«2s Universidad
101 Zaragoza

Trabajo Fin de Master

Estimacion del riesgo de uso de librerias de terceros en el
desarrollo de software

Estimation of the risk of using third-party libraries in software
development

Autor

Freddy Hernan Martinez Quinones

Director

Francisco Javier Lopez Pellicer

Escuela de Ingenieria y Arquitectura
2024

Repositorio de la Universidad de Zaragoza - Zaguan
http://zaguan.unizar.es

Agradecimientos

A la Universidad de Zaragoza, por ofrecer un plan de estudios que permite conciliar la vida profesional
y académica.

A los profesores del master, quienes han mantenido un nivel académico alto mientras demostraban
una notable comprensién de las necesidades de los estudiantes que también tienen responsabilidades
profesionales.

Al profesor Javier, por su guia y orientacién durante el desarrollo de este trabajo. Su acompanamiento
fue esencial para definir y dar direccién a este proyecto.

A mi esposa Sara, quien me ha apoyado y acompanado en todos mis proyectos en los ultimos casi
diez afos. Sin su paciencia y sacrificio, este logro no habria sido posible.

Resumen

El uso de librerias de terceros es una practica comin en el desarrollo de software, esta permite
agilizar el proceso de construcciéon a costa de la pérdida de la propiedad del cédigo. Esta falta de
control conlleva riesgos que vale la pena evaluar antes de incluir una dependencia en un proyecto, los
mas evidentes son las posibles vulnerabilidades y exposiciones comunes (CVE's) en el cédigo fuente,
aunque existen otros riesgos menos evidentes que pueden afectar la viabilidad a largo plazo de una
libreria.

Por ese motivo, este trabajo aborda el desarrollo de una herramienta de apoyo en la seleccién de
librerias de terceros, la cual permite obtener informacién relevante sobre las dependencias de un
proyecto durante todo su ciclo de vida.

Para ello, la herramienta recopila informacién de los repositorios donde se aloja el cédigo fuente
y los registros dénde se publican las dependencias, compara las métricas obtenidas con los valores
establecidos por el usuario para considerar una libreria segura y emite mensajes de advertencia sobre
los hallazgos, permitiendo asi evaluar el estado de las dependencias del proyecto.

Indice general

1. Introduccién

1.1. Riesgos asociados al uso de librerias de terceros
1.2. Técnicas y herramientas de deteccién de riesgos

1.2.1. Deteccién de vulnerabilidades y exposiciones comunes

1.2.2. Deteccién de otros riesgos
1.3. Objetivos e
14, Alcance e
1.5. Metodologia
1.6. Organizacién de lamemoria

2. Analisis

2.1. Enfoque del problema
2.2, MEtricas e
2.3. Fuentesdedatos
2.4. Indicadores e
2.5. Evaluacién de indicadores
2.6. Interfazde usuario
2.7. Alternativas arquitecturales
2.8. Requerimientos del sistema

2.8.1. Requerimientos funcionales Lo

2.8.2. Requerimientos no funcionales L.

3. Diseiio
3.1. Arquitecturadel sistema
3.2. Sistemacentral
3.2.1. Interfaz Indicador
3.2.2. Componentede Registro
3.2.3. Componente Ejecutor
3.3. Mecanismo de extraccibn dedatos oL
3.3.1. Componente Builder
3.3.2. Componente Director
3.4. Sistemadereporte
3.5. Resultado final

4. Desarrollo
4.1. Sistema central L L
4.2. Mecanismo de extraccion de datos
4.3. Sistemadereporte
4.4. Buenas practicasdedesarrollo oL

10
11
12
13
14
15
16
16

18
18
19
19
20
20
21
21
22
23
24

5. Pruebas funcionales de la herramienta
5.1. Pruebas locales y uso de la herramienta
5.2. Validacién con otros proyectos
5.3. Validacién con otras herramientas de SCA
5.4. Validacidn con otros usuarios

6. Conclusiones
6.1. Objetivos alcanzados
6.2. Trabajo futuro L
6.3. Reflexion personal

Glosario

Referencias

Anexos

A. Lista de métricas detallada

B. ;Como dar soporte a otros lenguajes?

C. ;Coémo crear otros reportes?

D. ;Cémo anadir nuevos indicadores?

E. Cronograma del proyecto

31
31
33
34
34

38
38
39
39

40
42
45
46
49
52
53

54

Lista de Tablas

2.1. Lista de métricas candidatas.
2.2. Fuentes de datos y métricas extraidas.

VI

Lista de Figuras

1.1.
2.1.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.

4.1.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.

E.1.

Conflictos entre dependencias transitivas. 2
Flujo de informacién para la toma de decisiones. 9
Componentes principales del sistema bajo el enfoque de la arquitectura hexagonal. . 19
Interfaz “Indicador” con ejemplos de implementaciones concretas. 20
Sistema central de la herramienta, encargado de orquestar la evaluaciéon. 21
Primera aproximacién del mecanismo de extraccion de datos. 22
Mecanismo de extraccion dedatos. 23
Componentes involucrados en la generacién de reportes. 24
Interaccion entre los componentes principales de la aplicacion. 25
Reporte de la cobertura de pruebas unitarias de la herramienta. 30
Reporte en consola ejecutando el proyecto durante desarrollo. 32
Interaccidon con la herramienta. 32
Ejemplo de libreria con pocas descargas y mucho tiempo sin actualizar. 33
Libreria abandonada por los mantenedores. 33
Resultados iniciales del anélisis de las tres herramientas SCA. 35
Resultados del analisis tras la actualizacién de las dependencias del proyecto. 36
Reporte en formato de tablaen HTML. 37
Cronograma del trabajo realizado. L. 54

VII

1. Introduccion

Una particularidad de la informatica (que no se suele ver en otras ingenierias), es que para construir
un producto de software, las piezas que se utilizan son también software. Clases, interfaces y funciones
se agrupan para formar médulos, paquetes, librerias, frameworks y otros artefactos que se pueden
publicar, compartir y reutilizar indefinidamente. Esta capacidad de reutilizacién permite evitar la
duplicacién de esfuerzos, siguiendo el conocido principio de “no re-inventar la rueda”. Bajo esta
premisa, cuando un desarrollador de software se enfrenta a un problema, suele ser mas facil buscar
una solucién existente que resolver el problema desde cero. Descargar e integrar una libreria que da
solucién al problema se entiende como la via més rapida y efectiva, incluso para funciones triviales [1].

Esta practica tiene ventajas evidentes, como reducir el tiempo y los costes de desarrollo, ademas del
aporte de flexibilidad para abordar nuevos requerimientos [2]. Sin embargo, también conlleva varios
riesgos que, a largo plazo, pueden afectar negativamente al producto, al proyecto y/o al equipo.
Este proyecto busca entender estos riesgos, darles visibilidad y ayudar a mitigarlos.

1.1. Riesgos asociados al uso de librerias de terceros

Al construir un producto de software, los desarrolladores frecuentemente recurren a librerias de
terceros para agilizar el proceso. Estas librerias, conocidas como dependencias directas del proyecto,
pueden incluir sus propias dependencias, que se denominan dependencias indirectas o transitivas. La
cantidad de dependencias en un proyecto puede variar segin el lenguaje de programacién, pero en
términos generales, un proyecto tipico puede incluir decenas de dependencias directas y, a través de
ellas, llegar a tener cientos de dependencias transitivas [3]. Estas dependencias, junto con el cédigo
propietario y cualquier herramienta utilizada para la creaciéon y distribucién del producto, pasan a
hacer parte de lo que se conoce como la cadena de suministro de software [4].

El uso de librerias de terceros conlleva una serie de riesgos que pueden afectar tanto la calidad como
la seguridad del proyecto. Estos riesgos abarcan desde conflictos de versiones entre dependencias
transitivas hasta la insercién de cédigo malicioso. Aunque muchos de estos problemas son comunes
y estan bien documentados, los desarrolladores no suelen actualizar ni verificar regularmente la
seguridad de las dependencias en sus proyectos [5]. A continuacién se exponen algunos ejemplos y
se explica su relevancia:

= Conflictos de versiones de dependencias transitivas: ocurre cuando dos o mas librerias
usadas en un proyecto comparten una dependencia comdn, pero requieren versiones diferentes
de esta [6]. Este escenario es problematico porque podria no existir una versién de la depen-
dencia transitiva que incluya todas las caracteristicas necesarias para que las demas librerias
funcionen correctamente. Ademas, muchos gestores de paquetes no permiten la coexistencia
de dos versiones diferentes de una misma dependencia en un proyecto, lo que puede provocar
el mal funcionamiento de alguna de las librerias implicadas (aquellas que no disponen de la

1.1. Riesgos asociados al uso de librerias de terceros

version correcta de su dependencia). Este tipo de conflicto se puede presentar al introducir
una nueva dependencia, como se muestra en la figura 1.1a; aunque, a menudo ocurre cuando
una dependencia directa se actualiza junto con sus propias dependencias, mientras que otras
librerias en el proyecto que comparten esas dependencias no se actualizan. Esto puede bloquear
la posibilidad de actualizar ciertas partes del proyecto, limitando la evolucién del software. En
la figura 1.1a se ilustra este escenario, la libreria “B” no se puede actualizar hasta que la "A”
tenga soporte para la dltima version de la libreria compartida “C".

c1 c:2

Al # Al :
Bl Al B:1 B:2

Proyecto Proyecto Proyecto

(a) Conflicto causado por nueva dependencia directa. (b) Actualizacién bloqueada por conflicto.

Figura 1.1: Conflictos entre dependencias transitivas.

= Inserciéon de vulnerabilidades y exposiciones comunes (CVE’s): hay dos escenarios prin-
cipales en los que las dependencias pueden introducir CVE's en un proyecto. En primer lugar,
un desarrollador podria incluir una libreria que ya contenga vulnerabilidades conocidas; sin
embargo, el escenario mas comdn es la aparicién de nuevas vulnerabilidades en librerias de
terceros después de haber sido integradas en el proyecto. A través de la investigacion exhaus-
tiva y pruebas sistematicas de diversas piezas de software, expertos en seguridad informatica
identifican y reportan constantemente nuevas vulnerabilidades, que pueden impactar una o
varias de las dependencias de un proyecto, haciendo todo el proyecto vulnerable. Un caso muy
conocido de este problema fue el descubrimiento de la vulnerabilidad Log4Shell de la libreria
Log4j, una libreria de cédigo abierto ampliamente utilizada en proyectos de Java [7]. Cuando
este escenario se presenta, las Unicas vias de solucion son esperar a que los mantenedores re-
suelvan la vulnerabilidad y publiquen una nueva versién, o eliminar la dependencia del proyecto.
Aunque en la mayoria de los casos los mantenedores corrigen las vulnerabilidades, se ha visto
que estas persisten en los proyectos por falta de un adecuado manejo de las dependencias [5].

= Eliminacién de la libreria de los registros publicos: el Registro de softwares es el lugar
donde se publican los paquetes y librerias listos para ser descargados y usados. Asi como
una persona u organizacion puede publicar una libreria, puede también eliminarla del registro.
Esto puede representar un problema grave para todos los proyectos que dependan de ella, ya
que seria necesario reemplazarla o construir la funcionalidad que esta expone. Ademas, si la
eliminacién se realiza de forma repentina el proyecto puede quedar bloqueado, al no ser posible
instalar dependencias, no es posible compilar ni ejecutar flujos de trabajo para el despliegue
del producto. Un caso muy conocido de este escenario es el llamado “incidente de left-pad”
[8], donde gran cantidad de proyectos alrededor del mundo se vieron afectados, incluso en
compaiiias como Meta, Netflix y Spotify. Actualmente, algunos registros cuentan con politicas
de eliminacién de paquetes para ayudar a reducir estos escenarios.

= Sabotaje de la libreria por parte de sus mantenedores: consiste en la introduccion de
cédigo en una libreria que provoca fallos o comportamientos no deseados en las aplicaciones

2

1.2. Técnicas y herramientas de deteccion de riesgos

que dependen de ella. Esta practica se ha hecho comin recientemente como herramienta de
protesta, popularizando los términos “hacktivismo” y “protestware” [9], llamando la atencién
de la comunidad para tratar este problema como un problema de seguridad. Un ejemplo de este
tipo de protesta fue el caso de las librerias de JavaScript “colors” y “faker”, cuyo propietario
saboted en 2022 a modo de protesta [10].

= Ataque a la cadena de suministro de software: este escenario se caracteriza por la
inyeccion de cédigo malicioso en un paquete de software con la intencién de hacer vulnerables
a los proyectos que dependen de este [11]. Este es un riesgo mucho mayor que el de la aparicion
de vulnerabilidades, ya que muchas veces estos ataques no son detectados por herramientas
automaticas y el impacto econdmico puede llegar a ser enorme. En la revisiéon hecha por Ohm
y su equipo [11] se analizan 174 paquetes con cédigo malicioso que fueron usados en ataques
reales entre noviembre de 2015 y noviembre de 2019. Un ejemplo reciente de este escenario
fue el malware incorporado en la libreria node-ipc en 2022, el cual sobrescribia los ficheros
en el sistema del usuario [12], este estaba dirigido a sistemas en Rusia y Bielorrusia como acto
de “hacktivismo” [9].

Estos riesgos ponen en evidencia que, para incluir una dependencia en un proyecto, no basta con que
esta contenga la funcionalidad requerida, sino que el equipo de desarrollo necesita también saber
que esta libreria es mantenida de forma activa, y que puede confiar en su autenticidad e integridad
a largo plazo.

Por otro lado, el mantenimiento continuo de las librerias implica que quienes las usan en sus proyectos
deben estar al tanto de las actualizaciones, lo que lleva a otro problema comiin en el desarrollo de
software: los equipos no mantienen las dependencias de sus proyectos actualizadas, porque perciben
esta tarea como un esfuerzo extra[13]. Esta tendencia se convierte facilmente en un circulo vicioso:
a medida que un proyecto crece también lo hace su lista de dependencias, el riesgo de conflictos
aumenta y mantener las dependencias actualizadas se hace cada vez mas costoso, de modo que los
desarrolladores se hacen mas reacios a hacerlo. Es aqui donde adquiere relevancia el desarrollo de
herramientas automaticas que ayuden a los desarrolladores a gestionar y mantener las dependencias
de sus proyectos.

1.2. Técnicas y herramientas de deteccion de riesgos

A continuacién se exploran algunas técnicas y herramientas que permiten gestionar y mitigar los
riesgos asociados a componentes de terceros mencionados anteriormente. Para empezar, se men-
cionan aquellas técnicas enfocadas en la deteccién de vulnerabilidades y exposiciones comunes v,
posteriormente, se mencionan algunas herramientas que sirven para mitigar otros de estos riesgos.

1.2.1. Deteccion de vulnerabilidades y exposiciones comunes

Para empezar, vale la pena mencionar la técnica SAST (Static Application Security Testing), que
generalmente se enfoca en la deteccién de vulnerabilidades en el cédigo propio del proyecto. Como el
foco principal de este trabajo son los componentes externos de un proyecto, esta técnica en si misma
puede resultar poco relevante. Sin embargo, si pueden resultar interesantes aquellas herramientas que
realicen andlisis estatico de cédigo sobre las dependencias del proyecto, como se verd mas adelante.

Por otro lado, las tecnologias DAST (Dynamic Application Security Testing) si incluyen las dependen-
cias del proyecto. Al realizar pruebas de “caja negra” simulando ataques sobre una version funcional
del sistema, pueden detectar vulnerabilidades y problemas de lgica en todas las partes que integran

1.2. Técnicas y herramientas de deteccién de riesgos

el producto en tiempo de ejecucién. Sin embargo, el principal problema de estas tecnologias en el
contexto de este proyecto, es la incapacidad de sefialar la fuente del problema detectado, lo que im-
plica un esfuerzo adicional para determinar si el problema es del cédigo propio o de una dependencia
externa [14]. Otras desventajas de esta técnica son la dificultad para automatizar las pruebas [15]
y la incapacidad de prevenir los riesgos, ya que estas herramientas se ejecutan al final del ciclo de
desarrollo, cuando las vulnerabilidades ya estan en produccién.

Otra metodologia que vale la pena mencionar es IAST (Interactive Application Security Testing), la
cual combina técnicas de SAST y DAST para crear un mecanismo de anélisis de vulnerabilidades
rapido y altamente automatizado [16]. IAST ofrece grandes ventajas frente a SAST y DAST en
términos de flexibilidad y velocidad, ademas, al tener un enfoque de “caja blanca” puede sefialar en
qué parte de la aplicacion en ejecucion se presenta una vulnerabilidad. Las principales desventajas de
esta técnica son: la dificultad de implementacion, las posibles incompatibilidades entre los agentes
IAST vy las tecnologias usadas en el proyecto y, la mas importante, que el alcance de las pruebas
estd determinado por los casos de prueba que construyan los desarrolladores [17].

Para completar las técnicas de anélisis de vulnerabilidades, se debe hablar del Analisis de Compo-
sicion de Software. SCA (Software Composition Analysis) es un término general que engloba las
metodologias y herramientas de seguridad que escanean los componentes de codigo abierto utiliza-
dos en un proyecto, con la intencién de evaluar la seguridad, el cumplimiento de las licencias y la
calidad del cédigo [18]. Esta técnica adopta herramientas de SAST para analizar de forma estatica
el cédigo de las dependencias del proyecto. Actualmente existe una gran oferta de herramientas con
capacidades de SCA, lo que muestra la creciente preocupacion de la comunidad por mantener segura
la cadena de suministro de software [4]. Entre las mas conocidas se puede encontrar herramientas
como Snyk, OWASP dependency-check y Dependabot, que en términos generales, permiten detectar
vulnerabilidades en dependencias tanto directas como transitivas, pueden ejecutar auditorias de se-
guridad, generar reportes y sugerir o aplicar actualizaciones para resolver estos problemas, mejorando
la seguridad global del proyecto.

Un listado exhaustivo de herramientas de analisis de vulnerabilidades se encuentra en la documen-
tacion de la fundacion OWASP [19], donde se agrupan segilin sus capacidades y las técnicas que
aplican (SAST, DAST, IAST y/o SCA). Todas estas técnicas y herramientas son de gran utilidad
para mantener un proyecto libre de vulnerabilidades y exposiciones comunes. Sin embargo, estas
herramientas dejan de lado muchos de los riesgos mencionados anteriormente.

1.2.2. Deteccidén de otros riesgos

Si bien existe una amplia gama de técnicas y herramientas enfocadas en la deteccién de vulnerabi-
lidades y exposiciones comunes, no existe una oferta de herramientas similar que permita gestionar
riesgos como el conflicto de versiones o el sabotaje de una libreria. Aln asi, a continuacién se
presentan las herramientas relacionadas que se han podido encontrar.

Algunos gestores de paquetes tienen la capacidad de sefialar conflictos entre dependencias transitivas,
por ejemplo, el comando npm audit permite analizar dependencias de proyectos de JavaScript,
mientras que en Python es posible usar pip check. Ademas, estos incorporan funcionalidades de
auditoria que les permiten detectar vulnerabilidades en dependencias y resolverlas (cuando es posible)
actualizando versiones.

También es posible encontrar algunas iniciativas individuales que buscan proporcionar una visiéon mas
amplia sobre la gestién de dependencias. Por ejemplo, el paquete libs-inspector genera un reporte
con la descripcion y sugerencias de actualizacion de las dependencias del proyecto. Mientras que el
paquete deps-updater actualiza automaticamente todos los paquetes obsoletos. Estas herramientas

4

https://snyk.io/
https://jeremylong.github.io/DependencyCheck/
https://github.com/dependabot
https://docs.npmjs.com/cli/v6/commands/npm-audit
https://pip.pypa.io/en/stable/cli/pip_check/
https://github.com/GoncharIgor/libs-inspector
https://github.com/sqlzzy/deps-updater

1.3. Objetivos

son utiles para mantener las dependencias actualizadas y evitar la introduccién de riesgos debido a
versiones obsoletas.

Por dltimo, un enfoque mas innovador lo presenta el proyecto DEAN [20], el cual se enfoca en el
analisis automatico de riesgos mediante la evaluacién de métricas relacionadas con los repositorios
donde se aloja el cédigo fuente, en vez del andlisis estatico del cédigo. Este anélisis busca una vision
mas amplia de los riesgos asociados con la introduccién de dependencias, planteando la posibilidad de
estimar algunos riesgos en base a las interacciones de los usuarios con el repositorio de un proyecto,
con la intencién de abordar situaciones como el abandono de ese proyecto. Fue este proyecto el que
sirvi6 como inspiracion para el desarrollo de la herramienta propuesta en este trabajo.

1.3. Objetivos

El objetivo de este proyecto es desarrollar una herramienta de cédigo abierto que facilite a la co-
munidad de desarrolladores la gestion y mantenimiento de las dependencias en sus proyectos de
software. Esta herramienta debe brindar informacién relevante sobre las dependencias, permitiendo
a los usuarios tomar acciones preventivas ante riesgos que no se abordan con otras herramientas
ya establecidas. Estos riesgos son el abandono de la libreria, su eliminacién del registro publico, el
sabotaje de la libreria y la introduccién intencionada de cédigo malicioso (ataque a la cadena de
suministro).

Para ello, se propone un enfoque basado en el analisis de métricas de la interaccién humana con
los proyectos, tomando como modelo la idea planteada en DEAN para establecer indicadores que
permitan estimar los riesgos mencionados. Se dara prioridad a los componentes de cédigo abierto,
siguiendo la metodologia de Analisis de Composicion de software (SCA).

Los objetivos especificos para el desarrollo de la herramienta incluyen:

= Definicion de métricas e indicadores: teniendo en cuenta los riesgos que se desean abordar,
identificar y seleccionar un conjunto de métricas claras y cuantificables. Estas deben permitir
la deteccidn de sefiales (indicadores) que evidencien la presencia de estos riesgos.

= ldentificacion de fuentes de datos: investigar y seleccionar las fuentes de datos necesarias
para obtener la informacién requerida por las métricas definidas.

= Diseiio de una arquitectura flexible y extensible: disefiar y desarrollar una arquitectura
de sistema que facilite la extensién y la incorporacién de nuevas funcionalidades, como nuevos
indicadores y fuentes de datos, sin requerir un redisefio significativo de la herramienta.

= Implementacion de una version inicial de la herramienta: construir una primera version
de la herramienta que incorpore las funcionalidades principales. Esta debe ser facil de instalar
y usar, minimizando las barreras para su adopcién. Ademas, debe incluir una interfaz que
permita a los desarrolladores obtener informes detallados y comprensibles, que les permita
analizar facilmente sus proyectos.

1.4. Alcance

El alcance inicial definido para este proyecto, siguiendo los objetivos planteados, incluye:

= La primera versién de la herramienta serd implementada en JavaScript y se enfocara en de-
pendencias de este mismo lenguaje. El soporte para otros lenguajes queda fuera del alcance

1.5. Metodologia

de este proyecto. Esta decision esta fundamentada en diversos motivos: en primer lugar, apro-
vechar la familiaridad con el lenguaje y su ecosistema; por otro lado, la gran comunidad de
desarrolladores de JavaScript puede facilitar la obtencién de retroalimentacién con respecto a
la utilidad de la herramienta; por ultimo, los proyectos de JavaScript suelen tener una gran
cantidad de dependencias, tanto directas como transitivas, comparados con otros lenguajes
de programacién [3].

= Integrar datos tanto del registro publico donde se exponen estas dependencias como del repo-
sitorio donde se aloja el codigo fuente, en este caso, se habla de npm y GitHub para artefactos
de JavaScript. Se escogen estas fuentes de datos porque el analisis de composicién de soft-
ware se enfoca en componentes de codigo abierto, por lo que analizar librerias publicadas en
registros privados o alojadas en repositorios privados tendria poca relevancia.

= |dentificar y evaluar al menos cuatro indicadores, que hagan uso de distintos datos de las
fuentes mencionadas y que sean relevantes a la hora de determinar si una libreria corre el riesgo
de ser abandonada, saboteada o eliminada del registro publico. Se determin6 que esta es la
cantidad minima para demostrar que el sistema es suficientemente flexible para incorporar otros
indicadores en el futuro. Ademas, se puede considerar una cantidad adecuada de dimensiones
para tomar decisiones relacionadas con la incorporacién de dependencias, mitigando el impacto
de los sesgos que se puedan generar en alguna de estas dimensiones. Si se puede sacar la misma
conclusién de varios indicadores, esta conclusion es mas fuerte que una basada en uno solo
indicador.

= La herramienta no debe requerir procesos de compilaciéon ni la descarga de software adicional
para ser usada. Para reducir en lo posible las barreras para incluir esta herramienta en el ciclo
de vida de proyectos reales, esta debe estar lista para ser usada tras su descarga. Para el caso
de desarrolladores de JavaScript, esto significa poder aprovechar las herramientas de desarrollo
habitual: Node. js y npm.

= Se debe implementar al menos un sistema de reporte, siendo la consola de comandos la primera
eleccién para mostrar los resultados de la evaluacién de indicadores. Se decide iniciar con esta
interfaz porque es un medio tipico en el que muchas herramientas muestran sus hallazgos,
permite mostrar informaciéon en tiempo real y se integra bien dentro de muchos procesos
automaticos. Sin embargo, el sistema debe ser facil de extender a otros medios de reporte,
como la generacién de archivos HTML o JSON.

1.5. Metodologia

Dado que este trabajo se planted como un proyecto de software experimental para el desarrollo del
prototipo, se propuso desde el inicio el uso de una metodologia iterativa, basada en pequefios ciclos
de andlisis, disefio, desarrollo y pruebas, lo que permite abordar el proyecto de forma incremental,
utilizando como hitos los objetivos especificos mencionados anteriormente. Las metodologias itera-
tivas de desarrollo de software permiten la mejora gradual y continua de un producto de manera
practica y eficiente [21]. Estas técnicas han demostrado ser efectivas a lo largo del tiempo [22]
y resultan particularmente Gtiles para el desarrollo de prototipos [23], ya que permite comprender
mejor diferentes aspectos del sistema, como sus requerimientos y las compensaciones entre diferen-
tes estrategias de disefio [23], y promueve la creacién de un producto facilmente modificable [21].
Ademas, para efectos de este trabajo, esta practica permite revisar y discutir los avances al final de
cada iteracion.

1.6. Organizacién de la memoria

1.6. Organizacion de la memoria

A continuacién se describe en detalle el proceso que llevé al desarrollo de la herramienta propuesta.
En el capitulo 2 se explica el andlisis que permitié la identificacion de datos relevantes, la definicién
de métricas y la elaboracién de indicadores para la evaluacién de riesgos. Posteriormente, en el
capitulo 3, se sintetiza el proceso de diseno que llevé a la definicion de un software suficientemente
simple y flexible, es decir, facil de leer y de extender. En el capitulo 4 se detalla cémo se abordaron
los requerimientos durante el desarrollo de la herramienta. Después, en el capitulo 5 se explica cuales
fueron las pruebas funcionales realizadas para validar la herramienta y se muestran ejemplos de los
resultados obtenidos. Por dltimo, en el capitulo 6 se explica el aporte del trabajo y se valora el
cumplimiento de los objetivos.

2. Analisis

Como se explicod en el capitulo 1, la incorporaciéon de dependencias introduce riesgos que pueden
afectar la estabilidad y seguridad de un proyecto a largo plazo, por lo que se necesitan herramientas
que permitan mitigar esos riesgos sin impactar negativamente el flujo de trabajo de los equipos
de desarrollo. Ademas, la mayoria de las herramientas de Anélisis de Composicion de Software
disponibles en el mercado se enfocan en la deteccién de vulnerabilidades, tal como se expone en la
secciéon 1.2.1, dejando de lado escenarios como el abandono de una libreria, el sabotaje de la misma
o su eliminacién del registro publico.

Estos tltimos escenarios son particularmente dificiles de predecir, ya que van mas alla de la inspeccién
del codigo fuente de las librerias. Sin embargo, existen patrones en la interaccién humana con los
proyectos que pueden servir como indicadores de estos riesgos. Por ejemplo, si un proyecto tiene
un solo mantenedor y una base de usuarios pequefia, es mucho mas propenso a ser abandonado o
eliminado que si tiene un equipo de mantenimiento robusto y una comunidad de usuarios grande y
activa. Este tipo de patrones es lo que este proyecto busca identificar y analizar, para poder brindar
a los desarrolladores una vision mas amplia del estado de las dependencias de un proyecto.

A continuacién, se explican el enfoque con el que se abordé el problema de deteccién de riesgos,
se presentan los conceptos de métricas e indicadores y se describe la relacién entre estos. Poste-
riormente, se profundiza en el concepto de métrica y se presenta una lista de métricas candidatas
para la creacién de indicadores. A continuacién, se habla de las fuentes de datos y de la informacién
extraida para la creacion de esas métricas. En la seccién 2.4 se profundiza en los indicadores y se
expone la lista de indicadores generados a partir de los datos recuperados. Después se habla del sis-
tema de evaluacién definido para esos indicadores, para presentarlos a los usuarios de forma clara 'y
coherente. En la seccion 2.7 se hace una breve mencién al planteamiento de arquitectura del sistema
y, por Gltimo, se enumeran los requisitos del sistema identificados durante el proceso de analisis.

2.1. Enfoque del problema

Como se menciond anteriormente, se desea brindar informacién a los desarrolladores sobre los riesgos
asociados a las dependencias de sus proyectos. Ademas, esa informacién debe complementar la que
ofrecen las herramientas de andlisis de composicion de software disponibles en el mercado. Para
lograrlo, se propone un anélisis de las dependencias desde una perspectiva global, que permita
anticipar escenarios como el abandono o el sabotaje de la libreria.

Para determinar si una libreria es confiable, se debe comenzar por identificar una serie de dimensiones
o parametros que permitan distinguir las librerias confiables de las que no lo son. Estas dimensiones
pueden ser cuantitativas (como la frecuencia de publicacién de nuevas versiones de la libreria) o
cualitativas (por ejemplo, si el propietario del proyecto es o no una compafiia conocida), y son lo que
en adelante se Ilamaran métricas. Una vez definidas las métricas, se deben identificar las fuentes

2.2. Meétricas

de datos que permiten extraerlas; este proceso puede ser iterativo, ya que puede ocurrir que no
se encuentren datos para generar una métrica en particular, pero en su lugar se identifiquen otras
métricas a partir de los datos disponibles.

Una vez se han hallado los datos y se dispone de un conjunto de métricas, se debe definir la forma
de evaluar las librerias en esas dimensiones para poder identificar aquellas que suponen un riesgo
alto; es aqui donde entra el concepto de indicador. Los indicadores representan la evaluacién de la
libreria en una o varias de las dimensiones y deben destacar comportamientos relevantes para poder
discriminar entre librerias. Teniendo los resultados de estas evaluaciones, se pueden generar reportes
que permitan a los usuarios tomar decisiones informadas sobre el mantenimiento de las dependencias
de su proyecto. En la figura 2.1 se ilustra el flujo de informacién desde la fuente de datos hasta la
creacion del reporte.

Fuentes de
datos

Métricas Indicadores Reporte

Aplicacion

Figura 2.1: Flujo de informacién para la toma de decisiones.

2.2. Meétricas

Las métricas corresponden a aquellas caracteristicas, tanto cuantitativas como cualitativas, que se
pueden utilizar para evaluar la calidad o fiabilidad de una libreria. Estas se obtienen de los datos
extraidos de diversas fuentes y pueden medir tanto la actividad del equipo de mantenedores como
la interaccion de la comunidad. Por ejemplo, a partir de los datos de fechas de publicacién de las
diferentes versiones de una libreria se puede obtener la métrica frecuencia promedio de publicacién,
que permite medir la frecuencia con la que el equipo que mantiene una libreria publica nuevas
versiones de la misma.

Métricas como el niimero de mantenedores, |a frecuencia promedio de publicacién de nuevas versiones
y la cantidad de descargas semanales de la libreria, son cuantificables y permiten evaluar la libreria
en estas dimensiones. Algunas de ellas corresponden a los datos sin ninglin procesamiento, mientras
que otras se obtienen de hacer calculos simples sobre los datos recogidos. Al evaluar métricas como
estas, se pueden identificar patrones relevantes para detectar riesgos. Por ejemplo, un proyecto con
bajo ndmero de mantenedores, baja frecuencia promedio de publicacién y pocas descargas semanales
puede correr riesgo de abandono. Por el contrario, un proyecto con una comunidad activa puede
ser un indicio de mayor capacidad de respuesta frente a desafios como la deteccién de bugs o el
descubrimiento de vulnerabilidades.

Por otra parte, métricas como el tipo de propietario del repositorio son cualitativas, pero también
pueden ayudar a discriminar entre librerias. Por ejemplo, no da la misma “confianza” usar una libreria
desarrollada por una persona desconocida que una hecha por una empresa como Google o Meta.

En la tabla 2.1 se presentan todas las métricas que se consideraron relevantes para estimar el nivel
de salud de un proyecto. En el anexo A muestra esta lista de forma mas detallada, explicando la
importancia de cada pardmetro para la estimacién de riesgos.

9

2.3. Fuentes de datos

Tipo Fuente Métrica

Nimero de versiones

Tiempo de vida del proyecto

Registro Frecuencia media de publicacién de nuevas versiones

Tiempo transcurrido desde la Gltima publicacién

Ultima versidon estable

Ndmero de mantenedores

Tipo de propietario del proyecto

Mantenimiento
Ndmero de Issues abiertos

Ndmero de Issues cerrados

Repositorio | Tiempo de vida de los Issues

Numero de Pull Requests activas

Numero de Pull Requests cerradas

Tiempo de vida de las Pull Requests

Porcentaje de salud del repositorio

Nimero de descargas semanales desde el registro

Registro
Nimero de proyectos dependientes

Comunidad Ndmero de estrellas en el repositorio

Repositorio | Ntimero de Forks del repositorio

Ndmero de observadores

Tabla 2.1: Lista de métricas candidatas.

2.3. Fuentes de datos

Una vez identificados los valores de interés, el paso a seguir fue la investigacion de las fuentes de
datos para obtener esta informacién. Tal como se define en la seccién 1.4, se trabajé con npm
y GitHub, siendo el primero el gestor de paquetes y el registro publico mas conocido y utilizado
para proyectos de JavaScript; mientras que GitHub, es la plataforma de hospedaje de repositorios
de cédigo fuente mas popular en la comunidad, donde se aloja una gran cantidad de proyectos de
cédigo abierto.

Ambas plataformas cuentan con API's publicas y herramientas de linea de comandos, de donde es
posible extraer informacién de interaccién de los usuarios con los proyectos. Sin embargo, no todos
los datos identificados en la seccién anterior estan disponibles piblicamente. Algunos de estos datos
solo se pueden obtener a través de las aplicaciones clientes de cada plataforma, es decir, directamente
en la web de npm o de GitHub (por ejemplo, la lista de proyectos dependientes de una libreria). Lo
que implica que harfa falta aplicar técnicas de web scraping' para recuperar esta informacién. En

IProceso que usa bots y otras herramientas automaticas para extraer contenido de paginas web.

10

2.4. Indicadores

la tabla 2.2 se detalla la informacién que fue posible recuperar de cada fuente y se relaciona con las
métricas extraidas:

Fuente Dato Métrica

Nimero de versiones

Tiempo de vida del proyecto

CLI de npm Listado de versiones y fechas | Frecuencia media de publicacién de
nuevas versiones

Ultima version estable

Tiempo transcurrido desde la Gltima

publicacién
API Rest de npm Descargas semanales Nidmero de descargas semanales
Issues abiertos Numero de Issues abiertos
Nimero de estrellas Nimero de estrellas en el repositorio
Numero de Forks Numero de Forks del repositorio
API Rest de GitHub
Nimero de observadores Numero de observadores
Tipo de propietario Tipo de propietario del proyecto
GitHub Community Profile Porcentaje de salud del repositorio

Tabla 2.2: Fuentes de datos y métricas extraidas.

Si bien no fue posible extraer todos los parametros de interés mencionados en la seccién 2.2, se
puede decir que la informacién obtenida es suficientemente amplia como para elaborar indicadores
relevantes en la evaluacién de la salud y seguridad de un proyecto.

2.4. Indicadores

Un indicador es una afirmacién sobre la libreria que se confirma evaluando una o varias métricas,
esta evaluacién debe arrojar valores significativos que permitan saber cémo se comporta la libreria
en cada dimensién. Por ejemplo, el indicador “libreria se publica con frecuencia” se determina
al evaluar la métrica “frecuencia promedio de publicacion” para determinar si la libreria en cuestién
se publica de forma continua. De forma similar, las métricas “nimero de descargas por semana” y
“numero de estrellas en el repositorio” pueden ser evaluadas para dar respuesta al indicador “libreria
es popular”, determinando asi la percepcion que tiene la comunidad de una libreria.

Es importante aclarar que estos indicadores no son etiquetas definitivas que determinen de manera
absoluta la seguridad o la viabilidad a largo plazo de una dependencia. Por ejemplo, una libreria que
no ha recibido actualizaciones en un periodo significativo de tiempo podria estar en riesgo de ser
abandonada, o podria ser que el proyecto ha alcanzado un nivel de madurez y estabilidad suficientes
para no requerir cambios frecuentes. En algunos casos, los mantenedores deciden congelar el cédigo
y limitan los cambios a la solucién de problemas de seguridad, rechazando nuevas caracteristicas en
favor de mantener el alcance original del proyecto.

11

2.5. Evaluacién de indicadores

De manera similar, un proyecto con un solo mantenedor activo no necesariamente indica una alta
probabilidad de abandono, el mantenedor podria ser suficientemente dedicado y capaz de soste-
ner el proyecto en el tiempo. Por lo tanto, la evaluacion de riesgos debe ser vista en contexto y
complementada con un anélisis de la naturaleza y el historial del proyecto.

Aln asi, aunque no se pueda predecir con certeza el futuro de una libreria basdndose nicamente
en estos indicadores, estos pueden proporcionar una vision mas amplia y permitir una evaluacién
mas completa de los riesgos del uso de librerias de terceros. De esta forma, los equipos de desarrollo
pueden tomar decisiones mas informadas sobre qué dependencias integrar en sus proyectos.

De las métricas expuestas en la seccién 2.2, y teniendo en cuenta la informacién recuperada de las
fuentes, se extrajeron los siguientes indicadores:

= Libreria publicada recientemente: verificar si la Gltima publicacién de la libreria se ha hecho
en un lapso de tiempo definido.

= Libreria publicada frecuentemente: evaluar si la frecuencia media de publicacién de nuevas
versiones es suficientemente alta.

= Es un proyecto de larga vida: evaluar la fecha de creacion del proyecto, para saber si lleva
tiempo suficiente a disposicién de la comunidad.

= Es descargada frecuentemente: analizar la cantidad de descargas semanales desde el re-
gistro, se espera que este nimero sea lo mas alto posible.

= Repositorio destacado: utilizar el nimero de estrellas que ha recibido el repositorio para
determinar si es valorado por la comunidad.

= Repositorio con demasiados Issues abiertos: verificar que la cantidad de Issues sin cerrar
sea bajo, de otro modo, puede indicar una baja capacidad de respuesta de los mantenedores.

= Repositorio clonado repetidamente: analizar la cantidad de Forks para estimar el interés
que tiene la comunidad en extender el proyecto.

= Tiene suficientes observadores: evaluar el nimero de observadores, como sefial de garantia
y respaldo por parte de comunidad.

= Propietario confiable: confirmar si el tipo de propietario del repositorio es el deseado.
= Repositorio saludable: verifica que el porcentaje de salud del repositorio es adecuado.

= Version usada es la altima estable: consiste en verificar que la version de la libreria que se
usa en un proyecto es la dltima version estable publicada.

Estos indicadores pueden dar una visién global sobre el estado de salud de un proyecto, proporcio-
nando indicios significativos en la toma de decisiones respecto al uso de librerias de terceros.

2.5. Evaluacion de indicadores

Para permitir la valoracién del riesgo a los equipos de desarrollo, los indicadores deben presentar
informacién significativa de forma facil de interpretar. Por este motivo, se plantearon varios enfoques
de evaluacién y presentacién de indicadores.

La primera aproximacién formulada fue usando un sistema de calificaciones para cada dimensién, de
modo que cada indicador se presenta como un resultado en una escala, por ejemplo de 0 a 1. De
esta forma se estandarizarian los resultados, permitiendo hacer mas procesamiento sobre ellos si se

12

2.6. Interfaz de usuario

desea. Un problema de este enfoque radica en la disparidad de los datos, mientras que el nimero
de forks de un repositorio a lo largo de toda su existencia va de cero a algunos cientos, la cantidad
de descargas de una libreria puede llegar a decenas de millones por semana. Como ninguno de estos
valores tiene un limite superior, para normalizar habria que escoger arbitrariamente un valor maximo
para cada dimensién. El segundo problema, quiza el mas importante, es la interpretacién que pueda
dar un usuario a estos valores.

El enfoque escogido fue utilizar umbrales para evaluar cada dimensién, generando etiquetas para
cada resultado. Por ejemplo, con dos umbrales se pueden obtener tres estados: 0K, ADVERTENCIA
y ALERTA, dependiendo donde se encuentre el atributo evaluado respecto a estos umbrales. Esta
metodologia limita la capacidad para hacer otros calculos con los resultados de la evaluacién, pero
facilita la presentacién de resultados, permitiendo generar reportes mucho mas faciles de interpretar.

Vale la pena mencionar que establecer los umbrales de evaluacidn no es una tarea trivial. Por ejemplo,
al evaluar la popularidad de una libreria segtn las descargas, no hay un niimero magico que permita
separar las librerias populares de las que no lo son, dependiendo de factores como el campo de
aplicacién, la cantidad de descargas semanales que tiene una libreria considerada popular puede
cambiar varios 6rdenes de magnitud. Por ejemplo, alguien podria decir que tanto lodash (el paquete
de utilidades de JavaScript) como p5 (la versién en JavaScript de Processing), son igualmente
populares, sin embargo, el primero tiene algo mas de 5 x 107 descargas semanales, mientras que el
segundo tiene apenas unas 2 x 10%.

Por este motivo, se determind que el mejor enfoque para mostrar los resultados es usar etiquetas
y permitir que el usuario defina los umbrales para cada indicador. De este modo la evaluacion se
ejecuta de acuerdo a sus consideraciones personales y las necesidades del proyecto, mientras que las
etiquetas permiten crear un reporte mas limpio y facil de leer. Asi mismo, puede resultar atil ofrecer
a los usuarios la capacidad de escoger los indicadores que consideren mas importantes: distintos
equipos pueden querer usar criterios de evaluacion diferentes, por lo que evaluar solo los indicadores
necesarios no solo ahorra poder computacional, sino que también contribuye a generar un reporte
mas enfocado.

2.6. Interfaz de usuario

En la seccién 1.3 se establecié6 como objetivo hacer que la herramienta sea facil de instalar y usar,
con la intencién de minimizar las barreras para su adopcién. Con esto en mente, se consideraron dos
opciones para la interaccién con la herramienta: construir una interfaz grafica (GUI) o permitir su
uso mediante interfaz de linea de comandos (CLI). Ambas opciones son viables: frameworks como
Electron facilitan la construccion de aplicaciones de escritorio en JavaScript, mientras que la creacién
de una herramienta ejecutable desde la linea de comandos se logra mediante algunos archivos de
configuracién.

Si bien las interfaces graficas tienen la ventaja de ser mas intuitivas para la mayoria de los usuarios
finales, la interfaz de linea de comandos es una herramienta importante para los desarrolladores y
administradores de sistemas [24]. Para estos usuarios, la CLI permite interacciones mas eficientes
y la creacién de trabajo personalizados a través de scripts [25]. Ademas, en el contexto de este
proyecto, una herramienta CLI tiene miltiples ventajas en comparacién con una GUI:

= Rendimiento y tamaiio del proyecto: una solucién de tipo CLI es mucho mas ligera y
consume menos recursos, ya que los frameworks de JavaScript para aplicaciones de escritorio
deben incorporar un navegador en la aplicacion.

13

https://www.npmjs.com/package/lodash
https://www.npmjs.com/package/p5
https://www.electronjs.org/

2.7. Alternativas arquitecturales

= Facilidad de descarga: una herramienta CLI se puede publicar como un paquete de JavaS-
cript en el registro publico de npm, permitiendo su descarga con un simple comando. Por otro
lado, una aplicacién de escritorio tendria que publicarse en plataformas como Microsoft Store
o incluir el ejecutable en el repositorio del proyecto, lo que lo haria mas dificil de encontrar y
descargar.

= Facilidad de integracién: las herramientas de consola de comandos son faciles de integrar
en flujos de trabajo automaticos, por ejemplo, se pueden ejecutar antes de integrar cambios
en el cédigo fuente de un proyecto o durante procesos de despliegue de una aplicacién. Por
este motivo, muchas herramientas de desarrollo y casi todos los proveedores de servicios en la
nube ofrecen interfaces de linea de comandos [26].

= Tiempo de desarrollo: el uso de frameworks como Electron puede ralentizar el proceso debido
a la curva de aprendizaje que requiere, ademas de aumentar la complejidad del desarrollo por
la estructura, reglas y artefactos que aporta.

= Riesgos asociados a dependencias: la inclusiéon de un framework como Electron puede
introducir riesgos adicionales, como los que este proyecto busca ayudar a mitigar.

En cuanto a la configuracién de la herramienta para seleccién de indicadores y umbrales, como se
definié en la seccién 2.5, un enfoque ampliamente aceptado para herramientas CLI es el uso de
archivos con formato JSON o YAML. Estos dos formatos proporcionan un mecanismo de intercambio
de datos legible para humanos [27] y se usan en diversas herramientas de desarrollo; por ejemplo,
Visual Studio Code, Webpack y el mismo npm usan el formato JSON, mientras que herramientas
como Docker y Kubernetes usan YAML. Por lo general, estos archivos se crean en la misma ubicacion
donde se ejecuta la herramienta CLI o se permite indicar la ruta al archivo mediante un parametro
de ejecucion.

2.7. Alternativas arquitecturales

Para definir la arquitectura del sistema, se debe partir de los objetivos planteados y las necesidades
identificadas. Para empezar, uno de los objetivos propuestos en la secciéon 1.3 fue construir un
sistema flexible, que permita extender y/o sustituir sus componentes con facilidad. Por otra parte,
del anélisis realizado hasta el momento se sabe que, para permitir la valoraciéon del riesgo de una
libreria, el sistema debe: recuperar informacién de esa libreria de diversas fuentes de datos (como
GitHub y npm), recibir datos de configuracién del usuario (para seleccionar indicadores y umbrales),
evaluar los indicadores y, por Gltimo, generar el reporte con el cual el usuario podra tomar decisiones
con respecto a la libreria evaluada.

A partir de estas necesidades es posible identificar los médulos principales del sistema: la entrada
de datos del usuario, la entrada de datos de las librerias, el médulo central para la evaluacién de
los indicadores y un ltimo médulo encargado de la salida de datos en forma de reporte. Para este
proyecto resulta relevante tener flexibilidad para cambiar los médulos de entrada de datos de las
librerias y de salida del reporte. Teniendo la capacidad de extender y/o reemplazar estos médulos,
el sistema podria trabajar con diversas fuentes de datos para dar soporte a otros lenguajes de
programacion o generar reportes en formatos diversos segtn las necesidades del usuario.

Con esto en mente, se hace patente la necesidad de seguir un estilo de disefio con bajo acoplamiento
entre componentes. Por este motivo, se consideraron las siguientes arquitecturas candidatas:

= Arquitectura hexagonal: también conocida como Arquitectura de Puertos y Adaptadores,
es un patrén de arquitectura que busca crear sistemas desacoplados y altamente mantenibles.

14

https://apps.microsoft.com/
https://code.visualstudio.com/docs/getstarted/settings#_settingsjson
https://webpack.js.org/configuration/configuration-languages/
https://docs.npmjs.com/cli/v10/configuring-npm/package-json
https://docs.docker.com/compose/gettingstarted/#step-2-define-services-in-a-compose-file
https://kubernetes.io/docs/concepts/overview/working-with-objects/
https://alistair.cockburn.us/hexagonal-architecture/

2.8. Requerimientos del sistema

La idea central es separar la légica de negocio de las dependencias externas del sistema (como
bases de datos, herramientas de pruebas, interfaz de usuario y aplicaciones externas). Para
lograrlo, el sistema central interactiia con los componentes externos mediante puertos (pro-
tocolos o interfaces que definen como usar la aplicacién) y adaptadores (implementaciones
que satisfacen el contrato del puerto) [28]. Esto facilita la sustitucién de estos componen-
tes externos sin alterar la légica central del sistema, facilitando la incorporaciéon de nuevas
funcionalidades.

= Clean Architecture: es una aproximacion que intentar integrar diversas arquitecturas, como
la Arquitectura Hexagonal o la llamada Onion Architecture, en una dnica idea viable. La idea
central es crear sistemas débilmente acoplados mediante la separacién de responsabilidades,
separando el software en capas siguiendo lo que Robert C. Martin define como “la regla de
dependencia” [29].

= Arquitectura de Microkernels: en ocasiones considerada como “muiltiples arquitecturas he-
xagonales”, es un modelo centrado en compartir los recursos del sistema entre varios servicios.
En esta arquitectura el desarrollo se centra en el core de la aplicacién, el cual debe permi-
tir a los usuarios afadir funcionalidad mediante plug-ins. Esta arquitectura es especialmente
adecuada para sistemas que requieren alta extensibilidad [30].

Estas arquitecturas ofrecen ventajas significativas en términos de modularidad, sin embargo, la elec-
ciéon también depende de otros factores como la complejidad de implementaciéon. Los Microkernels,
por ejemplo, requieren una infraestructura bastante compleja, que podria ser innecesaria para el
alcance de este proyecto. Las arquitecturas Hexagonal y Clean Architecture son conceptualmente
muy similares; de hecho, algunos autores muestran que al incorporar otros patrones de arquitectura
(como MVVM y EBI) en la arquitectura Hexagonal es posible obtener implementaciones vélidas de
Clean Architecture [28].

Para evitar caer en el error de hacer sobre-ingenieria, se determiné que el mejor enfoque era disenar
y construir versiones simples de cada parte del sistema e ir desacoplandolas gradualmente, siguiendo
los lineamientos de la arquitectura hexagonal, que es la arquitectura mas sencilla que cumple con
las necesidades del proyecto. Si fuera necesario, esta arquitectura podria evolucionar hacia algo mas
sofisticado en el futuro.

2.8. Requerimientos del sistema

Para completar el andlisis, se definieron los casos de uso y los requerimientos minimos para la versién
inicial del sistema. Para que esta primera versién resultara de utilidad a sus usuarios, se plantearon
dos casos de uso:

= Analisis de una libreria individual: un usuario utiliza la herramienta para obtener informa-
cién valiosa sobre una libreria en particular, para determinar si es segura antes de incluirla en
su proyecto.

= Analisis de todas las dependencias de un proyecto: un usuario incluye la herramienta
como parte del proceso de desarrollo, para estar alerta ante posibles riesgos que puedan surgir
en las dependencias de su proyecto. La herramienta debe poder identificar las dependencias
directas del proyecto para analizarlas y generar reportes de valor para el usuario.

Teniendo presentes estos casos de uso y todo el analisis expuesto en este capitulo, se pueden definir
los requerimientos del sistema. A continuacidon se enumeran los diferentes requerimientos, tanto
funcionales como no funcionales, identificados a lo largo del proceso de anilisis.

15

https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://learn.microsoft.com/en-us/dotnet/architecture/maui/mvvm
https://ebi.readthedocs.io/en/latest/

2.8. Requerimientos del sistema

2.8.1. Requerimientos funcionales

Estos describen las funciones de la herramienta; es decir, las entradas, comportamientos y salidas
que debe tener el sistema para cubrir todos los casos de uso. De las secciones 2.5 y 2.6 se sintetizan
los siguientes requerimientos funcionales:

= La herramienta debe ser ejecutable mediante linea de comandos, tal como se define en la
seccién 2.6, y debe permitir evaluar una libreria o todas las dependencias de un proyecto en
una misma ejecucion, seglin la necesidad del usuario.

» El usuario debe poder seleccionar los indicadores que desea evaluar, un usuario de la herra-
mienta puede estar interesado en tan solo un subconjunto de los indicadores identificados
anteriormente.

= El usuario debe poder establecer los umbrales para los indicadores que desea evaluar. Si bien se
pueden definir valores por defecto para cada indicador, el usuario debe ser capaz de modificar
esos valores cuando lo vea conveniente, para que el sistema se adapte a sus necesidades.

= El usuario debe poder configurar uno o varios mecanismos de parada para el proceso de
evaluacion, basados en las etiquetas definidas en la seccién 2.5. La herramienta debe permitir
detener el proceso de evaluacion de una libreria en cualquiera de los siguientes casos:

= Se alcanza un nimero de alertas: el usuario puede definir el nimero maximo de alertas
que puede generar una libreria, al llegar a esa cantidad se detiene la evaluacion para esa
libreria.

s Se alcanza un nimero de advertencias: similar a las alertas, se detendria la evaluacién
de indicadores para cualquier libreria que genere esa cantidad advertencias.

» Estado de indicador critico es diferente de “ok”: el usuario puede configurar una lista
de indicadores que deber dar como resultado “ok”, si alguno de estos indicadores da un
resultado diferente, se detiene la evaluaciéon para esa dependencia.

» Estado de “alerta” en indicadores criticos: similar a la condicidn anterior, el sistema debe
detener la ejecucién para la dependencia en evaluacion si alguno de los indicadores de la
lista genera una alerta.

= Se debe generar un reporte con los resultados de la evaluacién, para la primera versién de la
herramienta el reporte se presenta en la consola de comandos, manteniendo la misma interfaz
de comunicacién con el usuario. Este reporte debe tener un formato que facilite su lectura.

2.8.2. Requerimientos no funcionales

Estos requisitos, también Ilamados atributos de calidad del sistema, especifican caracteristicas, res-
tricciones o condiciones de funcionamiento, mantenimiento o instalacién del sistema. Para la versién
inicial de la herramienta, se han identificado algunos requisitos, enfocados en el rendimiento y la
extensibilidad de |a herramienta:

= Consultar solo los datos necesarios para los indicadores escogidos por el usuario. Si, por ejem-
plo, los indicadores seleccionados por un usuario no requieren informacién de GitHub, entonces
no se debe consultar esta fuente. Esto ahorra tiempo de procesamiento y ancho de banda,
ademas de que algunas fuentes pueden tener limites en las peticiones a sus API’s publicas
(como es el caso de GitHub).

16

2.8. Requerimientos del sistema

= El sistema debe ser facil de extender para incluir otras fuentes de datos, sin afectar el funcio-
namiento existente. De este modo se permite dar soporte a otros lenguajes de programacion.

= La herramienta debe permitir la implementacion de otros sistemas de reporte, diferentes al
de consola de comandos, sin afectar el funcionamiento existente. De esta forma, se podrian
generar reportes en archivos o enviar los resultados de la evaluacién directamente a otras
herramientas.

= La herramienta no debe requerir la instalacién de software adicional, en cambio, debe funcio-
nar con las herramientas basicas que suele tener un desarrollador que trabaja en JavaScript,
como la herramienta de linea de comandos de npm. Esto reduce la friccién para el uso de la
herramienta por parte de la comunidad de desarrollo.

17

3. Diseno

Como se ha mencionado anteriormente, para el desarrollo de esta herramienta se buscé elaborar un
diseno flexible y extensible, a la vez que facil de entender y mantener. Esta no es una tarea trivial,
ya que la complejidad de un sistema tiende a crecer en funcién de la flexibilidad requerida para el
mismo. Es comin que ingenieros y desarrolladores hagan uso de arquitecturas sobredimensionadas
o patrones de disefio innecesarios al intentar lidiar con flexibilidad. Por este motivo, se opt6 por
empezar por un diseno global simple, que se fue diseccionando en componentes mas especificos a
medida que se incluia funcionalidad. Esta metodologia permitié que el disefio evolucionara de manera
organica y adaptativa, evitando inyectar complejidad accidental.

Inicialmente, se identificaron las partes clave del sistema a nivel global. Las areas principales iden-
tificadas fueron: el mecanismo de extracciéon de datos, encargado de obtener la informacién de
las fuentes; el sistema central o “core” de la aplicacion, encargado de orquestar la evaluacién; y
el sistema de reporte, encargado de mostrar los resultados al usuario. Teniendo claros los médulos
que componen el sistema, se puede definir la forma en que interactian siguiendo la arquitectura
hexagonal, tal como se determiné en la seccién 2.7.

3.1. Arquitectura del sistema

Bajo el enfoque de la arquitectura hexagonal, el sistema central es el que contiene la logica del
negocio, mientras que los otros dos mddulos se encargan de lidiar con elementos externos a la
aplicacién, como son las fuentes de datos y la interfaz del reporte.

Para que el sistema central pueda dirigir el flujo de trabajo, este debe poder hacer uso de los otros
modulos, pero no puede depender de la implementacion de estos. Afortunadamente, el principio clave
de la arquitectura hexagonal es que el nicleo de la aplicaciéon no tenga dependencias externas. Esta
independencia se logra creando puertos que definen la forma en que el sistema central interactiia con
los componentes externos, junto con adaptadores especificos para los componentes de extraccién
de datos o de generacién de reportes. En la figura 3.1 se ilustran los tres mddulos principales del
sistema siguiendo el patrén de arquitectura hexagonal.

El punto de inicio y la configuracién de la aplicaciéon son detalles que no se especifican en la
arquitectura hexagonal [28], ya que son detalles de implementacién mas que decisiones de disefio.
Estos detalles, junto con la entrada de datos del usuario, se ilustran en la figura 3.1 como informacién
de arranque (Bootstrapping) de la aplicacién.

A continuacién se profundiza en el detalle de cada uno de los tres mddulos principales identificados,
senalando las interfaces que cumplen el papel de puertos siguiendo el estilo de arquitectura escogido.

18

3.2. Sistema central

Bootstrap
(Initializers, user input and configuration)

npm

CLI

domain

Application core

Adapters

Figura 3.1: Componentes principales del sistema bajo el enfoque de la arquitectura hexagonal.

3.2. Sistema central

Como su nombre lo indica, es el médulo principal de la herramienta, responsable de orquestar el
proceso de evaluacion de indicadores. Para permitir al usuario seleccionar y configurar los indicadores
de evaluacion, se definieron tres piezas que componen esta parte de la aplicacion: el indicador, el
registro y el ejecutor.

3.2.1. Interfaz Indicador

Para empezar, se definié una interfaz comdn para todos los indicadores. Cada indicador definido
en la secciéon 2.4 corresponde a una clase que implementa esta interfaz, de modo que es posible
interactuar con cualquiera de ellos de forma indistinta. En la figura 3.2 se ilustra la interfaz con
algunas implementaciones concretas.

Cada indicador implementa un método llamado “evaluar”, que recibe una instancia de la Libreria
y retorna el resultado de la evaluacion. La evaluacién de cada indicador se realiza comparando uno
o varios atributos de la libreria con los umbrales definidos para el mismo; mientras que el resultado
incluye un estado (“ok”, “advertencia” o “alerta”, como se explicé en la seccién 2.5) y un mensaje
explicativo asociado al estado.

El indicador expone la lista de propiedades que requiere de la Libreria para ejecutar la evaluacién,
lo que permite consultarlos mediante el sistema de extraccién de datos en caso de no tenerlos.
Ademas, cada indicador tiene valores por defecto para los umbrales, pero también cuentan con un
método que permite sobrescribir estos valores (setThresholds), de este modo se puede configurar
los indicadores segtin el criterio o necesidades del usuario.

19

3.2. Sistema central

(_ <<interface>> \

Indicator
+ name: string
+ message: string | (value)=> string
+ parameters: Array<LibParam>
+ preconditions?: Array<IndicatorPrecondition>
+ evaluate(lib): Result
k + setThresholds(indicatorThresholds): void j

DownloadsIndicator RepoHealthindicator

Figura 3.2: Interfaz “Indicador” con ejemplos de implementaciones concretas.

Adicionalmente, los indicadores pueden tener pre-condiciones, que permiten determinar si la eva-
luacién de un indicador debe llevarse a cabo segin los resultados de otros indicadores previamente
evaluados. Por ejemplo, un indicador que analiza datos de GitHub solo puede ser evaluado si se ha
confirmado previamente que la dependencia tiene un repositorio piblico asociado.

3.2.2. Componente de Registro

Este componente se cred para gestionar la lista de indicadores. Este utiliza una estructura de tipo
diccionario (vector asociativo) para mapear cada indicador con su identificador Gnico, lo que facilita
su bldsqueda al momento de verificar parametros, confirmar pre-condiciones o evaluar el indicador.

El registro es también el responsable de confirmar que las pre-condiciones se cumplan antes de la
evaluacion de un indicador, verificando los resultados de indicadores precedentes o ejecutando su
evaluacion cuando es necesario. Ademas gestiona la configuracién definida por el usuario, limitando
la evaluacion a los indicadores escogidos y sobrescribiendo los umbrales de estos indicadores cuando
el usuario suministra estos datos.

Adicionalmente, el sistema permite al usuario definir condiciones de parada para la evaluacién de
indicadores de una dependencia. Estas condiciones de parada aseguran que, si se cumple alguno de
los criterios, la evaluacion se detiene para evitar procesamiento innecesario. La comprobacion de si
alguna condicién de parada se cumple también la hace el registro tras obtener el resultado de cada
indicador.

Como se puede ver, este componente es una pieza clave en la ejecucion de la herramienta. En la figura
3.3 se pueden observar los métodos expuestos por la clase Registro para cumplir las funcionalidades
descritas.

3.2.3. Componente Ejecutor
Se puede decir que el ejecutor es la pieza principal del sistema, ya que es el responsable orquestar la
evaluacion. Este recibe como argumentos: la lista de librerias que se van a evaluar, una instancia del

BuilderDirector y la instancia del registro. En la figura 3.3 se observa como se integra el ejecutor
con los demas componentes de esta parte del sistema.

20

3.3. Mecanismo de extraccion de datos

f/_ IndicatorsRegistry \ (<<interface>> \

____________________________________ Indicator
- indicators: Map<id, Indicator> | | = —mmmmmmmmmmmmmmme—mmmooooooooooo
+ desiredIndicators: Array<Indicator> + name: string
- stopConditions?: StopConditions < + message: string | (value)=> string
———————————————————————————————————— + parameters: Array<LibParam>

+ register(indicator): void + preconditions?: Array<IndicatorPrecondition>
+ evaluatelndicator(): Result | | = smmmmmmmmmmmosmeose—eeeeeeooeoooooo
+ meetStopConditions(): boolean + evaluate(lib): Result
K / k + setThresholds(indicatorThresholds): void j
7y

=

-~

(\ [Concretelndicator

Evaluation Executor

- libs: Array<Library>
- registry: IndicatorsRegistry
- director: BuilderDirector

+ analyzelLibraries()

Figura 3.3: Sistema central de la herramienta, encargado de orquestar la evaluacion.

Para cada libreria en la lista, el ejecutor debe evaluar uno a uno los indicadores escogidos hasta
cumplir una condicién de parada o completar todos los indicadores. Para evaluar un indicador, el
ejecutor utiliza el registro para comprobar las propiedades que requiere de la libreria para evaluar
ese indicador, si la instancia de la libreria no tiene esa propiedad, delega en el director la tarea de
obtenerla de la fuente de datos correspondiente. Cabe sefialar que al consultar una fuente se llenan
todos los atributos obtenibles de esa fuente, no solo el atributo especifico requerido, de ese modo
una fuente solo se debe consultar una vez por cada libreria. Una vez ha sido obtenida la informacién
necesaria, el ejecutor hace uso del registro para efectuar la evaluacién del indicador y, posteriormente,
confirmar si se cumple alguna condicién de parada.

3.3. Mecanismo de extraccion de datos

Como su nombre lo indica, esta parte de la aplicacién se encarga de recuperar la informacién requerida
para la evaluacién de indicadores. Este médulo debe ser capaz de producir un objeto cuyos atributos
correspondan con las métricas que requiere el sistema central para ejecutar la evaluacién. Ademas,
como se ha mencionado anteriormente, se debe poder reemplazar con facilidad los elementos que lo
componen, para poder incorporar otras fuentes de datos en el futuro.

3.3.1. Componente Builder

Para poder extraer datos de diferentes fuentes, se aplicé un enfoque similar al del patrén de disefio
Builder, creando una clase responsable de la obtencién de datos por cada fuente. Todas ellas deben
cumplir con el mismo contrato, permitiendo reemplazar una implementacion por otra dependiendo de
la fuente de datos que se desea utilizar. La diferencia de este enfoque con el patrén Builder radica en
que cada implementacién no crea una instancia diferente de un objeto con una interfaz comdn, sino

21

https://refactoring.guru/design-patterns/builder

3.3. Mecanismo de extraccion de datos

que varios Builders afiaden diferentes partes a una misma instancia compartida, el objeto Libreria.
Por ejemplo, una instancia de Builder construida para extraer datos de npm (NpmBuilder) puede
trabajar en conjunto con una implementacién enfocada en GitHub (GithubBuilder) para completar
los datos de una libreria de JavaScript. Esta primera aproximacién se ilustra en la figura 3.4.

<interface>
LibraryBuilder

Core
+ addLibraryParams()
A

Concrete

Builder

\

Library

+ name
+ numberOfVersions
+ ..

Figura 3.4: Primera aproximacion del mecanismo de extraccion de datos.

En este caso, la interfaz Builder funciona como puerto, para que los componentes del core puedan
interactuar con los adaptadores (las diferentes implementaciones de builder) sin conocer los detalles
de su implementacién. Aln asi, en la figura 3.4 hace falta una pieza que permita saber relacionar
las implementaciones de diferentes adaptadores con los lenguajes de programacion a los que se da
soporte.

3.3.2. Componente Director

Para permitir la extensién a otros lenguajes de programacion, con sus respectivas fuentes de datos, se
agregd al disefio la interfaz BuilderDirector. Ademas, este elemento da la capacidad de recuperar
datos bajo demanda (como se definid en los requerimientos no funcionales 2.8). Las clases que
implementan esta interfaz relacionan cada parametro de la libreria con la fuente de datos de donde
se extrae; asimismo, relacionan cada fuente de datos con el Builder responsable de consultarla. De
este modo, una instancia de BuilderDirector puede dar soporte a un lenguaje de programacién y
consultar cada fuente independientemente, utilizando los Builders que tiene asignados. En la figura
3.5 se observa la estructura de este sistema.

Este enfoque permite extender el mecanismo facilmente a otros lenguajes de programacién: para dar
soporte a un nuevo lenguaje, solo se necesita crear los Builders correspondientes para sus fuentes
de datos y el BuilderDirector que los administra, cumpliendo con las interfaces definidas. De este
modo, el usuario puede escoger el lenguaje de programacion al inicio de la ejecucién, se instancia el

22

3.4. Sistema de reporte

(<interface> \

<interface> BuilderDirector

LibraryBuilder

- builders: Map<Souce, LibraryBuilder> Core
- params: Map<paramName, Source>

| + buildLibrary(param, library): void

Concrete

Builder

ConcreteBuilderDirector

\

Library

+ name Domain object
+ numberOfVersions
+ ..

Figura 3.5: Mecanismo de extraccién de datos.

director correspondiente y se le asignan los Builders necesarios para trabajar con las fuentes de datos
del lenguaje escogido, luego se agrega la instancia del director al sistema central para que haga uso
de estos componentes. Este proceso es transparente para el sistema central, que interactia con los
diferentes directores a través de una interfaz comin. De esta manera, el sistema esta preparado para
incorporar nuevas fuentes de datos y lenguajes de programacién con un esfuerzo minimo.

Con este nuevo disefio se puede decir que la interfaz BuilderDirector actiia como puerto, creando
una capa de abstraccién adicional en la arquitectura. En este caso, el adaptador de extracciéon de
datos (para un lenguaje de programacién especifico) es todo el conjunto integrado por un director
concreto y sus Builders.

3.4. Sistema de reporte

Como su nombre lo indica, es el encargado de presentar los resultados de la evaluacién al usuario.
Para presentar un reporte de forma estructurada y ordenada, los resultados de los indicadores para
cada dependencia se almacenan en estructuras de tipo diccionario dentro de la clase ResultsStore.
De este modo se evitan problemas de condiciones de carrera si la evaluacion se ejecuta de forma
concurrente.

Ademas, se definié una interfaz llamada “Contexto”, la cual pretende dar soporte a diferentes tipos
de reportes. Las clases que implementen esta interfaz deben exponer un método para recibir los
resultados y generar el reporte correspondiente. La interfaz Contexto actlia como puerto, permi-
tiendo al core interactuar con diferentes adaptadores de reporte. En la figura 3.6 se observan los
componentes descritos.

23

3.5. Resultado final

(_ Evaluation Executor \

____________________________________ Port
ResultsStore - libs: Array<Library>

““““““““““““““ - registry: IndicatorsRegistry

- builderDirector: BuilderDirector

<interface>
Context

- library: Library - context: Context + showResults()
- results: Map<lib. status> - results: Map<lib, ResultsStore> 7y
k\ + analyzelLibraries() J) '

Concrete

Adapter Context

Figura 3.6: Componentes involucrados en la generacién de reportes.

Este disefio permite extender el sistema a nuevos formatos de reporte, de modo que el usuario pueda
escoger el deseado al iniciar la ejecucion. Se crea la instancia del adaptador segun la eleccion del
usuario y el ejecutor interactia con cualquiera de ellas de forma indistinta.

3.5. Resultado final

En la figura 3.7 se ilustra el diseno global de la aplicacién, obtenido integrando los componentes
principales explicados a lo largo de esta seccion. Ademas de mostrar la relaciéon entre componentes
segln la arquitectura hexagonal, en este diagrama se sefala el proceso en el que intervienen. Cabe
aclarar que hay numerosos componentes auxiliares que no se muestran en este diagrama, estos
intervienen en diferentes partes flujo del programa ayudando en la creacién de instancias, el mapeo
de datos, la ejecucién de comandos y peticiones http, entre otras funciones; estos elementos seran
mencionados mas adelante en los detalles de implementacion.

24

3.5. Resultado final

<interface>
LibraryBuilder

+ addLibraryParams()

Concrete
Builder

Library

+ numberOfVersions
+ weeklyDownloads
+ sourceState: Map

Figura 3.7:

Data Extraction

BuilderDirector

- builders: Map<Souce, LibraryBuilder>
- params: Map<paramName, Source>

+ buildLibrary(param, library): void

(—

Evaluation Executor

- libs: Array<Library>

- registry: IndicatorsRegistry

- builderDirector: BuilderDirector
- context: Context

- results: Map<lib, ResultsStore>

+ analyzeLibraries()

_

_

ResultsStore

- library: Library
- results: Map<lib, status>

IndicatorsRegistry

- indicators: Array<Indicator>
- context: Context

+ register(indicator)
+ evaluatelndicators()

<interface>
Context

+ showResults()

Concrete
Context

Report System

<<interface>>
Indicator

+ name: string

+ message: string
+ evaluate(lib): Result

Concrete Indicator 'l

Interaccién entre los componentes principales de la aplicacién.

25

4. Desarrollo

En esta seccién se describe el proceso de construccién de la herramienta, detallando la implemen-
tacion de los elementos principales del sistema descritos en el capitulo 3 y anadiendo algunos otros
detalles importantes para el funcionamiento de la herramienta. Al final de este capitulo se hace men-
cién a las pruebas unitarias y otras buenas practicas de desarrollo que se intentaron seguir durante
el proceso de construccion de la herramienta.

4.1. Sistema central

En la seccién D se explicaron los componentes principales que integran este médulo, sin embargo,
vale la pena mencionar otros elementos que intervienen en el control del flujo de la aplicacién y dan
soporte a esos componentes principales. Estos son algunos de los detalles mencionados en la seccién
3.5 que no cubre la descripcién de arquitectura.

Para empezar, se debe mencionar la funcién encargada de la interacciéon mediante interfaz de linea
de comandos. Esta se ejecuta al inicio del flujo para obtener las opciones de ejecucién escogidas por
el usuario, como el lenguaje de programacion o el formato del reporte.

Ademas, vale la pena recordar que en la seccién 2.8 se definieron dos casos de uso para la herramienta:
analizar una sola libreria o la lista completa de dependencias de un proyecto. En el primer caso, el
usuario debe proporcionar el nombre y la versién de la libreria; en el segundo caso, la herramienta
busca y lee el archivo package. json para extraer las dependencias del proyecto, existe una funcién
encargada de esta tarea. En el anexo B se muestran mas detalles de esta funcién y de como extender
la funcionalidad a otros lenguajes.

Una vez se tiene la lista de dependencias con sus versiones, se crean tantas instancias de Libreria
como corresponda. El objeto Libreria es un modelo de dominio que se ha mencionado en el capitulo
de disefio y que vale la pena analizar en mas detalle. En el fragmento de cédigo 1 se observa la
implementacién del modelo que se hizo para la primera versién de la herramienta; esta se ha hecho
incluyendo explicitamente los atributos que usan los indicadores implementados, se hizo asi con
la intencién de aprovechar las funcionalidades de comprobacién de tipos que brinda Typescript,
aunque se podria cambiar en el futuro para anadir atributos de forma dinamica.

Los primeros tres atributos del objeto (lineas 2 a 4) son los requeridos para la identificacién y
manipulacién de cada instancia, los dos primeros corresponden al nombre y la version de la libreria
que se desea analizar, mientras que el tercero es un vector asociativo que permite saber cuales
fuentes han sido consultadas anteriormente. Los atributos de las lineas siete y ocho corresponden al
nombre del repositorio y el nombre del propietario; estos se obtienen de npm y permiten consultar en
GitHub. El resto de atributos corresponden a las métricas con las cuales se va a realizar la evaluacién.

26

10

11

12

13

14

16

17

18

19

20

21

22

4.1. Sistema central

export type Library = {
name: string;
usedVersion: string;
sourceStatus: Map<string, LibSourceStatus>;

} & Partial<{
// Properties from npm
repoName: string;
repoOwner: string;
numberOfVersions: number;
weeklyDownloads: number;
lastVersion: string;
lastVersionDate: Date;
lifeSpan: number;
releaseFrequency: number;
// Properties from github
repoOpenIlssues: number;
repoStars: number;
repoForks: number;
repoUbservers: number;
repoOwnerType: string;
repoHealth: number;

>,

Listing 1: Definicién del modelo Libreria

Después de crear las instancias de la libreria, se crea el registro de indicadores explicado en la
seccion 3.2.2. Para ello se utilizan un par de funciones auxiliares, encargadas de crear la instancia
del registro, obtener el archivo de configuracidon del usuario, registrar los indicadores y establecer
los valores obtenidos del archivo de configuracion. El archivo de configuracion debe tener el nombre
scout.config. json y es completamente opcional, en caso de usarse le permite al usuario escoger
los indicadores que le resultan de interés, definir los umbrales que considera apropiados para cada
indicador e incluso definir las condiciones de parada para la evaluacién de una libreria. En caso de que
el usuario no proporcione el archivo, el sistema usa la lista de indicadores con los umbrales definidos
por defecto. En el bloque de cédigo 2 se muestra un ejemplo de este archivo de configuracién, en este
se observa la lista de indicadores deseados (lineas 3 a 13), el umbral que el usuario desea modificar
(Iineas 16 a 19) y las condiciones de parada (lineas 22 y 23).

Tras crear el registro, se crea todo el mecanismo de extraccion de datos, seguido del contexto de
reporte y el ejecutor. Este ultimo recibe las instancias del registro, el director, la coleccién de librerias
que se van a evaluar y el contexto para mostrar los resultados, tal como se explica en la seccién D.
Luego, el hilo de ejecucién inicia el proceso de evaluaciéon mediante el método “analizar librerias”
del ejecutor.

Para optimizar el proceso de evaluacién de miultiples librerias, este se realiza de forma secuencial
dentro de los indicadores de una libreria, pero de forma concurrente entre librerias; es decir, el
sistema no espera a terminar el anélisis de una libreria para empezar la siguiente. De esta forma,
el sistema puede estar evaluando los indicadores de una libreria mientras espera la respuesta de un
servicio externo para obtener los datos de otra libreria.

27

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

4.2. Mecanismo de extraccion de datos

"indicators": [
"is-last-version",
"was-released-recently",
"is-released-frequently",
"is-downloaded-frequently",
"is-long-living-project",
"is-starred-repo",
"has-open-issues",
"has-forks",
"has-enough-observers",
"repo-owner-type",
"is-healthy-repo"

s

"thresholds": {
"is-released-frequently": {

"warningThreshold": 30,
"alertThreshold": 90
b

Iy

"conditions": {

"mustBeOk": ["was-released-recently"],
"maxAlerts": 2

Listing 2: Ejemplo de configuracién usando el archivo scout.config. json

4.2. Mecanismo de extraccion de datos

Su desarrollo inici6é de forma paralela al anélisis, ya que fue necesario experimentar con las fuentes de
datos para aprender a interactuar con ellas y determinar cual era informacién disponible. Inicialmente
se crearon funciones simples para extraer datos mediante la herramienta de linea de comandos de
npm. Posteriormente, se crearon funciones para realizar peticiones HTTP tanto a la APl de GitHub
como a la de npm. Los datos obtenidos son los que se listan en la seccién 2.3.

Después de construir los servicios, es decir, las funciones encargadas de extraer datos sin procesar
de cada fuente, se construyeron lo Builders que se describen en la secciéon 3.3.1. Para dar soporte
a JavaScript se construyeron en total 4 de estas clases, uno por cada fuente: linea de comandos de
npm, API de npm, APl de GitHub y API para el perfil de la comunidad de GitHub. Cada Builder usa
un servicio para extraer los datos que le corresponden y procesarlos, si es necesario, para obtener las
métricas, que se almacenan como atributos del objeto Libreria.

Por dltimo se construyé el Director, para hacer uso de los Builders como se explica en la seccion
3.3.2. En el anexo B se muestra como se instancia un Director y se explica qué componentes se
deben anadir para dar soporte a otros lenguajes.

28

4.3. Sistema de reporte

4.3. Sistema de reporte

Se comenzé por mostrar los resultados de evaluacién y otros mensajes directamente en consola
de comandos a medida que se iban generando. Sin embargo, este enfoque tenia dos problemas
evidentes: la imposibilidad de extender a otras formas de reporte y la incompatibilidad con la ejecucion
concurrente de la evaluacién. La implementacién de los componentes ResultsStore y Context,
expuestos en la seccion 3.4, resolvié estos problemas.

Para esta primera version se implementaron dos versiones del contexto: la primera muestra los resul-
tados en la consola de comandos, tal como se definié en los objetivos iniciales del proyecto, mientras
que la segunda permite guardarlos en un archivo con formato HTML. Este segundo adaptador se
hizo con la intencién de demostrar la flexibilidad del sistema.

Cuando el usuario inicia el programa, se le pide seleccionar el tipo de reporte deseado. El sistema
crea una instancia de la clase de reporte escogida y hace uso de esta para presentar los resultados al
terminar la evaluacién. En el anexo C se explica como crear nuevas implementaciones del contexto
para crear otros tipos de reporte, por ejemplo, en formato JSON.

4.4. Buenas practicas de desarrollo

La herramienta se desarrollé como un proyecto de ambito profesional, siguiendo lo que cominmente
se conoce como buenas practicas de desarrollo de software. Entre otras cosas, se aplicaron los
principios de disefio de software!, se siguieron las convenciones de nombres de TypeScript? y se
integré ESLint para el andlisis estatico de codigo, garantizando asi un codigo libre de errores comunes
y acorde a las mejores practicas de estilo de cédigo.

Ademas, se utilizé Git como sistema de control de versiones para gestionar el codigo fuente del
proyecto, este se encuentra en un repositorio publico en GitHub. Git permite hacer un seguimiento
detallado de los cambios realizados durante el desarrollo, lo que facilita la identificacién y correc-
cion de errores. También se adopté la especificacion de “Conventional Commits”, la cual ayuda
a mantener la coherencia de los mensajes de commit® para tener un historial de cambios claro y
comprensible.

El proyecto también incluyé pruebas unitarias, implementadas con Jest, para asegurar la funcionalidad
de los componentes individuales y facilitar el mantenimiento del cédigo a lo largo del tiempo. Esta
practica esta disefiada para mantener el proyecto libre de errores a medida que este crece y evoluciona.

Aunque en un principio se consideré el uso de la metodologia “Test Driven Development”*, este
enfoque se hizo dificil de aplicar por la naturaleza experimental de la herramienta. A pesar de ello, se
procuré mantener una cobertura de pruebas unitarias razonable, como se muestra en la figura 4.1,
para garantizar la fiabilidad y estabilidad del cédigo.

los principios de disefio son un conjunto de directrices que se siguen para escribir cédigo limpio, mantenible y
extensible. La mayoria de ellos usan acrénimos como regla mnemotécnica, entre los mas conocidos estan SOLID, DRY
y YAGNI.

2Es la nomenclatura recomendada por Google para TypeScript, esta promueve la consistencia y la legibilidad del
cédigo.

3Un commit es una operacién que guarda el estado de un proyecto en un momento especifico, junto con un
mensaje descriptivo que explica los cambios introducidos.

“El desarrollo guiado por pruebas es una practica de desarrollo en la la pruebas se escriben primero con la intencién
de producir cédigo de mas calidad en menos tiempo.

29

https://google.github.io/styleguide/tsguide.html
https://eslint.org/
https://github.com/FreddyMartinez/deps-scout
https://www.conventionalcommits.org/en/v1.0.0/
https://jestjs.io/

4.4. Buenas practicas de desarrollo

All files 2. 86.66
core/executor 68.75

executor.ts 85.71

resultsStore.ts 55.55
corefindicators 108

indicators.types.ts 108
core/registry . . 1ee

registry.ts . . 1ee
models 108

builderDirector.ts 100
util

asyncExec.ts

constants.ts

httpGet.ts

readFileAsync.ts

Figura 4.1: Reporte de la cobertura de pruebas unitarias de la herramienta.

30

5. Pruebas funcionales de la herramienta

En este capitulo se detalla el proceso de validacion funcional de la herramienta desarrollada. El
objetivo de estas pruebas era garantizar que la herramienta funciona correctamente en distintos
escenarios y cumple con los requisitos establecidos (seccién 2.8.1). Para ello, se realizaron pruebas
en varios entornos y con diferentes usuarios, asegurando que la herramienta se comporta de manera
fiable y que tiene el impacto deseado en los proyectos.

El capitulo se divide en cuatro secciones: en la primera, se describen las pruebas locales realizadas
durante el desarrollo para verificar el correcto funcionamiento de la herramienta en un entorno
controlado; ademas, se explica el proceso de instalaciéon y uso de la misma. La segunda seccion
aborda la validacién de la herramienta con proyectos reales, evaluando su impacto en situaciones de
uso practico. En la tercera seccion se analiza el desempeiio de la herramienta comparando su impacto
con los de otras soluciones existentes en el mercado, verificando su capacidad para complementar y
mejorar los analisis de composicién de software. Finalmente, la Gltima seccién describe la validacién
realizada con usuarios externos, recogiendo sus comentarios y ajustando la herramienta para mejorar
la experiencia del usuario.

5.1. Pruebas locales y uso de la herramienta

Durante el desarrollo, se realizaron pruebas locales para evaluar las funcionalidades del proyecto
durante cada iteracién. Este se puede compilar y ejecutar localmente, teniendo la posibilidad de
evaluar sus propias dependencias, como se observa en la figura 5.1. En esta figura se muestra un
ejemplo del reporte en consola, una de las dos opciones de reporte mencionadas anteriormente, donde
se observan los mensajes de alerta (color amarillo), advertencia (color rojo) e incluso condiciones de
paradas (color violeta) generadas para cada dependencia.

En la secciéon 1.4 se indica que la herramienta debe ser facil de descargar y usar, esta debe ser eje-
cutable desde la consola de comandos aprovechando las herramientas habituales de un desarrollador
de JavaScript. Se definié6 de este modo con el objetivo de reducir barreras en el uso y llegar a la
mayor cantidad de usuarios posibles. Por este motivo, la herramienta se public6 como un paquete
de JavaScript en el registro publico de npm. El nico requisito para descargarla y ejecutarla es tener
instalados Node. js y npm, preferiblemente una versiéon con soporte activo.

La instalacién de la herramienta se puede realizar tanto en un proyecto especifico como de forma
global, siendo la segunda opcién la recomendada. Para instalar el paquete de forma global se utiliza
el comando npm i -g deps-scout. Una vez instalado, solo se debe ejecutar el comando scout
para iniciar la interaccién mediante linea de comandos.

Al iniciar, el programa solicita al usuario seleccionar el lenguaje de programacién, como se ve en
la figura 5.2a. A continuacién, se solicita escoger el formato del reporte, como se muestra en la
figura 5.2b. Cabe recordar que actualmente la herramienta solo tiene soporte para JavaScript, los

31

https://www.npmjs.com/package/deps-scout

5.1. Pruebas locales y uso de la herramienta

C:\dev\deps-scout [master 1> node ./dist/index.]s
Select the language of your project
How would you like to get the results?
Analyzing all dependencies in the project
/
f Analysis result for library: ts-jest
M The used version is 29.1.2, but the latest version of the library is 29.2.5.
M Repos healt is 71%.

Analysis result for library: inquirer
M Repos healt is 71%.
Analysis result for library: @types/node

M Repos healt is 62%.

Analysis result for library: @types/jest
M Repos healt is 62%.

Analysis result for library: @types/inquirer
M The library is not released freguently. Average time between releases is 52 days
M Repos healt is 62%.

Analysis result for library: jest

Analysis result for library: @typescript-eslint/eslint-plugin
Analysis result for library: @typescript-eslint/parser
Analysis result for library: eslint

Analysis result for library: typescript
M The used version is 5.3.3, but the latest version of the library is 5.5.4.

Figura 5.1: Reporte en consola ejecutando el proyecto durante desarrollo.

otros lenguajes que se muestran son solo marcadores (para dar soporte en el futuro), si el usuario
selecciona un lenguaje no soportado se muestra un mensaje de error, como se ve en la figura 5.2c.

C:\dev\deps-scout [master]> scout C:\dev\deps-scout [master]> scout
Select the language of your project Select the language of your project
How would you like to get the results?
python
java html

(a) Seleccién de lenguaje. (b) Seleccion de tipo de reporte.

C:\dev\deps—scout [master]> scout
Select the language of your project

Sorry, only javascript is supported at the moment @, python support is on the way.
C:\dev\deps-scout [master]>

(c) Mensaje de error al seleccionar un lenguaje no soportado.

Figura 5.2: Interaccion con la herramienta.

32

5.2. Validacién con otros proyectos

5.2. Validaciéon con otros proyectos

Para validar la utilidad de la herramienta, ademas de las pruebas realizadas después de incluir
cada funcionalidad, se disenaron algunos experimentos enfocados en verificar que la herramienta se
comporta de la forma esperada y que tiene un impacto positivo en los proyectos donde se usa. Para
ello, se ejecutd la herramienta en diversos proyectos tanto personales como empresariales, intentando
detectar librerias con alto riesgo de abandono, eliminacién o sabotaje.

En las pruebas fue posible identificar librerias con pocas descargas, estrellas y observadores, o con
muchos Issues y Pull Requests sin atender, lo que puede ser indicador de alto riesgo y vale la pena
analizar en profundidad. Por ejemplo, en la figura 5.3 se observa el resultado del anélisis de la libreria
nodemailer-stub, encontrada en un proyecto personal, la cual obtuvo varios mensajes de alerta. Al
indagar en el registro y el repositorio, se encontré que esta tenia pocos observadores, estrellas y
descargas, a la vez que mucho tiempo sin ser actualizada, por lo que se convirtié en candidata para
ser reemplazada.

f Analysis result for library: nodemailer-stub

M Library not widely used: 255 weekly downloads

Figura 5.3: Ejemplo de libreria con pocas descargas y mucho tiempo sin actualizar.

Ademas de las multiples librerias con mucho tiempo sin modificaciones, se llegd a encontrar una
libreria abandonada hace mas de 5 afios en uno de los proyectos empresariales analizados. La libreria
en cuestion es ng-simple-slideshow y el proyecto donde se encontré es una aplicacion web que utiliza
Angular como framework de desarrollo. En la imagen 5.4 se observa el reporte generado para esta
libreria.

i Analysis result for library: ng-simple-slideshow

A Library not widely used: 5082 weekly downloads

Figura 5.4: Libreria abandonada por los mantenedores.

Si bien en la imagen se sefiala que la libreria no ha sido actualizada en algo mas de dos afios, al
revisar en detalle la informacién que ofrece npm se encontrd que la dltima version estable habia sido
publicada en 2019, lo que revel6 que la fecha actualizacién no necesariamente coincide con la dltima
publicacion. Ademas, al revisar la documentacion de la libreria se encontré en su ultima versidn
estaba disefada para trabajar con las versiones 4 a 7 de Angular. Sin embargo, la dltima version
estable de Angular a la fecha de ejecutar la prueba era la 17, dejando en evidencia un problema de
bloqueo por conflicto de dependencias (como se ilustra en la figura 1.1b). Tras ese descubrimiento,
se sustituyé esta libreria por una con soporte vigente y se actualizaron las dependencias bloqueadas,
como Angular.

33

https://github.com/LimeDeck/nodemailer-stub
https://www.npmjs.com/package/ng-simple-slideshow
https://angular.dev/

5.3. Validacién con otras herramientas de SCA

5.3. Validacion con otras herramientas de SCA

Uno de los indicadores que resulté tener mas impacto de lo esperado fue el de “altima versiéon”,
este alerta al usuario cuando la version que esta usando de una dependencia no es la version estable
mas reciente. Este indicador permite a los desarrolladores mantener actualizadas las dependencias
de sus proyectos, incluyendo asi ajustes a posibles errores o vulnerabilidades corregidas en esas
dependencias.

Para validar el impacto de esta funcionalidad, se compararon los resultados del anélisis de otras
herramientas de SCA antes y después de aplicar las actualizaciones sugeridas por la herramienta.
Por ejemplo, se utilizaron tanto el comando de auditoria de npm como la extensién de Red Hat
Dependency Analytics para buscar vulnerabilidades comunes antes y después de actualizar o reem-
plazar las librerias sefialadas por la herramienta. Por ejemplo, en las figuras 5.5 y 5.6 se observan
los resultados del analisis de las tres herramientas antes y después de actualizar las dependencias
sefialadas.

En la figura 5.5a se observa parte del reporte generado por la herramienta, en donde se sefialan
algunas dependencias del proyecto que deben ser actualizadas. Al ejecutar las herramientas de
auditoria en este mismo proyecto, estas advirtieron de la presencia de 3 vulnerabilidades en la
cadena de suministro, como se observa en las figuras 5.5b y 5.5c. Con esta informacién, se procedié
a actualizar las librerias senaladas, para posteriormente volver a ejecutar las tres herramientas. En la
figura 5.6 se observa que tras realizar las actualizaciones, se reducen los riesgos por vulnerabilidades
conocidas sefalados por las otras herramientas.

5.4. Validacion con otros usuarios

Una vez publicada una version estable de la herramienta con las funcionalidades basicas definidas
en el alcance, esta se compartié en diferentes medios con otros desarrolladores y equipos de trabajo,
para que fuera probada y valorada de forma practica, en busca de retroalimentacién que permita
identificar fallos y posibles mejoras. Estas pruebas son importantes para confirmar la utilidad y
relevancia de la herramienta para los usuarios finales.

La recepcién inicial parece haber sido positiva, la facilidad con la que se descarga y ejecuta la
herramienta permitieron que muchas personas la probaran, aunque no muchas dieron realimentacién
que resultara de utilidad para seguir mejorandola. Los comentarios recibidos se enfocaron en mejorar
dos aspectos: la documentacién, explicando como usar la herramienta, y el reporte, para el cual se
sugeria utilizar un formato mas facil de visualizar y donde los resultados quedaran guardados. En
cuanto a la documentacién, la versién actualizada se puede observar en el repositorio del proyecto,
mientras que para el reporte, se desarrollé la version en formato HTML.

En la figura 5.7 se muestra este otro tipo de reporte. El archivo HTML se guarda en la ruta donde
se ejecuta la herramienta. En este se observan las dependencias evaluadas como filas de la tabla,
mientras que los indicadores evaluados se ven como columnas de la misma. Los resultados para
cada indicador y dependencia estan codificados por colores, lo que permite al usuario identificar
rapidamente aquellos que han resultado en “alerta” o “advertencia”.

34

https://marketplace.visualstudio.com/items?itemName=redhat.fabric8-analytics
https://marketplace.visualstudio.com/items?itemName=redhat.fabric8-analytics
https://github.com/FreddyMartinez/deps-scout

5.4. Validacién con otros usuarios

Analysis result for library: express
MAThe used version is 4.18.3, but the latest version of the library is 4.19.2.
MAThe library is not released frequently. Average time between releases is 18 days

Analysis result for library: supertest

(a) Mensajes de advertencia generados por la herramienta.

C:\dev\NodeJls_Learning\UdemyNodeTDD [master t 1> npm audit
npm audit report

Uncontr'-olled resource consumption in braces - https://github.com/advisories/GHSA-grv7-fg5c-xmjg
fix available via “npm audit fix

express <4.19.2

Severity: moderate

Express.js Open Redirect in malformed URLs - https://github.com/advisories/GHSA-rv85-896h-c2vec
fix available via “npm audit fix

tar <6.2.1

Severity: moderate

Denial of service while parsing a tar file due to lack of folders count validation - https://github.com/advisories/GHSA-f5x3-3
fix available via “npm audit fix

vulnerabilities (2 moderate, 1

(b) Resultado del anélisis de vulnerabilidades de npm.

Red Hat Overview of security Issues

Vendor Issues

Below is a list of dependencies affected with CVE.

osv

W Critical: O
3 H High:1
Medium: 2

B low: 0

(c) Resultado del anilisis de vulnerabilidades de la herramienta de Red Hat.

Figura 5.5: Resultados iniciales del anélisis de las tres herramientas SCA.

35

5.4. Validacién con otros usuarios

ft Analysis result for library: express
MAThe library is not released frequently. Average time between releases is 18 days

ft Analysis result for library: supertest

(a) Mensajes de advertencia generados por la herramienta en un proyecto personal.

C:\dev\Nodels_Learning\UdemyNodeTDD [master T1 1> npm audit

found @ vulnerabilities

(b) Resultado del anélisis de vulnerabilidades de npm.

Red Hat Overview of security Issues

Vendor Issues

Below is a list of dependencies affected with CVE.

osv

W Critical: 0
0 W High: 0
Medium: O

o Low: O

(c) Resultado del anélisis de vulnerabilidades de la herramienta de Red Hat.

Figura 5.6: Resultados del analisis tras la actualizacion de las dependencias del proyecto.

36

.7

Validacién con otros usuarios

5.4.

“TNLH U e|qe1 ap olewJo} us auoday :/°G eanSi4

SITES UoISIgA fuelql suy
: S8je| SU} WO Jualay) 0 UDISISA pases|a)
- %0 %0 %0) usdoggss %O %0 %0 %0) O ieiq paan B1 %0 O e o ou Juosadiy
CELE FRE 10 UOISISA JOUIL 8Y | S| UOISIaA pasn sy |
‘sanssl
- 0 30 %0 e} uado geg e} 30 30 A0 0 - - A0 158/
sey Aoysodey
FITES UOISIBA “fuelql suy
B : 1581B| 8U} WOl Jusispip 10 UDISISA pases|al Jesiedulse
40 A0 A0 0 &z Eﬁm%%%w 0 A0 A0 %0 A0 s1 Alelqi| pasn auy} A0 1s91e| 8y) 10U -dudsadiid
U Aol o 10 UOISISA JouIW au] S| UOISIBA pasn sy
AR UOISISA “Aueiql| suy
} : 15918 8U} WOl JUsIap 10 UoISIaA pasesjal | uibn|d-jusaulse
H0 M0 0 10 &z Eﬁm%%%w 10 A0 40 Y0 40 s1 Alelqi| pasn auy} 0 1s91e| 8y) 10U -dudsadiid
U Aol o 10 UOISISA JouIW au] S| UOISIBA pasn sy
‘6 sl Aeiqy “Aeiq) ayy
} ‘sanssi uado JJ _ SU) JO UOISI9A 1S818] JO UDISIAA pases|al
H0 M0 0 10 sey Aoysoday 10 A0 40 Y0 40 3 INg ‘g SI UOISISA 1591e| ay) 10U juse
Jolew pasn 8uy] sl UOISISA pasn sy
%l L Jas(, sl '53Nss|
- sljleay = oadA} Jeumo 30 40 uado ggl 40 b [o] L [o] 0 30 - - 30 Jaanbul
oday sey Aoysoday
e uoIsian Aieigl auy
R 159]8| 8U} WoJj Jualapip 10 UoISIan pasesjal . —
A0 M0 10 - a%% w%m 10 A0 A0 %0 10 51 Aleiqi| pasn au) M0 15a1E] 8U1 10U apou/sadhD
. 10 UOISJaA JouIw ay | S| UOISIaA pasn ay |
“fueiq) sy}
%L Jasn, sl S18/AI35q0 T
- siyeay | adijseumo | sey Aiopsoda| %0 wwﬂmm_owmwwwm 0 %0 30 o) %0 o) %0 O e o o0 1sals)
Sty oday S S| UOISIaA pasn ay |
30 aqg jsnuw sAep /6 1se|
Ausdal-pasesjal = = = = = o = o o 3y} ul pajepdn usag o ol MO JaunbuysadfQiD
-SBM J0JBIPU] Jou sey Aeiql sy
30 &g jsnuw sAep /6 ise| _
Ajusoal-pasesial = = = = = = = = = 3y} ul paiepdn usaq = = O 1s8)sadi@
-SBM J0JBIPU| jou sey Aeiq| sy
adfy odai 198load
odai . SI9AIBSCO SHIO} senssi| _ iy Appuanbauy Apusnbaiy Apuaaal ucIsIaA uoIsSiaA — S10})e31pu|
uoseal dojg -Ayyesy-si 13umo -yBnous-sey -sey -uado-sey palEs i -papeojumop-si | -p | 1 -p |e1-seMm -1oUjW-awes-s| -10few-awes-si UoISIaA}Sel-S| \ Asuspuadaq
-odal -8l -Buoj-si

sjInsay JN02S

37

6. Conclusiones

El mantenimiento de las dependencias de un proyecto es tan importante como el mantenimiento del
cédigo fuente. Aln asi, a menudo los desarrolladores solo prestan atencién a sus dependencias en
dos momentos clave: cuando las integran en el proyecto y cuando surgen problemas. Esta practica
puede llevar a riesgos significativos, ya que las dependencias pueden evolucionar, ser abandonadas
o volverse inseguras con el tiempo. Por este motivo, es necesario el desarrollo de herramientas que
faciliten el mantenimiento y la gestién de dependencias a lo largo de todo el ciclo de vida de los
proyectos, necesidad que intenta abordar la herramienta desarrollada en este proyecto.

A continuacién se valora el cumplimiento de objetivos, se exponen las posibilidades de continuacion
del trabajo y, para finalizar, se realiza una reflexién personal sobre el proceso de desarrollo y el
impacto de la herramienta obtenida.

6.1. Objetivos alcanzados

Se desarrollé y publicé un paquete de JavaScript que estd disponible para su descarga desde el
registro publico de npm bajo el nombre deps-scout. Tal como se muestra en las pruebas del capitulo
5, esta herramienta permite analizar las dependencias de proyectos en JavaScript, evaluando diversos
indicadores relacionados con el mantenimiento y la interacciéon de la comunidad entorno a dichas
dependencias. Al considerar estos aspectos, “deps-scout” genera reportes que brindan informacion
relevante para el mantenimiento y la seguridad de los proyectos, complementando la informacién
proporcionada por otras herramientas de Analisis de Composicién de Software (SCA), que suelen
centrarse en la deteccién de CVE's.

La herramienta es configurable, lo que permite a los usuarios personalizar el anélisis segtin su criterio
y necesidades. En particular, los usuarios pueden seleccionar qué indicadores desean evaluar, ajustar
los valores con los cuales se evalia cada uno de estos indicadores, e incluso establecer condiciones de
parada para el anélisis de cada dependencia (siguiendo el ejemplo de configuracién 2 de la seccién
4.1). A la fecha de escribir este documento, la herramienta cuenta con 11 indicadores, que se
encuentran documentados tanto en el repositorio del proyecto como en el registro de npm.

Otra caracteristica destacable de esta herramienta es la facilidad con la que se puede integrar en el
flujo de trabajo de los equipos de desarrollo. Su facil instalacién y uso permiten que sea adoptada
rapidamente sin impactar los procesos existentes, ofreciendo valor inmediato con un esfuerzo minimo,
permitiendo a los desarrolladores centrarse en la construccién de nuevas funcionalidades. Esto quedé
demostrado al realizar las pruebas con otros usuarios, comentadas en la seccién 5.4.

Ademas, la herramienta ha sido disefada con una arquitectura flexible, lo que facilita la incorporacién
de nuevos formatos de reporte, asi como dar soporte a otros lenguajes de programacién y fuentes
de datos adicionales. De igual forma, se pueden incluir nuevos indicadores, tal como se detalla en el
anexo D.

38

https://www.npmjs.com/package/deps-scout
https://github.com/FreddyMartinez/deps-scout
https://www.npmjs.com/package/deps-scout

6.2. Trabajo futuro

6.2. Trabajo futuro

La arquitectura flexible de la herramienta presenta oportunidades significativas para su futura expan-
sion y adaptacion. Su disefio no solo permite dar soporte para otros lenguajes de programacién con
sus respectivos gestores de paquetes y fuentes datos, sino que también abre la puerta a diversos usos
adicionales. Por ejemplo, los datos recopilados por la herramienta podrian servir como base para
otros andlisis, estudios de investigacion o para desarrollar nuevas funcionalidades que aprovechen
estos datos en contextos distintos.

Por otra parte, aunque la herramienta ha sido bien recibida por los desarrolladores que la han
probado, es importante reconocer que aun estd en las etapas iniciales de su adopcion. Como se
menciona en la seccién 5.4, la realimentacién por parte de los usuarios es fundamental para que la
herramienta alcance todo su potencial. A medida que mas equipos comiencen a usarla y compartir sus
experiencias, se abriran oportunidades para refinar y expandir sus caracteristicas. La retroalimentacion
de la comunidad sera esencial para la evolucién de la herramienta, asegurando que sea relevante y
atil en un entorno de desarrollo de software que estd en constante cambio.

6.3. Reflexién personal

En términos generales, me siento muy satisfecho con el desarrollo y el resultado de este proyecto.
Dado que estad estrechamente relacionado con mi area profesional, considero que la inversion de
tiempo y esfuerzo ha sido muy valiosa (ver Anexo E) para detalles del cronograma de tareas).
El proceso de andlisis me permitié no solo ampliar mi vision sobre la problematica de la gestién
de dependencias, sino también tomar mayor conciencia de los riesgos asociados a la cadena de
suministro de software. La comprensién de estos riesgos y la manera en que se pueden mitigar es
un aprendizaje valioso que ahora intento compartir con otros desarrolladores e ingenieros. Ademas,
ahora cuento con una herramienta que pienso utilizar regularmente para verificar que mis proyectos
estan seguros y evitar que se degraden con el paso del tiempo.

Por otro lado, el proceso de disefio y construccion me permitié profundizar en conceptos de disefio
de software que considero fundamentales para mi crecimiento profesional. Ademas, el enfoque global
que se le dio al proyecto me permitié recordar y reafirmar la importancia de abordar el software como
la ingenieria que es, algo que contrasta con la realidad de muchos proyectos, donde los desarrolladores
toman decisiones basados en tendencias, opiniones o anécdotas antes que en experimentos y datos
reales.

En cuanto a la herramienta, considero que tiene un gran potencial y puede ser un complemento
valioso para la gestiéon de dependencias de software. Esta puede trabajar en conjunto con otras
herramientas en busca de mantener segura la cadena de suministro de software de cualquier proyecto.
No obstante, soy consciente de que su adopcién no sera un proceso facil, ya que el mantenimiento
de las dependencias no se percibe como una necesidad en muchos proyectos. Tal como se vio en la
seccion 5.2, es comun encontrar proyectos con dependencias obsoletas o abandonadas hace afos,
que pueden dificultar la actualizacién del resto de dependencias debido a problemas de conflictos
de versiones. Aunque esta herramienta puede ser una solucién efectiva para evitar tales escenarios,
su verdadero impacto dependera en gran medida de un cambio de mentalidad en la comunidad de
desarrolladores. Fomentar una cultura que valore el mantenimiento activo y la actualizacién continua
de dependencias es un reto que debemos abordar si queremos mejorar la seguridad y estabilidad de
nuestros proyectos.

39

Glosario

Cadena de suministro de software Conjunto de componentes, herramientas, y procesos necesa-
rios para desarrollar, mantener y distribuir un producto de software. Incluye tanto el cédigo
propietario como las dependencias directas e indirectas (transitivas) y cualquier otra herra-
mienta utilizada en el ciclo de vida del software.

Commit Registro de cambios realizado en un repositorio de control de versiones como Git, que
captura el estado del proyecto en un momento especifico junto con un mensaje que describe
dichos cambios.

Conventional Commits Convencién para escribir mensajes de commit que sigan un formato es-
tructurado y predefinido, facilitando la comprensiéon del historial de cambios y la automatiza-
cién de versiones.

CVE (Common Vulnerabilities and Exposures) Sistema de identificacién de vulnerabilidades
de seguridad conocidas en software, que permite a los desarrolladores y usuarios estar infor-
mados sobre problemas que pueden comprometer la seguridad de un sistema.

Dependencia directa Libreria de terceros que se incluye explicitamente en un proyecto de software
para aprovechar sus funcionalidades.
Dependencia transitiva Libreria que es indirectamente incluida en un proyecto de software, como

resultado de incluir otra libreria que a su vez depende de esta.

ESLint Herramienta de analisis estatico de codigo que se utiliza para identificar y corregir problemas
en el cédigo fuente de JavaScript y TypeScript, ayudando a mantener un cédigo limpio y libre
de errores comunes.

Fork Copia de un repositorio que se crea en la cuenta de un usuario, permitiéndole experimentar,
modificar o ampliar el proyecto, sin afectar el repositorio fuente.

Issue Reporte que se deja en un proyecto para discutir un problema, una idea o una tarea pendiente.

Jest Marco de pruebas unitarias para JavaScript y TypeScript, utilizado para asegurar que las
funciones individuales del cédigo se comporten de la manera esperada.

Libreria En el contexto de este proyecto, la palabra libreria se usa para referirse a cualquier artefacto
de cédigo que pueda ser publicado, reutilizado e intercambiado. Es decir, este término abarca
paquetes, modulos, librerias, middlewares y frameworks.

Node.js Entorno de ejecucién de JavaScript ampliamente utilizado, tanto para el desarrollo como
para la ejecucion de proyectos en servidores.

40

Glosario

Pruebas unitarias Tipo de prueba de software que verifica el funcionamiento de componentes
individuales (o unidades) del cédigo, asegurando que cada parte funcione correctamente de
manera aislada.

Pull Request Solicitud de incorporacién de cambios. Permite a los desarrolladores proponer cam-
bios en el cédigo u otros documentos del proyecto. Esta puede ser revisada y aprobada por los
mantenedores de un proyecto para incluir nuevas caracteristicas, solucionar errores o incorporar
mejoras de otro tipo.

Registro de software Es la plataforma donde se publican los paquetes de cédigo listos para ser
descargados y usados dentro de otros proyectos.

repositorio Aalmacenamiento donde se guarda y gestiona el cédigo fuente de un proyecto de soft-
ware junto con su historial de cambios.

41

Referencias

[1]

2]
3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid y E. Shihab, «Why do developers use
trivial packages? an empirical case study on npm,» en Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ép. ESEC/FSE 2017, Paderborn, Germany:
Association for Computing Machinery, 2017, pags. 385-395, 1SBN: 9781450351058. poT1: 10.
1145/3106237.3106267. direccién: https://doi.org/10.1145/3106237.3106267.

O. Nierstrasz y T. Dirk Meijler, «Research directions in software composition,» ACM Compu-
ting Surveys, vol. 27, n.° 2, pags. 262-264, 2022. poI1: 10.1145/210376.210389.

Github Blog, Keep your dependencies secure and up-to-date with GitHub and Dependabot,
2019. direccién: https://github.blog/2019-01-31-keep-your-dependencies-
secure-and-up-to-date-with-github-and-dependabot/ (visitado 30-06-2024).
Github, How developer-first supply chain security helps you ship secure software fast, 2022.
direccién: https://resources.github.com/security/supply-chain-security/
(visitado 15-06-2024).

G. A. A. Prana et al., «Out of sight, out of mind? How vulnerable dependencies affect open-
source projects,» Empirical Softw. Engg., vol. 26, n.° 4, jul. de 2021, 1SSN: 1382-3256. DOI:
10.1007/s10664-021-09959-3. direccién: https://ink.library.smu.edu.sg/sis_
research/6048/.

Google Cloud, What is a diamond dependency conflict? 2019. direccién: https://jlbp.
dev/what-is-a-diamond-dependency-conflict (visitado 05-06-2024).

Instituto Nacional de Ciberseguridad, Log4Shell: anélisis de vulnerabilidades en Log4j, 2022.
direccion: https://www.incibe.es/incibe-cert/blog/log4shell-analisis-
vulnerabilidades-log4j (visitado 12-06-2024).

Wikipedia, npm left-pad incident. direccién: https://en.wikipedia.org/wiki/Npm_left-
pad_incident (visitado 15-06-2024).

F. Massacci et al., «“Free” as in Freedom to Protest?» IEEE Security & Privacy, vol. 20, n.° 5,
pags. 16-21, 2022. por1: 10.1109/MSEC.2022.3185845.

Sonatype, npm libraries 'colors’ and 'faker’ sabotaged in protest by their maintainer—\What to
do now? 2022. direccién: https://www.sonatype.com/blog/npm-libraries-colors-
and-faker-sabotaged-in-protest-by-their-maintainer-what-to-do-now (visitado
15-06-2024).

M. Ohm, H. Plate, A. Sykosch y M. Meier, «Backstabber's Knife Collection: A Review of
Open Source Software Supply Chain Attacks,» en Detection of Intrusions and Malware, and
Vulnerability Assessment, C. Maurice, L. Bilge, G. Stringhini y N. Neves, eds., Cham: Springer
International Publishing, 2020, pags. 23-43, 1SBN: 978-3-030-52683-2.

Arstechnica, Sabotage: Code added to popular NPM package wiped files in Russia and Belarus,
2022. direccién: https://arstechnica.com/information-technology/2022/03/
sabotage-code-added-to-popular-npm-package-wiped-files-in-russia-and-
belarus (visitado 15-06-2024).

42

https://doi.org/10.1145/3106237.3106267
https://doi.org/10.1145/3106237.3106267
https://doi.org/10.1145/3106237.3106267
https://doi.org/10.1145/210376.210389
https://github.blog/2019-01-31-keep-your-dependencies-secure-and-up-to-date-with-github-and-dependabot/
https://github.blog/2019-01-31-keep-your-dependencies-secure-and-up-to-date-with-github-and-dependabot/
https://resources.github.com/security/supply-chain-security/
https://doi.org/10.1007/s10664-021-09959-3
https://ink.library.smu.edu.sg/sis_research/6048/
https://ink.library.smu.edu.sg/sis_research/6048/
https://jlbp.dev/what-is-a-diamond-dependency-conflict
https://jlbp.dev/what-is-a-diamond-dependency-conflict
https://www.incibe.es/incibe-cert/blog/log4shell-analisis-vulnerabilidades-log4j
https://www.incibe.es/incibe-cert/blog/log4shell-analisis-vulnerabilidades-log4j
https://en.wikipedia.org/wiki/Npm_left-pad_incident
https://en.wikipedia.org/wiki/Npm_left-pad_incident
https://doi.org/10.1109/MSEC.2022.3185845
https://www.sonatype.com/blog/npm-libraries-colors-and-faker-sabotaged-in-protest-by-their-maintainer-what-to-do-now
https://www.sonatype.com/blog/npm-libraries-colors-and-faker-sabotaged-in-protest-by-their-maintainer-what-to-do-now
https://arstechnica.com/information-technology/2022/03/sabotage-code-added-to-popular-npm-package-wiped-files-in-russia-and-belarus
https://arstechnica.com/information-technology/2022/03/sabotage-code-added-to-popular-npm-package-wiped-files-in-russia-and-belarus
https://arstechnica.com/information-technology/2022/03/sabotage-code-added-to-popular-npm-package-wiped-files-in-russia-and-belarus

Referencias

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

R. G. Kula, D. M. German, A. Ouni, T. Ishio y K. Inoue, «Do developers update their library
dependencies?» Empir Software Eng, vol. 23, pags. 384-417, 2018. direccién: https://doi.
org/10.1007/s10664-017-9521-5.

Opentext, What is Dynamic Application Security Testing (DAST)? Direccién: https://
www . opentext.com/what-is/dast#:~:text=Dynamic’20Application’20Security’
20Testing’% 20 (DAST) %20is%20the %20process %200f %20analyzing, 1like%20a%
20maliciousy20user’20would. (visitado 26-07-2024).

OWASP, DevSecOps Guideline - v-0.2, Interactive Application Security Testing. direccién:
https://owasp.org/www-project-devsecops-guideline/latest/02c-Interactive-
Application-Security-Testing (visitado 26-07-2024).

Y. Pan, «Interactive Application Security Testing,» en 2019 International Conference on Smart
Grid and Electrical Automation (ICSGEA), 2019, pags. 558-561. DOI: 10.1109/ICSGEA .
2019.00131.

S. Journey, SAST vs DAST vs IAST. direccién: https://www.securityjourney.com/
post/sast-vs-dast-vs-iast#:~:text=IAST/20Disadvantages, the’,20assistance},
200f%20a%20specialist. (visitado 26-07-2024).

Synopsys, What is software composition analysis (SCA)? 2024. direccién: https://www .
synopsys.com/glossary/what-is-software-composition-analysis.html (visitado
15-07-2024).

OWASP, Free for Open Source Application Security Tools, 2024. direccién: https://owasp.
org/www-community/Free_for_Open_Source_Application_Security_Tools (visitado
27-06-2024).

J. F. Barcelona Auria, «xDEAN: Analizador de dependencias estatico para Evaluacién de Ries-
gos,» thesis, Universidad de Zaragoza, Zaragoza, Espana, 2022.

V. R. Basil y A. J. Turner, «lterative enhancement: A practical technique for software deve-
lopment,» IEEE Transactions on Software Engineering, vol. SE-1, n.° 4, pags. 390-396, 1975.
DOI: 10.1109/TSE. 1975.6312870.

C. Larman y V. R. Basili, «Iterative and incremental developments: a brief history,» Computer,
vol. 36, n.° 6, pags. 47-56, 2003. po1: 10.1109/MC.2003.1204375. direcciéon: https:
//www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-
and-basili-ieee-computer.pdf.

N. M. Goldman y K. Narayanaswamy, «Software evolution through iterative prototyping,»
International Conference on Software Engineering, pags. 158-172, 1992. direccién: https :
//dl.acm.org/doi/pdf/10.1145/143062.1431009.

R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber, L. A. Takayama y M. Prabaker, «Field
studies of computer system administrators: analysis of system management tools and prac-
tices,» en Proceedings of the 2004 ACM Conference on Computer Supported Cooperative
Work, ép. CSCW '04, Chicago, lllinois, USA: Association for Computing Machinery, 2004,
pags. 388-395, 1sBN: 1581138105. pDO1: 10.1145/1031607 .1031672. direccién: https:
//www.researchgate.net/publication/220879050_Field studies_of_computer _
system_administrators_Analysis_of_ system_management tools_and_practices.
S. R. Murillo y J. A. Sanchez, «<Empowering Interfaces for System Administrators: Keeping
the Command Line in Mind when Designing GUIs,» en Proceedings of the XV International
Conference on Human Computer Interaction, ép. Interaccion '14, Puerto de la Cruz, Tenerife,
Spain: Association for Computing Machinery, 2014, 1SBN: 9781450328807. DOI: 10.1145/
2662253.2662300. direccién: https://doi.org/10.1145/2662253.2662300.

H. Sampath, A. Merrick y A. Macvean, «Accessibility of Command Line Interfaces,» en Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems, ép. CHI '21,
Yokohama, Japan: Association for Computing Machinery, 2021, 1SBN: 9781450380966. DOI:

43

https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5
https://www.opentext.com/what-is/dast#:~:text=Dynamic%20Application%20Security%20Testing%20(DAST)%20is%20the%20process%20of%20analyzing,like%20a%20malicious%20user%20would.
https://www.opentext.com/what-is/dast#:~:text=Dynamic%20Application%20Security%20Testing%20(DAST)%20is%20the%20process%20of%20analyzing,like%20a%20malicious%20user%20would.
https://www.opentext.com/what-is/dast#:~:text=Dynamic%20Application%20Security%20Testing%20(DAST)%20is%20the%20process%20of%20analyzing,like%20a%20malicious%20user%20would.
https://www.opentext.com/what-is/dast#:~:text=Dynamic%20Application%20Security%20Testing%20(DAST)%20is%20the%20process%20of%20analyzing,like%20a%20malicious%20user%20would.
https://owasp.org/www-project-devsecops-guideline/latest/02c-Interactive-Application-Security-Testing
https://owasp.org/www-project-devsecops-guideline/latest/02c-Interactive-Application-Security-Testing
https://doi.org/10.1109/ICSGEA.2019.00131
https://doi.org/10.1109/ICSGEA.2019.00131
https://www.securityjourney.com/post/sast-vs-dast-vs-iast#:~:text=IAST%20Disadvantages,the%20assistance%20of%20a%20specialist.
https://www.securityjourney.com/post/sast-vs-dast-vs-iast#:~:text=IAST%20Disadvantages,the%20assistance%20of%20a%20specialist.
https://www.securityjourney.com/post/sast-vs-dast-vs-iast#:~:text=IAST%20Disadvantages,the%20assistance%20of%20a%20specialist.
https://www.synopsys.com/glossary/what-is-software-composition-analysis.html
https://www.synopsys.com/glossary/what-is-software-composition-analysis.html
https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools
https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools
https://doi.org/10.1109/TSE.1975.6312870
https://doi.org/10.1109/MC.2003.1204375
https://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
https://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
https://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
https://dl.acm.org/doi/pdf/10.1145/143062.143109
https://dl.acm.org/doi/pdf/10.1145/143062.143109
https://doi.org/10.1145/1031607.1031672
https://www.researchgate.net/publication/220879050_Field_studies_of_computer_system_administrators_Analysis_of_system_management_tools_and_practices
https://www.researchgate.net/publication/220879050_Field_studies_of_computer_system_administrators_Analysis_of_system_management_tools_and_practices
https://www.researchgate.net/publication/220879050_Field_studies_of_computer_system_administrators_Analysis_of_system_management_tools_and_practices
https://doi.org/10.1145/2662253.2662300
https://doi.org/10.1145/2662253.2662300
https://doi.org/10.1145/2662253.2662300

Referencias

[27]

[28]

[29]

[30]

10.1145/3411764 . 3445544 direccién: https://dl.acm.org/doi/pdf/10.1145/
3411764 .3445544.

AWS Cloud Comparisons, What's the Difference Between YAML and JSON? Direccién: htt
ps://aws.amazon.com/compare/the-difference-between-yaml-and-json/ (visitado
08-08-2024).

R. Nunkesser, «Using Hexagonal Architecture for Mobile Applications,» en International Con-
ference on Software Technologies, vol. 17, 2022, pags. 113-120, 1SBN: 978-989-758-588-3.
DOI: 10.5220/0011075100003266. direccion: https://www.scitepress.org/Papers/
2022/110751/110751 . pdf.

R. C. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure and Design, 1st.
USA: Prentice Hall Press, 2017, cap. The Clean Architecture, ISBN: 0134494164.

M. Richards, Software Architecture Patterns. O'Reilly Media, Inc, 2022, cap. Microkernel
Architecture, ISBN: 9781098134273.

44

https://doi.org/10.1145/3411764.3445544
https://dl.acm.org/doi/pdf/10.1145/3411764.3445544
https://dl.acm.org/doi/pdf/10.1145/3411764.3445544
https://aws.amazon.com/compare/the-difference-between-yaml-and-json/
https://aws.amazon.com/compare/the-difference-between-yaml-and-json/
https://doi.org/10.5220/0011075100003266
https://www.scitepress.org/Papers/2022/110751/110751.pdf
https://www.scitepress.org/Papers/2022/110751/110751.pdf

Anexos

45

A. Lista de métricas detallada

A continuacién se expone la lista de métricas candidatas, explicando su importancia y sefialando la
fuente donde se esperaba obtener este valor.

s Métricas relacionadas con el mantenimiento de la libreria:

= Nuamero de versiones: la cantidad de versiones que han sido publicadas a lo largo de la
vida del proyecto. Se puede pensar que un proyecto con un elevado nimero de versiones
puede ser un proyecto activo. Se debe poder obtener del registro piblico donde se expone
la libreria.

» Tiempo de vida del proyecto: el tiempo transcurrido entre la primera publicacién de
la libreria y la fecha actual. Se puede esperar que un proyecto con tiempo de vida largo
tenga menos probabilidades a ser abandonado. Se debe obtener del registro.

» Frecuencia media de publicacion de nuevas versiones: corresponde al tiempo pro-
medio que transcurre entre una publicacién y otra. Una frecuencia de publicacién alta
puede indicar un nivel de actividad alto. Se obtiene de dividir el nimero de versiones
entre el tiempo de vida del proyecto.

= Tiempo transcurrido desde la altima publicacion: si ha transcurrido mucho tiempo
desde la Ultima publicacién, puede ser un indicio de que el proyecto ha sido abandonado.
Este parametro se obtiene de la diferencia entre la fecha actual y la fecha de la dltima
publicacion.

» Numero de mantenedores: son las personas que aportan de forma activa al man-
tenimiento de la libreria y la construccién de nuevas caracteristicas. Si el nimero de
mantenedores es elevado, se puede considerar que hay menos riesgo de que se incluya
cédigo malicioso, se elimine o se abandone el proyecto. Se debe obtener del repositorio.

» Tipo de propietario del proyecto: el propietario de un repositorio puede ser una
empresa o persona. En términos generales, se puede preferir que el propietario sea una
empresa, por el respaldo que esto puede suponer para el proyecto. Este dato se debe
obtener del repositorio donde se aloja el cédigo fuente.

= Namero de Issues abiertos: corresponde a la cantidad de reportes que se crean para
discutir bugs, ideas de mejora o tareas pendientes. Una cantidad alta de issues abiertos
en un periodo corto de tiempo puede ser sintoma de una comunidad e interesada del
proyecto, aunque también puede indicar que algo esta yendo mal en el mismo. Este dato
se debe obtener del repositorio.

» Nuamero de Issues cerrados: es la cantidad de reportes que se cierran. Se espera que
todos los issues que se abren se cierren una vez la discusién lleva a una solucién del bug
o a la implementaciéon de la idea que se estaba abordando. Idealmente, se espera que el
nimero de issues cerrados sea cercano al de issues abiertos, si es asi, es senal de buena

46

capacidad de reaccién por parte del equipo que mantiene el proyecto. Este dato se debe
obtener del repositorio.

» Tiempo de vida de los Issues: ademas de cerrar los issues, es importante el tiempo que
tardan en ser resueltos. Un tiempo de vida bajo indica que los mantenedores responden
rapidamente a los desafios que se puedan encontrar los usuarios de una libreria. Este
dato se debe obtener calculando el tiempo transcurrido entre la apertura y el cierre de
cada issue que ha sido cerrado.

» Nuamero de Pull Requests activas: es |la cantidad de solicitudes de incorporacion de
cambios abiertas por la comunidad. En un proyecto de cédigo abierto, cualquier usuario
puede contribuir abriendo una Pull Request (PR), ya sea para corregir un defecto o para
incorporar nueva funcionalidad. El equipo de mantenedores debe revisar estas solicitudes
y aprobarla, rechazarla o solicitar modificaciones segiin consideren necesario. Un niimero
alto de PR’s abiertas en un periodo de tiempo puede significar un alto interés de la
comunidad en el proyecto, aunque también puede indicar una baja capacidad de respuesta
por parte de los mantenedores. Este parametro se debe obtener del repositorio.

= Ndmero de Pull Requests cerradas: al igual que con los issues, es importante que
las PR'’s se cierren, ya sea porque los cambios han sido aceptados e integrados, o porque
han sido rechazados. Lo ideal es que el total de las solicitudes de cambio se resuelvan,
si es asi, es senal de un nivel saludable de actividad por parte de la comunidad y los
mantenedores. Este dato se debe extraer del repositorio.

» Tiempo de vida de las Pull Requests: al igual que con los issues, es interesante saber
cual es el tiempo medio que tarda una PR en ser resuelta. Un tiempo bajo es una buena
senal de la capacidad de reaccion por parte de los mantenedores. Este dato se obtiene
de la diferencia entre la fecha de creacién y cierre de cada Pull Request.

= Porcentaje de salud del repositorio: es un parametro que se puede obtener del perfil
de la comunidad de GitHub. Esta relacionado con la presencia de documentacién basica
en el repositorio.

= Métricas relacionadas con la comunidad:

= Nudmero de descargas semanales desde el registro: el niimero de descargas de una
libreria se puede extrapolar al nimero de usuarios y de proyectos que dependen de esta. Un
numero elevado de descargas puede significar un mayor soporte para la libreria, al haber
un nimero elevado de usuarios interesados en mantener el proyecto vivo y saludable.
Este valor se deber recuperar del registro publico.

= Nudmero de estrellas en el repositorio: |as estrellas son una forma de mostrar “aprecio”
por un proyecto, a la vez que permite guardar proyectos de interés para hacer seguimiento
sin recibir notificaciones de la actividad del repositorio. Un nimero alto de estrellas en
un repositorio refleja un interés elevado por parte de otros usuarios. Este pardmetro se
debe extraer del repositorio.

= Nuamero de Forks del repositorio: nimero de veces que el proyecto ha sido copiado
para trabajar de forma paralela en otras caracteristicas. Si el proyecto tiene un alto
numero de “forks”, puede indicar una relevancia alta para la comunidad. Este dato se
debe extraer del repositorio publico.

= Numero de proyectos dependientes: en algunos registros, como npm, es posible
encontrar la lista de proyectos que dependen de una libreria en particular. Un elevado

47

numero de proyectos dependientes implica un grupo proporcional de usuarios interesados
en mantener el proyecto saludable. Este dato se debe poder extraer del registro.

Nuamero de observadores: cantidad de usuarios que reciben notificaciones de todas la
actividad en el repositorio, como issues, Pull Requests y cambios en el cédigo fuente.
Un ndmero alto de observadores puede servir como garantia de que el proyecto tiene un
buen respaldo y una alta capacidad de respuesta. Este pardmetro se debe buscar en el
repositorio.

48

1

B. ;Como dar soporte a otros lenguajes?

Para dar soporte a otros lenguajes, se necesita primero identificar las fuentes de datos y, posterior-
mente, construir tres elementos en la herramienta: los Builders para obtener informacién de las
fuentes identificadas; el BuilderDirector con el cual trabaja el sistema central; y por ultimo, la
funcién encargada de detectar las dependencias del proyecto.

La complejidad de un Builder depende de la cantidad de datos que obtiene de su fuente y la
complejidad del calculo de las métricas para construir la libreria. Aunque se puede decir que, en
general, son clases muy sencillas que implementan un Gnico método publico definido por la interfaz.
A continuacién se muestra la interfaz y un ejemplo de implementacién usado en la herramienta.

export interface LibraryBuilder {
addLibraryParams(lib: Library): Promise<void>;

3

async function getNpmDownloads(libName: string) {
try {
const downloads = await httpGet(npmDownloadsUrl(libName));
return JSON.parse(downloads) as NpmDownloads;
} catch (e) {
throw new Error ("Error getting downloads for ${libNamel});

b

export class NpmDownloadsBuilder implements LibraryBuilder {
async addLibraryParams(library: Library) {
const npmDownloads = await getNpmDownloads(library.name) ;
if (npmDownloads) library.weeklyDownloads = npmDownloads.downloads || 1;

}

En cuanto a los Directores, como la tnica diferencia entre instancias para diferentes lenguajes son sus
atributos (la implementacién es idéntica, solo cambian los vectores que asocian fuentes y Builders),
se optd por crear una Unica clase e inicializar estos atributos a través del constructor. En el bloque
de cddigo a continuacién como se muestra cémo se instancia el BuilderDirector para JavaScript.

function createJavascriptBuilder() {
const jsParams = new Map<keyof Library, Source>();
jsParams.set ("repoName", NPM);

49

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

10

11

12

13

14

15

16

17

jsParams.
jsParams.
jsParams.
jsParams.
jsParams.
jsParams.
jsParams.
jsParams.
jsParams.
jsParams.
jsParams.
jsParams.

set ("repoOwner", NPM);

set ("numberOfVersions", NPM);
set ("weeklyDownloads", NPM_DOWNLOADS) ;
set("lastVersion", NPM);
set("lastVersionDate", NPM);
set("lifeSpan", NPM);

set ("releaseFrequency", NPM);
set ("repoOpenIssues", GITHUB);
set ("repoStars", GITHUB);

set ("repoForks", GITHUB);

set ("repoObservers", GITHUB);
set ("repoOwnerType", GITHUB);

jsParams.set("repoHealth", GITHUB_COMUNITY) ;

const jsBuilders = new Map<Source, LibraryBuilder>Q);
jsBuilders.set (NPM, new NpmBuilder());

jsBuilders.set (NPM_DOWNLOADS, new NpmDownloadsBuilder());
jsBuilders.set (GITHUB, new GithubBuilder());

jsBuilders.set (GITHUB_COMUNITY, new GithubCommunityBuilder());

return new BuilderDirector(jsParams, jsBuilders);

Para extender a Java, por ejemplo, habria que crear tantos Builders como fuentes hagan falta para
completar los atributos de la libreria. Después, habria que anadir estos Builders al director en la
funcién que se muestra a continuacién. De este modo, la funcién createBuilderDirector estaria
preparada para crear directores de Java y de JavaScript.

function createJavaBuilder() {
const javaParams = new Map<keyof Library, Source>();
/* @TODO: Map labrary attributes to data sources */
const javaBuilders = new Map<Source, LibraryBuilder>();
/* @TODO: Implement Java builders and add to map */
return new BuilderDirector(javaParams, javaBuilders);

export function createBuilderDirector(language: string) {
if (language === "javascript") {
return createJavascriptBuilder();
}
if (language === "java") {
return createJavaBuilder();

b

throw new Error(’Language ${language} not supported’);

3

50

10

11

12

13

14

15

16

17

18

19

20

21

22

Por Gltimo, para poder analizar todas las dependencias de un proyecto, hace falta una funcién que
permita leer el archivo de configuracion segun el lenguaje al que se esté dando soporte. Por ejemplo,
actualmente la herramienta cuenta con una funcién que lee el archivo package.json y extrae las
dependencias de un proyecto de JavaScript, como se muestra en el bloque de cddigo a continuacién.
Para dar soporte a Java, siguiendo el ejemplo de antes, haria falta construir la funcién encargada de
leer el archivo pom.xml del proyecto para extraer las dependencias.

async function getJavascritDeps() {
const packageJson = await readFileAsync("./package.json", "utf8");
const parsedPackageJson = JSON.parse(packageJson) ;
const allDeps = {
.. .parsedPackageJson.dependencies,
.. .parsedPackageJson.devDependencies,
} as Record<string, string>;
for (const dep in allDeps) {
allDeps[dep] = allDeps[dep].replace(""", "").replace("™", "");
+

return allDeps;

export async function getProjectDeps(language: string) {
if (language === "javascript") {
return await getJavascritDeps();
}
if (language === "java") {
/**% @TODO: add function to read Java deps */
}
throw new Error(Language ${language} not supported’);

X

51

C. ;Como crear otros reportes?

Para crear otros formatos e interfaces, basta con crear una nueva implementacién de la interfaz
Contexto explicada en la seccion 3.4. El contexto debe tener un método para mostrar errores y otro
para mostrar los resultados, tal como se muestra en el bloque de cédigo a continuacion.

interface ExecutionContext {
showResults: (
results: Map<string, ResultsStore>,
indicators?: stringl[]
) => void | Promise<void>;
showError: (error: unknown) => void;

El método para mostrar los resultados recibe dos argumentos: el vector asociativo (Map) que contiene
los resultados para cada libreria analizada (linea 3) y la lista de indicadores que fueron evaluados
(Iinea 4). La lista de indicadores se envia aparte porque puede que algunos resultados no contengan
todos lo indicadores, esto debido a las condiciones de parada o a posibles errores en la ejecucién.
Esto se observa en a figura 5.7, donde algunas librerias tienen espacios en gris sehalando que esos
indicadores no fueron evaluados.

Para crear un nuevo reporte, se puede recorrer el vector asociativo extrayendo los resultados de cada
libreria y, luego, recorrer la lista de indicadores analizados para cada libreria, extrayendo el resultado
de cada uno de ellos del ResultsStore, si es que existe.

En el reporte en formato HTML, por ejemplo, se utilizan estos dos bucles para crear la tabla, el
primero permite crear una fila por cada libreria, mientras que el segundo crea la celda con el resultado
para cada indicador. En el repositorio del proyecto se pueden encontrar las implementaciones tanto
del reporte en HT ML como del reporte en consola, que pueden servir de guia a la hora de implementar
una clase para un nuevo formato.

52

https://github.com/FreddyMartinez/deps-scout/blob/master/src/ctx/htmlContext.ts
https://github.com/FreddyMartinez/deps-scout/blob/master/src/ctx/consoleContext.ts

~

D. ;Coémo anadir nuevos indicadores?

Para afiadir un nuevo indicador, se deben crear una clase que implemente la interfaz Indicador
explicada en la secciéon . Esta interfaz se muestra a continuacién.

interface Indicator {
name: string;
evaluate: (lib: Library) => IndicatorResult;
message: string | ((...data: unknown[]) => string);
parameters: Array<keyof Library>;
preconditions?: Array<IndicatorPrecondition>;
setThresholds?: (thresholds: IndicatorThresholds) => void;

Las clases que implementan esta interfaz necesitan: un nombre (linea 2) para ser identificadas en
el registro, una lista de parametros (linea 5) que permite a la herramienta saber si dispone de la
informacidn necesaria para la evaluacién o si debe consultarla, una funcién de evaluacién (linea 3)
que recibe la instancia de la libreria y retorna el resultado y, por dltimo, el mensaje (linea 4) que
permitird mostrar al usuario el resultado de la evaluacién en un formato legible. Las pre-condiciones
(Iinea 6) son opcionales, este atributo permiten sefialar los indicadores que deben ser evaluados antes
que el indicador en cuestién; el método setThresholds también es opcional, este permite establecer
los umbrales que selecciona el usuario mediante el archivo de configuracién, es especialmente (til
para aquellos indicadores que utilizan métricas cuantificables.

Si el nuevo indicador usa métricas que no se estan incluyendo actualmente como propiedades del
objeto libreria, se debe primero afiadir el atributo al modelo de libreria (bloque de cédigo 1) y luego
modificar el sistema de extraccion de datos para obtener esas nuevas métricas. Si se trata de extraer
esos datos de nuevas fuentes podria hacer falta afiadir nuevos Builders, tal como se muestra en el
anexo B.

En el repositorio del proyecto se encuentran los indicadores desarrollados hasta ahora, estos pueden
servir de ejemplo para las nuevas implementaciones. En el fichero de indicadores de actividad del re-
positorio, por ejemplo, se encuentran varias implementaciones que usan caracteristicas cuantitativas
como cualitativas.

53

https://github.com/FreddyMartinez/deps-scout/blob/master/src/core/indicators/repoActivityIndicators.ts
https://github.com/FreddyMartinez/deps-scout/blob/master/src/core/indicators/repoActivityIndicators.ts

E.

Cronograma del proyecto

A continuacién se exponen las tareas principales que se llevaron a cabo en este proyecto. Asimismo,
en la figura E.1 se presenta (a groso modo) la distribucién temporal de estas tareas.

Definicién inicial del proyecto: identificacion del problema y definicién de objetivos.

Andlisis de antecedentes y revisién bibliografica: se llevé a cabo una bilsqueda y revision
inicial de documentacién relacionada con el problema. Se incluyeron incidentes, herramientas
y estudios relacionados con el manejo de dependencias de terceros.

Identificacién de métricas y fuentes de datos: consistid en el anlisis presentado en el capitulo 2.

Diseno y desarrollo de la herramienta: como se expuso en los capitulos 3 y 4, el sistema cuenta
con 3 médulos principales, los cuales se disefiaron, desarrollaron y probaron de forma iterativa
y, hasta cierto punto, paralela. La distribucion de tiempo se muestra de forma aproximada
para cada uno de ellos en la figura E.1.

Validacién y ajuste de la herramienta: consistié en el proceso de pruebas con otros proyectos,
usuarios y herramientas, que se exponen en el capitulo 5.

Documentacién del trabajo: consiste principalmente en la elaboracién de esta memoria.

diciembre 2023 enero 2024 febrero 2024 marzo 2024 abril 2024 mayo 2024 junio 2024 julio 2024 agosto 2024

Definicién inicial del proyecta

Andlisis de antecedentes y
revision bibliografica

Identificacion de métricas y
fuentes de datos

Disefio y desarrollo del sistema
central de la herramienta

datos

Disefio y desarrollo del
mecanismo de extraccion de

Disefio y desarrollo del sistema
de reporte

Validacion y ajuste de la
version inicial

Documentacion del trabajo

Figura E.1: Cronograma del trabajo realizado.

54

	Introducción
	Riesgos asociados al uso de librerías de terceros
	Técnicas y herramientas de detección de riesgos
	Detección de vulnerabilidades y exposiciones comunes
	Detección de otros riesgos

	Objetivos
	Alcance
	Metodología
	Organización de la memoria

	Análisis
	Enfoque del problema
	Métricas
	Fuentes de datos
	Indicadores
	Evaluación de indicadores
	Interfaz de usuario
	Alternativas arquitecturales
	Requerimientos del sistema
	Requerimientos funcionales
	Requerimientos no funcionales

	Diseño
	Arquitectura del sistema
	Sistema central
	Interfaz Indicador
	Componente de Registro
	Componente Ejecutor

	Mecanismo de extracción de datos
	Componente Builder
	Componente Director

	Sistema de reporte
	Resultado final

	Desarrollo
	Sistema central
	Mecanismo de extracción de datos
	Sistema de reporte
	Buenas prácticas de desarrollo

	Pruebas funcionales de la herramienta
	Pruebas locales y uso de la herramienta
	Validación con otros proyectos
	Validación con otras herramientas de SCA
	Validación con otros usuarios

	Conclusiones
	Objetivos alcanzados
	Trabajo futuro
	Reflexión personal

	Glosario
	Referencias
	Anexos
	Lista de métricas detallada
	¿Cómo dar soporte a otros lenguajes?
	¿Cómo crear otros reportes?
	¿Cómo añadir nuevos indicadores?
	Cronograma del proyecto

