe comenzar por identificar una serie de dimensiones
o parámetros que permitan distinguir las libreŕıas confiables de las que no lo son. Estas dimensiones
pueden ser cuantitativas (como la frecuencia de publicación de nuevas versiones de la libreŕıa) o
cualitativas (por ejemplo, si el propietario del proyecto es o no una compañ́ıa conocida), y son lo que
en adelante se llamarán métricas. Una vez definidas las métricas, se deben identificar las fuentes

8

2.2. Métricas

de datos que permiten extraerlas; este proceso puede ser iterativo, ya que puede ocurrir que no
se encuentren datos para generar una métrica en particular, pero en su lugar se identifiquen otras
métricas a partir de los datos disponibles.

Una vez se han hallado los datos y se dispone de un conjunto de métricas, se debe definir la forma
de evaluar las libreŕıas en esas dimensiones para poder identificar aquellas que suponen un riesgo
alto; es aqúı donde entra el concepto de indicador. Los indicadores representan la evaluación de la
libreŕıa en una o varias de las dimensiones y deben destacar comportamientos relevantes para poder
discriminar entre libreŕıas. Teniendo los resultados de estas evaluaciones, se pueden generar reportes
que permitan a los usuarios tomar decisiones informadas sobre el mantenimiento de las dependencias
de su proyecto. En la figura 2.1 se ilustra el flujo de información desde la fuente de datos hasta la
creación del reporte.

Figura 2.1: Flujo de información para la toma de decisiones.

2.2. Métricas

Las métricas corresponden a aquellas caracteŕısticas, tanto cuantitativas como cualitativas, que se
pueden utilizar para evaluar la calidad o fiabilidad de una libreŕıa. Estas se obtienen de los datos
extráıdos de diversas fuentes y pueden medir tanto la actividad del equipo de mantenedores como
la interacción de la comunidad. Por ejemplo, a partir de los datos de fechas de publicación de las
diferentes versiones de una libreŕıa se puede obtener la métrica frecuencia promedio de publicación,
que permite medir la frecuencia con la que el equipo que mantiene una libreŕıa publica nuevas
versiones de la misma.

Métricas como el número de mantenedores, la frecuencia promedio de publicación de nuevas versiones
y la cantidad de descargas semanales de la libreŕıa, son cuantificables y permiten evaluar la libreŕıa
en estas dimensiones. Algunas de ellas corresponden a los datos sin ningún procesamiento, mientras
que otras se obtienen de hacer cálculos simples sobre los datos recogidos. Al evaluar métricas como
estas, se pueden identificar patrones relevantes para detectar riesgos. Por ejemplo, un proyecto con
bajo número de mantenedores, baja frecuencia promedio de publicación y pocas descargas semanales
puede correr riesgo de abandono. Por el contrario, un proyecto con una comunidad activa puede
ser un indicio de mayor capacidad de respuesta frente a desaf́ıos como la detección de bugs o el
descubrimiento de vulnerabilidades.

Por otra parte, métricas como el tipo de propietario del repositorio son cualitativas, pero también
pueden ayudar a discriminar entre libreŕıas. Por ejemplo, no da la misma “confianza” usar una libreŕıa
desarrollada por una persona desconocida que una hecha por una empresa como Google o Meta.

En la tabla 2.1 se presentan todas las métricas que se consideraron relevantes para estimar el nivel
de salud de un proyecto. En el anexo A muestra esta lista de forma más detallada, explicando la
importancia de cada parámetro para la estimación de riesgos.

9

2.3. Fuentes de datos

Tipo Fuente Métrica

Mantenimiento

Registro

Número de versiones
Tiempo de vida del proyecto
Frecuencia media de publicación de nuevas versiones
Tiempo transcurrido desde la última publicación
Última versión estable

Repositorio

Número de mantenedores
Tipo de propietario del proyecto
Número de Issues abiertos
Número de Issues cerrados
Tiempo de vida de los Issues
Número de Pull Requests activas
Número de Pull Requests cerradas
Tiempo de vida de las Pull Requests
Porcentaje de salud del repositorio

Comunidad

Registro
Número de descargas semanales desde el registro
Número de proyectos dependientes

Repositorio
Número de estrellas en el repositorio
Número de Forks del repositorio
Número de observadores

Tabla 2.1: Lista de métricas candidatas.

2.3. Fuentes de datos

Una vez identificados los valores de interés, el paso a seguir fue la investigación de las fuentes de
datos para obtener esta información. Tal como se define en la sección 1.4, se trabajó con npm
y GitHub, siendo el primero el gestor de paquetes y el registro público más conocido y utilizado
para proyectos de JavaScript; mientras que GitHub, es la plataforma de hospedaje de repositorios
de código fuente más popular en la comunidad, donde se aloja una gran cantidad de proyectos de
código abierto.

Ambas plataformas cuentan con API’s públicas y herramientas de ĺınea de comandos, de donde es
posible extraer información de interacción de los usuarios con los proyectos. Sin embargo, no todos
los datos identificados en la sección anterior están disponibles públicamente. Algunos de estos datos
solo se pueden obtener a través de las aplicaciones clientes de cada plataforma, es decir, directamente
en la web de npm o de GitHub (por ejemplo, la lista de proyectos dependientes de una libreŕıa). Lo
que implica que haŕıa falta aplicar técnicas de web scraping1 para recuperar esta información. En

1Proceso que usa bots y otras herramientas automáticas para extraer contenido de páginas web.

10

2.4. Indicadores

la tabla 2.2 se detalla la información que fue posible recuperar de cada fuente y se relaciona con las
métricas extráıdas:

Fuente Dato Métrica

CLI de npm Listado de versiones y fechas

Número de versiones
Tiempo de vida del proyecto
Frecuencia media de publicación de
nuevas versiones
Última versión estable
Tiempo transcurrido desde la última
publicación

API Rest de npm Descargas semanales Número de descargas semanales

API Rest de GitHub

Issues abiertos Número de Issues abiertos
Número de estrellas Número de estrellas en el repositorio
Número de Forks Número de Forks del repositorio
Número de observadores Número de observadores
Tipo de propietario Tipo de propietario del proyecto
GitHub Community Profile Porcentaje de salud del repositorio

Tabla 2.2: Fuentes de datos y métricas extráıdas.

Si bien no fue posible extraer todos los parámetros de interés mencionados en la sección 2.2, se
puede decir que la información obtenida es suficientemente amplia como para elaborar indicadores
relevantes en la evaluación de la salud y seguridad de un proyecto.

2.4. Indicadores

Un indicador es una afirmación sobre la libreŕıa que se confirma evaluando una o varias métricas,
esta evaluación debe arrojar valores significativos que permitan saber cómo se comporta la libreŕıa
en cada dimensión. Por ejemplo, el indicador “libreŕıa se publica con frecuencia” se determina
al evaluar la métrica “frecuencia promedio de publicación” para determinar si la libreŕıa en cuestión
se publica de forma continua. De forma similar, las métricas “número de descargas por semana” y
“número de estrellas en el repositorio” pueden ser evaluadas para dar respuesta al indicador “libreŕıa
es popular”, determinando aśı la percepción que tiene la comunidad de una libreŕıa.

Es importante aclarar que estos indicadores no son etiquetas definitivas que determinen de manera
absoluta la seguridad o la viabilidad a largo plazo de una dependencia. Por ejemplo, una libreŕıa que
no ha recibido actualizaciones en un peŕıodo significativo de tiempo podŕıa estar en riesgo de ser
abandonada, o podŕıa ser que el proyecto ha alcanzado un nivel de madurez y estabilidad suficientes
para no requerir cambios frecuentes. En algunos casos, los mantenedores deciden congelar el código
y limitan los cambios a la solución de problemas de seguridad, rechazando nuevas caracteŕısticas en
favor de mantener el alcance original del proyecto.

11

2.5. Evaluación de indicadores

De manera similar, un proyecto con un solo mantenedor activo no necesariamente indica una alta
probabilidad de abandono, el mantenedor podŕıa ser suficientemente dedicado y capaz de soste-
ner el proyecto en el tiempo. Por lo tanto, la evaluación de riesgos debe ser vista en contexto y
complementada con un análisis de la naturaleza y el historial del proyecto.

Aún aśı, aunque no se pueda predecir con certeza el futuro de una libreŕıa basándose únicamente
en estos indicadores, estos pueden proporcionar una visión más amplia y permitir una evaluación
más completa de los riesgos del uso de libreŕıas de terceros. De esta forma, los equipos de desarrollo
pueden tomar decisiones más informadas sobre qué dependencias integrar en sus proyectos.

De las métricas expuestas en la sección 2.2, y teniendo en cuenta la información recuperada de las
fuentes, se extrajeron los siguientes indicadores:

Libreŕıa publicada recientemente: verificar si la última publicación de la libreŕıa se ha hecho
en un lapso de tiempo definido.

Libreŕıa publicada frecuentemente: evaluar si la frecuencia media de publicación de nuevas
versiones es suficientemente alta.

Es un proyecto de larga vida: evaluar la fecha de creación del proyecto, para saber si lleva
tiempo suficiente a disposición de la comunidad.

Es descargada frecuentemente: analizar la cantidad de descargas semanales desde el re-
gistro, se espera que este número sea lo más alto posible.

Repositorio destacado: utilizar el número de estrellas que ha recibido el repositorio para
determinar si es valorado por la comunidad.

Repositorio con demasiados Issues abiertos: verificar que la cantidad de Issues sin cerrar
sea bajo, de otro modo, puede indicar una baja capacidad de respuesta de los mantenedores.

Repositorio clonado repetidamente: analizar la cantidad de Forks para estimar el interés
que tiene la comunidad en extender el proyecto.

Tiene suficientes observadores: evaluar el número de observadores, como señal de garant́ıa
y respaldo por parte de comunidad.

Propietario confiable: confirmar si el tipo de propietario del repositorio es el deseado.

Repositorio saludable: verifica que el porcentaje de salud del repositorio es adecuado.

Versión usada es la última estable: consiste en verificar que la versión de la libreŕıa que se
usa en un proyecto es la última versión estable publicada.

Estos indicadores pueden dar una visión global sobre el estado de salud de un proyecto, proporcio-
nando indicios significativos en la toma de decisiones respecto al uso de libreŕıas de terceros.

2.5. Evaluación de indicadores

Para permitir la valoración del riesgo a los equipos de desarrollo, los indicadores deben presentar
información significativa de forma fácil de interpretar. Por este motivo, se plantearon varios enfoques
de evaluación y presentación de indicadores.

La primera aproximación formulada fue usando un sistema de calificaciones para cada dimensión, de
modo que cada indicador se presenta como un resultado en una escala, por ejemplo de 0 a 1. De
esta forma se estandarizaŕıan los resultados, permitiendo hacer más procesamiento sobre ellos si se

12

2.6. Interfaz de usuario

desea. Un problema de este enfoque radica en la disparidad de los datos, mientras que el número
de forks de un repositorio a lo largo de toda su existencia va de cero a algunos cientos, la cantidad
de descargas de una libreŕıa puede llegar a decenas de millones por semana. Como ninguno de estos
valores tiene un ĺımite superior, para normalizar habŕıa que escoger arbitrariamente un valor máximo
para cada dimensión. El segundo problema, quizá el más importante, es la interpretación que pueda
dar un usuario a estos valores.

El enfoque escogido fue utilizar umbrales para evaluar cada dimensión, generando etiquetas para
cada resultado. Por ejemplo, con dos umbrales se pueden obtener tres estados: OK, ADVERTENCIA
y ALERTA, dependiendo donde se encuentre el atributo evaluado respecto a estos umbrales. Esta
metodoloǵıa limita la capacidad para hacer otros cálculos con los resultados de la evaluación, pero
facilita la presentación de resultados, permitiendo generar reportes mucho más fáciles de interpretar.

Vale la pena mencionar que establecer los umbrales de evaluación no es una tarea trivial. Por ejemplo,
al evaluar la popularidad de una libreŕıa según las descargas, no hay un número mágico que permita
separar las libreŕıas populares de las que no lo son, dependiendo de factores como el campo de
aplicación, la cantidad de descargas semanales que tiene una libreŕıa considerada popular puede
cambiar varios órdenes de magnitud. Por ejemplo, alguien podŕıa decir que tanto lodash (el paquete
de utilidades de JavaScript) como p5 (la versión en JavaScript de Processing), son igualmente
populares, sin embargo, el primero tiene algo más de 5 × 107 descargas semanales, mientras que el
segundo tiene apenas unas 2 × 104.

Por este motivo, se determinó que el mejor enfoque para mostrar los resultados es usar etiquetas
y permitir que el usuario defina los umbrales para cada indicador. De este modo la evaluación se
ejecuta de acuerdo a sus consideraciones personales y las necesidades del proyecto, mientras que las
etiquetas permiten crear un reporte más limpio y fácil de leer. Aśı mismo, puede resultar útil ofrecer
a los usuarios la capacidad de escoger los indicadores que consideren más importantes: distintos
equipos pueden querer usar criterios de evaluación diferentes, por lo que evaluar solo los indicadores
necesarios no solo ahorra poder computacional, sino que también contribuye a generar un reporte
más enfocado.

2.6. Interfaz de usuario

En la sección 1.3 se estableció como objetivo hacer que la herramienta sea fácil de instalar y usar,
con la intención de minimizar las barreras para su adopción. Con esto en mente, se consideraron dos
opciones para la interacción con la herramienta: construir una interfaz gráfica (GUI) o permitir su
uso mediante interfaz de ĺınea de comandos (CLI). Ambas opciones son viables: frameworks como
Electron facilitan la construcción de aplicaciones de escritorio en JavaScript, mientras que la creación
de una herramienta ejecutable desde la ĺınea de comandos se logra mediante algunos archivos de
configuración.

Si bien las interfaces gráficas tienen la ventaja de ser más intuitivas para la mayoŕıa de los usuarios
finales, la interfaz de ĺınea de comandos es una herramienta importante para los desarrolladores y
administradores de sistemas [24]. Para estos usuarios, la CLI permite interacciones más eficientes
y la creación de trabajo personalizados a través de scripts [25]. Además, en el contexto de este
proyecto, una herramienta CLI tiene múltiples ventajas en comparación con una GUI:

Rendimiento y tamaño del proyecto: una solución de tipo CLI es mucho más ligera y
consume menos recursos, ya que los frameworks de JavaScript para aplicaciones de escritorio
deben incorporar un navegador en la aplicación.

13

https://www.npmjs.com/package/lodash
https://www.npmjs.com/package/p5
https://www.electronjs.org/

2.7. Alternativas arquitecturales

Facilidad de descarga: una herramienta CLI se puede publicar como un paquete de JavaS-
cript en el registro público de npm, permitiendo su descarga con un simple comando. Por otro
lado, una aplicación de escritorio tendŕıa que publicarse en plataformas como Microsoft Store
o incluir el ejecutable en el repositorio del proyecto, lo que lo haŕıa más dif́ıcil de encontrar y
descargar.

Facilidad de integración: las herramientas de consola de comandos son fáciles de integrar
en flujos de trabajo automáticos, por ejemplo, se pueden ejecutar antes de integrar cambios
en el código fuente de un proyecto o durante procesos de despliegue de una aplicación. Por
este motivo, muchas herramientas de desarrollo y casi todos los proveedores de servicios en la
nube ofrecen interfaces de ĺınea de comandos [26].

Tiempo de desarrollo: el uso de frameworks como Electron puede ralentizar el proceso debido
a la curva de aprendizaje que requiere, además de aumentar la complejidad del desarrollo por
la estructura, reglas y artefactos que aporta.

Riesgos asociados a dependencias: la inclusión de un framework como Electron puede
introducir riesgos adicionales, como los que este proyecto busca ayudar a mitigar.

En cuanto a la configuración de la herramienta para selección de indicadores y umbrales, como se
definió en la sección 2.5, un enfoque ampliamente aceptado para herramientas CLI es el uso de
archivos con formato JSON o YAML. Estos dos formatos proporcionan un mecanismo de intercambio
de datos legible para humanos [27] y se usan en diversas herramientas de desarrollo; por ejemplo,
Visual Studio Code, Webpack y el mismo npm usan el formato JSON, mientras que herramientas
como Docker y Kubernetes usan YAML. Por lo general, estos archivos se crean en la misma ubicación
donde se ejecuta la herramienta CLI o se permite indicar la ruta al archivo mediante un parámetro
de ejecución.

2.7. Alternativas arquitecturales

Para definir la arquitectura del sistema, se debe partir de los objetivos planteados y las necesidades
identificadas. Para empezar, uno de los objetivos propuestos en la sección 1.3 fue construir un
sistema flexible, que permita extender y/o sustituir sus componentes con facilidad. Por otra parte,
del análisis realizado hasta el momento se sabe que, para permitir la valoración del riesgo de una
libreŕıa, el sistema debe: recuperar información de esa libreŕıa de diversas fuentes de datos (como
GitHub y npm), recibir datos de configuración del usuario (para seleccionar indicadores y umbrales),
evaluar los indicadores y, por último, generar el reporte con el cual el usuario podrá tomar decisiones
con respecto a la libreŕıa evaluada.

A partir de estas necesidades es posible identificar los módulos principales del sistema: la entrada
de datos del usuario, la entrada de datos de las libreŕıas, el módulo central para la evaluación de
los indicadores y un último módulo encargado de la salida de datos en forma de reporte. Para este
proyecto resulta relevante tener flexibilidad para cambiar los módulos de entrada de datos de las
libreŕıas y de salida del reporte. Teniendo la capacidad de extender y/o reemplazar estos módulos,
el sistema podŕıa trabajar con diversas fuentes de datos para dar soporte a otros lenguajes de
programación o generar reportes en formatos diversos según las necesidades del usuario.

Con esto en mente, se hace patente la necesidad de seguir un estilo de diseño con bajo acoplamiento
entre componentes. Por este motivo, se consideraron las siguientes arquitecturas candidatas:

Arquitectura hexagonal: también conocida como Arquitectura de Puertos y Adaptadores,
es un patrón de arquitectura que busca crear sistemas desacoplados y altamente mantenibles.

14

https://apps.microsoft.com/
https://code.visualstudio.com/docs/getstarted/settings#_settingsjson
https://webpack.js.org/configuration/configuration-languages/
https://docs.npmjs.com/cli/v10/configuring-npm/package-json
https://docs.docker.com/compose/gettingstarted/#step-2-define-services-in-a-compose-file
https://kubernetes.io/docs/concepts/overview/working-with-objects/
https://alistair.cockburn.us/hexagonal-architecture/

2.8. Requerimientos del sistema

La idea central es separar la lógica de negocio de las dependencias externas del sistema (como
bases de datos, herramientas de pruebas, interfaz de usuario y aplicaciones externas). Para
lograrlo, el sistema central interactúa con los componentes externos mediante puertos (pro-
tocolos o interfaces que definen como usar la aplicación) y adaptadores (implementaciones
que satisfacen el contrato del puerto) [28]. Esto facilita la sustitución de estos componen-
tes externos sin alterar la lógica central del sistema, facilitando la incorporación de nuevas
funcionalidades.

Clean Architecture: es una aproximación que intentar integrar diversas arquitecturas, como
la Arquitectura Hexagonal o la llamada Onion Architecture, en una única idea viable. La idea
central es crear sistemas débilmente acoplados mediante la separación de responsabilidades,
separando el software en capas siguiendo lo que Robert C. Martin define como “la regla de
dependencia” [29].

Arquitectura de Microkernels: en ocasiones considerada como “múltiples arquitecturas he-
xagonales”, es un modelo centrado en compartir los recursos del sistema entre varios servicios.
En esta arquitectura el desarrollo se centra en el core de la aplicación, el cual debe permi-
tir a los usuarios añadir funcionalidad mediante plug-ins. Esta arquitectura es especialmente
adecuada para sistemas que requieren alta extensibilidad [30].

Estas arquitecturas ofrecen ventajas significativas en términos de modularidad, sin embargo, la elec-
ción también depende de otros factores como la complejidad de implementación. Los Microkernels,
por ejemplo, requieren una infraestructura bastante compleja, que podŕıa ser innecesaria para el
alcance de este proyecto. Las arquitecturas Hexagonal y Clean Architecture son conceptualmente
muy similares; de hecho, algunos autores muestran que al incorporar otros patrones de arquitectura
(como MVVM y EBI) en la arquitectura Hexagonal es posible obtener implementaciones válidas de
Clean Architecture [28].

Para evitar caer en el error de hacer sobre-ingenieŕıa, se determinó que el mejor enfoque era diseñar
y construir versiones simples de cada parte del sistema e ir desacoplándolas gradualmente, siguiendo
los lineamientos de la arquitectura hexagonal, que es la arquitectura más sencilla que cumple con
las necesidades del proyecto. Si fuera necesario, esta arquitectura podŕıa evolucionar hacia algo más
sofisticado en el futuro.

2.8. Requerimientos del sistema

Para completar el análisis, se definieron los casos de uso y los requerimientos ḿınimos para la versión
inicial del sistema. Para que esta primera versión resultara de utilidad a sus usuarios, se plantearon
dos casos de uso:

Análisis de una libreŕıa individual: un usuario utiliza la herramienta para obtener informa-
ción valiosa sobre una libreŕıa en particular, para determinar si es segura antes de incluirla en
su proyecto.

Análisis de todas las dependencias de un proyecto: un usuario incluye la herramienta
como parte del proceso de desarrollo, para estar alerta ante posibles riesgos que puedan surgir
en las dependencias de su proyecto. La herramienta debe poder identificar las dependencias
directas del proyecto para analizarlas y generar reportes de valor para el usuario.

Teniendo presentes estos casos de uso y todo el análisis expuesto en este caṕıtulo, se pueden definir
los requerimientos del sistema. A continuación se enumeran los diferentes requerimientos, tanto
funcionales como no funcionales, identificados a lo largo del proceso de análisis.

15

https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://learn.microsoft.com/en-us/dotnet/architecture/maui/mvvm
https://ebi.readthedocs.io/en/latest/

2.8. Requerimientos del sistema

2.8.1. Requerimientos funcionales

Estos describen las funciones de la herramienta; es decir, las entradas, comportamientos y salidas
que debe tener el sistema para cubrir todos los casos de uso. De las secciones 2.5 y 2.6 se sintetizan
los siguientes requerimientos funcionales:

La herramienta debe ser ejecutable mediante ĺınea de comandos, tal como se define en la
sección 2.6, y debe permitir evaluar una libreŕıa o todas las dependencias de un proyecto en
una misma ejecución, según la necesidad del usuario.

El usuario debe poder seleccionar los indicadores que desea evaluar, un usuario de la herra-
mienta puede estar interesado en tan solo un subconjunto de los indicadores identificados
anteriormente.

El usuario debe poder establecer los umbrales para los indicadores que desea evaluar. Si bien se
pueden definir valores por defecto para cada indicador, el usuario debe ser capaz de modificar
esos valores cuando lo vea conveniente, para que el sistema se adapte a sus necesidades.

El usuario debe poder configurar uno o varios mecanismos de parada para el proceso de
evaluación, basados en las etiquetas definidas en la sección 2.5. La herramienta debe permitir
detener el proceso de evaluación de una libreŕıa en cualquiera de los siguientes casos:

• Se alcanza un número de alertas: el usuario puede definir el número máximo de alertas
que puede generar una libreŕıa, al llegar a esa cantidad se detiene la evaluación para esa
libreŕıa.

• Se alcanza un número de advertencias: similar a las alertas, se detendŕıa la evaluación
de indicadores para cualquier libreŕıa que genere esa cantidad advertencias.

• Estado de indicador cŕıtico es diferente de “ok”: el usuario puede configurar una lista
de indicadores que deber dar como resultado “ok”, si alguno de estos indicadores da un
resultado diferente, se detiene la evaluación para esa dependencia.

• Estado de “alerta” en indicadores cŕıticos: similar a la condición anterior, el sistema debe
detener la ejecución para la dependencia en evaluación si alguno de los indicadores de la
lista genera una alerta.

Se debe generar un reporte con los resultados de la evaluación, para la primera versión de la
herramienta el reporte se presenta en la consola de comandos, manteniendo la misma interfaz
de comunicación con el usuario. Este reporte debe tener un formato que facilite su lectura.

2.8.2. Requerimientos no funcionales

Estos requisitos, también llamados atributos de calidad del sistema, especifican caracteŕısticas, res-
tricciones o condiciones de funcionamiento, mantenimiento o instalación del sistema. Para la versión
inicial de la herramienta, se han identificado algunos requisitos, enfocados en el rendimiento y la
extensibilidad de la herramienta:

Consultar solo los datos necesarios para los indicadores escogidos por el usuario. Si, por ejem-
plo, los indicadores seleccionados por un usuario no requieren información de GitHub, entonces
no se debe consultar esta fuente. Esto ahorra tiempo de procesamiento y ancho de banda,
además de que algunas fuentes pueden tener ĺımites en las peticiones a sus API’s públicas
(como es el caso de GitHub).

16

2.8. Requerimientos del sistema

El sistema debe ser fácil de extender para incluir otras fuentes de datos, sin afectar el funcio-
namiento existente. De este modo se permite dar soporte a otros lenguajes de programación.
La herramienta debe permitir la implementación de otros sistemas de reporte, diferentes al
de consola de comandos, sin afectar el funcionamiento existente. De esta forma, se podŕıan
generar reportes en archivos o enviar los resultados de la evaluación directamente a otras
herramientas.
La herramienta no debe requerir la instalación de software adicional, en cambio, debe funcio-
nar con las herramientas básicas que suele tener un desarrollador que trabaja en JavaScript,
como la herramienta de ĺınea de comandos de npm. Esto reduce la fricción para el uso de la
herramienta por parte de la comunidad de desarrollo.

17

3. Diseño

Como se ha mencionado anteriormente, para el desarrollo de esta herramienta se buscó elaborar un
diseño flexible y extensible, a la vez que fácil de entender y mantener. Esta no es una tarea trivial,
ya que la complejidad de un sistema tiende a crecer en función de la flexibilidad requerida para el
mismo. Es común que ingenieros y desarrolladores hagan uso de arquitecturas sobredimensionadas
o patrones de diseño innecesarios al intentar lidiar con flexibilidad. Por este motivo, se optó por
empezar por un diseño global simple, que se fue diseccionando en componentes más espećıficos a
medida que se inclúıa funcionalidad. Esta metodoloǵıa permitió que el diseño evolucionara de manera
orgánica y adaptativa, evitando inyectar complejidad accidental.

Inicialmente, se identificaron las partes clave del sistema a nivel global. Las áreas principales iden-
tificadas fueron: el mecanismo de extracción de datos, encargado de obtener la información de
las fuentes; el sistema central o “core” de la aplicación, encargado de orquestar la evaluación; y
el sistema de reporte, encargado de mostrar los resultados al usuario. Teniendo claros los módulos
que componen el sistema, se puede definir la forma en que interactúan siguiendo la arquitectura
hexagonal, tal como se determinó en la sección 2.7.

3.1. Arquitectura del sistema

Bajo el enfoque de la arquitectura hexagonal, el sistema central es el que contiene la lógica del
negocio, mientras que los otros dos módulos se encargan de lidiar con elementos externos a la
aplicación, como son las fuentes de datos y la interfaz del reporte.

Para que el sistema central pueda dirigir el flujo de trabajo, este debe poder hacer uso de los otros
módulos, pero no puede depender de la implementación de estos. Afortunadamente, el principio clave
de la arquitectura hexagonal es que el núcleo de la aplicación no tenga dependencias externas. Esta
independencia se logra creando puertos que definen la forma en que el sistema central interactúa con
los componentes externos, junto con adaptadores espećıficos para los componentes de extracción
de datos o de generación de reportes. En la figura 3.1 se ilustran los tres módulos principales del
sistema siguiendo el patrón de arquitectura hexagonal.

El punto de inicio y la configuración de la aplicación son detalles que no se especifican en la
arquitectura hexagonal [28], ya que son detalles de implementación más que decisiones de diseño.
Estos detalles, junto con la entrada de datos del usuario, se ilustran en la figura 3.1 como información
de arranque (Bootstrapping) de la aplicación.

A continuación se profundiza en el detalle de cada uno de los tres módulos principales identificados,
señalando las interfaces que cumplen el papel de puertos siguiendo el estilo de arquitectura escogido.

18

3.2. Sistema central

Figura 3.1: Componentes principales del sistema bajo el enfoque de la arquitectura hexagonal.

3.2. Sistema central

Como su nombre lo indica, es el módulo principal de la herramienta, responsable de orquestar el
proceso de evaluación de indicadores. Para permitir al usuario seleccionar y configurar los indicadores
de evaluación, se definieron tres piezas que componen esta parte de la aplicación: el indicador, el
registro y el ejecutor.

3.2.1. Interfaz Indicador

Para empezar, se definió una interfaz común para todos los indicadores. Cada indicador definido
en la sección 2.4 corresponde a una clase que implementa esta interfaz, de modo que es posible
interactuar con cualquiera de ellos de forma indistinta. En la figura 3.2 se ilustra la interfaz con
algunas implementaciones concretas.

Cada indicador implementa un método llamado “evaluar”, que recibe una instancia de la Librerı́a
y retorna el resultado de la evaluación. La evaluación de cada indicador se realiza comparando uno
o varios atributos de la libreŕıa con los umbrales definidos para el mismo; mientras que el resultado
incluye un estado (“ok”, “advertencia” o “alerta”, como se explicó en la sección 2.5) y un mensaje
explicativo asociado al estado.

El indicador expone la lista de propiedades que requiere de la Libreŕıa para ejecutar la evaluación,
lo que permite consultarlos mediante el sistema de extracción de datos en caso de no tenerlos.
Además, cada indicador tiene valores por defecto para los umbrales, pero también cuentan con un
método que permite sobrescribir estos valores (setThresholds), de este modo se puede configurar
los indicadores según el criterio o necesidades del usuario.

19

3.2. Sistema central

Figura 3.2: Interfaz “Indicador” con ejemplos de implementaciones concretas.

Adicionalmente, los indicadores pueden tener pre-condiciones, que permiten determinar si la eva-
luación de un indicador debe llevarse a cabo según los resultados de otros indicadores previamente
evaluados. Por ejemplo, un indicador que analiza datos de GitHub solo puede ser evaluado si se ha
confirmado previamente que la dependencia tiene un repositorio público asociado.

3.2.2. Componente de Registro

Este componente se creó para gestionar la lista de indicadores. Este utiliza una estructura de tipo
diccionario (vector asociativo) para mapear cada indicador con su identificador único, lo que facilita
su búsqueda al momento de verificar parámetros, confirmar pre-condiciones o evaluar el indicador.
El registro es también el responsable de confirmar que las pre-condiciones se cumplan antes de la
evaluación de un indicador, verificando los resultados de indicadores precedentes o ejecutando su
evaluación cuando es necesario. Además gestiona la configuración definida por el usuario, limitando
la evaluación a los indicadores escogidos y sobrescribiendo los umbrales de estos indicadores cuando
el usuario suministra estos datos.
Adicionalmente, el sistema permite al usuario definir condiciones de parada para la evaluación de
indicadores de una dependencia. Estas condiciones de parada aseguran que, si se cumple alguno de
los criterios, la evaluación se detiene para evitar procesamiento innecesario. La comprobación de si
alguna condición de parada se cumple también la hace el registro tras obtener el resultado de cada
indicador.
Como se puede ver, este componente es una pieza clave en la ejecución de la herramienta. En la figura
3.3 se pueden observar los métodos expuestos por la clase Registro para cumplir las funcionalidades
descritas.

3.2.3. Componente Ejecutor

Se puede decir que el ejecutor es la pieza principal del sistema, ya que es el responsable orquestar la
evaluación. Este recibe como argumentos: la lista de libreŕıas que se van a evaluar, una instancia del
BuilderDirector y la instancia del registro. En la figura 3.3 se observa cómo se integra el ejecutor
con los demás componentes de esta parte del sistema.

20

3.3. Mecanismo de extracción de datos

Figura 3.3: Sistema central de la herramienta, encargado de orquestar la evaluación.

Para cada libreŕıa en la lista, el ejecutor debe evaluar uno a uno los indicadores escogidos hasta
cumplir una condición de parada o completar todos los indicadores. Para evaluar un indicador, el
ejecutor utiliza el registro para comprobar las propiedades que requiere de la libreŕıa para evaluar
ese indicador, si la instancia de la libreŕıa no tiene esa propiedad, delega en el director la tarea de
obtenerla de la fuente de datos correspondiente. Cabe señalar que al consultar una fuente se llenan
todos los atributos obtenibles de esa fuente, no solo el atributo espećıfico requerido, de ese modo
una fuente solo se debe consultar una vez por cada libreŕıa. Una vez ha sido obtenida la información
necesaria, el ejecutor hace uso del registro para efectuar la evaluación del indicador y, posteriormente,
confirmar si se cumple alguna condición de parada.

3.3. Mecanismo de extracción de datos

Como su nombre lo indica, esta parte de la aplicación se encarga de recuperar la información requerida
para la evaluación de indicadores. Este módulo debe ser capaz de producir un objeto cuyos atributos
correspondan con las métricas que requiere el sistema central para ejecutar la evaluación. Además,
como se ha mencionado anteriormente, se debe poder reemplazar con facilidad los elementos que lo
componen, para poder incorporar otras fuentes de datos en el futuro.

3.3.1. Componente Builder

Para poder extraer datos de diferentes fuentes, se aplicó un enfoque similar al del patrón de diseño
Builder, creando una clase responsable de la obtención de datos por cada fuente. Todas ellas deben
cumplir con el mismo contrato, permitiendo reemplazar una implementación por otra dependiendo de
la fuente de datos que se desea utilizar. La diferencia de este enfoque con el patrón Builder radica en
que cada implementación no crea una instancia diferente de un objeto con una interfaz común, sino

21

https://refactoring.guru/design-patterns/builder

3.3. Mecanismo de extracción de datos

que varios Builders añaden diferentes partes a una misma instancia compartida, el objeto Librerı́a.
Por ejemplo, una instancia de Builder construida para extraer datos de npm (NpmBuilder) puede
trabajar en conjunto con una implementación enfocada en GitHub (GithubBuilder) para completar
los datos de una libreŕıa de JavaScript. Esta primera aproximación se ilustra en la figura 3.4.

Figura 3.4: Primera aproximación del mecanismo de extracción de datos.

En este caso, la interfaz Builder funciona como puerto, para que los componentes del core puedan
interactuar con los adaptadores (las diferentes implementaciones de builder) sin conocer los detalles
de su implementación. Aún aśı, en la figura 3.4 hace falta una pieza que permita saber relacionar
las implementaciones de diferentes adaptadores con los lenguajes de programación a los que se da
soporte.

3.3.2. Componente Director

Para permitir la extensión a otros lenguajes de programación, con sus respectivas fuentes de datos, se
agregó al diseño la interfaz BuilderDirector. Además, este elemento da la capacidad de recuperar
datos bajo demanda (como se definió en los requerimientos no funcionales 2.8). Las clases que
implementan esta interfaz relacionan cada parámetro de la libreŕıa con la fuente de datos de donde
se extrae; asimismo, relacionan cada fuente de datos con el Builder responsable de consultarla. De
este modo, una instancia de BuilderDirector puede dar soporte a un lenguaje de programación y
consultar cada fuente independientemente, utilizando los Builders que tiene asignados. En la figura
3.5 se observa la estructura de este sistema.
Este enfoque permite extender el mecanismo fácilmente a otros lenguajes de programación: para dar
soporte a un nuevo lenguaje, solo se necesita crear los Builders correspondientes para sus fuentes
de datos y el BuilderDirector que los administra, cumpliendo con las interfaces definidas. De este
modo, el usuario puede escoger el lenguaje de programación al inicio de la ejecución, se instancia el

22

3.4. Sistema de reporte

Figura 3.5: Mecanismo de extracción de datos.

director correspondiente y se le asignan los Builders necesarios para trabajar con las fuentes de datos
del lenguaje escogido, luego se agrega la instancia del director al sistema central para que haga uso
de estos componentes. Este proceso es transparente para el sistema central, que interactúa con los
diferentes directores a través de una interfaz común. De esta manera, el sistema está preparado para
incorporar nuevas fuentes de datos y lenguajes de programación con un esfuerzo ḿınimo.
Con este nuevo diseño se puede decir que la interfaz BuilderDirector actúa como puerto, creando
una capa de abstracción adicional en la arquitectura. En este caso, el adaptador de extracción de
datos (para un lenguaje de programación espećıfico) es todo el conjunto integrado por un director
concreto y sus Builders.

3.4. Sistema de reporte

Como su nombre lo indica, es el encargado de presentar los resultados de la evaluación al usuario.
Para presentar un reporte de forma estructurada y ordenada, los resultados de los indicadores para
cada dependencia se almacenan en estructuras de tipo diccionario dentro de la clase ResultsStore.
De este modo se evitan problemas de condiciones de carrera si la evaluación se ejecuta de forma
concurrente.
Además, se definió una interfaz llamada “Contexto”, la cual pretende dar soporte a diferentes tipos
de reportes. Las clases que implementen esta interfaz deben exponer un método para recibir los
resultados y generar el reporte correspondiente. La interfaz Contexto actúa como puerto, permi-
tiendo al core interactuar con diferentes adaptadores de reporte. En la figura 3.6 se observan los
componentes descritos.

23

3.5. Resultado final

Figura 3.6: Componentes involucrados en la generación de reportes.

Este diseño permite extender el sistema a nuevos formatos de reporte, de modo que el usuario pueda
escoger el deseado al iniciar la ejecución. Se crea la instancia del adaptador según la elección del
usuario y el ejecutor interactúa con cualquiera de ellas de forma indistinta.

3.5. Resultado final

En la figura 3.7 se ilustra el diseño global de la aplicación, obtenido integrando los componentes
principales explicados a lo largo de esta sección. Además de mostrar la relación entre componentes
según la arquitectura hexagonal, en este diagrama se señala el proceso en el que intervienen. Cabe
aclarar que hay numerosos componentes auxiliares que no se muestran en este diagrama, estos
intervienen en diferentes partes flujo del programa ayudando en la creación de instancias, el mapeo
de datos, la ejecución de comandos y peticiones http, entre otras funciones; estos elementos serán
mencionados más adelante en los detalles de implementación.

24

3.5. Resultado final

Figura 3.7: Interacción entre los componentes principales de la aplicación.

25

4. Desarrollo

En esta sección se describe el proceso de construcción de la herramienta, detallando la implemen-
tación de los elementos principales del sistema descritos en el caṕıtulo 3 y añadiendo algunos otros
detalles importantes para el funcionamiento de la herramienta. Al final de este caṕıtulo se hace men-
ción a las pruebas unitarias y otras buenas prácticas de desarrollo que se intentaron seguir durante
el proceso de construcción de la herramienta.

4.1. Sistema central

En la sección D se explicaron los componentes principales que integran este módulo, sin embargo,
vale la pena mencionar otros elementos que intervienen en el control del flujo de la aplicación y dan
soporte a esos componentes principales. Estos son algunos de los detalles mencionados en la sección
3.5 que no cubre la descripción de arquitectura.
Para empezar, se debe mencionar la función encargada de la interacción mediante interfaz de ĺınea
de comandos. Esta se ejecuta al inicio del flujo para obtener las opciones de ejecución escogidas por
el usuario, como el lenguaje de programación o el formato del reporte.
Además, vale la pena recordar que en la sección 2.8 se definieron dos casos de uso para la herramienta:
analizar una sola libreŕıa o la lista completa de dependencias de un proyecto. En el primer caso, el
usuario debe proporcionar el nombre y la versión de la libreŕıa; en el segundo caso, la herramienta
busca y lee el archivo package.json para extraer las dependencias del proyecto, existe una función
encargada de esta tarea. En el anexo B se muestran más detalles de esta función y de como extender
la funcionalidad a otros lenguajes.
Una vez se tiene la lista de dependencias con sus versiones, se crean tantas instancias de Libreŕıa
como corresponda. El objeto Librerı́a es un modelo de dominio que se ha mencionado en el caṕıtulo
de diseño y que vale la pena analizar en más detalle. En el fragmento de código 1 se observa la
implementación del modelo que se hizo para la primera versión de la herramienta; esta se ha hecho
incluyendo expĺıcitamente los atributos que usan los indicadores implementados, se hizo aśı con
la intención de aprovechar las funcionalidades de comprobación de tipos que brinda Typescript,
aunque se podŕıa cambiar en el futuro para añadir atributos de forma dinámica.
Los primeros tres atributos del objeto (ĺıneas 2 a 4) son los requeridos para la identificación y
manipulación de cada instancia, los dos primeros corresponden al nombre y la versión de la libreŕıa
que se desea analizar, mientras que el tercero es un vector asociativo que permite saber cuáles
fuentes han sido consultadas anteriormente. Los atributos de las ĺıneas siete y ocho corresponden al
nombre del repositorio y el nombre del propietario; estos se obtienen de npm y permiten consultar en
GitHub. El resto de atributos corresponden a las métricas con las cuales se va a realizar la evaluación.

26

4.1. Sistema central

1 export type Library = {
2 name: string;
3 usedVersion: string;
4 sourceStatus: Map<string, LibSourceStatus>;
5 } & Partial<{
6 // Properties from npm
7 repoName: string;
8 repoOwner: string;
9 numberOfVersions: number;

10 weeklyDownloads: number;
11 lastVersion: string;
12 lastVersionDate: Date;
13 lifeSpan: number;
14 releaseFrequency: number;
15 // Properties from github
16 repoOpenIssues: number;
17 repoStars: number;
18 repoForks: number;
19 repoObservers: number;
20 repoOwnerType: string;
21 repoHealth: number;
22 }>;

Listing 1: Definición del modelo Libreŕıa

Después de crear las instancias de la libreŕıa, se crea el registro de indicadores explicado en la
sección 3.2.2. Para ello se utilizan un par de funciones auxiliares, encargadas de crear la instancia
del registro, obtener el archivo de configuración del usuario, registrar los indicadores y establecer
los valores obtenidos del archivo de configuración. El archivo de configuración debe tener el nombre
scout.config.json y es completamente opcional, en caso de usarse le permite al usuario escoger
los indicadores que le resultan de interés, definir los umbrales que considera apropiados para cada
indicador e incluso definir las condiciones de parada para la evaluación de una libreŕıa. En caso de que
el usuario no proporcione el archivo, el sistema usa la lista de indicadores con los umbrales definidos
por defecto. En el bloque de código 2 se muestra un ejemplo de este archivo de configuración, en este
se observa la lista de indicadores deseados (ĺıneas 3 a 13), el umbral que el usuario desea modificar
(ĺıneas 16 a 19) y las condiciones de parada (ĺıneas 22 y 23).

Tras crear el registro, se crea todo el mecanismo de extracción de datos, seguido del contexto de
reporte y el ejecutor. Este último recibe las instancias del registro, el director, la colección de libreŕıas
que se van a evaluar y el contexto para mostrar los resultados, tal como se explica en la sección D.
Luego, el hilo de ejecución inicia el proceso de evaluación mediante el método “analizar libreŕıas”
del ejecutor.

Para optimizar el proceso de evaluación de múltiples libreŕıas, este se realiza de forma secuencial
dentro de los indicadores de una libreŕıa, pero de forma concurrente entre libreŕıas; es decir, el
sistema no espera a terminar el análisis de una libreŕıa para empezar la siguiente. De esta forma,
el sistema puede estar evaluando los indicadores de una libreŕıa mientras espera la respuesta de un
servicio externo para obtener los datos de otra libreŕıa.

27

4.2. Mecanismo de extracción de datos

1 {
2 "indicators": [
3 "is-last-version",
4 "was-released-recently",
5 "is-released-frequently",
6 "is-downloaded-frequently",
7 "is-long-living-project",
8 "is-starred-repo",
9 "has-open-issues",

10 "has-forks",
11 "has-enough-observers",
12 "repo-owner-type",
13 "is-healthy-repo"
14],
15 "thresholds": {
16 "is-released-frequently": {
17 "warningThreshold": 30,
18 "alertThreshold": 90
19 }
20 },
21 "conditions": {
22 "mustBeOk": ["was-released-recently"],
23 "maxAlerts": 2
24 }
25 }

Listing 2: Ejemplo de configuración usando el archivo scout.config.json

4.2. Mecanismo de extracción de datos

Su desarrollo inició de forma paralela al análisis, ya que fue necesario experimentar con las fuentes de
datos para aprender a interactuar con ellas y determinar cual era información disponible. Inicialmente
se crearon funciones simples para extraer datos mediante la herramienta de ĺınea de comandos de
npm. Posteriormente, se crearon funciones para realizar peticiones HTTP tanto a la API de GitHub
como a la de npm. Los datos obtenidos son los que se listan en la sección 2.3.

Después de construir los servicios, es decir, las funciones encargadas de extraer datos sin procesar
de cada fuente, se construyeron lo Builders que se describen en la sección 3.3.1. Para dar soporte
a JavaScript se construyeron en total 4 de estas clases, uno por cada fuente: ĺınea de comandos de
npm, API de npm, API de GitHub y API para el perfil de la comunidad de GitHub. Cada Builder usa
un servicio para extraer los datos que le corresponden y procesarlos, si es necesario, para obtener las
métricas, que se almacenan como atributos del objeto Libreŕıa.

Por último se construyó el Director, para hacer uso de los Builders como se explica en la sección
3.3.2. En el anexo B se muestra como se instancia un Director y se explica qué componentes se
deben añadir para dar soporte a otros lenguajes.

28

4.3. Sistema de reporte

4.3. Sistema de reporte

Se comenzó por mostrar los resultados de evaluación y otros mensajes directamente en consola
de comandos a medida que se iban generando. Sin embargo, este enfoque teńıa dos problemas
evidentes: la imposibilidad de extender a otras formas de reporte y la incompatibilidad con la ejecución
concurrente de la evaluación. La implementación de los componentes ResultsStore y Context,
expuestos en la sección 3.4, resolvió estos problemas.
Para esta primera versión se implementaron dos versiones del contexto: la primera muestra los resul-
tados en la consola de comandos, tal como se definió en los objetivos iniciales del proyecto, mientras
que la segunda permite guardarlos en un archivo con formato HTML. Este segundo adaptador se
hizo con la intención de demostrar la flexibilidad del sistema.
Cuando el usuario inicia el programa, se le pide seleccionar el tipo de reporte deseado. El sistema
crea una instancia de la clase de reporte escogida y hace uso de esta para presentar los resultados al
terminar la evaluación. En el anexo C se explica como crear nuevas implementaciones del contexto
para crear otros tipos de reporte, por ejemplo, en formato JSON.

4.4. Buenas prácticas de desarrollo

La herramienta se desarrolló como un proyecto de ámbito profesional, siguiendo lo que comúnmente
se conoce como buenas prácticas de desarrollo de software. Entre otras cosas, se aplicaron los
principios de diseño de software1, se siguieron las convenciones de nombres de TypeScript2 y se
integró ESLint para el análisis estático de código, garantizando aśı un código libre de errores comunes
y acorde a las mejores prácticas de estilo de código.
Además, se utilizó Git como sistema de control de versiones para gestionar el código fuente del
proyecto, este se encuentra en un repositorio público en GitHub. Git permite hacer un seguimiento
detallado de los cambios realizados durante el desarrollo, lo que facilita la identificación y correc-
ción de errores. También se adoptó la especificación de “Conventional Commits”, la cual ayuda
a mantener la coherencia de los mensajes de commit3 para tener un historial de cambios claro y
comprensible.
El proyecto también incluyó pruebas unitarias, implementadas con Jest, para asegurar la funcionalidad
de los componentes individuales y facilitar el mantenimiento del código a lo largo del tiempo. Esta
práctica está diseñada para mantener el proyecto libre de errores a medida que este crece y evoluciona.
Aunque en un principio se consideró el uso de la metodoloǵıa “Test Driven Development”4, este
enfoque se hizo dif́ıcil de aplicar por la naturaleza experimental de la herramienta. A pesar de ello, se
procuró mantener una cobertura de pruebas unitarias razonable, como se muestra en la figura 4.1,
para garantizar la fiabilidad y estabilidad del código.

1Los principios de diseño son un conjunto de directrices que se siguen para escribir código limpio, mantenible y
extensible. La mayoŕıa de ellos usan acrónimos como regla mnemotécnica, entre los más conocidos están SOLID, DRY
y YAGNI.

2Es la nomenclatura recomendada por Google para TypeScript, esta promueve la consistencia y la legibilidad del
código.

3Un commit es una operación que guarda el estado de un proyecto en un momento espećıfico, junto con un
mensaje descriptivo que explica los cambios introducidos.

4El desarrollo guiado por pruebas es una práctica de desarrollo en la la pruebas se escriben primero con la intención
de producir código de más calidad en menos tiempo.

29

https://google.github.io/styleguide/tsguide.html
https://eslint.org/
https://github.com/FreddyMartinez/deps-scout
https://www.conventionalcommits.org/en/v1.0.0/
https://jestjs.io/

4.4. Buenas prácticas de desarrollo

Figura 4.1: Reporte de la cobertura de pruebas unitarias de la herramienta.

30

5. Pruebas funcionales de la herramienta

En este caṕıtulo se detalla el proceso de validación funcional de la herramienta desarrollada. El
objetivo de estas pruebas era garantizar que la herramienta funciona correctamente en distintos
escenarios y cumple con los requisitos establecidos (sección 2.8.1). Para ello, se realizaron pruebas
en varios entornos y con diferentes usuarios, asegurando que la herramienta se comporta de manera
fiable y que tiene el impacto deseado en los proyectos.

El caṕıtulo se divide en cuatro secciones: en la primera, se describen las pruebas locales realizadas
durante el desarrollo para verificar el correcto funcionamiento de la herramienta en un entorno
controlado; además, se explica el proceso de instalación y uso de la misma. La segunda sección
aborda la validación de la herramienta con proyectos reales, evaluando su impacto en situaciones de
uso práctico. En la tercera sección se analiza el desempeño de la herramienta comparando su impacto
con los de otras soluciones existentes en el mercado, verificando su capacidad para complementar y
mejorar los análisis de composición de software. Finalmente, la última sección describe la validación
realizada con usuarios externos, recogiendo sus comentarios y ajustando la herramienta para mejorar
la experiencia del usuario.

5.1. Pruebas locales y uso de la herramienta

Durante el desarrollo, se realizaron pruebas locales para evaluar las funcionalidades del proyecto
durante cada iteración. Este se puede compilar y ejecutar localmente, teniendo la posibilidad de
evaluar sus propias dependencias, como se observa en la figura 5.1. En esta figura se muestra un
ejemplo del reporte en consola, una de las dos opciones de reporte mencionadas anteriormente, donde
se observan los mensajes de alerta (color amarillo), advertencia (color rojo) e incluso condiciones de
paradas (color violeta) generadas para cada dependencia.

En la sección 1.4 se indica que la herramienta debe ser fácil de descargar y usar, esta debe ser eje-
cutable desde la consola de comandos aprovechando las herramientas habituales de un desarrollador
de JavaScript. Se definió de este modo con el objetivo de reducir barreras en el uso y llegar a la
mayor cantidad de usuarios posibles. Por este motivo, la herramienta se publicó como un paquete
de JavaScript en el registro público de npm. El único requisito para descargarla y ejecutarla es tener
instalados Node.js y npm, preferiblemente una versión con soporte activo.

La instalación de la herramienta se puede realizar tanto en un proyecto espećıfico como de forma
global, siendo la segunda opción la recomendada. Para instalar el paquete de forma global se utiliza
el comando npm i -g deps-scout. Una vez instalado, solo se debe ejecutar el comando scout
para iniciar la interacción mediante ĺınea de comandos.

Al iniciar, el programa solicita al usuario seleccionar el lenguaje de programación, como se ve en
la figura 5.2a. A continuación, se solicita escoger el formato del reporte, como se muestra en la
figura 5.2b. Cabe recordar que actualmente la herramienta solo tiene soporte para JavaScript, los

31

https://www.npmjs.com/package/deps-scout

5.1. Pruebas locales y uso de la herramienta

Figura 5.1: Reporte en consola ejecutando el proyecto durante desarrollo.

otros lenguajes que se muestran son solo marcadores (para dar soporte en el futuro), si el usuario
selecciona un lenguaje no soportado se muestra un mensaje de error, como se ve en la figura 5.2c.

(a) Selección de lenguaje. (b) Selección de tipo de reporte.

(c) Mensaje de error al seleccionar un lenguaje no soportado.

Figura 5.2: Interacción con la herramienta.

32

5.2. Validación con otros proyectos

5.2. Validación con otros proyectos

Para validar la utilidad de la herramienta, además de las pruebas realizadas después de incluir
cada funcionalidad, se diseñaron algunos experimentos enfocados en verificar que la herramienta se
comporta de la forma esperada y que tiene un impacto positivo en los proyectos donde se usa. Para
ello, se ejecutó la herramienta en diversos proyectos tanto personales como empresariales, intentando
detectar libreŕıas con alto riesgo de abandono, eliminación o sabotaje.

En las pruebas fue posible identificar libreŕıas con pocas descargas, estrellas y observadores, o con
muchos Issues y Pull Requests sin atender, lo que puede ser indicador de alto riesgo y vale la pena
analizar en profundidad. Por ejemplo, en la figura 5.3 se observa el resultado del análisis de la libreŕıa
nodemailer-stub, encontrada en un proyecto personal, la cual obtuvo varios mensajes de alerta. Al
indagar en el registro y el repositorio, se encontró que esta teńıa pocos observadores, estrellas y
descargas, a la vez que mucho tiempo sin ser actualizada, por lo que se convirtió en candidata para
ser reemplazada.

Figura 5.3: Ejemplo de libreŕıa con pocas descargas y mucho tiempo sin actualizar.

Además de las múltiples libreŕıas con mucho tiempo sin modificaciones, se llegó a encontrar una
libreŕıa abandonada hace más de 5 años en uno de los proyectos empresariales analizados. La libreŕıa
en cuestión es ng-simple-slideshow y el proyecto donde se encontró es una aplicación web que utiliza
Angular como framework de desarrollo. En la imagen 5.4 se observa el reporte generado para esta
libreŕıa.

Figura 5.4: Libreŕıa abandonada por los mantenedores.

Si bien en la imagen se señala que la libreŕıa no ha sido actualizada en algo más de dos años, al
revisar en detalle la información que ofrece npm se encontró que la última versión estable hab́ıa sido
publicada en 2019, lo que reveló que la fecha actualización no necesariamente coincide con la última
publicación. Además, al revisar la documentación de la libreŕıa se encontró en su última versión
estaba diseñada para trabajar con las versiones 4 a 7 de Angular. Sin embargo, la última versión
estable de Angular a la fecha de ejecutar la prueba era la 17, dejando en evidencia un problema de
bloqueo por conflicto de dependencias (como se ilustra en la figura 1.1b). Tras ese descubrimiento,
se sustituyó esta libreŕıa por una con soporte vigente y se actualizaron las dependencias bloqueadas,
como Angular.

33

https://github.com/LimeDeck/nodemailer-stub
https://www.npmjs.com/package/ng-simple-slideshow
https://angular.dev/

5.3. Validación con otras herramientas de SCA

5.3. Validación con otras herramientas de SCA

Uno de los indicadores que resultó tener más impacto de lo esperado fue el de “última versión”,
este alerta al usuario cuando la versión que está usando de una dependencia no es la versión estable
más reciente. Este indicador permite a los desarrolladores mantener actualizadas las dependencias
de sus proyectos, incluyendo aśı ajustes a posibles errores o vulnerabilidades corregidas en esas
dependencias.
Para validar el impacto de esta funcionalidad, se compararon los resultados del análisis de otras
herramientas de SCA antes y después de aplicar las actualizaciones sugeridas por la herramienta.
Por ejemplo, se utilizaron tanto el comando de auditoŕıa de npm como la extensión de Red Hat
Dependency Analytics para buscar vulnerabilidades comunes antes y después de actualizar o reem-
plazar las libreŕıas señaladas por la herramienta. Por ejemplo, en las figuras 5.5 y 5.6 se observan
los resultados del análisis de las tres herramientas antes y después de actualizar las dependencias
señaladas.
En la figura 5.5a se observa parte del reporte generado por la herramienta, en donde se señalan
algunas dependencias del proyecto que deben ser actualizadas. Al ejecutar las herramientas de
auditoŕıa en este mismo proyecto, estas advirtieron de la presencia de 3 vulnerabilidades en la
cadena de suministro, como se observa en las figuras 5.5b y 5.5c. Con esta información, se procedió
a actualizar las libreŕıas señaladas, para posteriormente volver a ejecutar las tres herramientas. En la
figura 5.6 se observa que tras realizar las actualizaciones, se reducen los riesgos por vulnerabilidades
conocidas señalados por las otras herramientas.

5.4. Validación con otros usuarios

Una vez publicada una versión estable de la herramienta con las funcionalidades básicas definidas
en el alcance, esta se compartió en diferentes medios con otros desarrolladores y equipos de trabajo,
para que fuera probada y valorada de forma práctica, en busca de retroalimentación que permita
identificar fallos y posibles mejoras. Estas pruebas son importantes para confirmar la utilidad y
relevancia de la herramienta para los usuarios finales.
La recepción inicial parece haber sido positiva, la facilidad con la que se descarga y ejecuta la
herramienta permitieron que muchas personas la probaran, aunque no muchas dieron realimentación
que resultara de utilidad para seguir mejorándola. Los comentarios recibidos se enfocaron en mejorar
dos aspectos: la documentación, explicando como usar la herramienta, y el reporte, para el cual se
sugeŕıa utilizar un formato más fácil de visualizar y donde los resultados quedaran guardados. En
cuanto a la documentación, la versión actualizada se puede observar en el repositorio del proyecto,
mientras que para el reporte, se desarrolló la versión en formato HTML.
En la figura 5.7 se muestra este otro tipo de reporte. El archivo HTML se guarda en la ruta donde
se ejecuta la herramienta. En este se observan las dependencias evaluadas como filas de la tabla,
mientras que los indicadores evaluados se ven como columnas de la misma. Los resultados para
cada indicador y dependencia están codificados por colores, lo que permite al usuario identificar
rápidamente aquellos que han resultado en “alerta” o “advertencia”.

34

https://marketplace.visualstudio.com/items?itemName=redhat.fabric8-analytics
https://marketplace.visualstudio.com/items?itemName=redhat.fabric8-analytics
https://github.com/FreddyMartinez/deps-scout

5.4. Validación con otros usuarios

(a) Mensajes de advertencia generados por la herramienta.

(b) Resultado del análisis de vulnerabilidades de npm.

(c) Resultado del análisis de vulnerabilidades de la herramienta de Red Hat.

Figura 5.5: Resultados iniciales del análisis de las tres herramientas SCA.

35

5.4. Validación con otros usuarios

(a) Mensajes de advertencia generados por la herramienta en un proyecto personal.

(b) Resultado del análisis de vulnerabilidades de npm.

(c) Resultado del análisis de vulnerabilidades de la herramienta de Red Hat.

Figura 5.6: Resultados del análisis tras la actualización de las dependencias del proyecto.

36

5.4. Validación con otros usuarios

Fi
gu

ra
5.

7:
Re

po
rte

en
fo

rm
at

o
de

ta
bl

a
en

HT
M

L.

37

6. Conclusiones

El mantenimiento de las dependencias de un proyecto es tan importante como el mantenimiento del
código fuente. Aún aśı, a menudo los desarrolladores solo prestan atención a sus dependencias en
dos momentos clave: cuando las integran en el proyecto y cuando surgen problemas. Esta práctica
puede llevar a riesgos significativos, ya que las dependencias pueden evolucionar, ser abandonadas
o volverse inseguras con el tiempo. Por este motivo, es necesario el desarrollo de herramientas que
faciliten el mantenimiento y la gestión de dependencias a lo largo de todo el ciclo de vida de los
proyectos, necesidad que intenta abordar la herramienta desarrollada en este proyecto.

A continuación se valora el cumplimiento de objetivos, se exponen las posibilidades de continuación
del trabajo y, para finalizar, se realiza una reflexión personal sobre el proceso de desarrollo y el
impacto de la herramienta obtenida.

6.1. Objetivos alcanzados

Se desarrolló y publicó un paquete de JavaScript que está disponible para su descarga desde el
registro público de npm bajo el nombre deps-scout. Tal como se muestra en las pruebas del caṕıtulo
5, esta herramienta permite analizar las dependencias de proyectos en JavaScript, evaluando diversos
indicadores relacionados con el mantenimiento y la interacción de la comunidad entorno a dichas
dependencias. Al considerar estos aspectos, “deps-scout” genera reportes que brindan información
relevante para el mantenimiento y la seguridad de los proyectos, complementando la información
proporcionada por otras herramientas de Análisis de Composición de Software (SCA), que suelen
centrarse en la detección de CVE’s.

La herramienta es configurable, lo que permite a los usuarios personalizar el análisis según su criterio
y necesidades. En particular, los usuarios pueden seleccionar qué indicadores desean evaluar, ajustar
los valores con los cuales se evalúa cada uno de estos indicadores, e incluso establecer condiciones de
parada para el análisis de cada dependencia (siguiendo el ejemplo de configuración 2 de la sección
4.1). A la fecha de escribir este documento, la herramienta cuenta con 11 indicadores, que se
encuentran documentados tanto en el repositorio del proyecto como en el registro de npm.

Otra caracteŕıstica destacable de esta herramienta es la facilidad con la que se puede integrar en el
flujo de trabajo de los equipos de desarrollo. Su fácil instalación y uso permiten que sea adoptada
rápidamente sin impactar los procesos existentes, ofreciendo valor inmediato con un esfuerzo ḿınimo,
permitiendo a los desarrolladores centrarse en la construcción de nuevas funcionalidades. Esto quedó
demostrado al realizar las pruebas con otros usuarios, comentadas en la sección 5.4.

Además, la herramienta ha sido diseñada con una arquitectura flexible, lo que facilita la incorporación
de nuevos formatos de reporte, aśı como dar soporte a otros lenguajes de programación y fuentes
de datos adicionales. De igual forma, se pueden incluir nuevos indicadores, tal como se detalla en el
anexo D.

38

https://www.npmjs.com/package/deps-scout
https://github.com/FreddyMartinez/deps-scout
https://www.npmjs.com/package/deps-scout

6.2. Trabajo futuro

6.2. Trabajo futuro

La arquitectura flexible de la herramienta presenta oportunidades significativas para su futura expan-
sión y adaptación. Su diseño no solo permite dar soporte para otros lenguajes de programación con
sus respectivos gestores de paquetes y fuentes datos, sino que también abre la puerta a diversos usos
adicionales. Por ejemplo, los datos recopilados por la herramienta podŕıan servir como base para
otros análisis, estudios de investigación o para desarrollar nuevas funcionalidades que aprovechen
estos datos en contextos distintos.
Por otra parte, aunque la herramienta ha sido bien recibida por los desarrolladores que la han
probado, es importante reconocer que aún está en las etapas iniciales de su adopción. Como se
menciona en la sección 5.4, la realimentación por parte de los usuarios es fundamental para que la
herramienta alcance todo su potencial. A medida que más equipos comiencen a usarla y compartir sus
experiencias, se abrirán oportunidades para refinar y expandir sus caracteŕısticas. La retroalimentación
de la comunidad será esencial para la evolución de la herramienta, asegurando que sea relevante y
útil en un entorno de desarrollo de software que está en constante cambio.

6.3. Reflexión personal

En términos generales, me siento muy satisfecho con el desarrollo y el resultado de este proyecto.
Dado que está estrechamente relacionado con mi área profesional, considero que la inversión de
tiempo y esfuerzo ha sido muy valiosa (ver Anexo E) para detalles del cronograma de tareas).
El proceso de análisis me permitió no solo ampliar mi visión sobre la problemática de la gestión
de dependencias, sino también tomar mayor conciencia de los riesgos asociados a la cadena de
suministro de software. La comprensión de estos riesgos y la manera en que se pueden mitigar es
un aprendizaje valioso que ahora intento compartir con otros desarrolladores e ingenieros. Además,
ahora cuento con una herramienta que pienso utilizar regularmente para verificar que mis proyectos
están seguros y evitar que se degraden con el paso del tiempo.
Por otro lado, el proceso de diseño y construcción me permitió profundizar en conceptos de diseño
de software que considero fundamentales para mi crecimiento profesional. Además, el enfoque global
que se le dio al proyecto me permitió recordar y reafirmar la importancia de abordar el software como
la ingenieŕıa que es, algo que contrasta con la realidad de muchos proyectos, donde los desarrolladores
toman decisiones basados en tendencias, opiniones o anécdotas antes que en experimentos y datos
reales.
En cuanto a la herramienta, considero que tiene un gran potencial y puede ser un complemento
valioso para la gestión de dependencias de software. Esta puede trabajar en conjunto con otras
herramientas en busca de mantener segura la cadena de suministro de software de cualquier proyecto.
No obstante, soy consciente de que su adopción no será un proceso fácil, ya que el mantenimiento
de las dependencias no se percibe como una necesidad en muchos proyectos. Tal como se vio en la
sección 5.2, es común encontrar proyectos con dependencias obsoletas o abandonadas hace años,
que pueden dificultar la actualización del resto de dependencias debido a problemas de conflictos
de versiones. Aunque esta herramienta puede ser una solución efectiva para evitar tales escenarios,
su verdadero impacto dependerá en gran medida de un cambio de mentalidad en la comunidad de
desarrolladores. Fomentar una cultura que valore el mantenimiento activo y la actualización continua
de dependencias es un reto que debemos abordar si queremos mejorar la seguridad y estabilidad de
nuestros proyectos.

39

Glosario

Cadena de suministro de software Conjunto de componentes, herramientas, y procesos necesa-
rios para desarrollar, mantener y distribuir un producto de software. Incluye tanto el código
propietario como las dependencias directas e indirectas (transitivas) y cualquier otra herra-
mienta utilizada en el ciclo de vida del software.

Commit Registro de cambios realizado en un repositorio de control de versiones como Git, que
captura el estado del proyecto en un momento espećıfico junto con un mensaje que describe
dichos cambios.

Conventional Commits Convención para escribir mensajes de commit que sigan un formato es-
tructurado y predefinido, facilitando la comprensión del historial de cambios y la automatiza-
ción de versiones.

CVE (Common Vulnerabilities and Exposures) Sistema de identificación de vulnerabilidades
de seguridad conocidas en software, que permite a los desarrolladores y usuarios estar infor-
mados sobre problemas que pueden comprometer la seguridad de un sistema.

Dependencia directa Libreŕıa de terceros que se incluye expĺıcitamente en un proyecto de software
para aprovechar sus funcionalidades.

Dependencia transitiva Libreŕıa que es indirectamente incluida en un proyecto de software, como
resultado de incluir otra libreŕıa que a su vez depende de esta.

ESLint Herramienta de análisis estático de código que se utiliza para identificar y corregir problemas
en el código fuente de JavaScript y TypeScript, ayudando a mantener un código limpio y libre
de errores comunes.

Fork Copia de un repositorio que se crea en la cuenta de un usuario, permitiéndole experimentar,
modificar o ampliar el proyecto, sin afectar el repositorio fuente.

Issue Reporte que se deja en un proyecto para discutir un problema, una idea o una tarea pendiente.

Jest Marco de pruebas unitarias para JavaScript y TypeScript, utilizado para asegurar que las
funciones individuales del código se comporten de la manera esperada.

Libreŕıa En el contexto de este proyecto, la palabra libreŕıa se usa para referirse a cualquier artefacto
de código que pueda ser publicado, reutilizado e intercambiado. Es decir, este término abarca
paquetes, módulos, libreŕıas, middlewares y frameworks.

Node.js Entorno de ejecución de JavaScript ampliamente utilizado, tanto para el desarrollo como
para la ejecución de proyectos en servidores.

40

Glosario

Pruebas unitarias Tipo de prueba de software que verifica el funcionamiento de componentes
individuales (o unidades) del código, asegurando que cada parte funcione correctamente de
manera aislada.

Pull Request Solicitud de incorporación de cambios. Permite a los desarrolladores proponer cam-
bios en el código u otros documentos del proyecto. Esta puede ser revisada y aprobada por los
mantenedores de un proyecto para incluir nuevas caracteŕısticas, solucionar errores o incorporar
mejoras de otro tipo.

Registro de software Es la plataforma donde se publican los paquetes de código listos para ser
descargados y usados dentro de otros proyectos.

repositorio Aalmacenamiento donde se guarda y gestiona el código fuente de un proyecto de soft-
ware junto con su historial de cambios.

41

Referencias

[1] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid y E. Shihab, ((Why do developers use
trivial packages? an empirical case study on npm,)) en Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ép. ESEC/FSE 2017, Paderborn, Germany:
Association for Computing Machinery, 2017, págs. 385-395, isbn: 9781450351058. doi: 10.
1145/3106237.3106267. dirección: https://doi.org/10.1145/3106237.3106267.

[2] O. Nierstrasz y T. Dirk Meijler, ((Research directions in software composition,)) ACM Compu-
ting Surveys, vol. 27, n.o 2, págs. 262-264, 2022. doi: 10.1145/210376.210389.

[3] Github Blog, Keep your dependencies secure and up-to-date with GitHub and Dependabot,
2019. dirección: https://github.blog/2019-01-31-keep-your-dependencies-
secure-and-up-to-date-with-github-and-dependabot/ (visitado 30-06-2024).

[4] Github, How developer-first supply chain security helps you ship secure software fast, 2022.
dirección: https://resources.github.com/security/supply-chain-security/
(visitado 15-06-2024).

[5] G. A. A. Prana et al., ((Out of sight, out of mind? How vulnerable dependencies affect open-
source projects,)) Empirical Softw. Engg., vol. 26, n.o 4, jul. de 2021, issn: 1382-3256. doi:
10.1007/s10664-021-09959-3. dirección: https://ink.library.smu.edu.sg/sis_
research/6048/.

[6] Google Cloud, What is a diamond dependency conflict? 2019. dirección: https://jlbp.
dev/what-is-a-diamond-dependency-conflict (visitado 05-06-2024).

[7] Instituto Nacional de Ciberseguridad, Log4Shell: análisis de vulnerabilidades en Log4j, 2022.
dirección: https://www.incibe.es/incibe- cert/blog/log4shell- analisis-
vulnerabilidades-log4j (visitado 12-06-2024).

[8] Wikipedia, npm left-pad incident. dirección: https://en.wikipedia.org/wiki/Npm_left-
pad_incident (visitado 15-06-2024).

[9] F. Massacci et al., ((“Free” as in Freedom to Protest?)) IEEE Security & Privacy, vol. 20, n.o 5,
págs. 16-21, 2022. doi: 10.1109/MSEC.2022.3185845.

[10] Sonatype, npm libraries ’colors’ and ’faker’ sabotaged in protest by their maintainer—What to
do now? 2022. dirección: https://www.sonatype.com/blog/npm-libraries-colors-
and-faker-sabotaged-in-protest-by-their-maintainer-what-to-do-now (visitado
15-06-2024).

[11] M. Ohm, H. Plate, A. Sykosch y M. Meier, ((Backstabber’s Knife Collection: A Review of
Open Source Software Supply Chain Attacks,)) en Detection of Intrusions and Malware, and
Vulnerability Assessment, C. Maurice, L. Bilge, G. Stringhini y N. Neves, eds., Cham: Springer
International Publishing, 2020, págs. 23-43, isbn: 978-3-030-52683-2.

[12] Arstechnica, Sabotage: Code added to popular NPM package wiped files in Russia and Belarus,
2022. dirección: https://arstechnica.com/information-technology/2022/03/
sabotage-code-added-to-popular-npm-package-wiped-files-in-russia-and-
belarus (visitado 15-06-2024).

42

https://doi.org/10.1145/3106237.3106267
https://doi.org/10.1145/3106237.3106267
https://doi.org/10.1145/3106237.3106267
https://doi.org/10.1145/210376.210389
https://github.blog/2019-01-31-keep-your-dependencies-secure-and-up-to-date-with-github-and-dependabot/
https://github.blog/2019-01-31-keep-your-dependencies-secure-and-up-to-date-with-github-and-dependabot/
https://resources.github.com/security/supply-chain-security/
https://doi.org/10.1007/s10664-021-09959-3
https://ink.library.smu.edu.sg/sis_research/6048/
https://ink.library.smu.edu.sg/sis_research/6048/
https://jlbp.dev/what-is-a-diamond-dependency-conflict
https://jlbp.dev/what-is-a-diamond-dependency-conflict
https://www.incibe.es/incibe-cert/blog/log4shell-analisis-vulnerabilidades-log4j
https://www.incibe.es/incibe-cert/blog/log4shell-analisis-vulnerabilidades-log4j
https://en.wikipedia.org/wiki/Npm_left-pad_incident
https://en.wikipedia.org/wiki/Npm_left-pad_incident
https://doi.org/10.1109/MSEC.2022.3185845
https://www.sonatype.com/blog/npm-libraries-colors-and-faker-sabotaged-in-protest-by-their-maintainer-what-to-do-now
https://www.sonatype.com/blog/npm-libraries-colors-and-faker-sabotaged-in-protest-by-their-maintainer-what-to-do-now
https://arstechnica.com/information-technology/2022/03/sabotage-code-added-to-popular-npm-package-wiped-files-in-russia-and-belarus
https://arstechnica.com/information-technology/2022/03/sabotage-code-added-to-popular-npm-package-wiped-files-in-russia-and-belarus
https://arstechnica.com/information-technology/2022/03/sabotage-code-added-to-popular-npm-package-wiped-files-in-russia-and-belarus

Referencias

[13] R. G. Kula, D. M. German, A. Ouni, T. Ishio y K. Inoue, ((Do developers update their library
dependencies?)) Empir Software Eng, vol. 23, págs. 384-417, 2018. dirección: https://doi.
org/10.1007/s10664-017-9521-5.

[14] Opentext, What is Dynamic Application Security Testing (DAST)? Dirección: https ://
www.opentext.com/what-is/dast#:˜:text=Dynamic%20Application%20Security%
20Testing %20(DAST)%20is %20the %20process %20of %20analyzing , like %20a %
20malicious%20user%20would. (visitado 26-07-2024).

[15] OWASP, DevSecOps Guideline - v-0.2, Interactive Application Security Testing. dirección:
https://owasp.org/www-project-devsecops-guideline/latest/02c-Interactive-
Application-Security-Testing (visitado 26-07-2024).

[16] Y. Pan, ((Interactive Application Security Testing,)) en 2019 International Conference on Smart
Grid and Electrical Automation (ICSGEA), 2019, págs. 558-561. doi: 10.1109/ICSGEA.
2019.00131.

[17] S. Journey, SAST vs DAST vs IAST. dirección: https://www.securityjourney.com/
post/sast-vs-dast-vs-iast#:˜:text=IAST%20Disadvantages,the%20assistance%
20of%20a%20specialist. (visitado 26-07-2024).

[18] Synopsys, What is software composition analysis (SCA)? 2024. dirección: https://www.
synopsys.com/glossary/what-is-software-composition-analysis.html (visitado
15-07-2024).

[19] OWASP, Free for Open Source Application Security Tools, 2024. dirección: https://owasp.
org/www-community/Free_for_Open_Source_Application_Security_Tools (visitado
27-06-2024).

[20] J. F. Barcelona Auŕıa, ((DEAN: Analizador de dependencias estático para Evaluación de Ries-
gos,)) thesis, Universidad de Zaragoza, Zaragoza, España, 2022.

[21] V. R. Basil y A. J. Turner, ((Iterative enhancement: A practical technique for software deve-
lopment,)) IEEE Transactions on Software Engineering, vol. SE-1, n.o 4, págs. 390-396, 1975.
doi: 10.1109/TSE.1975.6312870.

[22] C. Larman y V. R. Basili, ((Iterative and incremental developments: a brief history,)) Computer,
vol. 36, n.o 6, págs. 47-56, 2003. doi: 10.1109/MC.2003.1204375. dirección: https:
//www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-
and-basili-ieee-computer.pdf.

[23] N. M. Goldman y K. Narayanaswamy, ((Software evolution through iterative prototyping,))
International Conference on Software Engineering, págs. 158-172, 1992. dirección: https:
//dl.acm.org/doi/pdf/10.1145/143062.143109.

[24] R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber, L. A. Takayama y M. Prabaker, ((Field
studies of computer system administrators: analysis of system management tools and prac-
tices,)) en Proceedings of the 2004 ACM Conference on Computer Supported Cooperative
Work, ép. CSCW ’04, Chicago, Illinois, USA: Association for Computing Machinery, 2004,
págs. 388-395, isbn: 1581138105. doi: 10.1145/1031607.1031672. dirección: https:
//www.researchgate.net/publication/220879050_Field_studies_of_computer_
system_administrators_Analysis_of_system_management_tools_and_practices.

[25] S. R. Murillo y J. A. Sánchez, ((Empowering Interfaces for System Administrators: Keeping
the Command Line in Mind when Designing GUIs,)) en Proceedings of the XV International
Conference on Human Computer Interaction, ép. Interacción ’14, Puerto de la Cruz, Tenerife,
Spain: Association for Computing Machinery, 2014, isbn: 9781450328807. doi: 10.1145/
2662253.2662300. dirección: https://doi.org/10.1145/2662253.2662300.

[26] H. Sampath, A. Merrick y A. Macvean, ((Accessibility of Command Line Interfaces,)) en Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems, ép. CHI ’21,
Yokohama, Japan: Association for Computing Machinery, 2021, isbn: 9781450380966. doi:

43

https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5
https://www.opentext.com/what-is/dast#:~:text=Dynamic%20Application%20Security%20Testing%20(DAST)%20is%20the%20process%20of%20analyzing,like%20a%20malicious%20user%20would.
https://www.opentext.com/what-is/dast#:~:text=Dynamic%20Application%20Security%20Testing%20(DAST)%20is%20the%20process%20of%20analyzing,like%20a%20malicious%20user%20would.
https://www.opentext.com/what-is/dast#:~:text=Dynamic%20Application%20Security%20Testing%20(DAST)%20is%20the%20process%20of%20analyzing,like%20a%20malicious%20user%20would.
https://www.opentext.com/what-is/dast#:~:text=Dynamic%20Application%20Security%20Testing%20(DAST)%20is%20the%20process%20of%20analyzing,like%20a%20malicious%20user%20would.
https://owasp.org/www-project-devsecops-guideline/latest/02c-Interactive-Application-Security-Testing
https://owasp.org/www-project-devsecops-guideline/latest/02c-Interactive-Application-Security-Testing
https://doi.org/10.1109/ICSGEA.2019.00131
https://doi.org/10.1109/ICSGEA.2019.00131
https://www.securityjourney.com/post/sast-vs-dast-vs-iast#:~:text=IAST%20Disadvantages,the%20assistance%20of%20a%20specialist.
https://www.securityjourney.com/post/sast-vs-dast-vs-iast#:~:text=IAST%20Disadvantages,the%20assistance%20of%20a%20specialist.
https://www.securityjourney.com/post/sast-vs-dast-vs-iast#:~:text=IAST%20Disadvantages,the%20assistance%20of%20a%20specialist.
https://www.synopsys.com/glossary/what-is-software-composition-analysis.html
https://www.synopsys.com/glossary/what-is-software-composition-analysis.html
https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools
https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools
https://doi.org/10.1109/TSE.1975.6312870
https://doi.org/10.1109/MC.2003.1204375
https://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
https://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
https://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
https://dl.acm.org/doi/pdf/10.1145/143062.143109
https://dl.acm.org/doi/pdf/10.1145/143062.143109
https://doi.org/10.1145/1031607.1031672
https://www.researchgate.net/publication/220879050_Field_studies_of_computer_system_administrators_Analysis_of_system_management_tools_and_practices
https://www.researchgate.net/publication/220879050_Field_studies_of_computer_system_administrators_Analysis_of_system_management_tools_and_practices
https://www.researchgate.net/publication/220879050_Field_studies_of_computer_system_administrators_Analysis_of_system_management_tools_and_practices
https://doi.org/10.1145/2662253.2662300
https://doi.org/10.1145/2662253.2662300
https://doi.org/10.1145/2662253.2662300

Referencias

10.1145/3411764.3445544. dirección: https://dl.acm.org/doi/pdf/10.1145/
3411764.3445544.

[27] AWS Cloud Comparisons, What’s the Difference Between YAML and JSON? Dirección: htt
ps://aws.amazon.com/compare/the-difference-between-yaml-and-json/ (visitado
08-08-2024).

[28] R. Nunkesser, ((Using Hexagonal Architecture for Mobile Applications,)) en International Con-
ference on Software Technologies, vol. 17, 2022, págs. 113-120, isbn: 978-989-758-588-3.
doi: 10.5220/0011075100003266. dirección: https://www.scitepress.org/Papers/
2022/110751/110751.pdf.

[29] R. C. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure and Design, 1st.
USA: Prentice Hall Press, 2017, cap. The Clean Architecture, isbn: 0134494164.

[30] M. Richards, Software Architecture Patterns. O’Reilly Media, Inc, 2022, cap. Microkernel
Architecture, isbn: 9781098134273.

44

https://doi.org/10.1145/3411764.3445544
https://dl.acm.org/doi/pdf/10.1145/3411764.3445544
https://dl.acm.org/doi/pdf/10.1145/3411764.3445544
https://aws.amazon.com/compare/the-difference-between-yaml-and-json/
https://aws.amazon.com/compare/the-difference-between-yaml-and-json/
https://doi.org/10.5220/0011075100003266
https://www.scitepress.org/Papers/2022/110751/110751.pdf
https://www.scitepress.org/Papers/2022/110751/110751.pdf

Anexos

45

A. Lista de métricas detallada

A continuación se expone la lista de métricas candidatas, explicando su importancia y señalando la
fuente dónde se esperaba obtener este valor.

Métricas relacionadas con el mantenimiento de la libreŕıa:

• Número de versiones: la cantidad de versiones que han sido publicadas a lo largo de la
vida del proyecto. Se puede pensar que un proyecto con un elevado número de versiones
puede ser un proyecto activo. Se debe poder obtener del registro público donde se expone
la libreŕıa.

• Tiempo de vida del proyecto: el tiempo transcurrido entre la primera publicación de
la libreŕıa y la fecha actual. Se puede esperar que un proyecto con tiempo de vida largo
tenga menos probabilidades a ser abandonado. Se debe obtener del registro.

• Frecuencia media de publicación de nuevas versiones: corresponde al tiempo pro-
medio que transcurre entre una publicación y otra. Una frecuencia de publicación alta
puede indicar un nivel de actividad alto. Se obtiene de dividir el número de versiones
entre el tiempo de vida del proyecto.

• Tiempo transcurrido desde la última publicación: si ha transcurrido mucho tiempo
desde la última publicación, puede ser un indicio de que el proyecto ha sido abandonado.
Este parámetro se obtiene de la diferencia entre la fecha actual y la fecha de la última
publicación.

• Número de mantenedores: son las personas que aportan de forma activa al man-
tenimiento de la libreŕıa y la construcción de nuevas caracteŕısticas. Si el número de
mantenedores es elevado, se puede considerar que hay menos riesgo de que se incluya
código malicioso, se elimine o se abandone el proyecto. Se debe obtener del repositorio.

• Tipo de propietario del proyecto: el propietario de un repositorio puede ser una
empresa o persona. En términos generales, se puede preferir que el propietario sea una
empresa, por el respaldo que esto puede suponer para el proyecto. Este dato se debe
obtener del repositorio donde se aloja el código fuente.

• Número de Issues abiertos: corresponde a la cantidad de reportes que se crean para
discutir bugs, ideas de mejora o tareas pendientes. Una cantidad alta de issues abiertos
en un periodo corto de tiempo puede ser śıntoma de una comunidad e interesada del
proyecto, aunque también puede indicar que algo está yendo mal en el mismo. Este dato
se debe obtener del repositorio.

• Número de Issues cerrados: es la cantidad de reportes que se cierran. Se espera que
todos los issues que se abren se cierren una vez la discusión lleva a una solución del bug
o a la implementación de la idea que se estaba abordando. Idealmente, se espera que el
número de issues cerrados sea cercano al de issues abiertos, si es aśı, es señal de buena

46

capacidad de reacción por parte del equipo que mantiene el proyecto. Este dato se debe
obtener del repositorio.

• Tiempo de vida de los Issues: además de cerrar los issues, es importante el tiempo que
tardan en ser resueltos. Un tiempo de vida bajo indica que los mantenedores responden
rápidamente a los desaf́ıos que se puedan encontrar los usuarios de una libreŕıa. Este
dato se debe obtener calculando el tiempo transcurrido entre la apertura y el cierre de
cada issue que ha sido cerrado.

• Número de Pull Requests activas: es la cantidad de solicitudes de incorporación de
cambios abiertas por la comunidad. En un proyecto de código abierto, cualquier usuario
puede contribuir abriendo una Pull Request (PR), ya sea para corregir un defecto o para
incorporar nueva funcionalidad. El equipo de mantenedores debe revisar estas solicitudes
y aprobarla, rechazarla o solicitar modificaciones según consideren necesario. Un número
alto de PR’s abiertas en un periodo de tiempo puede significar un alto interés de la
comunidad en el proyecto, aunque también puede indicar una baja capacidad de respuesta
por parte de los mantenedores. Este parámetro se debe obtener del repositorio.

• Número de Pull Requests cerradas: al igual que con los issues, es importante que
las PR’s se cierren, ya sea porque los cambios han sido aceptados e integrados, o porque
han sido rechazados. Lo ideal es que el total de las solicitudes de cambio se resuelvan,
si es aśı, es señal de un nivel saludable de actividad por parte de la comunidad y los
mantenedores. Este dato se debe extraer del repositorio.

• Tiempo de vida de las Pull Requests: al igual que con los issues, es interesante saber
cual es el tiempo medio que tarda una PR en ser resuelta. Un tiempo bajo es una buena
señal de la capacidad de reacción por parte de los mantenedores. Este dato se obtiene
de la diferencia entre la fecha de creación y cierre de cada Pull Request.

• Porcentaje de salud del repositorio: es un parámetro que se puede obtener del perfil
de la comunidad de GitHub. Está relacionado con la presencia de documentación básica
en el repositorio.

Métricas relacionadas con la comunidad:

• Número de descargas semanales desde el registro: el número de descargas de una
libreŕıa se puede extrapolar al número de usuarios y de proyectos que dependen de esta. Un
número elevado de descargas puede significar un mayor soporte para la libreŕıa, al haber
un número elevado de usuarios interesados en mantener el proyecto vivo y saludable.
Este valor se deber recuperar del registro público.

• Número de estrellas en el repositorio: las estrellas son una forma de mostrar “aprecio”
por un proyecto, a la vez que permite guardar proyectos de interés para hacer seguimiento
sin recibir notificaciones de la actividad del repositorio. Un número alto de estrellas en
un repositorio refleja un interés elevado por parte de otros usuarios. Este parámetro se
debe extraer del repositorio.

• Número de Forks del repositorio: número de veces que el proyecto ha sido copiado
para trabajar de forma paralela en otras caracteŕısticas. Si el proyecto tiene un alto
número de “forks”, puede indicar una relevancia alta para la comunidad. Este dato se
debe extraer del repositorio público.

• Número de proyectos dependientes: en algunos registros, como npm, es posible
encontrar la lista de proyectos que dependen de una libreŕıa en particular. Un elevado

47

número de proyectos dependientes implica un grupo proporcional de usuarios interesados
en mantener el proyecto saludable. Este dato se debe poder extraer del registro.

• Número de observadores: cantidad de usuarios que reciben notificaciones de todas la
actividad en el repositorio, como issues, Pull Requests y cambios en el código fuente.
Un número alto de observadores puede servir como garant́ıa de que el proyecto tiene un
buen respaldo y una alta capacidad de respuesta. Este parámetro se debe buscar en el
repositorio.

48

B. ¿Cómo dar soporte a otros lenguajes?

Para dar soporte a otros lenguajes, se necesita primero identificar las fuentes de datos y, posterior-
mente, construir tres elementos en la herramienta: los Builders para obtener información de las
fuentes identificadas; el BuilderDirector con el cual trabaja el sistema central; y por último, la
función encargada de detectar las dependencias del proyecto.
La complejidad de un Builder depende de la cantidad de datos que obtiene de su fuente y la
complejidad del cálculo de las métricas para construir la libreŕıa. Aunque se puede decir que, en
general, son clases muy sencillas que implementan un único método público definido por la interfaz.
A continuación se muestra la interfaz y un ejemplo de implementación usado en la herramienta.

1 export interface LibraryBuilder {
2 addLibraryParams(lib: Library): Promise<void>;
3 }
4

5 async function getNpmDownloads(libName: string) {
6 try {
7 const downloads = await httpGet(npmDownloadsUrl(libName));
8 return JSON.parse(downloads) as NpmDownloads;
9 } catch (e) {

10 throw new Error(`Error getting downloads for ${libName}`);
11 }
12 }
13

14 export class NpmDownloadsBuilder implements LibraryBuilder {
15 async addLibraryParams(library: Library) {
16 const npmDownloads = await getNpmDownloads(library.name);
17 if (npmDownloads) library.weeklyDownloads = npmDownloads.downloads || 1;
18 }
19 }

En cuanto a los Directores, como la única diferencia entre instancias para diferentes lenguajes son sus
atributos (la implementación es idéntica, solo cambian los vectores que asocian fuentes y Builders),
se optó por crear una única clase e inicializar estos atributos a través del constructor. En el bloque
de código a continuación como se muestra cómo se instancia el BuilderDirector para JavaScript.

1 function createJavascriptBuilder() {
2 const jsParams = new Map<keyof Library, Source>();
3 jsParams.set("repoName", NPM);

49

4 jsParams.set("repoOwner", NPM);
5 jsParams.set("numberOfVersions", NPM);
6 jsParams.set("weeklyDownloads", NPM_DOWNLOADS);
7 jsParams.set("lastVersion", NPM);
8 jsParams.set("lastVersionDate", NPM);
9 jsParams.set("lifeSpan", NPM);

10 jsParams.set("releaseFrequency", NPM);
11 jsParams.set("repoOpenIssues", GITHUB);
12 jsParams.set("repoStars", GITHUB);
13 jsParams.set("repoForks", GITHUB);
14 jsParams.set("repoObservers", GITHUB);
15 jsParams.set("repoOwnerType", GITHUB);
16 jsParams.set("repoHealth", GITHUB_COMUNITY);
17

18 const jsBuilders = new Map<Source, LibraryBuilder>();
19 jsBuilders.set(NPM, new NpmBuilder());
20 jsBuilders.set(NPM_DOWNLOADS, new NpmDownloadsBuilder());
21 jsBuilders.set(GITHUB, new GithubBuilder());
22 jsBuilders.set(GITHUB_COMUNITY, new GithubCommunityBuilder());
23

24 return new BuilderDirector(jsParams, jsBuilders);
25 }

Para extender a Java, por ejemplo, habŕıa que crear tantos Builders como fuentes hagan falta para
completar los atributos de la libreŕıa. Después, habŕıa que añadir estos Builders al director en la
función que se muestra a continuación. De este modo, la función createBuilderDirector estaŕıa
preparada para crear directores de Java y de JavaScript.

1 function createJavaBuilder() {
2 const javaParams = new Map<keyof Library, Source>();
3 /* @TODO: Map labrary attributes to data sources */
4 const javaBuilders = new Map<Source, LibraryBuilder>();
5 /* @TODO: Implement Java builders and add to map */
6 return new BuilderDirector(javaParams, javaBuilders);
7 }
8

9 export function createBuilderDirector(language: string) {
10 if (language === "javascript") {
11 return createJavascriptBuilder();
12 }
13 if (language === "java") {
14 return createJavaBuilder();
15 }
16 throw new Error(`Language ${language} not supported`);
17 }

50

Por último, para poder analizar todas las dependencias de un proyecto, hace falta una función que
permita leer el archivo de configuración según el lenguaje al que se esté dando soporte. Por ejemplo,
actualmente la herramienta cuenta con una función que lee el archivo package.json y extrae las
dependencias de un proyecto de JavaScript, como se muestra en el bloque de código a continuación.
Para dar soporte a Java, siguiendo el ejemplo de antes, haŕıa falta construir la función encargada de
leer el archivo pom.xml del proyecto para extraer las dependencias.

1 async function getJavascritDeps() {
2 const packageJson = await readFileAsync("./package.json", "utf8");
3 const parsedPackageJson = JSON.parse(packageJson);
4 const allDeps = {
5 ...parsedPackageJson.dependencies,
6 ...parsedPackageJson.devDependencies,
7 } as Record<string, string>;
8 for (const dep in allDeps) {
9 allDeps[dep] = allDeps[dep].replace("ˆ", "").replace("˜", "");

10 }
11 return allDeps;
12 }
13

14 export async function getProjectDeps(language: string) {
15 if (language === "javascript") {
16 return await getJavascritDeps();
17 }
18 if (language === "java") {
19 /** @TODO: add function to read Java deps */
20 }
21 throw new Error(`Language ${language} not supported`);
22 }

51

C. ¿Cómo crear otros reportes?

Para crear otros formatos e interfaces, basta con crear una nueva implementación de la interfaz
Contexto explicada en la sección 3.4. El contexto debe tener un método para mostrar errores y otro
para mostrar los resultados, tal como se muestra en el bloque de código a continuación.

1 interface ExecutionContext {
2 showResults: (
3 results: Map<string, ResultsStore>,
4 indicators?: string[]
5) => void | Promise<void>;
6 showError: (error: unknown) => void;
7 }

El método para mostrar los resultados recibe dos argumentos: el vector asociativo (Map) que contiene
los resultados para cada libreŕıa analizada (ĺınea 3) y la lista de indicadores que fueron evaluados
(ĺınea 4). La lista de indicadores se env́ıa aparte porque puede que algunos resultados no contengan
todos lo indicadores, esto debido a las condiciones de parada o a posibles errores en la ejecución.
Esto se observa en a figura 5.7, donde algunas libreŕıas tienen espacios en gris señalando que esos
indicadores no fueron evaluados.
Para crear un nuevo reporte, se puede recorrer el vector asociativo extrayendo los resultados de cada
libreŕıa y, luego, recorrer la lista de indicadores analizados para cada libreŕıa, extrayendo el resultado
de cada uno de ellos del ResultsStore, si es que existe.
En el reporte en formato HTML, por ejemplo, se utilizan estos dos bucles para crear la tabla, el
primero permite crear una fila por cada libreŕıa, mientras que el segundo crea la celda con el resultado
para cada indicador. En el repositorio del proyecto se pueden encontrar las implementaciones tanto
del reporte en HTML como del reporte en consola, que pueden servir de gúıa a la hora de implementar
una clase para un nuevo formato.

52

https://github.com/FreddyMartinez/deps-scout/blob/master/src/ctx/htmlContext.ts
https://github.com/FreddyMartinez/deps-scout/blob/master/src/ctx/consoleContext.ts

D. ¿Cómo añadir nuevos indicadores?

Para añadir un nuevo indicador, se deben crear una clase que implemente la interfaz Indicador
explicada en la sección . Esta interfaz se muestra a continuación.

1 interface Indicator {
2 name: string;
3 evaluate: (lib: Library) => IndicatorResult;
4 message: string | ((...data: unknown[]) => string);
5 parameters: Array<keyof Library>;
6 preconditions?: Array<IndicatorPrecondition>;
7 setThresholds?: (thresholds: IndicatorThresholds) => void;
8 }

Las clases que implementan esta interfaz necesitan: un nombre (ĺınea 2) para ser identificadas en
el registro, una lista de parámetros (ĺınea 5) que permite a la herramienta saber si dispone de la
información necesaria para la evaluación o si debe consultarla, una función de evaluación (ĺınea 3)
que recibe la instancia de la libreŕıa y retorna el resultado y, por último, el mensaje (ĺınea 4) que
permitirá mostrar al usuario el resultado de la evaluación en un formato legible. Las pre-condiciones
(ĺınea 6) son opcionales, este atributo permiten señalar los indicadores que deben ser evaluados antes
que el indicador en cuestión; el método setThresholds también es opcional, este permite establecer
los umbrales que selecciona el usuario mediante el archivo de configuración, es especialmente útil
para aquellos indicadores que utilizan métricas cuantificables.
Si el nuevo indicador usa métricas que no se están incluyendo actualmente como propiedades del
objeto libreŕıa, se debe primero añadir el atributo al modelo de libreŕıa (bloque de código 1) y luego
modificar el sistema de extracción de datos para obtener esas nuevas métricas. Si se trata de extraer
esos datos de nuevas fuentes podŕıa hacer falta añadir nuevos Builders, tal como se muestra en el
anexo B.
En el repositorio del proyecto se encuentran los indicadores desarrollados hasta ahora, estos pueden
servir de ejemplo para las nuevas implementaciones. En el fichero de indicadores de actividad del re-
positorio, por ejemplo, se encuentran varias implementaciones que usan caracteŕısticas cuantitativas
como cualitativas.

53

https://github.com/FreddyMartinez/deps-scout/blob/master/src/core/indicators/repoActivityIndicators.ts
https://github.com/FreddyMartinez/deps-scout/blob/master/src/core/indicators/repoActivityIndicators.ts

E. Cronograma del proyecto

A continuación se exponen las tareas principales que se llevaron a cabo en este proyecto. Asimismo,
en la figura E.1 se presenta (a groso modo) la distribución temporal de estas tareas.

Definición inicial del proyecto: identificación del problema y definición de objetivos.
Análisis de antecedentes y revisión bibliográfica: se llevó a cabo una búsqueda y revisión
inicial de documentación relacionada con el problema. Se incluyeron incidentes, herramientas
y estudios relacionados con el manejo de dependencias de terceros.
Identificación de métricas y fuentes de datos: consistió en el análisis presentado en el caṕıtulo 2.
Diseño y desarrollo de la herramienta: como se expuso en los caṕıtulos 3 y 4, el sistema cuenta
con 3 módulos principales, los cuales se diseñaron, desarrollaron y probaron de forma iterativa
y, hasta cierto punto, paralela. La distribución de tiempo se muestra de forma aproximada
para cada uno de ellos en la figura E.1.
Validación y ajuste de la herramienta: consistió en el proceso de pruebas con otros proyectos,
usuarios y herramientas, que se exponen en el caṕıtulo 5.
Documentación del trabajo: consiste principalmente en la elaboración de esta memoria.

Figura E.1: Cronograma del trabajo realizado.

54

	Introducción
	Riesgos asociados al uso de librerías de terceros
	Técnicas y herramientas de detección de riesgos
	Detección de vulnerabilidades y exposiciones comunes
	Detección de otros riesgos

	Objetivos
	Alcance
	Metodología
	Organización de la memoria

	Análisis
	Enfoque del problema
	Métricas
	Fuentes de datos
	Indicadores
	Evaluación de indicadores
	Interfaz de usuario
	Alternativas arquitecturales
	Requerimientos del sistema
	Requerimientos funcionales
	Requerimientos no funcionales

	Diseño
	Arquitectura del sistema
	Sistema central
	Interfaz Indicador
	Componente de Registro
	Componente Ejecutor

	Mecanismo de extracción de datos
	Componente Builder
	Componente Director

	Sistema de reporte
	Resultado final

	Desarrollo
	Sistema central
	Mecanismo de extracción de datos
	Sistema de reporte
	Buenas prácticas de desarrollo

	Pruebas funcionales de la herramienta
	Pruebas locales y uso de la herramienta
	Validación con otros proyectos
	Validación con otras herramientas de SCA
	Validación con otros usuarios

	Conclusiones
	Objetivos alcanzados
	Trabajo futuro
	Reflexión personal

	Glosario
	Referencias
	Anexos
	Lista de métricas detallada
	¿Cómo dar soporte a otros lenguajes?
	¿Cómo crear otros reportes?
	¿Cómo añadir nuevos indicadores?
	Cronograma del proyecto

