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Deteccion de botnets en escenarios de IoT mediante
técnicas de Inteligencia Artificial

RESUMEN

El objetivo del Trabajo Fin de Master (TFM) es evaluar la efectividad de diversos algoritmos de
clasificacion en la deteccion de trafico malicioso en el entorno de Internet de las Cosas (loT)
utilizando conjuntos de datos especificos que incluyen tanto trafico benigno como diversos tipos
de ataques. Ademas, este trabajo muestra y discute el analisis multi-base de datos y examina cémo
la heterogeneidad de estas bases afecta los resultados conjuntos complicando su aplicabilidad final.

En este trabajo fin de master se ha analizado el entorno loT actual, abarcando desde los dispositivos
mas utilizados hasta los mas atacados, asi como las amenazas mas comunes, con un enfoque
especial en la botnet Mirai y sus ataques tipicos. Se han estudiado diversos conjuntos de datos loT,
seleccionando 10TD20, 1oT-23 y CIC-1oT-2023, que incluyen trafico benigno y ataques como DDoS,
fuerza bruta y escaneo de puertos.

Se ha propuesto un exhaustivo banco de pruebas para evaluar nueve algoritmos de clasificacién
(Decision Tree, Gaussian Naive Bayes, Bernouilli Naive Bayes, Stochastic Gradient Descent, Random
Forest, Bagging con Decision Tree, AdaBoost con Decision Tree, NearestCentroid y Multilayer
Perceptron) que permitan diferenciar entre trafico benigno y malicioso. Se utilizé la herramienta
Zeek para extraer y etiquetar la informacion de los flujos de trafico. Las librerias Scikit-learn, Pandas
y Dask se emplean para el preprocesado y analisis de datos.

Las pruebas se han realizado en clasificacidn binaria y multiclase, demostrando que los algoritmos
basados en arboles de decisidon (Decision Tree, Random Forest, Boosting Tree y Bagging Tree)
resultaron ser los mas eficientes, alcanzando valores F1 superiores a 0.99 en la evaluacién individual
de los datasets y a 0.9 en la mayoria de las pruebas de evaluacidn con datasets combinados. Los
resultados indican que los modelos entrenados con datos distintos al conjunto de evaluacion son
subdptimos, resaltando la necesidad de incluir datos y ataques variados para obtener resultados
mas realistas y eficientes en la deteccion de botnets.

Los resultados obtenidos en este trabajo subrayan la importancia de usar datasets adecuados para
evaluar la efectividad de los modelos de Machine Learning en la deteccidén de botnets, asegurando
su aplicabilidad en entornos reales y diversos.
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1. Introduccién

En este capitulo se presenta la tematica que aborda el trabajo, comenzando con una breve
revision del estado del arte de los sistemas de deteccidn de intrusos en entornos /oT (Internet
of Things) basados en la utilizacién de técnicas de Inteligencia Artificial (en cuyos aspectos mas
importantes se ird profundizando a lo largo de la memoria), y los principales objetivos que se
pretenden cumplir. A continuacidn, se describe el contexto en que se ha llevado a cabo el trabajo
y se muestra un cronograma del mismo. Finalmente se indica cémo se ha organizado la
memoria.

1.1. Estado del arte

Hoy en dia, la preocupacién por la seguridad en las redes de comunicaciones y sistemas de
informacidn es evidente, lo que ha llevado al desarrollo de nuevas técnicas tanto preventivas
como reactivas para abordar este problema. En este contexto, surgieron los Sistemas de
Deteccidn de Intrusiones (IDS), cuyo objetivo es identificar actividades maliciosas en redes y
sistemas. Las técnicas de aprendizaje automatico (Machine Learning, ML) y aprendizaje
profundo (Deep Learning) son particularmente U(tiles en este ambito, ya que pueden
automatizar la deteccion de ataques y diferenciar entre diversos tipos de trafico gracias a la
inteligencia artificial.

La seguridad en el ambito de Internet de las Cosas (loT) y en redes domésticas y de trabajo
también se ha vuelto crucial. Los dispositivos 10T, debido a su interconexién y susceptibilidad a
ataques, requieren medidas de seguridad especializadas. Los IDS aplicados a entornos loT
utilizan avanzados algoritmos de MLy Deep Learning para analizar grandes volimenes de datos
en tiempo real, identificar patrones anédmalos y detectar actividades maliciosas antes de que
causen dafos significativos.

Recientemente, se han creado nuevos conjuntos de datos (datasets) que incluyen tanto trafico
benigno como diversos tipos de ataques en entornos loT, los cuales se utilizan como bancos de
prueba para los sistemas de deteccién de intrusos. Estos datasets permiten evaluar el
rendimiento de los algoritmos y técnicas de ML que sustentan los IDS propuestos. Varios
estudios previos ofrecen revisiones sistematicas sobre la deteccion de ataques de
ciberseguridad en el escenario de loT, utilizando diferentes métodos de inteligencia artificial,
incluyendo técnicas de aprendizaje profundo (DL) y de aprendizaje automatico (ML (da Costa et
al., 2019; Zarpeldo et al., 2017)). El trabajo en (Zarpeldo et al., 2017) presenta una revision sobre
los avances en IDS para loT, identificando las principales tendencias, problemas abiertos y
posibles lineas de investigacién futuras. Ademas, el trabajo en (da Costa et al., 2019) presenta
una revision de técnicas de ML aplicadas en loT para la deteccidn de intrusiones. En los capitulos
2y 3, donde se detallan los materiales y métodos de este trabajo, se profundiza en el estado del
arte especifico de cada tecnologia utilizada.



1.2. Objetivos

El objetivo principal de este trabajo es el estudio y analisis de diversos conjuntos de datos de
trafico de comunicaciones en entornos loT, centrandose en la identificacién de ataques de
botnets como Mirai y Gafgyt, mediante la aplicacidn de técnicas de ML.

Ademas, los objetivos especificos del TFM son:

e Realizar un estudio detallado e individualizado de los conjuntos de datos, extrayendo
pardmetros comunes para poder realizar una evaluacién conjunta.

e Realizar un estudio a partir de la unidn de los tres conjuntos seleccionados, y obtener
métricas detalladas, para posteriormente estudiar el funcionamiento de los modelos
con datos provenientes de diferentes conjuntos de datos.

e Estudiar el rendimiento y escalabilidad de los modelos de clasificacidn al ser entrenados
mediante un conjunto de datos diferente al empleado en la evaluacién, analizando su
comportamiento frente a ataques similares extraidos de diversos conjuntos de datos,
pero empleando pardmetros comunes.

1.3. Contexto

Este trabajo se enmarca en la linea de investigacién de ciberseguridad del departamento de
Ingenieria Electrénica y Comunicaciones, especificamente del grupo de investigacion
Communications Networks and Information Technologies (CeNIT) del Instituto de Investigacion
en Ingenieria de Aragodn (13A). Tiene relacion directa con la materia de formacién obligatoria de
"Redes y servicios" del Master en Ingenieria de Telecomunicacion.

En este TFM se aborda el estudio y comparacién de diversos conjuntos de datos de trafico de
comunicaciones en entornos loT, centrandose en la identificacion y deteccidn de ataques de
botnets. Las técnicas de Machine Learning evaluadas en este estudio corresponden a la
categoria de aprendizaje automatico supervisado. Este trabajo se ha llevado a cabo en el marco
de una beca de investigacion concedida por el I3A, que permite iniciarse en tareas de
investigacion vinculadas con los estudios y facilita una futura orientacién profesional o
investigadora. Ademads, se enmarca en las tareas de investigacion del proyecto “Optimizacion de
redes WLAN coordinadas de ultima generacidon basadas en arquitecturas programables vy
virtualizadas (NeWLAN)” PID2022-1364760B-100.

1.4. Cronograma

En la Figura 1 se presenta de forma grafica la organizacion temporal del trabajo. Por orden
cronoldgico, se distribuyd en las siguientes etapas:

Estudio del estado del arte y busqueda de bases de datos para su evaluacién. 5 semanas.
Adaptacidén de las bases de datos. 3 semanas.

Obtencién de nuevos parametros comunes con Zeek y etiquetado de flujos de trafico. 4
semanas.

Aplicacién de técnicas de MLy DL sobre las bases de datos. 4 semanas.

Evaluacion y discusién de los resultados obtenidos. 4 semanas.

Redaccion de la memoria. 4 semanas.

10



Enero Febrero Marzo Abril Mayo Junio

Estudio de estado del
arte y blisqueda de BBDD

Adaptacion de las BBDD

Obtencion de atributos
con Zeek y etiquetado

Aplicacion de técnicas
de ML

Evaluacion y discusion
de resultados

Redaccion de la memoria

Figura 1: Diagrama de Gantt.

1.5. Estructura del documento

El documento se organiza de la siguiente forma:
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En el capitulo 1 se incluye la Introduccion, donde se presenta el estado del arte, y se han
planteado los objetivos principales del trabajo, contexto y cronograma.

En el capitulo 2 se realiza un Andlisis exhaustivo del entorno loT, donde se introducen los
dispositivos 1oT mds usados, los dispositivos atacados con mayor frecuencia, los ataques
mas comunes (entrando en detalle en la botnet Mirai), asi como los principales conjuntos
de datos.

En el capitulo 3 se introducen las Técnicas de Machine Learning, desarrollando en mayor
profundidad aquellas empleadas en este estudio, junto con los indicadores de rendimiento
utilizados para evaluar los resultados.

En el capitulo 4 se presenta el Sistema de deteccién de botnets, que abarca todo el proceso
de transformacién de las capturas de trafico de los datasets originales mediante la
herramienta Zeek y diferentes librerias de Python para poder transformar los conjuntos de
datos, eliminar flujos de datos erréneos, asignarles etiquetas y unificar los atributos. En este
capitulo se desarrolla la metodologia empleada y se analiza la estructura de los datos
transformados.

En el capitulo 5 se presenta la Aplicacion de técnicas de ML sobre los conjuntos de datos.
Se describe la metodologia empleada para la clasificacién, seguida de la presentacioén y
discusién de los resultados obtenidos para los dos escenarios de pruebas planteados: por
un lado, analisis de los tres conjuntos de datos de forma individual con clasificacion
multiclase, y por otro lado, andlisis empleando los tres conjuntos de datos de forma
combinada. Para este segundo escenario de pruebas, en una primera evaluacién se unieron
los tres datasets y se generaron los conjuntos de train y test, realizando clasificacién binaria
y multiclase; y en la segunda prueba se utilizd como conjunto de test un dataset diferente
al de evaluacidn, también de forma binaria y multiclase.

Finalmente, en el capitulo 6 se abordan las Conclusiones mas relevantes de este TFM y
posibles lineas futuras.



2. Analisis del entorno IoT
2.1. Dispositivos IoT mas atacados

En el ambito de Internet de las Cosas, los dispositivos conectados a la red pueden estar
expuestos a ataques debido a diversas razones: firmware desactualizado, sistemas de
autenticaciéon débiles, protocolos de comunicacidon inseguros o configuraciones de red
inseguras. Es importante destacar que muchos usuarios de estos dispositivos no son conscientes
de estas vulnerabilidades. Segun el informe (Cybersecurity Report 2023: Consumer Devices
Under Threat, 2022), el 67% de los hogares sufren una amenaza online al mes. Ademas, algunos
fabricantes no invierten suficiente esfuerzo en securizar adecuadamente los productos. Los
atacantes, conscientes de estas deficiencias, aprovechan estas brechas de seguridad para
acceder o comprometer los dispositivos con fines maliciosos. Dentro de las marcas de
dispositivos mas atacados, encontramos Hikivision en primer puesto, seguida de D-Link y de
Apple. Sin embargo, es necesario mencionar que el numero de dispositivos influye
significativamente en esta estadistica.

El ecosistema de Internet de las Cosas consta de miles de millones de dispositivos conectados a
Internet, y estos se presentan en formas muy variadas, desde electrodomésticos, impresoras,
hasta cdmaras IP y sensores. Como se puede apreciar en la Figura 2, segun el mismo informe
(Cybersecurity Report 2023: Consumer Devices Under Threat, 2022), siete tipos de dispositivos
concentran el 90% de las amenazas: ordenadores y teléfonos mdviles componen
aproximadamente el 46%, mientras que las cdmaras IP, a pesar de representar solo el 1.2% de
los dispositivos, sufren un 24% de los ataques.
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Figura 2: indice de amenaza por tipo de dispositivo.
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Con esto se concluye que los dispositivos que se encuentran bajo mayor riesgo de amenaza son:
en primer lugar los NAS (Network-Attached Storage) o dispositivos de almacenamiento
conectados a la red, ya que necesitan tener determinados puertos abiertos para su
funcionamiento, seguidos de los DVR (Digital Video Recorders) o dispositivos de grabacién de
video digital, cuya funcién es grabar el video proveniente de elementos como camaras IP, y
poseen una configuracién de fabrica muy poco segura, a continuacién encontramos las cdmaras
IP, conocidas por la poca seguridad que presentan de fabrica, pueden convertirse facilmente en
parte de una botnet. Finalmente, también cabe mencionar los monitores de bebé y los
dispositivos de audio y video.

La informacion del informe "(The Riskiest Connected Devices in 2023, 2023)" complementa los
datos sobre las vulnerabilidades en dispositivos loT. Segun el informe, los dispositivos loT que
mayor riesgo tienen de ser atacados incluyen cdmaras IP, impresoras y VolP, que suelen estar
expuestos en Internet y han sido historicamente blanco de APTs (Advanced persistent threat).
Ademas, se identifican dos nuevas entradas problematicas: los dispositivos NAS y OOBM (out-
of-band management). Los dispositivos NAS han ganado popularidad entre los actores de
ransomware debido a los valiosos datos que almacenan y sus numerosas vulnerabilidades. Por
otro lado, los dispositivos de gestidn out-of-band (OOBM) permiten la administracién remota de
equipos a través de interfaces alternativas, pero enfrentan serias vulnerabilidades criticas,
algunas de las cuales han sido explotadas por malware sofisticado, incluso hasta finales de 2022.
Esta situaciéon subraya la necesidad urgente de mejorar las medidas de seguridad y la
concienciacién entre fabricantes y usuarios de dispositivos loT, especialmente en dispositivos
especificos como NAS y OOBM, que pueden comprometer redes criticas si no se protegen
adecuadamente.

En cuanto a los sistemas operativos utilizados por los dispositivos, el mismo informe indica que
predominan los sistemas operativos "tradicionales" como Windows, Linux, Mac y UNIX. Esto
incluye varios dispositivos especializados de 10T/OT/IoMT que ejecutan Linux o Windows.

Finalmente, el infome concluye que mas de 4000 vulnerabilidades afectan a los dispositivos en
el conjunto de datos analizado. De estas vulnerabilidades, el 78% afecta a dispositivos IT, el 14%
a dispositivos 10T, el 6% a dispositivos OT y el 2% a dispositivos loMT. Aunque la mayoria de las
vulnerabilidades afectan a dispositivos IT, casi el 80% de estas tienen solo alta severidad. Por
otro lado, los dispositivos loMT tienen menos vulnerabilidades, pero el 80% de ellas son criticas,
lo que tipicamente permite la toma de control completa de un dispositivo. De manera similar,
mas de la mitad de las vulnerabilidades que afectan a dispositivos OT e loT son criticas.

2.2. Amenazas mas frecuentes en entornos IoT

Considerando la tendencia hacia la automatizacion inteligente en todos los ambitos, los hogares
de todo el mundo en 2022 ya poseian dispositivos inteligentes y se espera que esta cifra siga
aumentando. Junto con los altavoces inteligentes, otros dispositivos de alta demanda incluyen
sistemas de seguridad, grandes y pequenos electrodomésticos, detectores de humo y hubs y
gateways, como se puede observar en la Figura 3.
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Homes Are Only Getting Smarter

Estimated number of households worldwide
with the following smart devices (in millions)

W 2022 W 2027
I, 1314

Smart speaker 3353
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Smart security camera 180.7

Smart big appliances | REN 177.6
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Smart smoke detector 116.2
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Hub/gateway 55.

As of March 2022
Source: Statista Technology Market Outlook
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Figura 3: Numero de dispositivos en la actualidad y prevision para 2027 (Armstrong, 2022).

El aumento masivo de dispositivos 10T ha ampliado significativamente la superficie de ataque,
convirtiéndolos tanto en puntos de acceso inicial como en posibles atacantes. Las amenazas mas
comunes incluyen:

e Explotacion de Firmware: Vulnerabilidades en el software de bajo nivel que controla
el hardware.

e Explotacion de vulnerabilidades en endpoints conectados a dispositivos loT: Debido a
sistemas operativos desactualizados o configuraciones inseguras.

e Ataques de Ransomware: Especialmente dirigidos a dispositivos loT como cdmaras IP
y dispositivos de almacenamiento NAS, debido a los datos valiosos que pueden
contener.

e Hardware no protegido: Dispositivos loT con hardware vulnerable que puede ser
comprometido facilmente.

® Acceso no autorizado a dispositivos loT: Debido a la falta de autenticacién adecuada y
configuraciones de red inseguras.

Ademas, el 98% del trafico loT no esta encriptado, exponiendo informacién personal vy
confidencial al riesgo de interceptacién (Law, 2023). Los puertos abiertos en dispositivos loT
representan uno de los factores de riesgo mas criticos debido a su capacidad para exponer
vulnerabilidades conocidas y desconocidas, incluyendo exploits zero-day. Entre los protocolos
mas comunmente explotados en 2022 se encuentran el Protocolo SMB (Server Message Block),
utilizado por sistemas Windows para compartir archivos y acceder a servicios remotos; el
Protocolo RDP (Remote Desktop Protocol), que facilita la gestién remota mediante una interfaz
grafica; SSH (Secure Shell), empleado para la gestion remota mediante una interfaz de linea de
comandos, especialmente en servidores Linux/UNIX y dispositivos IoT; y Telnet, utilizado
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principalmente para la gestion remota de dispositivos especializados heredados (The Riskiest
Connected Devices in 2023, 2023).

En cuanto a la exposicidn a Internet, los dispositivos de infraestructura de red IT y los dispositivos
de seguridad son los mas vulnerables, ya que actian como el perimetro entre las redes internas
y externas. Después de estos, las cdmaras IP son los dispositivos mas expuestos, representando
el 23% del total de exposicidn, seguidas por dispositivos NAS con un 7% y VolP con un 3%, segun
la Figura 4.

Most common exposed devices

Other loT oT
5%
VolP x 2% Router/Networking
3% 25%

IP camera

23%
Printer

2% Security
NAS Appliance

7% 33%

Figura 4: Dispositivos mds expuestos (The Riskiest Connected Devices in 2023, 2023).

2.3. Botnets en entornos [IoT

Las botnets representan una amenaza significativa en entornos loT, consistiendo en redes de
dispositivos interconectados, que han sido infectados con malware y son controlados de manera
remota por un actor o grupo malicioso conocido como "bot herder". Segun el informe (Altares
et al., 2023), entre las familias de malware méas comunes se destacan variantes como Mirai,
Gafgyt, y sus hibridos como Kyton o Keksec, ademas de otras botnets como RapperBot y Zerobot.
Estas botnets son conocidas por lanzar una variedad de ataques, incluyendo ataques de
denegacion de servicio distribuido (DDoS), robo de datos, campafias de spam y amenazas
persistentes avanzadas (APTs).

El aumento de dispositivos loT, a menudo con medidas de seguridad deficientes, los convierte
en objetivos principales para las infecciones de botnets. Estos dispositivos son comprometidos
facilmente explotando procesos de autenticacidon y autorizacién débiles, permitiendo al
botherder controlar una red extensa de dispositivos infectados con propdsitos maliciosos.
Ademas, el informe (loT Botnet activity in Consumer Networks, 2023) revela que las botnets
suelen aprovechar multiples exploits, con un aumento significativo en el uso de vulnerabilidades
recientemente descubiertas, indicando un incremento en la sofisticacion y frecuencia de los
ataques.

15



Los tipos de botnets varian en funcidn de su arquitectura de comando y control (C&C). Las
arquitecturas centralizadas, como las botnets IRC y HTTP, dependen de servidores especificos
para la comunicacion de C&C. Las botnets IRC utilizan la red IRC para enviar comandos a los bots,
aprovechando su simplicidad, disponibilidad amplia y anonimato. Estas botnets contactan con
el C&C a través de IRC para registrar nuevos bots y comenzar a recibir 6rdenes. El método mas
comun para este procedimiento es tomar el control de uno o varios servidores IRC para enviar
ordenes a los nodos de la red. Por otro lado, las botnets HTTP utilizan servidores web para
distribuir comandos a los bots, lo que las hace mas dificiles de detectar y bloquear que las
botnets IRC, ya que su trafico puede mezclarse con el trafico web regular y pasar por politicas
de firewall existentes (Imam et al., 2014).

Las botnets POP3 utilizan protocolos de correo electrénico para la comunicacion C&C, donde los
bots recuperan comandos de servidores de correo POP3 mediante la descarga de mensajes de
correo electrdnico que contienen instrucciones adjuntas. Esta forma de comunicacion es menos
detectable que las botnets IRC, proporcionando un canal encubierto efectivo para los comandos
maliciosos.

Las botnets P2P representan una evolucién en la arquitectura de botnets, eliminando la
necesidad de un servidor centralizado para C&C. En lugar de eso, los bots en una botnet P2P se
comunican directamente entre si, utilizando sistemas de publicacién/suscripcidn para distribuir
comandos. Esta estructura descentralizada hace que las botnets P2P sean mas resistentes a los
intentos de desmantelamiento y mas dificiles de monitorear para los defensores.

Para evitar la deteccidn, los disefiadores de botnets suelen utilizar protocolos ampliamente
utilizados para su C&C, como IRC, HTTP, POP3 o P2P, y en ocasiones incluso redes sociales en
linea. Estos protocolos ofrecen diferentes niveles de anonimato, resistencia y capacidad de
mezclarse con el trafico normal de Internet, dificultando los esfuerzos para mitigar las amenazas
de botnets.

Ademads de las diversas arquitecturas de botnets mencionadas, los adversarios emplean
multiples técnicas de ofuscacién y cifrado para ocultar y proteger las comunicaciones de
comando y control (C&C). Estas técnicas incluyen el cifrado de datos utilizando técnicas
convencionales como ASCIll, Unicode o Base64, asi como compresion de datos mediante
esquemas como gzip. Para dificultar ain mas la deteccidn, los adversarios utilizan ofuscacion de
datos, que incluye la insercién de datos basura en el trafico del protocolo, técnicas para ocultar
informacion dentro de archivos de imagen u otros medios digitales, y la impersonacién de
protocolos validos para disfrazar las comunicaciones. Ademas, los adversarios pueden emplear
técnicas de resolucidn dinamica, como el uso de DNS de flujo rapido, algoritmos de generacion
de dominios (DGAs), y célculos DNS, para cambiar dinamicamente los dominios, direcciones IPy
numeros de puerto utilizados por la infraestructura de comando y control. Estas estrategias
permiten a las botnets eludir las detecciones convencionales y adaptarse rdpidamente a las
contramedidas implementadas (What Is Command and Control (C&C or C2) in Cybersecurity? -
Zenarmor.Com, 2023).

La generacién de una botnet consta de tres pasos:

e Explotacion: Se busca una debilidad para explotar. Esta debilidad podria encontrarse en
un sitio web, en el acceso sin proteccién a una aplicacién o en un software mal
configurado.
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e Creacion de Bots: Una vez que el dispositivo ha sido infectado, se convierte en un
zombie, listo para seguir las 6rdenes del bot herder. El bot herder repite este proceso
unay otra vez.

e Ataque: Una vez que han infectado cientos, miles o incluso decenas de miles de
dispositivos, se enlazan y lanzan ataques.

2.3.1. Principales amenazas: Botnet Mirai

En la seccién anterior, se ha discutido cdmo las botnets pueden explotar dispositivos loT
vulnerables. Un ejemplo destacado de esto es la botnet Mirai. A diferencia de otras
ciberamenazas, el malware Mirai afecta principalmente a dispositivos inteligentes conectados a
la red, como routers, termostatos, monitores para bebés, frigorificos, etc. Al apuntar al sistema
operativo Linux que muchos dispositivos loT utilizan, el malware Mirai estad disefiado para
explotar vulnerabilidades en los gadgets inteligentes y enlazarlos en una red de dispositivos
infectados. Una vez que forman parte de la botnet, el hardware es empleado para llevar a cabo
ataques adicionales como parte de un enjambre de mdaquinas zombies. Tradicionalmente, las
botnets se han utilizado para realizar campafias de phishing y ataques masivos de spam, pero la
naturaleza de los dispositivos loT hace que las botnets Mirai sean ideales para saturar sitios web
o servidores mediante ataques DDoS (Distributed Denial of Service).

Primero, el malware Mirai escanea direcciones IP para identificar dispositivos inteligentes que
ejecutan determinadas versiones de Linux en procesadores ARC. Luego, Mirai explota
vulnerabilidades de seguridad en el dispositivo loT para obtener acceso a la red mediante
combinaciones de nombre de usuario y contrasefa predeterminadas. Si estas configuraciones
no se han cambiado o actualizado, Mirai puede iniciar sesion en el dispositivo e infectarlo con
malware (The Mirai Botnet — Threats and Mitigations). La mayoria de los dispositivos que ataca
la botnet Mirai son routers domésticos y cdmaras, pero casi cualquier dispositivo inteligente es
susceptible a las botnets loT. La misma conexién de red que da funcionalidad a las aspiradoras
robotizadas, intercomunicadores IP, electrodomésticos de cocina en un hogar inteligente,
también es una puerta trasera potencial para el malware. En su apogeo en septiembre de 2016,
Mirai paralizé temporalmente varios servicios de alto perfil, como OVH, Dyn y Krebs on Security,
a través de ataques masivos DDoS. OVH informd que estos ataques superaron 1 Tbps, el mas
grande registrado publicamente. Lo notable de estos ataques récord es que se llevaron a cabo a
través de pequefos y aparentemente inofensivos dispositivos 1oT como routers domésticos,
monitores de calidad del aire y cdmaras de vigilancia personales. En su punto mdximo, Mirai
infecté mas de 600000 dispositivos IoT vulnerables (Inside the Infamous Mirai loT Botnet: A
Retrospective Analysis, 2017).
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Figura 5: Tipos de dispositivos infectados por Mirai (Inside the Infamous Mirai loT Botnet: A Retrospective
Analysis, 2017).

Mirai comienza como un gusano auto-replicante, es decir, es un programa malicioso que se
replica encontrando, atacando e infectando dispositivos loT vulnerables. También se considera
una botnet porque los dispositivos infectados son controlados a través de un conjunto central
de servidores de comando y control (C&C). Estos servidores indican a los dispositivos infectados
qué sitios atacar a continuacién. En general, Mirai esta compuesto por dos componentes clave:
un médulo de replicacién y un médulo de ataque.

El modulo de replicacion (véase Figura 6) es responsable de aumentar el tamafio de la botnet
esclavizando tantos dispositivos IoT vulnerables como sea posible. Lo hace escaneando
aleatoriamente todo Internet en busca de objetivos viables y atacandolos. Una vez que se
compromete un dispositivo vulnerable, el médulo informa a los servidores C&C para que pueda
ser infectado con la dltima carga util de Mirai. Para comprometer dispositivos, la versién inicial
de Mirai se basd exclusivamente en un conjunto fijo de 64 combinaciones de inicio de
sesidn/contrasefa predeterminadas ampliamente conocidas y cominmente utilizadas por los
dispositivos loT.

El médulo de ataque es responsable de llevar a cabo ataques DDoS contra los objetivos
especificados por los servidores C&C. Este mddulo implementa la mayoria de las técnicas de
ataque DDoS, como la inundacidn HTTP, la inundacién UDP y todas las opciones de inundacidn
TCP. Esta amplia gama de métodos permitié a Mirai realizar ataques volumétricos, ataques a
nivel de aplicacion y ataques de agotamiento de estado TCP (Inside the Infamous Mirai loT
Botnet: A Retrospective Analysis, 2017).

18



3. inject

P
& 4. control
Q'
<

(@)

1. scan & attack G

Figura 6: Mddulo de replicacion de Mirai (Inside the Infamous Mirai loT Botnet: A Retrospective Analysis,
2017).

El cddigo fuente de Mirai sigue activo y ha dado lugar a variantes como Okiru, Satori, Masuta y
PureMasuta. Por ejemplo, PureMasuta es capaz de explotar la vulnerabilidad HNAP en
dispositivos D-Link, mientras que la cepa OMG transforma los dispositivos loT en proxies que
permiten a los ciberdelincuentes permanecer en el anonimato. Ademads, se ha descubierto
recientemente una poderosa botnet conocida como loTrooper y Reaper, que es capaz de
comprometer dispositivos loT a un ritmo mucho mas rdpido que Mirai. Reaper puede dirigirse a
un mayor numero de fabricantes de dispositivos y tiene un control mucho mayor sobre sus bots
(¢ Qué Es La Botnet Mirai? | Cloudflare).

Segun el informe (Lella et al., 2023), los ataques DDoS se estan construyendo cada vez mas sobre
dispositivos IoT. Los dispositivos y sensores son objetivos adecuados para los ataques DDoS
debido a sus recursos limitados que a menudo resultan en una seguridad deficiente. Estos
dispositivos son faciles de corromper, ya que a menudo vienen con configuraciones incorrectas
(por ejemplo, contrasefias débiles). La creciente complejidad de estos sistemas moviles hace
que la falta de habilidades de seguridad de los usuarios sea cada vez mas relevante. Esta
tendencia también ha sido confirmada por Microsoft, que observa que los ataques DDoS
consistentemente utilizan dispositivos loT. Varios ataques han adaptado malware existente (por
ejemplo, Mirai) y botnets para involucrar loT.

Muchos de los vectores de ataque en Mirai estan basados en tipos tradicionales de ataques
DDoS, pero han sido personalizados y/o mejorados para su uso especifico en esta botnet. A
continuacién, se detallan en la Tabla | los diferentes tipos de ataques incluidos en el cddigo
original de Mirai, asi como algunos que quedaron incompletos. La botnet Mirai originalmente
estaba disefiada para permitir la multitenencia y el acceso transaccional. Una vez que el servidor
de comando y control (C2) y la botnet eran establecidos, se podian afiadir usuarios adicionales
a la plataforma. Esto significaba que el acceso publico a la botnet era tan sencillo como realizar
una transaccién comercial (Winward, 2018).
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Tabla I: Ataques de Mirai.

Protocolo

Ataque

Perfil Ancho Banda

Descripcion

TCP

SYN Flood

Moderado BPS, Alto PPS

Clasico SYN Flood que envia una cantidad
masiva de solicitudes de sincronizacion.

ACK Flood

Alto BPS, Medio PPS

Inunda con paquetes ACK y causa que
genere respuestas RST hasta ser abrumado.

STOMP Flood

Alto BPS, Bajo PPS

Supera ciertas técnicas de mitigacion de
DDoS. Establece una conexion TCP legitimay
luego inunda con paquetes ACK.

HTTP Flood

Bajo BPS, Bajo PPS

Es muy flexible y personalizable. Ejecuta
ataques HTTP GET repetidos para agotar los
recursos del objetivo.

uDP

UDP Flood

Alto BPS, Moderado PPS

Unico debido a su capacidad para aleatorizar
puertos de origen y destino, haciendo dificil
su identificacion.

Ataque a servidores que ejecutan juegos de

VSE Flood Medio BPS, Alto PPS

Valve Corporation.

Inundaciéon de consultas DNS de
subdominios aleatorios dentro del dominio
especificado. Envia esta solicitud a su
servidor DNS recursivo local.

DNS Flood Medio BPS, Alto PPS

Tiene menos opciones que el ataque UDP

UDPPLAIN Flood normal, permitiendo mayor PPS.

Alto BPS, Medio PPS

GRE

Interesante por su velocidad y flexibilidad.
Encapsula paquetes dentro de GRE.
Direcciones IP y puertos aleatorios.

GREIP Flood Alto BPS, Medio PPS

Paquetes GRE encapsulados con tramas
Ethernet transparentes, dificultando
distinguirlo. Incluye una trama L2.

GREETH Flood Alto BPS, Medio PPS

2.3.2. Otros ataques: DDoS, fuerza bruta, escaneo de puertos y de
sistema operativo.
Otros ataques que aparecen con frecuencia en entornos loT incluyen DDoS-PSHACK Flood,
DDoS-RSTFIN Flood, Dictionary Brute Force, OS Scan y Port Scan, y representan una variedad de
métodos que los atacantes pueden emplear para comprometer la seguridad y funcionalidad de
los dispositivos 10T. Todos estos tipos de ataques se incluyen en las bases de datos que se
emplearan en el trabajo. En el Anexo | se detalla cada uno de ellos.

Ataque de Fuerza Bruta de Diccionario: Utiliza un diccionario predefinido de palabras comunes
y frases para descifrar contrasefias. Automatiza el proceso de introducir y verificar cada palabra
del diccionario contra el sistema de autenticacion. Es efectivo contra contrasefias débiles o
previsibles.

Escaneo de Sistema Operativo (OS Scan): Determina el sistema operativo en un dispositivo de
red enviando paquetes especificos y analizando las respuestas para identificar patrones
caracteristicos de diferentes sistemas operativos. Herramientas como Nmap son cominmente
usadas.

Escaneo de Puertos (Port Scan): |dentifica qué puertos estan abiertos en un dispositivo de red
enviando solicitudes a diferentes puertos y analizando las respuestas. Los puertos abiertos
revelan servicios activos y posibles puntos de entrada para ataques.
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DDoS PSHACK Flood: Ataca un servidor enviando una gran cantidad de paquetes TCP con los
flags PSH y ACK activados, saturando los recursos del servidor y provocando una denegacion de
servicio. Puede recibir o no un paquete RST en respuesta. (ACK-PSH Flood | Knowledge Base |
MazeBolt)

DDoS RSTFIN Flood: Utiliza paquetes TCP con los flags RST y FIN activados para saturar un
servidor. El servidor intenta cerrar las conexiones repetidamente, gastando recursos en el
proceso. Este ataque puede provocar la degradaciéon del rendimiento del servidor y la
denegacion de servicio. (RST-FIN Flood | Knowledge Base | MazeBolt)

2.4. Conjuntos de datos en entornos [oT

En esta seccidn se presentan los conjuntos de datos mas relevantes en el escenario de ataques
en loT (véase la Tabla Il), describiendo sus principales caracteristicas y los tipos de ataques que
incluyen. Es crucial contar con conjuntos de datos representativos para poder evaluar de forma
correcta un escenario loT. Cada uno de estos conjuntos de datos ha sido analizado en funcién
de los ataques presentes, la disponibilidad de las capturas de trafico originales y de las reglas de
etiquetado utilizadas para garantizar su utilidad y validez en la evaluacién de sistemas de
deteccién de botnets. Tras este analisis, se decidié que los conjuntos de datos que mejor
cumplian con las caracteristicas que permitirian llevar a cabo la propuesta de evaluacion de este
trabajo eran los siguientes: 10TD20, 1oT-23 y CIC-10T-2023. A continuacién se describe en mayor
detalle cada uno de ellos.

Tabla Il: Listado de Conjuntos de Datos en entornos loT estudiados.

Dataset |Caracteristicas Ataques
BOT-loT |[Servicios como DNS, FTP, HTTP y SSH DoS y DDoS: SYN, TCP, UDP, HTTP.
(Koroniotis et|32 caracteristicas Escaneo de Puertos y Sistemas Operativos
al., 2018) [72,000,000 de registros Robo de Informacion
Simulados trafico normal y ataques DoS y DDoS. Keylogging
HIKARI  |517,582 flujos de trafico benigno Brute Force tradicional
(Ferriyan et [37,696 flujos de trafico malicioso Brute Force con diferentes vectores de ataque
al.,, 2021) [Etiquetado con categorias Benigno o Ataque (XMLRPC)
Ataques simulados Probing
Botnet XMRIGCC CryptoMiner
loT-BDA [Honeypots simulando servicios vulnerables con Comunicaciones C2
(Trajanovski [analizadores estaticos y dinamicos. Ataques DDoS
& Zhang, 4077 muestras Unicas de botnets Escaneo de puertos
2021) 39 columnas en total.
Nombre del archivo, Botnet, hash MD5, arquitectura de
CPU, técnicas anti-analisis, resultados de andlisis de
VirusTotal.
AWID-3 [Cada captura de menos de 2.5 millones de frames y Explotacidn de vulnerabilidades como Krack y
(Chatzoglou [duracion total de 10 minutos Kr0Ok y creacién de puntos de acceso falsos.
et al,, 2021) [Entorno de laboratorio fisico simulando infraestructura |Fuerza bruta y creacion de botnets mediante

empresarial

16 dispositivos.

Variaciones de trafico normal y de ataque.
254 caracteristicas extraidas.

infeccion de STAs

Inyeccidon SQL para manipular bases de datos web
y la amplificacion SSDP (DDoS)

Evil_Twin que combina envenenamiento ARP y
DNS para Website Spoofing
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MedBloT

80 dispositivos virtuales y 3 fisicos.

Mirai: infectd 25 dispositivos

(Guerra- [Red de Internet para configuracion de dispositivos. Red |BashLite (Yakuza version): infectd 40 dispositivos
Manzanares |[de monitoreo para almacenamiento y analisis. Red loT  [Torii: infectd 12 dispositivos.
et al., 2020) |LAN con dispositivos loT.
100 caracteristicas estadisticas de trafico en diferentes
ventanas de tiempo (100ms, 500ms, 1.5s, 10s, 1min).
4,143,276 paquetes de BashlLite, 842,674 paquetes de
Mirai, 319,139 paquetes de Torii, y 12,540,478 paquetes
de trafico benigno.
Edge-lloT |Generacion de trafico benigno y 14 tipos de ataques DoS/DDosS, recoleccidon de informacion, ataques
(Al Nuaimi etfsimulados de hombre en el medio, inyecciéon de cddigo y
al., 2023) |61 caracteristicas seleccionadas de las 1176 ataques de malware.
caracteristicas iniciales encontradas
MBB-loT |Dispositivos loT reales para simular entornos de ataque, |Malware Mirai y BASHLITE descargados y
(Qing et al., |generando trafico normal. Controlados por LAN de ejecutados en dispositivos loT mediante
2023) Raspberry Pi. servidores en la nube.
Simulan dos escenarios: trafico normal y de alto trafico |Ataques DDoS hacia servidores WEB utilizando los
87 caracteristicas para analizar ataques DDoS. dispositivos infectados, con diferentes variantes
Etiquetado como “anémalo” o "benigno" de ataques
N-BaloT [Dispositivos loT infectados utilizando binarios BASHLITE: exploracion, UDPFlood y TCPFlood y
(Meidan et |C2 dentro del entorno de laboratorio envio de datos no deseados
al.,, 2018) [115 caracteristicas estadisticas para describir el Mirai: exploracion, ACKFlood, SYNFlood y

comportamiento del trafico, ventanas temporales de
100ms, 500ms, 1.5s, 10s y 1 minuto.

UDPFlood, optimizados para aumentar la tasa de
paquetes por segundo (PPS).

2.4.1. Descripcion de IoTD20

El dataset 10TID20 (Ullah & Mahmoud, 2020) se centra en un entorno doméstico inteligente loT,
utilizando dispositivos como el SKT NGU y la cdmara Wi-Fi EZVIZ como dispositivos victimas.
Ademas, incluye dispositivos adicionales como portatiles, tablets y smartphones que actuan
como dispositivos atacantes. Se simularon diversos tipos de ataques dentro de este entorno,
capturando el trafico en archivos pcap. Los dispositivos estan conectados a un router Wi-Fi
domeéstico, lo que proporciona una topologia de red tipica para un hogar inteligente.

El dataset incluye ataques simulados y reales. Entre los ataques simulados se encuentran
UDP/ACK/HTTP Flood, tipicos de la botnet Mirai. Ademds, se capturaron ataques reales
utilizando herramientas como Nmap para escaneos de hosts y puertos, y ataques de spoofing
ARP. Para la botnet Mirai, los paquetes fueron generados en un portatil y fueron manipulados
para simular haber sido generados desde el dispositivo l0T. La implantacién de malware incluye
la simulacion de ataques de la botnet Mirai, donde los dispositivos comprometidos generan
trafico malicioso como parte del dataset. La captura de trafico se realiz6 en modo monitor
utilizando adaptadores de red inaldmbrica, con eliminacion de cabeceras de red.

El dataset estd compuesto por 42 archivos pcap que contienen paquetes de red capturados en
diferentes momentos. El tamafio total del dataset es de aproximadamente 1.45 GB. En la Figura
7 se muestra la distribucidn de los ataques. En la Tabla Ill se detalla el nUmero de instancias para
cada clase; estos datos corresponden al nimero de paquetes capturados; y en el Anexo Il se
detallan en forma de instancias del dataset en formato csv.
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Figura 7: Distribucion de ataques de 10TD20 en clases y subclases (Ullah & Mahmoud, 2020).

Tabla Ill: Numero de paquetes por categoria y subcategoria en 10TD20. (Ullah & Mahmoud, 2020).

Categoria Subcategoria Paquetes
Normal Normal 1,756,276
Scanning Host Discovery 2,454
Port Scanning 20,939
0S/Version Detection 1,817
Man in the Middle (MITM) ARP Spoofing 101,885
Denial of Service (DoS) SYN Flooding 64,646
Host Discovery 673
Telnet Brute Force 1,924
Mirai Botnet UDP Flooding 949,284
ACK Flooding 75,632
HTTP Flooding 10,464

El dataset 10TID20 se caracteriza por sus 83 atributos de red y tres atributos de etiqueta,
disefados para la deteccién de intrusiones en entornos de loT. Estos atributos se extraen de
archivos pcap utilizando la aplicacion CICflowmeter y se presentan en formato CSV.

2.4.2. Descripcion de IoT-23

El dataset 10T-23 (Garcia et al.,, 2020) es una compilacién de trafico de red capturado de
dispositivos 10T, que se divide en escenarios benignos y maliciosos. Desarrollado por el
Laboratorio Stratosphere de la Universidad CTU en Praga, proporciona datos etiquetados,
capturas de trafico originales y las reglas empleadas para el etiquetado.

En los 20 escenarios maliciosos de 10T-23, se ejecutaron muestras de malware en dispositivos
Raspberry Pi dentro de un entorno controlado. Cada captura de trafico, en formato .pcap,
registra las interacciones de red generadas por el malware, generalmente limitados a 24 horas
debido al volumen creciente de trafico. Este enfoque asegura la captura de comportamientos
significativos y realistas de las infecciones por malware en dispositivos loT. Cada uno contiene
trafico de una Botnet, como se muestra en el Anexo I, donde también se indica el nUmero de
flujos y la duracion de cada escenario. Para este trabajo, se han utilizado todos los escenarios
que contienen Miraiy los escenarios con trafico benigno. En contraste, se incluyen tres capturas
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de trafico de dispositivos 10T no infectados: una ldmpara LED inteligente Philips HUE, un
asistente personal inteligente Amazon Echo y una cerradura inteligente Somfy.

El andlisis de las capturas de trafico se realiza utilizando Zeek, una herramienta para el andlisis
de redes que genera archivos conn.log detallando flujos de conexidn. Cada archivo conn.log es
posteriormente etiquetado utilizando un proceso manual y automatico para caracterizar el
comportamiento del trafico, este Ultimo recibe el nombre de Flaber, un script personalizado
desarrollado en Zeek. Estas etiquetas proporcionan una descripcion detallada de las
interacciones de red observadas, y poseen una estructura en la que se concatenan todos los
nombres de los ataques en el flujo. Las caracteristicas presentes en el archivo conn.log se
adjuntan en el Anexo Il, junto a la explicacién de cada una de ellas. Contiene 21 atributos que
corresponden al nUmero de pardmetros obtenidos del archivo conn.log ademds de 2 campos de
etiquetado. Cada carpeta de captura incluye un archivo README.md que detalla informacidon
relevante, como el nombre y caracteristicas del malware, hash (MD5, SHA1, SHA256) de la
muestra, la duracidn de la captura en segundos y enlaces a andlisis adicionales de muestras de
malware en VirusTotal. Ademds, también se adjuntan los archivos .pcap originales vy
conn.log.labeled.

Los posibles valores que pueden encontrarse en las etiquetas son los mostrados en la Tabla IV:

Tabla IV: Valores posibles del campo “etiqueta” en el conjunto de datos loT-23.

Attack FileDownload PartOfAHorizontalPortScan
Benign HeartBeat Torii

C&C (Command & Control) Mirai
DDoS Okiru

El dataset 10T-23 ofrece una combinacién Unica de datos reales y simulados de trafico de
dispositivos IoT. A continuacion, se detalla como se distribuye la simulacién dentro del dataset:

Datos Reales: Los escenarios benignos del dataset 10T-23 estan compuestos por capturas de
tréfico de dispositivos loT reales y no infectados. Estos incluyen una lampara LED inteligente
Philips HUE, un asistente personal inteligente Amazon Echo y una cerradura inteligente Somfy.
Estos dispositivos funcionan en un entorno controlado y proporcionan un reflejo auténtico de
los patrones de trafico normales en dispositivos loT no comprometidos.

Datos Simulados: Por otro lado, los escenarios maliciosos del dataset implican la ejecucion
controlada de muestras de malware en dispositivos Raspberry Pi. Cada captura de malware
captura el comportamiento y las interacciones generadas por el malware durante un periodo
limitado, generalmente menos de 24 horas debido al volumen de trafico generado.

En el Anexo VIII se adjunta las reglas empleadas para el etiquetado, generadas a partir de
atributos de Zeek. Si un flujo cumple mas de una regla, se concatenan todas las etiquetas
correspondientes. En el Anexo Il se muestra la distribucidon de etiquetas para cada escenario
empleado en este trabajo.

2.4.3. Descripcion de CIC-10T-2023

El dataset CICIoT2023 (Neto et al., 2023) destaca por simular un entorno realista de loT con
dispositivos distribuidos en un laboratorio que imita un hogar inteligente. Se emplean 105
dispositivos loT, divididos en categorias como dispositivos domésticos inteligentes, camaras,
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sensores y microcontroladores. Estos dispositivos estan configurados tanto para
comportamientos benignos como para ejecutar ataques maliciosos. El trafico de red capturado
incluye tanto actividades benignas como maliciosas. Las actividades benignas incluyen
interacciones humanas como datos de sensores y solicitudes de dispositivos, mientras que los
ataques maliciosos cubren diversas técnicas como DDoS, DoS, y explotacién de vulnerabilidades
web.

La topologia de red se divide en dos partes principales conectadas a través de un router ASUS
un switch, y un punto de acceso. Esta configuraciéon simula un entorno tipico de hogar
inteligente, con dispositivos distribuidos fisicamente en diferentes ubicaciones dentro del
laboratorio. Se utilizan botnets simuladas para llevar a cabo ataques como DDoS, DoS, y
explotacién de vulnerabilidades web. Estos ataques son ejecutados por dispositivos loT
maliciosos dirigidos a otros dispositivos vulnerables dentro del mismo entorno simulado. En el
Anexo 1l se especifica la distribucidn de las etiquetas por ataque y el nimero de instancias de
cada clase.

El trafico de red es capturado mediante un Gigamon Network Tap, que proporciona acceso
pasivo y no intrusivo al trafico completo de la red. Los datos capturados son analizados y
almacenados utilizando herramientas como Wireshark. Los datos capturados se almacenan en
archivos pcap y csv. Los archivos pcap contienen datos originales capturados, mientras que los
archivos csv contienen caracteristicas extraidas de ventanas de paquetes fijos para andlisis
posterior. Se extraen multiples caracteristicas de los datos capturados utilizando herramientas
como DPKT. Estas caracteristicas incluyen estadisticas de paquetes, patrones de trafico y
comportamientos andmalos. Incluye un total de 47 caracteristicas extraidas de los datos
capturados (véase Anexo Il).

Los datos capturados son preprocesados para limpiar y estructurar adecuadamente los
paquetes de red. Ademas, cada conjunto de datos se etiqueta segun el tipo de actividad, ya sea
benigna o maliciosa, facilitando asi el entrenamiento de modelos de aprendizaje automatico. El
dataset incluye multiples flujos de datos capturados durante un periodo de tiempo especifico,
con un total de aproximadamente 548 GB de trafico. Las herramientas utilizadas incluyen
TCPDUMP para la conversidn de archivos pcap a csv, DPKT para la extraccion de caracteristicas,
y Pandas para el procesamiento y analisis de datos. El etiquetado se realiza asignando la misma
etiqueta a todos los flujos procedentes de la captura de trafico del ataque en cuestidn.
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3. Técnicas de ML

La Inteligencia Artificial es la capacidad de un dispositivo para realizar tareas de manera similar
a un humano, utilizando la computacién para imitar las funciones cognitivas humanas. Este
concepto abarca mas que el aprendizaje automdtico o Machine Learning (ML), que se puede
considerar como una subdrea de la Inteligencia Artificial enfocada en la capacidad de las
maquinas para procesar conjuntos de datos y realizar predicciones basadas en estos, adaptando
los algoritmos conforme aprenden de manera continua por si mismas (Kubat, 2021; Molina
Lépez & Garcia Herrero, 2006). En la Figura 8 se presentan las principales técnicas de ML,
mientras que en la siguiente seccién se profundiza en aquellas utilizadas en este trabajo. Las
principales categorias de aprendizaje automatico son: el aprendizaje supervisado, el aprendizaje
no supervisado, el semisupervisado, el aprendizaje profundo y el aprendizaje de refuerzo.

NUMERICO

CLUSTERING CONCEPTUAL

NO SUPERVISADAS PROBABILISITICO

ASOCIACION A PRIORI

TABLA DECISION
ARBOL DECISION
CLASIFICACION BAYESIANA
BASADO EN EJEMPLARES
SUPERVISADAS REDES NEURONALES

REGRESION
SEMISUPERVISADAS PREDICCION ARBOL PREDICCION

ESTIMADOR NUCLEOS
DEEP LEARNING

POR REFUERZO

Figura 8: Categorias de Técnicas de Machine Learning.

3.1. Técnicas de Machine Learning para clasificacion e
indicadores de rendimiento

En esta seccidn se detallan las técnicas utilizadas para la clasificacion de flujos de trafico.
Primero, se explican los fundamentos de las técnicas de clasificacion basadas en aprendizaje
supervisado y, posteriormente, se describen los principales indicadores de rendimiento de estos
clasificadores.

Un algoritmo de clasificacidon supervisado tiene como objetivo extraer conocimiento de un
conjunto de datos (training set) y modelar dicho conocimiento para aplicarlo en la toma de
decisiones sobre un nuevo conjunto de datos (test set). Matemdaticamente, en el aprendizaje
supervisado se trabaja con un conjunto de datos compuesto por ejemplos etiquetados (xi, i)}
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coni=1... N. Cada elemento x; es un vector de caracteristicas, en el que cada dimensién j=1, ...,
D contiene un valor que describe el ejemplo. Este valor se llama caracteristica y se denota como
xi(j). Para todos los ejemplos en el conjunto de datos, la caracteristica en la posicion j del vector
de caracteristicas siempre contiene el mismo tipo de informacidn (por ejemplo, el nimero de
paquetes de los que consta un flujo de tréafico). La etiqueta (/abel) denotada como y; puede
pertenecer a un conjunto finito de clases {1, 2, ... ,C}, representando una categoria a la que
pertenece una instancia, como un tipo especifico de ataque. El objetivo de un algoritmo de
aprendizaje supervisado es usar el conjunto de datos {(xi, yi)} para producir un modelo de
clasificacion que permita tomar un nuevo vector de caracteristicas x como informacién de
entrada y que como salida pueda deducir la etiqueta que deberia asignarse a dicho vector
(Kubat, 2021). Las etiquetas de un conjunto de datos pueden ser cuantitativas (valores
continuos) o cualitativas (valores discretos que pertenecen a una clase). En este trabajo, las
etiquetas son cualitativas ya que corresponden a los nombres de los diferentes ataques o a la
etiqueta de trafico benigno. Generalmente, los datos con etiquetas cualitativas se asocian a
algoritmos de clasificacion, mientras que los datos con etiquetas cuantitativas se asocian a
algoritmos de regresion.

3.2. Técnicas de clasificacion

El problema de clasificacidn se aborda utilizando atributos simbélicos. Si se emplean atributos
numeéricos, es necesario discretizarlos previamente en intervalos para representar
adecuadamente los valores de la clase. A continuacion, se describen las familias de clasificadores
mas comunes, junto con una breve explicacién de los clasificadores especificos empleados en
este trabajo.

Clasificadores Bayesianos

Los métodos bayesianos ofrecen una medida probabilistica cuantitativa de la relevancia de las
variables en un problema de clasificacién. Al aplicar estos métodos, es crucial evitar la presencia
de correlaciones entre los atributos del conjunto de entrenamiento, ya que esto podria invalidar
los resultados obtenidos.

® Naive Bayes: Un clasificador Naive Bayes es un método probabilistico que utiliza el
teorema de Bayes y las probabilidades condicionales, asumiendo que todas las variables
predictoras son independientes entre si (Garcia et al., 2018; John, 1995; Kubat, 2021).
Esta simplificacién crea un modelo con un Unico nodo raiz (la clase) y nodos hoja (los
atributos). Una ventaja del clasificador Naive Bayes es que requiere pocos datos de
entrenamiento para estimar los parametros necesarios para la clasificacion. Aunque la
hipdtesis de independencia es dificil de cumplir y puede ser distorsionada por atributos
altamente correlacionados, esta técnica puede funcionar bien cuando se combina con
técnicas de seleccidn de atributos para eliminar redundancias.

e El clasificador Naive Bayes de Bernoulli es adecuado para problemas de clasificacion
binaria o multiclase donde las caracteristicas son binarias (por ejemplo, la presencia o
ausencia de una palabra en un documento). Este clasificador modela la probabilidad de
cada caracteristica dada la clase como una distribucion de Bernoulli. Por lo tanto, esta
clase requiere que las muestras se representen como vectores de caracteristicas
binarias; si se le proporciona cualquier otro tipo de datos, una instancia de BernoulliNB
puede binarizar su entrada.
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e Por otro lado, el clasificador Naive Bayes Gaussiano se utiliza cuando las caracteristicas
son continuas y se asume que siguen una distribucién gaussiana (normal). Este
clasificador modela la probabilidad de cada caracteristica dada la clase como una
distribucidn gaussiana.

Funciones

En este grupo de métodos se han incluido aquellos que generan una funcidn de clasificacién y
gue no obtienen de forma explicita un arbol o conjunto de reglas.

Multi-layer Perceptron (MLP): El perceptron multicapa (MLP) es una red neuronal
artificial disefiada para resolver problemas no linealmente separables (Garcia et al.,
2018; Kubat, 2021) Suele tener una capa de entrada para atributos, una o mas capas
ocultas donde se calculan sumas ponderadas de las entradas multiplicadas por los pesos
sindpticos, y una capa de salida que clasifica las instancias segun las clases deseadas.
Durante el entrenamiento, se ajustan los pesos de las conexiones utilizando
retropropagacién, un proceso que minimiza el error entre la salida predicha y el
resultado esperado.

Hidden Layer

Input Layer -~
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/ ) -
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wouz 7 | <) A )
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@

Figura 9: Ejemplo de perceptréon multicapa (MLP) con una capa oculta.

Aprendizaje basado en instancias

En este enfoque de aprendizaje, se mantienen almacenados los ejemplos de entrenamiento.
Cuando se necesita clasificar una nueva instancia, se identifican las instancias previamente
clasificadas mas similares y se utiliza su etiqueta para clasificar la nueva instancia. Este tipo de
métodos se conocen como "aprendizaje perezoso" (lazy learners), donde el proceso de
aprendizaje inicial es minimo y el tiempo se consume principalmente en la fase de clasificacion.
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Nearest Centroid: es un algoritmo sencillo que representa cada clase mediante el
centroide de sus miembros. Esto lo hace similar a la fase de actualizacion de etiquetas
del algoritmo KMeans (Nearest Centroid Classification — Scikit-Learn 0.18.2
Documentation). A diferencia de otros métodos, no tiene parametros para ajustar. El
método de K-Means es un enfoque de clasificacién no paramétrico que determina la
clase de una instancia segun las clases de sus k instancias de entrenamiento mads
cercanas. Durante el entrenamiento, se almacenan los vectores de caracteristicas y las
etiquetas de las clases de los ejemplos en un espacio multidimensional. K-Means
investiga cada instancia, calculando sus distancias a todos los centroides. El centroide
mas cercano define el cluster al que pertenece la instancia. Si ya esta en ese cluster, no
se realiza ninguna accién; de lo contrario, se transfiere al cluster correcto. Después de
la reubicacién, se recalculan los centroides de los clusters afectados. En la fase de



clasificacidn, la instancia se asigna a la clase mas frecuente entre sus k vecinos mas
cercanos, asumiendo que estos vecinos proporcionan una buena clasificaciéon basada en
la similitud en el espacio de caracteristicas.

3-Class classification (shrink_threshold=None)
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Figura 10: Ejemplo de funcionamiento del algoritmo Nearest Centroid (Nearest Centroid Classification —
Scikit-Learn 0.18.2 Documentation).

Metaclasificadores

En esta categoria se encuentran los clasificadores complejos, los cuales son obtenidos mediante
la composicién de clasificadores simples o incluyen preprocesamiento de datos.
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Adaptive Boosting (AB): AdaBoost es un meta-algoritmo de clasificacién que utiliza una
combinacion secuencial de clasificadores débiles para mejorar la precisién del
clasificador final. En cada iteracion, se ajusta un clasificador débil que se centra en
corregir los errores de clasificacion cometidos por los clasificadores anteriores. La
contribucion de cada clasificador débil a la prediccién final se pondera segin su
desempeno, favoreciendo aquellos que tienen mejor capacidad predictiva. Este
algoritmo se aplica principalmente en problemas de clasificacion binaria, aunque puede
extenderse al caso multiclase. La caracteristica distintiva de AdaBoost es su capacidad
para mejorar progresivamente el rendimiento del modelo combinando multiples
clasificadores débiles.

x
]

x
®

weak classifier 1

" .. | weak classifier 2
: Weighted

Voter

Non-linear classifier

Feature 2

Feature 1

weak classifier K

Classifier

Figura 11: Ejemplo de funcionamiento del algoritmo Adaptive Boosting.



Bagging: es una técnica que utiliza multiples clasificadores para mejorar la precisién.
Varios clasificadores operan simultdneamente para predecir las etiquetas de clase de
los ejemplos. Un clasificador principal combina estas predicciones mediante votacion
mayoritaria. Cada clasificador en el conjunto aborda diferentes aspectos del problema,
lo que mejora el rendimiento global sobre clasificadores individuales (Kubat, 2021). Para
implementar Bagging, se generan subconjuntos de entrenamiento T, ,...,T, mediante
bootstrapping del conjunto original T. Cada subconjunto se utiliza para entrenar un
clasificador C; , como arboles de decisidn ajustados con pardmetros definidos por el
usuario. Esta técnica aprovecha la diversidad de los clasificadores para reducir errores;
si un clasificador falla en un ejemplo, es probable que los otros clasificadores lo
clasifiquen correctamente.

Arboles de decision

Un darbol de decisiéon es un clasificador que trata de hallar la mejor opcién en cada paso o
decisién que se toma en el arbol, de modo que cada particidn seleccionada maximice alguin
criterio de discriminacion (error de clasificacidon, ganancia de entropia, etc.)(Garcia et al., 2018;
Kubat, 2021). Los arboles constituyen un modo intuitivo para visualizar la clasificacién de un
conjunto de datos.

30

Decision Tree: Se basa en la creacion de reglas de decisién simples derivadas de las
caracteristicas de los datos. Esta estructura jerdrquica se construye mediante divisiones
recursivas de los datos en subconjuntos cada vez mads homogéneos en términos de la
variable objetivo. Una ventaja de los drboles de decisién es su capacidad para manejar
datos sin requerir normalizacidn ni transformacidn de variables, y algunos algoritmos
pueden manejar automaticamente valores faltantes. Ademas, el coste computacional
crece de manera logaritmica con el tamafio del conjunto de entrenamiento, lo cual los
hace eficientes para conjuntos de datos extensos. No obstante, los arboles de decisidn
pueden sufrir de sobreajuste, donde el modelo se ajusta demasiado a los datos de
entrenamiento y no generaliza bien a nuevos datos. Para mitigar este problema, se
emplean técnicas de poda que limitan la profundidad del drbol o reducen el nimero de
nodos, mejorando asi su capacidad de generalizacion. El algoritmo Decision
TreeClassifier de Scikit-Learn implementa arboles de decisidn utilizando una versidn
optimizada del algoritmo CART (Classification and Regression Trees). CART es uno de los
métodos mas comunes y efectivos para construir drboles de decision.

Random Forest (RF): En esta técnica se construyen bosques aleatorios (Random Forest)
creando conjuntos de arboles aleatorios o random trees (Breiman, 2001; Kubat, 2021).
Los arboles creados con el algoritmo de Random Tree consideran un nimero especifico
de caracteristicas aleatorias en cada nodo, sin realizar poda. El algoritmo explora
aleatoriamente una variedad de modelos, lo que permite combinar cientos de arboles
de decisién y entrenar cada uno con una seleccién diferente de instancias. Las
predicciones finales del bosque aleatorio se obtienen promediando las predicciones de
cada arbol individual (ver Figura 12). Usando Random Forest, se puede mitigar el efecto
de sobreajuste de los arboles de decisién individuales al promediar los resultados de
prediccion de multiples arboles, aunque esto también incrementa la complejidad
computacional del método.
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Figura 12: Ejemplo de funcionamiento del algoritmo Random Forest.
Stochastic Gradient Descent (SGD)

SGD es una técnica de optimizacién y no corresponde a una familia especifica de modelos de
aprendizaje automadtico. Las ventajas del descenso de gradiente estocdstico (SGD) son su
eficiencia y facilidad de implementacion (muchas oportunidades para ajustar el cédigo). La clase
SGDClassifier de Scikit-Learn admite diferentes funciones de pérdida y penalizaciones para la
clasificacién. SGD ajusta un modelo lineal a los datos de entrenamiento. Admite la clasificacion
multiclase combinando multiples clasificadores binarios en un esquema "uno contra todos"
(OVA). Para cada una de las K clases, se aprende un clasificador binario que discrimina entre esa
clase y las otras K-1 clases. En el momento de la prueba, se calcula la medida de confianza (es
decir, las distancias al hiperplano) para cada clasificador y se elige la clase con la mayor
confianza. Se muestra un ejemplo de clasificacion multiclase en la Figura 13.

Decision surface of multi-class SGD

e setosa
e versicolor
o virginica

sepal width (cm)

sepal length (cm)

Figura 13: Ejemplo de superficie de decision de SGD. (Stochastic Gradient Descent — Scikit-Learn 1.5.0
Documentation).
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3.3. Indicadores de rendimiento de los clasificadores

A continuacién, se presentan las métricas o indicadores de rendimiento mas comunmente
utilizados en la evaluacidn de técnicas de clasificacidn, especialmente aplicados al problema de
la deteccidon de botnets. Se definen los siguientes factores de clasificaciéon: TP (verdaderos
positivos) es el nimero de flujos de ataques correctamente identificados, TN (verdaderos
negativos) es el niumero de flujos correctamente identificados como normales, FP (falsos
positivos) es el nimero de flujos normales incorrectamente clasificados como ataques, y FN
(falsos negativos) es el numero de flujos de ataques incorrectamente clasificados como
normales. La matriz de confusién muestra el nimero de flujos clasificados de manera correcta
o incorrecta, tal como se presenta en la Tabla V. A partir de estos elementos, se definen los
siguientes indicadores (Kubat, 2021).

Tabla V: Matriz de confusién para clasificacion de trdfico anomalo.

Class\Prediction = Normal  Attack

Normal TN FP

Attack FN TP

Exactitud (accuracy): Representa la proporcion de flujos de trafico clasificados correctamente
respecto al numero total de flujos. Es una métrica comun para evaluar la eficacia de los
algoritmos de clasificacion y también se conoce como tasa de clasificacion (CR). Su
complementario (1-Acc) es la tasa de error.

TP+TN
TP+TN+FP+FN

Acc =

En dominios desequilibrados (imbalanced), donde las instancias de una clase superan en nimero
a las de la otra (por ejemplo, un numero significativamente mayor de flujos de trafico normales
frente a flujos de ataques), la exactitud puede resultar engafiosa. En estos casos, es necesario
emplear otros indicadores como el recall y la precision.

Recall o Tasa de verdaderos positivos (TPR): Representa la probabilidad de que un ejemplo
positivo sea correctamente identificado por el clasificador. También se conoce como tasa de
deteccion o sensibilidad.

TP

TPR =75 7N

Precision: Representa la proporcion de verdaderos positivos respecto a todos los ejemplos
clasificados como positivos. Es una medida de la probabilidad estimada de una prediccidon
positiva correcta y también se denomina valor predictivo positivo. Cuando los TP son 0 (ningun
ataque clasificado correctamente) y los FP son 0 (todos los benignos clasificados
correctamente), no se obtiene un resultado numérico valido.

TP

p T
recision TP + FP
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Mientras que la precisién indica la frecuencia de verdaderos positivos (ataques reales) entre
todos los ejemplos considerados como positivos por el clasificador (flujos clasificados como
ataques), el recall mide la frecuencia de verdaderos positivos (ataques reales) entre todos los
ejemplos positivos en el conjunto de datos (ataques en el dataset).

F-Measure o F1: El indicador F combina precisién y recall en un uUnico valor ponderado. Si se
asigna el mismo peso a ambos, se obtiene F1.

2TP precision recall

F1 = =
2TP+FP+FN precision + recall

Receiver Operating Characteristic (ROC): este diagrama grafico se utiliza para evaluar el
rendimiento de un algoritmo de clasificacién binario. La curva ROC se crea trazando la tasa de
verdaderos positivos frente a la tasa de falsos positivos en diversas configuraciones de
funcionamiento, y el area bajo la curva ROC indica la calidad del clasificador.

Ademas de los indicadores de rendimiento descritos previamente, existen diferentes métodos
de validacién de los algoritmos que permiten obtener los indicadores de distinta forma. La
técnica mads bdsica es la conocida como validacion simple o train-test, en la que se elabora el
modelo utilizando el conjunto de entrenamiento y se aplica sobre el conjunto test. Se pueden
establecer diferentes divisiones (porcentaje de split) para dividir un conjunto original en los
subconjuntos de train y test. Otras técnicas utilizadas son la validacion cruzada, técnicas de
Bootstrap, etc. que son mas costosas computacionalmente.
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4. Sistema de deteccion de botnets
4.1. Arquitectura general del sistema

En este capitulo se desarrolla el procedimiento seguido para realizar la deteccidon de botnets a
partir de los nuevos parametros de trafico obtenidos aplicando Zeek sobre las capturas de
paquetes con las que se generaron los datasets originales 10TD20, 10T-23 y CIC-loT-2023, asi
como el analisis de los resultados de clasificacion obtenidos utilizando dichos parametros. Este
se ilustra en la Figura 14. El objetivo es detectar en primer lugar los flujos de trafico utilizando
Zeek a partir de los ficheros que contienen las capturas directas de los paquetes generados
durante la construccidn de los datasets (ficheros de captura de paquetes de trafico en formato
.pcap), y posteriormente encontrar atributos o caracteristicas de dichos flujos de trafico para
ser utilizados como datos de entrada de los clasificadores. Gracias a esto, los atributos son
comunes en los tres conjuntos de datos, y se puede estudiar el rendimiento de un Gnico modelo
qgue es entrenado con un conjunto de datos diferente al que se emplea para su evaluacion.
Ademas, se podra comparar cdmo varia el rendimiento en la clasificacién de los flujos de trafico
al utilizar los atributos obtenidos utilizando Zeek respecto al rendimiento obtenido utilizando
los atributos que contienen los flujos en los datasets originales. Para llevar a cabo estas pruebas
se empled el software Zeek, un analizador de trafico de red pasivo y de cédigo abierto. Esta
seccion se subdivide en los apartados 5.1, que especifica la metodologia empleada y el apartado
5.2, en el que se presentan y analizan los resultados obtenidos.

El esquema general de trabajo seguido en este estudio se representa en la Figura 14, donde se
pueden observar las diferentes etapas de este. En primer lugar, la etapa de generacion de logs
se utiliza para obtener informacidn y estadisticas a partir de los flujos de trafico extraidos de las
capturas. Tras obtener los logs, se combinaron en un Unico archivo. El siguiente paso es el
etiquetado de los flujos de trafico, aplicando tanto las etiquetas originales también contenidas
en los datasets originales, como otras que serdn comunes entre los tres conjuntos de datos.
Como se puede apreciar en la Figura 14, cada uno de estos ficheros fue transformado para la
unificacion de formato y limpieza de datos. Una vez se tienen los conjuntos de datos listos, se
puede llevar a cabo la divisién en conjunto de entrenamiento y de test. En funcion de la prueba
realizada, puede realizarse una seleccién de atributos para emplear solamente los elegidos en
dicha prueba. Finalmente, se entrena el modelo y se evalla, para obtener resultados.
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Figura 14: Esquema general de la metodologia utilizada.
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4.2. Obtencion de logs y atributos mediante Zeek

En esta seccidn se detallan las transformaciones aplicadas para obtener los flujos de trafico y los
atributos que los caracterizan (que después se emplean en la clasificacién), asi como el
etiquetado de dichos flujos. La Figura 14 muestra este procedimiento. En lineas generales,
primero se empled Zeek para obtener los distintos logs a partir del fichero de captura de
paguetes .pcap, ejecutando un script que permite obtener los datos de cada conexién completa
(con_statistics.zeek), es decir, de cada flujo de trafico. Para estas pruebas, se obtuvieron los
atributos propios el archivo conn.log de Zeek, que contiene detalles de cada conexién a nivel de
los protocolos IP, TCP, UDP e ICMP, ademas de otras estadisticas relacionadas con los atributos
originales. En un futuro se podrian afiadir atributos a partir de otros logs mds especificos.
Después se realiza la conversion a CSV mediante otro script desarrollado en Python. Tras esto,
se unen todos los ficheros csv correspondientes a un Unico dataset en un mismo archivo csv
mediante otro script de Python. Posteriormente, se afiaden a los flujos las etiquetas originales
ademas de las etiquetas nuevas que se empleardn en la clasificacion, y se realiza la limpieza de
los datos. En la limpieza, se intercambia cualquier posible valor vacio por 0 o el caracter
correspondiente si es un atributo categérico (ademas de unificar los valores de los atributos
local_origy local_resp). Por ultimo, se codifican todos aquellos atributos que sean de tipo string
para asegurar la compatibilidad con todos los algoritmos.

Para obtener los flujos a partir de las capturas de trafico, se ha utilizado Zeek. Cuando se analiza
una captura de trafico con Zeek, obtenemos los logs del Anexo lll. Para este trabajo, se empled
el script personalizado conn_statistics.zeek (véase Anexo |V).

El primer fichero se encarga de obtener informacidn de los distintos campos de los paquetes
para generar un archivo .log en el que, para cada flujo, indica direcciones IP origen y destino,
puertos, protocolo, servicio, bytes enviados y recibidos, entre otros parametros. A continuacion,
se muestran todos los parametros obtenidos del conn_statistics.log en la Tabla VI. En el Anexo
Il se explican en mayor detalle los atributos. Este fichero nos aporta la informacidn principal de
los flujos, ademas de medidas estadisticas como la media, desviacion estandar, valor maximo y
minimo de atributos como los bytes enviados desde origen y en respuesta, o la cantidad de
paquetes que no tienen payload vacio. Estas medidas pueden ser de utilidad para caracterizar
el comportamiento de ciertos tipos de ataque, como pueden la media de bytes de origen y de
destino para ataques que se basan en inundar con paquetes a la victima.

Tabla VI: Nuevos atributos obtenidos con Zeek a partir de conn_statistics.log.

ATRIBUTOS
TimeStamp Bytes IP respuesta Paquetes origen cero
IP origen Tunnel parents Paquetes resp. cero
Puerto origen Media bytes orig. Media tiempo
IP destino Media bytes resp. Desv. estandar tiempo
Puerto destino Desv. estandar bytes orig. Min tiempo
Protocolo Desv. estandar bytes resp. Maéx tiempo
Servicio Media bytes orig no cero Media tiempo origen
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Duracion Media bytes resp no cero Desv. estandar tiempo origen
Bytes origen Desv. estandar bytes orig no cero Min tiempo origen
Bytes respuesta Desv. estandar bytes resp no cero Madx tiempo origen
Conn_state Min bytes orig. Media tiempo resp.
Missed Bytes Min bytes resp. Desv. estandar tiempo resp.
History Max bytes orig. Min tiempo resp.
Paquetes origen Max bytes resp. Max tiempo resp.
Bytes IP origen Paquetes origen no cero
Paquetes respuesta Paquetes resp. no cero

4.3. Manipulacion y limpieza de datos

Una vez obtenidos los logs con los atributos de Zeek, se realizé la conversién al formato .csv
mediante un script de Python (véase Anexo V y Anexo VI). Este paso corresponde a la seleccion
de flujos en la Figura 14. Al analizar los logs mediante la herramienta Zui, se observé que habia
cierta pérdida de paquetes en las capturas de trafico de los conjuntos de datos. Por ello, se
decidio analizar en mayor profundidad y se disefiaron scripts de Python (véase Anexo IX y Anexo
X) para obtener aquellos flujos de trafico con pérdidas superiores a un umbral.

Para poder estimar la cantidad de flujos que podian presentar este defecto, se decidio
representar graficamente el porcentaje de bytes perdidos por flujos para cada log individual. En
la Figura 15 y Figura 16 se pueden observar dos ejemplos de las graficas generadas, en este caso
en la base de datos 10TD20:

Evolution of Missed Bytes Ratio - mirai-httpflooding-4-dec-logs
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Figura 15: Porcentaje de Bytes perdidos para cada flujo de trdfico.
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Number of Flows Exceeding Missed Bytes Ratio Thresholds - mirai-httpflooding-1-dec-logs
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Figura 16: Distribucion de numero de flujos segun porcentaje de bytes perdidos.

Como se puede apreciar, varios flujos de trafico presentan pérdidas considerables de bytes. Por
ello, mediante los scripts adjuntos en el Anexo X, se decidiod identificar todos aquellos flujos que
superasen el 1% de bytes perdidos, extraerlos de los ficheros que contenian todos los logs de
cada conjunto de datos, y almacenarlos por separado para poder eliminarlos.

En la Tabla VIl se presentan estadisticas para cada base de datos y los flujos eliminados:

Tabla VII: Numero de flujos de trdfico totales y eliminados.

Dataset Flujos totales Flujos eliminados A5 213:; ()
0TD20 123185 1765 1631
loT-23 128693450 30 16
CIC-10T-2023 205611728 78050 51570

Se considerd relevante su eliminacion, ya que introducirian informacién errénea a los modelos.
Esto sucede debido a que, si se intentan relacionar los pardmetros de bytes enviados con el
numero de paquetes enviados, no concuerda. En la Tabla VIII se muestra un ejemplo de ello. El
numero de paquetes de respuesta es demasiado pequefio y no corresponde con la cantidad de
bytes de respuesta.

Tabla VIlI: Ejemplo de atributos para un flujo con pérdida de bytes.

Atributo Valor
orig_bytes 9936
resp_bytes 1478577359

missed_bytes 1478547639

orig_pkts 962

orig_ip_bytes 56270
resp_pkts 3044
resp_ip_bytes 4437560
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Para la lectura de los logs una vez fueron convertidos a formato csv, se emplearon las librerias
Pandas y Dask para poder realizar el resto de operaciones de tratamiento de datos. Ambas
librerias, convierten el archivo leido en un formato de tabla llamado Dataframe. Lee la cabecera
del archivo csv, que contiene el nombre de cada una de las columnas (siendo estas las
caracteristicas), y permite realizar operaciones sobre columnas completas o sobre filas, en
funcién de las necesidades. Con Pandas, es posible realizar una amplia gama de operaciones de
limpieza y transformacién de datos, como eliminar columnas, filtrar filas, y reemplazar valores
faltantes o incorrectos. Pero esta presenta un inconveniente, requiere muchos recursos de
memoria RAM si el tamafio de los datos es elevado, y, si bien es cierto que puede solventar este
problema realizando las tareas de forma incremental fragmentando los datos en chunks o
bloques, no es capaz de realizar determinadas tareas en las que el tamafo de las bases de datos
supera al espacio en memoria, también llamadas tareas OOM (Out Of Memory).

Una vez filtrados los conjuntos de datos, el siguiente paso que se llevd a cabo fue el etiquetado
de los flujos. Primero se recrearon las etiquetas originales para agruparlas mas tarde en los
grupos de ataques deseados. Para ello, se siguieron las reglas empleadas por los autores de los
datasets, véase Anexo VIl y se generaron los scripts correspondientes, véase Anexo VII. Una vez
obtenidas las etiquetas, se pudo observar que existia un patron de atagues comun entre los tres
conjuntos de datos, por lo que se cred otro grupo de etiquetas nuevo para poder unificar las
categorias de ataques entre datasets. Estos tres valores son: DoS, Scan, Brute Force y Benign.
Se eliminaron determinados flujos de la base de datos loT-23 que quedaron excluidos de este
nuevo grupo de etiquetas.

Siguiendo el esquema de la Figura 14, el dltimo paso previo al entrenamiento de los modelos de
aprendizaje automatico es la “limpieza” de datos y codificacion de aquellos atributos que lo
necesiten. Se seleccionan todos los atributos excepto las direcciones IP destino, IP origen, puerto
origen y puerto destino, que son excluidas del estudio, asi como el ID del flujo y el TimeStamp,
puesto que todos ellos se han utilizado para definir un mismo flujo de trafico o estan asociados
a los paquetes pertenecientes al mismo. Al considerarse que forma parte de la informacién que
define el flujo, para un mejor entrenamiento y creacidon de los modelos, es mejor no disponer
de informacion de puertos y direcciones IP en dicha fase. Silos ataques se generaron desde la
misma IP y en los mismos puertos, no se representara fielmente la realidad y seran facilmente
identificables como ataques al aparecer flujos de trafico con los mismos valores tanto en el
conjunto de training como en el de test, pudiendo llevar al modelo a generar respuestas
dependientes de la implementacién de los escenarios y por ello se ha optado por no emplear
ninguno de dichos atributos. Adicionalmente, se decidié eliminar el campo tunnel_parents ya
que estaba vacio en la gran mayoria de flujos de los tres conjuntos de datos.

Analizando todos los posibles valores de las bases de datos, se observd que en muchos casos
habia valores vacios para determinados atributos. Por ello, se rellenaron aquellos campos sin
valor con el cardcter necesario, siguiendo la Tabla IX. Ademads, se unificaron los valores de los
campos “local_orig” y “local_resp”, ya que se detectaron varios valores que representaban el
concepto “True” y “False”. El cédigo empleado para poder lograrlo se adjunta en el Anexo XI.

Tabla IX: Valores referidos a campos vacios y valores sustitutos.

Atributo Valores sustituidos Valor sustituto
Atributos numéricos a1 <NA> o NaN 0
Ilhl‘storyll y llconn—stateﬂ llll, “ lll II[]II, <NA> o NaN II_II
Ilservicell y llprotoll llll' “" II, ll_ll, II[]II, <NA> O NaN ”UnknOWn"
“local_orig” y “local_resp” “”, “F” “True” o “False”
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Tras unificar los valores, se procedié a codificar lo valores de los atributos categéricos, siendo
estos: “history”, “conn_state”, “service”, “proto” “local_orig” y “local_resp”. Como se buscaba
que la codificacion fuese comun entre los tres conjuntos de datos para posteriormente realizar
pruebas con los datos de los datasets combinados, el primer paso fue obtener los valores Unicos
estos atributos mediante la funcidn unique o drop _duplicates. La libreria empleada para la
codificacién, Scikit-Learn, es una biblioteca de Python especializada en Machine Learning y
analisis de datos. Scikit-Learn también proporciona herramientas robustas para la seleccién de
modelos, preprocesamiento de datos, ajuste de modelos, validacion de modelos y evaluacién
de resultados. En la siguiente seccion se utiliza para realizar la clasificacidn de los datos.

Para optimizar todo el proceso de manipulacién y limpieza de datos, se realizé de forma paralela
mediante la clase ThreadPoolExecutor. Esta facilita la ejecucién de operaciones de
entrada/salida y otros trabajos en paralelo, aprovechando muiltiples hilos de ejecucién. Fue
especialmente util ya que en este trabajo se tratan grandes voliumenes de datos que pueden
dividirse en fragmentos mdas manejables. En este caso, se empled para leer y procesar multiples
archivos simultdneamente, aplicando transformaciones como la limpieza de datos o la
normalizacién en paralelo. Esto no solo mejora el rendimiento, sino que también reduce
significativamente el tiempo de procesamiento en comparacion con la ejecucion secuencial.
Gracias a ella, se aprovecharon los recursos de CPU y RAM de forma eficiente.

Una vez codificados los atributos, los conjuntos de datos ya estan listos para ser entregados a
los modelos de Machine Learning. Se organizé el escenario de pruebas en dos subgrupos, por
un lado, se obtuvieron resultados alimentando a los modelos con los conjuntos de datos de
forma separada para asi comparar los resultados obtenidos con los resultados de los autores;
por otro lado, se entrend primero el modelo con una base de datos y se evalud con las dos
restantes, y en otra prueba se entrend y evalud el modelo con una mezcla de los tres conjuntos
de datos.

A continuacién, se realiza una comparacion entre los flujos obtenidos con la herramienta Zeek
y los flujos originales de los datasets. Los flujos de CIC-1oT-2023 se construyeron a partir de
archivos .pcap utilizando la herramienta CICFlowMeter, que genera archivos .csv donde cada fila
corresponde a un flujo. CICFlowMeter define un flujo como un intercambio bidireccional de
paquetes de red que pertenecen a la misma tupla de direccidn IP de origen, direccién IP de
destino, puerto de origen, puerto de destino y protocolo de capa de transporte, dentro de un
periodo de tiempo determinado. Un flujo finaliza cuando se agota el tiempo de espera o cuando
se cierra la conexidn. La estructura de datos de Zeek es una conexion que sigue los mecanismos
tipicos de identificacién de flujo, siguiendo el enfoque de 5 tuplas mencionado anteriormente.
Para un protocolo orientado a la conexién como TCP, la definicidn de una conexién es mas clara;
sin embargo, para otros como UDP e ICMP, Zeek implementa una abstraccién similar a un flujo
para agregar paquetes. Cada paquete pertenece a una conexion. En la Tabla X se muestra el
numero de flujos tanto en los datasets originales como los obtenidos en este trabajo utilizando
Zeek. En 10TD20 es importante recalcar que los autores obtuvieron los flujos mediante la
herramienta CIC-FlowMeter. Ademas, el nimero de flujos obtenidos con Zeek para este trabajo
no incluye aquellos que contienen pérdidas de bytes superiores al 1%.
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Tabla X: Flujos de cada conjunto de datos.

Dataset Fichero Flujos originales | Flujos Zeek
Mirai-UDP Flooding 183554 500
Mirai-Ackflooding 55124 38609
Mirai-Hostbruteforce 121181 163
Mirai-HTTP Flooding 55818 3882
1oTD20
DoS-Synflooding 59391 59489
Scan Port OS 53073 35
Scan Hostport 22192 16251
Normal 40073 12211
Malware-Capture-7-1 11454715 11454714
Malware-Capture-34-1 23153 8990

Malware-Capture-35-1 10447788 8257565
Malware-Capture-43-1 67321810 67321799

Malware-Capture-44-1 238 228
loT-23 Malware-Capture-48-1 3394346 3393634
Malware-Capture-49-1 5410562 6021586
Malware-Capture-52-1 19781379 32232712
Honeypot-Capture-4-1 453 735
Honeypot-Capture-5-1 1375 1358
Honeypot-Capture-7-1 131 131
Mirai Greeth 991867 193689830
Mirai Greip 751683 144690088
Mirai UDP Plain 890577 286556
PortScan 82285 207402
CIC-loT-2023 OSScan 98260 182672
DDoS HTTP 28791 616156
DDoS PSHACK 4094756 69941338
DictionaryBruteForce 13065 6735
Benign 1098196 589912

4.4. Aplicacion de técnicas de ML

Como se comentara mas adelante, para la generacién de resultados se dividen los datasets en
conjunto de entrenamiento y conjunto de test. Para ello, se empleé la funcién train_test_split,
propia de la libreria de Python SciKit-Learn. Se indica el porcentaje deseado de datos de test, en
este caso un 60%, y se indica que realice la division de forma aleatoria.

En determinadas pruebas realizadas, la lectura del conjunto de datos en un sélo DataFrame
requeria mas memoria de la disponible en la maquina. Por ello, se optd por emplear la libreria
Dask. Dask es una biblioteca de Python disefiada para manejar calculos paralelos y distribuidos,
permitiendo el procesamiento de grandes conjuntos de datos que no caben en la memoria de
un solo ordenador. Dask extiende las funcionalidades de Pandas y NumPy para trabajar de
manera eficiente con datos en entornos de big data. Al igual que Pandas, Dask permite leer y
escribir datos en varios formatos, pero lo hace distribuyendo la carga de trabajo a través de
multiples hilos o incluso multiples maquinas.
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Una vez divididos, determinados modelos requieren un escalado de datos previo para funcionar
correctamente. Estos son: MLP, Nearest Centroid y SGD. Para ello se emplea la clase
StandardScaler(), que necesita ser entrenada con los datos a utilizar mediante la funcién fit(), y
posteriormente se transforman para hacer efectivo el escalado (véase Anexo Xll). Si se decide
realizar la clasificacién con sélo una fraccién de las caracteristicas, se realiza una seleccion de
atributos. En este trabajo, una de las pruebas realizadas emplea esta técnica de preprocesado.
Para ello, se empled la funcién de Scikit-Learn mutual_info_classif, que obtiene una métrica que
permite traducir numéricamente a una métrica qué atributos son mas relevantes. Esta métrica
se entrega a un selector de caracteristicas, como por ejemplo KBest, y escoge el nimero de
caracteristicas deseado (véase Anexo XIII).

A continuacién, se introducen en el modelo empleando la funcion fit() para su entrenamiento.
Entre los algoritmos disponibles se incluyen regresion lineal, drboles de decisién, maquinas de
soporte vectorial (SVM), k-vecinos mas cercanos (KNN), y clustering con k-means, entre otros.
Una vez entrenado el modelo, procede a ser evaluado con los datos de test. La evaluacidn
devuelve una prediccidn de las etiquetas que el modelo ha estimado, y, a partir de estas y de las
etiquetas originales, se realizan comparaciones y obtienen distintas métricas para evaluar el
rendimiento del modelo. Scikit-Learn también facilita la visualizacién de resultados a través de
graficos, por lo que se han generado curvas ROC y matrices de confusién para todos los modelos,
lo que permite medir la eficacia de los modelos de manera detallada.

4.5. Entorno de trabajo de las pruebas

El puesto de trabajo empleado para el procesado de los datos y posterior clasificacidén posee las
siguientes caracteristicas:

Tabla XI: Especificaciones de la mdaquina empleada en el trabajo.

Sistema Operativo Debian 11
N2 procesadores disponibles 16

Modelo CPU Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz

Memoria RAM 156 GB
Zeek version 7.0.0-dev.247

Python version Python 3.9.2

Sci-kit Learn version 1.4.2
Pandas version 2.2.2
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5. Resultados

En este capitulo se presenta el proceso seguido para obtener los resultados tras aplicar las
técnicas de clasificacidn descritas en el capitulo 3. Los diferentes modelos de clasificacion fueron
generados a partir de los tres conjuntos de datos descritos en el capitulo anterior por separado,
asi como a partir de un unico dataset obtenido a partir de los tres. Para llevar a cabo la
clasificacion del trafico se ha hecho uso de las técnicas de ML empleando la libreria de Scikit-
Learn sobre los archivos obtenidos que contienen todos los atributos de los flujos de trafico
(ficheros en formato .csv), tal y como se ha descrito en el capitulo 4. En la seccidn 5.1 se describe
la metodologia seguida en el banco de pruebas realizadas, y los resultados obtenidos y la
discusion de los mismos se presentan en la seccidn 5.2. Las principales conclusiones de este
capitulo se recopilan en el capitulo de Conclusiones.

5.1. Banco de pruebas realizadas

Tras conseguir tres conjuntos de datos con etiquetas comunes entre ambos, y un conjunto de
datos obtenido a partir de la combinacién de los tres anteriores, se procedid a realizar las
correspondientes pruebas con diferentes algoritmos de Machine Learning.

La clasificacion en todas las pruebas realizadas se ha llevado a cabo definiendo los conjuntos de
entrenamiento y test, empleando el 40% del fichero para entrenamiento, y el resto para test. Se
considera que es mejor no utilizar validacién cruzada ya que, si el dataset se dividiese por
ejemplo en 10 subconjuntos, empleando 9 partes para entrenar el modelo, aumentaria la
probabilidad de que informacién de un mismo flujo de trafico se hallase en el conjunto de
entrenamiento y en el de prueba, conllevando un sobreajuste (overfitting) de clasificacién. Para
la clasificacidn se seleccionaron los algoritmos: Decission Tree, Nearest Centroid, Random Forest,
Gaussian Naive Bayes, Bernoulli Naive Bayes, Stochastic Gradient Descend, Bagging con
Decission Tree, AdaBoost con Decission Tree y Multilayer Perceptron.

El banco de pruebas llevado a cabo se ha organizado en dos etapas (véanse Figura 17 y Figura
18), realizando por un lado, la evaluacidon sobre los datasets 10TD20, l10T-23 y CIC-loT-2023 de
forma independiente (Figura 17); y por otro lado, se lleva a cabo la evaluacion empleando los
tres datasets de forma combinada (Figura 18). En la primera etapa de pruebas se definen los
conjuntos de entrenamiento (training) y de prueba (test) en cada dataset. Se generan los
correspondientes modelos de clasificacion (aplicando las diferentes técnicas de ML) en cada
conjunto de entrenamiento, y posteriormente, cada modelo es evaluado sobre el conjunto de
prueba asociado, tal y como se ilustra en la Figura 17.

CIC-loT-2023 IoTD20 loT-23
40% Train Data Train Data Train Data
SO%I Test Data Test Data Test Data

Figura 17: Primera etapa de pruebas: evaluacion sobre los datasets IoTD20-Zeek, loT-23-Zeek y CIC-loT-2023-
Zeek de forma independiente.
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En la segunda etapa de pruebas, se consideran dos escenarios de evaluacion. Se plantea por un
lado el entrenamiento y evaluacién de los modelos con una mezcla aleatoria de los tres datasets
(escenario 1 de la Figura 18), y por otro, el entrenamiento mediante un Unico conjunto de datos
(CIC-10T-2023-Zeek) y la evaluacién sobre los otros dos: 10TD20-Zeek e loT-23-Zeek (escenario 2
de la Figura 18). En este punto del proceso (véase la Figura 14), se distinguen ademas dos formas
diferentes de llevar a cabo la definicidn de los conjuntos de training y test: la primera
corresponde a las pruebas de clasificacion multiclase (multiclass), y la segunda corresponde a
las pruebas de clasificacion binaria (binary). En la clasificacion multiclase se distinguen los
diferentes tipos de ataques determinados por las etiquetas comunes (e.g. Scan, DoS, etc.). Por
otro lado, para llevar a cabo la clasificacién binaria, se han agrupado los ataques presentes en
cada archivo mediante un script de Python. De este modo, se han eliminado las etiquetas que
los distinguian y se ha incluido una genérica que indica O para tréfico benigno, y 1 para trafico
maligno. Por lo tanto, el clasificador tendra que llevar a cabo una distincion binaria entre Oy 1.

ESCENARIO1

CIC-10T-2023 11
CIC-0T-2023

1oTD20
Train Data

10T-23

vlv loTD20 Test Data

40%| - Train Data

60%| = TestData
N [OT-23

Figura 18: Segunda etapa de pruebas: evaluacion sobre el dataset combinado a partir de IoTD20-Zeek, loT-23-
Zeek y CIC-1oT-2023-Zeek (escenario 1), y evaluacion sobre loTD20-Zeek e loT-23-Zeek mediante el modelo
generado con CIC-loT-2023-Zeek.

5.2. Resultados y discusion

5.2.1. Primera etapa de pruebas: clasificacion individual sobre 10TD20,
I0T-23 y CIC-10T-2023 (clasificacion multiclase)

En esta seccidn se presentan y analizan los resultados obtenidos al aplicar las técnicas de ML
para la clasificacién multiclase de los flujos de trafico, por lo tanto, diferenciando entre los
distintos ataques que hay en un mismo fichero, y utilizando todos los atributos disponibles (42
caracteristicas para cada flujo). En la Tabla XIl se muestran los resultados de rendimiento
correspondientes al pardametro F1 para las diferentes técnicas, mientras que los resultados de
los parametros de precision y recall, pueden consultarse en las correspondientes tablas del
Anexo XIV. Como comentario general de los resultados obtenidos sobre cada uno de los datasets
(Tabla XIl), se puede decir que los métodos de ML han funcionado con elevadas tasas de
clasificacion en la mayoria de los tipos de ataque y en la clase benigna.
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En general se observa un mejor comportamiento en la clasificacién de los flujos de tipo DoS y
Scan respecto a la clase Brute Force, lo que resulta razonable teniendo en cuenta que los ficheros
de los datasets contienen clases desbalanceadas (el nimero de instancias de flujos Brute Force
respecto a flujos de otros ataques es mucho menor, véase la Tabla X de la seccidn 4.3). Como es
habitual, se presenta la dicotomia cldsica entre dos enfoques: diseiar datasets que favorezcan
la presencia de clases minoritarias o considerar una situacién que refleje lo mas fielmente
posible un entorno real en términos de la frecuencia de ataques presentes.

Al comparar los resultados de las diferentes técnicas (Tabla XlI) se puede observar que destaca
el rendimiento de los algoritmos Decision Tree, Random Forest, Bagging Tree, Boosting Tree y
MLP, que obtienen valores de F1 por encima del 98% en 7 de los 8 ataques presentes en los tres
datasets (solo el caso de Brute Force en CIC-10T-2023 se halla por debajo de dicho valor). Como
puede observarse también, el valor de F1 promediado para todas las clases de trafico en cada
dataset (incluyendo ataques y benigno) supera el valor de 0,99 mediante la aplicacidn de estos
algoritmos. En el dataset CIC-10T-2023, la clasificacién fue mas compleja, lo que puede
apreciarse en los resultados. Principalmente, se debe al desbalance de clases, que se hace
presente de forma mas visible en este conjunto de datos, ya que la diferencia de nimero de
instancias entre las clases Brute Force, y por ejemplo DoS, es del orden de casi 10°. En los tres
conjuntos de datos, los algoritmos Decision Tree, Random Forest, Bagging Tree y Boosting Tree
obtienen resultados muy similares, pero Decision Tree lo lleva a cabo en el menor tiempo, por
lo que puede ser un buen candidato para tareas mas enfocadas a analizar datos en tiempo real.
En esta primera etapa de pruebas no se considerd necesario llevar a cabo la clasificacidn binaria
dado que los resultados en clasificacion multiclase (mas compleja que la clasificacién binaria)
son excelentes.

Se incluyen a continuacién algunos resultados del analisis de la complejidad computacional de
los algoritmos utilizados. Como ejemplo, en la Figura 19 se presentan los tiempos de ejecucion
(escala logaritmica en segundos) para el dataset CIC-1oT-2023 tanto en la fase de construccion
del modelo (training) como en la de evaluacién del mismo (test). Tal y como se podia prever,
aquellas técnicas de mayor complejidad computacional dan lugar a tiempos de calculo mas
elevados y, por tanto, a un menor nimero de flujos por segundo analizados. En los otros dos
datasets evaluados se observo este mismo comportamiento en los tiempos de ejecucién de las
técnicas de ML aplicadas.
Flujos por segundo CIC-10T-2023
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Figura 19: Tiempos de cdlculo (expresado en flujos por seqgundo analizados) de los algoritmos de ML en el
dataset CIC-1oT-2023.
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Tabla XII: Medida F1 para la primera etapa de pruebas, clasificacion multiclase individual de 10TD20, 1oT-23 y CIC-loT-2023.

Dataset name Label DecissionTree Gaussian NB BernouilliNB SGD Random Forest | BaggingTree | BoostingTree | NearestCentroid MLP
Brute Force 1,00 0,01 0,15 0,42 1,00 1,00 0,98 0,06 1,00
DoS 1,00 0,57 0,9 0,98 1,00 1,00 1,00 0,88 0,99
10TD20 Scan 1,00 0,00 0,97 0,98 1,00 1,00 1,00 0,64 1,00
Benign 0.96 0,10 0,26 0,7 0,96 0,96 0,95 0,39 0,92
Average 0,99 0,46 0,86 0,96 0,99 0,99 0,99 0,81 0,99
DoS 1,00 0,84 0,81 0,99 1,00 1,00 1,00 0,86 1,00
Scan 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,98 1,00
loT-23
Benign 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,98 1,00
Average 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,98 1,00
Brute Force 0,84 0,00 0,00 0,00 0,83 0,88 0,85 0,01 0,47
DoS 1,00 0,21 0,94 1,00 1,00 1,00 1,00 1,00 1,00
CIC-10T-2023 Scan 0,98 0,00 0,05 0,59 0,99 0,99 0,99 0,63 0,96
Benign 0,98 0,01 0,03 0,41 0,97 0,98 0,98 0,37 0,88
Average 1,00 0,21 0,94 1,00 1,00 1,00 1,00 0,99 1,00




True label

A continuacion, se presentan algunos ejemplos del funcionamiento de los clasificadores que mejores
resultados han logrado. Una muestra de ello es el arbol de decisién creado por Decision Tree para la
base de datos de 10TD20. En las primeras divisiones, es capaz de diferenciar una clase con una
probabilidad de 0,938 empleando caracteristicas como history, proto u orig_ip_bytes.

En la Figura 20 se presentan, respectivamente, la matriz de confusién genérica y la matriz de confusidn
normalizada para el algoritmo Random Forest en el conjunto de datos loT-23, donde se puede apreciar
qgue el nimero de instancias incorrectamente clasificadas es muy reducido.

le7

Scan 1.3e+07 69 0 Scan

0.8

benign 84 1.2e+07 benign

0.6

True label

0.4

DoS 0 A6 41976 0.2 DoS 0 0.0011

0.0 A
scan benign DoS Scan benign DoS

Predicted label Predicted label

Figura 20: Matrices de confusion para lotD20 utilizando RandomForest.

Si comparamos los resultados de nuestro banco de pruebas con los resultados obtenidos por los
autores de las respectivas bases de datos, por ejemplo, para el conjunto de datos CIC-loT-2023,
podemos apreciar resultados considerablemente mejores en términos de F1 en nuestro estudio. La
Tabla XIll muestra los resultados obtenidos en (Neto et al., 2023) sobre todo el dataset, incluyendo
pruebas con diferentes clases de ataques. Comparando con las clasificaciones de 8 y 2 clases, se puede
observar que los algoritmos Perceptron, Adaboost y Random Forest, también utilizados en este trabajo,
obtienen resultados similares a los obtenidos en la tabla. Al igual que en este trabajo, Random Forest

y Adaboost (andlogo a Boosting Tree) son aquellos con mejores resultados, que en nuestro banco de
pruebas han alcanzado valores de F1 incluso mas elevados.

Tabla XIlI: Medida F1 obtenida por los autores de CIC-loT-2023.

Logistic regression | Perceptron | Adaboost | Random Forest e e
Network
CIC-10T-2023 (Neto | Binary 0,88 0,81 0,96 0,96 0,94
etal.,, 2023) 8 classes 0,54 0,55 0,37 0,72 0,70
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También se llevd a cabo la comparacion con los resultados obtenidos por los autores de 10TD20 (Ullah
& Mahmoud, 2020). Si comparamos los valores de F1 presentados en dicho trabajo, podemos apreciar
ciertas similitudes en el comportamiento de los algoritmos. No obstante, en nuestro estudio, los
algoritmos Decision Tree, Random Forest, Bagging, BoostingTree y MLP mostraron valores de F1 muy
superiores a los alcanzados en (Ullah & Mahmoud, 2020).

Tabla XIV: Medida F1 obtenida por los autores de loTD20.

SVM Gaussian NB LDA LOgISt.IC Decision | Random Ensemble
regression Tree Forest
10TD20 (Ullah & .
Mahmoud, 2020) Binary 0,16 0,62 0,70 0,30 0,88 0,84 0,87

Finalmente, respecto al conjunto de datos de 10T-23, los autores no presentaron ningun resultado de
evaluacion, y solo se dispone del propio dataset e informacidn relacionada con el etiquetado de los
flujos.

5.2.2. Segunda etapa de pruebas, escenarios 1y 2: clasificacion sobre 10TD20,
I0T-23 y CIC-10T-2023 combinados (clasificaciones multiclase y binaria)

Escenario 1

Tras haber obtenido las métricas para los tres conjuntos de datos de forma individual, se plantearon
dos escenarios de pruebas mas en una segunda etapa. A continuacion, se analiza el primer escenario,
en el que se entrenan los modelos con un subconjunto de la unién de los tres datasets, y se evalla con
el subconjunto restante (Figura 18). Al igual que en el analisis de la seccién previa, se emplea el 40%
de los datos para el entrenamiento y 60% para el test. Para este escenario 1, la divisidn en
subconjuntos de entrenamiento y de evaluacion se llevd a cabo previamente sobre cada conjunto de
datos, y posteriormente se unieron los correspondientes subconjuntos de entrenamiento y test entre
si. Se decidid evaluar primero la clasificacién de forma binaria, ya que computacionalmente es mas
simple, y posteriormente se llevd a cabo con las distintas clases de ataque.

A continuacién, se presentan y analizan los resultados de clasificaciéon binaria, mostrados en la Tabla
XV. Se puede apreciar que los valores de F1 son superiores a 0.99 para todos los clasificadores excepto
GaussianNB, BernouilliNB y Nearest Centroid. Esto se puede deber a la complejidad de los datos, ya
que, en este caso, se estd intentando obtener el perfil de trafico benigno y de ataques procedentes de
conjuntos de datos diferentes, generados mediante procedimientos y dispositivos loT diferentes. Por
lo tanto, algoritmos mas simples no consiguen diferenciarlos de forma correcta. Para todos los
algoritmos basados en arboles (Decision Tree, Random Forest, Bagging Tree, y Boosting Tree) se han
obtenido valores de F1=1, lo que pone de manifiesto que al utilizar un conjunto de entrenamiento
combinado se incluyen los diferentes comportamientos de los flujos de trafico provenientes de
distintos datasets y se pueden lograr resultados de clasificacién muy buenos.

Después, se realizd la clasificacion multiclase cuyos resultados también se muestran en la Tabla XV. En
general, se han obtenido valores de F1 elevados para todas las clases de tréfico, exceptuando la clase
minoritaria Brute Force, en la que se aprecia un descenso notable. Para el resto de clases, todos los
clasificadores excepto GaussianNB y BernoulliNB han obtenido valores de F1 superiores a 0,99.
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Como se puede observar en el ejemplo de la Figura 20, en esta clasificacidn, el nUmero de instancias
incorrectamente clasificadas como benignas siendo ataques, y el tréfico benigno clasificado como
ataque, es inusualmente alto. Tras analizar los conjuntos de datos, se plantea la posibilidad de que se
deba a que el etiquetado realizado por los autores de CIC-loT-2023 difiere respecto al empleado en los
datasets restantes. Mientras que en CIC-loT-2023 se etiquetan todos los flujos de una misma captura
de trafico como ataque o como benigno, en loT-23 e 10TD20 se proporcionan reglas especificas para
separar flujos o paquetes malignos del trafico benigno que se encuentran en las capturas de ataque.
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Figura 21: Matriz de confusion para clasificador Bagging
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Tabla XV: Medida F1 para la segunda etapa de pruebas.

Dataset name Label DecissionTree Gaussian NB BernouilliNB SGD Random Forest | BaggingTree BoostingTree NearestCentroid MLP

. Benign 1,00 0,4 0,82 0,99 1,00 1,00 1,00 0,63 0,99
Escenario 1 -

Binar Malign 1,00 0,15 0,94 1,00 1,00 1,00 1,00 0,79 1,00

y Average 1,00 0,21 0,91 0,99 1,00 1,00 1,00 0,75 1,00

Brute Force 0,41 0,00 0,00 0,00 0,44 0,44 0,41 0,02 0,3

DoS 1,00 0,21 0,86 0,99 1,00 1,00 1,00 0,98 1,00

uktidies Scan 1,00 0,00 091 0,99 1,00 1,00 1,00 0,91 L%

Benign 1,00 0,00 0,83 0,99 1,00 1,00 1,00 0,91 1,00

Average 1,00 0,11 0,87 0,99 1,00 1,00 1,00 0,95 1,00

Brute Force 0,38 0,00 0,00 0,00 0,42 0,42 0,39 0,02 0,00

. DoS 1,00 0,21 0,73 0,99 1,00 1,00 1,00 0,99 1,00

Escenario 1

Multiclass & FS Scan 1,00 0,00 0,97 0,93 1,00 1,00 1,00 0,93 0,99

Benign 1,00 0,00 0,00 0,90 0,99 0,99 0,99 0,91 0,99

Average 1,00 0,11 0,62 0,90 1,00 1,00 1,00 0,96 0,99

- Benign 0,00 0,64 0,00 0,12 0,00 0,01 0,00 0,00 0,12
Escenario 2 -

Binar Malign 0,69 0,00 0,69 0,01 0,69 0,69 0,69 0,69 0,01

" Average 0,37 0,30 0,37 0,06 0,37 0,37 0,37 0,37 0,06

Brute Force 0,00 0,00 0,07 0,00 0,00 0,00 0,03 0,03 0,07

. DoS 0,00 0,00 0,00 0,01 0,01 0,00 0,01 0,01 0,56

Escenario 2

Multiclass Scan 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,94 1,00

Benign 0,00 0,00 0,00 0,12 0,24 0,24 0,24 0,00 0,99

Average 0,12 0,00 0,00 0,06 0,12 0,12 0,12 0,49 0,99
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Por ultimo, se decidié analizar cudles eran las caracteristicas mas relevantes para la clasificacion
incluidas en el banco de pruebas. Para ello se considerd este conjunto de datos generado a partir de
la unién de los tres datasets correspondiente al escenario 1. Es bien sabido que las técnicas de
seleccién de atributos (feature selection) se utilizan frecuentemente como un paso previo al
entrenamiento de los modelos de clasificacién para reducir la dimensionalidad de los datos y mejorar
la precisidn al eliminar caracteristicas irrelevantes y/o redundantes (Khalid et al., 2014). Por ejemplo,
el método de la ganancia de informacién (information gain) mide la reduccién en la entropia o
incertidumbre de los datos tras dividirlos seguin un atributo especifico, es decir, la ganancia de
informacidn con respecto a la clase. De este modo, el método de FS proporciona una lista ordenada
de atributos en la que se prioriza la reduccidn de la entropia sobre la cantidad de informacién que
aporta. En Tabla XVI se muestra el resultado obtenido al aplicar el método de FS donde los atributos
se hallan ordenados segun su information gain. Obviamente, existen otros métodos de FS mas
sofisticados, por ejemplo, basados no en un ranking individual de atributos sino en la seleccién de
subconjuntos éptimos de atributos, como el método CFS (Correlation-based Feature Subset Selection)
en el que se considera la capacidad predictiva individual de los atributos junto con el grado de
redundancia entre ellos (Rodriguez et al., 2022). Para poder tener una primera aproximacién al efecto
de incorporar los métodos de FS, se realizd la clasificacion con los 15 primeros atributos segun su valor
de information gain. Los resultados de F1 obtenidos se muestran en laTabla XV. Los resultados
obtenidos en esta clasificacion son similares o idénticos a los alcanzados sin aplicar la selecciéon de
atributos, excepto en algun caso aislado como Bernoulli para la clase benigna. La aplicacién de FS
puede ser una opcion interesante cuando el tiempo de calculo es critico, dado que en la mayoria de
los casos éste se ha visto reducido considerablemente.

Tabla XVI: Listado de caracteristicas ordenadas segun la media Infomation Gain.

n2 Caracteristica InfoGain n? Caracteristica InfoGain
11 orig_ip_bytes 0.939904 12 resp_pkts 0.011722
28 orig_pkts cero 0.804201 4 resp_bytes 0.004483
33 time_max 0.622759 25 resp_bytes _max 0.004215
2 duration 0.622723 19 resp_bytes_mean_nocero 0.004075
30 time mean 0.622511 15 resp bytes mean 0.003886
31 time std 0.622102 38 resp time mean 0.001945
10 orig_pkts 0.558826 41 resp_time_max 0.001838
9 history 0.367382 27 resp pkts nocero 0.001695
34 orig_time mean 0.100194 17 resp bytes std 0.001382
37 orig_time_max 0.099999 39 resp time std 0.001152
18 orig _bytes mean nocero 0.048777 21 resp bytes std nocero 0.001078
24 orig_bytes max 0.048595 32 time min 0.000009
3 orig_bytes 0.048549 0 proto 0.000000
14 orig_bytes mean 0.048504 8 missed bytes 0.000000
35 orig time std 0.044491 6 local orig 0.000000
16 orig bytes std 0.042997 5 conn state 0.000000
20 orig_bytes std nocero 0.042741 1 service 0.000000
26 orig_pkts nocero 0.034696 22 orig_bytes min 0.000000
13 resp ip bytes 0.020950 23 resp bytes min 0.000000
7 local_resp 0.017107 36 orig_time_min 0.000000
29 resp_pkts_cero 0.016615 40 resp_time_min 0.000000

50




Escenario 2

El escenario 2 de la segunda etapa de pruebas consisti6 en considerar como conjunto de
entrenamiento un dataset, y como conjunto de evaluacidn, otro distinto. En concreto, se empleé el
conjunto de datos CIC-loT-2023 para entrenamiento y se evalud con 10TD20 e I0oT-23. Primero se
analizan los resultados de utilizar el dataset de CIC-loT como conjunto de train, tanto para clasificacién
binaria como multiclase. En esta prueba, se decidid muestrear la clase DoS en un 15%, para que la
computacion fuese viable, manteniendo intactas las otras tres clases. Tras el muestreado, el nUmero
de instancias de DoS pasé a ser de 30 millones, superando igualmente al resto de clases en un factor
100.

Los resultados obtenidos en la clasificacién binaria (véase la Tabla XV) indican que la clase “maligna”
se etiqueta de forma correcta, pero surgen dificultades a la hora de etiquetar correctamente la clase
benigna. Esto puede deberse al método de etiquetado ya comentado anteriormente. Si existe trafico
realmente benigno dentro de las capturas de trafico malignas, pero esta siendo considerado durante
el entrenamiento con la etiqueta “maligna”, en la evaluacién, al analizar los flujos benignos de 10TD20
e loT-23, estos podran ser etiquetados como malignos. Esto se puede observar en la matriz de
confusion para el algoritmo Random Forest mostrada en la Figura 22. Los resultados ponen de
manifiesto en este caso que al generar el modelo de clasificacidon en un dataset y evaluarlo en otro no
se logran incluir los diferentes comportamientos de los flujos de trafico provenientes de distintos
datasets, o bien como se ha comentado que el propio etiquetado de los flujos en cada dataset no los
hace coherentes, y esto se traduce en resultados de clasificacion mucho peores. El descenso en los
valores de F1 es especialmente significativo en todos los algoritmos basados en arboles.
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Figura 22: Matriz de confusion para clasificacion binaria en el segundo escenario empleando Random Forest

Si ahora se analizan las métricas obtenidas para la clasificacion multiclase (véase la Tabla XV), los
valores de F1 siguen siendo muy reducidos. El algoritmo MLP obtiene los mejores resultados, y la
matriz de confusidn presenta una diagonal con valores significativos. Aunque se sigue observando que
la etiqueta “benign” presenta un nimero muy alto de instancias etiquetadas como ataque, y la mayoria
de clasificaciones erréneas se producen en la clase DoS. Esto puede deberse a la presencia
predominante de la clase en el conjunto de entrenamiento.
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6. Conclusiones y lineas futuras
6.1. Conclusiones

En este trabajo fin de master se ha hecho un analisis del entorno loT actual, desde los dispositivos mds
utilizados a los atacados con mayor frecuencia, las amenazas mds comunes, detallando una de las mas
conocidas, la botnet Mirai, y los ataques tipicos de esta, ademas de otros ataques comunes que estan
presentes en los conjuntos de datos empleados.

Ademas, se han estudiado en profundidad diferentes conjuntos de datos en el dmbito loT disponibles
en la actualidad. Todos ellos presentan gran diversidad de ataques, y en la mayoria de estos estd
presente el trafico de botnets. Tras el analisis efectuado, se seleccionaron los conjuntos de datos
10TD20, 10T-23 y CIC-l0T-2023, organizados en capturas de tréfico. Dichos datasets contienen trafico
benigno y diferentes ataques: diferentes tipos de DDoS como Mirai GREETH, Mirai GREIP, Mirai
UDPPlain, DDoS HTTP o DDoS PSHACK, ataque de fuerza bruta, escaneo de puertos y de sistema
operativo.

También se han estudiado distintas técnicas de aprendizaje automatico con el objetivo de clasificar los
diferentes ataques caracteristicos de una botnet y se ha profundizado en aquellas que han sido
empleadas. Dentro de las técnicas de clasificacidén se escogieron nueve algoritmos para caracterizary
poder diferenciar el trafico benigno de las clases malignas DoS, Scan y BruteFoce: Decision Tree,
Gaussian Naive Bayes, Bernouilli Naive Bayes, Stochastic Gradient Descent, Random Forest, Bagging
con Decision Tree, AdaBoost con Decision Tree, NearestCentroid y Mulltilayer Perceptron.

Después, a partir de las capturas de trafico, se analizaron los flujos y se extrajo la informacién detallada
de las conexiones en distintos logs mediante la herramienta Zeek utilizando un script personalizado
que proporciona datos a nivel de los protocolos IP, TCP, UDP, ICMP, etc., y se etiquetd el trafico
mediante scripts que comparan la direccidn IP, los puertos origen y destino, el protocolo empleado y
atributos como history y conn_state. Durante el etiquetado también se eliminaron algunos flujos que
presentaron pérdidas de bytes debido a una posible mala configuracion en la captura de trafico por
parte de los autores originales, y se llevaron a cabo las tareas de conversion de formato, limpieza de
datos y unificacién de estructura de determinados atributos, para finalmente obtener tres conjuntos
de datos que contienen los mismos atributos y etiquetas.

Para aplicar los algoritmos de ML se emplearon las librerias Scikit-learn, Pandas y Dask que permiten
llevar a cabo funciones de lectura de datos, tratamiento y transformacidn, preprocesado de datos,
clasificacidn, seleccién de atributos, asociacion y visualizacidon de datos. Se planted un extenso banco
de pruebas considerando la evaluaciéon sobre los datasets 10TD20-Zeek, 10T-23-Zeek y CIC-10T-2023-
Zeek de forma independiente y de forma combinada, tanto en clasificacidén binaria como multiclase.
En cada una de estas pruebas se considerd un 40% del dataset para entrenamiento y el resto para test.
Es importante sefialar que no se incluyeron atributos como direcciones IP de origen o destino, ni
puertos de origen o destino, debido a que estos valores son altamente dependientes de Ia
implementacion, lo que haria que el experimento no fuera realista. Ademads, la inclusiéon de estos
atributos facilitaria la identificacion de los ataques. Para medir cuantitativamente los resultados
obtenidos, se analizd en profundidad la medida de rendimiento F1. A partir de los resultados
obtenidos, se puede concluir que los algoritmos que alcanzan los mejores resultados, manteniendo un
tiempo de calculo razonable, son DecisionTree, Random Forest, Boosting Tree y Bagging Tree. Por lo
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tanto, los métodos basados en arboles de decisién han demostrado ser los mas eficientes, lo cual es
beneficioso para su implementacién en un entorno real, dado que estas técnicas son las mas
facilmente interpretables. Estos algoritmos lograron valores de F1 superiores a 0.99 sin seleccion de
atributos en el andlisis individual de cada conjunto de datos, y superiores a 0.9 en la mayoria de las
clases en todas las pruebas en las que se considerd la unién de conjuntos de datos, presentando
ademads una variacién minima con la seleccidn de atributos (con 15 atributos seleccionados usando el
método de Information Gain). Un tiempo reducido para generar el modelo y realizar las pruebas es
esencial si se pretende aplicar el modelo en un sistema que funcione en tiempo real. Los resultados
obtenidos en la clasificacion binaria mostraron también que al reducir la complejidad de la clasificacién
se pueden obtener mejores resultados en menos tiempo. En cuanto a la seleccién de atributos, es
destacable la reduccién de tiempo a costa de una ligera disminucidn en el valor de F1.

Es relevante destacar que los resultados obtenidos en la clasificacion llevada a cabo al entrenar con un
conjunto de datos diferente al de evaluacién fueron subéptimos. Esto deja entrever la problematica
gue surge de generar conjuntos de datos siguiendo procedimientos tan diferentes. Aunque se
obtengan resultados prometedores al evaluar de forma aislada estos conjuntos de datos, es necesario
analizar el comportamiento de los modelos con datos generados por diferentes dispositivos y ataques
capturados en condiciones diferentes. De este modo los modelos desarrollados podran enfrentarse a
situaciones mas realistas, y asi se podra evaluar mejor el potencial de la aplicacién de técnicas de
Machine Learning a la deteccidon de botnets.

6.2. Lineas futuras

A continuacidn se proponen algunas lineas futuras de investigacidn que se podrian abordar:

e Plantear la posibilidad de emplear Zeek en tiempo real, ya que las pruebas actuales se han
basado en capturas de tréfico almacenadas.

e Analizar en mayor profundidad qué atributos de Zeek son mas importantes para una
clasificacidn efectiva.

e Analizar Unicamente el primer minuto de cada fichero desde el inicio del ataque para
comprobar si es posible detectar los ataques de forma temprana.

e Plantear el estudio y clasificacién empleando técnicas de Deep Learning.

e Considerar la inclusion de informacién proveniente de otros ficheros generados por Zeek.

e Realizar capturas propias de trafico benigno en diferentes hogares y con nuevos dispositivos
loT para mejorar los anadlisis efectuados.
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/. Anexos

Para facilitar la lectura del cddigo disefiado en este trabajo, se adjunta un enlace al repositorio donde
se recopilan todos los scripts.

https://github.com/MariaRodriguezGarcia/TFM.git
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Anexo I: Otros ataques comunes

A continuacidn, se detallan mas ataques que aparecen con frecuencia en conjuntos de datos en
entornos loT.

Ataques de Fuerza Bruta de Diccionario

Un ataque de fuerza bruta de diccionario es un tipo de ataque de fuerza bruta que utiliza un diccionario
predefinido de palabras y combinaciones comunes para intentar descifrar contrasefias. En lugar de
probar todas las combinaciones posibles de caracteres, un ataque de diccionario se basa en la
probabilidad de que las contrasefias mas utilizadas estén presentes en una lista de palabras comunes,
frases, combinaciones de nimeros y letras, y otros patrones frecuentes. Estos ataques son efectivos
cuando los usuarios utilizan contrasefias débiles o previsibles.
El proceso de un ataque de diccionario implica lo siguiente:
1. Recopilacidn de diccionarios: Los atacantes recogen listas de palabras que contienen
contrasefias comunes y frases utilizadas frecuentemente.
2. Automatizacion del proceso: Usando software automatizado, el atacante introduce cada
palabra del diccionario como posible contrasefia.
3. Verificacion: Cada intento se verifica contra el sistema de autenticacidn objetivo hasta
encontrar una coincidencia correcta o agotar las opciones del diccionario.

Escaneo de Sistema Operativo (OS Scan)

El escaneo de sistema operativo, o OS scan, es una técnica utilizada por los atacantes para determinar
el sistema operativo que se esta ejecutando en un dispositivo de red. Este tipo de escaneo es crucial
para los ciberdelincuentes, ya que les permite identificar vulnerabilidades especificas del sistema
operativo identificado. Herramientas como Nmap son cominmente utilizadas para realizar este tipo
de escaneo.
El proceso de escaneo de sistema operativo incluye:
1. Envio de paquetes: El atacante envia paquetes disefiados especificamente para obtener
respuestas que revelen caracteristicas del sistema operativo.
2. Analisis de respuestas: Las respuestas de los dispositivos son analizadas para identificar
patrones especificos que son caracteristicos de diferentes sistemas operativos.
3. Identificacion del sistema operativo: Basandose en los datos recogidos, el atacante puede
determinar con alta probabilidad el sistema operativo del dispositivo objetivo.

Escaneo de Puertos (Port Scan)

El escaneo de puertos es una técnica utilizada para identificar qué puertos estan abiertos en un
dispositivo de red. Los puertos abiertos pueden revelar servicios activos y posibles puntos de entrada
para ataques. Este tipo de escaneo es a menudo el primer paso en un ataque, proporcionando
informacidn vital sobre la estructura y vulnerabilidades de la red objetivo.
Los pasos en un escaneo de puertos incluyen:
1. Envio de solicitudes: El atacante envia solicitudes a diferentes puertos en el dispositivo
objetivo.
2. Recepcion de respuestas: Las respuestas indican si un puerto esta abierto, cerrado o filtrado.
3. Analisis de servicios: Los puertos abiertos son analizados para identificar los servicios que
estan corriendo y sus posibles vulnerabilidades.

58



DDoS-PSHACK Flood

El ataque DDoS PSHACK Flood es un tipo de ataque que se enfoca en utilizar los paquetes TCP con los
flags PSH (Push) y ACK (Acknowledgment) activados. Este tipo de ataque esta disefiado para saturar al
servidor objetivo enviando una gran cantidad de estos paquetes, consumiendo los recursos del
servidor y provocando una denegacién de servicio. A veces se recibe un RST en respuesta al paquete
ACK-PSH original porque la pila TCP que recibe el paquete ACK-PSH nunca tuvo una secuencia
correspondiente de SYN - SYN+ACK +ACK (handshake TCP). Algunos entornos pueden optar por no
enviar un paquete RST de vuelta al origen del paquete ACK-PSH.
Caracteristicas del PSHACK Flood:
1. Protocolo: TCP
2. Perfil de Ancho de Banda: Alto BPS (bits por segundo), Medio PPS (paquetes por segundo)
Proceso del PSHACK Flood:
1. Envio de Paquetes: Los bots envian una gran cantidad de paquetes TCP con las flags PSH y
ACK activadas.
2. Respuesta del Servidor: El servidor intenta procesar cada paquete, lo que consume sus
recursos.
3. Agotamiento de Recursos: La saturacién del servidor con estos paquetes lleva a una
denegacion de servicio.

DDoS-RSTFIN Flood

El ataque DDoS RSTFIN Flood utiliza paquetes TCP con los flags RST (Reset) y FIN (Finish) activados.
Este ataque se aprovecha del comportamiento de los servidores que intentan cerrar conexiones TCP.
Para cerrar una sesion TCP SYN, se intercambian paquetes RST o FIN entre el cliente y el host. Durante
un RST o FIN flood, el servidor victima recibe paquetes RST o FIN falsificados a alta velocidad que no
estan relacionados con ninguna de las sesiones en la base de datos del servidor. Como resultado, el
servidor victima se ve obligado a asignar una cantidad significativa de recursos del sistema para
emparejar los paquetes entrantes con las conexiones actuales, lo que provoca un rendimiento de
servidor degradado e inaccesibilidad parcial.

Caracteristicas del RSTFIN Flood:
1. Protocolo: TCP
2. Perfil de Ancho de Banda: Moderado a Alto BPS, Alto PPS
3. Tamaiio del Paquete: Pequeiio a Medio
4. Notas: Utiliza las banderas RST y FIN para cerrar conexiones, lo que puede confundir y
sobrecargar al servidor.
Proceso del RSTFIN Flood:
1. Envio de Paquetes: Los bots envian una gran cantidad de paquetes TCP con las banderas RST
y FIN activadas.
2. Respuesta del Servidor: El servidor intenta cerrar las conexiones repetidamente, gastando
recursos en el proceso.
3. Agotamiento de Recursos: La saturacidn con estos paquetes lleva a la denegacidn de
servicio.
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Anexo II: Detalles de las bases de datos seleccionadas

En este anexo se recopilan detalles como la distribucion de etiquetas para los ataques y subataques,

incluyendo nimero de flujos por clase.

Numero de instancias para el dataset 1oTD20 (fichero .csv)

Table 2. Normal and attacked instances in [oTID20 Dataset

Binary label Subcategory distribution

distribution

Normal | 40073 Type Instances

Anomaly | 585710 | Normal 40073

DoS 59391

Category label Mirai Ack Flooding 55124

distribution

Type Instances | Mirai Brute force 121181

Normal | 40073 Mirai HTTP Flooding | 55818

DoS 59391 Mirai UDP Flooding | 183554

Mirai 415677 | MITM 35377

MITM 35377 Scan Host Port 22192

Scan 75265 Scan Port OS 53073
Etiquetado 10TD20
Flow 1D Flow Pkts/s Fwd Pkts/s Fwd Blk Rate Avg
Src_IP Flow IAT Mean Bwd Pkts/s Bwd Byts/b Avg
Src_Port Flow IAT Std Pkt Len Min Bwd Pkts/b Avqg
Dst IP Flow IAT Max Pkt Len Max Bwd Blk Rate Avg
Dst Port Flow IAT Min Pkt Len Mean Subflow Fwd Pkts
Protocol Fwd IAT Tot Pkt Len Std Subflow Fwd Byts
[Timestamp Fwd IAT Mean Pkt Len Var Subflow Bwd Pkts
Flow Duration Bwd IAT Mean FIN Flag Cnt Subflow Bwd Byts
[Tot Fwd Pkts Fwd IAT Max SYN Flag Cnt Init Fwd Win Byts
[Tot Bwd Pkts Fwd IAT Min RST Flag Cnt Init Bwd Win Byts
[TotLen Fwd Pkts Bwd IAT Tot PSH Flag Cnt Fwd Act Data Pkts
[TotLen Bwd Pkts Bwd IAT Mean IACK Flag Cnt Fwd Seg Size Min
Fwd Pkt Len Max Bwd IAT Std URG Flag Cnt IActive Mean
Fwd Pkt Len Min Bwd IAT Max CWE Flag Count IActive Std
Fwd Pkt Len Mean Bwd IAT Min ECE Flag Cnt IActive Max
Fwd Pkt Len Std Fwd PSH Flags Down/Up Ratio IActive Min
Bwd Pkt Len Max Bwd PSH Flags Pkt Size Avg Idle Mean
Bwd Pkt Len Min Fwd URG Flags Fwd Seg Size Avg Idle Std
Bwd Pkt Len Mean Bwd URG Flags Bwd Seg Size Avg Idle Max
Bwd Pkt Len Std Fwd Header Len Fwd Byts/b Avg Idle_Min
Flow_Byts/s Bwd_Header_Len Fwd_Pkts/b_Avg
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I0T-23: distribucion de escenarios

Los escenarios seleccionados para Mirai son: CTU-loT-Malware 34, CTU-loT-Malware 35, CTU-loT-
Malware 43, CTU-loT-Malware 44 CTU-loT-Malware 48, CTU-loT-Malware 49, CTU-loT-Malware 52,
CTU-loT-Malware 7, y CTU-HoneyPot-4-1, CTU-HoneyPot-5-1y CTU-HoneyPot-7-1.

# Name of Dataset Duration #Packets #ZeekFlows Pt.:ap Name
(hrs) Size
1 |CTU-loT-Malware-Capture-34-1 24 233,000 23,146 121 MB Mirai
2 |CTU-loT-Malware-Capture-43-1 1 82,000,000 67,321,810 6 GB Mirai
3 |CTU-loT-Malware-Capture-44-1 2 1,309,000 238 1.7 GB Mirai
4 |CTU-loT-Malware-Capture-49-1 8 18,000,000 5,410,562 1.3 GB Mirai
5 |CTU-loT-Malware-Capture-52-1 24 64,000,000 19,781,379 | 4.6 GB Mirai
6 |CTU-loT-Malware-Capture-20-1 24 50,000 3,210 3.9 MB Torii
7 |CTU-loT-Malware-Capture-21-1 24 50,000 3,287 3.9 MB Torii
8 |CTU-loT-Malware-Capture-42-1 8 24,000 4,427 2.8 MB Trojan
9 |CTU-loT-Malware-Capture-60-1 24 271,000,000 3,581,029 21 GB Gaagfyt
10 [CTU-loT-Malware-Capture-17-1 24 109,000,000 54,659,864 | 7.8 GB Kenjiro
11 [CTU-loT-Malware-Capture-36-1 24 13,000,000 13,645,107 | 992 MB Okiru
12 |CTU-loT-Malware-Capture-33-1 24 54,000,000 54,454,592 | 3.9 GB Kenjiro
13 [CTU-loT-Malware-Capture-8-1 24 23,000 10,404 2.1 MB Hakai
14 (CTU-loT-Malware-Capture-35-1 24 46,000,000 10,447,796 3.6G Mirai
15 [CTU-loT-Malware-Capture-48-1 24 13,000,000 3,394,347 1.2G Mirai
16 [CTU-loT-Malware-Capture-39-1 7 73,000,000 73,568,982 | 5.3GB IRCBot
17 |CTU-loT-Malware-Capture-7-1 24 11,000,000 11,454,723 | 897 MB | Linux,Mirai
18 [CTU-loT-Malware-Capture-9-1 24 6,437,000 6,378,294 | 472 MB |Linux.Hajime
19 |CTU-loT-Malware-Capture-3-1 36 496,000 156,104 56 MB Muhstik
20 |CTU-loT-Malware-Capture-1-1 | 112 | 1,686,000 | 1,008,743 |140MB H'gi:;d
Duration(~hrs)
# Name of Dataset #Packets #ZeekFlows Pcap Size Device
Somfy Door
21 CTU-Honeypot-Capture-7-1 1.4 8,276 139 2,094 KB Lock
22 CTU-Honeypot-Capture-4-1 24 21,000 461 4,594 KB Philips HUE
23 CTU-Honeypot-Capture-5-1 5.4 398,000 1,383 381 MB Amazon Echo

Explicacion etiquetas IoT-23

1. Attack: Indica que ha ocurrido algun tipo de ataque desde el dispositivo infectado hacia otro
host, aprovechando servicios vulnerables mediante técnicas como fuerza bruta en
autenticacién Telnet o inyecciones de comandos en solicitudes GET.

2. Benign: Se utiliza para indicar que no se encontraron actividades sospechosas o maliciosas en
las conexiones analizadas.
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3. C&C (Command & Control): Indica que el dispositivo infectado se ha conectado a un servidor
de C&C. Este comportamiento se identifica por conexiones periddicas con el servidor,
descargas de binarios desde el mismo o intercambio de drdenes codificadas al estilo IRC.

4. DDoS (Distributed Denial of Service): Se aplica cuando el dispositivo infectado esta ejecutando
un ataque de denegacién de servicio distribuido, detectado por la gran cantidad de flujos
dirigidos a una misma direccion IP.

5. FileDownload: Indica que se esta descargando un archivo hacia el dispositivo infectado,
identificado por conexiones con bytes de respuesta superiores a 3KB o 5KB, frecuentemente
hacia puertos o direcciones IP conocidos como servidores de C&C.

6. HeartBeat: Se utiliza cuando los paquetes enviados en una conexion se utilizan para mantener
un seguimiento del dispositivo infectado por parte del servidor de C&C. Esto se detecta por
conexiones con bytes de respuesta muy bajos y conexiones periddicas, usualmente hacia
puertos o direcciones IP sospechosas.

7. Mirai: Etiqueta que indica caracteristicas tipicas de un botnet Mirai en los flujos de conexidn.
Se aplica cuando los flujos muestran patrones similares a los atagues mds comunes asociados
con Mirai.

8. Okiru: Similar a Mirai, pero identifica caracteristicas especificas de un botnet Okiru, que
aunque menos comun, presenta comportamientos similares en términos de patrones de
conexion.

9. PartOfAHorizontalPortScan: Indica que los flujos estan siendo utilizados para realizar un
escaneo horizontal de puertos, recopilando informacién para futuros ataques. Esta etiqueta
se basa en patrones donde las conexiones comparten el mismo puerto, una cantidad similar
de bytes transmitidos y multiples direcciones IP de destino diferentes.

10. Torii: Se utiliza para etiquetar flujos que muestran caracteristicas tipicas de un botnet Torii,
similar a Mirai y Okiru pero menos comun en su deteccion.

I0T-23: distribucion de etiquetas por fichero

En este apartado se especifica el nUmero de instancias por clase y escenario. El nUmero de instancias
corresponde al obtenido por los autores mediante la herramienta Zeek.

CTU-loT-Malware-Capture-34-1 (Mirai)

Label Flows

Benign 1,923

C&C 6,706

DDoS 14,394
PartOfAHorizontalPortScan 122

CTU-loT-Malware-Capture-35-1 (Mirai)

Label Flows
Attack 3
Benign 8,262,389
C&C 81
C&C-FileDownload 12
DDoS 2,185,302
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CTU-loT-Malware-Capture-43-1 (Mirai)

Label Flows
Benign 20,574,934
C&C 3,498
C&C-FileDownload 14
DDoS 65,803
FileDownload 1
Okiru 8,765,885
PartOfAHorizontalPortScan | 37,911,674

CTU-loT-Malware-Capture-44-1 (Mirai)

Label Flows
Benign 211
C&C 14
C&C-FileDownload 11
DDoS 1
CTU-loT-Malware-Capture-48-1 (Mirai)
Label Flows
Attack 2,752
Benign 3,734
C&C-HeartBeat-Attack 834
C&C-HeartBeat-FileDownload 11
C&C-PartOfAHorizontalPortScan 888
PartOfAHorizontalPortScan 3,386,119

CTU-loT-Malware-Capture-49-1 (Mirai)

Label Flows
Benign 3,665
C&C 1,922
C&C-FileDownload 1
PartOfAHorizontalPortScan [5,404,959

CTU-loT-Malware-Capture-52-1 (Mirai)

Label Flows
Benign 1,794
C&C 6
C&C-FileDownload 12
PartOfAHorizontalPortScan(19,779,564

CTU-loT-Malware-Capture-7-1 (Linux.Mirai)
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Label Flows
Benign 75,955
C&C-HeartBeat 5,778
DDoS 39,584
Okiru 11,333,397




CIC-I10T-2023: distribucion de clases de ataque y namero de flujos

En la tabla se muestran los ataques (correspondiente al campo label), los subataques (campo detailed-
label), el numero de instancias dentro del csv y la herramienta empleada para generarlos.

Attack Rows Tool
ACK Fragmentation 285,104 hping3 [49]
UDP Flood 5,412,287 udp-flood [50]
SlowLoris 23,426 slowloris [51]
ICMP Flood 7,200,504 hping3 [4Y]
RSTFIN Flood 4,045,285 hping3 [49]
PSHACK Flood 4,094,755 hping3 [49]
DDoS HTTP Flood 28,790 golang-httpflood [52]
UDP Fragmentation 286,925 udp-flood [50]
ICMP Fragmentation 452 489 hping3 [4Y]
TCP Flood 4,497 667 hping3 [4Y]
SYN Flood 4,059,190 hping3 [49]
SynonymousIP Flood 3,598,138 hping3 [49]
TCP Flood 2,671,445 hping3 [4Y]
HTTP Flood 71,864 golang-httpflood [52]
Do$ SYN Flood 2,028,834 hping3 [49]
UDP Flood 3,318,595 hping3 [49] and udp-flood [50]
Ping Sweep 2262 nmap [53] and fping [54]
OS5 Scan 98,259 nmap [53]
N Vulnerability Scan 37,382 nmap [53] and vulscan [55]
Port Scan 82,284 nmap [53]
Host Discovery 134,378 nmap [53]
Sql Injection 5245 DVWA [56]
Command Injection 5409 DVWA [56]
Backdoor Malware 3218 DVWA [56] and Remot3d [57]
Web-Based Uploading Attack 1252 DVWA [56]
XSS 3846 DVWA [56]
Browser Hijacking 5859 Beef [58]
Brute Force Dictionary Brute Force 13,064 nmap [53] and hydra [59]
Arp Spoofing 307,593 ettercap [60]
S DNS Spoofin 178,911 ettercap [60]
P g . P
GREIP Flood 751,682 Adapted Mirai Source Code [61]
Mirai Greeth Flood 991,866 Adapted Mirai Source Code [61]
UDPPlain 890,576 Adapted Mirai Source Code [61]
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CIC-10T-2023: caracteristicas originales

Las caracteristicas de este conjunto de datos son las siguientes:

# Feature Description
1 ts Timestamp
2 flow duration Duration of the packet’s flow
3 Header Length Header Length
4 Protocel Type IF, UDP, TCP, IGMD, ICMP, Unknown (Integers)
5 Duration Time-to-Live (ttl)
[ Rate Rate of packet transmission in a flow
7 Srate Rate of outbound packets transmission in a flow
B Drate, Rate of inbound packets transmission in a flow
9 fin flag number Fin flag value
10 syn flag number Syn flag value
11 rst flag number Rst flag value
12 psh flag numbe Psh flag value
13 ack flag number Ack flag value
14 ece flag numbe Ece flag value
15 cwr flag number Cwr flag value
16 ack count Mumber of packets with ack flag set in the same flow
17 syn count Number of packets with syn flag set in the same flow
18 fin count Number of packets with fin flag set in the same flow
19 urg coun Number of packets with urg flag set in the same flow
20 rst count Number of packets with rst flag set in the same flow
21 HTTP Indicates if the application layer protocol is HTTP
22 HTTPS Indicates if the application layver protocol is HTTPS
) DNS Indicates if the application layer protocol is DNS
24 Telnet Indicates if the application layer protocol is Telnet
25 SMTP Indicates if the application layer protocol is SMTP
26 55H Indicates if the application layer protocol is 55H
27 IRC Indicates if the application layer protocol is IRC
28 TCP Indicates if the transport layer protocol is TCP
29 UDP Indicates if the transport layer protocol is UDP
30 DHCT Indicates if the application laver protocol is DHCT
31 ARDP Indicates if the link layer protocol is ART
32 1CMP Indicates if the network layer protocol is [CMP
33 IPv Indicates if the network layer protocol is IP
34 LLC Indicates if the link layer protocol is LLC
35 Tot sum Summation of packets lengths in flow
36 Min Minimum packet length in the flow
37 Max Maximumpacket length in the flow
38 AVG Average packet length in the flow
39 Std Standard deviation of packet length in the flow
40 Tot size Packet’s length
41 IAT The time difference with the previous packet
42 Number The number of packets in the flow

: (Average of the lengths of incoming packets in the flow +
3 Magnitude average of the lengths of outgoing packets in the flow)"*
44 Radius I{‘-."a_riance of the lengths of incnn_"ling packet:f in the ﬂ(a“:]-:

variance of the lengths of outgoing packets in the flow)"
45 Covariance Covariance of the lengths of incoming and outgoing packets
e o Variance of the lengths of incoming packets in the flow /
46 Variance . . .
variance of the lengths of outgoing packets in the flow

47 Weight MNumber of incoming packets x Number of outgoing packets
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Anexo III; Estudio de Zeek

Archivos generados por Zeek

Fichero Descripcion
conn.log Detalles de conexion IP, TCP, UDP, ICMP
conn_statistics.log Detalles de conexion IP, TCP, UDP, ICMP con medidas estadisticas
dhcp.log Actividad de los leases de DHCP
dns.log Detalles sobre solicitudes y respuestas DNS
dpd.log Fallos de deteccion de protocolo dindmico
files.log Resultados de analisis de archivos
ftp.log Detalles de solicitudes y respuestas FTP
http.log Detalles de solicitudes y respuestas HTTP
irc.log Detalles de comunicacion IRC
Kerberos.log Autenticacion de kerberos
mysql.log Comandos y respuestas del servidor
radius.log Intentos de autenticacion radius
sip.log Anélisis de SIP
smtp.log Transacciones SMTP
software.log Software usado en la red segln host
ssh.log Handshakes de SSH
ssl.log Handshakes de SSL
syslog.log Mensajes syslog
tunnel.log Detalles sobre tlneles de encapsulacién
weird.log Actividad inesperada de protocolo o red
X509.log Informacion sobre el certificado X.509
dce_rpc.log Detalles en los mensajes DCE/RPC
ntim.log Informacion sobre NT LAN Manager
rdp.log Informacion sobre Remote Desktop Protocol
smb_files.log Detalles sobre archivos smb
smb_mapping.log Mapeo de SMB

En el capitulo 5 se muestra el proceso para obtener nuevos atributos, que posteriormente se
emplearon en la clasificacién de los flujos obtenidos a partir de las capturas. En este anexo se
explica el significado de los atributos obtenidos a partir de Zeek.

e ts: tiempo del primer paquete en formato UTC (el timestamp en .pcap CICIDS es UTC-3)
e duration: cuanto ha durado la conexién (campo de tipo intervalo, sus unidades son segundos)
® orig_bytes: nUmero de bytes de origen a destino



® resp_bytes: nUmero de bytes de destino a origen
® conn_state (Posibles valores):

@)
@)
@)

O O O O

SO: Intento de conexidn visto, sin respuesta.

S1: Conexidn establecida, no terminada.

SF: Establecimiento normal y terminacién. Mismo simbolo que para el estado S1. Para
distinguirlos, en S1 no hay ningun recuento de bytes en el resumen.

REJ: Intento de conexién rechazado.

S2: Conexidn establecida e intento de cierre por parte del origen visto. Sin respuesta del
destino.

S3: Conexidn establecida e intento de cierre por parte del destino visto. Sin respuesta
del origen.

RSTO: Conexidn establecida, el origen aborté la conexion. Envid un RST.

RSTR: El destino mandd un RST.

RSTOSO: El origen envid un SYN seguido de un RST, nunca se vio un SYN-ACK del destino.
RSTRH: El destino envié un SYN ACK seguido de un RST, nunca se vio un SYN del
(supuesto) origen.

SH: El origen envié un SYN seguido de un FIN, nunca se vio un SYN ACK del destino (por
lo tanto, la conexidn estaba "medio" abierta).

SHR: El destino envidé un SYN ACK seguido de un FIN, nunca se vio un SYN del autor.
OTH: No se ve SYN, solo tréfico intermedio (un ejemplo de esto es una "conexién parcial"
gue no se cerré mas tarde).

e missed_bytes: cantidad de bytes perdidos en los gaps (representa los paquetes perdidos en
la conexion)

e history: es una cadena de letras que representa la historia del estado de la conexion.
Si el evento proviene del origen, la letra estd en mayusculas; si proviene del destino, esta en
minusculas.

o

O 0O O O O O o0 O O O o o

s: SYN sin el bit ACk activo

h: SYN+ACK (handshake)

a: ACK puro

d: paquete con payload (“datos”)

f: paquete con bit FIN activo

r: paquete con bit RST activo

c: paquete con checksum erréneo (se aplica a UDP también)

8: gap

t: paquete con payload retransmitido

w: paquete con anuncio de ventana cero

i: paguete inconsistente (por ejemplo, bits FIN+RST)

g: paquete multi-flag (SYN+FIN o SYN+RST)

A:la direccidon de la conexidn fue invertida por la heuristica de Zeek
orig_pkts: paquetes de origen a destino
resp_pkts: paquetes de destino a origen
orig_ip_bytes: nUmero de bytes IP enviados por origen.
orig_bytes _no_cero: bytes de los paquetes que no tienen Payload nula.
pkts_orig_cero: paquetes que tienen Payload nula emitidos de origen a destino.
pkts_orig no_cero: paquetes que no tienen Payload nula emitidos de origen a destino.
time: medida de tiempo entre paquetes.

Ademas se incluyen medidas estadisticas como la media y desviacidén estandar, valor maximo y

minimo

67

de ciertos atributos.



Anexo IV: Scripts de Zeek

A continuacidn se muestra un ejemplo de script que utiliza conn_statistics.zeek para la obtencién
de atributos a partir de las capturas de trafico. Este es llamado dentro del archivo local.zeek y
genera un nuevo log llamado con_statistics.log, con los atributos propios del archivo conn.log
ademas de otras medidas ya explicadas en el capitulo . Este script itera sobre cada archivo en una
carpeta que contiene capturas de trafico y crea otra carpeta que contiene los logs
correspondientes a estas.
#!/bin/bash
# Directorio de origen
source_dir="/root/bbdd/iotd20/pcaps/dos/"
# Directorio de destino
dest_dir="/root/bbdd/logs-zeek/iotd20-logs/logs-dos/"
# Obtener una lista de archivos pcap en el directorio de origen
files=$(Is "Ssource_dir"*.pcap)
# Iterar sobre cada archivo
for file_with_extension in $files
do

# Obtener el nombre del archivo sin la extension

filename=$(basename -- "$file_with_extension")

filename_no_extension="${filename%.*}"

# Crear el nombre de la carpeta de destino

dest_folder="$dest_dirSfilename_no_extension-logs"

# Crear la carpeta de destino

mkdir -p "Sdest_folder"

# Ejecutar Zeek en el archivo actual

zeek -C -r "$file_with_extension" /usr/local/zeek/share/zeek/site/local.zeek Log::default_logdir="$dest_folder"
done

Cada uno de los logs generados tiene una estructura similar a la mostrada a continuacion:

{"ts":1558922777.824831, "startTime":"2019-05-27
02:06:17","uid":"CSsw4d1rySIlO7hBS3","id.orig_h":"192.168.0.14","id.orig_p":54685,"id.resp_h
":1192.168.0.1","id.resp_p":80,"proto":"tcp", "duration":0.08716106414794922, "orig_bytes":0,"
resp_bytes":89574,"conn_state":"SHR", "local_orig":true, "local_resp":true, "missed_bytes":0, "hi
story":"*hadf", "orig_pkts":0,"orig_ip_bytes":0,"resp_pkts":68,"resp_ip_bytes":93118, "tunnel_
parents":[],"orig_bytes_mean":0.0,"resp_bytes_mean":1336.9253731343283, "resp_bytes_std"
:347.3232961417521,"orig_bytes_mean_nocero":0.0,"resp_bytes_mean_nocero":1399.59375,"
orig_bytes_std_nocero":0.0,"resp_bytes_std_nocero":355.3704631012208, "orig_bytes_min":1
000, "resp_bytes_min":0,"orig_bytes_max":0,"resp_bytes_max":2318,"orig_pkts_nocero":0,"re
sp_pkts_nocero":64,"orig_pkts_cero":0,"resp_pkts_cero":4,"time_mean":0.0012817803551169
002, "time_std":0.003319510976490021, "time_min":0.0, "time_max":0.01996302604675293,"0
rig_time_mean":0.0,"orig_time_min":10000.0,"orig_time_max":0.0, "resp_time_mean":0.0012
810446999289773,"resp_time_std":0.0033617492476943843,"resp_time_min":0.0,"resp_time
_max":0.01996302604675293}

El archivo .log esta formado por una serie de registros en formato JSON que describen conexiones
de red. Cada registro representa una conexién individual y contiene multiples campos con
informacidn sobre la conexion.
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Anexo V: Scripts de Python para conversion a .csv

A continuacién se presenta un ejemplo del cddigo empleado para convertir a formato csv los logs
que presentan formato .json. En las bases de datos CIC-loT-2023 e |oT-23 ha sido necesario el uso
de la opcidn chunks para leer de forma fragmentada el archivo debido a que el tamafio de los logs
superaba al de la memoria RAM disponible.

import sys

import json

import pandas as pd

from datetime import datetime

# Rutas de los archivos de entrada y salida
zeek_log_path = r"/root/bbdd/iot-23/CTU-loT-Malware-Capture-33-1/bro/conn-labeled.log"
csv_output_path = r"/root/bbdd/iot-23/CTU-loT-Malware-Capture-33-1/bro/output.csv"

# Funcion para aplicar transformaciones a un chunk de datos
def apply_transformations(chunk):
# Aplicar transformacion a la columna 'ts'
chunk['ts'] = chunk['ts'].apply(datetime.fromtimestamp)
# Dividir la columna "tunnel_parents label detailed-label'
chunk[['tunnel_parents', 'label', 'detailed-label']] = chunk['tunnel_parents label detailed-label'].str.split("\s{3}, expand=True)
# Eliminar la columna original
chunk.drop(columns=['tunnel_parents label detailed-label'], inplace=True)
return chunk

# Funcion para procesar un chunk de datos
def process_chunk(chunk):
return apply_transformations(chunk)

# Tamaiio del chunk
chunk_size = 50000

# Leer el archivo de registro de Zeek en chunks
with open(zeek_log_path, 'r') as file:
header_line = file.readlines()[6].strip().split("\t')[1:]
chunks = pd.read_csv(zeek_log_path, sep="\t', skiprows=8, names=header_line, engine='python', chunksize=chunk_size)

# Aplicar transformaciones a cada chunk y concatenar los resultados
processed_chunks = [process_chunk(chunk) for chunk in chunks]

df = pd.concat(processed_chunks, ignore_index=True)

# Guardar el DataFrame resultante como archivo CSV
df.to_csv(csv_output_path, index=False)

# Imprimir mensaje de éxito
print("Archivo CSV guardado exitosamente.")
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Anexo VI: Scripts de union de archivos .csv

Una vez se ha obtenido el log en formato .csv, se deben unir todos aquellos que corresponden a
un mismo dataset, por lo que obtendremos tres ficheros. En el caso de 10TD20, cuyo tamafo es
reducido y es posible realizarlo sin fragmentarlo en chunks, se hizo de la siguiente forma:

import os
import pandas as pd

def concatenate_csv_files(main_directory,save_directory):

Concatenate all CSV files in subdirectories of the main directory into a single CSV file.

Parameters:
main_directory (str): Path to the main directory containing subdirectories with CSV files.

The function saves the concatenated CSV file in the main directory, named as the main directory name +'_all.csv'.

# Get the main directory name for the output file

main_directory_name = os.path.basename(os.path.normpath(main_directory))
# Initialize an empty list to hold DataFrames

data_frames =[]

header_saved = False

column_order =]

total_length =0 # Initialize total length counter
# Walk through each subfolder in the main directory
for subdir, _, files in os.walk(main_directory):
for file in files:
# Check if the file is a CSV file
if file.endswith('.csv'):
file_path = os.path.join(subdir, file)
# Read the CSV file and append the DataFrame to the list
if not header_saved:
# Read the first CSV file with headers
df = pd.read_csv(file_path)
header_saved = True
column_order = df.columns.tolist() # Save the column order
print(column_order)
else:
# Read subsequent CSV files
df = pd.read_csv(file_path)
# Reorder the columns of the DataFrame to match the column order of the first DataFrame
df = df.reindex(column_order, axis=1)
data_frames.append(df)
total_length += len(df) # Add length of current DataFrame to total length

# Concatenate all DataFrames in the list into a single DataFrame
concatenated_df = pd.concat(data_frames, ignore_index=True)

# Save the concatenated DataFrame to a new CSV file in the main directory
output_file = os.path.join(save_directory, f'{main_directory_name}_all.csv')

concatenated_df.to_csv(output_file, index=False)

print(f'Total length of concatenated CSV: {total_length}')
print(f'All CSV files have been concatenated and saved to {output_file}')
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Sin embargo, para los datasets 10T-23 y CIC-1oT-2023 requieren su lectura y escritura
fragmentadas:

import os
import pandas as pd

def concatenate_csv_files(main_directory, save_directory, chunk_size=50000):
Concatenate all CSV files in subdirectories of the main directory into a single CSV file.
Parameters:
main_directory (str): Path to the main directory containing subdirectories with CSV files.
save_directory (str): Path to the directory where the concatenated CSV file will be saved.
chunk_size (int): Number of rows per chunk to read from each CSV file.
# Get the main directory name for the output file
main_directory_name = os.path.basename(os.path.normpath(main_directory))
output_file = os.path.join(save_directory, f'{main_directory_name} all.csv')
# Initialize a flag to indicate whether to write header
header_written = False
column_order =]
total_length =0 # Initialize total length counter
# Walk through each subfolder in the main directory
for subdir, _, files in os.walk(main_directory):
for file in files:
# Check if the file is a CSV file
if file.endswith('.csv'):
file_path = os.path.join(subdir, file)

# Process the CSV file in chunks
for chunk in pd.read_csv(file_path, chunksize=chunk_size):
if not header_written:

# Write the first chunk with headers and save column order
chunk.to_csv(output_file, mode='w', header=True, index=False)
header_written = True
column_order = chunk.columns.tolist()

else:

# Ensure chunk has same column order and write without headers
chunk = chunk.reindex(columns=column_order)
chunk.to_csv(output_file, mode='a', header=False, index=False)

# Add length of current chunk to total length
total_length += len(chunk)

print(f'Total length of concatenated CSV: {total_length}')
print(f'All CSV files have been concatenated and saved to {output_file}')
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Anexo VII: Scripts de etiquetado

A continuacién, se muestra uno de los scripts empleados para el etiquetado de los flujos en el
capitulo 5. Para ello se ha empleado la libreria pandas de Python. Se genera la etiqueta original
detailed-label, |a etiqueta comun label, y la etiqueta binaria binary-label. Después, en funcidon del
nombre del archivo, que sirve como indicativo del tipo de ataque contenido, comprueba los flujos
maliciosos mediante campos como puerto origen y destino (id.orig_p e id.resp_p), direcciones
origen y destino (id.orig_h e id.rsep_h), protocolo (proto), estado de conexidn (conn_state), y si
se ha empleado algun tipo de flag, empleando el campo history para este ultimo caso.

import os
import pandas as pd
def process_conn_log(folder_path):
conn_log_path = os.path.join(folder_path, "conn_stadistics.log")
# Check if conn_stadistics.log file exists
if os.path.exists(conn_log_path):
# Extract file name from folder path
folder_name = os.path.basename(folder_path)

# Read conn_stadistics.log into a DataFrame
df = pd.read_json(conn_log_path, lines=True)

# Create a column to hold binary-label with default value 'benign'
df['binary-label'] ='0"

df['label'] = 'benign’

df['detailed-label'] = 'benign’

if "mirai-udpflooding" in folder_name:
conditions = df["id.orig_h"] == "210.89.164.90"
df.loc[conditions, ['binary-label', 'label’, 'detailed-label']] = ["1", "Mirai", "Mirai-UDPFlood"]

elif "mirai-ackflooding" in folder_name:
conditions = df["id.orig_h"] == "210.89.164.90"
df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Mirai", "Mirai-ACKFlood"]

elif "mirai-httpflooding" in folder_name:
conditions = df["id.orig_h"] == "210.89.164.90"
df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Mirai", "Mirai-HTTPFlood"]

elif "mirai-hostbruteforce" in folder_name:
if ("mirai-hostbruteforce-1" in folder_name or "mirai-hostbruteforce-3" in folder_name or "mirai-hostbruteforce-5" in
folder_name):
conditions = (df["id.orig_h"] =="192.168.0.13") & (df["proto"] == "tcp") & (df["id.resp_p"] == 23)
df.loc[conditions, 'label'] = 'Mirai'
df.loc[conditions, 'binary-label'] = 1 # Assuming you want binary label as 1
df.loc[conditions, 'detailed-label'] = 'Mirai-TelnetBruteforce'

elif ("mirai-hostbruteforce-2" in folder_name or "mirai-hostbruteforce-4" in folder_name):
print("mirando hbf2 o hbf4")
conditions = (df["id.orig_h"] =="192.168.0.24") & (df["proto"] == "tcp") & (df["id.resp_p"] == 23)
df.loc[conditions, 'label'] = 'Mirai'
df.loc[conditions, 'binary-label'] = 1 # Assuming you want binary label as 1
df.loc[conditions, 'detailed-label'] = 'Mirai-TelnetBruteforce'

else:

print(f"No matching condition found for folder {folder_path}")

return
# Save the DataFrame as conn_stadistics_labeled.csv
df.to_csv(os.path.join(folder_path, "conn_stadistics_labeled.csv"), index=False)
print(f"Saved conn_stadistics_labeled.csv in {folder_path}")

else:
print(f"conn_stadistics.log not found in {folder_path}")
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# Etiquetado DoS

import ipaddress

defis_ipv4(address):
try:

ipaddress.IPv4Address(address)
return True

except ipaddress.AddressValueError:

return False

def process_conn_log(folder_path):
conn_log_path = os.path.join(folder_path, "conn_stadistics.log")
# Check if conn_stadistics.log file exists
if os.path.exists(conn_log_path):

# Extract file name from folder path
folder_name = os.path.basename(folder_path)
# Read conn_stadistics.log into a DataFrame
df = pd.read_json(conn_log_path, lines=True)
# Create a column to hold binary-label with default value 'benign'
df['binary-label'] ='0'
df['label'] = 'benign'
df['detailed-label'] = 'benign'
if "dos-synflooding-1-dec" in folder_name or "dos-synflooding-2-dec" in folder_name :
# Apply is_ipv4 function to id.orig_h column to check if each value is an IPv4 address
ipv4_mask = df["id.orig_h"].apply(is_ipv4)
network_range = ipaddress.ip_network("222.0.0.0/8")
# Apply ipaddress.ip_address() function only to IPv4 addresses in the id.orig_h column
ipv4_addresses = df.loc[ipv4_mask, "id.orig_h"].apply(ipaddress.ip_address)
# Check if the IPv4 addresses are in the network range
ip_in_net = ipv4_addresses.apply(lambda x: x in network_range)
conditions = (ip_in_net) & (df["history"].str.lower().str.contains("s")) & (df["id.resp_h"] =="192.168.0.13") & (df["id.resp_p"]

== 554) & (df["proto"] == "tcp")

df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "DoS", "DoS-SYNFlood"]

elif "dos-synflooding-3-dec" in folder_name:
ipv4_mask = df["id.orig_h"].apply(is_ipv4)
network_range = ipaddress.ip_network("111.0.0.0/8")
# Apply ipaddress.ip_address() function only to IPv4 addresses in the id.orig_h column
ipv4_addresses = df.loc[ipv4_mask, "id.orig_h"].apply(ipaddress.ip_address)
# Check if the IPv4 addresses are in the network range
ip_in_net = ipv4_addresses.apply(lambda x: x in network_range)

conditions = (ip_in_net) & (df["history"].str.lower().str.contains("s")) & (df["id.resp_h"] =="192.168.0.13") & (df["proto"] ==

"tcp") & (df["id.resp_p"] == 554)

df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "DoS", "DoS-SYNFlood"]
elif "dos-synflooding-4-dec" in folder_name or "dos-synflooding-5-dec" in folder_name or "dos-synflooding-6-dec" in

folder_name :

ipv4_mask = df["id.orig_h"].apply(is_ipv4)

network_range = ipaddress.ip_network("111.0.0.0/8")

# Apply ipaddress.ip_address() function only to IPv4 addresses in the id.orig_h column

ipv4_addresses = df.loc[ipv4_mask, "id.orig_h"].apply(ipaddress.ip_address)

# Check if the IPv4 addresses are in the network range

ip_in_net = ipv4_addresses.apply(lambda x: x in network_range)

conditions = (ip_in_net) & (df["history"].str.lower().str.contains("s")) & (df["id.resp_h"] =="192.168.0.24") & (df["proto"] ==

"tcp")& (df["id.resp_p"] == 19604)

df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "DoS", "DoS-SYNFlood"]
else:

print(f"No matching condition found for folder {folder_path}")

return
# Save the DataFrame as conn_stadistics_labeled.csv
df.to_csv(os.path.join(folder_path, "conn_stadistics_labeled.csv"), index=False)
print(f"Saved conn_stadistics_labeled.csv in {folder_path}")

else:

print(f"conn_stadistics.log not found in {folder_path}")

for folder in os.listdir(main_directory):
folder_path = os.path.join(main_directory, folder)
if os.path.isdir(folder_path):
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# Etiquetado Scan
main_directory = "/root/bbdd/logs-zeek/iotd20-logs/logs-scan/"
def process_conn_log(folder_path):

conn_log_path = os.path.join(folder_path, "conn_stadistics.log")

# Check if conn_stadistics.log file exists

if os.path.exists(conn_log_path):
# Extract file name from folder path
folder_name = os.path.basename(folder_path)

# Read conn_stadistics.log into a DataFrame
df = pd.read_json(conn_log_path, lines=True)

# Create a column to hold binary-label with default value 'benign'
df['binary-label'] ='0'

df['label'] = 'benign’

df['detailed-label'] = 'benign’

if "scan-hostport-1-dec" in folder_name or "scan-hostport-2-dec" in folder_name or "scan-hostport-3-dec" in folder_name :
conditions = (df"id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] =="192.168.0.13") &
((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r")))
df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"]

elif "scan-hostport-4-dec" in folder_name or "scan-hostport-5-dec"” in folder_name or "scan-hostport-6-dec" in folder_name:
conditions = (df"id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") &
((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r")))
df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"]

elif "scan-portos-1-dec" in folder_name or "scan-portos-2-dec" in folder_name or "scan-portos-3-dec" in folder_name:
conditions = (dff"id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] =="192.168.0.13") &
((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r")))
df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"]

conditions2 = (df["id.orig_h"] =="192.168.0.15") & (df["id.resp_h"] =="192.168.0.13") & (df["proto"] !="icmp") &
~((df["id.orig_h"] =="192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") & (((df["proto"] == "tcp") &
(df["history"].str.lower().str.contains("s"))) | (df["history"].str.lower().str.contains("r"))))

df.loc[conditions2, ['binary-label', 'label’, 'detailed-label']] = ["1", "Scan", "Scan-OSDetection"]

elif "scan-portos-4-dec" in folder_name or "scan-portos-5-dec" in folder_name or "scan-portos-6-dec" in folder_name:
conditions = (dff"id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] =="192.168.0.24") &
((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r")))
df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"]

conditions2 = (df["id.orig_h"] =="192.168.0.15") & (df["id.resp_h"] =="192.168.0.24") & (df["proto"] !="icmp") &
~((df["id.orig_h"] =="192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") & (((df["proto"] == "tcp") &
(df["history"].str.lower().str.contains("s"))) | (df["history"].str.lower().str.contains("r"))))

df.loc[conditions2, ['binary-label', 'label’, 'detailed-label']] = ["1", "Scan", "Scan-OSDetection"]

else:
print(f"No matching condition found for folder {folder_path}")
return

# Save the DataFrame as conn_stadistics_labeled.csv
df.to_csv(os.path.join(folder_path, "conn_stadistics_labeled.csv"), index=False)
print(f"Saved conn_stadistics_labeled.csv in {folder_path}")

else:
print(f"conn_stadistics.log not found in {folder_path}")

for folder in os.listdir(main_directory):
folder_path = os.path.join(main_directory, folder)
if os.path.isdir(folder_path):
process_conn_log(folder_path)
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# Etiquetado MITM

main_directory = "/root/bbdd/logs-zeek/iotd20-logs/logs-mitm/"

def process_conn_log(folder_path):
conn_log_path = os.path.join(folder_path, "conn_stadistics.log")

# Check if conn_stadistics.log file exists

if os.path.exists(conn_log_path):
# Extract file name from folder path
folder_name = os.path.basename(folder_path)

# Read conn_stadistics.log into a DataFrame
df = pd.read_json(conn_log_path, lines=True)

# Create a column to hold binary-label with default value 'benign'
df['binary-label'] ='0'

df['label'] = 'benign'

df['detailed-label'] = 'benign'

if "scan-hostport-1-dec" in folder_name or "scan-hostport-2-dec" in folder_name or "scan-hostport-3-dec" in folder_name :
conditions = (dff"id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] =="192.168.0.13") &
((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r")))
df.loc[conditions, ['binary-label’, 'label', 'detailed-label']] = ["1", "Scan", "Scan-HostDiscovery"]

elif "scan-hostport-4-dec" in folder_name or "scan-hostport-5-dec" in folder_name or "scan-hostport-6-dec" in folder_name:
conditions = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") &
((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r")))
df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-HostDiscovery"]
elif "scan-portos-1-dec" in folder_name or "scan-portos-2-dec" in folder_name or "scan-portos-3-dec" in folder_name:
conditions = (df"id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] =="192.168.0.13") &
((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r")))
df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"]

conditions2 = (df["id.orig_h"] =="192.168.0.15") & (df["id.resp_h"] =="192.168.0.13") & (df["proto"] !="icmp") &
~((df["id.orig_h"] =="192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") & (((df["proto"] == "tcp") &
(df["history"].str.lower().str.contains("s"))) | (df["history"].str.lower().str.contains("r"))))

df.loc[conditions2, ['binary-label', 'label’, 'detailed-label']] = ["1", "Scan", "Scan-OSDetection"]

elif "scan-portos-4-dec" in folder_name or "scan-portos-5-dec" in folder_name or "scan-portos-6-dec" in folder_name:
conditions = (dff"id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] =="192.168.0.24") &
((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r")))
df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"]

conditions2 = (df["id.orig_h"] =="192.168.0.15") & (df["id.resp_h"] =="192.168.0.24") & (df["proto"] !="icmp") &
~((df["id.orig_h"] =="192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") & (((df["proto"] == "tcp") &
(df["history"].str.lower().str.contains("s"))) | (df["history"].str.lower().str.contains("r"))))

df.loc[conditions2, ['binary-label', 'label’, 'detailed-label']] = ["1", "Scan", "Scan-OSDetection"]

else:
print(f"No matching condition found for folder {folder_path}")
return
# Save the DataFrame as conn_stadistics_labeled.csv
df.to_csv(os.path.join(folder_path, "conn_stadistics_labeled.csv"), index=False)
print(f"Saved conn_stadistics_labeled.csv in {folder_path}")
else:
print(f"conn_stadistics.log not found in {folder_path}")
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# Para benign

main_directory = "/root/bbdd/logs-zeek/iotd20-logs/logs-benign"
def process_conn_log(folder_path):
conn_log_path = os.path.join(folder_path, "conn_stadistics.log")

# Check if conn_stadistics.log file exists

if os.path.exists(conn_log_path):
# Extract file name from folder path
folder_name = os.path.basename(folder_path)

# Read conn_stadistics.log into a DataFrame
with open(conn_log_path, 'r') as file:
header_line = file.readlines()[6].strip().split("\t")[1:]
df = pd.read_csv(conn_log_path, sep="\t', skiprows=8, names=header_line, skipfooter=1, engine='python')

# Create a column to hold binary-label with default value 'benign'
df['binary-label'] ='0'

df['label'] = 'benign’

df['detailed-label'] = 'benign’

# Save the DataFrame as conn_stadistics_labeled.csv
df.to_csv(os.path.join(folder_path, "conn_stadistics_labeled.csv"), index=False)
print(f"Saved conn_stadistics_labeled.csv in {folder_path}")

else:
print(f"conn_stadistics.log not found in {folder_path}")
for folder in os.listdir(main_directory):
folder_path = os.path.join(main_directory, folder)
if os.path.isdir(folder_path):
process_conn_log(folder_path)

Para el etiquetado del cojunto de datos l0T-23 se realiza de forma separada por escenarios, ya
que cada uno de estos necesita un etiquetado diferente. Para este dataset, fue necesario emplear
otra técnica de etiquetado, ya que las condiciones empleadas por los autores del dataset estaban
formuladas de forma que pudisen superponerse etiquetas en ciertos casos.

import json

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-loT-Malware-Capture-34-1/conn_stadistics.log"
output_file ="/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-loT-Malware-Capture-34-1.csv"
label_1="C&C"

label_2 = "PartOfAHorizontalPortscan"

label_3 ="DDoS"

# Initialize label checks
label_checked = [False] * 3

[l non "o non nwon

all_keys = ["ts", "startTime", "uid", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto", "service", "duration", "orig_bytes",

"resp_bytes", "conn_state", "local_orig", "local_resp", "missed_bytes", "history", "orig_pkts", "orig_ip_bytes", "resp_pkts",

’

"resp_ip_bytes", "tunnel_parents", "orig_bytes_mean", "resp_bytes_mean", "orig_bytes_std", "resp_bytes_std",

"orig_bytes_mean_nocero", "resp_bytes_mean_nocero", "orig_bytes_std_nocero", "resp_bytes_std_nocero", "orig_bytes_min",

"resp_bytes_min", "orig_bytes_max", "resp_bytes_max", "orig_pkts_nocero", "resp_pkts_nocero", "orig_pkts_cero",

"resp_pkts_cero", "time_mean", "time_std", "time_min", "time_max", "orig_time_mean",

"orig_time_max", " o

orig_time_std", "orig_time_min",
, "resp_time_mean", "

resp_time_std", "resp_time_min", "resp_time_max"]

with open(input_file, "r") as f_in, open(output_file, "w") as f_out:

f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local
_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes
_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_n
ocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pk
ts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,r
esp_time_std,resp_time_min,resp_time_max,label,binary-label\n")

for linein f_in:

data = json.loads(line)
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for key in all_keys:
if key not in data:
data[key] =""
binary_label =0
labels =[] # Start empty

if data["id.resp_p"] =="6667" and not label_checked[0]:
labels.append(label_1)
binary_label =1
label_checked[0] = True

if data["id.resp_p"] == "63798" and not label_checked[1]:

labels.append(label_2)
binary_label =1
label_checked[1] = True
if data["id.resp_p"] == "256" and not label_checked[1]:
labels.append(label_2)
binary_label =1
label_checked[1] = True

if data["id.resp_h"] =="123.59.209.185" and not label_checked[2]:
labels.append(label_3)
binary_label =1
label_checked[2] = True

if data["id.resp_h"] =="71.61.66.148" and not label_checked[2]:

labels.append(label_3)
binary_label =1
label_checked[2] = True
if data["id.resp_h"] =="74.91.117.248" and not label_checked[2]:
labels.append(label_3)
binary_label =1
label_checked[2] = True

if data["id.resp_p"] =="5376" and not label_checked[2]:
labels.append(label_3)
binary_label =1

label_checked[2] = True

# Reset label checks if all labels are checked
#If no labels are added, assign "benign"
if not labels:

labels.append("benign")

values = [str(data[key]) for key in all_keys]

labels_joined = '-".join(labels)

csv_line =","join(values) + f' {labels_joined} {binary_label}\n
f_out.write(csv_line)

1

label_checked = [False] * 3

# Escenario 35

import json

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-loT-Malware-Capture-35-1/conn_stadistics.log"
output_file ="/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-loT-Malware-Capture-35-1.csv"

label_1 ="C&C"

label_2 ="FileDownload"
label_3 ="Attack"
label_4 ="DDoS"

# Initialize label checks
label_checked = [False] * 4

with open(input_file, "r") as f_in, open(output_file, "w") as

f out: f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_stat
e,local_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp
_bytes_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes
_std_nocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,r
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esp_pkts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_
mean,resp_time_std,resp_time_min,resp_time_max,label,binary-label\n")

for line in f_in:
data = json.loads(line)
for key in all_keys:
if key not in data:

data[key] =""
binary_label =0
labels =[] # Start empty
if data["id.resp_h"] == "104.248.160.24" and not label_checked[0]:

labels.append(label_1)
binary_label =1
label_checked[0] = True
if data["id.resp_h"] =="104.248.160.24" and data["resp_ip_bytes"] > 30000 and not label_checked[1]:
labels.append(label_2)
binary_label =1
label_checked[1] = True

if data["id.resp_h"] =="110.183.76.177" and not label_checked[2]:
labels.append(label_3)
binary_label =1
label_checked[2] = True

if data["id.resp_h"] =="112.27.30.87" and not label_checked[2]:

labels.append(label_3)
binary_label =1
label_checked[2] = True

if data["id.resp_h"] =="85.217.225.181" and not label_checked[2]:
labels.append(label_3)
binary_label =1

label_checked[2] = True
if data["id.resp_p"] == "992" and not label_checked[3]:
labels.append(label_4)

binary_label =1
label_checked[3] = True
if data["id.resp_h"] =="209.97.190.136" and not label_checked[3]:

labels.append(label_4)
binary_label =1
label_checked[3] = True
if data["id.resp_h"] =="173.113.172.138" and not label_checked[3]:
labels.append(label_4)
binary_label =1
label_checked[3] = True
if data["id.resp_h"] =="216.18.168.16" and not label_checked[3]:
labels.append(label_4)
binary_label =1
label_checked[3] = True
if data["id.resp_h"] =="24.165.115.195" and not label_checked[3]:
labels.append(label_4)
binary_label =1
label_checked[3] = True
if data["id.resp_h"] =="54.39.87.104" and not label_checked[3]:
labels.append(label_4)
binary_label =1
label_checked[3] = True

# Reset label checks if all labels are checked
# If no labels are added, assign "benign"
if not labels:

labels.append("benign")

values = [str(data[key]) for key in all_keys]

labels_joined = '-'.join(labels)

csv_line =","join(values) + f' {labels_joined},{binary_label}\n'
f_out.write(csv_line)

label_checked = [False] * 4
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# Escenario 43
import json

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-loT-Malware-Capture-43-1/conn_stadistics.log"
output_file ="/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-loT-Malware-Capture-43-1.csv"

label_1="C&C"
label_2 ="DDoS"
label_3 ="Okiru"

label_4 = "PartOfAHorizontalPortScan"
label_5 = "FileDonwload"

# Initialize label checks
label_checked = [False] * 5
with open(input_file, "r") as f_in, open(output_file, "w") as

f_out: f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state
,local_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_
bytes_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_
nocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,re
sp_pkts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_m

std_|

ean,

resp_time_std,resp_time_min,resp_time_max,label,binary-label\n")

for line in f_in:
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data = json.loads(line)
for key in all_keys:
if key not in data:
datalkey] =""
binary_label =0
labels =[] # Start empty
if data["id.resp_p"] == 45 and not label_checked[0]:
labels.append(label_1)
binary_label =1
label_checked[0] = True

if data["id.resp_h"] =="142.11.219.83" and not label_checked[0]:
labels.append(label_1)
binary_label =1
label_checked[0] = True

if data["id.resp_p"] == 27015 and not label_checked[1]:
labels.append(label_2)
binary_label =1
label_checked[1] = True

if data["id.resp_p"] == 37215 and not label_checked[2]:
labels.append(label_3)
binary_label =1
label_checked[2] = True

if data["id.resp_p"] == 52869 and data["conn_state"] == "S0" and not label_checked[3]:
labels.append(label_4)
binary_label =1
label_checked[3] = True

if data["resp_ip_bytes"] > 50000 and not label_checked[4]:
labels.append(label_5)
binary_label =1
label_checked[4] = True

#1f no labels are added, assign "benign"
if not labels:
labels.append("benign")

values = [str(data[key]) for key in all_keys]

labels_joined = '-".join(labels)

csv_line =","join(values) + f' {labels_joined},{binary_label}\n'
f_out.write(csv_line)

label_checked = [False] * 5



# Escenario 44

import json
input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-loT-Malware-Capture-44-1/conn_stadistics.log"
output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-loT-Malware-Capture-44-1.csv"

label_1="C&C"
label_2 ="DDoS"
label_3 ="FileDonwload"

# Initialize label checks

label_checked = [False] * 3

with open(input_file, "r") as f_in, open(output_file, "w") as f_out:
f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local

_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes

_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_n

ocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pk

ts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,r

esp_time_std,resp_time_min,resp_time_max,label,binary-label\n")

forlinein f_in:
data = json.loads(line)

for key in all_keys:
if key not in data:
data[key] =""

binary_label =0

labels =[] # Start empty

if data["id.resp_h"] =="46.101.251.172" and (data['proto'] == "tcp") and not label_checked[0]:
labels.append(label_1)
binary_label =1
label_checked[0] = True

if data["id.resp_p"] == 80 and (data['proto'] == "udp") and not label_checked[1]:
labels.append(label_2)
binary_label =1
label_checked[1] = True

if data["id.resp_h"] == "86.136.151.56" and not label_checked[1]:
labels.append(label_2)
binary_label =1
label_checked[1] = True

if data['resp_ip_bytes'] > 50000 and not label_checked[2]:
labels.append(label_3)
binary_label =1
label_checked[2] = True

# Reset label checks if all labels are checked
#1f no labels are added, assign "benign"
if not labels:

labels.append("benign")

values = [str(data[key]) for key in all_keys]

labels_joined = '-".join(labels)

csv_line =","join(values) + f' {labels_joined},{binary_label}\n
f_out.write(csv_line)

label_checked = [False] * 3
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# Escenario 48

import json

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-loT-Malware-Capture-48-1/conn_stadistics.log"
output_file ="/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-loT-Malware-Capture-48-1.csv"
label_1="C&C"

label_2 = "HeartBeat"

label_3 = "FileDownload"

label_4 = "PartOfAHorizontalPortScan"

label_5 = "Attack"

# Initialize label checks
label_checked = [False] * 5
with open(input_file, "r") as f_in, open(output_file, "w") as f_out:
f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local
_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes
_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_n
ocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pk
ts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,r
esp_time_std,resp_time_min,resp_time_max,label,binary-label\n")
for line in f_in:
data = json.loads(line)
for key in all_keys:
if key not in data:
datalkey] =""

binary_label =0
labels =[] # Start empty

if data["id.resp_h"] =="167.99.182.238" and not label_checked[0]:
labels.append(label_1)
binary_label =1

label_checked[0] = True

if data["id.resp_h"] =="167.99.182.238" and (data['resp_ip_bytes'] > 1) and not label_checked[1]:
labels.append(label_2)
binary_label =1
label_checked[1] = True

if data["id.resp_p"] == 80 and (data['resp_ip_bytes'] > 50000) and not label_checked[2]:
labels.append(label_3)
binary_label =1
label_checked[2] = True

if data["id.resp_p"] == 23 and (data['conn_state'] == 'S0') and not label_checked[3]:
labels.append(label_4)
binary_label =1
label_checked[3] = True

if data["id.resp_p"] == 23 and (data['orig_ip_bytes'] > 7) and not label_checked[4]:
labels.append(label_5)
binary_label =1
label_checked[4] = True

# Reset label checks if all labels are checked
# If no labels are added, assign "benign"
if not labels:

labels.append("benign")

values = [str(data[key]) for key in all_keys]
labels_joined = '-'.join(labels)
csv_line =","join(values) + f' {labels_joined},{binary_label}\n'

f_out.write(csv_line)

label_checked = [False] * 5
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# Escenario 49
import json

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-loT-Malware-Capture-49-1/conn_stadistics.log"
output_file ="/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-loT-Malware-Capture-49-1.csv"

label_1="C&C"
label_2 ="PartOfAHorizontalPortScan"
label_3 ="FileDownload"

# Initialize label checks
label_checked = [False] * 3

with open(input_file, "r") as f_in, open(output_file, "w") as f_out:

f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local_
orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes_
mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_no
cero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pkt
s_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,re
sp_time_std,resp_time_min,resp_time_max,label,binary-label\n")
forlinein f_in:
data = json.loads(line)
for key in all_keys:
if key not in data:
data[key] =""

binary_label =0

labels =[] # Start empty

if data["id.resp_p"] == 4554 and not label_checked[0]:
labels.append(label_1)
binary_label =1
label_checked[0] = True

if data["id.resp_p"] == 8081 and (data['conn_state'] == 'S0') and not label_checked[1]:
labels.append(label_2)
binary_label =1
label_checked[1] = True

if data['resp_ip_bytes'] > 30000 and not label_checked[2]:
labels.append(label_3)
binary_label =1
label_checked[2] = True

# Reset label checks if all labels are checked
#If no labels are added, assign "benign"
if not labels:

labels.append("benign")

values = [str(data[key]) for key in all_keys]

labels_joined = '-'.join(labels)

csv_line =","join(values) + f' {labels_joined},{binary_label}\n
f_out.write(csv_line)

label_checked = [False] * 3
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# Escenario 52

import json

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-loT-Malware-Capture-52-1/conn_stadistics.log"
output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-loT-Malware-Capture-52-1.csv"
label_1 ="C&C"

label_2 ="Mirai"

label_3 ="FileDownload"

label_4 = "PartOfAHorizontalPortscan"

# Initialize label checks
label_checked = [False] * 4
with open(input_file, "r") as f_in, open(output_file, "w") as f_out:
f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local
_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes
_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_n
ocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pk
ts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,r
esp_time_std,resp_time_min,resp_time_max,label,binary-label\n")
forlinein f_in:
data = json.loads(line)
for key in all_keys:
if key not in data:

data[key] =""
binary_label =0
labels =[] # Start empty
if data["id.resp_h"] == "185.244.25.108" and not label_checked[0]:

labels.append(label_1)
binary_label =1
label_checked[0] = True

if data["id.resp_p"] == 4441 and not label_checked[1]:
labels.append(label_2)
binary_label =1
label_checked[1] = True

if data["id.resp_p"] == 80 and (data['resp_ip_bytes'] >30000) and not label_checked[2]:
labels.append(label_3)
binary_label =1
label_checked[2] = True

if data["id.resp_p"] == 23 and not label_checked[3]:
labels.append(label_4)
binary_label =1
label_checked[3] = True

if data["id.resp_p"] == 2323 and not label_checked[3]:
labels.append(label_4)
binary_label =1
label_checked[3] = True

# Reset label checks if all labels are checked
#1f no labels are added, assign "benign"
if not labels:

labels.append("benign")

values = [str(data[key]) for key in all_keys]
labels_joined = '-".join(labels)
csv_line =","join(values) + f' {labels_joined},{binary_label}\n'

f_out.write(csv_line)

label_checked = [False] * 4
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# Escenario 7

import json

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-loT-Malware-Capture-7-1/conn_stadistics.log"
output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-loT-Malware-Capture-7-1.csv"
label_1 ="C&C"

label_2 ="Okiru"
label_3 = "HeartBeat"
label_4 ="DDoS"

# Initialize label checks
label_checked = [False] * 4

with open(input_file, "r") as f_in, open(output_file, "w") as f_out:
f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local
_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes
_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_n
ocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pk
ts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,r
esp_time_std,resp_time_min,resp_time_max,label,binary-label\n")
forlinein f_in:
data = json.loads(line)
for key in all_keys:
if key not in data:

data[key] =""
binary_label =0
labels =[] # Start empty
if data["id.resp_h"] =="185.130.215.13" and not label_checked[0]:

labels.append(label_1)
binary_label =1
label_checked[0] = True

if data["id.resp_h"] =="102.157.125.155" and not label_checked[1]:
labels.append(label_2)
binary_label =1

label_checked[1] = True

if data["id.resp_p"] == 37215 and not label_checked[1]:
labels.append(label_2)
binary_label =1
label_checked[1] = True

if data["id.resp_p"] == 57722 and not label_checked[2]:
labels.append(label_3)
binary_label =1
label_checked[2] = True

if data["id.resp_p"] == 80 and not label_checked[3]:
labels.append(label_4)
binary_label =1
label_checked[3] = True
# Reset label checks if all labels are checked
#If no labels are added, assign "benign"
if not labels:
labels.append("benign")

values = [str(data[key]) for key in all_keys]
labels_joined = '-".join(labels)
csv_line =","join(values) + f' {labels_joined},{binary_label}\n'

f_out.write(csv_line)

label_checked = [False] * 4
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# Etiquetado Benign

import pandas as pd

# Read the JSON file into a DataFrame

df =

pd.read_json(input_file, lines=True)

# Create two new columns with default values
df['label'] = 'benign’

df['binary-label'l =0

df.to_csv(output_file, index=False)

# Display the DataFrame

df.head()

Finalmente, para etiquetar el conjunto de datos de CIC-10T-2023, se siguié la misma metodologia
gue emplearon los autores, etiquetando todos los flujos de una misma captura de trafico segin
el nombre del archivo, que indica el ataque contenido.

def process_conn_log(folder_path):
conn_log_path = os.path.join(folder_path, "conn_stadistics.log")

# Check if conn.log file exists
if os.path.exists(conn_log_path):

folder_name = os.path.basename(folder_path)
with open(conn_log_path, 'r') as file:
header_line = file.readlines()[6].strip().split("\t')[1:]
df = pd.read_csv(conn_log_path, sep="\t', skiprows=8, names=header_line, skipfooter=1, engine='python')

print(folder_name)
# Check for the file with name folder_name + _loss_rows.csv
loss_rows_path = os.path.join(loss_directory, f'{folder_name}_loss_rows.csv')
if os.path.exists(loss_rows_path):
print(f"Loss rows file found: {loss_rows_path}")
df_loss = pd.read_csv(loss_rows_path)
# Identify rows to be removed
rows_to_remove = df[df['uid'].isin(df_loss['uid'])]

# Print the rows that are going to be removed
print("Rows to be removed:")
print(rows_to_remove)
# Remove rows from df where df['uid'] is in df_loss['uid']
df = df[~df['uid'].isin(df_loss['uid'])]
# Save concatenated data frame to CSV
output_path ="/root/bbdd/logs-zeek/cic-iot-2023-logs/labeled-csv/" # Change this to the desired directory path
csv_filename = os.path.join(output_path, f"{folder_name}_labeled.csv")
df.to_csv(csv_filename, index=False)
else:
print(f"Loss rows file not found for {folder_name}")
# Once found, open that loss file as csv, look for the uids to remove them in the new df we are going to create

else:

print(f"conn.log not found in {folder_path}")

for folder in os.listdir(main_directory):
folder_path = os.path.join(main_directory, folder)
if os.path.isdir(folder_path):
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Anexo VIII: Normas de etiquetado

Cada base de datos empled un método distinto de etiquetado, por lo que, para poder recrearlo, se siguieron las reglas proporcionadas por los diferentes

autores.

Para la base de datos 10TD20, las reglas se adaptaron para poder etiquetar mediante los atributos generados en Zeek. En concreto, se etiqueté el trafico
benigno y los siguientes ataques: DoS SYN-Flood, PortScan, OS Scan, UDP Flood, HTTP Flood, ACK Flood y Telnet BruteForce.

File Name CIrDeaatteign Category Sub-category Wireshark Rule to Filter Only Attack Packets
1 |benign-dec.pcap 20/05/2019|Normal Normal -
8 |dos-synflooding-1-dec.pcap 31/05/2019 (DDe(?ée)ll of Service SYN Flooding i:p:.sgéjznzgig.o.om and tcp.flags.syn == 1 and ip.dst == 192.168.0.13 and tcp.dstport
9 |dos-synflooding-2-dec.pcap 31/05/2019 (DDec:ga)\I of Service SYN Flooding i:p:.sggzzrﬁfég.o.om and tcp.flags.syn == 1 and ip.dst == 192.168.0.13 and tcp.dstport
10 |dos-synflooding-3-dec.pcap 31/05/2019 (D;gée)ll of Service SYN Flooding izpz.sgéjzrﬁtg.o.om and tcp.flags.syn == 1 and ip.dst == 192.168.0.13 and tcp.dstport
11 |dos-synflooding-4-dec.pcap 05/06/2019 (DDe(;\éa)\I of Service SYN Flooding Lgpdztst:p:orlt9:2:116§63424 and tcp.flags.syn == 1 and ip.src == 111.0.0.0/8 and tcp and
12 |dos-synflooding-5-dec.pcap 05/06/2019 (DDec:ge)ll of Service SYN Flooding Lgpdz;;zrltgzzzlf9868j4 and tep.flags.syn == 1 and ip.src == 111.0.0.0/8 and tcp and
13 |dos-synflooding-6-dec.pcap 05/06/2019 (DDe(;\éa)\I of Service SYN Flooding Lgpdztst:p:orlt9:2:116§63424 and tcp.flags.syn == 1 and ip.src == 111.0.0.0/8 and tcp and
14 |scan-hostport-1-dec.pcap 11/07/2019(Scanning Port Scanning Itgs \rlsl:go\l,\,g_zs,lz?:ozi%;;;jc;ftccjztﬂ:a:gsl?ssﬁig :1L)3 and ((epfags.syn == 1 and
15 |[scan-hostport-2-dec.pcap 11/07/2019|Scanning Port Scanning ItE[f\r/(\j;;o%vg_zs}ziS:O: 11%‘2512)(1 olftg;s)tﬂ:a:giigsﬁigg and ((tcp-flags.syn == 1 and
16 |[scan-hostport-3-dec.pcap 11/07/2019|Scanning Port Scanning ItE[f\r/(\;l:(?oJ\;\?_zséiig 11%22)(1 olftg;tﬂ:a:gi?gsle?igi? and ((tep.flags.syn == 1 and
17 |scan-hostport-4-dec.pcap 11/07/2019|Scanning Port Scanning LE; ;s,:;oivg)_illzGeS:i lligz;jc;?tg:tﬂ:a:gsl?gst?ig i;l and ((ep-Tags.syn =1 and




ip.src == 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and

18 |scan-hostport-5-dec.pcap 11/07/2019|Scanning Port Scanning tcp.window_size == 1024) or tcp.flags.reset == 1)
19 |scan-hostport-6-dec.pcap 11/07/2019|Scanning Port Scanning Itgps\r/(\Zer:o%vgzsﬁzﬁeS:g i%ggf;fg;?;igrgsﬁigf)"r and ((tcp.flags.syn == 1 and
. . ip.src == 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and
Scanning Port Scanning tcp.window_size == 1024) or tcp.flags.reset == 1)
20 |scan-portos-1-dec.pcap 11/07/2019 OS/Version (ip.src == 192.168.0.15 and ip.dst == 192.168.0.13) and (not icmp) and not (ip.src ==
Scanning Detection 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and tcp.window_size
== 1024) or tcp.flags.reset == 1))
. . ip.src == 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and
Scanning Port Scanning tcp.window_size == 1024) or tcp.flags.reset == 1)
21 |scan-portos-2-dec.pcap 11/07/2019 OS/Version (ip.src == 192.168.0.15 and ip.dst == 192.168.0.13) and (not icmp) and not (ip.src ==
Scanning Detection 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and tcp.window_size
== 1024) or tcp.flags.reset == 1))
. . ip.src == 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and
Scanning Port Scanning tcp.window_size == 1024) or tcp.flags.reset == 1)
22 |scan-portos-3-dec.pcap 11/07/2019 OS/Nersion (ip.src == 192.168.0.15 and ip.dst == 192.168.0.13) and (not icmp) and not (ip.src ==
Scanning Detection 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and tcp.window_size
== 1024) or tcp.flags.reset == 1))
. . ip.src == 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and
Scanning Port Scanning tcp.window_size == 1024) or tcp.flags.reset == 1)
23 |scan-portos-4-dec.pcap 11/07/2019 OSNersion (ip.src == 192.168.0.15 and ip.dst == 192.168.0.24) and (not icmp) and not (ip.src ==
Scanning Detection 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and tcp.window_size
== 1024) or tcp.flags.reset == 1))
. . ip.src == 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and
Scanning Port Scanning tcp.window_size == 1024) or tcp.flags.reset == 1)
24 |scan-portos-5-dec.pcap 11/07/2019 OS/Version (ip.src == 192.168.0.15 and ip.dst == 192.168.0.24) and (not icmp) and not (ip.src ==
Scanning Detection 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and tcp.window_size
==1024) or tcp.flags.reset == 1))
25 |scan-portos-6-dec.pcap 11/07/2019| Scanning Port Scanning ip.src == 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and

tcp.window_size == 1024) or tcp.flags.reset == 1)
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(ip.src == 192.168.0.15 and ip.dst == 192.168.0.24) and (not icmp) and not (ip.src ==

Scanning gft/;;eﬂr(ffn 592.168.0.15 and ip.dst ::_1?2.168.0.24 and ((tcp.flags.syn == 1 and tcp.window_size
==1024) or tcp.flags.reset == 1))
26 |mirai-udpflooding-1-dec.pcap 01/08/2019|Mirai Botnet UDP Flooding ip.dst == 210.89.164.90
27 |mirai-udpflooding-2-dec.pcap 01/08/2019|Mirai Botnet UDP Flooding ip.dst == 210.89.164.90
28 |mirai-udpflooding-3-dec.pcap 01/08/2019|Mirai Botnet UDP Flooding ip.dst == 210.89.164.90
29 |mirai-udpflooding-4-dec.pcap 01/08/2019|Mirai Botnet UDP Flooding ip.dst == 210.89.164.90
30 |mirai-ackflooding-1-dec.pcap 01/08/2019|Mirai Botnet ACK Flooding ip.dst == 210.89.164.90
31 |mirai-ackflooding-2-dec.pcap 01/08/2019|Mirai Botnet ACK Flooding ip.dst == 210.89.164.90
32 |mirai-ackflooding-3-dec.pcap 01/08/2019|Mirai Botnet ACK Flooding ip.dst == 210.89.164.90
33 |mirai-ackflooding-4-dec.pcap 01/08/2019|Mirai Botnet ACK Flooding ip.dst == 210.89.164.90
34 |mirai-httpflooding-1-dec.pcap 01/08/2019|Mirai Botnet HTTP Flooding ip.dst == 210.89.164.90
35 |mirai-httpflooding-2-dec.pcap 01/08/2019|Mirai Botnet HTTP Flooding ip.dst == 210.89.164.90
36 |mirai-httpflooding-3-dec.pcap 01/08/2019|Mirai Botnet HTTP Flooding ip.dst == 210.89.164.90
37 |mirai-httpflooding-4-dec.pcap 01/08/2019|Mirai Botnet HTTP Flooding ip.dst == 210.89.164.90
38 |mirai-hostbruteforce-1-dec.pcap 05/09/2019|Mirai Botnet Telnet Bruteforce tcp.dstport==23 and ip.src==192.168.0.13
39 |mirai-hostbruteforce-2-dec.pcap 05/09/2019|Mirai Botnet Telnet Bruteforce tcp.dstport==23 and ip.src==192.168.0.24
40 |mirai-hostbruteforce-3-dec.pcap 10/09/2019|Mirai Botnet Telnet Bruteforce tcp.dstport==23 and ip.src==192.168.0.13
41 |mirai-hostbruteforce-4-dec.pcap 10/09/2019|Mirai Botnet Telnet Bruteforce tcp.dstport==23 and ip.src==192.168.0.24
42 |mirai-hostbruteforce-5-dec.pcap 10/09/2019|Mirai Botnet Telnet Bruteforce tcp.dstport==23 and ip.src==192.168.0.13

88




Para el dataset |10T-23, se siguieron las siguientes reglas:

CTU-loT-Malware-Capture-7-1 (Linux, Mirai)

Id Field bro field number Data Comparator Label type connector
1 id.resp_h 5 185.130.215.13 eq C&C Malicious -
2 id.resp_h 5 102.157.125.155 eq Okiru Malicious -
3 id.resp_p 6 37215 eq Okiru Malicious -
4 id.resp_p 6 57722 eq HeartBeat Malicious -
5 id.resp_p 6 80 eq DDoS Malicious -

CTU-loT-Malware-Capture-34-1 (Mirai)

Id Field bro field number Data Comparator Label type connector
1 id.resp_p 6 6667 eq C&C Malicious -
2 id.resp_p 6 63798 eq PartOfAHorizontalPortscan Malicious -
3 id.resp_p 6 256 eq PartOfAHorizontalPortscan Malicious -
4 id.resp_h 5 123.59.209.185 eq DDoS Malicious -
5 id.resp_h 5 71.61.66.148 eq DDoS Malicious -
6 id.resp_h 5 74.91.117.248 eq DDoS Malicious -
7 id.resp_p 6 5376 eq DDoS Malicious -

CTU-loT-Malware-Capture-35-1 (Mirai)

Id Field bro field number Data Comparator Label type connector
1 id.resp_h 5 104.248.160.24 eq C&C Malicious -
2 id.resp_h 5 104.248.160.24 eq FileDownload Malicious and 3
resp_ip_byte
3 S 19 30000 gt FileDownload Malicious and 2
4  id.resp_h 5 110.183.76.177 eq Attack Malicious -
5 id.resp_h 5 112.27.30.87 eq Attack Malicious -
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CTU-loT-Malware-Capture-43-1 (Mirai)

Id Field
1 id.resp_p
2 id.resp_h
3 id.resp_p
4 id.resp_p
5 id.resp_p

6 conn_state

7 resp_ip_bytes

CTU-loT-Malware-Capture-44-1 (Mirai)
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CTU-loT-Malware-Capture-48-1 (Mirai)

Id Field bro field number Data Comparator Label type connector
1 id.resp_h 5 167.99.182.238 eq C&C Malicious -
2 id.resp_h 5 167.99.182.238 eq HeartBeat Malicious and 3
3 resp_ip_bytes 19 1 gt HeartBeat Malicious and 2
4 id.resp_p 6 80 eq FileDownload Malicious and 5
5 resp_ip_bytes 19 50000 gt FileDownload Malicious and 4
6 id.resp_p 6 23 eq PartOfAHorizontalPortscan =~ Malicious and 7
7 conn_state 12 SO eq PartOfAHorizontalPortScan = Malicious and 6
8 id.resp_p 6 23 eq Attack Malicious and 9
9  orig_ip_bytes 17 7 gt Attack Malicious and 8
CTU-loT-Malware-Capture-49-1 (Mirai)

Id Field bro field number Data Comparator Label type connector

1 id.resp_p 6 4554 eq C&C Malicious -

2 id.resp_p 6 8081 eq PartOfAHorizontalPortscan = Malicious and 3

3 conn_state 12 SO eq PartOfAHorizontalPortScan Malicious and 2

3000
4 resp_ip_bytes 19 0 gt FileDownload Malicious -

CTU-loT-Malware-Capture-52-1 (Mirai)

Id Field bro field number Data Comparator Label type connector
1 id.resp_h 5185.244.25.108 eq C&C Malicious -

2 id.resp_p 6 4441 eq Mirai Malicious -

3 id.resp_p 6 80 eq FileDownload Malicious and 4

4 resp_ip_bytes 19 30000 gt FileDownload Malicious and 3

5 id.resp_p 6 23 eq PartOfAHorizontalPortscan Malicious -

6 id.resp_p 6 2323 eq PartOfAHorizontalPortscan Malicious -
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Anexo IX: Scripts de capture-loss

Como ya se ha desarrollado en el capitulo, ha sido necesario el estudio de pérdida de informacion
en las capturas de trafico. Esto se pudo observar mediante la herramienta Zui, y por ello se decidié
analizar en profundidad la cantidad de flujos que presentaban pérdida de informacién, y la
magnitud de esta pérdida.

Los scripts que se desarrollaron se muestran a continuacion. Primero, se llevd a cabo un analisis
en menor profundidad mediante estadisticas, para ello se empled:

import os
import pandas as pd
# Define the source directory containing capture loss logs
source_dir = "/root/capture_loss_iotd20_logs"
# Define the output file
output_file ="/root/capture_loss_iotd20_logs/concatenated_logs.csv"
# Create an empty list to store DataFrames
dfs =]
# Iterate through each JSON file in the source directory
for file_name in os.listdir(source_dir):
if file_name.endswith(".log"):

file_path = os.path.join(source_dir, file_name)

# Load the JSON file into a pandas DataFrame

df = pd.read_json(file_path, lines=True)

# Add a new column with the file name

df['file_name'] = file_name

# Append the DataFrame to the list

dfs.append(df)
# Concatenate all DataFrames into a single DataFrame
concatenated_df = pd.concat(dfs, ignore_index=True)
concatenated_df.to_csv(output_file, index=False)
print("Concatenation completed. Output file:", output_file)
print("Ndmero de filas en el DataFrame:", df.shape[0])
csv_file = output_file
df = pd.read_csv(csv_file)
# List the rows with the highest values in the percent_lost column
top_percent_lost = df.nlargest(34, 'percent_lost') # Change 10 to the desired number of rows
selected_columns = ['ts_delta', 'gaps', 'acks', 'file_name', 'percent_lost']

top_percent_lost_selected = top_percent_lost[selected_columns]

print(top_percent_lost_selected)
# Ordenar primero por el nombre del archivo y luego por el porcentaje perdido

top_percent_lost_sorted = top_percent_lost_selected.sort_values(by=['file_name', 'percent_lost'], ascending=[True, False])

print(top_percent_lost_sorted)

import os

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)

main_directory = "/root/bbdd/logs-zeek/iotd20-logs/logs-original /"

# Function to process a conn.log file



def process_conn_log(folder_path):

conn_log_path = os.path.join(folder_path, "conn.log")

# Check if conn.log file exists
if os.path.exists(conn_log_path):
# Extract file name from folder path

folder_name = os.path.basename(folder_path)

# Read conn.log into a DataFrame

df = pd.read_json(conn_log_path, lines=True)

# Convert timestamp to datetime if needed

# df["timestamp"] = pd.to_datetime(df["timestamp"])

# Create a dot plot of missed_bytes evolution
plt.scatter(df["ts"], df["missed_bytes"], s=10, marker='0")
plt.xlabel("Timestamp")

plt.ylabel("Missed Bytes")

plt.title(f"Evolution of Missed Bytes - {folder_name}")
plt.show()

# Calculate statistics

stats = df["missed_bytes"].describe()
print("Statistics:")

print(stats)

# Print top 15 highest values
top_15 = df.nlargest(15, "missed_bytes")
print("\nTop 15 highest missed_bytes:")

non non

print(top_15[["uid", "missed_bytes", "id.orig_h", "id.orig_p",

else:

print(f"conn.log not found in {folder_path}")

id.resp_h", "id.resp_p

def process_conn_log(folder_path, thresholds=[(0, 0.05), (0.05, 0.1), (0.1, 0.2), (0.2, 1)]):

conn_log_path = os.path.join(folder_path, "conn_stadistics.log")

# Check if conn.log file exists
if os.path.exists(conn_log_path):
# Extract file name from folder path

folder_name = os.path.basename(folder_path)

# Read conn.log into a DataFrame

df = pd.read_json(conn_log_path, lines=True)

, "proto

# Sample 5 flows with NaN values in either orig_bytes or resp_bytes before dropping

nan_flows = df[df['orig_bytes'].isnull() | df['resp_bytes'].isnull()].head(5)

if not nan_flows.empty:

print("Sample of 5 flows with NaN values in either orig_bytes or resp_bytes:")

print(nan_flows[["uid","missed_bytes","orig_bytes","resp_bytes", "id.orig_h", "id.orig_p", "

# Notify and count rows with NaN values in both orig_bytes an
nan_count = df[df['orig_bytes'].isnull() & df['resp_bytes'].isnull

if nan_count > 0:
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d resp_bytes columns
()].shape[0]

’

"

id.resp_h", "id.resp_p

, "proto

"



print(f"{nan_count} rows with NaN values in both orig_bytes and resp_bytes columns.")

# Calculate missed_bytes ratio

df['missed_ratio'] = np.where(df['missed_bytes'] == 0, 0, df['missed_bytes'] / (df['orig_bytes'] + df['resp_bytes']))

# Sort DataFrame by missed_ratio in descending order

df_sorted = df.sort_values(by="missed_ratio', ascending=False)

# Create a dot plot of missed_bytes ratio evolution

plt.scatter(range(1, len(df_sorted) + 1), df_sorted["missed_ratio"], s=10, marker='0")
plt.xlabel("Rank Position (sorted by missed ratio)")

plt.ylabel("Missed Bytes Ratio")

plt.title(f"Evolution of Missed Bytes Ratio - {folder_name}")

plt.show()

# Calculate statistics

stats = df_sorted["missed_ratio"].describe()
print("Statistics:")

print(stats)

# Print top 15 highest values
top_15 = df_sorted.head(15)
print("\nTop 15 highest missed_bytes ratios:")

print(top_15[["uid", "missed_ratio", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto"]])

# Print the least 15 flows based on missed bytes ratio
print("\nLeast 15 flows based on missed bytes ratio:")
least_15 = df_sorted.tail(15)
print(least_15[["uid", "missed_ratio", "orig_bytes","resp_bytes", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto"]])
# Initialize lists to store counts for each threshold range
threshold_counts = [0] * len(thresholds)
# Count number of flows in each threshold range
fori, (lower, upper) in enumerate(thresholds):
if upper is None:
num_flows = (df_sorted['missed_ratio'] >= lower).sum()
else:
num_flows = ((df_sorted['missed_ratio'] >= lower) & (df_sorted['missed_ratio'] <= upper)).sum()

threshold_counts[i] = num_flows

# Create grouped bar plot for the number of flows exceeding each threshold range

threshold_ranges = [f"{int(lower * 100)}% - {int(upper * 100)}%" if upper is not None else "> {int(lower * 100)}%" for lower, upper

in thresholds]

plt.bar(threshold_ranges, threshold_counts)

plt.xlabel("Missed Bytes Ratio Threshold Range")

plt.ylabel("Number of Flows")

plt.title(f"Number of Flows Exceeding Missed Bytes Ratio Thresholds - {folder_name}")
plt.show()

else:

print(f"conn.log not found in {folder_path}")

for folder in os.listdir(main_directory):

folder_path = os.path.join(main_directory, folder)

if os.path.isdir(folder_path):
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Posteriormente, al ver que habia flujos con una cantidad de pérdida significante, se diseiid otro
script para detectarlos dentro de los conjuntos de datos, y eliminar todos aquellos que superasen
la cantidad de 1% de pérdida de informacion.

Para 1oTD20 se realizd sobre el dataset entero, sin diferenciar por archivos, ya que su tamafio era
reducido.

import pandas as pd
import numpy as np
import os

def process_conn_log(folder_path,columns = ['uid','missed_bytes','orig_bytes','resp_bytes']):

df = pd.read_csv(folder_path,usecols=columns)

df.loc[df['missed_bytes'] =="-', 'missed_bytes'] = np.nan
df.loc[df['orig_bytes'] =="'-', 'missed_bytes'] = np.nan
df.loc[df['resp_bytes'] =="-', 'missed_bytes'] = np.nan

# Convert remaining NaNs to 0 after substitution

df['missed_bytes'] = pd.to_numeric(df['missed_bytes'], errors='coerce').fillna(0)
df['orig_bytes'] = pd.to_numeric(df['orig_bytes'], errors='coerce').fillna(0)
df['resp_bytes'] = pd.to_numeric(df['resp_bytes'], errors='coerce').fillna(0)

df['missed_ratio'] = np.where((df['missed_bytes'].isna()) | (df['missed_bytes'] == 0), 0, pd.to_numeric(df['missed_bytes']) /
(pd.to_numeric(df['orig_bytes']) + pd.to_numeric(df['resp_bytes'])))

# Filter rows with loss > 0.01 and append to list
filtered_chunk = df[df['missed_ratio'] > 0.01]

# Filter rows with loss > 0.01 and append to list
filtered_chunk = df[df['missed_ratio'] > 0.01].copy() # Make a copy to avoid the warning
filtered_chunk.loc[:, 'missed_ratio'] = df['missed_ratio'] # Assign values using .loc[]

print("all_labeled_loss_rows.csv created")
# Save concatenated data frame to CSV
output_path = "/root/bbdd/logs-zeek/iotd20-logs/loss-rows/" # Change this to the desired directory path
csv_filename = os.path.join(output_path, "all_labeled_loss_rows.csv")
filtered_chunk.to_csv(csv_filename, index=False)
main_directory = "/root/bbdd/logs-zeek/iotd20-logs/all-labeled_all.csv"
process_conn_log(main_directory)
loss_rows_path ="/root/bbdd/logs-zeek/iotd20-logs/loss-rows/all_labeled_loss_rows.csv"
df = pd.read_csv(main_directory)
# Check for the file with name folder_name + _loss_rows.csv
df_loss = pd.read_csv(loss_rows_path)
# Identify rows to be removed
rows_to_remove = df[df['uid'].isin(df_loss['uid'])]

# Print the rows that are going to be removed

print("Rows to be removed:")

print(rows_to_remove)

# Remove rows from df where df['uid'] is in df_loss['uid']

df = df[~df['uid'].isin(df_loss['uid'])]

# Save concatenated data frame to CSV

output_path ="/root/bbdd/logs-zeek/iotd20-logs/all-labeled-final.csv" # Change this to the desired directory path
df.to_csv(output_path, index=False)
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En el caso del conjunto de datos loT-23, se diseiid este script:

import os

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

main_directory = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/"

import pandas as pd

def process_conn_log(folder_name,columns = ['uid','missed_bytes','orig_bytes','resp_bytes']):
conn_log_path = os.path.join(main_directory, folder_name)
loss_rows_df =[] # Initialize a list to store data frames for chunks with loss > 0.01

# Check if conn.log file exists
if os.path.exists(conn_log_path):
for chunk in pd.read_csv(conn_log_path,usecols=columns, chunksize=50000):
# Calculate missed_bytes ratio
chunk['missed_ratio'] = np.where((chunk['missed_bytes'].isna()) | (chunk['missed_bytes'] == 0), O,
pd.to_numeric(chunk['missed_bytes']) / (pd.to_numeric(chunk['orig_bytes']) + pd.to_numeric(chunk['resp_bytes'])))

# Filter rows with loss > 0.01 and append to list
filtered_chunk = chunk[chunk['missed_ratio'] > 0.01].copy()
filtered_chunk.loc[:, 'missed_ratio'] = chunk['missed_ratio']
loss_rows_df.append(filtered_chunk)

# Concatenate data frames in the list
loss_rows_df = pd.concat(loss_rows_df)
# Save concatenated data frame to CSV
output_path = "/root/bbdd/logs-zeek/iot-23-logs/loss-rows/" # Change this to the desired directory path
csv_filename = os.path.join(output_path, f"{folder_name}_loss_rows.csv")
loss_rows_df.to_csv(csv_filename, index=False)
json_files = [f for f in os.listdir(main_directory) if f.startswith("json")]
for json_file in json_files:
process_conn_log(json_file)

En el caso de CIC-loT-2023, ademas de sustituir ciertos valores vacios, se extraen los flujos con
mas de 1% de pérdidas, almacenandolos en otro fichero para su posterior analisis ademas de

eliminarlos del conjunto de datos, identificandolos con el campo “uid”.

import pandas as pd

import numpy as np

import os

header = [
'ts', 'startTime', 'uid’, 'id.orig_h', 'id.orig_p', 'id.resp_h', 'id.resp_p', 'proto’, 'service', 'duration’,
'orig_bytes', 'resp_bytes', 'conn_state', 'local_orig', 'local_resp', 'missed_bytes', 'history', 'orig_pkts',
'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes', 'tunnel_parents', 'orig_bytes_mean', 'resp_bytes_mean',
'orig_bytes_std', 'resp_bytes_std', 'orig_bytes_mean_nocero', 'resp_bytes_mean_nocero', 'orig_bytes_std_nocero',
'resp_bytes_std_nocero', 'orig_bytes_min', 'resp_bytes_min', 'orig_bytes_max', 'resp_bytes_max', 'orig_pkts_nocero’,
'resp_pkts_nocero', 'orig_pkts_cero', 'resp_pkts_cero', 'time_mean’, 'time_std', 'time_min', 'time_max’,
'orig_time_mean', 'orig_time_std', 'orig_time_min', 'orig_time_max', 'resp_time_mean’, 'resp_time_std',
'resp_time_min', 'resp_time_max" ]

def process_conn_log(folder_path,columns = ['uid’,'missed_bytes','orig_bytes','resp_bytes']):
conn_log_path = os.path.join(folder_path, "conn_stadistics.log")

# Check if conn.log file exists
if os.path.exists(conn_log_path):
folder_name = os.path.basename(folder_path)
#with open(conn_log_path, 'r') as file:
#header_line = file.readlines()[6].strip().split("\t')[1:]
df = pd.read_csv(conn_log_path, sep="\t', skiprows=8, names=header, skipfooter=1, engine='python',usecols=columns)
df.loc[df['missed_bytes'] =="-', 'missed_bytes'] = np.nan
df.loc[df['orig_bytes'] =="-', 'missed_bytes'] = np.nan
df.loc[df['resp_bytes'] =="-', 'missed_bytes'] = np.nan

# Convert remaining NaNs to O after substitution

df['missed_bytes'] = pd.to_numeric(df['missed_bytes'], errors='coerce').fillna(0)
df['orig_bytes'] = pd.to_numeric(df['orig_bytes'], errors='coerce').fillna(0)
df['resp_bytes'] = pd.to_numeric(df['resp_bytes'], errors='coerce').fillna(0)
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df['missed_ratio'] = np.where((df['missed_bytes'].isna()) | (df['missed_bytes'] == 0), 0, pd.to_numeric(df['missed_bytes']) /
(pd.to_numeric(df['orig_bytes']) + pd.to_numeric(df['resp_bytes'])))

# Filter rows with loss > 0.01 and append to list
filtered_chunk = df[df['missed_ratio'] > 0.01]

# Filter rows with loss > 0.01 and append to list
filtered_chunk = df[df['missed_ratio'] > 0.01].copy() # Make a copy to avoid the warning
filtered_chunk.loc[:, 'missed_ratio'] = df['missed_ratio'] # Assign values using .loc[]

print(f"{folder_name}_loss_rows.csv created")

# Save concatenated data frame to CSV

output_path ="/root/bbdd/logs-zeek/cic-iot-2023-logs/loss-rows/" # Change this to the desired directory path
csv_filename = os.path.join(output_path, f"{folder_name}_loss_rows.csv")
filtered_chunk.to_csv(csv_filename, index=False)
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Anexo X: Scripts de representacion de capture-loss

# Create an empty list to store DataFrames
dfs =]
# Iterate through each JSON file in the source directory
for file_name in os.listdir(source_dir):
if file_name.endswith(".log"):
file_path = os.path.join(source_dir, file_name)

# Load the JSON file into a pandas DataFrame
df = pd.read_json(file_path, lines=True)

# Add a new column with the file name
df['file_name'] = file_name

# Append the DataFrame to the list

dfs.append(df)
# Concatenate all DataFrames into a single DataFrame
concatenated_df = pd.concat(dfs, ignore_index=True)
concatenated_df.to_csv(output_file, index=False)
print("Concatenation completed. Output file:", output_file)
csv_file = output_file
df = pd.read_csv(csv_file)

# List the rows with the highest values in the percent_lost column

top_percent_lost = df.nlargest(34, 'percent_lost') # Change 10 to the desired number of rows
selected_columns = ['ts_delta’, 'gaps', 'acks', 'file_name', 'percent_lost']
top_percent_lost_selected = top_percent_lost[selected_columns]

print(top_percent_lost_selected)
# Ordenar primero por el nombre del archivo y luego por el porcentaje perdido
top_percent_lost_sorted = top_percent_lost_selected.sort_values(by=['file_name', 'percent_lost'], ascending=[True, False])

print(top_percent_lost_sorted)

# Function to process a conn.log file

def process_conn_log(folder_path, thresholds=[(0, 0.05), (0.05, 0.1), (0.1, 0.2), (0.2, 1)]):
conn_log_path = os.path.join(folder_path, "conn_stadistics.log")

# Check if conn.log file exists

if os.path.exists(conn_log_path):
# Extract file name from folder path
folder_name = os.path.basename(folder_path)

# Read conn.log into a DataFrame
df = pd.read_json(conn_log_path, lines=True)

# Sample 5 flows with NaN values in either orig_bytes or resp_bytes before dropping
nan_flows = df[df['orig_bytes'].isnull() | df['resp_bytes'].isnull()].head(5)
if not nan_flows.empty:

print("Sample of 5 flows with NaN values in either orig_bytes or resp_bytes:")

non non non

print(nan_flows[["uid","missed_bytes","orig_bytes","resp_bytes", "id.orig_h", "id.orig_p

, "id.resp_h", "id.resp_p", "proto

# Notify and count rows with NaN values in both orig_bytes and resp_bytes columns
nan_count = df[df['orig_bytes'].isnull() & df['resp_bytes'].isnull()].shape[0]
if nan_count > 0:

print(f"{nan_count} rows with NaN values in both orig_bytes and resp_bytes columns.")

# Calculate missed_bytes ratio
df['missed_ratio'] = np.where(df['missed_bytes'] == 0, 0, df['missed_bytes'] / (df['orig_bytes'] + df['resp_bytes']))

# Sort DataFrame by missed_ratio in descending order
df_sorted = df.sort_values(by="missed_ratio', ascending=False)

# Create a dot plot of missed_bytes ratio evolution
plt.scatter(range(1, len(df_sorted) + 1), df_sorted["missed_ratio"], s=10, marker='0')
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plt.xlabel("Rank Position (sorted by missed ratio)")
plt.ylabel("Missed Bytes Ratio")

plt.title(f"Evolution of Missed Bytes Ratio - {folder_name}")
plt.show()

# Calculate statistics

stats = df_sorted["missed_ratio"].describe()
print("Statistics:")

print(stats)

# Print top 15 highest values
top_15 = df_sorted.head(15)
print("\nTop 15 highest missed_bytes ratios:")

print(top_15[["uid", "missed_ratio", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto"]])

# Print the least 15 flows based on missed bytes ratio

print("\nLeast 15 flows based on missed bytes ratio:")

least_15 = df_sorted.tail(15)

print(least_15[["uid", "missed_ratio", "orig_bytes","resp_bytes", "id.orig_h", "id.orig_p

non non
’

id.resp_h", "id.resp_p", "proto

# Initialize lists to store counts for each threshold range
threshold_counts = [0] * len(thresholds)

# Count number of flows in each threshold range
fori, (lower, upper) in enumerate(thresholds):
if upper is None:
num_flows = (df_sorted['missed_ratio'] >= lower).sum()
else:
num_flows = ((df_sorted['missed_ratio'] >= lower) & (df_sorted['missed_ratio'] <= upper)).sum()
threshold_counts[i] = num_flows

# Create grouped bar plot for the number of flows exceeding each threshold range

threshold_ranges = [f"{int(lower * 100)}% - {int(upper * 100)}%" if upper is not None else f"> {int(lower * 100)}%" for lower,

upper in thresholds]
plt.bar(threshold_ranges, threshold_counts)
plt.xlabel("Missed Bytes Ratio Threshold Range")
plt.ylabel("Number of Flows")
plt.title(f"Number of Flows Exceeding Missed Bytes Ratio Thresholds - {folder_name}")
plt.show()

else:
print(f"conn.log not found in {folder_path}")

for folder in os.listdir(main_directory):
folder_path = os.path.join(main_directory, folder)
if os.path.isdir(folder_path):
process_conn_log(folder_path)

Para lot-23

import os

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from bokeh.plotting import figure, show, output_file
from bokeh.models import HoverTool

from bokeh.io import export_png

main_directory = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/"

def process_conn_log(folder_name, thresholds=[(0, 0.05), (0.05, 0.1), (0.1, 0.2), (0.2, 1)], columns=["uid", "missed_bytes",
"orig_bytes","resp_bytes", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto", 'binary-label']):

conn_log_path = os.path.join(main_directory, folder_name)

# Check if conn.log file exists
if os.path.exists(conn_log_path)
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# Create Bokeh plot
p = figure(title=f"Evolution of Missed Bytes Ratio - {folder_name}", x_axis_label="Rank Position (sorted by missed ratio)",

y_axis_label="Missed Bytes Ratio")

pd.t

# Add hover tool
hover = HoverTool()
hover.tooltips = [("Index", "Sindex"), ("Missed Bytes Ratio", "@missed_ratio")]
p.add_tools(hover)
for chunk in pd.read_csv(conn_log_path, usecols=columns, chunksize=50000):
# Calculate missed_bytes ratio
chunk['missed_ratio'] = np.where((chunk['missed_bytes'].isna()) | (chunk['missed_bytes'] == 0), 0,
o_numeric(chunk['missed_bytes']) / (pd.to_numeric(chunk['orig_bytes']) + pd.to_numeric(chunk['resp_bytes'])))
if chunk['missed_ratio'].isnull().values.any():
print("Warning: NaN value detected in missed_ratio column!")
# Define color based on binary-label
colors = ['green' if label == 0 else 'red' for label in chunk['binary-label']]
# Add scatter plot for the chunk
p.scatter(list(range(1, len(chunk) + 1)), chunk["missed_ratio"], size=10, color=colors, alpha=0.5)

# Show plot for the chunk
export_png(p,filename=f"{folder_name}.png")
show(p)

print(f"Saved in: {folder_name}")

else:

print(f"conn.log not found in {folder_path}")

json_files = [f for f in os.listdir(main_directory) if f.startswith("json")]
for json_file in json_files:
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Anexo XI: Scripts de obtencion de resultados

Train-test para loT-23

import dask.dataframe as dd

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay, roc_curve, auc, RocCurveDisplay

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.naive_bayes import GaussianNB, BernoulliNB

from sklearn.linear_model import SGDClassifier

from sklearn.ensemble import BaggingClassifier, AdaBoostClassifier, RandomForestClassifier

from sklearn.neighbors import NearestCentroid

from sklearn.neural_network import MLPClassifier

from fpdf import FPDF

import matplotlib.pyplot as plt

import os

from sklearn import tree

import time

import pandas as pd

from concurrent.futures import ThreadPoolExecutor, as_completed

from sklearn.preprocessing import StandardScaler, LabelBinarizer

from sklearn.model_selection import GridSearchCV

from sklearn.metrics import roc_curve, auc, accuracy_score

from sklearn.preprocessing import LabelBinarizer

from sklearn.metrics import (classification_report, accuracy_score, confusion_matrix,
ConfusionMatrixDisplay, roc_curve, RocCurveDisplay, precision_score, recall_score, f1_score)

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

import numpy as np

# Create PDF with fpdf
class PDF(FPDF):
def header(self):
self.set_font('Arial', 'B', 12)
self.cell(0, 10, 'Classification Report with Metrics, Training, and Testing Time', 0, 1, 'C')

def chapter_title(self, title):
self.set_font('Arial', 'B', 12)
self.cell(0, 10, title, 0, 1, 'L")
self.In(10)

def chapter_body(self, body):
self.set_font('Arial’, "', 10)
self.multi_cell(0, 5, body)
self.In()

def add_image(self, image_path, title="):
if title:
self.chapter_title(title)
self.image(image_path, x=10, y=None, w=180)
self.In(10)

def add_classification_report(self, report):
self.chapter_title("Classification Report:")
self.chapter_body(report)

# Function to train and evaluate a single model
def train_and_evaluate_model(name, model, X_train, X_test, y_train, y_test):
pdf = PDF()
output_folder = f"/root/resultados-ml/iot-23/{name}-60test"
if not os.path.exists(output_folder):
os.makedirs(output_folder)
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print(f"Start training {name}")

start_time = time.time()

if name in ["SVM", "KNN", "SGD", "MLP", "Nearest_Centroid"]:
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

print(f"Scaling done for {name}")
if name =="SVM":
# Define parameter grid for grid search
param_grid = {
'C': [100, 1000],
'‘gamma': [le-4, 1e-5],
'kernel': ['rbf', 'sigmoid']
}
# Perform grid search
print(f"Start grid search for {name}")
grid_search = GridSearchCV(SVC(probability=True), param_grid, refit=True, verbose=2, cv=5, n_jobs=-1)
grid_search.fit(X_train, y_train)
print(f"End grid search for {name}")
# Use the best model with the best parameters
model = grid_search.best_estimator_
params = grid_search.best_params_
single_start_time = time.time()
model.fit(X_train, y_train)
single_train_time = time.time() - single_start_time
pdf.chapter_body(f"Best model: {model} Best params: {params} \n")
pdf.chapter_body(f"Best model Training time: {single_train_time:.4f} seconds\n")
else:
model.fit(X_train, y_train)
else:
model.fit(X_train, y_train)
train_time = time.time() - start_time
print(f"End training {name}")
start_time = time.time()
print(f"Start prediction for {name}")
y_pred = model.predict(X_test)
test_time = time.time() - start_time

pdf.add_page()

pdf.chapter_title('Training and Testing Time')

pdf.chapter_body(f"Training time: {train_time:.4f} seconds\nTesting time: {test_time:.4f} seconds\n")
print(f"Creating reports for {name}")

report = classification_report(y_test, y_pred)
pdf.add_classification_report(report)

print(f"Getting scores for {name}")

precision_scores = precision_score(y_test, y_pred, average=None)
recall_scores = recall_score(y_test, y_pred, average=None)

pdf.chapter_body("Precision and Recall Scores by Class with 8 decimals:\n")
unique_classes = np.unique(np.concatenate([y_test, y_pred]))
fori, class_name in enumerate(unique_classes):

precision = precision_scores][i]

recall = recall_scores][i]

pdf.chapter_body(f"Class '{class_name}':\n")

pdf.chapter_body(f" Precision: {precision:.8f}\n")

pdf.chapter_body(f" Recall: {recall:.8f}\n")

# Define the classes of interest

classes_of interest = ["Scan", "benign", "DoS"]

print(f"Getting confusion matrix for {name}")

# Confusion matrix

cm = confusion_matrix(y_test, y_pred, labels=classes_of_interest)

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=classes_of_interest)
# Save the confusion matrix plot as an image file
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cm_plot_path = os.path.join(output_folder, "confusion_matrix.png")
disp.plot()
plt.savefig(cm_plot_path)

# Add the confusion matrix plot to the PDF
pdf.add_image(cm_plot_path, title="Confusion Matrix Plot")
plt.show()

plt.close()

cm1 = confusion_matrix(y_test, y_pred, labels=classes_of_interest, normalize = 'true')
disp1 = ConfusionMatrixDisplay(confusion_matrix=cm1, display_labels=classes_of_interest)
# Save the confusion matrix plot as an image file

cml_plot_path = os.path.join(output_folder, "confusion_matrix_normalized.png")
displ.plot()

plt.savefig(cm1_plot_path)

# Add the confusion matrix plot to the PDF
pdf.add_image(cm1_plot_path, title="Normalized Confusion Matrix Plot")
plt.show()

plt.close()

if isinstance(model, DecisionTreeClassifier):
print(f"Plotting tree for {name}")
plt.figure(figsize=(25, 15)) # Adjust the size as needed
# Plot the decision tree
tree.plot_tree(model, feature_names=X.columns, filled=True, fontsize=8, proportion=True)

# Save the decision tree plot as an image file

tree_plot_path = os.path.join(output_folder, "decision_tree_default.png")
plt.savefig(tree_plot_path)

plt.close()

# Add the decision tree plot to the PDF

pdf.add_page()

pdf.chapter_title('Decision Tree')

pdf.add_image(tree_plot_path, title="Decision Tree Plot")

print(f"Start ROC plotting for {name}")
if name !="Nearest_Centroid":
y_prob = model.predict_proba(X_test)
label_binarizer = LabelBinarizer().fit(y_train)
y_onehot_test = label_binarizer.transform(y_test)
for class_of_interest in classes_of_interest:
class_id = np.flatnonzero(label_binarizer.classes_ == class_of_interest)[0]
fpr, tpr, _=roc_curve(y_onehot_test[:, class_id], y_prob[:, class_id])
display = RocCurveDisplay(fpr=fpr, tpr=tpr, estimator_name=f"{class_of_interest} vs the rest")
display.plot(color="darkorange")
plt.plot([0, 1], [0, 1], color="navy', lw=2, linestyle="'--")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title(f"One-vs-Rest ROC curve: {class_of_interest} vs (all other classes)")
plt.legend(loc="lower right")
plot_file = os.path.join(output_folder, f"roc_plot_{class_of_interest}.png")
plt.savefig(plot_file)
plt.show()
plt.close()
# Add the ROC curve plot to the PDF
pdf.add_image(plot_file, title=f"ROC Curve: {class_of_interest} vs (all other classes)")
else:
print(f"ROC for Nearest Centroid for {name}")
centroids = model.centroids_
distances = np.linalg.norm(X_test[:, np.newaxis] - centroids, axis=2)
label_binarizer = LabelBinarizer().fit(y_train)
y_onehot_test = label_binarizer.transform(y_test)
fpr = dict()
tpr = dict()
roc_auc = dict()
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for i, class_of_interest in enumerate(classes_of _interest):
fpr[i], tpr[i], _=roc_curve(y_onehot_test[:, i], -distances][:, i])
roc_aucli] = auc(fpr[i], tprli])
plt.figure()
display = RocCurveDisplay(fpr=fprl[i], tpr=tpr[i], estimator_name=f"{class_of interest} vs the rest")
display.plot(color="darkorange")
plt.plot([0, 1], [0, 1], color="navy', lw=2, linestyle='--")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title(f"One-vs-Rest ROC curve: {class_of_interest} vs (all other classes)")
plt.legend(loc="lower right")
plot_file = os.path.join(output_folder, f"roc_plot_{class_of_interest}.png")
plt.savefig(plot_file)
plt.show()
plt.close()
# Add the ROC curve plot to the PDF
pdf.add_image(plot_file, title=f"ROC Curve: {class_of_interest} vs (all other classes)")

# Save PDF

pdf_output_path = f"/root/resultados-ml/iot-23/iot23-{name}-60test-classification_report.pdf"
pdf.output(pdf_output_path)

print(f"PDF saved for {name}")

return name, train_time, test_time, pdf_output_path

# Read CSV using Dask

ddf = dd.read_csv('/root/bbdd/logs-zeek/iot23-processed.csv')

# Split data into training and testing sets

X = ddf.drop(columns=['label', 'binary_label'])

y = ddf['label']

X_train, X_test, y_train, y_test = train_test_split(X.compute(), y.compute(), test_size=0.4, random_state=42)

# Define models
models = {
"Decision_Tree": DecisionTreeClassifier(),
"Nearest_Centroid": NearestCentroid(),
"Random_Forest": RandomForestClassifier(n_estimators=100, random_state=0),
"Gaussian_NB": GaussianNB(),
"Bernoulli_NB": BernoulliNB(),
"SGD": SGDClassifier(loss='log_loss', max_iter=1000, tol=1e-3),
"Bagging_Tree": BaggingClassifier(estimator=DecisionTreeClassifier(), n_estimators=100, random_state=0),
"AdaBoost_Tree": AdaBoostClassifier(estimator=DecisionTreeClassifier(), n_estimators=100, random_state=0),
"MLP": MLPClassifier(max_iter=1000, random_state=42),
"KNN": KNeighborsClassifier(),
"SVM": SVC(probability=True)

# Train models and generate reports in parallel
with ThreadPoolExecutor(max_workers=1) as executor:
futures = {executor.submit(train_and_evaluate_model, name, model, X_train, X_test, y_train, y_test): name for name, model in
models.items()}
for future in as_completed(futures):
name = futures[future]
try:
name, train_time, test_time, pdf_output_path = future.result()
print(f"Completed {name}: Training time {train_time:.4f} seconds, Testing time {test_time:.4f} seconds, PDF saved at
{pdf_output_path}")
except Exception as exc:
print(f"Error occurred for model {name}: {exc}")
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Anexo XII: Script para muestreo de clase DoS

Se presenta un script que realiza un muestreo previo de la clase DoS, para facilitar la clasificacion
y sea escalable.

import pandas as pd
from sklearn.preprocessing import LabelEncoder
import time

import pandas as pd

# Define the CSV file path
input_csv_path = "/root/bbdd/logs-zeek/cic-iot-2023-logs/labeled-csv_all.csv"
output_csv_path ='/root/bbdd/logs-zeek/cic-iot-2023-encoded-common-12gb.csv'

# Columns to drop

columns_to_drop = ["tunnel_parents', 'ts', 'uid', 'id.orig_h', 'id.resp_h', 'id.orig_p', 'id.resp_p', 'startTime']

# Clean the DataFrame
def clean_dataframe(df):
# Replace commas in 'service' column

df['service'] = dff'service'].str.replace(',’, -')

# List of numeric and string columns

cols_num = ['duration’, 'orig_bytes', 'resp_bytes', 'missed_bytes', 'orig_pkts', 'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes',
'orig_bytes_mean', 'resp_bytes_mean', 'orig_bytes_std','resp_bytes_std', 'orig_bytes_mean_nocero',
'resp_bytes_mean_nocero','orig_bytes_std_nocero', 'resp_bytes_std_nocero', 'orig_bytes_min','resp_bytes_min', 'orig_bytes_max’,
'resp_bytes_max','orig_pkts_nocero', 'resp_pkts_nocero', 'orig_pkts_cero','resp_pkts_cero', 'time_mean', 'time_std', 'time_min’,
'time_max','orig_time_mean', 'orig_time_std', 'orig_time_min', 'orig_time_max','resp_time_mean’', 'resp_time_std’,

'resp_time_min', 'resp_time_max']

cols_str = ['proto’, 'service']

cols_dash = ['conn_state', 'local_orig', 'local_resp', 'history']

# Clean numeric columns
for col in cols_num:
df[col] = df[col].fillna('0").replace(['-', ", '[]', '<NA>'], '0').astype('float64")
# Clean string columns
for col in cols_str:

oon
’

df[col] = df[col].fillna('unknown').replace( , '[1', '<NA>'], 'unknown').astype('object’)
for col in cols_dash:
df[col] = df[col].fillna('-").replace([", '[I', '<NA>'], '-").astype('object’)
# Replace label values
df['label'] = df['label'].str.replace('Mirai', 'DoS').str.replace('Recon’, 'Scan').str.replace('Scanning', 'Scan') \

.str.replace('DDoS', 'DoS').str.replace('DictionaryBruteForce', 'BruteForce')
return df

# Normalize local values
def normalize_local(value):
if value in [True, 'True', 'T']:
return 'True'
elif value in [False, 'False’, 'F']:

return 'False'
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else:

return value

# Load values for encoding

history_values =[]

with open('history_values.txt', 'r') as f:
for line in f:

history_values.append(line.strip())

service_values = ['unknown', 'dns’, 'http’, 'ssl', 'ntp’, 'gssapi-smb’, 'dhcp’, 'krb_tcp', 'xmpp', 'Idap_udp’, 'geneve’, 'radius’, 'ssh’, 'syslog’,

‘'vxlan', 'mqtt’, 'ayiya', 'ssl-quic', 'quic-ssl', 'ssl-http’, "irc']

conn_state_values = ["S0", "S1", "SF", "REJ", "S2", "S3", "RSTO", "RSTR",
"RSTOSO", "RSTRH", "SH", "SHR", "OTH", "-"]

local_values = ["True", "False"]

proto_values = ["tcp", "udp", "icmp", "unknown"]
# Fit encoders for known unique value columns
le_history = LabelEncoder()
le_history.fit(history_values)

le_service = LabelEncoder()
le_service.fit(service_values)

le_conn_state = LabelEncoder()
le_conn_state.fit(conn_state_values)
le_local_resp = LabelEncoder()
le_local_resp.fit(local_values)

le_local_orig = LabelEncoder()
le_local_orig.fit(local_values)

le_proto = LabelEncoder()

le_proto.fit(proto_values)

# Create a dictionary of encoders
encoders = {
'conn_state': le_conn_state,
'local_resp': le_local_resp,
'local_orig": le_local_orig,
'proto': le_proto,
'service': le_service,

'history': le_history

columns_to_encode = ['prota’, 'service', 'history', 'conn_state', 'local_orig', 'local_resp']

# Encode columns
def encode_columns(df, columns_to_encode, encoders):
for col in columns_to_encode:
le = encoders[col]
df[col] = le.transform(df[col])

return df

# Read and process the CSV file in chunks
chunk_size = 50000
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chunks = pd.read_csv(input_csv_path, dtype=str, chunksize=chunk_size)

# Write header to the output CSV

first_chunk = next(chunks)

first_chunk = first_chunk.drop(columns_to_drop, axis=1)

first_chunk = clean_dataframe(first_chunk)

first_chunk['local_orig'] = first_chunk['local_orig'].apply(normalize_local)
first_chunk['local_resp'] = first_chunk['local_resp'].apply(normalize_local)
first_chunk = encode_columns(first_chunk, columns_to_encode, encoders)

first_chunk.to_csv(output_csv_path, mode='w', index=False, header=True)

# Function to sample 30% of the DoS labeled rows

def sample_majority_class(df, label_col, majority_class, frac, random_state=None):
majority_df = df[df[label_col] == majority_class]
minority_df = df[df[label_col] != majority_class]
sampled_majority_df = majority_df.sample(frac=frac, random_state=random_state)

return pd.concat([sampled_majority_df, minority_df], ignore_index=True)

# Process and append remaining chunks
for chunk in chunks:
chunk = chunk.drop(columns_to_drop, axis=1)
chunk = clean_dataframe(chunk)
chunk['local_orig'] = chunk]['local_orig'].apply(normalize_local)
chunk['local_resp'] = chunk]['local_resp'].apply(normalize_local)
chunk = encode_columns(chunk, columns_to_encode, encoders)
sampled_chunk = sample_majority_class(chunk, label_col="label', majority_class='DoS', frac=0.3, random_state=42)
sampled_chunk.to_csv(output_csv_path, mode='a’, index=False, header=False)

print(f"Chunk appended.")

print(f'DataFrame saved to {output_csv_path}')
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Anexo XIII: Script de entrenamiento y evaluacion con
seleccion de atributos

# Create PDF with fpdf
class PDF(FPDF):
def header(self):
self.set_font('Arial', 'B', 12)
self.cell(0, 10, 'Classification Report with Metrics, Training, and Testing Time', 0, 1, 'C')

def chapter_title(self, title):
self.set_font('Arial', 'B', 12)
self.cell(0, 10, title, 0, 1, 'L")
self.In(10)

def chapter_body(self, body):
self.set_font('Arial', "', 10)
self.multi_cell(0, 5, body)
self.In()

def add_image(self, image_path, title="):
if title:
self.chapter_title(title)
self.image(image_path, x=10, y=None, w=180)
self.In(10)

def add_classification_report(self, report):
self.chapter_title("Classification Report:")
self.chapter_body(report)

# Define the chunk size

chunk_size = 10000 # You can adjust this based on your system's memory capacity

# Initialize an empty list to store the sampled chunks

sampled_chunks =[]

csv_path ="'/root/bbdd/logs-zeek/cic-iot-2023-encoded-common-12gb.csv'

# Iterate over the chunks in the CSV file

# Function to sample the DoS labeled rows

def sample_majority_class(df, label_col, majority_class, frac, random_state=None):
majority_df = df[df[label_col] == majority_class]
minority_df = df[df[label_col] != majority_class]

sampled_majority_df = majority_df.sample(frac=frac, random_state=random_state)
return pd.concat([sampled_majority_df, minority_df], ignore_index=True)
for chunk in pd.read_csv(csv_path, chunksize=chunk_size):
# Sample 50% of the chunk
sampled_chunk = sample_majority_class(chunk, label_col='label', majority_class='DoS', frac=0.5, random_state=42)

# Append the sampled chunk to the list

sampled_chunks.append(sampled_chunk)
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# Concatenate the sampled chunks into a single DataFrame

sampled_cic_df = pd.concat(sampled_chunks)

# Calculate the count of each label value

label_counts = sampled_cic_df['label'].value_counts()

# Print the label counts

print(label_counts)

# Define the chunk size

chunk_size = 10000 # You can adjust this based on your system's memory capacity

# Initialize an empty list to store the sampled chunks
sampled_chunks =[]
csv_path = '/root/bbdd/logs-zeek/iot23-encoded-joint.csv'
# Iterate over the chunks in the CSV file
for chunk in pd.read_csv(csv_path, chunksize=chunk_size):
# Sample 50% of the chunk
sampled_chunk = chunk.sample(frac=0.5, random_state=42)
# Append the sampled chunk to the list

sampled_chunks.append(sampled_chunk)

# Concatenate the sampled chunks into a single DataFrame

sampled_iot23_df = pd.concat(sampled_chunks)

# Calculate the count of each label value

label_counts = sampled_iot23_df['label'].value_counts()

# Print the label counts

print(label_counts)

csv_path = '/root/bbdd/logs-zeek/encoded_iotd20_v2.csv'
iotd20_df = pd.read_csv(csv_path)

label_counts = iotd20_df['label'].value_counts()

# Print the label counts

print(label_counts)

# Make sure all DataFrames have the same columns, irrespective of order

columns = list(sampled_iot23_df.columns) # assuming iotd20_df has all the columns you need

# Reorder columns of each DataFrame to match the order in 'columns'
sampled_iot23_df = sampled_iot23_df[columns]
iotd20_df = iotd20_df[columns]

sampled_cic_df = sampled_cic_df[columns]

# List of DataFrames to concatenate

dataframes = [iotd20_df, sampled_iot23_df, sampled_cic_df]
# Concatenate the DataFrames

# Lists to hold the train and test sets

X_train_list =[]

X_test_list =]

y_train_list =[]
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y_test_list =]

# Split each dataframe individually
for df in dataframes:
y = dff'label'].values

X = df.drop(columns=['label', 'binary-label']).values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.6, random_state=42)

X_train_list.append(X_train)
X_test_list.append(X_test)
y_train_list.append(y_train)
y_test_list.append(y_test)
columns = sampled_iot23_df.drop(columns=['label', 'binary-label']).columns
# Concatenate the training and test sets from each dataframe
X_train = np.concatenate(X_train_list, axis=0)
X_test = np.concatenate(X_test_list, axis=0)
y_train = np.concatenate(y_train_list, axis=0)
y_test = np.concatenate(y_test_list, axis=0)

print("train and test sets ready")

del sampled_iot23_df, sampled_cic_df,X,y

del dataframes, X_train_list, X_test_list, y_train_list, y_test_list

import numpy as np

import pandas as pd

from sklearn.feature_selection import mutual_info_classif
from sklearn.feature_selection import SelectKBest

from sklearn.datasets import load_iris

# Compute the information gain for each feature

info_gain = mutual_info_classif(X_train, y_train)

# Create a DataFrame to display the information gain for each feature
feature_info_gain = pd.DataFrame({'Feature': columns, 'Information Gain': info_gain})

feature_info_gain = feature_info_gain.sort_values(by='Information Gain', ascending=False)

# Display the information gain for each feature
print("Information Gain for each feature:")

print(feature_info_gain)

# Select the top k features based on information gain
k =15 # Number of top features to select
selector = SelectKBest(mutual_info_classif, k=k)

X_train_fs = selector.fit_transform(X_train, y_train)

# Get the selected feature names

selected_features = columns[selector.get_support()]

print(f"\nTop {k} features selected based on information gain:")

print(selected_features)

# Display the selected features

print("\nSelected features dataset:")
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print(X_train[selected_features])

# Transform the test set using the same selector

X_test_fs = selector.transform(X_test)

# Function to train and evaluate a single model

def train_and_evaluate_model(name, model, X_train, X_test, y_train, y_test):
pdf = PDF()
output_folder = f"/root/resultados-ml/conjunto/{name}-60test-mix-train-multiclass-fs-presplit"
if not os.path.exists(output_folder):

os.makedirs(output_folder)

print(f"Start training {name}")

start_time = time.time()

if name in ["SGD", "MLP", "Nearest_Centroid"]:
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

print(f"Scaling done for {name}")

model.fit(X_train, y_train) #quitar si descomento svc

else:

model.fit(X_train, y_train)
train_time = time.time() - start_time
print(f"End training {name}")
start_time = time.time()
print(f"Start prediction for {name}")
y_pred = model.predict(X_test)

test_time = time.time() - start_time

pdf.add_page()
pdf.chapter_title('Training and Testing Time')
pdf.chapter_body(f"Training time: {train_time:.4f} seconds\nTesting time: {test_time:.4f} seconds\n")
print(f"Creating reports for {name}")
try:
report = classification_report(y_test, y_pred)
pdf.add_classification_report(report)
print(f"Getting scores for {name}")
precision_scores = precision_score(y_test, y_pred, average=None)

recall_scores = recall_score(y_test, y_pred, average=None)

pdf.chapter_body("Precision and Recall Scores by Class with 8 decimals:\n")
unique_classes = np.unique(np.concatenate([y_test, y_pred]))
for i, class_name in enumerate(unique_classes):

precision = precision_scores][i]

recall = recall_scores][i]

pdf.chapter_body(f"Class '{class_name}':\n")

pdf.chapter_body(f" Precision: {precision:.8f\n")

pdf.chapter_body(f" Recall: {recall:.8f\n")
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# Define the classes of interest

classes_of _interest = ["Scan", "benign", "DoS","BruteForce"]

print(f"Getting confusion matrix for {name}")

# Confusion matrix

cm = confusion_matrix(y_test, y_pred, labels=classes_of_interest)

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=classes_of_interest)
# Save the confusion matrix plot as an image file

cm_plot_path = os.path.join(output_folder, "confusion_matrix.png")

disp.plot()

plt.savefig(cm_plot_path)

# Add the confusion matrix plot to the PDF
pdf.add_image(cm_plot_path, title="Confusion Matrix Plot")
plt.show()

plt.close()

cm1 = confusion_matrix(y_test, y_pred, labels=classes_of_interest, normalize = 'true')
disp1 = ConfusionMatrixDisplay(confusion_matrix=cm1, display_labels=classes_of_interest)
# Save the confusion matrix plot as an image file

cm1_plot_path = os.path.join(output_folder, "confusion_matrix_normalized.png")
displ.plot()

plt.savefig(cm1_plot_path)

# Add the confusion matrix plot to the PDF
pdf.add_image(cm1_plot_path, title="Normalized Confusion Matrix Plot")
plt.show()

plt.close()

if isinstance(model, DecisionTreeClassifier):
print(f"Plotting tree for {name}")
plt.figure(figsize=(25, 15)) # Adjust the size as needed
# Plot the decision tree

tree.plot_tree(model, feature_names=columns, filled=True, fontsize=8, proportion=True)

# Save the decision tree plot as an image file

tree_plot_path = os.path.join(output_folder, "decision_tree_default.png")
plt.savefig(tree_plot_path)

plt.close()

# Add the decision tree plot to the PDF

pdf.add_page()

pdf.chapter_title('Decision Tree')

pdf.add_image(tree_plot_path, title="Decision Tree Plot")

print(f"Start ROC plotting for {name}")
if name !="Nearest_Centroid":

y_prob = model.predict_proba(X_test)

label_binarizer = LabelBinarizer().fit(y_train)

y_onehot_test = label_binarizer.transform(y_test)

for class_of _interest in classes_of_interest:
class_id = np.flatnonzero(label_binarizer.classes_ == class_of_interest)[0]
fpr, tpr, _ =roc_curve(y_onehot_test[:, class_id], y_probl[:, class_id])

display = RocCurveDisplay(fpr=fpr, tpr=tpr, estimator_name=f"{class_of _interest} vs the rest")
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display.plot(color="darkorange")

plt.plot([0, 1], [0, 1], color="navy', lw=2, linestyle="'--")

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title(f"One-vs-Rest ROC curve: {class_of_interest} vs (all other classes)")
plt.legend(loc="lower right")

plot_file = os.path.join(output_folder, f'roc_plot_{class_of_interest}.png")
plt.savefig(plot_file)

plt.show()

plt.close()

# Add the ROC curve plot to the PDF

pdf.add_image(plot_file, title=f"ROC Curve: {class_of_interest} vs (all other classes)")

else:

print(f"ROC for Nearest Centroid for {name}")

centroids = model.centroids_

del X_train # OJO BORRAR

distances = np.linalg.norm(X_test[:, np.newaxis] - centroids, axis=2)
label_binarizer = LabelBinarizer().fit(y_train)

y_onehot_test = label_binarizer.transform(y_test)

fpr = dict()

tpr = dict()

roc_auc = dict()

fori, class_of_interest in enumerate(classes_of_interest):
fpr[i], tprli], _=roc_curve(y_onehot_test[:, i], -distances[:, i])
roc_aucli] = auc(fprli], tprl[i])
plt.figure()
display = RocCurveDisplay(fpr=fprl[i], tpr=tpr[i], estimator_name=f"{class_of_interest} vs the rest")
display.plot(color="darkorange")
plt.plot([0, 1], [0, 1], color="navy', lw=2, linestyle="--")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title(f"One-vs-Rest ROC curve: {class_of_interest} vs (all other classes)")
plt.legend(loc="lower right")
plot_file = os.path.join(output_folder, f"roc_plot_{class_of_interest}.png")
plt.savefig(plot_file)
plt.show()
plt.close()
# Add the ROC curve plot to the PDF

pdf.add_image(plot_file, title=f"ROC Curve: {class_of_interest} vs (all other classes)")

except Exception as e:

print(f"Error occurred for model {name}: {e}")
pdf.add_page()
pdf.chapter_title('Error')

pdf.chapter_body(f"An error occurred during the training or evaluation of the model {name}:\n{str(e)}")

finally:
# Save PDF

pdf_output_path

f"/root/resultados-ml/conjunto/conjunto-{name}-60test-mix-train-multiclass-fs-presplit-

classification_report.pdf"

pdf.output(pdf_output_path)

print(f"PDF saved for {name}")

return name, train_time, test_time, pdf_output_path
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# Define models
models = {
"Decision_Tree": DecisionTreeClassifier(),
"Random_Forest": RandomForestClassifier(n_estimators=100, random_state=0),
"Gaussian_NB": GaussianNB(),
"Bernoulli_NB": BernoulliNB(),
"SGD": SGDClassifier(loss='log_loss', max_iter=1000, tol=1e-3),
"Bagging_Tree": BaggingClassifier(estimator=DecisionTreeClassifier(), n_estimators=100, random_state=0),
"AdaBoost_Tree": AdaBoostClassifier(estimator=DecisionTreeClassifier(), n_estimators=100, random_state=0),
"MLP": MLPClassifier(max_iter=1000, random_state=42),
"Nearest_Centroid": NearestCentroid()
#"KNN": KNeighborsClassifier(),
#"SVM": SVC(probability=True)

# Train models and generate reports in parallel
with ThreadPoolExecutor(max_workers=1) as executor:
futures = {executor.submit(train_and_evaluate_model, name, model, X_train, X_test, y_train, y_test): name for name, model in
models.items()}
for future in as_completed(futures):
name = futures[future]
try:
name, train_time, test_time, pdf_output_path = future.result()
print(f"Completed {name}: Training time {train_time:.4f} seconds, Testing time {test_time:.4f} seconds, PDF saved at
{pdf_output_path}")
except Exception as exc:

print(f"Error occurred for model {name}: {exc}")
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Anexo XIV: Tablas de Precision y Recall y Matrices de Confusion

Precision
Dataset name Label DecissionTree | Gaussian NB | BernouilliNB SGD RandomForest | BaggingTree | BoostingTree | NearestCentroid MLP
BruteForce 0,99 0,00 0,08 1 1 0,99 0,98 0,03 1
DoS 0,99 0,72 0,95 0,96 0,99 0,99 0,99 0,94 0,99
10TD20 Scan 1 0,3 1 0,96 1 1 1 0,5 1
Benign 0,98 0,93 0,2 0,92 0,98 0,98 0,98 0,59 0,96
Average 0.99 0.68 0.89 0.96 0.99 0.99 0.99 0.86 0.99
DoS 1 0,91 0,84 0,99 1 1 1 0,98 1
Scan 1 1 1 1 1 1 1 0,96 1
10T-23 -
Benign 1 1 1 1 1 1 1 1 1
Average 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00
BruteForce 0,83 0,00 0,00 0,00 0,96 0,91 0,85 0,00 0,66
DoS 1 1 1 1 1 1 1 1 1
CIC-10T-2023 Scan 0,98 0,00 0,03 0,69 0,99 0,99 0,99 0,51 0,96
Benign 0,97 0,28 0,01 0,55 0,97 0,98 0,97 0,28 0,85
Average 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00




Precision

Dataset name Label DecissionTree | Gaussian NB | BernouilliNB | SGD | RandomForest | BaggingTree | BoostingTree | NearestCentroid MLP
Benign 1 0,25 0,8 0,98 1 1 1 0,47 0,99
Escenario 1 Malign 1 1 0,95 1 1 1 1 0,99 1
Binary
Average 1.00 0.82 0.91 1.00 1.00 1.00 1.00 0.87 1.00
BruteForce 0.44 0.00 0.00 0.00 0.55 0.55 0.46 0.01 0.82
_ DoS 1 1.00 0.99 0.99 1 1 1 1.00 1.00
Escenario 1 Scan 1 0.00 085 | 099 1 1 1 085 1.00
Multiclass
Benign 1 0.05 0.82 0.98 1 1 1 0.99 0.99
Average 1.00 0.51 0.91 0.99 1.00 1.00 1.00 0.96 1.00
BruteForce 0.42 0.00 0.00 0.00 0.53 0.51 0.43 0.01 0.04
DoS 1 1.00 0.64 0.99 1 1 1 0.99 1
Escenario 1
Multiclass & ES Scan 1 0.00 0.95 0.88 1 1 1 0.88 0.99
Benign 1 0.02 0.78 0.96 1 1 1 0.98 0.99
Average 1.00 0.50 0.76 0.96 1.00 1.00 1.00 0.96 0.99
Benign 0.96 0.47 0.21 0.11 1.00 0.99 0.98 0.73 0.11
Escenario 2 -
Binary Malign 0.53 0.28 0.53 0.01 0.53 0.53 0.53 0.53 0.01
Average 0.68 0.37 0.38 0.06 0.75 0.75 0.74 0.58 0.06
BruteForce 0,00 0,00 0,03 0,00 0,00 0,00 0,02 0,02 0,07
) DoS 0,00 0,02 0,00 0,01 0,00 0,00 0,00 0,00 0,56
Escenario 2 Scan 0,06 0,07 0,11 0,17 0,14 0,04 0,19 0,88 1
Multiclass
Benign 1 0,96 0,35 0,11 1 1 1 1 0,99
Average 0.50 0.49 0.22 0.14 1.00 0.49 0.57 0.93 0.99
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Recall

Dataset name Label DecissionTree | Gaussian NB | BernouilliNB | SGD | RandomForest | BaggingTree | BoostingTree | NearestCentroid | MLP
BruteForce 1 1 1 0,27 1 1 1 1 0,99
DoS 1 0,48 0,86 1 1 1 1 0,83 1
10TD20 Scan 1 0,00 0,95 0,99 1 1 1 0,89 1
Benign 0,93 0,05 0,36 0,57 0,94 0,93 0,93 0,29 0,89
Average 0.99 0.38 0.83 0.96 0.99 0.99 0.99 0.79 0.99
DoS 1 0,77 0,77 0,99 1 1 1 0,77 1
10T-23 Sce.m 1 1 1 1 1 1 1 1 1
Benign 1 1 1 1 1 1 1 0,96 1
Average 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00
BruteForce 0,86 0,99 0,14 0,00 0,73 0,86 0,85 0,44 0,36
DoS 1 0,12 0,89 1 1 1 1 0,99 1
CIC-10T-2023 Scan 0,98 0,00 0,47 0,52 0,98 0,99 0,99 0,81 0,96
Benign 0,98 0,01 0,74 0,33 0,98 0,99 0,98 0,53 0,90
Average 1.00 0.12 0.89 1.00 1.00 1.00 1.00 0.99 1.00
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Recall

Dataset name Label DecissionTree | Gaussian NB | BernouilliNB | SGD | RandomForest | BaggingTree | BoostingTree | NearestCentroid MLP
Benign 1 1 0,84 0,99 1 1 1.00 0,98 0.99
Escenario 1 Malign 1 0,08 0,93 0,99 1 1 1.00 0,65 1
Binario
Average 1.00 0.30 0.91 0.99 1.00 1.00 1.00 0.73 1.00
BruteForce 0.38 0.99 0.79 0.00 0.36 0.37 0.38 0.67 0.18
_ DoS 1.00 0.12 0.76 1.00 1.00 1.00 1.00 0.97 1.00
Escenario 1 Scan 1.00 0.00 0.99 0.99 1.00 1.00 1.00 0.99 0.99
Multiclass
Benign 1.00 0.00 0.83 0.99 1.00 1.00 1.00 0.84 1.00
Average 1.00 0.06 0.84 0.99 1.00 1.00 1.00 0.94 1.00
BruteForce 0.36 1.00 0.66 0.00 0.35 0.35 0.35 0.09 0.00
DoS 1.00 0.12 0.85 0.99 1.00 1.00 1.00 0.99 1.00
Escenario 1 Scan 1.00 0.00 0.99 0.98 1.00 1.00 1.00 0.99 0.99
Multiclass & FS . . . - - . . . .
Benign 0.99 0.00 0.00 0.85 0.99 0.99 0.99 0.85 0.99
Average 1.00 0.06 0.68 1.00 1.00 1.00 1.00 0.96 0.99
i 2 Benign 0.00 1.00 0.00 0.14 0.00 0.00 0.00 0.00 0.14
DoS sampled Malign 1 0.00 1 0.01 1 1 1 1 0.01
Binary Average 0.68 0.47 0.53 0.07 0.53 0.53 0.74 0.53 0.99
BruteForce 0,00 1 0,99 0,00 0,00 0,01 0,00 0,99 0,48
SR DoS 05 0,00 0,12 0,71 0,67 0,49 0,00 0,49 0,95
DoS sampled Scan 0,00 0,00 0,00 0,00 0,00 0,00 0,04 1 1
Rest for testing Benign 0,14 0,00 0,00 0,14 0,14 0,14 0,14 0,00 0,98
Average 0.07 0.00 0.00 0.07 0.07 0.07 0.07 0.53 0.99
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Matrices de Confusion IoTD20
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BaggingTree
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Matrices de Confusion IoT-23
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BaggingTree
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le7 le7
12 12
Scan 1.3e+07 scan 1.3e+07
10 1.0
0.8 0.8
M T
= 3
— benign 1.2e+07 = benign 1.2e+07
g 0.6 y o 06
[ =
0.4 0.4
Dos 0.2 Dos 41977 0.2
0.0 . 0.0
Scan benign DoS Scan benign DoS
Predicted label Predicted label
NearestCentroid MLP
le7 1le7
1.2 1.2
Scan 1.3e+07 scan 1.3e+07
1.0 1.0
0.8 0.8
w o
= s
o - -
‘p benign 1le+07 = benign 1.2e+07
g 0.6 g 0.6
= =
0.4 0.4
DoS 0.2 Dos 0.2
0.0

benign
Predicted label

Dos

Scan benign
Predicted label

Dos

122




Matrices de Confusion CIC-10T-2023
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BaggingTree BoostingTreeNB
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Matrices de Confusion Escenario 1, binary
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BaggingTree BoostingTreeNB
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Matrices de Confusion Escenario 1, multiclass
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BaggingTree BoostingTreeNB
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Matrices de Confusion Escenario 1, multiclass feature selection
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BaggingTree BoostingTreeNB
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Matrices de Confusion Escenario 2 Binary
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BaggingTree

BoostingTreeNB
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Matrices de Confusion Escenario 2 Multiclass
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BaggingTree BoostingTreeNB
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Anexo XV: Calculo Tiempos Seleccién de atributos
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