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1 Introducción

En este trabajo vamos a realizar un cálculo de QCD en el ret́ıculo con el objetivo de obtener

los factores de forma hadrónicos del proceso de decaimiento B → Dℓν, lo que permite calcular el

elemento Vcb de la matriz CKM. Para ello se realizan simulaciones de 7 ensembles de configuraciones

de campos gauge distintos, en los que el espaciado del ret́ıculo vaŕıa desde los 0.058 fm hasta los

0.15 fm, probando también distintos ratios de masas del pión (ya que solo modificamos las masas

de los quarks ligeros u y d). En el caso de los quarks pesados, que en nuestro trabajo son el c y

el b, usamos fermiones de Wilson mejorados con la interpretación de Fermilab y para los ligeros

utilizamos fermiones staggered mejorados.

Para el cálculo del elemento Vcb hay dos métodos comunes: utilizando los procesos exclusivos B →
Dℓν y B → D∗ℓν con determinaciones de los factores de forma hadrónicos relevantes estudiando

QCD en el ret́ıculo [19], o usando la desintegración inclusiva B → Xcℓν a cualquier estado final

que contenga el quark charm Xc y el formalismo del desarrollo del de producto de operadores y

quarks pesados para describir los efectos de la interacción fuerte [12]. Existe una tensión de ≈ 3σ

entre las determinaciones inclusiva y exclusiva de Vcb, por lo que se necesitan cálculos más precisos

de este elemento de matriz para ver si se trata de una discrepancia producida por subestimar los

errores sistemáticos tanto teóricos como experimentales o si bien es un caso de nueva f́ısica.

Comenzaremos introduciendo la importancia del elemento Vcb, continuaremos estudiando conceptos

básicos del cálculo de teoŕıa cuántica de campos en el ret́ıculo, profundizaremos en el apartado

teórico que usaremos para nuestras simulaciones, veremos cómo podemos realizar este estudio en

el ret́ıculo y terminaremos analizando las funciones de correlación relevantes que nos permitirán

calcular los factores de forma h+ y h−.

2 La matriz CKM y el elemento Vcb

Empezaremos introduciendo la importancia de este trabajo en la f́ısica actual. Al trabajar con la

interacción de Yukawa con el condensado del Higgs, nos encontramos que cuando el potencial ϕ

adquiere un valor esperado en el vaćıo, el Lagrangiano de dichas interacciones lleva a un término

de masa para los quarks. Aśı, cuando uno trabaja para obtener sus autoestados diagonalizando

dicho término de masa, lo que se encuentra es que se produce un acoplo entre las interacciones de

las corrientes cargadas W± y los estados f́ısicos de los quarks uLj y dLj , o, con otras palabras,

se encuentra que la base en la que se diagonaliza el término de masa no es la misma en la que se

diagonalizan las interacciones débiles. Dicho acoplo tiene la siguiente forma en el Lagrangiano: [9]

− g√
2

(
uL, cL, tL

)
γµW+

µ VCKM

dLsL
bL

+ h.c. (1)

De tal modo, vemos que aparece un elemento VCKM , la cual es la matriz unitaria que nos relaciona

ambas bases y que tiene la siguiente forma:

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (2)

en donde los términos Vij nos dicen cómo se mezclan las diferentes familias, lo que implica que al

observar un autoestado de sabor de b, s o d en realidad estemos observando una combinación lineal

de autoestados de masa, permitiendo pasar de una familia a otra. En general, una matriz unitaria
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N ×N tiene N2 parámetros reales, de los cuales 2N − 1 pueden ser absorbidos por los campos de

quarks que multiplican los lados derecho e izquierdo de la matriz, mediante una redefinición global

de las fases arbitrarias. De los (N − 1)2 parámetros libres restantes, N(N − 1)/2 son los ángulos

de Euler, comunes tanto a la matriz real (ortogonal) como a la matriz compleja (unitaria), y los

otros son fases complejas. Por ello, en N = 3 tenemos 4 parámetros libres: 3 denominados los

ángulos de mezcla y otro que es una fase compleja, denominada fase de violación CP. La simetŕıa

CP es aquella que nos garantiza que bajo transformación de carga y de paridad (o como CPT se

conserva, es equivalente a simetŕıa temporal T) los procesos son invariantes. Sin embargo, en 1964

se observó que el mesón K decáıa más en π−e+νe que π+e−ν̄e, por lo que esta no se respeta en

la naturaleza y es esta fase compleja de la matriz CKM la que permite que esto se produzca. Con

ello, la forma que tiene esta matriz es:

VCKM =

 c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13
s12s23 − c12c23s13e

iδ13 −c12s23 − s12c23s13e
iδ13 c23c13

 (3)

con cij = cos θij , sij = sin θij , donde θij es el ángulo de mezcla entre la i-ésima y la j-ésima

generación y δ13 es el ángulo de fase.

De este modo, el objetivo de los experimentos suele ser obtener los parámetros de esta matriz con

la mayor precisión posible y aśı poder encontrar diferencias entre los resultados de distintas formas

de aproximar el problema, lo que permitiŕıa encontrar desviaciones del Modelo Estándar y por ende

nuevas rutas de investigación. En nuestro caso, trabajamos con el elemento Vcb, el cual juega un

papel crucial en el triángulo de unitariedad. Como hemos dicho, la matriz CKM ha de ser unitaria

para que la probabilidad de transición se conserve, por lo que impone las siguientes condiciones a

sus elementos:
|Vid|2 + |Vis|2 + |Vib|2 = 1 para i = u, c, t

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

(4)

La tercera de ellas es realmente interesante, ya que permite dibujar un triángulo en el plano

complejo cuyos lados tienen longitudes similares a orden O(λ3) (λ ≈ s12) y por tanto los ángulos

tienen amplitudes similares. Esta, además, se puede normalizar diviendo por VcdV
∗
cb, lo que permite

escribir la expresión que define el triángulo de unitariedad :

1 +
VtdV

∗
tb

VcdV ∗
cb

+
VudV

∗
ub

VcdV ∗
cb

= 0 (5)

Con todo, vemos que nuestro elemento Vcb juega un papel fundamental a la hora de normalizar la

expresión y por tanto nos sirve como test excelente para encontrar desviaciones de la teoŕıa o los

parámetros medidos [6].

3 Introducción a la teoŕıa cuántica de campos en el ret́ıculo

Cuando trabajamos con la teoŕıa cuántica de campos, más concretamente con la cromodinámica

cuántica (QCD), lo que nos encontramos es una interacción que media entre quarks y gluones, la

cual a distancias cortas o altas enerǵıas es débil, pero que a medida que la enerǵıa aumenta se

convierte en una interacción muy fuerte y la teoŕıa de perturbaciones deja de funcionar. Ello hace

que surja la necesidad de trabajar con técnicas no perturbativas, entre las que aparece el ’lattice

QCD’, o QCD en el ret́ıculo. Generalmente, lo que se hace es regularizar QCD introduciendo un

ret́ıculo espacio-temporal, en el que colocamos los quarks en puntos fijos de este y los campos gauge
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serán los links que unen las distintas posiciones.

Matemáticamente, esto se traduce a que para definir una teoŕıa de campo en el lattice normalmente

la definimos directamente desde la acción del lattice por medio de la integral de camino, imponiendo

como condición obvia que cuando hagamos el ĺımite al continuo se reproduzcan los resultados de la

teoŕıa en el continuo. Lo que haremos será coger un caso muy simple para poder introducir todos

los conceptos del ret́ıculo y de la integral de camino sin perder mucho tiempo en detalles que se

irán explicando a su debido momento. Empecemos por el correlador de dos puntos en el espacio

Euclideo:

⟨O2(t)O1(0)⟩T =
1

ZT
tr
[
e−(T−t)ĤÔ2e

−tĤÔ1

]
, (6)

en donde Oi son operadores que crean o aniquilan estados del vaćıo con unos números cuánticos

dados y ZT es el factor de normalización:

ZT = tr
[
e−TĤ

]
(7)

Trabajando en la base de autoestados de Ĥ|n⟩ = En|n⟩, podemos evaluar la traza de (7), obte-

niendo:

ZT =
∑
n

⟨n|e−TĤ |n⟩ =
∑
n

e−TEn , (8)

y el correlador de los operadores:

⟨O2(t)O1(0)⟩T =
1

ZT

∑
m,n

⟨m|e−(T−t)ĤÔ2|n⟩⟨n|e−tĤÔ1|m⟩

=
1

ZT

∑
m,n

e−(T−t)Em⟨m|Ô2|n⟩e−tEn⟨n|Ô1|m⟩.
(9)

Podemos obtener entre ambas expresiones:

⟨O2(t)O1(0)⟩T =

∑
m,n⟨m|Ô2|n⟩⟨n|Ô1|m⟩e−t∆Ene−(T−t)∆Em

1 + e−T∆E1 + e−T∆E2 + · · ·
, (10)

donde ∆E = En − E0 es la diferencia de enerǵıa entre estados excitados y el fundamental. Para

terminar con los correladores, podemos estudiar el ĺımite cuando T → ∞, y asumiendo que la

enerǵıa fundamental no es nula, lo que ocurrirá será que el denominador tienda a la unidad y por

tanto tengamos:

lim
T→∞

⟨O2(t)O1(0)⟩T =
∑
n

⟨0|Ô2|n⟩⟨n|Ô1|0⟩e−tEn . (11)

que como veremos más adelante jugará un papel crucial en nuestro trabajo.

Por otra parte, es necesario introducir, aunque sea de forma muy breve, el factor Z que aparece

para normalizar el correlador. Si trabajamos en la base canónica de cuantización en la que se

impone [x̂, p̂, ] = i y p = −i d
dx , el factor Z tiene una expresión como la que sigue:

Zϵ
T = CNT

∫
dx0 . . . dxNT−1 exp

−ϵ
NT−1∑
j=0

(
m

2

(
xj+1 − xj

ϵ

)2

+ U(xj)

) , (12)

donde imponemos condiciones periódicas xNt ≡ x0. En (12) encontramos un factor ϵ que aparece

a causa de separar el tiempo en trozos más pequeños, y se relaciona con el tiempo Eucĺıdeo como

T = ϵNT , es decir, multiplicar cada fragmento temporal por el número total de fragmentos nos
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devuelve el tiempo total. De esta expresión se puede deducir a simple vista lo siguiente:

xj+1 − xj
ϵ

= ẋ(t) +O(ϵ) con t = jϵ, (13)

ϵ

NT−1∑
j=0

. . . =

∫ T

0

dt . . .+O(ϵ) con T = NT ϵ. (14)

Y entonces gracias a eso tenemos:

ϵ

NT−1∑
j=0

(
m

2

(
xj+1 − xj

ϵ

)2

+ U(xj)

)
=

∫ T

0

dt
(m
2
ẋ(t)2 + U(x(t))

)
+O(ϵ). (15)

en donde el lado derecho no es más que la acción Eucĺıdea, que se obtiene de la acción t́ıpica S

cambiando el tiempo real por imaginario y rotando el contorno de integración, por lo que S = iSE .

Con todo, hemos llegado a que el factor de normalización Z no es más que una expresión en la

que dividimos el espacio Eucĺıdeo T en una serie de trozos ϵ y que en cada paso temporal lo que

hacemos es insertar una variable xj que integramos de −∞ a ∞, pero como integramos para todos

los posibles valores de xj y cada conjunto de {xj} se puede interepretar como un camino, lo único

que hacemos es evaluar a todos los caminos posibles.

Para continuar con nuestra introducción, una vez hemos visto estos términos principales del trabajo,

hemos de ver las expresiones que se obtienen cuando se cuantiza la teoŕıa a partir de aplicar la

integral de camino a las distintas variables de los campos clásicos y no por medio de la cuantización

canónica. Aqúı, veremos lo más importante, sin entrar en detalles al ser un cálculo excesivamente

largo para este trabajo. Además, hemos de saber que, todo lo introducido debe respetar que cuando

T → ∞ siempre se debe volver a obtener (11). Las expresiones de los correladores son de la forma:

⟨O2(t)O1(0)⟩T =
1

ZT

∫
D[Φ]e−SE [Φ]O2[Φ(., nt)]O1[Φ(., 0)] (16)

y la función de normalización:

ZT =

∫
D[Φ]e−SE [Φ], con D[Φ] =

∏
n∈Λ

dΦ(n) (17)

siendo este término D[Φ] el producto de todas las variables de integración de los distintos campos

de los n puntos que existen en el ret́ıculo Λ.

En resumen, los pasos a seguir para obtener esto son simples: empezamos sustituyendo el espacio

continuo 4D Eucĺıdeo por un ret́ıculo de espaciado a, con grados de libertad equivalentes al número

de campos que existan; luego cuantizamos la acción Eucĺıdea de modo que cuando tendamos a→ 0

se recupere el resultado del continuo; y por último acabamos sustituyendo los campos clásicos por

funcionales mediante la sustitución de dichos campos por las variables clásicas del ret́ıculo.

Por último, para concluir con este apartado hemos de irnos a QCD y hablar de los campos de

dicha teoŕıa. Como es conocido, estos deben formar parte del grupo SU(3). Si introducimos un

fermión en el ret́ıculo de forma naive, surge el problema de que los términos de la acción de estos

que incluyen la derivada discretizada no son invariables gauge. Por ello, es necesario introducir un

campo Uµ(n) con una dirección µ que se transforme como:

Uµ(n) → U ′
µ(n) = Ω(n)Uµ(n)Ω(n+ µ̂)† con Ω(n) ∈ SU(3). (18)
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Estos elementos de matriz están orientados, como es lógico al tener una dirección, y están ligados

al link del lattice en la dirección en la que apuntan. Con todo, la importancia de estos campos

gauge radica en que cuando trabajemos en QCD serán las variables fundamentales sobre las que

realizaremos nuestra integral de camino. Por tanto, en resumen, las expresiones que tendremos de

forma génerica al trabajar en QCD:

⟨O⟩ = 1

Z

∫
D[U ] e−SG[U ]O[U ] con Z =

∫
D[U ] e−SG[U ]. (19)

y si incluimos fermiones genéricos (hablaremos más en detalle de esto en el próximo punto), el

propagador de un mesón formado por dos quarks será:

〈
OT (n)OT (m)

〉
= − 1

Z

∫
D[U ] e−SG[U ] det[Du] det[Dd] × tr

[
ΓD−1

u (n|m)ΓD−1
d (m|n)

]
, (20)

Z =

∫
D[U ] e−SG[U ] det[Du] det[Dd]. (21)

donde los determinantes y las trazas de los operadores de Dirac para los quarks u y d aparecen

como consecuencia de calcular la parte fermiónica del valor esperado del operador, debido a las

reglas de integración para variables de Grassmann (nuevamente esto es solo una introducción, todo

el desarrollo se puede seguir en el caṕıtulo 6 de [13]).

3.1 Fermiones staggered y de Wilson

Cuando intentamos discretizar la acción de Dirac para describir los fermiones, obtenemos:

Snaive
L → 1

2a

∑
n,µ

[
ψ̄nγµUµ(n)ψn+µ̂ − ψ̄nγµUµ(n− µ̂)†ψn−µ̂

]
+m

∑
n

ψ̄nψn. (22)

donde encontramos la diferencia con la acción clásica por el término 1
2a (ψn+µ̂ − ψn−µ̂), que se

corresponde con la derivada definida en el ret́ıculo; y con Uµ(n) y Uµ(n− µ̂)†, que son los links que

nos permiten conectar los distintos vecinos del ret́ıculo. A partir de ello, se construye el propagador

libre:
1

a
S(p) = (iγµ sin pµa+ma)−1 =

−iγµ sin pµa+ma∑
µ sin

2 pµa+m2a2
. (23)

Y en este es donde debemos detenernos un poco, sobre todo en el momento 4-dimensional pµ,

el cual va desde −π/a hasta π/a. Como es sabido, cuando uno trabaja con teoŕıas cuánticas de

campo en el continuo, los modos del fermión están definidos como singularidades en el propagador,

siendo 4 que se juntan en el espinor de Dirac. No obstante, en el caso del ret́ıculo, estos modos

aparecen degenerados, pues los tenemos tanto en p = (0, 0, 0, 0), ap = (π, 0, 0, 0), ap = (0, π, 0, 0),...,

ap = (π, π, π, π). De este modo, cuando a tiende a 0 el propagador es dominado por los lugares

donde el denominador es pequeño, pero en el caso del ret́ıculo resultan ser 16, es decir, en todas las

esquinas de la zona de Brillouin, resultando este ser el problema del doubling, es decir, el problema

de que aparezcan fermiones que son efectos del lattice y no f́ısicos. Existen muchas propuestas

para solucionar este problema, aunque todas interfieren con la simetŕıa quiral, pues atendiendo al

teorema de Nielsen–Ninomiya [18], vemos que si tenemos una formulación local, hermı́tica y con

simetŕıa translacional, mantener la simetŕıa quiral siempre va a introducir doubling.

Una de estas soluciones son los fermiones de Wilson, los cuales se construyen añadiendo a la acción

6



del fermión un término de segunda derivada:

SW = rψ̄DWψ = − r

2a

∑
n,µ

ψ̄n(ψn+µ̂ − 2ψn + ψn−µ̂) ≃ −ar
2
ψ̄D2ψ, (24)

lo que lleva a que el propagador tenga la forma:

1

a
S(p) =

−iγµ sin(pµa) +ma− r
∑

µ(cos(pµa)− 1)∑
µ sin

2(pµa) +
[
ma− r

∑
µ(cos(pµa)− 1)

]2 . (25)

El nuevo término no contribuye a pµ = 0, pero para momentos pµ = π/a añade una contribución

2/a. Este término actúa como un término de masa y hace que los doublers tengan un término de

masam+2ℓ/a, donde ℓ es el número de componentes con momento pµ = π/a. Aśı, esto permite que

cuando estudiemos el ĺımite al continuo a→ 0, los doublers se hagan muy pesados y se desacoplen

de la teoŕıa, con lo que nos quedamos solo con los fermiones f́ısicos. Sin embargo, esta solución,

como anticipamos antes, rompe de forma expĺıcita la simetŕıa quiral.

Otra solución bastante óptima es la de trabajar con fermiones staggered, que se obtienen a partir

de la transformación local ψn → Ωnψ
′
n y ψ̄n → ψ̄′

nΩ
†
n, en donde Ωn = γn0

0 γn1
1 γn2

2 γn3
3 . Con todo,

usando:

Ω†
nγµΩn+µ̂ = (−1)n0+n1+···+nµ−1 ≡ αµ(n), (26)

podemos reconstruir la acción (22) como:

S =
1

2a

∑
n,µ

ψ̄′
nαµ(n)

[
Uµ(n)ψ

′
n+µ̂ − Uµ(n− µ̂)†ψ′

n−µ̂

]
+m

∑
n

ψ̄′
nψ

′
n. (27)

y aunque ψ′ sea un espinor de 4 componentes, todas ellas son independientes y actúan de forma

idéntica, aśı que podemos reducir la multiplicidad de nuestros fermiones naive simplemente descar-

tando todas menos una componente de Dirac de ψ′. Aśı, la componente resultante χn es el fermión

staggered con la acción de una componente:

S =
1

a
χ̄M(U)χ

=
1

2a

∑
n,µ

χ̄nαµ(n)
[
Uµ(n)χn+µ̂ − Uµ(n− µ̂)†χn−µ̂

]
+m

∑
n

χ̄nχn.
(28)

Por ende, dependiendo de la dirección espacial en la que nos desplacemos desde nuestro fermión

staggered tendremos un signo u otro, lo que hará que las funciones de correlación asociadas a estos

fermiones sean oscilantes, algo que deberemos tener en cuenta a la hora de realizar las simulaciones

y calcular los resultados.

Con todo, nosotros usaremos ambas regularizaciones para los fermiones, los staggered para los

quarks ligeros y la de Wilson para trabajar con los quarks pesados b y c.

3.2 Mejoras a QCD en el lattice

Como se ha ido viendo, cuando pasamos al ret́ıculo hemos de discretizar todos los objetos con

los que usualmente se trabaja en el continuo. En el ret́ıculo, la escala infrarroja está fijada por

el tamaño L del ret́ıculo, y fijando mπL > 4, con mπ la masa del pión, se consigue que los

grados de libertad ligeros, como el propio pión, no sean modificados. Sin embargo, la escala del

ultravioleta viene fijada por la mı́nima resolución del sistema, el espaciado a. Por ello, para poder

resolver la propagación de los grados de libertad pesados, como puede ser el quark b, se necesitaŕıa
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que su masa estuviese lejos del ĺımite 1/a, lo que sustituyendo los valores f́ısicos lleva a concluir

que se necesitan ret́ıculos en los que L/a debe ser mucho mayor que 100 para poder mantener a

raya al mismo tiempo los efectos del volumen finito y del espaciado. Para lidiar con ello se utilizan

generalmente 2 teoŕıas de campo efectivas: el programa de mejoras de Symanzik y la teoŕıa efectiva

de quarks pesados (HQET). Empezaremos estudiando el programa de mejoras de Symanzik, y para

entenderlo partamos de la acción efectiva en la forma:

Seff =

∫
d4x

(
L(0)(x) + aL(1)(x) + a2L(2)(x) + . . .

)
. (29)

en donde a es el espaciado del ret́ıculo que sirve para discretizar la expresión, L(0) es la densidad

lagrangiana estándar de QCD y los términos L(k) con k ≥ 1 son correciones que aparecen por los

productos de los campos de los quarks y de los gluones. Como es evidente, al tener a dimensiones

de longitud, estos términos de correcciones han de tener dimensiones de longitud−(−4+k). La idea,

en general, es añadir términos que hagan que los términos de corrección desaparezcan hasta el

orden que deseemos. En este caso, nos quedamos a orden O(a), que es la corrección dominante,

por lo que solo necesitamos un término cancele esta. Aśı, con un poco de esfuerzo (se sale del

objetivo de este trabajo, para más detalle veáse [13]) este término L(1) se puede cancelar en la

regularización de Wilson para los fermiones escribiendo la acción como:

SI = SWilson + csw a
5
∑
n∈Λ

∑
µ<ν

ψ̄(n)
1

2
σµν F̂µν(n)ψ(n). (30)

en donde el coeficiente real csw es el coeficiente Sheikholeslami–Wohlert y F̂µν ha de ser la forma

discretizada del término correspondiente en L(1). Este término se escribe en cada punto como una

suma de plaquetas, que son los loops cerrados más pequeños que se pueden formar entre distintos

puntos del ret́ıculo, con origen en dicho punto, formando un trébol, de ah́ı la denominación de

clover improvement.

En este trabajo se utiliza el tadpole improvement. En teoŕıa de perturbaciones del ret́ıculo, un

link se puede expandir como:

Uµ(x) = exp[iagAµ(x)] → 1 + iagAµ(x)−
a2g2Aµ(x)

2

2
+ . . . . (31)

Aqúı vamos a detenernos un poco. Como es sabido, en una teoŕıa continua aparecen divergencias

UV que hacen necesaria una regularización. Sin embargo, cuando nos vamos al ret́ıculo, el propio

espaciado a actúa como regularizador porque existe un corte natural en el espaciado del ret́ıculo. No

obstante, cuando estudiamos los diagramas de Feynmann de la teoŕıa, vemos que ciertas funciones

de los vértices tienen una dependencia expĺıcita con a, los cuales son los que hacen que desaparezcan

estas divergencias UV, pero que, a su vez, causa que cuando nos vayamos al ĺımite al continuo

estos términos dependan también de la constante de acoplo g, haciendo aparecer diagramas de

tadpole, que son diagramas en los que solo existe una ĺınea externa y que aparecen por la parte

de momento alto de los campos gauge. De este modo, como sus contribuciones son muy grandes,

se hace necesario eliminarlos, para lo que se añade un factor de tadpole que parametriza la parte

ultravioleta, es decir, sustituimos el link por su parte infrarroja:

Uµ(x) → u0 exp[iagAµ(x)] → u0

[
1 + iagAµ(x)−

a2g2Aµ(x)
2

2
+ . . .

]
(32)

de modo que aqúı Aµ solo tiene términos IR.

Este término de corrección tadpole u0 depende de los parámetros de la teoŕıa y se puede obtener
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mediante simulaciones. Comunmente se define mediante el valor esperado de las plaquetas:

u0 =

(
1

N
⟨TrUp⟩

)1/4

. (33)

Con esto, sustituyendo los links por Uµ/u0, conseguimos reducir las renormalizaciones del ret́ıculo,

además de ser un recurso que se utiliza para implementar el programa de mejoras de Symanzik,

pues permite redefinir los coeficientes cSW ya calculados por otros c′SW = cSW /u0.

Por otro lado, tenemos el desarrollo que obtenemos gracias a aplicar HQET al ret́ıculo. En esto

seremos más breves ya que los detalles son más complejos, pero como se puede ver en [11] y [15],

una teoŕıa efectiva para hadrones pesados que contenga NF −1 quark ligeros y un quark pesado con

masam puede ser obtenida realizando un desarrollo en 1/m de la acción de QCD en el continuo y de

los campos, ya que cuando la masa del quark pesado es muy grande (tendiendo a infinito), se puede

considerar que su movimiento es casi estático en comparación con los quarks ligeros, o bien, que

los grados de libertad ligeros no pueden cambiar el momento del quark pesado. Aśı, discretizada

para el ret́ıculo y realizado el desarrollo en términos de 1/m, la acción del quark pesado tiene la

forma:

SHQET = a4
∑
x

{
Lstat(x) +

n∑
ν=1

L(ν)(x)

}
,

Lstat(x) = ψh(x) [∇∗
0 + δm]ψh(x),

L(ν)(x) =
∑
i

ω
(ν)
i L(ν)

i (x),

(34)

con ∇∗
µ siendo la derivada hacia atrás en el ret́ıculo, δm tiene dimensiones de masa y los campos

compuestos Lν
i tienen dimensiones de masa a la 4 + ν. Además, para obtener los elementos de

matriz que describen las interacciones electrodébiles, es necesario realizar este mismo desarrollo

también a la corrientes y a las funciones de correlación (las expresiones nuevamente se pueden ver

en [15], no son relevantes para nuestro trabajo). Lo importante es que cuando uno busca el valor

esperado de un observable, lo que utiliza es:

⟨O⟩ = 1

Z

∫
D[φ]O[φ]e−(Srel+SHQET), (35)

Z =

∫
D[φ]e−(Srel+SHQET), (36)

Pero aqúı hemos de remarcar que el integrando de la teoŕıa efectiva es desarrollado en términos de

1/m, con las potencias de acuerdo a:

ω
(ν)
i = O

(
1

mν

)
, α

(ν)
i = O

(
1

mν

)
. (37)

con α
(ν)
i siendo el parámetro usado para desarrollar la corriente. Por tanto, se reemplaza en (35)

la acción por la expansión:

exp{−(Srel + SHQET)} = exp

{
−

(
Srel + a4

∑
x

Lstat(x)

)}
×1− a4

∑
x

L(1)(x) +
1

2

[
a4
∑
x

L(1)(x)

]2
− a4

∑
x

L(2)(x) + . . .

 .

(38)
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lo que nos deja una lectura muy simple, que los observables solo dependen de la expansión 1/m

cuando existen operadores locales o corrientes en dichos correladores. Aśı, cuando tomamos el

ĺımite al infinito, volvemos a recuperar la acción estática. De tal modo, con esta teoŕıa se logra

resolver de alguna manera el problema de que la masa del quark pesado sea mucho mayor que el

inverso del espaciado del ret́ıculo. Sin embargo, al mezclar operadores de distintas dimensiones en

la función de correlación, surge el problema de que los valores los coeficientes de la teoŕıa efectiva

han de ser hallados de forma no perturbativa.

Con todo, el procedimiento para mejorar los cálculos que usamos nosotros consiste en intercalar las

mejoras del programa de Symanzik con las del HQET. La propiedas más importante de esto es que

permite que los coeficientes cSW puedan depender de forma expĺıcita de la masa del quark pesado

mh. De tal forma, la acción relativista de los quarks pesados se interpola mediante términos que

no dependen de la masa y términos del ĺımite estático (masa infinita). En esta metodoloǵıa se

utiliza la densidad de la acción clover anisótropa:

LFermilab(x) = a4ψ̄(x)
(
m0 + γ0D0 + ζγ⃗ · D⃗

−a
2
D2

0 −
a

2
ζ(D⃗)2 +

ia

4
cSWσµνFµν

)
ψ(x),

(39)

donde el parámetro de anisotroṕıa ζ, el coeficiente clover cSW y la masa m0 se ajustan para que

se reproduzcan las cantidades espectrales del mesón B (véase [10] y [16]). Además, en la acción

de Fermilab presentada en (39), las simetŕıas de los quarks pesados emergen de forma natural,

lo que permite que en la teoŕıa efectiva de los quarks pesados se pueda estudiar de forma más

precisa establecer hasta qué enerǵıas y momentos se han de realizar los cálculos (cutoff) para que

la propagación de errores no sea insostenible. [21]

3.3 Simulaciones de Monte Carlo

Si recuperamos las expresiones de (19), es rápido caer en que estos cálculos son imposibles de hacer

anaĺıticamente cuando se tienen términos de interacción. Por ello, lo más apropiado es realizar

simulaciones de Monte Carlo en el que se sustituye la integral por una media de los observables

evaluado en N muestras distintas de las configuraciones de los campos gauge UN distribuidas con

probabilidad ∝ exp(−S[UN ]). La suma:

⟨O⟩ ≈ 1

N

∑
Un

O[Un] (40)

se debe realizar para un número suficiente de configuraciones generadas por el algoritmo de Monte

Carlo. De tal modo, una vez generado un conjunto de configuraciones Ui, se puede calcular un

observable relacionado con un operador O como:

⟨O⟩ = lim
N→∞

1

N

N∑
n=1

O[Un], (41)

siendo cada configuración distribuida con un peso acorde a la probabilidad:

dP (U) =
e−S[U ]D[U ]∫
D[U ]e−S[U ]

. (42)

esta forma de generar configuraciones nos asegura que todas vendrán dadas por la distribución

e−S(UN ), lo que permite no generar configuraciones con una acción despreciable y hace que el

proceso sea mucho más óptimo, lo que se denomina importance sampling. Como es obvio, no hay
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ordenador capaz de hacer tender N al infinito, por lo que en el caso real lo que obtendremos será

un cierto valor central con un error asociado, que es el error que iremos mostrando a lo largo de

todos los resultados. Para poder elegir esas configuraciones UN se utiliza la cadena de Markov.

Este procedimiento se basa en buscar una solución a la ecuación que establece que la probabilidad

total de transicionar de un estado U a U ′ es la misma que la probabilidad de salir del estado U ′.

La solución más simple a esto, y la que se suele utilizar, denominada balance detallado, es imponer

que la igualdad se cumpla término a término, es decir:

T (U ′|U)P (U) = T (U |U ′)P (U ′). (43)

donde en la igualdad aparece el peso de que el sistema se encuentre en el estado U.

En general, para aplicar esto en el ret́ıculo, se aplica el algoritmo de Metrópolis, el cual es un

procedimiento muy sencillo. Primero, partiendo de una configuración gauge, se modifica un link

Uµ(n)
′ de acuerdo a alguna elección simétrica de la probabilidad T0. Cuando modificamos un link,

como trabajamos en 4D, estaremos modificando 6 plaquetas, por lo que solo debemos calcular el

cambio de la acción en estos para tener el cambio total en el ret́ıculo. Para esto se debe realizar

el producto de Uµ(n) con el resto de links que forman la plaqueta, lo que se llama el staple. Aśı,

una vez se calcula la suma de los distintos staples y se tiene la variación de la acción del ret́ıculo,

tenemos dos opciones: si la variación de exp(−∆S) es mayor que 1, directamente se acepta porque

esto nos lleva a una configuración de mı́nima acción, mientras que si es menor que 1 lo que se hace

es generar un número aleatorio r entre 0 y 1 que haga de probabilidad de Boltzman y se compara

con la variación de la acción, siendo esta rechazada si exp(−∆S) ≥ r. Con todo, este procedimiento

lo hemos de repetir hasta que nos encontremos en un estado de equilibrio y de mı́nima acción del

ret́ıculo, en los que los cambios aceptados apenas modifiquen la acción.

Sin embargo, si recuperamos (20) y (42), vemos que si queremos incluir los fermiones en nuestro

cálculo, lo que tendremos es Z−1e−SG[U ] det[Du] det[Dd] como distribución de pesos de los campos

gauge. Esto es un cambio no trivial porque modificar un link deja de ser un cambio local al obligar

a calcular de nuevo todo el determinante, lo cual resulta un cálculo extremadamente complejo al

estar tratando con matrices con 12|Λ| filas y columnas, con |Λ| el número de puntos en el ret́ıculo.

Cuando se empezó a trabajar en el ret́ıculo, se utilizaba principalmente la aproximación quenched,

que no es más que tomar estos determinantes como la unidad y trabajar con el propagador del

mesón sin estos, es decir, construir las cadenas de Markov como se hace con teoŕıas gauge puras.

No obstante, en nuestro caso trabajamos en un cálculo unquenched, lo que quiere decir que hemos

de calcular las contribuciones de los determinantes. Esto hace que para implementar lo mencionado

en este punto sea necesario trabajar con métodos algo más complejos que el de Metrópolis, más

concretamente, en el desarrollo de este trabajo se utilizo el denominado Hybrid Monte Carlo, el

cual combina el ya explicado método de Metrópolis con otro algoritmo denominado Molecular

Dynamics. La idea de este se basa en potenciar el algoritmo de Metrópolis, ya que en este vamos

cambiando link a link y esto es muy costoso. Sin embargo, cambiar todos a la vez, como depende del

volumen del ret́ıculo, haŕıa que la probabilidad de aceptación fuese muy baja, por lo que utilizamos

el método Molecular Dynamics para que este cambio en los links no sea aleatorio del todo.

En este segundo método, la idea de partida es, basándonos en la analoǵıa entre la integral Gaussiana

de los fermiones y los bosones, sustituir los fermiones por pseudo-fermiones, que son bosones con

el mismo número de grados de libertad, pero que permiten obtener resultados equivalentes a los

obtenidos mediante la integral de Grassmann usada para los fermiones pero con la diferencia de que

el determinante ahora aparece en el denominador. Con ello, el primer paso es generar el campo

de pseudo-fermiones ϕ = Dχ con χ un campo vectorial complejo distribuido con probabilidad

Gaussiana exp(−χ†χ). Tras esto, para una configuración gauge U0 se debe generar un momento

inicial P0, distribuido nuevamente de forma Gaussiana por exp(−tr[P 2]). Para empezar a trabajar,
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crearemos un paso inicial de la forma P 1
2
= P0 − ϵ

2F [U, ϕ], donde

F [U, ϕ] =

8∑
i=1

Ti∇(i)
(
SG[U ] + ϕ†(DD†)−1ϕ

)
∈ su(3)

es la fuerza motriz, que es un elemento de su(3), y Ti son los generadores del grupo, y luego

evolucionaremos el sistema mediante pasos:

Uk = exp
(
iϵPk− 1

2

)
Uk−1, Pk+ 1

2
= Pk− 1

2
− ϵF [U, ϕ]

∣∣∣∣
Uk

. (44)

Con ello, conseguimos evolucionar todos los links de una trayectoria de forma sencilla modificando

el momento de cada part́ıcula del ret́ıculo teniendo en cuenta todas las contribuciones (la pura

gauge y la de los fermiones). Tras esto, solo nos queda aplicar un paso de Metrópolis, es decir, ver

si aceptamos el cambio en la acción que produce la modificación de los links o no, mediante:

TA(P
′, Q′|P,Q) = min

(
1,

exp(−H[P ′, Q′])

exp(−H[P,Q])

)
. (45)

Una vez realizado todo esto, ya solo hemos de evaluar los observables en nuestra configuración en

el equilibrio y ya podremos ponderarlo con el resto de resultados que obtengamos de la simulación

de Monte Carlo y realizar el promedio del observable que queramos estudiar. Evidentemente, todo

lo contado es un resumen muy breve de la metodoloǵıa usada en las simulaciones, si el lector está

interesado nuevamente puede revisar [13] para ver un desarrollo con todo tipo de detalles.

4 Desarrollo teórico del proceso B → Dℓν

4.1 Factores de forma

En este trabajo estudiamos el proceso B → Dℓν, en donde la interacción hadrónica está determi-

nada por el elemento de la matriz de transición de la corriente vectorial V = c̄γµb, que se puede

descomponer en términos de los factores de forma vectorial y escalar f+(q
2) y f0(q

2) de la siguiente

manera:

⟨D(pD)|V µ|B(pB)⟩ = f+(q
2)

[
(pB + pD)µ − M2

B −M2
D

q2
qµ
]
+ f0(q

2)
M2

B −M2
D

q2
qµ (46)

donde pB y pD son los momentos del mesón B y D, MB yMD sus respectivas masas y q = pB −pD
es el momento transferido de los mesones a los leptones. Por otra parte, el ratio de decaimiento

en la aproximación de que la masa de los leptones (sirve para electrón y el muón) es mucho menor

que la de los mesones B y D es:

dΓ

dw

(
B̄ → D(ν̄τ)

)
= |ηEW |2G

2
F |Vcb|2M5

B

48π3
(w2 − 1)3/2r3(1 + r)2G(w)2 (47)

donde |ηEW |2 hace cuenta de las correciones electrodébiles, GF es la constante de decaimiento

débil de Fermi, |Vcb| es nuestro elemento de matriz buscado, w = v · v′ es el parámetro de recoil,

v = pB/MB y v′ = pD/MD son las velocidades de nuestros mesones y G(w) es la amplitud de

desintegración y se relaciona con nuestros factores de forma, más concretamente con f+, mediante:

f+(w)
2 =

(1 + r)2

4r
G(w)2 (48)
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siendo r el cociente entre las masas de los mesones r = MD/MB = 0.354. Aqúı vale la pena

hacer un aparte para matizar que en realidad nosotros no calculamos el elemento Vcb de forma

directa, sino que nuestro objetivo es calcular la amplitud de desintegración, a partir de los factores

de forma, y junto a los datos experimentales del ratio de decaimiento diferencial, que se pueden

obtener del detector BABAR [2], obtener el elemento Vcb a partir de la expresión (47).

Por otra parte, existe otra parametrización que es la realmente relevante para nosotros como

veremos en siguientes puntos. Esta es mucho más natural dentro de la teoŕıa efectiva de quarks

pesados (HQET) y en la ’heavy-light meson chiral perturbation theory’:

⟨D(pD)|V µ|B(pB)⟩√
MDMB

= h+(w)(v + v′)µ + h−(w)(v − v′)µ (49)

y que evidentemente se pueden relacionar con los factores de forma f+ y f0 previamente definidos

mediante:

f+(q
2) =

1

2
√
r
[(1 + r)h+(w)− (1− r)h−(w)] , (50)

f0(q
2) =

√
r

[
w + 1

1 + r
h+(w)−

w − 1

1− r
h−(w)

]
, (51)

siendo aqúı q2 =M2
D +M2

B − 2wMBMD y G(w) = h+(w)− ( 1−r
1+r )h−(w).

Una vez definido todo lo relativo a los factores de forma que buscamos, debemos ver cómo los

podemos relacionar con el ret́ıculo. Lo primero es definir la corriente vectorial para la transición

de un quark x a uno y:

V u
xy = Ψ̄xγ

µΨy con Ψ = (1 + d1γ ·Dlat)ψ (52)

siendo Ψ el campo rotado introducido en ([16]), ψ es el campo del quark pesado en la acción, Dlat

es un operador diferencial covariante del vecino más cercano y d1 es el factor de mejora del tadpole,

con lo que se consigue que la corriente vectorial esté mejorada a tree-level.

Dicho campo rotado se introduce al intentar desarrollar el formalismo de llevar toda la f́ısica de

sabor al lattice, siendo dicho desarrollo la introducción de los operadores de dos y cuatro quarks al

Hamiltoniano electrodébil, que se puede considerar la primera correción a QCD. Resumidamente,

cuando se intenta desarrollar este formalismo, uno se encuentra que estos operadores introducidos

dependen tanto de la masa del quark bare am0 como de la masa f́ısica mq. Cuando ese término

am0 >> 1, lo que tenemos es que d1 ≈ 1/(2mq), por lo que la contribución de 1 + d1γ · Dlat se

hace esencial para poder tener esa correción 1/mq a los elementos de matriz de la corriente JΓ con

la que trabajemos.

Con esto, ahora falta saber la relación que existe entre la corriente del ret́ıculo Jµ
xy y su equivalente

en el continuo J µ
xy. Para dicha relación se emplean los factores de renormalización:

Vµ
xy

.
= ZJµ

xy
V µ
xy (53)

en donde el
.
= indica que los elementos de matrices son iguales a ambos lados de la igualdad (no con-

fundir esta Z con la que introdujimos al comienzo del trabajo, esta es un factor de renormalización

para asegurar que nuestras corrientes tengan los mismos elementos de matriz en el continuo que las

corrientes f́ısicas). Sin embargo, estos términos tienen muchas dependencias no perturbativas, por

lo que empleamos la técnica denominada renormalización mayormente no perturbativa-mNPR, lo

que nos permite eliminar dichas dependencias de los factores de renormalización y que consiste en

definir una serie de ratios entre las distintas corrientes de la forma:

ρ2V µ =
ZV µ

cb
ZV µ

bc

ZV 4
cc
ZV 4

bb

. (54)
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La utilidad del mNPR radica en el hecho de que al tomar los ratios apropiados de los correladores a

tres puntos se logra que las contribuciones no perturbativas a la renormalización de las corrientes se

cancelen, pues están todas recogidas en la diagonal de los factores de renormalización ZV 4

xx . Además,

trabajar con estos ratios nos permite reducir las fluctuaciones estad́ısticas t́ıpicas de trabajar con

los correladores.

Aśı, para poder calcular los factores de forma h+ y h− para cualquier valor del parámetro de recoil

necesitamos tanto los elementos de matriz de las corrientes vectoriales espaciales como temporales

V 4 yV. Para ello, lo que hacemos es establecer nuestro sistema de referencia de modo que tengamos

al mesón B en reposo y que sea el mesón D el que se mueva, llevando un momento p y del cual

depende el recoil anteriormente definido w. El primero de los ratios que definiremos será el único

doble ratio que tenemos y que a su vez es el único en el que solo trabajamos para momento nulo:

R+ =
⟨D(0)|V 4

cb|B(0)⟩⟨B(0)|V 4
bc|D(0)⟩

⟨D(0)|V 4
cc|D(0)⟩⟨B(0)|V 4

bb|B(0)⟩
(55)

y luego los ratios simples:

Q+(p) ≡
⟨D(p)|V 4|B(0)⟩
⟨D(0)|V 4|B(0)⟩

, (56)

R−(p) ≡
⟨D(p)|V|B(0)⟩
⟨D(p)|V 4|B(0)⟩

, (57)

xf (p) ≡
⟨D(p)|V|D(0)⟩
⟨D(p)|V 4|D(0)⟩

. (58)

donde vemos que Q+(p) es el ratio que relaciona los elementos de matriz a recoil nulo y no nulo y

que xf (p) relaciona tanto en numerador como en denominador el estado de momento nulo con un

estado de momento no nulo. Asimismo, este último ratio nos permite escribir la relación a partir

de la cual podemos obtener el parámetro de recoil:

w =
1 + x2f
1− x2f

(59)

y a partir de todo esto, se pueden obtener los factores de forma:

h+(w(p)) =
√
R+Q+(p) [1−R−(p) · xf (p)] , (60)

h−(w(p)) =
√

R+Q+(p)

[
1− R−(p) · xf (p)

xf (p)
2

]
, (61)

4.2 Funciones de correlación a 2 y 3 puntos

Para poder calcular los factores de forma introducidos en el punto anterior, es necesario calcular

los correladores a 2 y 3 puntos. Lo que haremos será usar operadores de interpolación OXa
(p, t)

de momento espacial p y tiempo t con X ∈ {B,D} y a ∈ {1S, d}, siendo estos últimos los posibles

smearing.

Aqúı vamos a hacer un pequeño inciso para explicar el concepto de smearing. El objetivo de

este procedimiento es aumentar el solapamiento de nuestro operador con el estado que realmente

queremos construir en el ret́ıculo, eliminando en la medida de lo posible otros estados irrelevantes

que poseen los mismos números cuánticos. Para ello, lo que se hace es superponer en un punto n0
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los distintos campos que se encontraban en un punto del entorno cercano ni mediante:

ψ
(f ′)
k (n0, nt)α0

a0

≡
∑
n2

S
(n0,α0,a0)
k (n2)

∗
α2
a2

ψ(f ′)(n2, nt)α2
a2

, (62)

ψ̄
(f)
i (n0, nt)α1

a1

≡
∑
n1

S
(n0,α0,a0)
i (n1)α1

a1

ψ̄(f)(n1, nt)α1
a1

. (63)

En este trabajo utilizaremos dos posibles smearing, que aparecerán en el operador OXa
(p, t) como

una función S [3]. El smearing d simplemente representa una función delta en la fuente, mientras

que el smearing 1S será la función S(x, y), que representa una fuente con smearing (en el gauge de

Coulomb):

S(x, y) = δx4y4
S(x− y) (64)

en donde S(x− y) es la solución 1S del potencial de Richardson para los sistemas del quarkonium

[20] y que se obtiene escalando la función de onda radial de Richardson a unidades del ret́ıculo,

interpolándola a los puntos del ret́ıculo y posteriormente utilizándola como fuente espacial para

los propagadores de los quark pesados. En realidad, usaremos 3 posibles combinaciones de los

smearing: 1S-1S, 1S-d y d-d, representando cada uno de ellos el smearing en el source y en el sink.

Con todo, los correladores entonces se pueden expresar en términos de los elementos de matriz de

los operadores como:

C2pt,Xa→Xb(p, t) = ⟨O†
Xb

(p, 0)OXa
(p, t)⟩, (65)

C3pt,Xa→Yb
µ (p, t) = ⟨O†

Yb
(−p, 0)V µ(p, t)OXa

(0, T )⟩. (66)

en donde T es la separación temporal entre los mesones B y D. Y estos operadores se pueden

expresar con la forma: √
ZX,n

2En
= ⟨0 |OX |n⟩ (67)

Por lo que sustituyendo en la expresiones de los correladores podemos obtener:

C2pt,Xa→Xb(p, t) =
∑
n

sn(t)

√
ZXa,n(p)ZXb,n(p)

2En(p)
[exp(−En(p)t) + exp(−En(p)(Nt − t))] (68)

en donde hay tanto términos no oscilantes con sn(t) = 1 o fermiones staggered de paridad opuesta

que son términos oscilantes sn(t) = −(−1)t, debido a lo visto para hallar la acción (28), Nt es el

tamaño del lattice temporal y ZXa,n es el factor de solapamiento. Este tipo de fit se denomina

N+N, pues indica cuántos estados oscilantes y no oscilantes se añaden al fit. En nuestro trabajo

estudiaremos los casos 2+2 y 3+3.

Y por otro lado, la función de correlación a 3 puntos:

C3pt,Xa→Yb
µ (p, t) =

∑
n,m

sn(t)sm(T − t)
√
ZYb,n(p)

e−En(p)t√
2En(p)

⟨Yb, n(p)|V µ|Xa,m(0)⟩

× e−Mm(T−t)

√
2Mm

√
ZXa,m(0),

(69)

Para entender un poco la motivación de los pasos que tomaremos en el desarrollo, vamos a

quedarnos con la forma funcional de este correlador a 3 puntos (69):

CX→Y (0, t, T ) =
∑
k=0

∑
ℓ=0

(−1)kt(−1)ℓ(T−t)Akℓe
−m

(k)
X te−m

(ℓ)
Y (T−t). (70)
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En esta expresión es fácil ver que cuando k y ℓ son impares, por cada rebanada temporal que

avancemos los estados excitados cambiarán de signo, y aunque estén suprimidas de forma expo-

nencial, los compañeros de paridad de nuestros mesones ligeros no son mucho más pesados que

en el estado fundamental, por lo que estas oscilaciones pueden ser realmente significativas en las

distancias source-sink t́ıpicas en las que trabajaremos y hemos de tratar de corregirlas. Para ello,

vamos a desarrollar la ecuación (70):

CX→Y (0, t, T ) = AX→Y
00 e−mXt−mY (T−t) + (−1)T−tAX→Y

01 e−mXt−m′
Y (T−t)

+ (−1)tAX→Y
10 e−m′

Xt−mY (T−t) + (−1)TAX→Y
11 e−m′

Xt−m′
Y (T−t) + . . .

= AX→Y
00 e−mXt−mY (T−t)

[
1 + cX→Y (0, t, T ) + . . .

]
,

en donde hemos sacado en la última ĺınea el estado fundamental y la dependencia exponencial y

hemos definido:

cX→Y (0, t, T ) ≡ AX→Y
01

AX→Y
00

(−1)T−te−∆mY (T−t) +
AX→Y

10

AX→Y
00

(−1)te−∆mXt

+
AX→Y

11

AX→Y
00

(−1)T e−∆mXt−∆mY (T−t),

y ∆mX,Y = m′
X,Y −mX,Y es la diferencia entre las masas del estado de paridad deseada de menor

enerǵıa y el estado de paridad incorrecta de menor enerǵıa. Nótese que tanto el primer como el

segundo término cambian de signo a medida que el operador vaŕıa a lo largo del tiempo, mientras

que el tercero solo cambia de signo cuando se modifica la distancia temporal T source-sink. Por

ende, al no ser visible de forma clara su variación con t en los resultados que obtengamos, este será

el término que buscaremos suprimir. Para ello, realizaremos una media del tipo:

C
X→Y

(0, t, T ) ≡ 1

2
CX→Y (0, t, T ) +

1

4
CX→Y (0, t, T + 1) +

1

4
CX→Y (0, t+ 1, T + 1). (71)

que, como se puede ver en [8], actúa de forma equivalente a un smoothing que reduce la amplitud

de los estados oscilantes.

Con todo, podemos ya estudiar la forma de los distintos ratios, empezando por R+

R+ =
⟨D(0)|V 4

cb|B(0)⟩⟨B(0)|V 4
bc|D(0)⟩

⟨D(0)|V 4
cc|D(0)⟩⟨B(0)|V 4

bb|B(0)⟩
=

⟨OD(0)|V 4
cb|OB(0)⟩⟨OB(0)|V 4

bc|OD(0)⟩
⟨OD(0)|V 4

cc|OD(0)⟩⟨OB(0)|V 4
bb|OB(0)⟩

(72)

donde V µ
xy tienen la forma vista en (52). Esto lo podemos sustituir por la expresión de las funciones

de correlación a 3 puntos vista en (69), obteniendo:

R+,b(t, T ) =
C3pt,B,1S→Db

4 (0, t, T )C3pt,Db→B,1S
4 (0, t, T )

C3pt,Db→Db
4 (0, t, T )C3pt,B,1S→B,1S

4 (0, t, T )
. (73)

Aqúı ya podemos detenernos un poco, pues podemos ver que la expresión a la que llegamos del

tiempo de inserción t, del tiempo de sink T y del operador de interpolación del mesón D denotado

por b, aunque estas dependencias, al surgir de los estados oscilantes podemos suprimirlas mediante

la media obtenida en (71):

R+,b(t, T ) ≡
1

2
R+,b(t, T ) +

1

4
R+,b(t, T + 1) +

1

4
R+,b(t+ 1, T + 1). (74)

por lo que podemos expresar todo como R+,b(t, T ) → R+ ya que para t y T − t grandes las con-

tribuciones de los estados excitados son despreciables.
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Con todo, en general las contribuciones dominantes vienen del primer estado excitado de los

mesones B y D, las cuales para t y T − t grandes decaen como exp[−∆Mt] y exp[−∆M(T − t)],

con ∆M siendo la diferencia de masa entre el primer estado excitado (no oscilante) y el estado

fundamental de los mesones con los que trabajamos (M = B,D). De tal forma, como ambas son

pequeñas, para poder hacer un fit al ratio usaremos la siguiente aproximación:

R+,b(t, T ) ≈ R+ +AR+,b exp(−∆MDt) +BR+,b exp[−∆MB(T − t)]

+ CR+,b exp(−∆MBt) +DR+,b exp[−∆MD(T − t)] exp(∆MBt)
(75)

Por último, es importante notar que ∆M ≈ ∆B , por lo que para el fit nos quedaremos solo con

R+, AR+,b y BR+,b.

Con todo, por no llenar el documento de cálculos enormes sin relevancia, pues el procedimiento

es el mismo al explicado en las anteriores ĺıneas, concluiré este punto añadiendo las formas de las

expresiones con las trabajaremos a lo largo de las simulaciones y del análsis posterior.

Para Q+ nos encontramos que el ratio tendrá la forma:

Q+,b(p, t, T ) ≡
C3pt,B,1S→Db

4 (p, t, T )

C3pt,B,1S→Db
4 (0, t, T )

EDZDb(0)

MDZDb(p)
e(ED−MD)t. (76)

y para su correspondiente fit:

Q+,b(p, t, T ) ≈ Q+(p) exp(δmt) +AQ+,b
(p) exp(−∆EDt)

+BQ+,b
(p) exp(−∆MDt) + CQ+,b

(p) exp[−∆MB(T − t)].
(77)

En este ratio aparece un factor δm que desaparece cuando el factor exponencial de (76) cancela la

dependencia temporal en las funciones de correlación de 3 puntos.

Luego para R− tenemos:

Ri
−,b(p, t, T ) =

C3pt,B,1S→Db
i (p, t, T )

C3pt,B,1S→Db
4 (p, t, T )

(78)

y su correspondiente expresión a la que ajustar:

R−,b(p, t, T ) ≈ R−(p) +AR−,b
(p) exp(−∆EDt) +BR−,b

(p) exp[−∆MB(T − t)]. (79)

Y por último como es lógico, para xf tendremos la misma expresión que para R− pero cambiando

∆B por ∆D:

xif,b(p, t, T ) =
C3pt,Db→Db

i (p, t, T )

C3pt,Db→Db
4 (p, t, T )

, (80)

y la relación a la que tendremos que realizar el fit:

xf,b(p, t, T ) ≈ xf (p) +AR−,b
(p) exp(−∆EDt) +BR−,b

(p) exp[−∆MB(T − t)]. (81)

5 Desarrollo de las simulaciones

5.1 Parámetros de las simulaciones

Se han utilizado 7 ensembles de configuracions gauge distintas de 2+1+1 sabores de sea-quarks

HISQ-generados por la colaboración MILC. Entre estos tenemos espaciados del ret́ıculo de a =

0.057fm, a = 0.088fm, a = 0.12fm y a = 0.15fm y distintos ratios de la masa del sea-quark ligero y

sea-quark strange m̂′/m̂s
′, siendo todos los datos de los distintos ensembles recogidos en la tabla

1. A su vez, para cada ensemble realizamos simulaciones para distintos momentos en unidades
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de 2π/L, que son 6 para los ensembles Coarse-1, Coarse-2 y Coarse-Phys: (0,0,0), (1,0,0), (2,0,0),

(3,0,0), (1,1,0) y (2,1,1); y 8 para los otros 4 ensembles, añadiendo a los anteriores el (4,0,0) y el

(2,2,2). Mencionar que los momentos más grandes son los que tienen mayores errores estad́ısticos.

Para generar las funciones de correlación a 3 puntos, lo que hacemos es fijar un tiempo de sink T

entre los mesones B y D, y lo que vamos variando es la inserción t de la corriente vectorial.

a(fm) m̂′/m̂s
′ Lattice size (V × T ) Configs u0

MediumCoarse 0.15 0.0024/0.0673 323 × 48 3630 0.8203
Coarse-1 0.12 0.0051/0.0507 323 × 64 1000 0.8350
Coarse-2 0.12 0.0102/0.0509 243 × 64 1053 0.8350

Coarse-Phys 0.12 0.0525/0.6382 483 × 64 986 0.8350
Fine-1 0.088 0.0036/0.0363 483 × 96 1017 0.8527

Fine-Phys 0.088 0.0012/0.0363 643 × 96 1535 0.8527
SuperFine 0.057 0.0008/0.0220 963 × 192 1027 0.8711

Table 1: Parámetros de los ensembles de los campos gauge del ret́ıculo. Las columnas de izquierda a
derecha representan el espacio del ret́ıculo, la masa bare de los sea-quarks en unidades del ret́ıculo,
las dimensiones del ret́ıculo en unidades de este, el número de configuraciones de cada ensemble y
el factor de mejora de tadpole u0.

Figure 1: Rango de espaciados para los distintos ret́ıculos y masas de quarks ligeros usados. El
área de cada punto es proporcional al número de configuraciones del ensemble usado. Los cuatro
ensembles que forman una ĺınea en el gráfico con el valor de m̂′/m̂s

′ más bajo representan la masa
f́ısica del pión.

5.2 Funciones de correlación a 2 puntos

La importancia de las funciones de correlación a 2 puntos es que nos permiten obtener tanto las

enerǵıas de los distintos estados como los factores de solapamiento Z para los diferentes smearing,

que son fundamentales para poder obtener los factores de forma, como vimos en las expresiones

de los ratios. Por ello, los correladores a 2 puntos nos servirán para obtener el valor central de los

priores que usemos al estudiar las funciones a 3 puntos. Asimismo, en este punto evaluaremos si

los resultados obtenidos en la simulación son razonables.
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5.2.1 Elección del intervalo de ajuste

Lo primero que haremos será elegir el rango de valores en el que vamos a trabajar. Para extraer el

estado fundamental y los factores de overlap a partir de las funciones de correlación a dos puntos,

debemos ajustar los datos de dichas funciones de correlación a un cierto ansatz que derivaremos

más adelante. Es importante elegir bien el rango de tiempos del ajuste; en particular, los ajustes

dependen de manera muy cŕıtica del valor mı́nimo del tiempo, no tanto del máximo, donde los

errores en los puntos son muy altos. El tiempo se mide en unidades del ret́ıculo, es decir, dividido

del espaciado entre puntos a, por lo que cambiará según el ensemble que usemos, pues como ya se

mencionó la principal diferencia entre ensembles es el tamaño de dicho parámetro. Sin embargo,

idealmente debeŕıamos encontrar que este tiempo en unidades f́ısicas coincida aproximadamente,

en cierto intervalo, para todo ensemble, por lo que agruparemos los resultados en tablas de tiempo

del ret́ıculo y tiempo f́ısico. El objetivo de esto es encontrar el valor a partir del cuál los resultados

obtenidos comienzan a tener sentido, por lo que solo debemos realizar una ajuste para distintos

tiempos mı́nimos, medir el valor de la enerǵıa en el nivel fundamental con su respectivo error y

realizar una gráfica que enfrente ambos parámetros, lo que nos permitirá obtener el tiempo mı́nimo

adecuado simplemente observando a partir de qué momento el valor de la enerǵıa se estabiliza. Aśı,

los resultados se muestran en la tablas 2 y 3, amén del gráfico de la curva de estabilización para

los ensembles de espaciados más extremos, que pueden visualizarse en las figuras 2 y 3. Con todo,

viendo que para todos los ensembles tenemos que a partir de los 0.90fm (asumiremos algo de error

en el ensemble MediumCoarse para tener un rango de puntos más amplio y que los ajustes sean más

efectivos) y 0.45fm para 2+2 y 3+3 estados respectivamente se estabiliza la enerǵıa, tomaremos un

tiempo mı́nimo próximo a este valor para todo nuestro estudio. La principal motivación de este

paso es que con un tiempo mı́nimo similar para todos los ensembles se consiguen reducir los errores

sistemáticos al tomar el ĺımite al continuo.

tmin nstates=2+2 nstates=3+3

Medium-Coarse 7 ∼ 8 3 ∼ 4
Coarse-1 7 ∼ 8 2
Coarse-2 7 ∼ 8 2

Coarse-Phys 8 ∼ 9 2
Fine-1 8 ∼ 9 5 ∼ 6

Fine-Phys 9 ∼ 10 5 ∼ 6
SuperFine 11 ∼ 12 6 ∼ 7

Table 2: Tiempo mı́nimo en unidades
del ret́ıculo para los distintos ensembles y
números de estados para el momento 000.

tmin nstates=2+2 nstates=3+3

Medium-Coarse 1.05 ∼ 1.20 fm 0.45 ∼ 0.60 fm
Coarse-1 0.84 ∼ 0.96 fm 0.24 fm
Coarse-2 0.84 ∼ 0.96 fm 0.24 fm

Coarse-Phys 0.96 ∼ 1.08 fm 0.24 fm
Fine-1 0.70 ∼ 0.79 fm 0.44 ∼ 0.53 fm

Fine-Phys 0.79 ∼ 0.88 fm 0.44 ∼ 0.53 fm
SuperFine 0.51 ∼ 0.57 fm 0.28 ∼ 0.34 fm

Table 3: Tiempo mı́nimo en unidades f́ısicas
para los distintos ensembles y números de
estados para el momento 000.

Por otro lado, también es necesario sacar el tiempo máximo que utilizaremos para cada ensemble.

En esta ocasión el criterio a tomar para cortar el ajuste es más sencillo. Para entenderlo, debemos

volver a recordar que trabajamos con simulaciones de Monte Carlo, por lo que hay una alta proba-

bilidad de que los observables obtenidos en distintos pasos estén correlacionados. Nuestros ajustes

tienen en cuenta las correlaciones entre los datos, y para ello calculamos la matriz de covarianza

completa. Si incluimos en nuestro conjunto de datos puntos con errores muy grandes, la deter-

minación de las correlaciones será pobre, y la matriz de covarianza puede fácilmente desarrollar

patoloǵıas que dificulten los ajustes, por lo que nos quedaremos hasta el tiempo a partir del cual

el error en los correladores represente un 30% del valor central. Con todo, juntando los requisitos

para establecer los dos extremos, los rangos de tiempo a usar serán los mostrados en la tabla (4).
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Figure 2: Fit de estabilización para el ensemble
MediumCoarse.

Figure 3: Fit de estabilización para el ensemble
SuperFine.

MediumCoarse Coarse-1 Coarse-2 Coarse-Phys Fine-1 Fine-Phys SuperFine

nstates = 2 + 2 6-16 8-19 8-15 8-25 11-27 15-27 13-41
nstates = 3 + 3 3-16 4-19 4-15 4-25 5-27 5-27 9-41

Table 4: Rangos de tiempo para los distintos ensembles.

5.2.2 Entendiendo el proceso que se sigue en las simulaciones

Una vez tenemos ya el rango temporal en el que vamos a trabajar, debemos ajustar los correladores

con los que vamos a trabajar. Lo primero es recordar que los correladores a dos puntos van a tener

una forma:

C(nt) ≡ ⟨Õ(0, nt)O(0, 0)⟩ =
∑
k

⟨0|Ô|k⟩⟨k|Ô†|0⟩e−ntEk . (82)

es decir, una suma de exponenciales que dependen de los distintos niveles de enerǵıa, que a la vez

dependen del lattice, pues si este tiene un volumen finito como es obvio los niveles de enerǵıa serán

discretos. Por esta dependencia exponencial, la contribución de los estados de más alta enerǵıa

dependen del time slice nt que cojamos, pues cuando estos sean más grandes dominarán los estados

más próximos al fundamental, mientras que a medida que nt se haga más pequeño encontraremos

una mezcla de estados de baja y alta enerǵıa, por lo que la ecuación (82) será de la forma:

C(nt) = A0e
−ntE0 +A1e

−ntE1 . . . (83)

Para analizar las consecuencias de esto, nos quedaremos a nivel fundamental y usaremos un ejemplo

del Gattringer-Lang [13] con la imagen 4. Cuando estudiamos la propagación de mesones a nivel

fundamental lo que encontramos es que el correlador tiene una dependencia cosh o sinh con nt:

A0e
−ntE0 ±A0e

−(NT−nt)E0 =

{
2A0e

−NTE0/2 cosh ((NT /2− nt)E0)

2A0e
−NTE0/2 sinh ((NT /2− nt)E0)

. (84)

Con esto, debemos evaluar en qué rango de nt podemos descartar las contribuciones de las expo-

nenciales no dominantes, por lo que definimos una masa efectiva meff

meff

(
nt +

1

2

)
= ln

C(nt)

C(nt + 1)
. (85)
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Figure 4: Resultado de una simulación de Monte Carlo en una red de 163×32 con un espaciado del
ret́ıculo a ≈ 0.15fm. Lado izquierdo: gráfico logaŕıtmico de la función de correlación del pión; lado
derecho: gráfico de masa efectiva (en unidades del ret́ıculo). Los diferentes conjuntos corresponden
a distintos valores de la masa del quark en unidades del ret́ıculo.[13]

Y entonces, cuando tengamos el correlador C(nt) dominado por los niveles fundamentales, po-

dremos establecer un valor constante para la masa efectiva y que cumpla la relación de dispersión

de la enerǵıa a momento nulo meff = E0. Aśı, como se ve en el lado derecho de 4, esta masa se

hace constante en un intervalo temporal nt ∈ (4, 28), por lo que debeŕıamos quedarnos con este.

Este hecho nos permite llevarlo a nuestro código, pues en él, tras fijar el intervalo temporal que

vamos a utilizar, fijamos un intervalo temporal efectivo basándonos en el razonamiento explicado

en este punto, pues ponderando los datos obtenidos de la simulación pudimos establecer un inter-

valo en el que se encontraba la masa efectiva y aśı incluir en el ajuste únicamente los puntos que

estuviesen en torno a esa zona de valores de meff . En la figura 5 se muestra un ejemplo de ello

(también el factor Z efectivo pero no es relevante para nuestro estudio) y en la tabla 5 el rango de

tiempos efectivos tomados.

Figure 5: Factor de solapamiento Z efectivo para cada smearing en la parte superior y masa efectiva
en el gráfico inferior para el ensemble MediumCoarse para el momento (0,0,0).

Una vez tenemos un rango efectivo de tiempos y una primera estimación de la masa efectiva y

por tanto del estado fundamental de la enerǵıa, haremos un estudio más detallado a partir de este
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Coarse-1 Coarse-2 Coarse-Phys MediumCoarse Fine-1 Fine-Phys SuperFine

nstates=2+2 10-18 11-15 9-19 11-16 15-23 14-21 25-41
nstates=3+3 10-18 9-15 10-19 11-16 15-23 14-21 25-41

Table 5: Rangos de tiempo efectivos tomados para 2+2 y 3+3 estados en cada ensemble a partir
del método explicado para la masa efectiva.

valor. Para ello, seguiremos un proceso en el que buscamos unos valores que minimicen el χ2 dentro

de un parámetro de tiempos nmin < nt y nt < nmax, es decir, buscamos minimizar:

χ2 =

nmax∑
nt,n′

t=nmin

(C(nt)− f(nt))w(nt, n
′
t) (C(n

′
t)− f(n′t)), (86)

con f(t) una función que tiene tanto el coeficiente A0 que acompaña a la enerǵıa fundamental como

el valor de esta E0:

f(t) = A0e
−E0nt (87)

El peso w que aparece en el ξ2 idealmente debeŕıa ser igual al inverso de la matriz de covarianza, es

decir w(nt, n
′
t) = Cov−1(nt, n

′
t), sin embargo, como es lógico, cuando uno realiza simulaciones de

Monte Carlo solo obtiene una estimación a partir de los resultados obtenidos de los correladores:

CovN (nt, n
′
t) =

1

N − 1
⟨(C(nt)− ⟨C(nt)⟩N )(C(n′t)− ⟨C(n′t)⟩N )⟩N (88)

por lo que usaremos el inverso de esto como peso.

Una vez tenemos un método para obtener los distintos valores a nivel fundamental, nos queda solo

saber cómo sacar los primeros excitados, pues a tiempos pequeños tienen una relevancia bastante

grande. Para ello, hay muchas metodoloǵıas que se pueden seguir, si bien el empleado en este

trabajo es el análisis bayesiano, es decir, trabajaremos con ciertos priores, que usaremos para hacer

que el fit se estabilice antes, no para establecer un resultado esperado. En él, uno busca estabilizar

el fit minimizando una función de la forma:

F = χ2 + λϕ, con ϕ =

K∑
k=1

(
ak

(
Ek − Êk

)2
+ bk (ck − ĉk)

2

)
(89)

en donde ϕ es una función que depende de los parámetros del fit, siendo Êk y ĉk los valores en

torno a los que esperamos que se encuentren la enerǵıa y sus respectivos coeficientes. Además, los

parámetros ak y bk simplemente dan un peso relativo para el sesgo que hayamos escogido y son la

anchura del prior. Aśı, este fit buscamos minimizarlo que modo que dependa lo menor posible del

parámetro λ, pues este es el que cuántifica cómo de sesgado está nuestro resultado final. Recordemos

que (87) era la función usada para tener una estimación del nivel fundamental, pero que nosotros

ajustamos a (83), truncando las exponenciales a 2 o 3 estados, incluyendo respectivamente otros 2

o 3 oscilantes, de ah́ı que los ajustes sean a nstates = 2 + 2 y nstates = 3 + 3.

Concluyendo ya con este punto, una vez se ha explicado todo lo relacionado con las simulaciones y

el fit, los resultados se pueden ver en (6), donde se muestran los valores obtenidos para el ensemble

con mayor espaciado y para el de menor.

5.3 Alguntos tests a los resultados obtenidos

Como es sabido, cuando hacemos simulaciones, es imposible saber con certeza plena si estas son

correctas o no, pero tenemos ciertas herramientas para saber la confianza de estas. En el caso de
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p (2π/L) Ground state (aED) 1st excited state (aE′
D) χ2/dof

2 + 2 3 + 3 2 + 2 3 + 3 Z1S,1S Zd,d 2 + 2 3 + 3

000 0.51866(41) 0.51807(71) -1.60(8) -1.98(27) 2.342(57) 0.00815(24) 66.04/81 57.05/99
100 0.52346(44) 0.52335(48) -1.52(10) -1.62(17) 2.309(33) 0.00849(14) 49.29/81 47.57/99
110 0.52735(49) 0.52712(57) -1.48(10) -1.60(18) 2.211(35) 0.00847(16) 60.81/81 60.18/99
200 0.53545(56) 0.53500(51) -1.47(11) -1.57(9) 2.025(28) 0.00847(13) 49.43/81 52.35/99
211 0.54198(75) 0.54172(83) -1.58(11) -1.75(18) 1.804(45) 0.00818(23) 91.87/81 90.45/99
222 0.5649(12) 0.5645(11) -1.62(17) -1.74(24) 1.435(47) 0.00832(30) 71.24/81 68.75/99
300 0.5538(10) 0.55353(73) -1.56(16) -1.58(9) 1.634(31) 0.00838(18) 52.94/81 55.73/99
400 0.5788(23) 0.5790(13) -1.88(23) -1.68(13) 1.235(42) 0.00831(31) 63.97/81 64.35/99

Table 6: Tabla de resultados para el ensemble SuperFine.

p (2π/L) Ground state (aED) 1st excited state (aE′
D) χ2/df

2 + 2 3 + 3 2 + 2 3 + 3 Z1S,1S Zd,d 2 + 2 3 + 3

000 1.18633(60) 1.18580(64) -0.434(50) -0.742(99) 7.051(51) 0.1898(16) 17.07/24 25.20/42
100 1.20109(91) 1.1992(13) -0.452(55) -0.74(11) 6.674(61) 0.1931(19) 11.26/24 26.60/42
110 1.2143(10) 1.2119(13) -0.493(63) -0.79(10) 6.008(90) 0.1865(31) 19.46/24 32.32/42
200 1.24328(85) 1.24304(80) -0.505(61) -0.552(55) 5.473(42) 0.1959(17) 19.13/24 35.52/42
211 1.2678(19) 1.2638(21) -0.464(78) -0.863(84) 4.49(11) 0.1840(45) 12.07/24 33.94/42
222 1.3424(43) 1.3354(41) -0.68(12) -0.89(19) 3.01(14) 0.1805(93) 16.41/24 27.62/42
300 1.3027(29) 1.2996(28) -0.61(10) -0.800(97) 3.71(12) 0.1841(62) 20.00/24 27.96/42
400 1.3860(62) 1.3743(46) -0.52(17) -0.779(71) 2.37(11) 0.1796(88) 15.27/24 31.77/42

Table 7: Tabla de resultados para el ensemble MediumCoarse.

Table 8: En estas tablas se muestran los resultados del fit para las enerǵıas del estado fundamental
ED, del primer excitado (no oscilante) E′

D, de los factores de solapamiento Z1S,1S y Zd,d para los
dos smearing estudiados y el χ2 dividido de los grados de libertad para los distintos momentos
estudiados. Todos los resultados se muestran tanto el estado (2+2) como para el estado (3+3),
aunque para los ajustes posteriores de las funciones de correlación solo se usan los resultados de
3+3. Cada medida viene acompañado de su error.

nuestras simulaciones de las funciones a dos puntos del B → Dℓν tenemos varias cosas que nos

indican si estamos en un camino aceptable o no.

5.3.1 Distribución del p-value

El primero de ellos es la distribución del p-value. Ya se ha comentado que se ha realizado una

simulación para todos los momentos de los distintos ensemble, tanto para nstates = 2 + 2 como

para nstates = 3+3, por lo que tenemos en cada uno de los distintos casos de nstates 50 simulaciones

distintas, es decir, 50 p-value distintos. Como es lógico, el valor de uno de ellos no nos va a marcar

si el procedimiento que estamos siguiendo es correcto o no, por lo que lo que resulta más sensato

es visualizar la distribución de estos y si es uniforme (dentro de lo que cabe, sabiendo que en una

muestra de 50 valores va a haber una gran varianza) podremos considerar que el p-value de nuestras

simulaciones es aceptable. De este modo, el histograma que se obtiene para ambos casos son los

mostrados en 6 y 7 y, por tanto, podemos decir que para ser una muestra de 50 valores los p-value

están distribuidos de manera bastante uniforme y que por este motivo tenemos un conjunto de

ajustes que ofrecen un p-value razonable.

5.3.2 Diferencia entre los resultados para nstates = 2 + 2 y nstates = 3 + 3

En segundo lugar, si recordamos la discusión del rango de tiempos a usar, cuando hablamos del

tiempo mı́nimo se estableció que era necesario tomar un valor a partir del cual la enerǵıa del
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Figure 6: p-value para nstates = 3 + 3 Figure 7: p-value para nstates = 2 + 2

estado fundamental se estabilizase, es decir, mirando el fit de estabilización. Sin embargo, esto

no es lo único que se busca, ya que idealmente se espera que trabajando tanto con 2 como con 3

exponenciales el valor obtenido sea el mismo para la enerǵıa del estado fundamental, Zd y Z1S en

los distintos momentos. Para comprobar esto, al tener medidas con un valor central y un error,

lo que se ha hecho ha sido calcular la diferencia entre estos resultados, tomando como aceptables

los resultados que tienen un valor central de dicha diferencia menor que su error. Además, al

tener 100 resultados distintos (6 momentos para 3 ensembles y 8 para otros cuatro, además de

tener cada caso para 2 números de estados), lo que se ha decidido hacer es estudiar un momento

que intermedio, el (2,0,0), como se puede ver en 9. De tal modo, es fácil observar que los valores

centrales de la diferencia son menores que el error de esta, por lo que en el rango de tiempos que

hemos estudiado nuestros resultados 2+2 y 3+3 estados son compatibles.

MediumCoarse Coarse-1 Coarse-2 Coarse-Phys Fine-1 Fine-Phys SuperFine

E0
0.0002 0.0009 0.0003 0.0009 0.0009 0.00059 0.00045
±0.0012 ±0.0020 ±0.0033 ±0.0015 ±0.0012 ±0.00081 ±0.00076

Zd
0.0017 0.008 0.001 0.008 0.008 0.0055 0.006
±0.0056 ±0.014 ±0.019 ±0.010 ±0.011 ±0.0072 ±0.011

Z1S
0.0035 0.007 0.001 0.0069 0.0069 0.0050 0.0060
±0.0053 ±0.012 ±0.016 ±0.0089 ±0.0091 ±0.0062 ±0.0096

Table 9: Diferencia de enerǵıa, Zd, y Z1S con sus respectivos errores entre Nstates=3+3 y
Nstates=2+2 para el momento (2,0,0) para los distintos ensembles.

5.3.3 Estabilización de Zd

Por último, otra condición que se debe dar está relacionada con Zd, la cual debe ser constante

para los distintos momentos. Los resultados de esto se muestran en las imágenes 8 y 9, las cuales

muestran el caso de mayor espaciado, donde esperamos peores resultados, y el menor espaciado,

que, al tender al continuo, esperamos que reproduzca mejor todo lo estudiado. Asimismo, se añade

el cono de error, que esperamos que sea del orden de Zd ± O(αsa
2p2). Con todo, vemos que en

ambos ensembles los datos obtenidos están dentro del error que pod́ıamos preveer. Es interesante

recalcar que el cono de error de los ensembles de mayor espaciado de ret́ıculo va a ser mayor que

en el resto de casos, ya que los errores de discretización serán más grandes.

De este modo, nuestras simulaciones cumplen los 3 requisitos que se piden para verificar que los
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Figure 8: Zd para el ensemble MediumCoarse. Figure 9: Zd para el ensemble SuperFine.

resultados tienen cierto grado de confianza, por lo que ya podemos trabajar en obtener resultados

útiles a partir de ellas.

5.4 Relación de dispersión

Realizados todos los ajustes de los distintos ensembles para el caso de correladores a dos puntos

y habiendo realizado todas las comprobaciones necesarias para asegurarnos de que son aceptables,

otra cosa que podemos hacer es ver cómo de bien se ajustan nuestros resultados a la relación de

dispersión de la enerǵıa E2 = m2 + p2 (trabajando en unidades naturales c = ℏ = 1). Esto lo

haremos mediante un plot en el que representemos E2/(p2 +m2) en función del momento, pues

como sabemos esto debeŕıa ser 1, por lo que midiendo desviaciones respecto a este valor podemos

ver cómo de cerca están nuestros resultados del continuo. Todos los resultados se muestran en la

figura 10, la cual además tiene pintados los conos de errores esperados, los cuales los esperamos

del orden 1±O(αsa
2p2). [7]

Figure 10: Relación entre las enerǵıas ajustadas y las enerǵıas esperadas de la relación de dispersión
del continuo. Los conos muestran el tamaño esperado de los errores de discretización por tamaño
de ret́ıculo para los distintos ensembles.

En ella, como se puede observar, todos los ensembles están dentro de su respectivo cono de errores
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(la constante de acoplo fuerte depende del espaciado del ret́ıculo, se calculan en [17]), por lo que

todos resultan fits muy válidos dentro del orden de error que hemos marcado como máximo, pero

además, cuanto menor es el espaciado del ret́ıculo vemos que tendemos mucho más a la unidad, lo

que es lógico porque al tender al continuo debemos recuperar las expresiones de este.

Sin embargo, evidentemente no es un resultado exacto, lo que nos indica que deben existir cor-

recciones a esta relación de dispersión de la enerǵıa. Esta relación de dispersión que incluye los

efectos de discretización viene dada por la siguiente expresión: [7]

a2E2(p) = (aM1)
2+

M1

M2
(ap)2+

1

4

[
1

(aM2)2
− aM1

(aM4)3

]
(a2p2)2− aM1w4

3

3∑
i=1

(api)
4+O(p6) (90)

donde M1 es la masa en reposo, M2 es la masa cinética, M4 es una cantidad que es similar a la

masa y donde los efectos de discretización se tienen en cuenta en los términos ap. Aśı, lo que

haremos será realizar un fit con nuestros datos a esta ecuación para poder obtener los coeficientes

que nos corrigen la relación de dispersión en el ret́ıculo.

Para ello, partiremos de las siguientes expresiones que utilizaremos para los priores de los coefi-

cientes a los que ajustamos la función:

M1 = a−1 log(1 +m0a), (91)

1

M2a
=

2ζ2

m0a(2 +m0a)
+

rsζ

1 +m0a
. (92)

w4 =
2ζ2

m0(2 +m0)
+

rsζ

4(1 +m0)
, (93)

1

M3
4

=
8ζ4

m3
0(2 +m0)3

+
4ζ3[ζ + 2rs(1 +m0)]

m2
0(2 +m0)2

+
r2sζ

2

(1 +m0)2
. (94)

utilizando ζ = rs = 1, ya que rs = 1 es la eleccción más sensata para evitar el problema que surge

al trabajar en lattice QCD de que aparezcan estados no f́ısicos adicionales a causa de la intentar

representar una teoŕıa continua en una red discreta, y ζ = 1 es consecuencia directa de dicha

elección. Además, en estas expresiones m0a es la masa en unidades del ret́ıculo del quark charm.

En la ecuación (90) lo que esperamos es que en el ĺımite al continuo, es decir, cuando a → 0, se

nos quede la ya conocida relación de dispersión E2 = m2 + p2 (unidades naturales con c = 1),

por lo que debemos esperar que esta nos ofreza un resultado M1 igual a la enerǵıa fundamental

para el momento p = (0, 0, 0) y que M1 ∼ M2 cuando trabajemos con espaciados del ret́ıculo

más pequeños, perdiendo precisión cuando nos vayamos a espaciado más grandes. Aśı, los valores

obtenidos de los distintos parámeetros del fit se muestran en la tabla 10, acompañado de dos

gráficas que muestran el comportamiento de nuestro fit 11 y 12. En ellas se ve que el fit se ajuste

bastante bien para el ensemble SuperFine pero que a medida que aumenta el espaciado del ret́ıculo

encontramos pequeñas desviaciones respecto a los datos obtenidos en los momentos más altos.

Al final, en este trabajo por falta de tiempo el cálculo de errores se ha dejado en un segundo

plano, sin entrar en excesivo detalle. Hay métodos que nos habŕıan permitido obtener unos errores

mucho más precisos y hacer estos datos del fit compatibles con nuestros resultados pero como en

su mayoŕıa los ensembles se ajustan bien, no se ha estimado necesario entrar en tanto detalle en el

cálculo de errores. Con todo, es esperable encontrar discrepancias entre el continuo y el caso más

alejado, además de estar intentando ajustar a una función muy parecida a una recta, por lo que

los coeficientes han de ser muy precisos para captar las finas desviaciones que existen respecto a

un comportamiento lineal.
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MediumCoarse Coarse-1 Coarse-2 Coarse-Phys Fine-1 Fine-Phys SuperFine

M1
1.18578 1.00582 1.01503 0.99982 0.77549 0.77114 0.51903
±0.00058 ±0.00080 ±0.00084 ±0.00062 ±0.00035 ±0.00028 ±0.00035

M2
1.318 1.147 1.134 1.105 0.849 0.837 0.535
±0.028 ±0.032 ±0.030 ±0.028 ±0.017 ±0.015 ±0.013

M4
1.074 1.07 1.13 1.09 0.801 0.83 0.526
±0.080 ±0.14 ±0.14 ±0.16 ±0.074 ±0.10 ±0.071

w4
0.649 0.400 0.389 0.403 0.272 0.648 1.24
±0.041 ±0.060 ±0.058 ±0.061 ±0.097 ±0.098 ±0.19

Table 10: Resultados del ajuste para diferentes ensembles

Figure 11: Ajuste a la relación de dispersión
con efectos de discretización para el ensemble
MediumCoarse.

Figure 12: Ajuste a la relación de dispersión
con efectos de discretización para el ensemble
SuperFine.

6 Funciones de correlación a 3 puntos

Cuando hemos terminando el análisis relacionado con las funciones de correlación a 2 puntos, el

siguiente paso es continuar incluyendo la corriente para trabajar con las de 3 puntos. Como dijimos

en anteriores puntos, nuestro objetivo principal es obtener los factores de forma, para lo que necesi-

tamos los priores de los distintos parámetros de los que dependen los correladores, que son los que

obtuvimos con el desarrollo del punto anterior. Con ello, utilizando las expresiones (73), (76), (78)

y (80), podemos obtener valores a ajustar a las expresiones (75), (77), (79) y (81) respectivamente,

y, con ello, llegar a los valores de los ratios y de los coeficientes que acompañan a las exponenciales.

Como se ve en estas fórmulas, tenemos muchos coeficientes distintos que nos hacen que el fit se

asemeje más a la función original. Sin embargo, nosotros como dijimos trabajamos solo con A y B,

permitiendo al ajuste esos 2 o 3 parámetros, en los que se incluye el ratio como es lógico. Aśı, los

resultados que se presentan en este trabajo son ajustando a 2 parámetros, ya que al trabajar con

una muestra de datos tan pequeña, el fitter no es capaz de resolver un tercer parámetro y lo único

que hace es cambiar el error obtenido, sin modificar el valor central que se obtiene ajustando a 2

parámetros libres. Con ello, en las tablas 12 y 11, se muestran los parámetros obtenidos a partir de

los fits para los casos de espaciados más extremos, como hemos ido haciendo a lo largo del trabajo.

Asimismo, podemos observar los fits de las funciones a 3 puntos que hemos usado para sacar estos

ratios en 13.

A partir de dichos resultados, recordando la expresión del parámetro de recoil (59), podemos
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Ratio/Momento 000 100 200 300 400

Q+ - 0.9901(23) 0.9663(79) 0.9242(95) 0.884(16)
R− - -0.0815(21) -0.1567(24) -0.2194(54) -0.263(15)
XF - -0.0719(13) -0.1407(18) -0.1999(29) -0.2438(63)
R+ 1.026(15) - - - -

Table 11: Tabla de resultados de los ratios del ensemble MediumCoarse para los distintos momentos.

Ratio/Momento 000 100 200 300 400

Q+ - 0.9611(53) 0.9454(60) 0.9440(14) 0.8981(41)
R− - -0.06707(99) -0.1318(11) -0.1939(18) -0.2555(38)
XF - -0.06154(51) -0.12207(63) -0.1794(10) -0.2325(15)
R+ 1.0476(36) - - - -

Table 12: Tabla de resultados de los ratios del ensemble SuperFine para los distintos momentos.

obtener este para los distintos ensembles y momentos, que se muestran en 13, que junto a los ratios

nos permiten estudiar las expresiones factores de forma (60) y (61), obteniendo los resultado de la

gráficas 14 y 15.

Momento MediumCoarse Fine-1 Fine-Phys SuperFine Coarse-1 Coarse-2 Coarse-Phys

100 1.01040(39) 1.01217(37) 1.00798(24) 1.00760(13) 1.01670(90) 1.0284(10) 1.00786(28)
200 1.0404(11) 1.04943(98) 1.03055(58) 1.03025(32) 1.0627(25) 1.1043(35) 1.03009(71)
300 1.0833(26) 1.1079(23) 1.0661(13) 1.06649(80) 1.1291(60) 1.209(11) 1.0643(14)
400 1.1263(70) 1.1832(56) 1.1117(27) 1.1143(16) - - -

Table 13: Resultados obtenidos del parámetro de recoil w para los distintos ensemble y los distintos
momentos.

Con todo, como se puede ver si comparamos nuestros resultados con los mostrados en la figura 3

de [4], que son resultados en los que se ha trabajado para minimizar los errores y ya renormal-

izados, podemos ver que obtenemos algo muy similar, estando en valores muy próximos y con un

comportamiento calcado tanto en h+ como en h−.

Si quisiésemos aproximarnos a dichos resultados, debeŕıamos empezar estudiando las diferentes

fuentes de error. Como sabemos, tenemos el error que encontramos por realizar simulaciones de

Monte Carlo finitas, pero existen también otras fuentes de error sistemático. Las principales que

encontramos en nuestro trabajo se deben a haber trabajado en el ret́ıculo y discretizado el espacio-

tiempo. Cuando discretizamos la acción para los quarks ligeros y los gluones nos encontramos

errores de orden αsa
2 y α2

sa
2 [5]. Luego, esto ocurre de igual forma para los quarks pesados,

pudiéndose calcular el tamaño de estos errores gracias al estudio del cutoff de la teoŕıa efectiva de

quarks pesados, como se hace en [14]. Además, como es obvio, al trabajar en un volumen finito

esto va a causar cierto efecto en nuestros resultados, cuya importancia se puede determinar con la

teoŕıa de perturbaciones quiral χPT que veremos en el siguiente punto [1].

7 Pasos a seguir en el estudio del elemento de matriz Vcb

Concluiremos el trabajo hablando de los siguientes pasos que se han de tomar para determinar el

elemento de matriz Vcb.

Una vez se han obtenido los factores de forma, los siguientes pasos naturales son llevar estos
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Figure 13: Fit de los distintos ratios para varios ensemble usados para determinar el valor de
estos. Los valores están pintados frente al tiempo t de la corriente vectorial. Las ĺıneas sombreadas
indican el rango a 1σ del valor obtenido en el fit para el ratio correspondiente.

resultados al continuo, es decir, a→ 0, L→ ∞ y amq → amphys
q . Para ello, como es natural, hemos

de asegurarnos que nuestros resultados estén normalizados de acuerdo a los convenios del continuo,

para lo que se debe utilizar los factores ρµV definidos en (54). En concreto, estos denominados

matching factor siguen las siguientes relaciones:

R+ = ρ2V 4(1)R+; Q+(p) =
ρV 4(w)

ρV 4(1)
Q+(p), ; R−(p) =

ρV i(w)

ρV 4(w)
R−(p), (95)

donde el lado izquierdo representa el ratio renormalizado.

El factor ρ2V 4(1) usado para normalizar R+ se calcula utilizando el ĺımite m2ca << 1, en donde

desaparece la dependencia con el parámetro de recoil (que es dif́ıcil de calcular) y se obtiene con

teoŕıa de perturbaciones a un loop [14]. Para el otro, se usa el mismo ĺımite m2ca << 1 y se puede
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Figure 14: Factor de forma h+ frente al
parámetro de recoil. Usamos el mismo color
con distintas tonalidades para los ensembles con
mismo espaciado y distinto color para los dis-
tintos espaciados y se adjuntan las correspondi-
entes barras de error.

Figure 15: Factor de forma h− frente al
parámetro de recoil. Usamos el mismo color
con distintas tonalidades para los ensembles con
mismo espaciado y distinto color para los dis-
tintos espaciados y se adjuntan las correspondi-
entes barras de error.

calcular de forma expĺıcita.

Para el siguiente paso lo que se hace es trabajar con la teoŕıa de perturbaciones quiral. Debemos

saber que cuando trabajamos en el ĺımite en el que la masa de los quarks ligeros tiende a 0, aparece

una simetŕıa quiral SU(3)L×SU(3)R, la cual está rota en el vaćıo de QCD haciendo que aparezcan

mesones pseudo-Nambu-Goldstone (piones, kaones y etas). Aśı, surge una teoŕıa efectiva que es

la que describe las interacciones de estas part́ıculas y permite que cuando volvamos al continuo la

simetŕıa quiral sea respetada. Ahora, con estas correcciones de esta teoŕıa de perturbaciones quiral

y la normalización hecha con los matching factors, ya tenemos los factores de forma expresados de

forma apropiada para poder realizar una extrapolación al continuo que sea válida.

Con los resultados que se obtienen de dicha extrapolación, ya solo quedaŕıa utilizar las expresiones

(51) y (50), que si recordamos, son los factores de forma en el continuo que nos permiten obtener

el elemento de matriz |Vcb| mediante la relación (47).
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