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1 Introduccién

En este trabajo vamos a realizar un célculo de QCD en el reticulo con el objetivo de obtener
los factores de forma hadrénicos del proceso de decaimiento B — D/{v, lo que permite calcular el
elemento V., de la matriz CKM. Para ello se realizan simulaciones de 7 ensembles de configuraciones
de campos gauge distintos, en los que el espaciado del reticulo varia desde los 0.058 fm hasta los
0.15 fm, probando también distintos ratios de masas del pién (ya que solo modificamos las masas
de los quarks ligeros v y d). En el caso de los quarks pesados, que en nuestro trabajo son el ¢ y
el b, usamos fermiones de Wilson mejorados con la interpretacién de Fermilab y para los ligeros
utilizamos fermiones staggered mejorados.

Para el célculo del elemento V., hay dos métodos comunes: utilizando los procesos exclusivos B —
Dlv y B — D*{v con determinaciones de los factores de forma hadrénicos relevantes estudiando
QCD en el reticulo [19], o usando la desintegracién inclusiva B — X fv a cualquier estado final
que contenga el quark charm X, y el formalismo del desarrollo del de producto de operadores y
quarks pesados para describir los efectos de la interaccién fuerte [12]. Existe una tensién de = 30
entre las determinaciones inclusiva y exclusiva de V,, por lo que se necesitan calculos més precisos
de este elemento de matriz para ver si se trata de una discrepancia producida por subestimar los
errores sistematicos tanto tedricos como experimentales o si bien es un caso de nueva fisica.
Comenzaremos introduciendo la importancia del elemento V;,, continuaremos estudiando conceptos
bésicos del célculo de teoria cuédntica de campos en el reticulo, profundizaremos en el apartado
tedrico que usaremos para nuestras simulaciones, veremos cémo podemos realizar este estudio en
el reticulo y terminaremos analizando las funciones de correlacién relevantes que nos permitiran

calcular los factores de forma hy y h_.

2 La matriz CKM Yy el elemento V

Empezaremos introduciendo la importancia de este trabajo en la fisica actual. Al trabajar con la
interaccion de Yukawa con el condensado del Higgs, nos encontramos que cuando el potencial ¢
adquiere un valor esperado en el vacio, el Lagrangiano de dichas interacciones lleva a un término
de masa para los quarks. Asi, cuando uno trabaja para obtener sus autoestados diagonalizando
dicho término de masa, lo que se encuentra es que se produce un acoplo entre las interacciones de
las corrientes cargadas W* y los estados fisicos de los quarks ur; y drj, o, con otras palabras,
se encuentra que la base en la que se diagonaliza el término de masa no es la misma en la que se
diagonalizan las interacciones débiles. Dicho acoplo tiene la siguiente forma en el Lagrangiano: [9]

dr,

—i(ﬁ,E,E)W“WJVCKM st | +he (1)
V2 b
L

De tal modo, vemos que aparece un elemento Vo s, la cual es la matriz unitaria que nos relaciona
ambas bases y que tiene la siguiente forma:

Vud Vus Vub
Vekm = | Vea Ves Vo (2)
Via Vie Vi

en donde los términos V;; nos dicen cémo se mezclan las diferentes familias, lo que implica que al
observar un autoestado de sabor de b, s o d en realidad estemos observando una combinacién lineal
de autoestados de masa, permitiendo pasar de una familia a otra. En general, una matriz unitaria



N x N tiene N? pardmetros reales, de los cuales 2N — 1 pueden ser absorbidos por los campos de
quarks que multiplican los lados derecho e izquierdo de la matriz, mediante una redefinicién global
de las fases arbitrarias. De los (N — 1)? pardmetros libres restantes, N(N — 1)/2 son los dngulos
de Euler, comunes tanto a la matriz real (ortogonal) como a la matriz compleja (unitaria), y los
otros son fases complejas. Por ello, en N = 3 tenemos 4 pardmetros libres: 3 denominados los
angulos de mezcla y otro que es una fase compleja, denominada fase de violaciéon CP. La simetria
CP es aquella que nos garantiza que bajo transformacién de carga y de paridad (o como CPT se
conserva, es equivalente a simetria temporal T) los procesos son invariantes. Sin embargo, en 1964
se observé que el mesén K decaia més en 7~ ey, que mTe” i, por lo que esta no se respeta en
la naturaleza y es esta fase compleja de la matriz CKM la que permite que esto se produzca. Con
ello, la forma que tiene esta matriz es:

€12€13 512C13 syze” 01
VokMm = | —S12023 — C12823513€13 1303 — S12823513€"013 523C13 (3)

013

. 5
5125923 — C12C23513€" —C12523 — S12C23513€*1® 2313

con c¢;j = cosb;j, s;; = sinf;;, donde 8;; es el dngulo de mezcla entre la i-ésima y la j-ésima
generacién y 013 es el angulo de fase.
De este modo, el objetivo de los experimentos suele ser obtener los parametros de esta matriz con
la mayor precision posible y asi poder encontrar diferencias entre los resultados de distintas formas
de aproximar el problema, lo que permitiria encontrar desviaciones del Modelo Estandar y por ende
nuevas rutas de investigacion. En nuestro caso, trabajamos con el elemento V, el cual juega un
papel crucial en el tridngulo de unitariedad. Como hemos dicho, la matriz CKM ha de ser unitaria
para que la probabilidad de transicién se conserve, por lo que impone las siguientes condiciones a
sus elementos:

Vial* + Vis* + [Vis|* =1 para i=u,c,t

VudViss + VeaVis + ViaVis = 0 (4)

VudVay + VedVe, + ViaVig, = 0

La tercera de ellas es realmente interesante, ya que permite dibujar un tridngulo en el plano
complejo cuyos lados tienen longitudes similares a orden O(A3) (A & s12) y por tanto los d4ngulos
tienen amplitudes similares. Esta, ademds, se puede normalizar diviendo por V.4V, lo que permite

escribir la expresién que define el tridngulo de unitariedad:

ViV, , ViV

1+
VedVy o VeadVy,

=0 (5)

Con todo, vemos que nuestro elemento V,;, juega un papel fundamental a la hora de normalizar la
expresién y por tanto nos sirve como test excelente para encontrar desviaciones de la teoria o los
pardametros medidos [6].

3 Introduccion a la teoria cuantica de campos en el reticulo

Cuando trabajamos con la teorfa cudntica de campos, mas concretamente con la cromodindmica
cudntica (QCD), lo que nos encontramos es una interaccién que media entre quarks y gluones, la
cual a distancias cortas o altas energias es débil, pero que a medida que la energia aumenta se
convierte en una interaccién muy fuerte y la teoria de perturbaciones deja de funcionar. Ello hace
que surja la necesidad de trabajar con técnicas no perturbativas, entre las que aparece el ’lattice
QCD’; 0 QCD en el reticulo. Generalmente, lo que se hace es regularizar QCD introduciendo un
reticulo espacio-temporal, en el que colocamos los quarks en puntos fijos de este y los campos gauge



seran los links que unen las distintas posiciones.

Matematicamente, esto se traduce a que para definir una teoria de campo en el lattice normalmente
la definimos directamente desde la accién del lattice por medio de la integral de camino, imponiendo
como condicién obvia que cuando hagamos el limite al continuo se reproduzcan los resultados de la
teoria en el continuo. Lo que haremos sera coger un caso muy simple para poder introducir todos
los conceptos del reticulo y de la integral de camino sin perder mucho tiempo en detalles que se
iran explicando a su debido momento. Empecemos por el correlador de dos puntos en el espacio
Euclideo:

(0s(0)01(0))r = - tr [T 0,70, (6)

T

en donde O; son operadores que crean o aniquilan estados del vacio con unos nimeros cuanticos
dados y Zr es el factor de normalizacién:

Zr = tr [e_TH } (7)
Trabajando en la base de autoestados de fI|n> = E,|n), podemos evaluar la traza de @, obte-

Zr =y nle” ) = 3 e (®)

niendo:

y el correlador de los operadores:
1 oA oA
(02(£)01(0))r = —= D (mle= T Osln) (n|e= O1|m)
Zr
1 _(T_t)Em A _tEn 2 (9)
= ZZ@ (m|Oz|n)e (n|O1|m).

Podemos obtener entre ambas expresiones:

3 i (02| (0] O [ m) e =145 = (T =D AEm

1 + efTAEl + efTAEQ + e

(02(t)01(0))r = , (10)
donde AFE = E,, — Ej es la diferencia de energia entre estados excitados y el fundamental. Para
terminar con los correladores, podemos estudiar el limite cuando T — oo, y asumiendo que la
energia fundamental no es nula, lo que ocurrird serd que el denominador tienda a la unidad y por
tanto tengamos:

A (O2(1)0:(0))r = ;<OI@2\H><NI@1|0>64ET‘- (11)

que como veremos mas adelante jugara un papel crucial en nuestro trabajo.

Por otra parte, es necesario introducir, aunque sea de forma muy breve, el factor Z que aparece
para normalizar el correlador. Si trabajamos en la base candnica de cuantizacién en la que se
impone [£,p,] =iy p= —i%, el factor Z tiene una expresién como la que sigue:

Nr—1 N2
Z%:CNT/dmO...deT,lexp —€ Z (ZL (M) —‘rU(l'j)) , (12)

Jj=0

donde imponemos condiciones periddicas zy, = xg. En (12]) encontramos un factor e que aparece
a causa de separar el tiempo en trozos mas pequenos, y se relaciona con el tiempo Euclideo como
T = eNr, es decir, multiplicar cada fragmento temporal por el nimero total de fragmentos nos



devuelve el tiempo total. De esta expresién se puede deducir a simple vista lo siguiente:

@ = @(t)+ O(e) con t=je, (13)

Nr—1

T
GZ :/ dt...+O(e) con T = Nre. (14)
3=0 0

Y entonces gracias a eso tenemos:

Jj=0

en donde el lado derecho no es mas que la acciéon Euclidea, que se obtiene de la accién tipica S
cambiando el tiempo real por imaginario y rotando el contorno de integracién, por lo que S = iSg.
Con todo, hemos llegado a que el factor de normalizacién Z no es mas que una expresiéon en la
que dividimos el espacio Euclideo T en una serie de trozos € y que en cada paso temporal lo que
hacemos es insertar una variable x; que integramos de —oo a 0o, pero como integramos para todos
los posibles valores de x; y cada conjunto de {xz;} se puede interepretar como un camino, lo tnico
que hacemos es evaluar a todos los caminos posibles.

Para continuar con nuestra introduccioén, una vez hemos visto estos términos principales del trabajo,
hemos de ver las expresiones que se obtienen cuando se cuantiza la teoria a partir de aplicar la
integral de camino a las distintas variables de los campos clésicos y no por medio de la cuantizacién
canodnica. Aqui, veremos lo méas importante, sin entrar en detalles al ser un célculo excesivamente
largo para este trabajo. Ademads, hemos de saber que, todo lo introducido debe respetar que cuando
T — oo siempre se debe volver a obtener . Las expresiones de los correladores son de la forma:

1
(O:(1)01(0))r = 7 /D[‘D]G_SE[‘D]@[‘I)(-,nt)]Ol[‘I’(-,O)] (16)
y la funcién de normalizacién:

Zr = /D[(I)}e‘sE[q)], con D[@] = [] d@(n) (17)
neA

siendo este término D[®P] el producto de todas las variables de integracién de los distintos campos
de los n puntos que existen en el reticulo A.

En resumen, los pasos a seguir para obtener esto son simples: empezamos sustituyendo el espacio
continuo 4D Euclideo por un reticulo de espaciado a, con grados de libertad equivalentes al nimero
de campos que existan; luego cuantizamos la accién Euclidea de modo que cuando tendamos a — 0
se recupere el resultado del continuo; y por ultimo acabamos sustituyendo los campos clasicos por
funcionales mediante la sustitucién de dichos campos por las variables clasicas del reticulo.

Por tdltimo, para concluir con este apartado hemos de irnos a QCD y hablar de los campos de
dicha teorfa. Como es conocido, estos deben formar parte del grupo SU(3). Si introducimos un
fermién en el reticulo de forma naive, surge el problema de que los términos de la accién de estos
que incluyen la derivada discretizada no son invariables gauge. Por ello, es necesario introducir un

campo Uy, (n) con una direccién p que se transforme como:

Uu(n) = Uy (n) = Qn)U,(n)Q(n + i)t con Q(n) € SU(3). (18)



Estos elementos de matriz estan orientados, como es l6gico al tener una direccién, y estédn ligados
al link del lattice en la direccién en la que apuntan. Con todo, la importancia de estos campos
gauge radica en que cuando trabajemos en QCD seran las variables fundamentales sobre las que
realizaremos nuestra integral de camino. Por tanto, en resumen, las expresiones que tendremos de

forma génerica al trabajar en QCD:
1
)= /D[U] =SSUIO[U] con Z = /D[U] e~ Salt], (19)

y si incluimos fermiones genéricos (hablaremos més en detalle de esto en el préximo punto), el
propagador de un mesén formado por dos quarks sera:

(O7(n)Or(m)) = —% / DU e~V det[D,] det[Dg] x tr [[D, ' (njm)I' Dy (m[n)],  (20)
Z = /D[U]e‘SG[U] det[D,,] det[Dg]. (21)

donde los determinantes y las trazas de los operadores de Dirac para los quarks u y d aparecen
como consecuencia de calcular la parte fermidnica del valor esperado del operador, debido a las
reglas de integracién para variables de Grassmann (nuevamente esto es solo una introduccién, todo
el desarrollo se puede seguir en el capitulo 6 de [13]).

3.1 Fermiones staggered y de Wilson

Cuando intentamos discretizar la accién de Dirac para describir los fermiones, obtenemos:

. 1 _ _ R _
Szawe - % Z [%%Uu(n)%m - wn’YuUu (n - /U')Twn—ﬂ} +m Z Yntn. (22)

n,pu n
donde encontramos la diferencia con la accién clasica por el término ﬁ(wnﬂ; — Yp_p), que se
corresponde con la derivada definida en el reticulo; y con U, (n) y U,(n— )T, que son los links que
nos permiten conectar los distintos vecinos del reticulo. A partir de ello, se construye el propagador

libre: .
1 —Uusmmpya+ma

= . 23
M sin® p,a + m2a? (23)

1
aS(p) = (i, sinpya + ma)~

Y en este es donde debemos detenernos un poco, sobre todo en el momento 4-dimensional p,,
el cual va desde —m/a hasta 7/a. Como es sabido, cuando uno trabaja con teorfas cudnticas de
campo en el continuo, los modos del fermidén estdn definidos como singularidades en el propagador,
siendo 4 que se juntan en el espinor de Dirac. No obstante, en el caso del reticulo, estos modos
aparecen degenerados, pues los tenemos tanto en p = (0,0, 0,0), ap = (,0,0,0), ap = (0,7, 0,0),...,
ap = (m,m,m, 7). De este modo, cuando a tiende a 0 el propagador es dominado por los lugares
donde el denominador es pequeno, pero en el caso del reticulo resultan ser 16, es decir, en todas las
esquinas de la zona de Brillouin, resultando este ser el problema del doubling, es decir, el problema
de que aparezcan fermiones que son efectos del lattice y no fisicos. Existen muchas propuestas
para solucionar este problema, aunque todas interfieren con la simetria quiral, pues atendiendo al
teorema de Nielsen—Ninomiya [18], vemos que si tenemos una formulacién local, hermitica y con
simetria translacional, mantener la simetria quiral siempre va a introducir doubling.

Una de estas soluciones son los fermiones de Wilson, los cuales se construyen anadiendo a la accién



del fermién un término de segunda derivada:

SW = r¥Dwth = =2 > B (np — 2on + V) = — VD, (24)

n,u
lo que lleva a que el propagador tenga la forma:
1 e sin(pua) +ma —r 3, (cos(p,a) —1)

-S(p) = 3
3, sin?(pua) + [ma —r 5, (cos(pua) = 1)]

a

El nuevo término no contribuye a p, = 0, pero para momentos p, = 7/a afiade una contribucién
2/a. Este término actia como un término de masa y hace que los doublers tengan un término de
masa m+2¢/a, donde / es el nimero de componentes con momento p, = 7/a. Asi, esto permite que
cuando estudiemos el limite al continuo a — 0, los doublers se hagan muy pesados y se desacoplen
de la teorfa, con lo que nos quedamos solo con los fermiones fisicos. Sin embargo, esta solucion,
como anticipamos antes, rompe de forma explicita la simetria quiral.

Otra solucion bastante éptima es la de trabajar con fermiones staggered, que se obtienen a partir
1/ niy . n2

de la transformacién local ¥, — Qu1! v 1, — ¥,Q6 ) en donde Q,, = 7°v]" v5%752. Con todo,
usando:
QI],’YHQHJFI)/ — (_1)n0+n1+"~+nuf1 = au(n>7 (26)

podemos reconstruir la accién €omo:
1 _ X _
=D Wnon(n) [Up(m)tfs = Unln — ) n g +m Y . (27)
n,p

y aunque 1)’ sea un espinor de 4 componentes, todas ellas son independientes y actiian de forma
idéntica, asi que podemos reducir la multiplicidad de nuestros fermiones naive simplemente descar-
tando todas menos una componente de Dirac de v’. Asi, la componente resultante y,, es el fermién
staggered con la acciéon de una componente:
1_
§=xXM(U)x

1 i _ (28)
= 50 2 Xnu(n) [Up(m)Xnt = Up(n = ) xnp] +m Y XnXn:
N, n

Por ende, dependiendo de la direccién espacial en la que nos desplacemos desde nuestro fermién
staggered tendremos un signo u otro, lo que haréd que las funciones de correlacién asociadas a estos
fermiones sean oscilantes, algo que deberemos tener en cuenta a la hora de realizar las simulaciones
y calcular los resultados.

Con todo, nosotros usaremos ambas regularizaciones para los fermiones, los staggered para los
quarks ligeros y la de Wilson para trabajar con los quarks pesados b y c.

3.2 Mejoras a QCD en el lattice

Como se ha ido viendo, cuando pasamos al reticulo hemos de discretizar todos los objetos con
los que usualmente se trabaja en el continuo. En el reticulo, la escala infrarroja esta fijada por
el tamano L del reticulo, y fijando m,L > 4, con m, la masa del pién, se consigue que los
grados de libertad ligeros, como el propio pién, no sean modificados. Sin embargo, la escala del
ultravioleta viene fijada por la minima resolucion del sistema, el espaciado a. Por ello, para poder
resolver la propagacién de los grados de libertad pesados, como puede ser el quark b, se necesitaria



que su masa estuviese lejos del limite 1/a, lo que sustituyendo los valores fisicos lleva a concluir
que se necesitan reticulos en los que L/a debe ser mucho mayor que 100 para poder mantener a
raya al mismo tiempo los efectos del volumen finito y del espaciado. Para lidiar con ello se utilizan
generalmente 2 teorias de campo efectivas: el programa de mejoras de Symanzik y la teoria efectiva
de quarks pesados (HQET'). Empezaremos estudiando el programa de mejoras de Symanzik, y para
entenderlo partamos de la accion efectiva en la forma:

Seft = /d4:v (E(O)(x) +alW(z) +a?LP () + .. ) : (29)

en donde a es el espaciado del reticulo que sirve para discretizar la expresién, £ es la densidad
lagrangiana estandar de QCD y los términos £*) con k > 1 son correciones que aparecen por los
productos de los campos de los quarks y de los gluones. Como es evidente, al tener a dimensiones
de longitud, estos términos de correcciones han de tener dimensiones de longitud—(—*t%). La idea,
en general, es anadir términos que hagan que los términos de correcciéon desaparezcan hasta el
orden que deseemos. En este caso, nos quedamos a orden O(a), que es la correccién dominante,
por lo que solo necesitamos un término cancele esta. Asi, con un poco de esfuerzo (se sale del
objetivo de este trabajo, para méds detalle vedse |13]) este término L) se puede cancelar en la
regularizacion de Wilson para los fermiones escribiendo la accién como:

SI = SWilson + Csw a5 Z Z J)(n)%o—puﬁuu (n)¢(n) (30)

neA p<lv

en donde el coeficiente real ¢y, es el coeficiente Sheikholeslami—Wohlert y FW ha de ser la forma
discretizada del término correspondiente en £(1). Este término se escribe en cada punto como una
suma de plaquetas, que son los loops cerrados méas pequenos que se pueden formar entre distintos
puntos del reticulo, con origen en dicho punto, formando un trébol, de ahi la denominacién de
clover improvement.

En este trabajo se utiliza el tadpole improvement. En teoria de perturbaciones del reticulo, un
link se puede expandir como:

a292Au(a:)2

Uu(x) = expliagA,(z)] — 1 +iagA,(x) — 5

+ ... (31)
Aqui vamos a detenernos un poco. Como es sabido, en una teoria continua aparecen divergencias
UV que hacen necesaria una regularizacién. Sin embargo, cuando nos vamos al reticulo, el propio
espaciado a actiia como regularizador porque existe un corte natural en el espaciado del reticulo. No
obstante, cuando estudiamos los diagramas de Feynmann de la teoria, vemos que ciertas funciones
de los vértices tienen una dependencia explicita con a, los cuales son los que hacen que desaparezcan
estas divergencias UV, pero que, a su vez, causa que cuando nos vayamos al limite al continuo
estos términos dependan también de la constante de acoplo g, haciendo aparecer diagramas de
tadpole, que son diagramas en los que solo existe una linea externa y que aparecen por la parte
de momento alto de los campos gauge. De este modo, como sus contribuciones son muy grandes,
se hace necesario eliminarlos, para lo que se anade un factor de tadpole que parametriza la parte
ultravioleta, es decir, sustituimos el link por su parte infrarroja:

GZQQAM(x)2

Uu(x) = ug expliagA,(x)] = uo |1 +iagA,(x) — 5

T (32)

de modo que aqui A, solo tiene términos IR.
Este término de correccién tadpole ug depende de los pardmetros de la teoria y se puede obtener



mediante simulaciones. Comunmente se define mediante el valor esperado de las plaquetas:

o = <]1V<TrUp>>l/4. (33)

Con esto, sustituyendo los links por U, /ug, conseguimos reducir las renormalizaciones del reticulo,
ademds de ser un recurso que se utiliza para implementar el programa de mejoras de Symanzik,
pues permite redefinir los coeficientes cgw ya calculados por otros gy, = csw /uo.

Por otro lado, tenemos el desarrollo que obtenemos gracias a aplicar HQET al reticulo. En esto
seremos mas breves ya que los detalles son mds complejos, pero como se puede ver en |11] y [15],
una teoria efectiva para hadrones pesados que contenga N —1 quark ligeros y un quark pesado con
masa m puede ser obtenida realizando un desarrollo en 1/m de la accién de QCD en el continuo y de
los campos, ya que cuando la masa del quark pesado es muy grande (tendiendo a infinito), se puede
considerar que su movimiento es casi estatico en comparacién con los quarks ligeros, o bien, que
los grados de libertad ligeros no pueden cambiar el momento del quark pesado. Asi, discretizada
para el reticulo y realizado el desarrollo en términos de 1/m, la accién del quark pesado tiene la

SHQET = a’4 Z {Kstat(w) + Z E(V) ((E)} s
Lstat(2) = 1y, () [V + 6m] ihn (), (34)
L) = Y u £ @),

forma:

con V7, siendo la derivada hacia atrds en el reticulo, dm tiene dimensiones de masa y los campos
compuestos £ tienen dimensiones de masa a la 4 + v. Ademds, para obtener los elementos de
matriz que describen las interacciones electrodébiles, es necesario realizar este mismo desarrollo
también a la corrientes y a las funciones de correlacién (las expresiones nuevamente se pueden ver
en [15], no son relevantes para nuestro trabajo). Lo importante es que cuando uno busca el valor
esperado de un observable, lo que utiliza es:

(0) = % / D[|O[p)e (FrertSinar), (35)

Z:/D[gp]e_(srel‘i‘SHQET)’ (36)

Pero aqui hemos de remarcar que el integrando de la teoria efectiva es desarrollado en términos de
1/m, con las potencias de acuerdo a:

1 1
wl(y) =0 () , agy) =0 () . (37)
mY mY
(v)

con a; ’ siendo el pardmetro usado para desarrollar la corriente. Por tanto, se reemplaza en l)

la accién por la expansion:

exp{f(srel + SHQET)} = exp { (Srel + (14 Z Estat(gj)> } X
) (38)

2
1 —a4Z£(1)(:C) + % a4Z£(1)(ac)] - a4Z£(2)(x) +...




lo que nos deja una lectura muy simple, que los observables solo dependen de la expansién 1/m
cuando existen operadores locales o corrientes en dichos correladores. Asi, cuando tomamos el
limite al infinito, volvemos a recuperar la accién estatica. De tal modo, con esta teoria se logra
resolver de alguna manera el problema de que la masa del quark pesado sea mucho mayor que el
inverso del espaciado del reticulo. Sin embargo, al mezclar operadores de distintas dimensiones en
la funcién de correlacion, surge el problema de que los valores los coeficientes de la teoria efectiva
han de ser hallados de forma no perturbativa.

Con todo, el procedimiento para mejorar los cdlculos que usamos nosotros consiste en intercalar las
mejoras del programa de Symanzik con las del HQET. La propiedas més importante de esto es que
permite que los coeficientes csyy puedan depender de forma explicita de la masa del quark pesado
my,. De tal forma, la accién relativista de los quarks pesados se interpola mediante términos que
no dependen de la masa y términos del limite estdtico (masa infinita). En esta metodologia se
utiliza la densidad de la accién clover anisétropa:

Lrermilab (7) = a*(2) (mo +~0Do + (7 - D
) (39)

a ., = ia
—§D8 — §C(D)2 + 4CSWU},LVFMV) w(x)’

donde el parametro de anisotropia (, el coeficiente clover csw y la masa mg se ajustan para que
se reproduzcan las cantidades espectrales del mesén B (véase [10] y [16]). Ademds, en la accién
de Fermilab presentada en , las simetrias de los quarks pesados emergen de forma natural,
lo que permite que en la teoria efectiva de los quarks pesados se pueda estudiar de forma més
precisa establecer hasta qué energias y momentos se han de realizar los célculos (cutof f) para que
la propagacién de errores no sea insostenible. [21]

3.3 Simulaciones de Monte Carlo

Si recuperamos las expresiones de , es rapido caer en que estos calculos son imposibles de hacer
analiticamente cuando se tienen términos de interaccién. Por ello, lo mas apropiado es realizar
simulaciones de Monte Carlo en el que se sustituye la integral por una media de los observables
evaluado en N muestras distintas de las configuraciones de los campos gauge Uy distribuidas con
probabilidad o« exp(—S[Un]). La suma:

0) ~ % > o[, (40)
Un

se debe realizar para un nimero suficiente de configuraciones generadas por el algoritmo de Monte
Carlo. De tal modo, una vez generado un conjunto de configuraciones U;, se puede calcular un
observable relacionado con un operador O como:

N
(0) = lim %Z (41)

N —oc0

siendo cada configuracién distribuida con un peso acorde a la probabilidad:

eSip[U]

dP(U) = TH0]e o7

(42)

esta forma de generar configuraciones nos asegura que todas vendran dadas por la distribucién
e~ 5(WUN) 1o que permite no generar configuraciones con una accién despreciable y hace que el

proceso sea mucho mas 6ptimo, lo que se denomina importance sampling. Como es obvio, no hay
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ordenador capaz de hacer tender N al infinito, por lo que en el caso real lo que obtendremos sera
un cierto valor central con un error asociado, que es el error que iremos mostrando a lo largo de
todos los resultados. Para poder elegir esas configuraciones Uy se utiliza la cadena de Markov.
Este procedimiento se basa en buscar una solucion a la ecuacién que establece que la probabilidad
total de transicionar de un estado U a U’ es la misma que la probabilidad de salir del estado U’.
La soluciéon mas simple a esto, y la que se suele utilizar, denominada balance detallado, es imponer

que la igualdad se cumpla término a término, es decir:
TUNOPU)=TU|U)PU). (43)

donde en la igualdad aparece el peso de que el sistema se encuentre en el estado U.

En general, para aplicar esto en el reticulo, se aplica el algoritmo de Metropolis, el cual es un
procedimiento muy sencillo. Primero, partiendo de una configuraciéon gauge, se modifica un link
U, (n)" de acuerdo a alguna eleccién simétrica de la probabilidad Ty. Cuando modificamos un link,
como trabajamos en 4D, estaremos modificando 6 plaquetas, por lo que solo debemos calcular el
cambio de la accién en estos para tener el cambio total en el reticulo. Para esto se debe realizar
el producto de U,(n) con el resto de links que forman la plaqueta, lo que se llama el staple. Asi,
una vez se calcula la suma de los distintos staples y se tiene la variacién de la accién del reticulo,
tenemos dos opciones: si la variacién de exp(—AS) es mayor que 1, directamente se acepta porque
esto nos lleva a una configuracién de minima accién, mientras que si es menor que 1 lo que se hace
es generar un numero aleatorio r entre 0 y 1 que haga de probabilidad de Boltzman y se compara
con la variacién de la accién, siendo esta rechazada si exp(—AS) > r. Con todo, este procedimiento
lo hemos de repetir hasta que nos encontremos en un estado de equilibrio y de minima accién del
reticulo, en los que los cambios aceptados apenas modifiquen la accion.

Sin embargo, si recuperamos y , vemos que si queremos incluir los fermiones en nuestro
calculo, lo que tendremos es Z~ e3¢Vl det[D,,] det[Dy] como distribucién de pesos de los campos
gauge. Esto es un cambio no trivial porque modificar un link deja de ser un cambio local al obligar
a calcular de nuevo todo el determinante, lo cual resulta un calculo extremadamente complejo al
estar tratando con matrices con 12|A| filas y columnas, con |A| el ndmero de puntos en el reticulo.
Cuando se empez6 a trabajar en el reticulo, se utilizaba principalmente la aprozimacion quenched,
que no es mas que tomar estos determinantes como la unidad y trabajar con el propagador del
mesén sin estos, es decir, construir las cadenas de Markov como se hace con teorias gauge puras.
No obstante, en nuestro caso trabajamos en un cédlculo unquenched, lo que quiere decir que hemos
de calcular las contribuciones de los determinantes. Esto hace que para implementar lo mencionado
en este punto sea necesario trabajar con métodos algo mas complejos que el de Metrépolis, més
concretamente, en el desarrollo de este trabajo se utilizo el denominado Hybrid Monte Carlo, el
cual combina el ya explicado método de Metropolis con otro algoritmo denominado Molecular
Dynamics. La idea de este se basa en potenciar el algoritmo de Metrdpolis, ya que en este vamos
cambiando link a link y esto es muy costoso. Sin embargo, cambiar todos a la vez, como depende del
volumen del reticulo, haria que la probabilidad de aceptacion fuese muy baja, por lo que utilizamos
el método Molecular Dynamics para que este cambio en los links no sea aleatorio del todo.

En este segundo método, la idea de partida es, basandonos en la analogia entre la integral Gaussiana
de los fermiones y los bosones, sustituir los fermiones por pseudo-fermiones, que son bosones con
el mismo nimero de grados de libertad, pero que permiten obtener resultados equivalentes a los
obtenidos mediante la integral de Grassmann usada para los fermiones pero con la diferencia de que
el determinante ahora aparece en el denominador. Con ello, el primer paso es generar el campo
de pseudo-fermiones ¢ = Dy con x un campo vectorial complejo distribuido con probabilidad
Gaussiana exp(—x'y). Tras esto, para una configuracién gauge Uy se debe generar un momento
inicial Py, distribuido nuevamente de forma Gaussiana por exp(—tr[P?]). Para empezar a trabajar,
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crearemos un paso inicial de la forma P% = Py — §F[U, ¢], donde

FlU,¢) = Y T,V (Sa[U) + 6"(DD')16) € su(3)

i=1

es la fuerza motriz, que es un elemento de su(3), y T; son los generadores del grupo, y luego
evolucionaremos el sistema mediante pasos:

Uy = exp (iePk_%) Uiot, Poyy =Py —cF[U 4] (44)
Uy,
Con ello, conseguimos evolucionar todos los links de una trayectoria de forma sencilla modificando
el momento de cada particula del reticulo teniendo en cuenta todas las contribuciones (la pura
gauge y la de los fermiones). Tras esto, solo nos queda aplicar un paso de Metrdpolis, es decir, ver
si aceptamos el cambio en la accién que produce la modificacion de los links o no, mediante:

el HPQ1),

exp(—HP.Q)) (45)

To(P',Q'|P,Q) = min (1,
Una vez realizado todo esto, ya solo hemos de evaluar los observables en nuestra configuracién en
el equilibrio y ya podremos ponderarlo con el resto de resultados que obtengamos de la simulacién
de Monte Carlo y realizar el promedio del observable que queramos estudiar. Evidentemente, todo
lo contado es un resumen muy breve de la metodologia usada en las simulaciones, si el lector esta
interesado nuevamente puede revisar |13] para ver un desarrollo con todo tipo de detalles.

4 Desarrollo teérico del proceso B — D/{v

4.1 Factores de forma

En este trabajo estudiamos el proceso B — D/{v, en donde la interaccién hadronica esta determi-
nada por el elemento de la matriz de transicién de la corriente vectorial V = ¢y*b, que se puede
descomponer en términos de los factores de forma vectorial y escalar f, (¢?) y fo(q?) de la siguiente
manera;

2 2 2 2
(D(pp)\V*|B(ps)) = f+(¢) | (05 +pp)* — %q“ +fo<q2>%q“ (46)

donde pp y pp son los momentos del mesén By D, Mp y Mp sus respectivas masas y ¢ = pg —Pp
es el momento transferido de los mesones a los leptones. Por otra parte, el ratio de decaimiento
en la aproximacién de que la masa de los leptones (sirve para electrén y el muén) es mucho menor
que la de los mesones B y D es:

dl' - Ve |2 M3,

_ 2 G
—_— (B — D(I/T)) = |77EW| 487'('3

iy (w? = 2531+ 1) (w)? (47)

donde |ngw|?* hace cuenta de las correciones electrodébiles, Gr es la constante de decaimiento
débil de Fermi, |Vg| es nuestro elemento de matriz buscado, w = v - v’ es el pardmetro de recoil,
v =pp/Mp y v = pp/Mp son las velocidades de nuestros mesones y G(w) es la amplitud de
desintegracién y se relaciona con nuestros factores de forma, mas concretamente con f, mediante:

(1+7)2

4r Q(w)2 (48)

f+(w)2 =
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siendo 7 el cociente entre las masas de los mesones r = Mp/Mp = 0.354. Aqui vale la pena
hacer un aparte para matizar que en realidad nosotros no calculamos el elemento V., de forma
directa, sino que nuestro objetivo es calcular la amplitud de desintegracién, a partir de los factores
de forma, y junto a los datos experimentales del ratio de decaimiento diferencial, que se pueden
obtener del detector BABAR |[2], obtener el elemento V., a partir de la expresién .

Por otra parte, existe otra parametrizaciéon que es la realmente relevante para nosotros como
veremos en siguientes puntos. Esta es mucho més natural dentro de la teoria efectiva de quarks
pesados (HQET) y en la heavy-light meson chiral perturbation theory’:

(D(pp)|V*|B(ps))

P )04+ ) (0= ) (19)
y que evidentemente se pueden relacionar con los factores de forma fi y fo previamente definidos
mediante: ]
feld®) = NG (1 +7)hy (w) = (1 =r)h_(w)], (50)
old®) =V |- (w) = b (@) (51)
siendo aqui ¢> = M3 + M3 — 2wMpMp y G(w) = hy(w) — (L‘_;)h,(w)

Una vez definido todo lo relativo a los factores de forma que buscamos, debemos ver cémo los
podemos relacionar con el reticulo. Lo primero es definir la corriente vectorial para la transicién
de un quark x a uno y:

Viy = U, "W, con ¥ = (14 d17y - Diat)y (52)
siendo ¥ el campo rotado introducido en ([16]), ¥ es el campo del quark pesado en la accién, Dja¢
es un operador diferencial covariante del vecino mas cercano y d; es el factor de mejora del tadpole,
con lo que se consigue que la corriente vectorial esté mejorada a tree-level.

Dicho campo rotado se introduce al intentar desarrollar el formalismo de llevar toda la fisica de
sabor al lattice, siendo dicho desarrollo la introduccion de los operadores de dos y cuatro quarks al
Hamiltoniano electrodébil, que se puede considerar la primera correcion a QCD. Resumidamente,
cuando se intenta desarrollar este formalismo, uno se encuentra que estos operadores introducidos
dependen tanto de la masa del quark bare amgy como de la masa fisica m,. Cuando ese término
amgy >> 1, lo que tenemos es que di =~ 1/(2m,), por lo que la contribucién de 1 + dyy - Diag se
hace esencial para poder tener esa correcién 1/my a los elementos de matriz de la corriente Jr con
la que trabajemos.

Con esto, ahora falta saber la relacion que existe entre la corriente del reticulo Jf y su equivalente
en el continuo JJ; . Para dicha relacién se emplean los factores de renormalizacion:

Viy = Ze, Vi (53)
en donde el = indica que los elementos de matrices son iguales a ambos lados de la igualdad (no con-
fundir esta Z con la que introdujimos al comienzo del trabajo, esta es un factor de renormalizacién
para asegurar que nuestras corrientes tengan los mismos elementos de matriz en el continuo que las
corrientes fisicas). Sin embargo, estos términos tienen muchas dependencias no perturbativas, por
lo que empleamos la técnica denominada renormalizacion mayormente no perturbativa-mNPR, lo
que nos permite eliminar dichas dependencias de los factores de renormalizacién y que consiste en
definir una serie de ratios entre las distintas corrientes de la forma:

_ cb be . (54)
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La utilidad del mNPR radica en el hecho de que al tomar los ratios apropiados de los correladores a
tres puntos se logra que las contribuciones no perturbativas a la renormalizacion de las corrientes se
cancelen, pues estan todas recogidas en la diagonal de los factores de renormalizacién ZX:. Ademas,
trabajar con estos ratios nos permite reducir las fluctuaciones estadisticas tipicas de trabajar con
los correladores.

Asi, para poder calcular los factores de forma h y h_ para cualquier valor del pardmetro de recoil
necesitamos tanto los elementos de matriz de las corrientes vectoriales espaciales como temporales
V4 y V. Para ello, lo que hacemos es establecer nuestro sistema de referencia de modo que tengamos
al mesén B en reposo y que sea el mesén D el que se mueva, llevando un momento p y del cual
depende el recoil anteriormente definido w. El primero de los ratios que definiremos serd el tinico
doble ratio que tenemos y que a su vez es el nico en el que solo trabajamos para momento nulo:

(D(0)[Vey | B(0))(B(0)[Vye D(0))

B = BO)IVADO) BO)VABO) (55)

y luego los ratios simples:
D(p)|V*|B(0))

(D
D(O)[VIB0)) (56)

Q+(p)

(DE)VIBO)
B-(P) = 150y VB0 (57

_ (D(E)IVIDO)
x¢(P) = 150y VAD(0)) (58)

donde vemos que Q4 (p) es el ratio que relaciona los elementos de matriz a recoil nulo y no nulo y
que x¢(p) relaciona tanto en numerador como en denominador el estado de momento nulo con un
estado de momento no nulo. Asimismo, este ltimo ratio nos permite escribir la relacién a partir

de la cual podemos obtener el parametro de recoil:

1+ 22
_ f
W= =2 (59)
y a partir de todo esto, se pueden obtener los factores de forma:
hi(w(p)) = VR4+Q4(p) [1 - R—(p) - x¢(p)], (60)

h_(w(p)) = VR5 Q4 () [1 - R("”xf(p)] , (61)

x¢(p)”

4.2 Funciones de correlacién a 2 y 3 puntos

Para poder calcular los factores de forma introducidos en el punto anterior, es necesario calcular
los correladores a 2 y 3 puntos. Lo que haremos serd usar operadores de interpolacién Ox, (p,t)
de momento espacial p y tiempo ¢t con X € {B, D} y a € {15, d}, siendo estos tltimos los posibles
smearing.

Aqui vamos a hacer un pequeno inciso para explicar el concepto de smearing. El objetivo de
este procedimiento es aumentar el solapamiento de nuestro operador con el estado que realmente
queremos construir en el reticulo, eliminando en la medida de lo posible otros estados irrelevantes
que poseen los mismos ntimeros cuanticos. Para ello, lo que se hace es superponer en un punto ng
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los distintos campos que se encontraban en un punto del entorno cercano n; mediante:

WY )(HOv“t)f;g = Zslin(),ag,ao)(nz)%w(f )(nz,nt)gg, (62)
n2
igf)(no,nt)al = Zsi(noﬂmao)(nl)al,(z(f) (nl,nt)al. (63)
ai ai ai

ni

En este trabajo utilizaremos dos posibles smearing, que apareceran en el operador Ox, (p,t) como
una funcién S [3]. El smearing d simplemente representa una funcién delta en la fuente, mientras
que el smearing 15 serd la funcién S(z,y), que representa una fuente con smearing (en el gauge de
Coulomb):

S(@,y) = 0r4y, S (X = y) (64)

en donde S(x —y) es la solucién 1S del potencial de Richardson para los sistemas del quarkonium
[20] ¥y que se obtiene escalando la funcién de onda radial de Richardson a unidades del reticulo,
interpolandola a los puntos del reticulo y posteriormente utilizindola como fuente espacial para
los propagadores de los quark pesados. En realidad, usaremos 3 posibles combinaciones de los
smearing: 1S-1S, 1S-d y d-d, representando cada uno de ellos el smearing en el source y en el sink.
Con todo, los correladores entonces se pueden expresar en términos de los elementos de matriz de

los operadores como:
X=X (p, 1) = (O, (. 0)Ox, (p.1)), (65)

ijt,XaaYb (p,t) = <Olfb (—p,0)V¥(p,t)Ox, (0,T)). (66)

en donde T es la separacién temporal entre los mesones B y D. Y estos operadores se pueden
expresar con la forma:
ZX,n
2F,

= (0]0x|n) (67)

Por lo que sustituyendo en la expresiones de los correladores podemos obtener:

Ao, ) = ) Y D5t PP o, )+ exp (BB~ )] (69

n

en donde hay tanto términos no oscilantes con s, (t) = 1 o fermiones staggered de paridad opuesta
que son términos oscilantes s, (t) = —(—1), debido a lo visto para hallar la accién (28], N; es el
tamafio del lattice temporal y Zx, , es el factor de solapamiento. Este tipo de fit se denomina
N+N, pues indica cuantos estados oscilantes y no oscilantes se aniaden al fit. En nuestro trabajo
estudiaremos los casos 242 y 3+3.

Y por otro lado, la funcién de correlaciéon a 3 puntos:

e~ En(p)t
O3t Xa=Yo (1) :Zs (t)sm( v/ Zy,n Yy, n(p)|VH*| X4, m(0))
1 b) n m bsN \/in ; as

e_Mm, (T_t)
X —
V2,

Para entender un poco la motivaciéon de los pasos que tomaremos en el desarrollo, vamos a

(69)
ZXmm(O)v

quedarnos con la forma funcional de este correlador a 3 puntos :

CX%Y 0,¢,T) ZZ kt Z(T D) Appe g;%e gf)(Tft). (70)
k=0 ¢=0
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En esta expresién es facil ver que cuando k y £ son impares, por cada rebanada temporal que
avancemos los estados excitados cambiaran de signo, y aunque estén suprimidas de forma expo-
nencial, los companeros de paridad de nuestros mesones ligeros no son mucho més pesados que
en el estado fundamental, por lo que estas oscilaciones pueden ser realmente significativas en las
distancias source-sink tipicas en las que trabajaremos y hemos de tratar de corregirlas. Para ello,
vamos a desarrollar la ecuacién :

CX—>Y(0’t’T) _ Aé%—)Ye—mxt—my(T—t) + (_1)T—tAé(i—>Ye—mxt—m/y(T—t)
+ (_1>tA{%—>Ye—m/Xt—my(T—t) + (_1>TA{<;—>Ye—m’Xt—m§,(T—t) + ...

_ Aé%ﬁYefmxt*mY(T*t) [1 + CXHY(()?t,T) + .. ] ,

en donde hemos sacado en la ultima linea el estado fundamental y la dependencia exponencial y
hemos definido:

X—Y AOX1—>Y T—t —A T—t A{(O%Y t_ —A t
(0,4, T) = AX_)Y(—l) ~temAmy( _)+AX—>Y(_1) e~ omx
00 00
AX*)Y
+ ;{1*))/ (_1)T67Amxt7Amy ('T*t)7
AOO

yAmxy = m’Xy —mx,y es la diferencia entre las masas del estado de paridad deseada de menor
energia y el estado de paridad incorrecta de menor energia. Notese que tanto el primer como el
segundo término cambian de signo a medida que el operador varia a lo largo del tiempo, mientras
que el tercero solo cambia de signo cuando se modifica la distancia temporal T source-sink. Por
ende, al no ser visible de forma clara su variacién con ¢ en los resultados que obtengamos, este sera
el término que buscaremos suprimir. Para ello, realizaremos una media del tipo:

_ 1 1 1
7 0,t,T) = SOV OT) + 1YY O AT+ 1) + 205V (04 1, T+ D). (71)

que, como se puede ver en [§], actia de forma equivalente a un smoothing que reduce la amplitud

de los estados oscilantes.

Con todo, podemos ya estudiar la forma de los distintos ratios, empezando por R
(D(0)|V4|B(0))(B(0)|V3e| D(0)) _ (Op(0)[Vig|O5(0))(Op(0)[Vye| On(0))

B = DOIVADONBOVABO) ~ (@nO)VA0n0)Os OV 0s0) 2

donde V}; tienen la forma vista en 1D Esto lo podemos sustituir por la expresiéon de las funciones
de correlacion a 3 puntos vista en , obteniendo:

ijt,B,lS—)Db(O, t, z—v)Cv;fpt,Db%B,lS(07 t, T)

Ci)pt,DbﬁDb(()’t7T)Cipt7B,15’—>B,IS(O7t )

Ryy(t,T) = (73)

)

Aqui ya podemos detenernos un poco, pues podemos ver que la expresiéon a la que llegamos del
tiempo de insercién ¢, del tiempo de sink Ty del operador de interpolacién del mesén D denotado
por b, aunque estas dependencias, al surgir de los estados oscilantes podemos suprimirlas mediante
la media obtenida en (71)):

— 1 1 1
Ryt T) = §R+,b(taT) + ZR+,b(t7T +1) + ZRJr’b(t +1,T+1). (74)

por lo que podemos expresar todo como Ry ,(t,T) — R4 ya que para t y T — t grandes las con-
tribuciones de los estados excitados son despreciables.
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Con todo, en general las contribuciones dominantes vienen del primer estado excitado de los
mesones B y D, las cuales para t y T — t grandes decaen como exp[—AMt] y exp[-AM(T — t)],
con AM siendo la diferencia de masa entre el primer estado excitado (no oscilante) y el estado
fundamental de los mesones con los que trabajamos (M = B, D). De tal forma, como ambas son
pequenas, para poder hacer un fit al ratio usaremos la siguiente aproximacién:

Ry y(t,T)~ Ry + Ag, pexp(—AMpt) + Br, p exp[-AMp(T —t)]

(75)
+ Cr, pexp(—=AMpt) + Dg, pexp[—AMp(T — t)] exp(AMpt)

Por ultimo, es importante notar que Ay =~ Apg, por lo que para el fit nos quedaremos solo con
Ry, AR, vy Br, p-

Con todo, por no llenar el documento de célculos enormes sin relevancia, pues el procedimiento
es el mismo al explicado en las anteriores lineas, concluiré este punto anadiendo las formas de las
expresiones con las trabajaremos a lo largo de las simulaciones y del andlsis posterior.

Para ()1 nos encontramos que el ratio tendra la forma:

3pt,B,1S— Db
_ C4Pt — (p7t,T> EDZDb(O) e(ED—MD)t'

6, T 76
@rolp ) C3rt-B15=Db o ¢ Y MpZpy(p) (76)
y para su correspondiente fit:

Q+p(p,t,T) = Q+(p) exp(dmi) + Aq. ,(p) exp(—AEpt) o)

+ Bq, ,(p) exp(—AMpt) + Cq, ,(p) exp[-AMp(T —t)].

En este ratio aparece un factor dm que desaparece cuando el factor exponencial de cancela la
dependencia temporal en las funciones de correlaciéon de 3 puntos.

Luego para R_ tenemos:
3pt,B,1S—>Db(p 4T

R, (p,t,T) = —% 78
»(P ) ijt,B,lSan(p7 L T) (78)

y su correspondiente expresion a la que ajustar:
R_y(p,t,T) = R_(p) + Ar_,(p) exp(~AEpt) + Br_, (p) exp[-AMp(T —t)].  (79)

Y por dltimo como es 1égico, para x; tendremos la misma expresién que para R_ pero cambiando

Ap por Ap:
5P b 3pt,Db—>Db(p ¢ T)

zh o (p,t,T) = —% , 80
(P ) ijt,Db%Db(p’mT) (80)

y la relacién a la que tendremos que realizar el fit:
xrp(p,t,T) = x5(p) + Ar_, (P) exp(—AEpt) + Br_ ,(p) exp[-AMp(T — t)]. (81)

5 Desarrollo de las simulaciones

5.1 Parametros de las simulaciones

Se han utilizado 7 ensembles de configuracions gauge distintas de 2+1+1 sabores de sea-quarks
HISQ-generados por la colaboraciéon MILC. Entre estos tenemos espaciados del reticulo de a =
0.057fm, a = 0.088fm, a = 0.12fm y a = 0.15fm y distintos ratios de la masa del sea-quark ligero y
sea-quark strange 7’ /m,’, siendo todos los datos de los distintos ensembles recogidos en la tabla
A su vez, para cada ensemble realizamos simulaciones para distintos momentos en unidades
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de 27 /L, que son 6 para los ensembles Coarse-1, Coarse-2 y Coarse-Phys: (0,0,0), (1,0,0), (2,0,0),
(3,0,0), (1,1,0) y (2,1,1); y 8 para los otros 4 ensembles, anadiendo a los anteriores el (4,0,0) y el
(2,2,2). Mencionar que los momentos més grandes son los que tienen mayores errores estadisticos.
Para generar las funciones de correlacién a 3 puntos, lo que hacemos es fijar un tiempo de sink T’
entre los mesones B y D, y lo que vamos variando es la insercién t de la corriente vectorial.

a(fm) m' m Lattice size (V x T)  Configs U
MediumCoarse  0.15  0.0024/0.0673 323 x 48 3630 0.8203
Coarse-1 0.12  0.0051/0.0507 323 x 64 1000 0.8350
Coarse-2 0.12  0.0102/0.0509 243 x 64 1053 0.8350
Coarse-Phys 0.12  0.0525/0.6382 483 x 64 986 0.8350
Fine-1 0.088 0.0036/0.0363 483 x 96 1017 0.8527
Fine-Phys 0.088  0.0012/0.0363 643 x 96 1535 0.8527
SuperFine 0.057  0.0008/0.0220 962 x 192 1027 0.8711

Table 1: Parametros de los ensembles de los campos gauge del reticulo. Las columnas de izquierda a
derecha representan el espacio del reticulo, la masa bare de los sea-quarks en unidades del reticulo,
las dimensiones del reticulo en unidades de este, el nimero de configuraciones de cada ensemble y
el factor de mejora de tadpole uyg.
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Figure 1: Rango de espaciados para los distintos reticulos y masas de quarks ligeros usados. El
area de cada punto es proporcional al nimero de configuraciones del ensemble usado. Los cuatro
ensembles que forman una linea en el grafico con el valor de 772 /m, més bajo representan la masa
fisica del pidn.

5.2 Funciones de correlacién a 2 puntos

La importancia de las funciones de correlaciéon a 2 puntos es que nos permiten obtener tanto las
energias de los distintos estados como los factores de solapamiento Z para los diferentes smearing,
que son fundamentales para poder obtener los factores de forma, como vimos en las expresiones
de los ratios. Por ello, los correladores a 2 puntos nos servirdn para obtener el valor central de los
priores que usemos al estudiar las funciones a 3 puntos. Asimismo, en este punto evaluaremos si
los resultados obtenidos en la simulaciéon son razonables.
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5.2.1 Eleccion del intervalo de ajuste

Lo primero que haremos serd elegir el rango de valores en el que vamos a trabajar. Para extraer el
estado fundamental y los factores de overlap a partir de las funciones de correlacién a dos puntos,
debemos ajustar los datos de dichas funciones de correlaciéon a un cierto ansatz que derivaremos
mas adelante. Es importante elegir bien el rango de tiempos del ajuste; en particular, los ajustes
dependen de manera muy critica del valor minimo del tiempo, no tanto del maximo, donde los
errores en los puntos son muy altos. El tiempo se mide en unidades del reticulo, es decir, dividido
del espaciado entre puntos a, por lo que cambiara seguin el ensemble que usemos, pues como ya se
menciond la principal diferencia entre ensembles es el tamano de dicho pardmetro. Sin embargo,
idealmente deberiamos encontrar que este tiempo en unidades fisicas coincida aproximadamente,
en cierto intervalo, para todo ensemble, por lo que agruparemos los resultados en tablas de tiempo
del reticulo y tiempo fisico. El objetivo de esto es encontrar el valor a partir del cudl los resultados
obtenidos comienzan a tener sentido, por lo que solo debemos realizar una ajuste para distintos
tiempos minimos, medir el valor de la energia en el nivel fundamental con su respectivo error y
realizar una grafica que enfrente ambos pardametros, lo que nos permitird obtener el tiempo minimo
adecuado simplemente observando a partir de qué momento el valor de la energia se estabiliza. Asi,
los resultados se muestran en la tablas |2] y |3 amén del grafico de la curva de estabilizacién para
los ensembles de espaciados mds extremos, que pueden visualizarse en las figuras 2] y [3] Con todo,
viendo que para todos los ensembles tenemos que a partir de los 0.90fm (asumiremos algo de error
en el ensemble MediumCoarse para tener un rango de puntos mas amplio y que los ajustes sean mas
efectivos) y 0.45fm para 242 y 3+3 estados respectivamente se estabiliza la energfa, tomaremos un
tiempo minimo proximo a este valor para todo nuestro estudio. La principal motivacién de este
paso es que con un tiempo minimo similar para todos los ensembles se consiguen reducir los errores
sistematicos al tomar el limite al continuo.

tmin nstates=2+2 nstates=3+3 tmin nstates=2+2 nstates=3+3
Medium-Coarse 7T~8 3~4 Medium-Coarse 1.05 ~ 1.20 fm 0.45 ~ 0.60 fm
Coarse-1 7~38 2 Coarse-1 0.84 ~ 0.96 fm 0.24 fm
Coarse-2 7T~8 2 Coarse-2 0.84 ~ 0.96 fm 0.24 fm
Coarse-Phys 8~9 2 Coarse-Phys  0.96 ~ 1.08 fm 0.24 fm
Fine-1 8~9 5~6 Fine-1 0.70 ~ 0.79 fm 0.44 ~ 0.53 fm
Fine-Phys 9~ 10 5~ 6 Fine-Phys 0.79 ~ 0.88 fm 0.44 ~ 0.53 fm
SuperFine 11 ~ 12 6~7 SuperFine 0.51 ~ 0.57 fm 0.28 ~ 0.34 fm

Table 2: Tiempo minimo en unidades Table 3: Tiempo minimo en unidades fisicas
del reticulo para los distintos ensembles y para los distintos ensembles y numeros de
nuameros de estados para el momento 000. estados para el momento 000.

Por otro lado, también es necesario sacar el tiempo méaximo que utilizaremos para cada ensemble.
En esta ocasién el criterio a tomar para cortar el ajuste es mas sencillo. Para entenderlo, debemos
volver a recordar que trabajamos con simulaciones de Monte Carlo, por lo que hay una alta proba-
bilidad de que los observables obtenidos en distintos pasos estén correlacionados. Nuestros ajustes
tienen en cuenta las correlaciones entre los datos, y para ello calculamos la matriz de covarianza
completa. Si incluimos en nuestro conjunto de datos puntos con errores muy grandes, la deter-
minacién de las correlaciones sera pobre, y la matriz de covarianza puede facilmente desarrollar
patologias que dificulten los ajustes, por lo que nos quedaremos hasta el tiempo a partir del cual
el error en los correladores represente un 30% del valor central. Con todo, juntando los requisitos
para establecer los dos extremos, los rangos de tiempo a usar serdn los mostrados en la tabla .
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Figure 2: Fit de estabilizacién para el ensemble Figure 3: Fit de estabilizacién para el ensemble
MediumCoarse. SuperFine.

MediumCoarse Coarse-1 Coarse-2 Coarse-Phys Fine-1 Fine-Phys SuperFine

nstates = 2 + 2 6-16 8-19 8-15 8-25 11-27 15-27 13-41
nstates = 3 + 3 3-16 4-19 4-15 4-25 5-27 5-27 9-41

Table 4: Rangos de tiempo para los distintos ensembles.

5.2.2 Entendiendo el proceso que se sigue en las simulaciones

Una vez tenemos ya el rango temporal en el que vamos a trabajar, debemos ajustar los correladores
con los que vamos a trabajar. Lo primero es recordar que los correladores a dos puntos van a tener
una forma:

C(ne) = (0(0,11)0(0,0)) = Y _(0[O|k) (k|OT[0)e " . (82)

E

es decir, una suma de exponenciales que dependen de los distintos niveles de energia, que a la vez
dependen del lattice, pues si este tiene un volumen finito como es obvio los niveles de energia seran
discretos. Por esta dependencia exponencial, la contribucién de los estados de maés alta energia
dependen del time slice n; que cojamos, pues cuando estos sean mas grandes dominaran los estados
mas préximos al fundamental, mientras que a medida que n; se haga mas pequeno encontraremos

una mezcla de estados de baja y alta energia, por lo que la ecuacién serd de la forma:
C(ng) = Age ™ F0 4 Ajem™mEr (83)

Para analizar las consecuencias de esto, nos quedaremos a nivel fundamental y usaremos un ejemplo
del Gattringer-Lang [13] con la imagen 44 Cuando estudiamos la propagacién de mesones a nivel
fundamental lo que encontramos es que el correlador tiene una dependencia cosh o sinh con ny:

2A4pe~N1E0/2 cosh (N7 /2 — ny) Ep)

(84)
2A0e~N1Eo/2 sinh (N /2 — ny) Eo)

Age ™ Fo £ Agem(Nr—no)Bo — {

Con esto, debemos evaluar en qué rango de n; podemos descartar las contribuciones de las expo-
nenciales no dominantes, por lo que definimos una masa efectiva meys

Meff (nt + ;) = lncm. (85)
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Figure 4: Resultado de una simulacién de Monte Carlo en una red de 163 x 32 con un espaciado del
reticulo a = 0.15fm. Lado izquierdo: grafico logaritmico de la funcién de correlacién del pién; lado
derecho: grifico de masa efectiva (en unidades del reticulo). Los diferentes conjuntos corresponden
a distintos valores de la masa del quark en unidades del retl'culo.

Y entonces, cuando tengamos el correlador C(n;) dominado por los niveles fundamentales, po-
dremos establecer un valor constante para la masa efectiva y que cumpla la relacion de dispersién
de la energfa a momento nulo m.rs = Ey. Asi, como se ve en el lado derecho de [4] esta masa se
hace constante en un intervalo temporal n; € (4,28), por lo que deberfamos quedarnos con este.
Este hecho nos permite llevarlo a nuestro cédigo, pues en él, tras fijar el intervalo temporal que
vamos a utilizar, fijamos un intervalo temporal efectivo basandonos en el razonamiento explicado
en este punto, pues ponderando los datos obtenidos de la simulacién pudimos establecer un inter-
valo en el que se encontraba la masa efectiva y asi incluir en el ajuste inicamente los puntos que
estuviesen en torno a esa zona de valores de m.sy. En la figura [5| se muestra un ejemplo de ello
(también el factor Z efectivo pero no es relevante para nuestro estudio) y en la tabla el rango de
tiempos efectivos tomados.
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Figure 5: Factor de solapamiento Z efectivo para cada smearing en la parte superior y masa efectiva
en el grafico inferior para el ensemble MediumCoarse para el momento (0,0,0).

Una vez tenemos un rango efectivo de tiempos y una primera estimacion de la masa efectiva y
por tanto del estado fundamental de la energia, haremos un estudio mas detallado a partir de este
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Coarse-1 Coarse-2  Coarse-Phys MediumCoarse Fine-1 Fine-Phys SuperFine

nstates=2-+2 10-18 11-15 9-19 11-16 15-23 14-21 25-41
nstates=3+3 10-18 9-15 10-19 11-16 15-23 14-21 25-41

Table 5: Rangos de tiempo efectivos tomados para 242 y 343 estados en cada ensemble a partir
del método explicado para la masa efectiva.

valor. Para ello, seguiremos un proceso en el que buscamos unos valores que minimicen el x? dentro

de un parametro de tiempos Npin < 1t ¥ ¢ < Nz, €S decir, buscamos minimizar:

Mmax

= ) (Ol = f(n)) wine ng) (C(ny) — f(n})), (86)

r_
N,y =Nmin

con f(t) una funcién que tiene tanto el coeficiente Ay que acompana a la energia fundamental como
el valor de esta Ejy:
f(t) = Age™Pom (87)

El peso w que aparece en el &, idealmente deberia ser igual al inverso de la matriz de covarianza, es
decir w(ng,n}) = Cov~'(n¢,n}), sin embargo, como es légico, cuando uno realiza simulaciones de
Monte Carlo solo obtiene una estimacién a partir de los resultados obtenidos de los correladores:

Covar(ni,n}) = —— ((Clne) — (C(mo))w) (Cn}) - (Cn))n))y (83)

N -1
por lo que usaremos el inverso de esto como peso.
Una vez tenemos un método para obtener los distintos valores a nivel fundamental, nos queda solo
saber cémo sacar los primeros excitados, pues a tiempos pequenos tienen una relevancia bastante
grande. Para ello, hay muchas metodologias que se pueden seguir, si bien el empleado en este
trabajo es el andlisis bayesiano, es decir, trabajaremos con ciertos priores, que usaremos para hacer
que el fit se estabilice antes, no para establecer un resultado esperado. En él, uno busca estabilizar

el fit minimizando una funcién de la forma:

K
F = X2 + Ap, con ¢ = Z (ak (Ek — Ek>2 + b (Ck — ék)2> (89)

k=1

en donde ¢ es una funcién que depende de los parametros del fit, siendo o y ¢k los valores en
torno a los que esperamos que se encuentren la energia y sus respectivos coeficientes. Ademsds, los
parametros ax y bx simplemente dan un peso relativo para el sesgo que hayamos escogido y son la
anchura del prior. Asi, este fit buscamos minimizarlo que modo que dependa lo menor posible del
parametro A, pues este es el que cuantifica cémo de sesgado estd nuestro resultado final. Recordemos
que era la funcién usada para tener una estimacién del nivel fundamental, pero que nosotros
ajustamos a , truncando las exponenciales a 2 o 3 estados, incluyendo respectivamente otros 2
o 3 oscilantes, de ahi que los ajustes sean a ngiates = 2+ 2 Y Nstates = 3 + 3.

Concluyendo ya con este punto, una vez se ha explicado todo lo relacionado con las simulaciones y
el fit, los resultados se pueden ver en @, donde se muestran los valores obtenidos para el ensemble
con mayor espaciado y para el de menor.

5.3 Alguntos tests a los resultados obtenidos

Como es sabido, cuando hacemos simulaciones, es imposible saber con certeza plena si estas son
correctas o no, pero tenemos ciertas herramientas para saber la confianza de estas. En el caso de
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p (2r/L)  Ground state (aEp) 1% excited state (aE}) x?/dof
2+2 3+ 3 242 3+ 3 Z1518 Zd,d 2+2 3+ 3
000  0.51866(41) 0.51807(71) -1.60(8)  -1.98(27)  2.342(57) 0.00815(24) 66.04/81 57.05/99
100 0.52346(44) 0.52335(48) -1.52(10) -1.62(17)  2.309(33) 0.00849(14) 49.29/81 47.57/99
110 0.52735(49) 0.52712(57) -1.48(10) -1.60(18)  2.211(35) 0.00847(16) 60.81/81 60.18/99
200 0.53545(56) 0.53500(51) -1.47(11)  -1.57(9)  2.025(28) 0.00847(13) 49.43/81 52.35/99
211 0.54198(75) 0.54172(83) -1.58(11) -1.75(18)  1.804(45) 0.00818(23) 91.87/81 90.45/99
222 0.5649(12) 0.5645(11) -1.62(17) -1.74(24)  1.435(47) 0.00832(30) 71.24/81 68.75/99
300 0.5538(10) 0.55353(73) -1.56(16)  -1.58(9)  1.634(31) 0.00838(18) 52.94/81 55.73/99
400 0.5788(23) 0.5790(13) -1.88(23) -1.68(13)  1.235(42) 0.00831(31) 63.97/81 64.35/99
Table 6: Tabla de resultados para el ensemble SuperFine.
p (2r/L)  Ground state (aEp) 1% excited state (aEp) X2 /df
242 3+3 2+ 2 343 Zisis Za.a 242 3+3
000  1.18633(60) 1.18580(64) -0.434(50) -0.742(99) 7.051(51) 0.1898(16) 17.07/24 25.20/42
100 1.20109(91) 1.1992(13) -0.452(55) -0.74(11) 6.674(61) 0.1931(19) 11.26/24 26.60/42
110 1.2143(10) 1.2119(13) -0.493(63) -0.79(10) 6.008(90) 0.1865(31) 19.46/24 32.32/42
200 1.24328(85) 1.24304(80) -0.505(61) -0.552(55) 5.473(42) 0.1959(17) 19.13/24 35.52/42
211 1.2678(19) 1.2638(21) -0.464(78) -0.863(84) 4.49(11) 0.1840(45) 12.07/24 33.94/42
222 1.3424(43) 1.3354(41) -0.68(12) -0.89(19) 3.01(14) 0.1805(93) 16.41/24 27.62/42
300 1.3027(29) 1.2996(28) -0.61(10) -0.800(97) 3.71(12) 0.1841(62) 20.00/24 27.96/42
400 1.3860(62) 1.3743(46) -0.52(17) -0.779(71) 2.37(11) 0.1796(88) 15.27/24 31.77/42

Table 7: Tabla de resultados para el ensemble MediumCoarse.

Table 8: En estas tablas se muestran los resultados del fit para las energias del estado fundamental
Ep, del primer excitado (no oscilante) E’,, de los factores de solapamiento Z1s15 y Zg4,4 para los
dos smearing estudiados y el x? dividido de los grados de libertad para los distintos momentos
estudiados. Todos los resultados se muestran tanto el estado (2+2) como para el estado (3+3),
aunque para los ajustes posteriores de las funciones de correlacién solo se usan los resultados de
3+3. Cada medida viene acompanado de su error.

nuestras simulaciones de las funciones a dos puntos del B — D/{v tenemos varias cosas que nos

indican si estamos en un camino aceptable o no.

5.3.1 Distribucién del p-value

El primero de ellos es la distribucién del p-value. Ya se ha comentado que se ha realizado una
simulacion para todos los momentos de los distintos ensemble, tanto para ngiaes = 2 + 2 como
para Ngiates = 3+3, por lo que tenemos en cada uno de los distintos casos de ngiqtes D0 simulaciones
distintas, es decir, 50 p-value distintos. Como es légico, el valor de uno de ellos no nos va a marcar
si el procedimiento que estamos siguiendo es correcto o no, por lo que lo que resulta més sensato
es visualizar la distribucién de estos y si es uniforme (dentro de lo que cabe, sabiendo que en una
muestra de 50 valores va a haber una gran varianza) podremos considerar que el p-value de nuestras
simulaciones es aceptable. De este modo, el histograma que se obtiene para ambos casos son los
mostrados en [f]y [7] y, por tanto, podemos decir que para ser una muestra de 50 valores los p-value
estan distribuidos de manera bastante uniforme y que por este motivo tenemos un conjunto de
ajustes que ofrecen un p-value razonable.

5.3.2 Diferencia entre los resultados para ngsiges = 2+ 2 ¥ Nstates = 3+ 3

En segundo lugar, si recordamos la discusion del rango de tiempos a usar, cuando hablamos del

tiempo minimo se establecié que era necesario tomar un valor a partir del cual la energia del
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estado fundamental se estabilizase, es decir, mirando el fit de estabilizacién. Sin embargo, esto
no es lo unico que se busca, ya que idealmente se espera que trabajando tanto con 2 como con 3
exponenciales el valor obtenido sea el mismo para la energia del estado fundamental, Z; vy Z15 en
los distintos momentos. Para comprobar esto, al tener medidas con un valor central y un error,
lo que se ha hecho ha sido calcular la diferencia entre estos resultados, tomando como aceptables
los resultados que tienen un valor central de dicha diferencia menor que su error. Ademads, al
tener 100 resultados distintos (6 momentos para 3 ensembles y 8 para otros cuatro, ademds de
tener cada caso para 2 ndmeros de estados), lo que se ha decidido hacer es estudiar un momento
que intermedio, el (2,0,0), como se puede ver en @ De tal modo, es facil observar que los valores
centrales de la diferencia son menores que el error de esta, por lo que en el rango de tiempos que
hemos estudiado nuestros resultados 242 y 3+3 estados son compatibles.

MediumCoarse Coarse-1 Coarse-2 Coarse-Phys  Fine-1 Fine-Phys SuperFine

B 0.0002 0.0009 0.0003 0.0009 0.0009 0.00059 0.00045
0 +0.0012 +0.0020  +0.0033 +0.0015 4+0.0012  4+0.00081  +0.00076
7 0.0017 0.008 0.001 0.008 0.008 0.0055 0.006
d £0.0056 +0.014 +0.019 +0.010 +0.011 +0.0072 +0.011
7 0.0035 0.007 0.001 0.0069 0.0069 0.0050 0.0060
19 £0.0053 +0.012 +0.016 £0.0089 £0.0091 +0.0062 +0.0096

Table 9: Diferencia de energia, Zg, y Zis con sus respectivos errores entre Nggres=3+3 y
Nstates=242 para el momento (2,0,0) para los distintos ensembles.

5.3.3 Estabilizacién de Z,

Por 1ltimo, otra condicién que se debe dar estd relacionada con Zg4, la cual debe ser constante
para los distintos momentos. Los resultados de esto se muestran en las imédgenes [§] y [9] las cuales
muestran el caso de mayor espaciado, donde esperamos peores resultados, y el menor espaciado,
que, al tender al continuo, esperamos que reproduzca mejor todo lo estudiado. Asimismo, se anade
el cono de error, que esperamos que sea del orden de Zg + O(asa’p?). Con todo, vemos que en
ambos ensembles los datos obtenidos estdn dentro del error que podiamos preveer. Es interesante
recalcar que el cono de error de los ensembles de mayor espaciado de reticulo va a ser mayor que
en el resto de casos, ya que los errores de discretizacién seran més grandes.

De este modo, nuestras simulaciones cumplen los 3 requisitos que se piden para verificar que los
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Figure 8: Z; para el ensemble MediumCoarse. Figure 9: Z; para el ensemble SuperFine.

resultados tienen cierto grado de confianza, por lo que ya podemos trabajar en obtener resultados
ltiles a partir de ellas.

5.4 Relacion de dispersion

Realizados todos los ajustes de los distintos ensembles para el caso de correladores a dos puntos
y habiendo realizado todas las comprobaciones necesarias para asegurarnos de que son aceptables,
otra cosa que podemos hacer es ver cémo de bien se ajustan nuestros resultados a la relacién de
dispersién de la energfa E? = m? + p? (trabajando en unidades naturales ¢ = h = 1). Esto lo
haremos mediante un plot en el que representemos E?/(p? + m?) en funcién del momento, pues
como sabemos esto deberia ser 1, por lo que midiendo desviaciones respecto a este valor podemos
ver cémo de cerca estdn nuestros resultados del continuo. Todos los resultados se muestran en la
figura la cual ademas tiene pintados los conos de errores esperados, los cuales los esperamos
del orden 1 + O(asa?p?). |7

Coarse-1 * MediumCoarse Fine-Phys
1.4 1 *» Coarse-2, Fine-1 * SuperFine
» Coarse-Phys

E2[(p? + m?)

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 10: Relacién entre las energias ajustadas y las energias esperadas de la relacién de dispersién
del continuo. Los conos muestran el tamano esperado de los errores de discretizacion por tamano
de reticulo para los distintos ensembles.

En ella, como se puede observar, todos los ensembles estan dentro de su respectivo cono de errores
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(la constante de acoplo fuerte depende del espaciado del reticulo, se calculan en [17]), por lo que
todos resultan fits muy vélidos dentro del orden de error que hemos marcado como méximo, pero
ademas, cuanto menor es el espaciado del reticulo vemos que tendemos mucho més a la unidad, lo
que es légico porque al tender al continuo debemos recuperar las expresiones de este.

Sin embargo, evidentemente no es un resultado exacto, lo que nos indica que deben existir cor-
recciones a esta relacion de dispersién de la energia. Esta relacién de dispersién que incluye los
efectos de discretizacién viene dada por la siguiente expresion: |[7]

M 1 1 aM
—(ap)’ + :

1 _ alMwy
M2 4 ((LMQ)2 (aM4)

a2E2(p) = (G,Ml)2+ 3

3
> (ap)* +0(p°) (90)

=1

- (a2p2)2 _

donde M; es la masa en reposo, My es la masa cinética, M4 es una cantidad que es similar a la
masa y donde los efectos de discretizacién se tienen en cuenta en los términos ap. Asi, lo que
haremos serd realizar un fit con nuestros datos a esta ecuaciéon para poder obtener los coeficientes
que nos corrigen la relacién de dispersién en el reticulo.

Para ello, partiremos de las siguientes expresiones que utilizaremos para los priores de los coefi-
cientes a los que ajustamos la funcién:

M, = a~*log(1 + mgpa), (91)
I 2¢2 n 7sC (92)
Mya  moa(2+mea) 1+ mea’
22 o
= + , 93
ta m()(2 —|—m0) 4(1 + m()) ( )
1 8¢4 AC3[¢ + 2r5(1 + 2¢2

L O on(em) ¢ o0

M3 m3(2+mg)? mg(2 + my) (1+mo)

utilizando ( = r; = 1, ya que r; = 1 es la elecccién més sensata para evitar el problema que surge
al trabajar en lattice QCD de que aparezcan estados no fisicos adicionales a causa de la intentar
representar una teoria continua en una red discreta, y ( = 1 es consecuencia directa de dicha
eleccién. Ademads, en estas expresiones moa es la masa en unidades del reticulo del quark charm.
En la ecuacién lo que esperamos es que en el limite al continuo, es decir, cuando a — 0, se
nos quede la ya conocida relacién de dispersién E? = m? + p? (unidades naturales con ¢ = 1),
por lo que debemos esperar que esta nos ofreza un resultado M; igual a la energia fundamental
para el momento p = (0,0,0) y que M; ~ M> cuando trabajemos con espaciados del reticulo
maés pequenos, perdiendo precisién cuando nos vayamos a espaciado mas grandes. Asi, los valores
obtenidos de los distintos parameetros del fit se muestran en la tabla acompanado de dos
graficas que muestran el comportamiento de nuestro fit [11]y En ellas se ve que el fit se ajuste
bastante bien para el ensemble SuperFine pero que a medida que aumenta el espaciado del reticulo
encontramos pequenias desviaciones respecto a los datos obtenidos en los momentos mas altos.
Al final, en este trabajo por falta de tiempo el cdlculo de errores se ha dejado en un segundo
plano, sin entrar en excesivo detalle. Hay métodos que nos habrian permitido obtener unos errores
mucho mas precisos y hacer estos datos del fit compatibles con nuestros resultados pero como en
su mayoria los ensembles se ajustan bien, no se ha estimado necesario entrar en tanto detalle en el
calculo de errores. Con todo, es esperable encontrar discrepancias entre el continuo y el caso mas
alejado, ademas de estar intentando ajustar a una funcién muy parecida a una recta, por lo que
los coeficientes han de ser muy precisos para captar las finas desviaciones que existen respecto a
un comportamiento lineal.
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MediumCoarse = Coarse-1  Coarse-2  Coarse-Phys Fine-1 Fine-Phys SuperFine

M 1.18578 1.00582 1.01503 0.99982 0.77549 0.77114 0.51903

! +0.00058 £0.00080  +0.00084 40.00062 £+0.00035  £0.00028  £0.00035
M 1.318 1.147 1.134 1.105 0.849 0.837 0.535

2 +0.028 $0.032 +0.030 $0.028 +0.017 +0.015 +0.013
M 1.074 1.07 1.13 1.09 0.801 0.83 0.526

: +0.080 +0.14 +0.14 +0.16 +0.074 +0.10 +0.071
w 0.649 0.400 0.389 0.403 0.272 0.648 1.24

* +0.041 +0.060 +0.058 +0.061 +0.097 +0.098 +0.19

Table 10: Resultados del ajuste para diferentes ensembles

Dispersion Relation-MediumCoarse Dispersion Relation-SuperFine
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Figure 11: Ajuste a la relacién de dispersion ~ Figure 12: Ajuste a la relacion de dispersién
con efectos de discretizacién para el ensemble  con efectos de discretizacién para el ensemble
MediumCoarse. SuperFine.

6 Funciones de correlacién a 3 puntos

Cuando hemos terminando el andlisis relacionado con las funciones de correlacién a 2 puntos, el
siguiente paso es continuar incluyendo la corriente para trabajar con las de 3 puntos. Como dijimos
en anteriores puntos, nuestro objetivo principal es obtener los factores de forma, para lo que necesi-
tamos los priores de los distintos parametros de los que dependen los correladores, que son los que
obtuvimos con el desarrollo del punto anterior. Con ello, utilizando las expresiones , ,
y (80)), podemos obtener valores a ajustar a las expresiones , , y respectivamente,
y, con ello, llegar a los valores de los ratios y de los coeficientes que acompanan a las exponenciales.
Como se ve en estas formulas, tenemos muchos coeficientes distintos que nos hacen que el fit se
asemeje mds a la funcién original. Sin embargo, nosotros como dijimos trabajamos solo con Ay B,
permitiendo al ajuste esos 2 o 3 pardametros, en los que se incluye el ratio como es l6gico. Asi, los
resultados que se presentan en este trabajo son ajustando a 2 parametros, ya que al trabajar con
una muestra de datos tan pequena, el fitter no es capaz de resolver un tercer pardmetro y lo tnico
que hace es cambiar el error obtenido, sin modificar el valor central que se obtiene ajustando a 2
parametros libres. Con ello, en las tablas|[12]y se muestran los pardmetros obtenidos a partir de
los fits para los casos de espaciados méas extremos, como hemos ido haciendo a lo largo del trabajo.
Asimismo, podemos observar los fits de las funciones a 3 puntos que hemos usado para sacar estos
ratios en

A partir de dichos resultados, recordando la expresién del pardmetro de recoil , podemos
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Ratio/Momento 000 100 200 300 400

Q. - 0.9901(23)  0.9663(79)  0.9242(95)  0.884(16)
_ - -0.0815(21) -0.1567(24) -0.2194(54)  -0.263(15)
X - -0.0719(13)  -0. 1407( 8) -0. 1999( 9) -0.2438(63)

R, 1.026(15) - -

Table 11: Tabla de resultados de los ratios del ensemble MediumCoarse para los distintos momentos.

Ratio/Momento 000 100 200 300 400
Q4+ - 0.9611(53) 0.9454(60)  0.9440(14)  0.8981(41)
- - -0.06707(99)  -0.1318(11) -0.1939(18) -0.2555(38)
Xr - -0.06154(51) -0.12207(63) -0. 1794( 0) -O0. 2325( 5)
Ry 1.0476(36) - -

Table 12: Tabla de resultados de los ratios del ensemble SuperFine para los distintos momentos.

obtener este para los distintos ensembles y momentos, que se muestran en que junto a los ratios
nos permiten estudiar las expresiones factores de forma (60 y (61]), obteniendo los resultado de la

graficas [T4] y

Momento MediumCoarse Fine-1 Fine-Phys SuperFine  Coarse-1 Coarse-2 Coarse-Phys

100 1.01040(39)  1.01217(37) 1.00798(24) 1.00760(13) 1.01670(90) 1.0284(10) 1.00786(28)
200 1.0404(11)  1.04943(98) 1.03055(58) 1.03025(32) 1.0627(25) 1.1043(35) 1.03009(71)
300 1.0833(26)  1.1079(23) 1.0661(13) 1.06649(80) 1.1291(60) 1.209(11) 1.0643(14)
400 1.1263(70)  1.1832(56) 1.1117(27) 1.1143(16) - - -

Table 13: Resultados obtenidos del parametro de recoil w para los distintos ensemble y los distintos
momentos.

Con todo, como se puede ver si comparamos nuestros resultados con los mostrados en la figura 3
de [4], que son resultados en los que se ha trabajado para minimizar los errores y ya renormal-
izados, podemos ver que obtenemos algo muy similar, estando en valores muy proximos y con un
comportamiento calcado tanto en hy como en h_.

Si quisiésemos aproximarnos a dichos resultados, deberiamos empezar estudiando las diferentes
fuentes de error. Como sabemos, tenemos el error que encontramos por realizar simulaciones de
Monte Carlo finitas, pero existen también otras fuentes de error sistematico. Las principales que
encontramos en nuestro trabajo se deben a haber trabajado en el reticulo y discretizado el espacio-
tiempo. Cuando discretizamos la accion para los quarks ligeros y los gluones nos encontramos
errores de orden aga®? y o2a? [5]. Luego, esto ocurre de igual forma para los quarks pesados,
pudiéndose calcular el tamano de estos errores gracias al estudio del cutoff de la teoria efectiva de
quarks pesados, como se hace en [14]. Ademds, como es obvio, al trabajar en un volumen finito
esto va a causar cierto efecto en nuestros resultados, cuya importancia se puede determinar con la
teorfa de perturbaciones quiral yPT que veremos en el siguiente punto [1].

7 Pasos a seguir en el estudio del elemento de matriz V,,

Concluiremos el trabajo hablando de los siguientes pasos que se han de tomar para determinar el
elemento de matriz V.
Una vez se han obtenido los factores de forma, los siguientes pasos naturales son llevar estos
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Figure 13: Fit de los distintos ratios para varios ensemble usados para determinar el valor de
estos. Los valores estdn pintados frente al tiempo t de la corriente vectorial. Las lineas sombreadas
indican el rango a 1o del valor obtenido en el fit para el ratio correspondiente.

resultados al continuo, es decir, a — 0, L = ooy amg, — amfl’hys. Para ello, como es natural, hemos
de asegurarnos que nuestros resultados estén normalizados de acuerdo a los convenios del continuo,
para lo que se debe utilizar los factores p{, definidos en (54). En concreto, estos denominados

matching factor siguen las siguientes relaciones:

pva(w) pvi(w)
R = pia(1) Ry Qi(p) = = Q+(p):; R-(p)=""—<R_(p),  (95)
v pva(l) pva(w)
donde el lado izquierdo representa el ratio renormalizado.
El factor p?,,(1) usado para normalizar R se calcula utilizando el limite ma.a << 1, en donde
desaparece la dependencia con el pardmetro de recoil (que es dificil de calcular) y se obtiene con
teorfa de perturbaciones a un loop [14]. Para el otro, se usa el mismo limite ms.a << 1y se puede
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calcular de forma explicita.

Para el siguiente paso lo que se hace es trabajar con la teoria de perturbaciones quiral. Debemos
saber que cuando trabajamos en el limite en el que la masa de los quarks ligeros tiende a 0, aparece
una simetria quiral SU(3)r, x SU(3)g, la cual estd rota en el vacio de QCD haciendo que aparezcan
mesones pseudo-Nambu-Goldstone (piones, kaones y etas). Asi, surge una teorfa efectiva que es
la que describe las interacciones de estas particulas y permite que cuando volvamos al continuo la
simetria quiral sea respetada. Ahora, con estas correcciones de esta teoria de perturbaciones quiral
y la normalizaciéon hecha con los matching factors, ya tenemos los factores de forma expresados de
forma apropiada para poder realizar una extrapolacion al continuo que sea vélida.

Con los resultados que se obtienen de dicha extrapolacion, ya solo quedaria utilizar las expresiones
y , que si recordamos, son los factores de forma en el continuo que nos permiten obtener
el elemento de matriz [V;| mediante la relacién ([47).
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