

Detección de botnets en
escenarios de IoT mediante

técnicas de Inteligencia Artificial

Botnet detection in IoT scenarios
using Artificial Intelligence techniques

Autora

María Rodríguez García

Directores

José García Moros

Álvaro Alesanco Iglesias

Máster Universitario en Ingeniería de Telecomunicación

Escuela de Ingeniería y Arquitectura

2024

Trabajo Fin de Máster

2

Agradecimientos

En primer lugar, quiero mostrar mi agradecimiento a mis directores, José García y Álvaro Alesanco,

por su implicación, entusiasmo, confianza y cercanía, y por permitirme aprender tanto de vosotros.

Gracias por ser mis guías en esta etapa de mi vida. Asimismo, agradezco el apoyo brindado por el

Instituto de Investigación en Ingeniería de Aragón a través del Programa de Iniciación a la

Investigación. También me gustaría agradecer a todos esos profesores y profesoras que, con su

esfuerzo y dedicación, me han enseñado y acompañado durante mi trayectoria académica. En

último lugar, quiero dar las gracias a toda mi familia por acompañarme y apoyarme, y a Fran, por

estar siempre a mi lado cuando lo necesito. Gracias a mis amigos Pedro y Álvaro, que, a pesar de

mis ausencias, siguen ahí. Y a Lorena, por sen tan buena compañera.

3

Detección de botnets en escenarios de IoT mediante
técnicas de Inteligencia Artificial

RESUMEN
El objetivo del Trabajo Fin de Máster (TFM) es evaluar la efectividad de diversos algoritmos de

clasificación en la detección de tráfico malicioso en el entorno de Internet de las Cosas (IoT)

utilizando conjuntos de datos específicos que incluyen tanto tráfico benigno como diversos tipos

de ataques. Además, este trabajo muestra y discute el análisis multi-base de datos y examina cómo

la heterogeneidad de estas bases afecta los resultados conjuntos complicando su aplicabilidad final.

En este trabajo fin de máster se ha analizado el entorno IoT actual, abarcando desde los dispositivos

más utilizados hasta los más atacados, así como las amenazas más comunes, con un enfoque

especial en la botnet Mirai y sus ataques típicos. Se han estudiado diversos conjuntos de datos IoT,

seleccionando IoTD20, IoT-23 y CIC-IoT-2023, que incluyen tráfico benigno y ataques como DDoS,

fuerza bruta y escaneo de puertos.

Se ha propuesto un exhaustivo banco de pruebas para evaluar nueve algoritmos de clasificación

(Decision Tree, Gaussian Naive Bayes, Bernouilli Naive Bayes, Stochastic Gradient Descent, Random

Forest, Bagging con Decision Tree, AdaBoost con Decision Tree, NearestCentroid y Multilayer

Perceptron) que permitan diferenciar entre tráfico benigno y malicioso. Se utilizó la herramienta

Zeek para extraer y etiquetar la información de los flujos de tráfico. Las librerías Scikit-learn, Pandas

y Dask se emplean para el preprocesado y análisis de datos.

Las pruebas se han realizado en clasificación binaria y multiclase, demostrando que los algoritmos

basados en árboles de decisión (Decision Tree, Random Forest, Boosting Tree y Bagging Tree)

resultaron ser los más eficientes, alcanzando valores F1 superiores a 0.99 en la evaluación individual

de los datasets y a 0.9 en la mayoría de las pruebas de evaluación con datasets combinados. Los

resultados indican que los modelos entrenados con datos distintos al conjunto de evaluación son

subóptimos, resaltando la necesidad de incluir datos y ataques variados para obtener resultados

más realistas y eficientes en la detección de botnets.

Los resultados obtenidos en este trabajo subrayan la importancia de usar datasets adecuados para

evaluar la efectividad de los modelos de Machine Learning en la detección de botnets, asegurando

su aplicabilidad en entornos reales y diversos.

4

Índice
1. Introducción .. 9

1.1. Estado del arte .. 9

1.2. Objetivos ...10

1.3. Contexto ..10

1.4. Cronograma ..10

1.5. Estructura del documento ..11

2. Análisis del entorno IoT ...12
2.1. Dispositivos IoT más atacados ..12

2.2. Amenazas más frecuentes en entornos IoT ..13

2.3. Botnets en entornos IoT ..15

2.3.1. Principales amenazas: Botnet Mirai ... 17

2.3.2. Otros ataques: DDoS, fuerza bruta, escaneo de puertos y de sistema operativo. 20

2.4. Conjuntos de datos en entornos IoT ...21

2.4.1. Descripción de IoTD20 .. 22

2.4.2. Descripción de IoT-23 ... 23

2.4.3. Descripción de CIC-IoT-2023 .. 24

3.1. Técnicas de Machine Learning para clasificación e indicadores de rendimiento26

3.2. Técnicas de clasificación ...27

3.3. Indicadores de rendimiento de los clasificadores ..32

4.1. Arquitectura general del sistema ..34

4.2. Obtención de logs y atributos mediante Zeek ..35

4.3. Manipulación y limpieza de datos ..36

4.4. Aplicación de técnicas de ML ..40

4.5. Entorno de trabajo de las pruebas ...41

5. Resultados ...42
5.1. Banco de pruebas realizadas ..42

5.2. Resultados y discusión ..43

5.2.1. Primera etapa de pruebas: clasificación individual sobre IoTD20, IoT-23 y CIC-IoT-2023

(clasificación multiclase) .. 43

5.2.2. Segunda etapa de pruebas, escenarios 1 y 2: clasificación sobre IoTD20, IoT-23 y CIC-

IoT-2023 combinados (clasificaciones multiclase y binaria) .. 47

6. Conclusiones y líneas futuras ..52
6.1. Conclusiones ...52

6.2. Líneas futuras ..53

5

Anexo I: Otros ataques comunes ..58

Anexo II: Detalles de las bases de datos seleccionadas ..60

Anexo III: Estudio de Zeek ...66

Anexo IV: Scripts de Zeek ..68

Anexo V: Scripts de Python para conversión a .csv ...69

Anexo VI: Scripts de unión de archivos .csv ..70

Anexo VII: Scripts de etiquetado ...72

Anexo VIII: Normas de etiquetado ..86

Anexo IX: Scripts de capture-loss ..92

Anexo X: Scripts de representación de capture-loss ...98

Anexo XI: Scripts de obtención de resultados ...101

Anexo XII: Script para muestreo de clase DoS ..105

Anexo XIII: Script de entrenamiento y evaluación con selección de atributos108

Anexo XIV: Tablas de Precision y Recall y Matrices de Confusión ..115

Anexo XV: Cálculo Tiempos Selección de atributos ..135

6

Índice de figuras
FIGURA 1: DIAGRAMA DE GANTT. ... 11
FIGURA 2: ÍNDICE DE AMENAZA POR TIPO DE DISPOSITIVO. ... 12
FIGURA 3: NÚMERO DE DISPOSITIVOS EN LA ACTUALIDAD Y PREVISIÓN PARA 2027 (ARMSTRONG, 2022). 14
FIGURA 4: DISPOSITIVOS MÁS EXPUESTOS (THE RISKIEST CONNECTED DEVICES IN 2023, 2023). .. 15
FIGURA 5: TIPOS DE DISPOSITIVOS INFECTADOS POR MIRAI (INSIDE THE INFAMOUS MIRAI IOT BOTNET: A RETROSPECTIVE

ANALYSIS, 2017). ... 18
FIGURA 6: MÓDULO DE REPLICACIÓN DE MIRAI (INSIDE THE INFAMOUS MIRAI IOT BOTNET: A RETROSPECTIVE ANALYSIS, 2017).

 .. 19
FIGURA 7: DISTRIBUCIÓN DE ATAQUES DE IOTD20 EN CLASES Y SUBCLASES (ULLAH & MAHMOUD, 2020). 23
FIGURA 8: CATEGORÍAS DE TÉCNICAS DE MACHINE LEARNING. ... 26
FIGURA 9: EJEMPLO DE PERCEPTRÓN MULTICAPA (MLP) CON UNA CAPA OCULTA. .. 28
FIGURA 10: EJEMPLO DE FUNCIONAMIENTO DEL ALGORITMO NEAREST CENTROID (NEAREST CENTROID CLASSIFICATION — SCIKIT-

LEARN 0.18.2 DOCUMENTATION). ... 29
FIGURA 11: EJEMPLO DE FUNCIONAMIENTO DEL ALGORITMO ADAPTIVE BOOSTING. ... 29
FIGURA 12: EJEMPLO DE FUNCIONAMIENTO DEL ALGORITMO RANDOM FOREST. .. 31
FIGURA 13: EJEMPLO DE SUPERFICIE DE DECISIÓN DE SGD. (STOCHASTIC GRADIENT DESCENT — SCIKIT-LEARN 1.5.0

DOCUMENTATION). ... 31
FIGURA 14: ESQUEMA GENERAL DE LA METODOLOGÍA UTILIZADA... 34
FIGURA 15: PORCENTAJE DE BYTES PERDIDOS PARA CADA FLUJO DE TRÁFICO. .. 36
FIGURA 16: DISTRIBUCIÓN DE NÚMERO DE FLUJOS SEGÚN PORCENTAJE DE BYTES PERDIDOS. .. 37
FIGURA 17: PRIMERA ETAPA DE PRUEBAS: EVALUACIÓN SOBRE LOS DATASETS IOTD20-ZEEK, IOT-23-ZEEK Y CIC-IOT-2023-ZEEK

DE FORMA INDEPENDIENTE. ... 42
FIGURA 18: SEGUNDA ETAPA DE PRUEBAS: EVALUACIÓN SOBRE EL DATASET COMBINADO A PARTIR DE IOTD20-ZEEK, IOT-23-

ZEEK Y CIC-IOT-2023-ZEEK (ESCENARIO 1), Y EVALUACIÓN SOBRE IOTD20-ZEEK E IOT-23-ZEEK MEDIANTE EL MODELO

GENERADO CON CIC-IOT-2023-ZEEK. .. 43
FIGURA 19: TIEMPOS DE CÁLCULO (EXPRESADO EN FLUJOS POR SEGUNDO ANALIZADOS) DE LOS ALGORITMOS DE ML EN EL

DATASET CIC-IOT-2023. .. 44
FIGURA 20: MATRICES DE CONFUSIÓN PARA IOTD20 UTILIZANDO RANDOMFOREST. .. 46
FIGURA 21: MATRIZ DE CONFUSIÓN PARA CLASIFICADOR BAGGING .. 48
FIGURA 22: MATRIZ DE CONFUSIÓN PARA CLASIFICACIÓN BINARIA EN EL SEGUNDO ESCENARIO EMPLEANDO RANDOM FOREST .. 51

7

Índice de tablas
TABLA I: ATAQUES DE MIRAI. ... 20
TABLA II: LISTADO DE CONJUNTOS DE DATOS EN ENTORNOS IOT ESTUDIADOS. ... 21
TABLA III: NÚMERO DE PAQUETES POR CATEGORÍA Y SUBCATEGORÍA EN IOTD20. (ULLAH & MAHMOUD, 2020). 23
TABLA IV: VALORES POSIBLES DEL CAMPO “ETIQUETA” EN EL CONJUNTO DE DATOS IOT-23. ... 24
TABLA V: MATRIZ DE CONFUSIÓN PARA CLASIFICACIÓN DE TRÁFICO ANÓMALO. .. 32
TABLA VI: NUEVOS ATRIBUTOS OBTENIDOS CON ZEEK A PARTIR DE CONN_STATISTICS.LOG. ... 35
TABLA VII: NÚMERO DE FLUJOS DE TRÁFICO TOTALES Y ELIMINADOS... 37
TABLA VIII: EJEMPLO DE ATRIBUTOS PARA UN FLUJO CON PÉRDIDA DE BYTES. ... 37
TABLA IX: VALORES REFERIDOS A CAMPOS VACÍOS Y VALORES SUSTITUTOS. .. 38
TABLA X: FLUJOS DE CADA CONJUNTO DE DATOS. ... 40
TABLA XI: ESPECIFICACIONES DE LA MÁQUINA EMPLEADA EN EL TRABAJO. ... 41
TABLA XII: MEDIDA F1 PARA LA PRIMERA ETAPA DE PRUEBAS, CLASIFICACIÓN MULTICLASE INDIVIDUAL DE IOTD20, IOT-23 Y CIC-

IOT-2023. ... 45
TABLA XIII: MEDIDA F1 OBTENIDA POR LOS AUTORES DE CIC-IOT-2023. ... 46
TABLA XIV: MEDIDA F1 OBTENIDA POR LOS AUTORES DE IOTD20. .. 47
TABLA XV: MEDIDA F1 PARA LA SEGUNDA ETAPA DE PRUEBAS. ... 49
TABLA XVI: LISTADO DE CARACTERÍSTICAS ORDENADAS SEGÚN LA MEDIA INFOMATION GAIN. ... 50

8

LISTA DE ACRÓNIMOS

AA: Aprendizaje Automático
AB: Adaptative Boosting
ACK: Acknowledgement flag
APT: Advanced persistent threat
ARC: Argonaut RISC Core
ARP: Address Resolution Protocol
ASCII: American Standard Code for
Information Interchange
BBDD: Bases de datos
BPS: Bytes per second
C2: Command And Control
CAIDA: Center for Applied Internet Data
Analysis
CART: Classification and Regression Trees
CDX: Cyber Defense Exercise
CFS: Correlation-based Feature Subset
Selection
CIC: Canadian Institute for Cybersecurity
CPU: Central Processing Unit
CWR: Congestion Window Reduced
DARPA: Defense Advanced Research
Projects Agency
DDoS: Distributed Denial of Service
DGA: Domain Generation Algorithm
DL: Deep Learning
DoS: Denial of Service
DNS: Domain Name System
DVR: Digital Video Recorder
ECE: Explicit Congestion Notification
FIN: Finish flag
FN: False Negative
FP: False Positive
FS: Feature Selection
FTP: File Transfer Protocol
GRE: Generic Routing Encapsulation
HTTP: Hypertext Transfer Protocol
IA: Inteligencia Artificial
IAT: Interarrival Time
ICMP: Internet Control Message Protocol
IDS: Intrusion Detection System
IoMT: Internet of Medical Things
IoT: Internet of Things
IP: Internet Protocol
IRC: Internet Relay Chat

KNN: K Nearest Neighbors
LAN: Local Area Network
LBNL: Lawrence Berkeley National Laboratory
ML: Machine Learning
MLP: Multilayer Perceptron
NAS: Network-Attached Storage
NIDS: Network IDS
OOBM: Out-Of-Band Management
OS: Operative System
OT: Operational Technology
OVA: One Versus All
PSH: Push flag
POP3: Post Office Protocol version 3
PPS: Packets per second
QP: Quadratic Programming
R2L: Remote to Local
RAM: Random Access Memory
ROC: Receiver Operating Characteristic
RDP: Remote Desktop Protocol
RST: Reset flag
S-IDS: Signature based IDS
SGD: Stochastic Gradient Descent
SMB: Server Message Block
SMO: Sequential Minimal Optimization
SSH: Secure Shell
SSL: Secure Socket Layer
STA: Estación
SVM: Support Vector Machine
SYN: Synchronization flag
SQL: Structured Query Language
TCP: Transmission Control Protocol
TFM: Trabajo Fin de Máster
TLS: Transport Layer Security
TP: True Positive
TPR: True Positive Rate
TS: True Negative
UDP: User Datagram Protocol
U2R: User to Root
URG: Urgent Flag
VSE: Valve source engine
XSS: Cross Site Scripting

9

1. Introducción
En este capítulo se presenta la temática que aborda el trabajo, comenzando con una breve

revisión del estado del arte de los sistemas de detección de intrusos en entornos IoT (Internet

of Things) basados en la utilización de técnicas de Inteligencia Artificial (en cuyos aspectos más

importantes se irá profundizando a lo largo de la memoria), y los principales objetivos que se

pretenden cumplir. A continuación, se describe el contexto en que se ha llevado a cabo el trabajo

y se muestra un cronograma del mismo. Finalmente se indica cómo se ha organizado la

memoria.

1.1. Estado del arte

Hoy en día, la preocupación por la seguridad en las redes de comunicaciones y sistemas de

información es evidente, lo que ha llevado al desarrollo de nuevas técnicas tanto preventivas

como reactivas para abordar este problema. En este contexto, surgieron los Sistemas de

Detección de Intrusiones (IDS), cuyo objetivo es identificar actividades maliciosas en redes y

sistemas. Las técnicas de aprendizaje automático (Machine Learning, ML) y aprendizaje

profundo (Deep Learning) son particularmente útiles en este ámbito, ya que pueden

automatizar la detección de ataques y diferenciar entre diversos tipos de tráfico gracias a la

inteligencia artificial.

La seguridad en el ámbito de Internet de las Cosas (IoT) y en redes domésticas y de trabajo

también se ha vuelto crucial. Los dispositivos IoT, debido a su interconexión y susceptibilidad a

ataques, requieren medidas de seguridad especializadas. Los IDS aplicados a entornos IoT

utilizan avanzados algoritmos de ML y Deep Learning para analizar grandes volúmenes de datos

en tiempo real, identificar patrones anómalos y detectar actividades maliciosas antes de que

causen daños significativos.

Recientemente, se han creado nuevos conjuntos de datos (datasets) que incluyen tanto tráfico

benigno como diversos tipos de ataques en entornos IoT, los cuales se utilizan como bancos de

prueba para los sistemas de detección de intrusos. Estos datasets permiten evaluar el

rendimiento de los algoritmos y técnicas de ML que sustentan los IDS propuestos. Varios

estudios previos ofrecen revisiones sistemáticas sobre la detección de ataques de

ciberseguridad en el escenario de IoT, utilizando diferentes métodos de inteligencia artificial,

incluyendo técnicas de aprendizaje profundo (DL) y de aprendizaje automático (ML (da Costa et

al., 2019; Zarpelão et al., 2017)). El trabajo en (Zarpelão et al., 2017) presenta una revisión sobre

los avances en IDS para IoT, identificando las principales tendencias, problemas abiertos y

posibles líneas de investigación futuras. Además, el trabajo en (da Costa et al., 2019) presenta

una revisión de técnicas de ML aplicadas en IoT para la detección de intrusiones. En los capítulos

2 y 3, donde se detallan los materiales y métodos de este trabajo, se profundiza en el estado del

arte específico de cada tecnología utilizada.

10

1.2. Objetivos
El objetivo principal de este trabajo es el estudio y análisis de diversos conjuntos de datos de

tráfico de comunicaciones en entornos IoT, centrándose en la identificación de ataques de

botnets como Mirai y Gafgyt, mediante la aplicación de técnicas de ML.

Además, los objetivos específicos del TFM son:

● Realizar un estudio detallado e individualizado de los conjuntos de datos, extrayendo

parámetros comunes para poder realizar una evaluación conjunta.

● Realizar un estudio a partir de la unión de los tres conjuntos seleccionados, y obtener

métricas detalladas, para posteriormente estudiar el funcionamiento de los modelos

con datos provenientes de diferentes conjuntos de datos.

● Estudiar el rendimiento y escalabilidad de los modelos de clasificación al ser entrenados

mediante un conjunto de datos diferente al empleado en la evaluación, analizando su

comportamiento frente a ataques similares extraídos de diversos conjuntos de datos,

pero empleando parámetros comunes.

1.3. Contexto

Este trabajo se enmarca en la línea de investigación de ciberseguridad del departamento de

Ingeniería Electrónica y Comunicaciones, específicamente del grupo de investigación

Communications Networks and Information Technologies (CeNIT) del Instituto de Investigación

en Ingeniería de Aragón (I3A). Tiene relación directa con la materia de formación obligatoria de

"Redes y servicios" del Máster en Ingeniería de Telecomunicación.

En este TFM se aborda el estudio y comparación de diversos conjuntos de datos de tráfico de

comunicaciones en entornos IoT, centrándose en la identificación y detección de ataques de

botnets. Las técnicas de Machine Learning evaluadas en este estudio corresponden a la

categoría de aprendizaje automático supervisado. Este trabajo se ha llevado a cabo en el marco

de una beca de investigación concedida por el I3A, que permite iniciarse en tareas de

investigación vinculadas con los estudios y facilita una futura orientación profesional o

investigadora. Además, se enmarca en las tareas de investigación del proyecto “Optimización de

redes WLAN coordinadas de última generación basadas en arquitecturas programables y

virtualizadas (NeWLAN)” PID2022-136476OB-I00.

1.4. Cronograma
En la Figura 1 se presenta de forma gráfica la organización temporal del trabajo. Por orden

cronológico, se distribuyó en las siguientes etapas:

● Estudio del estado del arte y búsqueda de bases de datos para su evaluación. 5 semanas.

● Adaptación de las bases de datos. 3 semanas.

● Obtención de nuevos parámetros comunes con Zeek y etiquetado de flujos de tráfico. 4

semanas.

● Aplicación de técnicas de ML y DL sobre las bases de datos. 4 semanas.

● Evaluación y discusión de los resultados obtenidos. 4 semanas.

● Redacción de la memoria. 4 semanas.

11

Figura 1: Diagrama de Gantt.

1.5. Estructura del documento
El documento se organiza de la siguiente forma:

● En el capítulo 1 se incluye la Introducción, donde se presenta el estado del arte, y se han

planteado los objetivos principales del trabajo, contexto y cronograma.

● En el capítulo 2 se realiza un Análisis exhaustivo del entorno IoT, donde se introducen los

dispositivos IoT más usados, los dispositivos atacados con mayor frecuencia, los ataques

más comunes (entrando en detalle en la botnet Mirai), así como los principales conjuntos

de datos.

● En el capítulo 3 se introducen las Técnicas de Machine Learning, desarrollando en mayor

profundidad aquellas empleadas en este estudio, junto con los indicadores de rendimiento

utilizados para evaluar los resultados.

● En el capítulo 4 se presenta el Sistema de detección de botnets, que abarca todo el proceso

de transformación de las capturas de tráfico de los datasets originales mediante la

herramienta Zeek y diferentes librerías de Python para poder transformar los conjuntos de

datos, eliminar flujos de datos erróneos, asignarles etiquetas y unificar los atributos. En este

capítulo se desarrolla la metodología empleada y se analiza la estructura de los datos

transformados.

● En el capítulo 5 se presenta la Aplicación de técnicas de ML sobre los conjuntos de datos.

Se describe la metodología empleada para la clasificación, seguida de la presentación y

discusión de los resultados obtenidos para los dos escenarios de pruebas planteados: por

un lado, análisis de los tres conjuntos de datos de forma individual con clasificación

multiclase, y por otro lado, análisis empleando los tres conjuntos de datos de forma

combinada. Para este segundo escenario de pruebas, en una primera evaluación se unieron

los tres datasets y se generaron los conjuntos de train y test, realizando clasificación binaria

y multiclase; y en la segunda prueba se utilizó como conjunto de test un dataset diferente

al de evaluación, también de forma binaria y multiclase.

● Finalmente, en el capítulo 6 se abordan las Conclusiones más relevantes de este TFM y

posibles líneas futuras.

12

2. Análisis del entorno IoT
2.1. Dispositivos IoT más atacados

En el ámbito de Internet de las Cosas, los dispositivos conectados a la red pueden estar

expuestos a ataques debido a diversas razones: firmware desactualizado, sistemas de

autenticación débiles, protocolos de comunicación inseguros o configuraciones de red

inseguras. Es importante destacar que muchos usuarios de estos dispositivos no son conscientes

de estas vulnerabilidades. Según el informe (Cybersecurity Report 2023: Consumer Devices

Under Threat, 2022), el 67% de los hogares sufren una amenaza online al mes. Además, algunos

fabricantes no invierten suficiente esfuerzo en securizar adecuadamente los productos. Los

atacantes, conscientes de estas deficiencias, aprovechan estas brechas de seguridad para

acceder o comprometer los dispositivos con fines maliciosos. Dentro de las marcas de

dispositivos más atacados, encontramos Hikivision en primer puesto, seguida de D-Link y de

Apple. Sin embargo, es necesario mencionar que el número de dispositivos influye

significativamente en esta estadística.

El ecosistema de Internet de las Cosas consta de miles de millones de dispositivos conectados a

Internet, y estos se presentan en formas muy variadas, desde electrodomésticos, impresoras,

hasta cámaras IP y sensores. Como se puede apreciar en la Figura 2, según el mismo informe

(Cybersecurity Report 2023: Consumer Devices Under Threat, 2022), siete tipos de dispositivos

concentran el 90% de las amenazas: ordenadores y teléfonos móviles componen

aproximadamente el 46%, mientras que las cámaras IP, a pesar de representar solo el 1.2% de

los dispositivos, sufren un 24% de los ataques.

Figura 2: Índice de amenaza por tipo de dispositivo.

13

Con esto se concluye que los dispositivos que se encuentran bajo mayor riesgo de amenaza son:

en primer lugar los NAS (Network-Attached Storage) o dispositivos de almacenamiento

conectados a la red, ya que necesitan tener determinados puertos abiertos para su

funcionamiento, seguidos de los DVR (Digital Video Recorders) o dispositivos de grabación de

vídeo digital, cuya función es grabar el vídeo proveniente de elementos como cámaras IP, y

poseen una configuración de fábrica muy poco segura, a continuación encontramos las cámaras

IP, conocidas por la poca seguridad que presentan de fábrica, pueden convertirse fácilmente en

parte de una botnet. Finalmente, también cabe mencionar los monitores de bebé y los

dispositivos de audio y vídeo.

La información del informe "(The Riskiest Connected Devices in 2023, 2023)" complementa los

datos sobre las vulnerabilidades en dispositivos IoT. Según el informe, los dispositivos IoT que

mayor riesgo tienen de ser atacados incluyen cámaras IP, impresoras y VoIP, que suelen estar

expuestos en Internet y han sido históricamente blanco de APTs (Advanced persistent threat).

Además, se identifican dos nuevas entradas problemáticas: los dispositivos NAS y OOBM (out-

of-band management). Los dispositivos NAS han ganado popularidad entre los actores de

ransomware debido a los valiosos datos que almacenan y sus numerosas vulnerabilidades. Por

otro lado, los dispositivos de gestión out-of-band (OOBM) permiten la administración remota de

equipos a través de interfaces alternativas, pero enfrentan serias vulnerabilidades críticas,

algunas de las cuales han sido explotadas por malware sofisticado, incluso hasta finales de 2022.

Esta situación subraya la necesidad urgente de mejorar las medidas de seguridad y la

concienciación entre fabricantes y usuarios de dispositivos IoT, especialmente en dispositivos

específicos como NAS y OOBM, que pueden comprometer redes críticas si no se protegen

adecuadamente.

En cuanto a los sistemas operativos utilizados por los dispositivos, el mismo informe indica que

predominan los sistemas operativos "tradicionales" como Windows, Linux, Mac y UNIX. Esto

incluye varios dispositivos especializados de IoT/OT/IoMT que ejecutan Linux o Windows.

Finalmente, el infome concluye que más de 4000 vulnerabilidades afectan a los dispositivos en

el conjunto de datos analizado. De estas vulnerabilidades, el 78% afecta a dispositivos IT, el 14%

a dispositivos IoT, el 6% a dispositivos OT y el 2% a dispositivos IoMT. Aunque la mayoría de las

vulnerabilidades afectan a dispositivos IT, casi el 80% de estas tienen solo alta severidad. Por

otro lado, los dispositivos IoMT tienen menos vulnerabilidades, pero el 80% de ellas son críticas,

lo que típicamente permite la toma de control completa de un dispositivo. De manera similar,

más de la mitad de las vulnerabilidades que afectan a dispositivos OT e IoT son críticas.

2.2. Amenazas más frecuentes en entornos IoT

Considerando la tendencia hacia la automatización inteligente en todos los ámbitos, los hogares

de todo el mundo en 2022 ya poseían dispositivos inteligentes y se espera que esta cifra siga

aumentando. Junto con los altavoces inteligentes, otros dispositivos de alta demanda incluyen

sistemas de seguridad, grandes y pequeños electrodomésticos, detectores de humo y hubs y

gateways, como se puede observar en la Figura 3.

14

Figura 3: Número de dispositivos en la actualidad y previsión para 2027 (Armstrong, 2022).

El aumento masivo de dispositivos IoT ha ampliado significativamente la superficie de ataque,

convirtiéndolos tanto en puntos de acceso inicial como en posibles atacantes. Las amenazas más

comunes incluyen:

● Explotación de Firmware: Vulnerabilidades en el software de bajo nivel que controla

el hardware.

● Explotación de vulnerabilidades en endpoints conectados a dispositivos IoT: Debido a

sistemas operativos desactualizados o configuraciones inseguras.

● Ataques de Ransomware: Especialmente dirigidos a dispositivos IoT como cámaras IP

y dispositivos de almacenamiento NAS, debido a los datos valiosos que pueden

contener.

● Hardware no protegido: Dispositivos IoT con hardware vulnerable que puede ser

comprometido fácilmente.

● Acceso no autorizado a dispositivos IoT: Debido a la falta de autenticación adecuada y

configuraciones de red inseguras.

Además, el 98% del tráfico IoT no está encriptado, exponiendo información personal y

confidencial al riesgo de interceptación (Law, 2023). Los puertos abiertos en dispositivos IoT

representan uno de los factores de riesgo más críticos debido a su capacidad para exponer

vulnerabilidades conocidas y desconocidas, incluyendo exploits zero-day. Entre los protocolos

más comúnmente explotados en 2022 se encuentran el Protocolo SMB (Server Message Block),

utilizado por sistemas Windows para compartir archivos y acceder a servicios remotos; el

Protocolo RDP (Remote Desktop Protocol), que facilita la gestión remota mediante una interfaz

gráfica; SSH (Secure Shell), empleado para la gestión remota mediante una interfaz de línea de

comandos, especialmente en servidores Linux/UNIX y dispositivos IoT; y Telnet, utilizado

15

principalmente para la gestión remota de dispositivos especializados heredados (The Riskiest

Connected Devices in 2023, 2023).

En cuanto a la exposición a Internet, los dispositivos de infraestructura de red IT y los dispositivos

de seguridad son los más vulnerables, ya que actúan como el perímetro entre las redes internas

y externas. Después de estos, las cámaras IP son los dispositivos más expuestos, representando

el 23% del total de exposición, seguidas por dispositivos NAS con un 7% y VoIP con un 3%, según

la Figura 4.

Figura 4: Dispositivos más expuestos (The Riskiest Connected Devices in 2023, 2023).

2.3. Botnets en entornos IoT

Las botnets representan una amenaza significativa en entornos IoT, consistiendo en redes de

dispositivos interconectados, que han sido infectados con malware y son controlados de manera

remota por un actor o grupo malicioso conocido como "bot herder". Según el informe (Altares

et al., 2023), entre las familias de malware más comunes se destacan variantes como Mirai,

Gafgyt, y sus híbridos como Kyton o Keksec, además de otras botnets como RapperBot y Zerobot.

Estas botnets son conocidas por lanzar una variedad de ataques, incluyendo ataques de

denegación de servicio distribuido (DDoS), robo de datos, campañas de spam y amenazas

persistentes avanzadas (APTs).

El aumento de dispositivos IoT, a menudo con medidas de seguridad deficientes, los convierte

en objetivos principales para las infecciones de botnets. Estos dispositivos son comprometidos

fácilmente explotando procesos de autenticación y autorización débiles, permitiendo al

botherder controlar una red extensa de dispositivos infectados con propósitos maliciosos.

Además, el informe (IoT Botnet activity in Consumer Networks, 2023) revela que las botnets

suelen aprovechar múltiples exploits, con un aumento significativo en el uso de vulnerabilidades

recientemente descubiertas, indicando un incremento en la sofisticación y frecuencia de los

ataques.

16

Los tipos de botnets varían en función de su arquitectura de comando y control (C&C). Las

arquitecturas centralizadas, como las botnets IRC y HTTP, dependen de servidores específicos

para la comunicación de C&C. Las botnets IRC utilizan la red IRC para enviar comandos a los bots,

aprovechando su simplicidad, disponibilidad amplia y anonimato. Estas botnets contactan con

el C&C a través de IRC para registrar nuevos bots y comenzar a recibir órdenes. El método más

común para este procedimiento es tomar el control de uno o varios servidores IRC para enviar

órdenes a los nodos de la red. Por otro lado, las botnets HTTP utilizan servidores web para

distribuir comandos a los bots, lo que las hace más difíciles de detectar y bloquear que las

botnets IRC, ya que su tráfico puede mezclarse con el tráfico web regular y pasar por políticas

de firewall existentes (Imam et al., 2014).

Las botnets POP3 utilizan protocolos de correo electrónico para la comunicación C&C, donde los

bots recuperan comandos de servidores de correo POP3 mediante la descarga de mensajes de

correo electrónico que contienen instrucciones adjuntas. Esta forma de comunicación es menos

detectable que las botnets IRC, proporcionando un canal encubierto efectivo para los comandos

maliciosos.

Las botnets P2P representan una evolución en la arquitectura de botnets, eliminando la

necesidad de un servidor centralizado para C&C. En lugar de eso, los bots en una botnet P2P se

comunican directamente entre sí, utilizando sistemas de publicación/suscripción para distribuir

comandos. Esta estructura descentralizada hace que las botnets P2P sean más resistentes a los

intentos de desmantelamiento y más difíciles de monitorear para los defensores.

Para evitar la detección, los diseñadores de botnets suelen utilizar protocolos ampliamente

utilizados para su C&C, como IRC, HTTP, POP3 o P2P, y en ocasiones incluso redes sociales en

línea. Estos protocolos ofrecen diferentes niveles de anonimato, resistencia y capacidad de

mezclarse con el tráfico normal de Internet, dificultando los esfuerzos para mitigar las amenazas

de botnets.

Además de las diversas arquitecturas de botnets mencionadas, los adversarios emplean

múltiples técnicas de ofuscación y cifrado para ocultar y proteger las comunicaciones de

comando y control (C&C). Estas técnicas incluyen el cifrado de datos utilizando técnicas

convencionales como ASCII, Unicode o Base64, así como compresión de datos mediante

esquemas como gzip. Para dificultar aún más la detección, los adversarios utilizan ofuscación de

datos, que incluye la inserción de datos basura en el tráfico del protocolo, técnicas para ocultar

información dentro de archivos de imagen u otros medios digitales, y la impersonación de

protocolos válidos para disfrazar las comunicaciones. Además, los adversarios pueden emplear

técnicas de resolución dinámica, como el uso de DNS de flujo rápido, algoritmos de generación

de dominios (DGAs), y cálculos DNS, para cambiar dinámicamente los dominios, direcciones IP y

números de puerto utilizados por la infraestructura de comando y control. Estas estrategias

permiten a las botnets eludir las detecciones convencionales y adaptarse rápidamente a las

contramedidas implementadas (What Is Command and Control (C&C or C2) in Cybersecurity? -

Zenarmor.Com, 2023).

 La generación de una botnet consta de tres pasos:

● Explotación: Se busca una debilidad para explotar. Esta debilidad podría encontrarse en

un sitio web, en el acceso sin protección a una aplicación o en un software mal

configurado.

17

● Creación de Bots: Una vez que el dispositivo ha sido infectado, se convierte en un

zombie, listo para seguir las órdenes del bot herder. El bot herder repite este proceso

una y otra vez.

● Ataque: Una vez que han infectado cientos, miles o incluso decenas de miles de

dispositivos, se enlazan y lanzan ataques.

2.3.1. Principales amenazas: Botnet Mirai

En la sección anterior, se ha discutido cómo las botnets pueden explotar dispositivos IoT

vulnerables. Un ejemplo destacado de esto es la botnet Mirai. A diferencia de otras

ciberamenazas, el malware Mirai afecta principalmente a dispositivos inteligentes conectados a

la red, como routers, termostatos, monitores para bebés, frigoríficos, etc. Al apuntar al sistema

operativo Linux que muchos dispositivos IoT utilizan, el malware Mirai está diseñado para

explotar vulnerabilidades en los gadgets inteligentes y enlazarlos en una red de dispositivos

infectados. Una vez que forman parte de la botnet, el hardware es empleado para llevar a cabo

ataques adicionales como parte de un enjambre de máquinas zombies. Tradicionalmente, las

botnets se han utilizado para realizar campañas de phishing y ataques masivos de spam, pero la

naturaleza de los dispositivos IoT hace que las botnets Mirai sean ideales para saturar sitios web

o servidores mediante ataques DDoS (Distributed Denial of Service).

Primero, el malware Mirai escanea direcciones IP para identificar dispositivos inteligentes que

ejecutan determinadas versiones de Linux en procesadores ARC. Luego, Mirai explota

vulnerabilidades de seguridad en el dispositivo IoT para obtener acceso a la red mediante

combinaciones de nombre de usuario y contraseña predeterminadas. Si estas configuraciones

no se han cambiado o actualizado, Mirai puede iniciar sesión en el dispositivo e infectarlo con

malware (The Mirai Botnet – Threats and Mitigations). La mayoría de los dispositivos que ataca

la botnet Mirai son routers domésticos y cámaras, pero casi cualquier dispositivo inteligente es

susceptible a las botnets IoT. La misma conexión de red que da funcionalidad a las aspiradoras

robotizadas, intercomunicadores IP, electrodomésticos de cocina en un hogar inteligente,

también es una puerta trasera potencial para el malware. En su apogeo en septiembre de 2016,

Mirai paralizó temporalmente varios servicios de alto perfil, como OVH, Dyn y Krebs on Security,

a través de ataques masivos DDoS. OVH informó que estos ataques superaron 1 Tbps, el más

grande registrado públicamente. Lo notable de estos ataques récord es que se llevaron a cabo a

través de pequeños y aparentemente inofensivos dispositivos IoT como routers domésticos,

monitores de calidad del aire y cámaras de vigilancia personales. En su punto máximo, Mirai

infectó más de 600000 dispositivos IoT vulnerables (Inside the Infamous Mirai IoT Botnet: A

Retrospective Analysis, 2017).

18

Figura 5: Tipos de dispositivos infectados por Mirai (Inside the Infamous Mirai IoT Botnet: A Retrospective

Analysis, 2017).

Mirai comienza como un gusano auto-replicante, es decir, es un programa malicioso que se

replica encontrando, atacando e infectando dispositivos IoT vulnerables. También se considera

una botnet porque los dispositivos infectados son controlados a través de un conjunto central

de servidores de comando y control (C&C). Estos servidores indican a los dispositivos infectados

qué sitios atacar a continuación. En general, Mirai está compuesto por dos componentes clave:

un módulo de replicación y un módulo de ataque.

El módulo de replicación (véase Figura 6) es responsable de aumentar el tamaño de la botnet

esclavizando tantos dispositivos IoT vulnerables como sea posible. Lo hace escaneando

aleatoriamente todo Internet en busca de objetivos viables y atacándolos. Una vez que se

compromete un dispositivo vulnerable, el módulo informa a los servidores C&C para que pueda

ser infectado con la última carga útil de Mirai. Para comprometer dispositivos, la versión inicial

de Mirai se basó exclusivamente en un conjunto fijo de 64 combinaciones de inicio de

sesión/contraseña predeterminadas ampliamente conocidas y comúnmente utilizadas por los

dispositivos IoT.

El módulo de ataque es responsable de llevar a cabo ataques DDoS contra los objetivos

especificados por los servidores C&C. Este módulo implementa la mayoría de las técnicas de

ataque DDoS, como la inundación HTTP, la inundación UDP y todas las opciones de inundación

TCP. Esta amplia gama de métodos permitió a Mirai realizar ataques volumétricos, ataques a

nivel de aplicación y ataques de agotamiento de estado TCP (Inside the Infamous Mirai IoT

Botnet: A Retrospective Analysis, 2017).

19

Figura 6: Módulo de replicación de Mirai (Inside the Infamous Mirai IoT Botnet: A Retrospective Analysis,

2017).

El código fuente de Mirai sigue activo y ha dado lugar a variantes como Okiru, Satori, Masuta y

PureMasuta. Por ejemplo, PureMasuta es capaz de explotar la vulnerabilidad HNAP en

dispositivos D-Link, mientras que la cepa OMG transforma los dispositivos IoT en proxies que

permiten a los ciberdelincuentes permanecer en el anonimato. Además, se ha descubierto

recientemente una poderosa botnet conocida como IoTrooper y Reaper, que es capaz de

comprometer dispositivos IoT a un ritmo mucho más rápido que Mirai. Reaper puede dirigirse a

un mayor número de fabricantes de dispositivos y tiene un control mucho mayor sobre sus bots

(¿Qué Es La Botnet Mirai? | Cloudflare).

Según el informe (Lella et al., 2023), los ataques DDoS se están construyendo cada vez más sobre

dispositivos IoT. Los dispositivos y sensores son objetivos adecuados para los ataques DDoS

debido a sus recursos limitados que a menudo resultan en una seguridad deficiente. Estos

dispositivos son fáciles de corromper, ya que a menudo vienen con configuraciones incorrectas

(por ejemplo, contraseñas débiles). La creciente complejidad de estos sistemas móviles hace

que la falta de habilidades de seguridad de los usuarios sea cada vez más relevante. Esta

tendencia también ha sido confirmada por Microsoft, que observa que los ataques DDoS

consistentemente utilizan dispositivos IoT. Varios ataques han adaptado malware existente (por

ejemplo, Mirai) y botnets para involucrar IoT.

Muchos de los vectores de ataque en Mirai están basados en tipos tradicionales de ataques

DDoS, pero han sido personalizados y/o mejorados para su uso específico en esta botnet. A

continuación, se detallan en la Tabla I los diferentes tipos de ataques incluidos en el código

original de Mirai, así como algunos que quedaron incompletos. La botnet Mirai originalmente

estaba diseñada para permitir la multitenencia y el acceso transaccional. Una vez que el servidor

de comando y control (C2) y la botnet eran establecidos, se podían añadir usuarios adicionales

a la plataforma. Esto significaba que el acceso público a la botnet era tan sencillo como realizar

una transacción comercial (Winward, 2018).

20

Tabla I: Ataques de Mirai.

Protocolo Ataque Perfil Ancho Banda Descripción

TCP
SYN Flood Moderado BPS, Alto PPS

Clásico SYN Flood que envía una cantidad
masiva de solicitudes de sincronización.

ACK Flood Alto BPS, Medio PPS
Inunda con paquetes ACK y causa que
genere respuestas RST hasta ser abrumado.

STOMP Flood Alto BPS, Bajo PPS
Supera ciertas técnicas de mitigación de
DDoS. Establece una conexión TCP legítima y
luego inunda con paquetes ACK.

HTTP Flood Bajo BPS, Bajo PPS
Es muy flexible y personalizable. Ejecuta
ataques HTTP GET repetidos para agotar los
recursos del objetivo.

UDP
UDP Flood Alto BPS, Moderado PPS

Único debido a su capacidad para aleatorizar
puertos de origen y destino, haciendo difícil
su identificación.

VSE Flood Medio BPS, Alto PPS
Ataque a servidores que ejecutan juegos de
Valve Corporation.

DNS Flood Medio BPS, Alto PPS

Inundación de consultas DNS de
subdominios aleatorios dentro del dominio
especificado. Envía esta solicitud a su
servidor DNS recursivo local.

UDPPLAIN Flood Alto BPS, Medio PPS
Tiene menos opciones que el ataque UDP
normal, permitiendo mayor PPS.

GRE
GREIP Flood Alto BPS, Medio PPS

Interesante por su velocidad y flexibilidad.
Encapsula paquetes dentro de GRE.
Direcciones IP y puertos aleatorios.

GREETH Flood Alto BPS, Medio PPS
Paquetes GRE encapsulados con tramas
Ethernet transparentes, dificultando
distinguirlo. Incluye una trama L2.

2.3.2. Otros ataques: DDoS, fuerza bruta, escaneo de puertos y de
sistema operativo.

Otros ataques que aparecen con frecuencia en entornos IoT incluyen DDoS-PSHACK Flood,

DDoS-RSTFIN Flood, Dictionary Brute Force, OS Scan y Port Scan, y representan una variedad de

métodos que los atacantes pueden emplear para comprometer la seguridad y funcionalidad de

los dispositivos IoT. Todos estos tipos de ataques se incluyen en las bases de datos que se

emplearán en el trabajo. En el Anexo I se detalla cada uno de ellos.

Ataque de Fuerza Bruta de Diccionario: Utiliza un diccionario predefinido de palabras comunes

y frases para descifrar contraseñas. Automatiza el proceso de introducir y verificar cada palabra

del diccionario contra el sistema de autenticación. Es efectivo contra contraseñas débiles o

previsibles.

Escaneo de Sistema Operativo (OS Scan): Determina el sistema operativo en un dispositivo de

red enviando paquetes específicos y analizando las respuestas para identificar patrones

característicos de diferentes sistemas operativos. Herramientas como Nmap son comúnmente

usadas.

Escaneo de Puertos (Port Scan): Identifica qué puertos están abiertos en un dispositivo de red

enviando solicitudes a diferentes puertos y analizando las respuestas. Los puertos abiertos

revelan servicios activos y posibles puntos de entrada para ataques.

21

DDoS PSHACK Flood: Ataca un servidor enviando una gran cantidad de paquetes TCP con los

flags PSH y ACK activados, saturando los recursos del servidor y provocando una denegación de

servicio. Puede recibir o no un paquete RST en respuesta. (ACK-PSH Flood | Knowledge Base |

MazeBolt)

DDoS RSTFIN Flood: Utiliza paquetes TCP con los flags RST y FIN activados para saturar un

servidor. El servidor intenta cerrar las conexiones repetidamente, gastando recursos en el

proceso. Este ataque puede provocar la degradación del rendimiento del servidor y la

denegación de servicio. (RST-FIN Flood | Knowledge Base | MazeBolt)

2.4. Conjuntos de datos en entornos IoT

En esta sección se presentan los conjuntos de datos más relevantes en el escenario de ataques

en IoT (véase la Tabla II), describiendo sus principales características y los tipos de ataques que

incluyen. Es crucial contar con conjuntos de datos representativos para poder evaluar de forma

correcta un escenario IoT. Cada uno de estos conjuntos de datos ha sido analizado en función

de los ataques presentes, la disponibilidad de las capturas de tráfico originales y de las reglas de

etiquetado utilizadas para garantizar su utilidad y validez en la evaluación de sistemas de

detección de botnets. Tras este análisis, se decidió que los conjuntos de datos que mejor

cumplían con las características que permitirían llevar a cabo la propuesta de evaluación de este

trabajo eran los siguientes: IoTD20, IoT-23 y CIC-IoT-2023. A continuación se describe en mayor

detalle cada uno de ellos.

Tabla II: Listado de Conjuntos de Datos en entornos IoT estudiados.

Dataset Características Ataques

BOT-IoT
(Koroniotis et

al., 2018)

Servicios como DNS, FTP, HTTP y SSH
32 características
72,000,000 de registros
Simulados tráfico normal y ataques DoS y DDoS.

DoS y DDoS: SYN, TCP, UDP, HTTP.
Escaneo de Puertos y Sistemas Operativos
Robo de Información
Keylogging

HIKARI
(Ferriyan et

al., 2021)

517,582 flujos de tráfico benigno
37,696 flujos de tráfico malicioso
Etiquetado con categorías Benigno o Ataque
Ataques simulados

Brute Force tradicional
Brute Force con diferentes vectores de ataque
(XMLRPC)
Probing
Botnet XMRIGCC CryptoMiner

IoT-BDA
(Trajanovski

& Zhang,
2021)

Honeypots simulando servicios vulnerables con
analizadores estáticos y dinámicos.
4077 muestras únicas de botnets
39 columnas en total.
Nombre del archivo, Botnet, hash MD5, arquitectura de
CPU, técnicas anti-análisis, resultados de análisis de
VirusTotal.

Comunicaciones C2
Ataques DDoS
Escaneo de puertos

AWID-3
(Chatzoglou
et al., 2021)

Cada captura de menos de 2.5 millones de frames y
duración total de 10 minutos
Entorno de laboratorio físico simulando infraestructura
empresarial
16 dispositivos.
Variaciones de tráfico normal y de ataque.
254 características extraídas.

Explotación de vulnerabilidades como Krack y
Kr00k y creación de puntos de acceso falsos.
Fuerza bruta y creación de botnets mediante
infección de STAs
Inyección SQL para manipular bases de datos web
y la amplificación SSDP (DDoS)
Evil_Twin que combina envenenamiento ARP y
DNS para Website Spoofing

22

MedBIoT
(Guerra-

Manzanares
et al., 2020)

80 dispositivos virtuales y 3 físicos.
Red de Internet para configuración de dispositivos. Red
de monitoreo para almacenamiento y análisis. Red IoT
LAN con dispositivos IoT.
100 características estadísticas de tráfico en diferentes
ventanas de tiempo (100ms, 500ms, 1.5s, 10s, 1min).
4,143,276 paquetes de BashLite, 842,674 paquetes de
Mirai, 319,139 paquetes de Torii, y 12,540,478 paquetes
de tráfico benigno.

Mirai: infectó 25 dispositivos
BashLite (Yakuza version): infectó 40 dispositivos
Torii: infectó 12 dispositivos.

Edge-IIoT
(Al Nuaimi et

al., 2023)

Generación de tráfico benigno y 14 tipos de ataques
simulados
61 características seleccionadas de las 1176
características iniciales encontradas

DoS/DDoS, recolección de información, ataques
de hombre en el medio, inyección de código y
ataques de malware.

MBB-IoT
(Qing et al.,

2023)

Dispositivos IoT reales para simular entornos de ataque,
generando tráfico normal. Controlados por LAN de
Raspberry Pi.
Simulan dos escenarios: tráfico normal y de alto tráfico
87 características para analizar ataques DDoS.
Etiquetado como “anómalo" o "benigno"

Malware Mirai y BASHLITE descargados y
ejecutados en dispositivos IoT mediante
servidores en la nube.
Ataques DDoS hacia servidores WEB utilizando los
dispositivos infectados, con diferentes variantes
de ataques

N-BaIoT
(Meidan et
al., 2018)

Dispositivos IoT infectados utilizando binarios
C2 dentro del entorno de laboratorio
115 características estadísticas para describir el
comportamiento del tráfico, ventanas temporales de
100ms, 500ms, 1.5s, 10s y 1 minuto.

BASHLITE: exploración, UDPFlood y TCPFlood y
envío de datos no deseados
Mirai: exploración, ACKFlood, SYNFlood y
UDPFlood, optimizados para aumentar la tasa de
paquetes por segundo (PPS).

2.4.1. Descripción de IoTD20

El dataset IoTID20 (Ullah & Mahmoud, 2020) se centra en un entorno doméstico inteligente IoT,

utilizando dispositivos como el SKT NGU y la cámara Wi-Fi EZVIZ como dispositivos víctimas.

Además, incluye dispositivos adicionales como portátiles, tablets y smartphones que actúan

como dispositivos atacantes. Se simularon diversos tipos de ataques dentro de este entorno,

capturando el tráfico en archivos pcap. Los dispositivos están conectados a un router Wi-Fi

doméstico, lo que proporciona una topología de red típica para un hogar inteligente.

El dataset incluye ataques simulados y reales. Entre los ataques simulados se encuentran

UDP/ACK/HTTP Flood, típicos de la botnet Mirai. Además, se capturaron ataques reales

utilizando herramientas como Nmap para escaneos de hosts y puertos, y ataques de spoofing

ARP. Para la botnet Mirai, los paquetes fueron generados en un portátil y fueron manipulados

para simular haber sido generados desde el dispositivo IoT. La implantación de malware incluye

la simulación de ataques de la botnet Mirai, donde los dispositivos comprometidos generan

tráfico malicioso como parte del dataset. La captura de tráfico se realizó en modo monitor

utilizando adaptadores de red inalámbrica, con eliminación de cabeceras de red.

El dataset está compuesto por 42 archivos pcap que contienen paquetes de red capturados en

diferentes momentos. El tamaño total del dataset es de aproximadamente 1.45 GB. En la Figura

7 se muestra la distribución de los ataques. En la Tabla III se detalla el número de instancias para

cada clase; estos datos corresponden al número de paquetes capturados; y en el Anexo II se

detallan en forma de instancias del dataset en formato csv.

23

Figura 7: Distribución de ataques de IoTD20 en clases y subclases (Ullah & Mahmoud, 2020).

Tabla III: Número de paquetes por categoría y subcategoría en IoTD20. (Ullah & Mahmoud, 2020).

Categoría Subcategoría Paquetes

Normal Normal 1,756,276

Scanning

Host Discovery 2,454

Port Scanning 20,939

OS/Version Detection 1,817

Man in the Middle (MITM) ARP Spoofing 101,885

Denial of Service (DoS) SYN Flooding 64,646

Mirai Botnet

Host Discovery 673

Telnet Brute Force 1,924

UDP Flooding 949,284

ACK Flooding 75,632

HTTP Flooding 10,464

El dataset IoTID20 se caracteriza por sus 83 atributos de red y tres atributos de etiqueta,

diseñados para la detección de intrusiones en entornos de IoT. Estos atributos se extraen de

archivos pcap utilizando la aplicación CICflowmeter y se presentan en formato CSV.

2.4.2. Descripción de IoT-23

El dataset IoT-23 (Garcia et al., 2020) es una compilación de tráfico de red capturado de

dispositivos IoT, que se divide en escenarios benignos y maliciosos. Desarrollado por el

Laboratorio Stratosphere de la Universidad CTU en Praga, proporciona datos etiquetados,

capturas de tráfico originales y las reglas empleadas para el etiquetado.

En los 20 escenarios maliciosos de IoT-23, se ejecutaron muestras de malware en dispositivos

Raspberry Pi dentro de un entorno controlado. Cada captura de tráfico, en formato .pcap,

registra las interacciones de red generadas por el malware, generalmente limitados a 24 horas

debido al volumen creciente de tráfico. Este enfoque asegura la captura de comportamientos

significativos y realistas de las infecciones por malware en dispositivos IoT. Cada uno contiene

tráfico de una Botnet, como se muestra en el Anexo II, donde también se indica el número de

flujos y la duración de cada escenario. Para este trabajo, se han utilizado todos los escenarios

que contienen Mirai y los escenarios con tráfico benigno. En contraste, se incluyen tres capturas

24

de tráfico de dispositivos IoT no infectados: una lámpara LED inteligente Philips HUE, un

asistente personal inteligente Amazon Echo y una cerradura inteligente Somfy.

El análisis de las capturas de tráfico se realiza utilizando Zeek, una herramienta para el análisis

de redes que genera archivos conn.log detallando flujos de conexión. Cada archivo conn.log es

posteriormente etiquetado utilizando un proceso manual y automático para caracterizar el

comportamiento del tráfico, este último recibe el nombre de Flaber, un script personalizado

desarrollado en Zeek. Estas etiquetas proporcionan una descripción detallada de las

interacciones de red observadas, y poseen una estructura en la que se concatenan todos los

nombres de los ataques en el flujo. Las características presentes en el archivo conn.log se

adjuntan en el Anexo II, junto a la explicación de cada una de ellas. Contiene 21 atributos que

corresponden al número de parámetros obtenidos del archivo conn.log además de 2 campos de

etiquetado. Cada carpeta de captura incluye un archivo README.md que detalla información

relevante, como el nombre y características del malware, hash (MD5, SHA1, SHA256) de la

muestra, la duración de la captura en segundos y enlaces a análisis adicionales de muestras de

malware en VirusTotal. Además, también se adjuntan los archivos .pcap originales y

conn.log.labeled.

Los posibles valores que pueden encontrarse en las etiquetas son los mostrados en la Tabla IV:

Tabla IV: Valores posibles del campo “etiqueta” en el conjunto de datos IoT-23.

Attack FileDownload PartOfAHorizontalPortScan

Benign HeartBeat Torii

C&C (Command & Control) Mirai

DDoS Okiru

El dataset IoT-23 ofrece una combinación única de datos reales y simulados de tráfico de

dispositivos IoT. A continuación, se detalla cómo se distribuye la simulación dentro del dataset:

Datos Reales: Los escenarios benignos del dataset IoT-23 están compuestos por capturas de

tráfico de dispositivos IoT reales y no infectados. Estos incluyen una lámpara LED inteligente

Philips HUE, un asistente personal inteligente Amazon Echo y una cerradura inteligente Somfy.

Estos dispositivos funcionan en un entorno controlado y proporcionan un reflejo auténtico de

los patrones de tráfico normales en dispositivos IoT no comprometidos.

Datos Simulados: Por otro lado, los escenarios maliciosos del dataset implican la ejecución

controlada de muestras de malware en dispositivos Raspberry Pi. Cada captura de malware

captura el comportamiento y las interacciones generadas por el malware durante un período

limitado, generalmente menos de 24 horas debido al volumen de tráfico generado.

En el Anexo VIII se adjunta las reglas empleadas para el etiquetado, generadas a partir de

atributos de Zeek. Si un flujo cumple más de una regla, se concatenan todas las etiquetas

correspondientes. En el Anexo II se muestra la distribución de etiquetas para cada escenario

empleado en este trabajo.

2.4.3. Descripción de CIC-IoT-2023

El dataset CICIoT2023 (Neto et al., 2023) destaca por simular un entorno realista de IoT con

dispositivos distribuidos en un laboratorio que imita un hogar inteligente. Se emplean 105

dispositivos IoT, divididos en categorías como dispositivos domésticos inteligentes, cámaras,

25

sensores y microcontroladores. Estos dispositivos están configurados tanto para

comportamientos benignos como para ejecutar ataques maliciosos. El tráfico de red capturado

incluye tanto actividades benignas como maliciosas. Las actividades benignas incluyen

interacciones humanas como datos de sensores y solicitudes de dispositivos, mientras que los

ataques maliciosos cubren diversas técnicas como DDoS, DoS, y explotación de vulnerabilidades

web.

La topología de red se divide en dos partes principales conectadas a través de un router ASUS

un switch, y un punto de acceso. Esta configuración simula un entorno típico de hogar

inteligente, con dispositivos distribuidos físicamente en diferentes ubicaciones dentro del

laboratorio. Se utilizan botnets simuladas para llevar a cabo ataques como DDoS, DoS, y

explotación de vulnerabilidades web. Estos ataques son ejecutados por dispositivos IoT

maliciosos dirigidos a otros dispositivos vulnerables dentro del mismo entorno simulado. En el

Anexo II se especifica la distribución de las etiquetas por ataque y el número de instancias de

cada clase.

El tráfico de red es capturado mediante un Gigamon Network Tap, que proporciona acceso

pasivo y no intrusivo al tráfico completo de la red. Los datos capturados son analizados y

almacenados utilizando herramientas como Wireshark. Los datos capturados se almacenan en

archivos pcap y csv. Los archivos pcap contienen datos originales capturados, mientras que los

archivos csv contienen características extraídas de ventanas de paquetes fijos para análisis

posterior. Se extraen múltiples características de los datos capturados utilizando herramientas

como DPKT. Estas características incluyen estadísticas de paquetes, patrones de tráfico y

comportamientos anómalos. Incluye un total de 47 características extraídas de los datos

capturados (véase Anexo II).

Los datos capturados son preprocesados para limpiar y estructurar adecuadamente los

paquetes de red. Además, cada conjunto de datos se etiqueta según el tipo de actividad, ya sea

benigna o maliciosa, facilitando así el entrenamiento de modelos de aprendizaje automático. El

dataset incluye múltiples flujos de datos capturados durante un período de tiempo específico,

con un total de aproximadamente 548 GB de tráfico. Las herramientas utilizadas incluyen

TCPDUMP para la conversión de archivos pcap a csv, DPKT para la extracción de características,

y Pandas para el procesamiento y análisis de datos. El etiquetado se realiza asignando la misma

etiqueta a todos los flujos procedentes de la captura de tráfico del ataque en cuestión.

26

3. Técnicas de ML

La Inteligencia Artificial es la capacidad de un dispositivo para realizar tareas de manera similar

a un humano, utilizando la computación para imitar las funciones cognitivas humanas. Este

concepto abarca más que el aprendizaje automático o Machine Learning (ML), que se puede

considerar como una subárea de la Inteligencia Artificial enfocada en la capacidad de las

máquinas para procesar conjuntos de datos y realizar predicciones basadas en estos, adaptando

los algoritmos conforme aprenden de manera continua por sí mismas (Kubat, 2021; Molina

López & García Herrero, 2006). En la Figura 8 se presentan las principales técnicas de ML,

mientras que en la siguiente sección se profundiza en aquellas utilizadas en este trabajo. Las

principales categorías de aprendizaje automático son: el aprendizaje supervisado, el aprendizaje

no supervisado, el semisupervisado, el aprendizaje profundo y el aprendizaje de refuerzo.

Figura 8: Categorías de Técnicas de Machine Learning.

3.1. Técnicas de Machine Learning para clasificación e
indicadores de rendimiento

En esta sección se detallan las técnicas utilizadas para la clasificación de flujos de tráfico.

Primero, se explican los fundamentos de las técnicas de clasificación basadas en aprendizaje

supervisado y, posteriormente, se describen los principales indicadores de rendimiento de estos

clasificadores.

Un algoritmo de clasificación supervisado tiene como objetivo extraer conocimiento de un

conjunto de datos (training set) y modelar dicho conocimiento para aplicarlo en la toma de

decisiones sobre un nuevo conjunto de datos (test set). Matemáticamente, en el aprendizaje

supervisado se trabaja con un conjunto de datos compuesto por ejemplos etiquetados (xi, yi)}

27

con i=1 … N. Cada elemento xi es un vector de características, en el que cada dimensión j=1, ...,

D contiene un valor que describe el ejemplo. Este valor se llama característica y se denota como

xi(j). Para todos los ejemplos en el conjunto de datos, la característica en la posición j del vector

de características siempre contiene el mismo tipo de información (por ejemplo, el número de

paquetes de los que consta un flujo de tráfico). La etiqueta (label) denotada como yi puede

pertenecer a un conjunto finito de clases {1, 2, ... ,C}, representando una categoría a la que

pertenece una instancia, como un tipo específico de ataque. El objetivo de un algoritmo de

aprendizaje supervisado es usar el conjunto de datos {(xi, yi)} para producir un modelo de

clasificación que permita tomar un nuevo vector de características x como información de

entrada y que como salida pueda deducir la etiqueta que debería asignarse a dicho vector

(Kubat, 2021). Las etiquetas de un conjunto de datos pueden ser cuantitativas (valores

continuos) o cualitativas (valores discretos que pertenecen a una clase). En este trabajo, las

etiquetas son cualitativas ya que corresponden a los nombres de los diferentes ataques o a la

etiqueta de tráfico benigno. Generalmente, los datos con etiquetas cualitativas se asocian a

algoritmos de clasificación, mientras que los datos con etiquetas cuantitativas se asocian a

algoritmos de regresión.

3.2. Técnicas de clasificación
El problema de clasificación se aborda utilizando atributos simbólicos. Si se emplean atributos

numéricos, es necesario discretizarlos previamente en intervalos para representar

adecuadamente los valores de la clase. A continuación, se describen las familias de clasificadores

más comunes, junto con una breve explicación de los clasificadores específicos empleados en

este trabajo.

Clasificadores Bayesianos

Los métodos bayesianos ofrecen una medida probabilística cuantitativa de la relevancia de las

variables en un problema de clasificación. Al aplicar estos métodos, es crucial evitar la presencia

de correlaciones entre los atributos del conjunto de entrenamiento, ya que esto podría invalidar

los resultados obtenidos.

● Naive Bayes: Un clasificador Naïve Bayes es un método probabilístico que utiliza el

teorema de Bayes y las probabilidades condicionales, asumiendo que todas las variables

predictoras son independientes entre sí (García et al., 2018; John, 1995; Kubat, 2021).

Esta simplificación crea un modelo con un único nodo raíz (la clase) y nodos hoja (los

atributos). Una ventaja del clasificador Naïve Bayes es que requiere pocos datos de

entrenamiento para estimar los parámetros necesarios para la clasificación. Aunque la

hipótesis de independencia es difícil de cumplir y puede ser distorsionada por atributos

altamente correlacionados, esta técnica puede funcionar bien cuando se combina con

técnicas de selección de atributos para eliminar redundancias.

● El clasificador Naïve Bayes de Bernoulli es adecuado para problemas de clasificación

binaria o multiclase donde las características son binarias (por ejemplo, la presencia o

ausencia de una palabra en un documento). Este clasificador modela la probabilidad de

cada característica dada la clase como una distribución de Bernoulli. Por lo tanto, esta

clase requiere que las muestras se representen como vectores de características

binarias; si se le proporciona cualquier otro tipo de datos, una instancia de BernoulliNB

puede binarizar su entrada.

28

● Por otro lado, el clasificador Naïve Bayes Gaussiano se utiliza cuando las características

son continuas y se asume que siguen una distribución gaussiana (normal). Este

clasificador modela la probabilidad de cada característica dada la clase como una

distribución gaussiana.

Funciones

En este grupo de métodos se han incluido aquellos que generan una función de clasificación y

que no obtienen de forma explícita un árbol o conjunto de reglas.

● Multi-layer Perceptron (MLP): El perceptrón multicapa (MLP) es una red neuronal

artificial diseñada para resolver problemas no linealmente separables (García et al.,

2018; Kubat, 2021) Suele tener una capa de entrada para atributos, una o más capas

ocultas donde se calculan sumas ponderadas de las entradas multiplicadas por los pesos

sinápticos, y una capa de salida que clasifica las instancias según las clases deseadas.

Durante el entrenamiento, se ajustan los pesos de las conexiones utilizando

retropropagación, un proceso que minimiza el error entre la salida predicha y el

resultado esperado.

Figura 9: Ejemplo de perceptrón multicapa (MLP) con una capa oculta.

Aprendizaje basado en instancias

En este enfoque de aprendizaje, se mantienen almacenados los ejemplos de entrenamiento.

Cuando se necesita clasificar una nueva instancia, se identifican las instancias previamente

clasificadas más similares y se utiliza su etiqueta para clasificar la nueva instancia. Este tipo de

métodos se conocen como "aprendizaje perezoso" (lazy learners), donde el proceso de

aprendizaje inicial es mínimo y el tiempo se consume principalmente en la fase de clasificación.

● Nearest Centroid: es un algoritmo sencillo que representa cada clase mediante el

centroide de sus miembros. Esto lo hace similar a la fase de actualización de etiquetas

del algoritmo KMeans (Nearest Centroid Classification — Scikit-Learn 0.18.2

Documentation). A diferencia de otros métodos, no tiene parámetros para ajustar. El

método de K-Means es un enfoque de clasificación no paramétrico que determina la

clase de una instancia según las clases de sus k instancias de entrenamiento más

cercanas. Durante el entrenamiento, se almacenan los vectores de características y las

etiquetas de las clases de los ejemplos en un espacio multidimensional. K-Means

investiga cada instancia, calculando sus distancias a todos los centroides. El centroide

más cercano define el cluster al que pertenece la instancia. Si ya está en ese cluster, no

se realiza ninguna acción; de lo contrario, se transfiere al cluster correcto. Después de

la reubicación, se recalculan los centroides de los clusters afectados. En la fase de

29

clasificación, la instancia se asigna a la clase más frecuente entre sus k vecinos más

cercanos, asumiendo que estos vecinos proporcionan una buena clasificación basada en

la similitud en el espacio de características.

Figura 10: Ejemplo de funcionamiento del algoritmo Nearest Centroid (Nearest Centroid Classification —

Scikit-Learn 0.18.2 Documentation).

Metaclasificadores

En esta categoría se encuentran los clasificadores complejos, los cuales son obtenidos mediante

la composición de clasificadores simples o incluyen preprocesamiento de datos.

● Adaptive Boosting (AB): AdaBoost es un meta-algoritmo de clasificación que utiliza una

combinación secuencial de clasificadores débiles para mejorar la precisión del

clasificador final. En cada iteración, se ajusta un clasificador débil que se centra en

corregir los errores de clasificación cometidos por los clasificadores anteriores. La

contribución de cada clasificador débil a la predicción final se pondera según su

desempeño, favoreciendo aquellos que tienen mejor capacidad predictiva. Este

algoritmo se aplica principalmente en problemas de clasificación binaria, aunque puede

extenderse al caso multiclase. La característica distintiva de AdaBoost es su capacidad

para mejorar progresivamente el rendimiento del modelo combinando múltiples

clasificadores débiles.

Figura 11: Ejemplo de funcionamiento del algoritmo Adaptive Boosting.

30

● Bagging: es una técnica que utiliza múltiples clasificadores para mejorar la precisión.

Varios clasificadores operan simultáneamente para predecir las etiquetas de clase de

los ejemplos. Un clasificador principal combina estas predicciones mediante votación

mayoritaria. Cada clasificador en el conjunto aborda diferentes aspectos del problema,

lo que mejora el rendimiento global sobre clasificadores individuales (Kubat, 2021). Para

implementar Bagging, se generan subconjuntos de entrenamiento T₁ ,...,Tₙ mediante

bootstrapping del conjunto original T. Cada subconjunto se utiliza para entrenar un

clasificador Cᵢ , como árboles de decisión ajustados con parámetros definidos por el

usuario. Esta técnica aprovecha la diversidad de los clasificadores para reducir errores;

si un clasificador falla en un ejemplo, es probable que los otros clasificadores lo

clasifiquen correctamente.

Árboles de decisión

Un árbol de decisión es un clasificador que trata de hallar la mejor opción en cada paso o

decisión que se toma en el árbol, de modo que cada partición seleccionada maximice algún

criterio de discriminación (error de clasificación, ganancia de entropía, etc.)(García et al., 2018;

Kubat, 2021). Los árboles constituyen un modo intuitivo para visualizar la clasificación de un

conjunto de datos.

● Decision Tree: Se basa en la creación de reglas de decisión simples derivadas de las

características de los datos. Esta estructura jerárquica se construye mediante divisiones

recursivas de los datos en subconjuntos cada vez más homogéneos en términos de la

variable objetivo. Una ventaja de los árboles de decisión es su capacidad para manejar

datos sin requerir normalización ni transformación de variables, y algunos algoritmos

pueden manejar automáticamente valores faltantes. Además, el coste computacional

crece de manera logarítmica con el tamaño del conjunto de entrenamiento, lo cual los

hace eficientes para conjuntos de datos extensos. No obstante, los árboles de decisión

pueden sufrir de sobreajuste, donde el modelo se ajusta demasiado a los datos de

entrenamiento y no generaliza bien a nuevos datos. Para mitigar este problema, se

emplean técnicas de poda que limitan la profundidad del árbol o reducen el número de

nodos, mejorando así su capacidad de generalización. El algoritmo Decision

TreeClassifier de Scikit-Learn implementa árboles de decisión utilizando una versión

optimizada del algoritmo CART (Classification and Regression Trees). CART es uno de los

métodos más comunes y efectivos para construir árboles de decisión.

● Random Forest (RF): En esta técnica se construyen bosques aleatorios (Random Forest)

creando conjuntos de árboles aleatorios o random trees (Breiman, 2001; Kubat, 2021).

Los árboles creados con el algoritmo de Random Tree consideran un número específico

de características aleatorias en cada nodo, sin realizar poda. El algoritmo explora

aleatoriamente una variedad de modelos, lo que permite combinar cientos de árboles

de decisión y entrenar cada uno con una selección diferente de instancias. Las

predicciones finales del bosque aleatorio se obtienen promediando las predicciones de

cada árbol individual (ver Figura 12). Usando Random Forest, se puede mitigar el efecto

de sobreajuste de los árboles de decisión individuales al promediar los resultados de

predicción de múltiples árboles, aunque esto también incrementa la complejidad

computacional del método.

31

Figura 12: Ejemplo de funcionamiento del algoritmo Random Forest.

Stochastic Gradient Descent (SGD)

SGD es una técnica de optimización y no corresponde a una familia específica de modelos de

aprendizaje automático. Las ventajas del descenso de gradiente estocástico (SGD) son su

eficiencia y facilidad de implementación (muchas oportunidades para ajustar el código). La clase

SGDClassifier de Scikit-Learn admite diferentes funciones de pérdida y penalizaciones para la

clasificación. SGD ajusta un modelo lineal a los datos de entrenamiento. Admite la clasificación

multiclase combinando múltiples clasificadores binarios en un esquema "uno contra todos"

(OVA). Para cada una de las K clases, se aprende un clasificador binario que discrimina entre esa

clase y las otras K−1 clases. En el momento de la prueba, se calcula la medida de confianza (es

decir, las distancias al hiperplano) para cada clasificador y se elige la clase con la mayor

confianza. Se muestra un ejemplo de clasificación multiclase en la Figura 13.

Figura 13: Ejemplo de superficie de decisión de SGD. (Stochastic Gradient Descent — Scikit-Learn 1.5.0

Documentation).

32

3.3. Indicadores de rendimiento de los clasificadores
A continuación, se presentan las métricas o indicadores de rendimiento más comúnmente

utilizados en la evaluación de técnicas de clasificación, especialmente aplicados al problema de

la detección de botnets. Se definen los siguientes factores de clasificación: TP (verdaderos

positivos) es el número de flujos de ataques correctamente identificados, TN (verdaderos

negativos) es el número de flujos correctamente identificados como normales, FP (falsos

positivos) es el número de flujos normales incorrectamente clasificados como ataques, y FN

(falsos negativos) es el número de flujos de ataques incorrectamente clasificados como

normales. La matriz de confusión muestra el número de flujos clasificados de manera correcta

o incorrecta, tal como se presenta en la Tabla V. A partir de estos elementos, se definen los

siguientes indicadores (Kubat, 2021).

.

Tabla V: Matriz de confusión para clasificación de tráfico anómalo.

Class\Prediction Normal Attack

Normal TN FP

Attack FN TP

Exactitud (accuracy): Representa la proporción de flujos de tráfico clasificados correctamente

respecto al número total de flujos. Es una métrica común para evaluar la eficacia de los

algoritmos de clasificación y también se conoce como tasa de clasificación (CR). Su

complementario (1-Acc) es la tasa de error.

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

En dominios desequilibrados (imbalanced), donde las instancias de una clase superan en número

a las de la otra (por ejemplo, un número significativamente mayor de flujos de tráfico normales

frente a flujos de ataques), la exactitud puede resultar engañosa. En estos casos, es necesario

emplear otros indicadores como el recall y la precisión.

Recall o Tasa de verdaderos positivos (TPR): Representa la probabilidad de que un ejemplo

positivo sea correctamente identificado por el clasificador. También se conoce como tasa de

detección o sensibilidad.

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Precisión: Representa la proporción de verdaderos positivos respecto a todos los ejemplos

clasificados como positivos. Es una medida de la probabilidad estimada de una predicción

positiva correcta y también se denomina valor predictivo positivo. Cuando los TP son 0 (ningún

ataque clasificado correctamente) y los FP son 0 (todos los benignos clasificados

correctamente), no se obtiene un resultado numérico válido.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖ó𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

33

Mientras que la precisión indica la frecuencia de verdaderos positivos (ataques reales) entre

todos los ejemplos considerados como positivos por el clasificador (flujos clasificados como

ataques), el recall mide la frecuencia de verdaderos positivos (ataques reales) entre todos los

ejemplos positivos en el conjunto de datos (ataques en el dataset).

F-Measure o F1: El indicador F combina precisión y recall en un único valor ponderado. Si se

asigna el mismo peso a ambos, se obtiene F1.

𝐹1 =
2 𝑇𝑃

2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
= 2

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Receiver Operating Characteristic (ROC): este diagrama gráfico se utiliza para evaluar el

rendimiento de un algoritmo de clasificación binario. La curva ROC se crea trazando la tasa de

verdaderos positivos frente a la tasa de falsos positivos en diversas configuraciones de

funcionamiento, y el área bajo la curva ROC indica la calidad del clasificador.

Además de los indicadores de rendimiento descritos previamente, existen diferentes métodos

de validación de los algoritmos que permiten obtener los indicadores de distinta forma. La

técnica más básica es la conocida como validación simple o train-test, en la que se elabora el

modelo utilizando el conjunto de entrenamiento y se aplica sobre el conjunto test. Se pueden

establecer diferentes divisiones (porcentaje de split) para dividir un conjunto original en los

subconjuntos de train y test. Otras técnicas utilizadas son la validación cruzada, técnicas de

Bootstrap, etc. que son más costosas computacionalmente.

34

4. Sistema de detección de botnets
4.1. Arquitectura general del sistema

En este capítulo se desarrolla el procedimiento seguido para realizar la detección de botnets a
partir de los nuevos parámetros de tráfico obtenidos aplicando Zeek sobre las capturas de
paquetes con las que se generaron los datasets originales IoTD20, IoT-23 y CIC-IoT-2023, así
como el análisis de los resultados de clasificación obtenidos utilizando dichos parámetros. Este
se ilustra en la Figura 14. El objetivo es detectar en primer lugar los flujos de tráfico utilizando
Zeek a partir de los ficheros que contienen las capturas directas de los paquetes generados
durante la construcción de los datasets (ficheros de captura de paquetes de tráfico en formato
.pcap), y posteriormente encontrar atributos o características de dichos flujos de tráfico para
ser utilizados como datos de entrada de los clasificadores. Gracias a esto, los atributos son
comunes en los tres conjuntos de datos, y se puede estudiar el rendimiento de un único modelo
que es entrenado con un conjunto de datos diferente al que se emplea para su evaluación.
Además, se podrá comparar cómo varía el rendimiento en la clasificación de los flujos de tráfico
al utilizar los atributos obtenidos utilizando Zeek respecto al rendimiento obtenido utilizando
los atributos que contienen los flujos en los datasets originales. Para llevar a cabo estas pruebas
se empleó el software Zeek, un analizador de tráfico de red pasivo y de código abierto. Esta
sección se subdivide en los apartados 5.1, que especifica la metodología empleada y el apartado
5.2, en el que se presentan y analizan los resultados obtenidos.

El esquema general de trabajo seguido en este estudio se representa en la Figura 14, donde se

pueden observar las diferentes etapas de este. En primer lugar, la etapa de generación de logs

se utiliza para obtener información y estadísticas a partir de los flujos de tráfico extraídos de las

capturas. Tras obtener los logs, se combinaron en un único archivo. El siguiente paso es el

etiquetado de los flujos de tráfico, aplicando tanto las etiquetas originales también contenidas

en los datasets originales, como otras que serán comunes entre los tres conjuntos de datos.

Como se puede apreciar en la Figura 14, cada uno de estos ficheros fue transformado para la

unificación de formato y limpieza de datos. Una vez se tienen los conjuntos de datos listos, se

puede llevar a cabo la división en conjunto de entrenamiento y de test. En función de la prueba

realizada, puede realizarse una selección de atributos para emplear solamente los elegidos en

dicha prueba. Finalmente, se entrena el modelo y se evalúa, para obtener resultados.

Figura 14: Esquema general de la metodología utilizada.

35

4.2. Obtención de logs y atributos mediante Zeek
En esta sección se detallan las transformaciones aplicadas para obtener los flujos de tráfico y los

atributos que los caracterizan (que después se emplean en la clasificación), así como el

etiquetado de dichos flujos. La Figura 14 muestra este procedimiento. En líneas generales,

primero se empleó Zeek para obtener los distintos logs a partir del fichero de captura de

paquetes .pcap, ejecutando un script que permite obtener los datos de cada conexión completa

(con_statistics.zeek), es decir, de cada flujo de tráfico. Para estas pruebas, se obtuvieron los

atributos propios el archivo conn.log de Zeek, que contiene detalles de cada conexión a nivel de

los protocolos IP, TCP, UDP e ICMP, además de otras estadísticas relacionadas con los atributos

originales. En un futuro se podrían añadir atributos a partir de otros logs más específicos.

Después se realiza la conversión a CSV mediante otro script desarrollado en Python. Tras esto,

se unen todos los ficheros csv correspondientes a un único dataset en un mismo archivo csv

mediante otro script de Python. Posteriormente, se añaden a los flujos las etiquetas originales

además de las etiquetas nuevas que se emplearán en la clasificación, y se realiza la limpieza de

los datos. En la limpieza, se intercambia cualquier posible valor vacío por 0 o el carácter

correspondiente si es un atributo categórico (además de unificar los valores de los atributos

local_orig y local_resp). Por último, se codifican todos aquellos atributos que sean de tipo string

para asegurar la compatibilidad con todos los algoritmos.

Para obtener los flujos a partir de las capturas de tráfico, se ha utilizado Zeek. Cuando se analiza

una captura de tráfico con Zeek, obtenemos los logs del Anexo III. Para este trabajo, se empleó

el script personalizado conn_statistics.zeek (véase Anexo IV).

El primer fichero se encarga de obtener información de los distintos campos de los paquetes

para generar un archivo .log en el que, para cada flujo, indica direcciones IP origen y destino,

puertos, protocolo, servicio, bytes enviados y recibidos, entre otros parámetros. A continuación,

se muestran todos los parámetros obtenidos del conn_statistics.log en la Tabla VI. En el Anexo

III se explican en mayor detalle los atributos. Este fichero nos aporta la información principal de

los flujos, además de medidas estadísticas como la media, desviación estándar, valor máximo y

mínimo de atributos como los bytes enviados desde origen y en respuesta, o la cantidad de

paquetes que no tienen payload vacío. Estas medidas pueden ser de utilidad para caracterizar

el comportamiento de ciertos tipos de ataque, como pueden la media de bytes de origen y de

destino para ataques que se basan en inundar con paquetes a la víctima.

Tabla VI: Nuevos atributos obtenidos con Zeek a partir de conn_statistics.log.

ATRIBUTOS

TimeStamp Bytes IP respuesta Paquetes origen cero

IP origen Tunnel parents Paquetes resp. cero

Puerto origen Media bytes orig. Media tiempo

IP destino Media bytes resp. Desv. estándar tiempo

Puerto destino Desv. estándar bytes orig. Mín tiempo

Protocolo Desv. estándar bytes resp. Máx tiempo

Servicio Media bytes orig no cero Media tiempo origen

36

Duración Media bytes resp no cero Desv. estándar tiempo origen

Bytes origen Desv. estándar bytes orig no cero Mín tiempo origen

Bytes respuesta Desv. estándar bytes resp no cero Máx tiempo origen

Conn_state Mín bytes orig. Media tiempo resp.

Missed Bytes Mín bytes resp. Desv. estándar tiempo resp.

History Máx bytes orig. Mín tiempo resp.

Paquetes origen Máx bytes resp. Máx tiempo resp.

Bytes IP origen Paquetes origen no cero

Paquetes respuesta Paquetes resp. no cero

4.3. Manipulación y limpieza de datos
Una vez obtenidos los logs con los atributos de Zeek, se realizó la conversión al formato .csv

mediante un script de Python (véase Anexo V y Anexo VI). Este paso corresponde a la selección

de flujos en la Figura 14. Al analizar los logs mediante la herramienta Zui, se observó que había

cierta pérdida de paquetes en las capturas de tráfico de los conjuntos de datos. Por ello, se

decidió analizar en mayor profundidad y se diseñaron scripts de Python (véase Anexo IX y Anexo

X) para obtener aquellos flujos de tráfico con pérdidas superiores a un umbral.

Para poder estimar la cantidad de flujos que podían presentar este defecto, se decidió

representar gráficamente el porcentaje de bytes perdidos por flujos para cada log individual. En

la Figura 15 y Figura 16 se pueden observar dos ejemplos de las gráficas generadas, en este caso

en la base de datos IoTD20:

Figura 15: Porcentaje de Bytes perdidos para cada flujo de tráfico.

37

Figura 16: Distribución de número de flujos según porcentaje de bytes perdidos.

Como se puede apreciar, varios flujos de tráfico presentan pérdidas considerables de bytes. Por

ello, mediante los scripts adjuntos en el Anexo IX, se decidió identificar todos aquellos flujos que

superasen el 1% de bytes perdidos, extraerlos de los ficheros que contenían todos los logs de

cada conjunto de datos, y almacenarlos por separado para poder eliminarlos.

En la Tabla VII se presentan estadísticas para cada base de datos y los flujos eliminados:

Tabla VII: Número de flujos de tráfico totales y eliminados.

Dataset Flujos totales Flujos eliminados
Flujos > 10% missed

bytes

IoTD20 123185 1765 1631

IoT-23 128693450 30 16

CIC-IoT-2023 205611728 78050 51570

Se consideró relevante su eliminación, ya que introducirían información errónea a los modelos.

Esto sucede debido a que, si se intentan relacionar los parámetros de bytes enviados con el

número de paquetes enviados, no concuerda. En la Tabla VIII se muestra un ejemplo de ello. El

número de paquetes de respuesta es demasiado pequeño y no corresponde con la cantidad de

bytes de respuesta.

Tabla VIII: Ejemplo de atributos para un flujo con pérdida de bytes.

Atributo Valor

orig_bytes 9936

resp_bytes 1478577359

missed_bytes 1478547639

orig_pkts 962

orig_ip_bytes 56270

resp_pkts 3044

resp_ip_bytes 4437560

38

Para la lectura de los logs una vez fueron convertidos a formato csv, se emplearon las librerías

Pandas y Dask para poder realizar el resto de operaciones de tratamiento de datos. Ambas

librerías, convierten el archivo leído en un formato de tabla llamado Dataframe. Lee la cabecera

del archivo csv, que contiene el nombre de cada una de las columnas (siendo estas las

características), y permite realizar operaciones sobre columnas completas o sobre filas, en

función de las necesidades. Con Pandas, es posible realizar una amplia gama de operaciones de

limpieza y transformación de datos, como eliminar columnas, filtrar filas, y reemplazar valores

faltantes o incorrectos. Pero esta presenta un inconveniente, requiere muchos recursos de

memoria RAM si el tamaño de los datos es elevado, y, si bien es cierto que puede solventar este

problema realizando las tareas de forma incremental fragmentando los datos en chunks o

bloques, no es capaz de realizar determinadas tareas en las que el tamaño de las bases de datos

supera al espacio en memoria, también llamadas tareas OOM (Out Of Memory).

Una vez filtrados los conjuntos de datos, el siguiente paso que se llevó a cabo fue el etiquetado

de los flujos. Primero se recrearon las etiquetas originales para agruparlas más tarde en los

grupos de ataques deseados. Para ello, se siguieron las reglas empleadas por los autores de los

datasets, véase Anexo VIII y se generaron los scripts correspondientes, véase Anexo VII. Una vez

obtenidas las etiquetas, se pudo observar que existía un patrón de ataques común entre los tres

conjuntos de datos, por lo que se creó otro grupo de etiquetas nuevo para poder unificar las

categorías de ataques entre datasets. Estos tres valores son: DoS, Scan, Brute Force y Benign.

Se eliminaron determinados flujos de la base de datos IoT-23 que quedaron excluidos de este

nuevo grupo de etiquetas.

Siguiendo el esquema de la Figura 14, el último paso previo al entrenamiento de los modelos de

aprendizaje automático es la “limpieza” de datos y codificación de aquellos atributos que lo

necesiten. Se seleccionan todos los atributos excepto las direcciones IP destino, IP origen, puerto

origen y puerto destino, que son excluidas del estudio, así como el ID del flujo y el TimeStamp,

puesto que todos ellos se han utilizado para definir un mismo flujo de tráfico o están asociados

a los paquetes pertenecientes al mismo. Al considerarse que forma parte de la información que

define el flujo, para un mejor entrenamiento y creación de los modelos, es mejor no disponer

de información de puertos y direcciones IP en dicha fase. Si los ataques se generaron desde la

misma IP y en los mismos puertos, no se representará fielmente la realidad y serán fácilmente

identificables como ataques al aparecer flujos de tráfico con los mismos valores tanto en el

conjunto de training como en el de test, pudiendo llevar al modelo a generar respuestas

dependientes de la implementación de los escenarios y por ello se ha optado por no emplear

ninguno de dichos atributos. Adicionalmente, se decidió eliminar el campo tunnel_parents ya

que estaba vacío en la gran mayoría de flujos de los tres conjuntos de datos.

Analizando todos los posibles valores de las bases de datos, se observó que en muchos casos

había valores vacíos para determinados atributos. Por ello, se rellenaron aquellos campos sin

valor con el carácter necesario, siguiendo la Tabla IX. Además, se unificaron los valores de los

campos “local_orig” y “local_resp”, ya que se detectaron varios valores que representaban el

concepto “True” y “False”. El código empleado para poder lograrlo se adjunta en el Anexo XI.

Tabla IX: Valores referidos a campos vacíos y valores sustitutos.

Atributo Valores sustituidos Valor sustituto

Atributos numéricos “”, “ “, “-“, ”[]”, <NA> o NaN 0

 “history” y “conn_state” “”, “ “, ”[]”, <NA> o NaN “-“

 “service” y “proto” “”, “ “, “-“, ”[]”, <NA> o NaN “unknown”

 “local_orig” y “local_resp” “T”, “F” “True” o “False”

39

Tras unificar los valores, se procedió a codificar lo valores de los atributos categóricos, siendo

estos: “history”, “conn_state”, “service”, “proto” “local_orig” y “local_resp”. Como se buscaba

que la codificación fuese común entre los tres conjuntos de datos para posteriormente realizar

pruebas con los datos de los datasets combinados, el primer paso fue obtener los valores únicos

estos atributos mediante la función unique o drop_duplicates. La librería empleada para la

codificación, Scikit-Learn, es una biblioteca de Python especializada en Machine Learning y

análisis de datos. Scikit-Learn también proporciona herramientas robustas para la selección de

modelos, preprocesamiento de datos, ajuste de modelos, validación de modelos y evaluación

de resultados. En la siguiente sección se utiliza para realizar la clasificación de los datos.

Para optimizar todo el proceso de manipulación y limpieza de datos, se realizó de forma paralela

mediante la clase ThreadPoolExecutor. Esta facilita la ejecución de operaciones de

entrada/salida y otros trabajos en paralelo, aprovechando múltiples hilos de ejecución. Fue

especialmente útil ya que en este trabajo se tratan grandes volúmenes de datos que pueden

dividirse en fragmentos más manejables. En este caso, se empleó para leer y procesar múltiples

archivos simultáneamente, aplicando transformaciones como la limpieza de datos o la

normalización en paralelo. Esto no solo mejora el rendimiento, sino que también reduce

significativamente el tiempo de procesamiento en comparación con la ejecución secuencial.

Gracias a ella, se aprovecharon los recursos de CPU y RAM de forma eficiente.

Una vez codificados los atributos, los conjuntos de datos ya están listos para ser entregados a

los modelos de Machine Learning. Se organizó el escenario de pruebas en dos subgrupos, por

un lado, se obtuvieron resultados alimentando a los modelos con los conjuntos de datos de

forma separada para así comparar los resultados obtenidos con los resultados de los autores;

por otro lado, se entrenó primero el modelo con una base de datos y se evaluó con las dos

restantes, y en otra prueba se entrenó y evaluó el modelo con una mezcla de los tres conjuntos

de datos.

A continuación, se realiza una comparación entre los flujos obtenidos con la herramienta Zeek

y los flujos originales de los datasets. Los flujos de CIC-IoT-2023 se construyeron a partir de

archivos .pcap utilizando la herramienta CICFlowMeter, que genera archivos .csv donde cada fila

corresponde a un flujo. CICFlowMeter define un flujo como un intercambio bidireccional de

paquetes de red que pertenecen a la misma tupla de dirección IP de origen, dirección IP de

destino, puerto de origen, puerto de destino y protocolo de capa de transporte, dentro de un

período de tiempo determinado. Un flujo finaliza cuando se agota el tiempo de espera o cuando

se cierra la conexión. La estructura de datos de Zeek es una conexión que sigue los mecanismos

típicos de identificación de flujo, siguiendo el enfoque de 5 tuplas mencionado anteriormente.

Para un protocolo orientado a la conexión como TCP, la definición de una conexión es más clara;

sin embargo, para otros como UDP e ICMP, Zeek implementa una abstracción similar a un flujo

para agregar paquetes. Cada paquete pertenece a una conexión. En la Tabla X se muestra el

número de flujos tanto en los datasets originales como los obtenidos en este trabajo utilizando

Zeek. En IoTD20 es importante recalcar que los autores obtuvieron los flujos mediante la

herramienta CIC-FlowMeter. Además, el número de flujos obtenidos con Zeek para este trabajo

no incluye aquellos que contienen pérdidas de bytes superiores al 1%.

40

Tabla X: Flujos de cada conjunto de datos.

Dataset Fichero Flujos originales Flujos Zeek

IoTD20

Mirai-UDP Flooding 183554 500

Mirai-Ackflooding 55124 38609

Mirai-Hostbruteforce 121181 163

Mirai-HTTP Flooding 55818 3882

DoS-Synflooding 59391 59489

Scan Port OS 53073 35

Scan Hostport 22192 16251

Normal 40073 12211

IoT-23

Malware-Capture-7-1 11454715 11454714

Malware-Capture-34-1 23153 8990

Malware-Capture-35-1 10447788 8257565

Malware-Capture-43-1 67321810 67321799

Malware-Capture-44-1 238 228

Malware-Capture-48-1 3394346 3393634

Malware-Capture-49-1 5410562 6021586

Malware-Capture-52-1 19781379 32232712

Honeypot-Capture-4-1 453 735

Honeypot-Capture-5-1 1375 1358

Honeypot-Capture-7-1 131 131

CIC-IoT-2023

Mirai Greeth 991867 193689830

Mirai Greip 751683 144690088

Mirai UDP Plain 890577 286556

PortScan 82285 207402

OSScan 98260 182672

DDoS HTTP 28791 616156

DDoS PSHACK 4094756 69941338

DictionaryBruteForce 13065 6735

Benign 1098196 589912

4.4. Aplicación de técnicas de ML
Como se comentará más adelante, para la generación de resultados se dividen los datasets en

conjunto de entrenamiento y conjunto de test. Para ello, se empleó la función train_test_split,

propia de la librería de Python SciKit-Learn. Se indica el porcentaje deseado de datos de test, en

este caso un 60%, y se indica que realice la división de forma aleatoria.

En determinadas pruebas realizadas, la lectura del conjunto de datos en un sólo DataFrame

requería más memoria de la disponible en la máquina. Por ello, se optó por emplear la librería

Dask. Dask es una biblioteca de Python diseñada para manejar cálculos paralelos y distribuidos,

permitiendo el procesamiento de grandes conjuntos de datos que no caben en la memoria de

un solo ordenador. Dask extiende las funcionalidades de Pandas y NumPy para trabajar de

manera eficiente con datos en entornos de big data. Al igual que Pandas, Dask permite leer y

escribir datos en varios formatos, pero lo hace distribuyendo la carga de trabajo a través de

múltiples hilos o incluso múltiples máquinas.

41

Una vez divididos, determinados modelos requieren un escalado de datos previo para funcionar

correctamente. Estos son: MLP, Nearest Centroid y SGD. Para ello se emplea la clase

StandardScaler(), que necesita ser entrenada con los datos a utilizar mediante la función fit(), y

posteriormente se transforman para hacer efectivo el escalado (véase Anexo XII). Si se decide

realizar la clasificación con sólo una fracción de las características, se realiza una selección de

atributos. En este trabajo, una de las pruebas realizadas emplea esta técnica de preprocesado.

Para ello, se empleó la función de Scikit-Learn mutual_info_classif, que obtiene una métrica que

permite traducir numéricamente a una métrica qué atributos son más relevantes. Esta métrica

se entrega a un selector de características, como por ejemplo KBest, y escoge el número de

características deseado (véase Anexo XIII).

A continuación, se introducen en el modelo empleando la función fit() para su entrenamiento.

Entre los algoritmos disponibles se incluyen regresión lineal, árboles de decisión, máquinas de

soporte vectorial (SVM), k-vecinos más cercanos (KNN), y clustering con k-means, entre otros.

Una vez entrenado el modelo, procede a ser evaluado con los datos de test. La evaluación

devuelve una predicción de las etiquetas que el modelo ha estimado, y, a partir de estas y de las

etiquetas originales, se realizan comparaciones y obtienen distintas métricas para evaluar el

rendimiento del modelo. Scikit-Learn también facilita la visualización de resultados a través de

gráficos, por lo que se han generado curvas ROC y matrices de confusión para todos los modelos,

lo que permite medir la eficacia de los modelos de manera detallada.

4.5. Entorno de trabajo de las pruebas
El puesto de trabajo empleado para el procesado de los datos y posterior clasificación posee las

siguientes características:

Tabla XI: Especificaciones de la máquina empleada en el trabajo.

Sistema Operativo Debian 11

Nº procesadores disponibles 16

Modelo CPU Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz

Memoria RAM 156 GB

Zeek version 7.0.0-dev.247

Python version Python 3.9.2

Sci-kit Learn version 1.4.2

Pandas version 2.2.2

42

5. Resultados
En este capítulo se presenta el proceso seguido para obtener los resultados tras aplicar las

técnicas de clasificación descritas en el capítulo 3. Los diferentes modelos de clasificación fueron

generados a partir de los tres conjuntos de datos descritos en el capítulo anterior por separado,

así como a partir de un único dataset obtenido a partir de los tres. Para llevar a cabo la

clasificación del tráfico se ha hecho uso de las técnicas de ML empleando la librería de Scikit-

Learn sobre los archivos obtenidos que contienen todos los atributos de los flujos de tráfico

(ficheros en formato .csv), tal y como se ha descrito en el capítulo 4. En la sección 5.1 se describe

la metodología seguida en el banco de pruebas realizadas, y los resultados obtenidos y la

discusión de los mismos se presentan en la sección 5.2. Las principales conclusiones de este

capítulo se recopilan en el capítulo de Conclusiones.

5.1. Banco de pruebas realizadas
Tras conseguir tres conjuntos de datos con etiquetas comunes entre ambos, y un conjunto de

datos obtenido a partir de la combinación de los tres anteriores, se procedió a realizar las

correspondientes pruebas con diferentes algoritmos de Machine Learning.

La clasificación en todas las pruebas realizadas se ha llevado a cabo definiendo los conjuntos de

entrenamiento y test, empleando el 40% del fichero para entrenamiento, y el resto para test. Se

considera que es mejor no utilizar validación cruzada ya que, si el dataset se dividiese por

ejemplo en 10 subconjuntos, empleando 9 partes para entrenar el modelo, aumentaría la

probabilidad de que información de un mismo flujo de tráfico se hallase en el conjunto de

entrenamiento y en el de prueba, conllevando un sobreajuste (overfitting) de clasificación. Para

la clasificación se seleccionaron los algoritmos: Decission Tree, Nearest Centroid, Random Forest,

Gaussian Naïve Bayes, Bernoulli Naïve Bayes, Stochastic Gradient Descend, Bagging con

Decission Tree, AdaBoost con Decission Tree y Multilayer Perceptron.

El banco de pruebas llevado a cabo se ha organizado en dos etapas (véanse Figura 17 y Figura

18), realizando por un lado, la evaluación sobre los datasets IoTD20, IoT-23 y CIC-IoT-2023 de

forma independiente (Figura 17); y por otro lado, se lleva a cabo la evaluación empleando los

tres datasets de forma combinada (Figura 18). En la primera etapa de pruebas se definen los

conjuntos de entrenamiento (training) y de prueba (test) en cada dataset. Se generan los

correspondientes modelos de clasificación (aplicando las diferentes técnicas de ML) en cada

conjunto de entrenamiento, y posteriormente, cada modelo es evaluado sobre el conjunto de

prueba asociado, tal y como se ilustra en la Figura 17.

Figura 17: Primera etapa de pruebas: evaluación sobre los datasets IoTD20-Zeek, IoT-23-Zeek y CIC-IoT-2023-

Zeek de forma independiente.

43

En la segunda etapa de pruebas, se consideran dos escenarios de evaluación. Se plantea por un

lado el entrenamiento y evaluación de los modelos con una mezcla aleatoria de los tres datasets

(escenario 1 de la Figura 18), y por otro, el entrenamiento mediante un único conjunto de datos

(CIC-IoT-2023-Zeek) y la evaluación sobre los otros dos: IoTD20-Zeek e IoT-23-Zeek (escenario 2

de la Figura 18). En este punto del proceso (véase la Figura 14), se distinguen además dos formas

diferentes de llevar a cabo la definición de los conjuntos de training y test: la primera

corresponde a las pruebas de clasificación multiclase (multiclass), y la segunda corresponde a

las pruebas de clasificación binaria (binary). En la clasificación multiclase se distinguen los

diferentes tipos de ataques determinados por las etiquetas comunes (e.g. Scan, DoS, etc.). Por

otro lado, para llevar a cabo la clasificación binaria, se han agrupado los ataques presentes en

cada archivo mediante un script de Python. De este modo, se han eliminado las etiquetas que

los distinguían y se ha incluido una genérica que indica 0 para tráfico benigno, y 1 para tráfico

maligno. Por lo tanto, el clasificador tendrá que llevar a cabo una distinción binaria entre 0 y 1.

Figura 18: Segunda etapa de pruebas: evaluación sobre el dataset combinado a partir de IoTD20-Zeek, IoT-23-

Zeek y CIC-IoT-2023-Zeek (escenario 1), y evaluación sobre IoTD20-Zeek e IoT-23-Zeek mediante el modelo

generado con CIC-IoT-2023-Zeek.

5.2. Resultados y discusión

5.2.1. Primera etapa de pruebas: clasificación individual sobre IoTD20,
IoT-23 y CIC-IoT-2023 (clasificación multiclase)

En esta sección se presentan y analizan los resultados obtenidos al aplicar las técnicas de ML

para la clasificación multiclase de los flujos de tráfico, por lo tanto, diferenciando entre los

distintos ataques que hay en un mismo fichero, y utilizando todos los atributos disponibles (42

características para cada flujo). En la Tabla XII se muestran los resultados de rendimiento

correspondientes al parámetro F1 para las diferentes técnicas, mientras que los resultados de

los parámetros de precision y recall, pueden consultarse en las correspondientes tablas del

Anexo XIV. Como comentario general de los resultados obtenidos sobre cada uno de los datasets

(Tabla XII), se puede decir que los métodos de ML han funcionado con elevadas tasas de

clasificación en la mayoría de los tipos de ataque y en la clase benigna.

44

En general se observa un mejor comportamiento en la clasificación de los flujos de tipo DoS y

Scan respecto a la clase Brute Force, lo que resulta razonable teniendo en cuenta que los ficheros

de los datasets contienen clases desbalanceadas (el número de instancias de flujos Brute Force

respecto a flujos de otros ataques es mucho menor, véase la Tabla X de la sección 4.3). Como es

habitual, se presenta la dicotomía clásica entre dos enfoques: diseñar datasets que favorezcan

la presencia de clases minoritarias o considerar una situación que refleje lo más fielmente

posible un entorno real en términos de la frecuencia de ataques presentes.

Al comparar los resultados de las diferentes técnicas (Tabla XII) se puede observar que destaca

el rendimiento de los algoritmos Decision Tree, Random Forest, Bagging Tree, Boosting Tree y

MLP, que obtienen valores de F1 por encima del 98% en 7 de los 8 ataques presentes en los tres

datasets (solo el caso de Brute Force en CIC-IoT-2023 se halla por debajo de dicho valor). Como

puede observarse también, el valor de F1 promediado para todas las clases de tráfico en cada

dataset (incluyendo ataques y benigno) supera el valor de 0,99 mediante la aplicación de estos

algoritmos. En el dataset CIC-IoT-2023, la clasificación fue más compleja, lo que puede

apreciarse en los resultados. Principalmente, se debe al desbalance de clases, que se hace

presente de forma más visible en este conjunto de datos, ya que la diferencia de número de

instancias entre las clases Brute Force, y por ejemplo DoS, es del orden de casi 10⁵. En los tres

conjuntos de datos, los algoritmos Decision Tree, Random Forest, Bagging Tree y Boosting Tree

obtienen resultados muy similares, pero Decision Tree lo lleva a cabo en el menor tiempo, por

lo que puede ser un buen candidato para tareas más enfocadas a analizar datos en tiempo real.

En esta primera etapa de pruebas no se consideró necesario llevar a cabo la clasificación binaria

dado que los resultados en clasificación multiclase (más compleja que la clasificación binaria)

son excelentes.

Se incluyen a continuación algunos resultados del análisis de la complejidad computacional de

los algoritmos utilizados. Como ejemplo, en la Figura 19 se presentan los tiempos de ejecución

(escala logarítmica en segundos) para el dataset CIC-IoT-2023 tanto en la fase de construcción

del modelo (training) como en la de evaluación del mismo (test). Tal y como se podía prever,

aquellas técnicas de mayor complejidad computacional dan lugar a tiempos de cálculo más

elevados y, por tanto, a un menor número de flujos por segundo analizados. En los otros dos

datasets evaluados se observó este mismo comportamiento en los tiempos de ejecución de las

técnicas de ML aplicadas.

Figura 19: Tiempos de cálculo (expresado en flujos por segundo analizados) de los algoritmos de ML en el

dataset CIC-IoT-2023.

Tabla XII: Medida F1 para la primera etapa de pruebas, clasificación multiclase individual de IoTD20, IoT-23 y CIC-IoT-2023.

Dataset name Label DecissionTree Gaussian NB BernouilliNB SGD Random Forest BaggingTree BoostingTree NearestCentroid MLP

IoTD20

Brute Force 1,00 0,01 0,15 0,42 1,00 1,00 0,98 0,06 1,00

DoS 1,00 0,57 0,9 0,98 1,00 1,00 1,00 0,88 0,99

Scan 1,00 0,00 0,97 0,98 1,00 1,00 1,00 0,64 1,00

Benign 0.96 0,10 0,26 0,7 0,96 0,96 0,95 0,39 0,92

Average 0,99 0,46 0,86 0,96 0,99 0,99 0,99 0,81 0,99

IoT-23

DoS 1,00 0,84 0,81 0,99 1,00 1,00 1,00 0,86 1,00

Scan 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,98 1,00

Benign 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,98 1,00

Average 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,98 1,00

CIC-IoT-2023

Brute Force 0,84 0,00 0,00 0,00 0,83 0,88 0,85 0,01 0,47

DoS 1,00 0,21 0,94 1,00 1,00 1,00 1,00 1,00 1,00

Scan 0,98 0,00 0,05 0,59 0,99 0,99 0,99 0,63 0,96

Benign 0,98 0,01 0,03 0,41 0,97 0,98 0,98 0,37 0,88

Average 1,00 0,21 0,94 1,00 1,00 1,00 1,00 0,99 1,00

46

A continuación, se presentan algunos ejemplos del funcionamiento de los clasificadores que mejores

resultados han logrado. Una muestra de ello es el árbol de decisión creado por Decision Tree para la

base de datos de IoTD20. En las primeras divisiones, es capaz de diferenciar una clase con una

probabilidad de 0,938 empleando características como history, proto u orig_ip_bytes.

En la Figura 20 se presentan, respectivamente, la matriz de confusión genérica y la matriz de confusión

normalizada para el algoritmo Random Forest en el conjunto de datos IoT-23, donde se puede apreciar

que el número de instancias incorrectamente clasificadas es muy reducido.

Si comparamos los resultados de nuestro banco de pruebas con los resultados obtenidos por los

autores de las respectivas bases de datos, por ejemplo, para el conjunto de datos CIC-IoT-2023,

podemos apreciar resultados considerablemente mejores en términos de F1 en nuestro estudio. La

Tabla XIII muestra los resultados obtenidos en (Neto et al., 2023) sobre todo el dataset, incluyendo

pruebas con diferentes clases de ataques. Comparando con las clasificaciones de 8 y 2 clases, se puede

observar que los algoritmos Perceptron, Adaboost y Random Forest, también utilizados en este trabajo,

obtienen resultados similares a los obtenidos en la tabla. Al igual que en este trabajo, Random Forest

y Adaboost (análogo a Boosting Tree) son aquellos con mejores resultados, que en nuestro banco de

pruebas han alcanzado valores de F1 incluso más elevados.

Tabla XIII: Medida F1 obtenida por los autores de CIC-IoT-2023.

 Logistic regression Perceptron Adaboost Random Forest
Deep Neural

Network

CIC-IoT-2023 (Neto
et al., 2023)

Binary 0,88 0,81 0,96 0,96 0,94

8 classes 0,54 0,55 0,37 0,72 0,70

Figura 20: Matrices de confusión para IotD20 utilizando RandomForest.

47

También se llevó a cabo la comparación con los resultados obtenidos por los autores de IoTD20 (Ullah

& Mahmoud, 2020). Si comparamos los valores de F1 presentados en dicho trabajo, podemos apreciar

ciertas similitudes en el comportamiento de los algoritmos. No obstante, en nuestro estudio, los

algoritmos Decision Tree, Random Forest, Bagging, BoostingTree y MLP mostraron valores de F1 muy

superiores a los alcanzados en (Ullah & Mahmoud, 2020).

Tabla XIV: Medida F1 obtenida por los autores de IoTD20.

 SVM Gaussian NB LDA
Logistic

regression
Decision

Tree
Random
Forest

Ensemble

IoTD20 (Ullah &
Mahmoud, 2020)

Binary 0,16 0,62 0,70 0,30 0,88 0,84 0,87

Finalmente, respecto al conjunto de datos de IoT-23, los autores no presentaron ningún resultado de

evaluación, y sólo se dispone del propio dataset e información relacionada con el etiquetado de los

flujos.

5.2.2. Segunda etapa de pruebas, escenarios 1 y 2: clasificación sobre IoTD20,
IoT-23 y CIC-IoT-2023 combinados (clasificaciones multiclase y binaria)

Escenario 1

Tras haber obtenido las métricas para los tres conjuntos de datos de forma individual, se plantearon

dos escenarios de pruebas más en una segunda etapa. A continuación, se analiza el primer escenario,

en el que se entrenan los modelos con un subconjunto de la unión de los tres datasets, y se evalúa con

el subconjunto restante (Figura 18). Al igual que en el análisis de la sección previa, se emplea el 40%

de los datos para el entrenamiento y 60% para el test. Para este escenario 1, la división en

subconjuntos de entrenamiento y de evaluación se llevó a cabo previamente sobre cada conjunto de

datos, y posteriormente se unieron los correspondientes subconjuntos de entrenamiento y test entre

sí. Se decidió evaluar primero la clasificación de forma binaria, ya que computacionalmente es más

simple, y posteriormente se llevó a cabo con las distintas clases de ataque.

A continuación, se presentan y analizan los resultados de clasificación binaria, mostrados en la Tabla

XV. Se puede apreciar que los valores de F1 son superiores a 0.99 para todos los clasificadores excepto

GaussianNB, BernouilliNB y Nearest Centroid. Esto se puede deber a la complejidad de los datos, ya

que, en este caso, se está intentando obtener el perfil de tráfico benigno y de ataques procedentes de

conjuntos de datos diferentes, generados mediante procedimientos y dispositivos IoT diferentes. Por

lo tanto, algoritmos más simples no consiguen diferenciarlos de forma correcta. Para todos los

algoritmos basados en árboles (Decision Tree, Random Forest, Bagging Tree, y Boosting Tree) se han

obtenido valores de F1=1, lo que pone de manifiesto que al utilizar un conjunto de entrenamiento

combinado se incluyen los diferentes comportamientos de los flujos de tráfico provenientes de

distintos datasets y se pueden lograr resultados de clasificación muy buenos.

Después, se realizó la clasificación multiclase cuyos resultados también se muestran en la Tabla XV. En

general, se han obtenido valores de F1 elevados para todas las clases de tráfico, exceptuando la clase

minoritaria Brute Force, en la que se aprecia un descenso notable. Para el resto de clases, todos los

clasificadores excepto GaussianNB y BernoulliNB han obtenido valores de F1 superiores a 0,99.

48

Como se puede observar en el ejemplo de la Figura 20, en esta clasificación, el número de instancias

incorrectamente clasificadas como benignas siendo ataques, y el tráfico benigno clasificado como

ataque, es inusualmente alto. Tras analizar los conjuntos de datos, se plantea la posibilidad de que se

deba a que el etiquetado realizado por los autores de CIC-IoT-2023 difiere respecto al empleado en los

datasets restantes. Mientras que en CIC-IoT-2023 se etiquetan todos los flujos de una misma captura

de tráfico como ataque o como benigno, en IoT-23 e IoTD20 se proporcionan reglas específicas para

separar flujos o paquetes malignos del tráfico benigno que se encuentran en las capturas de ataque.

Figura 21: Matriz de confusión para clasificador Bagging

49

Tabla XV: Medida F1 para la segunda etapa de pruebas.

Dataset name Label DecissionTree Gaussian NB BernouilliNB SGD Random Forest BaggingTree BoostingTree NearestCentroid MLP

Escenario 1
Binary

Benign 1,00 0,4 0,82 0,99 1,00 1,00 1,00 0,63 0,99
Malign 1,00 0,15 0,94 1,00 1,00 1,00 1,00 0,79 1,00

Average 1,00 0,21 0,91 0,99 1,00 1,00 1,00 0,75 1,00

Escenario 1
Multiclass

Brute Force 0,41 0,00 0,00 0,00 0,44 0,44 0,41 0,02 0,3

DoS 1,00 0,21 0,86 0,99 1,00 1,00 1,00 0,98 1,00

Scan 1,00 0,00 0,91 0,99 1,00 1,00 1,00 0,91 1,00

Benign 1,00 0,00 0,83 0,99 1,00 1,00 1,00 0,91 1,00

Average 1,00 0,11 0,87 0,99 1,00 1,00 1,00 0,95 1,00

Escenario 1
Multiclass & FS

Brute Force 0,38 0,00 0,00 0,00 0,42 0,42 0,39 0,02 0,00

DoS 1,00 0,21 0,73 0,99 1,00 1,00 1,00 0,99 1,00

Scan 1,00 0,00 0,97 0,93 1,00 1,00 1,00 0,93 0,99

Benign 1,00 0,00 0,00 0,90 0,99 0,99 0,99 0,91 0,99

Average 1,00 0,11 0,62 0,90 1,00 1,00 1,00 0,96 0,99

Escenario 2

Binary

Benign 0,00 0,64 0,00 0,12 0,00 0,01 0,00 0,00 0,12

Malign 0,69 0,00 0,69 0,01 0,69 0,69 0,69 0,69 0,01

Average 0,37 0,30 0,37 0,06 0,37 0,37 0,37 0,37 0,06

Escenario 2
Multiclass

Brute Force 0,00 0,00 0,07 0,00 0,00 0,00 0,03 0,03 0,07
DoS 0,00 0,00 0,00 0,01 0,01 0,00 0,01 0,01 0,56
Scan 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,94 1,00

Benign 0,00 0,00 0,00 0,12 0,24 0,24 0,24 0,00 0,99
Average 0,12 0,00 0,00 0,06 0,12 0,12 0,12 0,49 0,99

50

Por último, se decidió analizar cuáles eran las características más relevantes para la clasificación

incluidas en el banco de pruebas. Para ello se consideró este conjunto de datos generado a partir de

la unión de los tres datasets correspondiente al escenario 1. Es bien sabido que las técnicas de

selección de atributos (feature selection) se utilizan frecuentemente como un paso previo al

entrenamiento de los modelos de clasificación para reducir la dimensionalidad de los datos y mejorar

la precisión al eliminar características irrelevantes y/o redundantes (Khalid et al., 2014). Por ejemplo,

el método de la ganancia de información (information gain) mide la reducción en la entropía o

incertidumbre de los datos tras dividirlos según un atributo específico, es decir, la ganancia de

información con respecto a la clase. De este modo, el método de FS proporciona una lista ordenada

de atributos en la que se prioriza la reducción de la entropía sobre la cantidad de información que

aporta. En Tabla XVI se muestra el resultado obtenido al aplicar el método de FS donde los atributos

se hallan ordenados según su information gain. Obviamente, existen otros métodos de FS más

sofisticados, por ejemplo, basados no en un ranking individual de atributos sino en la selección de

subconjuntos óptimos de atributos, como el método CFS (Correlation-based Feature Subset Selection)

en el que se considera la capacidad predictiva individual de los atributos junto con el grado de

redundancia entre ellos (Rodríguez et al., 2022). Para poder tener una primera aproximación al efecto

de incorporar los métodos de FS, se realizó la clasificación con los 15 primeros atributos según su valor

de information gain. Los resultados de F1 obtenidos se muestran en laTabla XV. Los resultados

obtenidos en esta clasificación son similares o idénticos a los alcanzados sin aplicar la selección de

atributos, excepto en algún caso aislado como Bernoulli para la clase benigna. La aplicación de FS

puede ser una opción interesante cuando el tiempo de cálculo es crítico, dado que en la mayoría de

los casos éste se ha visto reducido considerablemente.

Tabla XVI: Listado de características ordenadas según la media Infomation Gain.

nº Característica InfoGain nº Característica InfoGain
11 orig_ip_bytes 0.939904 12 resp_pkts 0.011722
28 orig_pkts_cero 0.804201 4 resp_bytes 0.004483
33 time_max 0.622759 25 resp_bytes_max 0.004215
2 duration 0.622723 19 resp_bytes_mean_nocero 0.004075

30 time_mean 0.622511 15 resp_bytes_mean 0.003886
31 time_std 0.622102 38 resp_time_mean 0.001945
10 orig_pkts 0.558826 41 resp_time_max 0.001838
9 history 0.367382 27 resp_pkts_nocero 0.001695

34 orig_time_mean 0.100194 17 resp_bytes_std 0.001382
37 orig_time_max 0.099999 39 resp_time_std 0.001152
18 orig_bytes_mean_nocero 0.048777 21 resp_bytes_std_nocero 0.001078
24 orig_bytes_max 0.048595 32 time_min 0.000009
3 orig_bytes 0.048549 0 proto 0.000000

14 orig_bytes_mean 0.048504 8 missed_bytes 0.000000
35 orig_time_std 0.044491 6 local_orig 0.000000
16 orig_bytes_std 0.042997 5 conn_state 0.000000
20 orig_bytes_std_nocero 0.042741 1 service 0.000000
26 orig_pkts_nocero 0.034696 22 orig_bytes_min 0.000000
13 resp_ip_bytes 0.020950 23 resp_bytes_min 0.000000
7 local_resp 0.017107 36 orig_time_min 0.000000

29 resp_pkts_cero 0.016615 40 resp_time_min 0.000000

51

Escenario 2

El escenario 2 de la segunda etapa de pruebas consistió en considerar como conjunto de

entrenamiento un dataset, y como conjunto de evaluación, otro distinto. En concreto, se empleó el

conjunto de datos CIC-IoT-2023 para entrenamiento y se evaluó con IoTD20 e IoT-23. Primero se

analizan los resultados de utilizar el dataset de CIC-IoT como conjunto de train, tanto para clasificación

binaria como multiclase. En esta prueba, se decidió muestrear la clase DoS en un 15%, para que la

computación fuese viable, manteniendo intactas las otras tres clases. Tras el muestreado, el número

de instancias de DoS pasó a ser de 30 millones, superando igualmente al resto de clases en un factor

100.

Los resultados obtenidos en la clasificación binaria (véase la Tabla XV) indican que la clase “maligna”

se etiqueta de forma correcta, pero surgen dificultades a la hora de etiquetar correctamente la clase

benigna. Esto puede deberse al método de etiquetado ya comentado anteriormente. Si existe tráfico

realmente benigno dentro de las capturas de tráfico malignas, pero está siendo considerado durante

el entrenamiento con la etiqueta “maligna”, en la evaluación, al analizar los flujos benignos de IoTD20

e IoT-23, estos podrán ser etiquetados como malignos. Esto se puede observar en la matriz de

confusión para el algoritmo Random Forest mostrada en la Figura 22. Los resultados ponen de

manifiesto en este caso que al generar el modelo de clasificación en un dataset y evaluarlo en otro no

se logran incluir los diferentes comportamientos de los flujos de tráfico provenientes de distintos

datasets, o bien como se ha comentado que el propio etiquetado de los flujos en cada dataset no los

hace coherentes, y esto se traduce en resultados de clasificación mucho peores. El descenso en los

valores de F1 es especialmente significativo en todos los algoritmos basados en árboles.

Figura 22: Matriz de confusión para clasificación binaria en el segundo escenario empleando Random Forest

Si ahora se analizan las métricas obtenidas para la clasificación multiclase (véase la Tabla XV), los

valores de F1 siguen siendo muy reducidos. El algoritmo MLP obtiene los mejores resultados, y la

matriz de confusión presenta una diagonal con valores significativos. Aunque se sigue observando que

la etiqueta “benign” presenta un número muy alto de instancias etiquetadas como ataque, y la mayoría

de clasificaciones erróneas se producen en la clase DoS. Esto puede deberse a la presencia

predominante de la clase en el conjunto de entrenamiento.

52

6. Conclusiones y líneas futuras
6.1. Conclusiones

En este trabajo fin de máster se ha hecho un análisis del entorno IoT actual, desde los dispositivos más

utilizados a los atacados con mayor frecuencia, las amenazas más comunes, detallando una de las más

conocidas, la botnet Mirai, y los ataques típicos de esta, además de otros ataques comunes que están

presentes en los conjuntos de datos empleados.

Además, se han estudiado en profundidad diferentes conjuntos de datos en el ámbito IoT disponibles

en la actualidad. Todos ellos presentan gran diversidad de ataques, y en la mayoría de estos está

presente el tráfico de botnets. Tras el análisis efectuado, se seleccionaron los conjuntos de datos

IoTD20, IoT-23 y CIC-IoT-2023, organizados en capturas de tráfico. Dichos datasets contienen tráfico

benigno y diferentes ataques: diferentes tipos de DDoS como Mirai GREETH, Mirai GREIP, Mirai

UDPPlain, DDoS HTTP o DDoS PSHACK, ataque de fuerza bruta, escaneo de puertos y de sistema

operativo.

También se han estudiado distintas técnicas de aprendizaje automático con el objetivo de clasificar los

diferentes ataques característicos de una botnet y se ha profundizado en aquellas que han sido

empleadas. Dentro de las técnicas de clasificación se escogieron nueve algoritmos para caracterizar y

poder diferenciar el tráfico benigno de las clases malignas DoS, Scan y BruteFoce: Decision Tree,

Gaussian Naive Bayes, Bernouilli Naive Bayes, Stochastic Gradient Descent, Random Forest, Bagging

con Decision Tree, AdaBoost con Decision Tree, NearestCentroid y Mulltilayer Perceptron.

Después, a partir de las capturas de tráfico, se analizaron los flujos y se extrajo la información detallada

de las conexiones en distintos logs mediante la herramienta Zeek utilizando un script personalizado

que proporciona datos a nivel de los protocolos IP, TCP, UDP, ICMP, etc., y se etiquetó el tráfico

mediante scripts que comparan la dirección IP, los puertos origen y destino, el protocolo empleado y

atributos como history y conn_state. Durante el etiquetado también se eliminaron algunos flujos que

presentaron pérdidas de bytes debido a una posible mala configuración en la captura de tráfico por

parte de los autores originales, y se llevaron a cabo las tareas de conversión de formato, limpieza de

datos y unificación de estructura de determinados atributos, para finalmente obtener tres conjuntos

de datos que contienen los mismos atributos y etiquetas.

Para aplicar los algoritmos de ML se emplearon las librerías Scikit-learn, Pandas y Dask que permiten

llevar a cabo funciones de lectura de datos, tratamiento y transformación, preprocesado de datos,

clasificación, selección de atributos, asociación y visualización de datos. Se planteó un extenso banco

de pruebas considerando la evaluación sobre los datasets IoTD20-Zeek, IoT-23-Zeek y CIC-IoT-2023-

Zeek de forma independiente y de forma combinada, tanto en clasificación binaria como multiclase.

En cada una de estas pruebas se consideró un 40% del dataset para entrenamiento y el resto para test.

Es importante señalar que no se incluyeron atributos como direcciones IP de origen o destino, ni

puertos de origen o destino, debido a que estos valores son altamente dependientes de la

implementación, lo que haría que el experimento no fuera realista. Además, la inclusión de estos

atributos facilitaría la identificación de los ataques. Para medir cuantitativamente los resultados

obtenidos, se analizó en profundidad la medida de rendimiento F1. A partir de los resultados

obtenidos, se puede concluir que los algoritmos que alcanzan los mejores resultados, manteniendo un

tiempo de cálculo razonable, son DecisionTree, Random Forest, Boosting Tree y Bagging Tree. Por lo

53

tanto, los métodos basados en árboles de decisión han demostrado ser los más eficientes, lo cual es

beneficioso para su implementación en un entorno real, dado que estas técnicas son las más

fácilmente interpretables. Estos algoritmos lograron valores de F1 superiores a 0.99 sin selección de

atributos en el análisis individual de cada conjunto de datos, y superiores a 0.9 en la mayoría de las

clases en todas las pruebas en las que se consideró la unión de conjuntos de datos, presentando

además una variación mínima con la selección de atributos (con 15 atributos seleccionados usando el

método de Information Gain). Un tiempo reducido para generar el modelo y realizar las pruebas es

esencial si se pretende aplicar el modelo en un sistema que funcione en tiempo real. Los resultados

obtenidos en la clasificación binaria mostraron también que al reducir la complejidad de la clasificación

se pueden obtener mejores resultados en menos tiempo. En cuanto a la selección de atributos, es

destacable la reducción de tiempo a costa de una ligera disminución en el valor de F1.

Es relevante destacar que los resultados obtenidos en la clasificación llevada a cabo al entrenar con un

conjunto de datos diferente al de evaluación fueron subóptimos. Esto deja entrever la problemática

que surge de generar conjuntos de datos siguiendo procedimientos tan diferentes. Aunque se

obtengan resultados prometedores al evaluar de forma aislada estos conjuntos de datos, es necesario

analizar el comportamiento de los modelos con datos generados por diferentes dispositivos y ataques

capturados en condiciones diferentes. De este modo los modelos desarrollados podrán enfrentarse a

situaciones más realistas, y así se podrá evaluar mejor el potencial de la aplicación de técnicas de

Machine Learning a la detección de botnets.

6.2. Líneas futuras
A continuación se proponen algunas líneas futuras de investigación que se podrían abordar:

• Plantear la posibilidad de emplear Zeek en tiempo real, ya que las pruebas actuales se han

basado en capturas de tráfico almacenadas.

• Analizar en mayor profundidad qué atributos de Zeek son más importantes para una

clasificación efectiva.

• Analizar únicamente el primer minuto de cada fichero desde el inicio del ataque para

comprobar si es posible detectar los ataques de forma temprana.

• Plantear el estudio y clasificación empleando técnicas de Deep Learning.

• Considerar la inclusión de información proveniente de otros ficheros generados por Zeek.

• Realizar capturas propias de tráfico benigno en diferentes hogares y con nuevos dispositivos

IoT para mejorar los análisis efectuados.

54

Bibliografía
1.5. Stochastic Gradient Descent — scikit-learn 1.5.0 documentation. (n.d.). Retrieved June 25, 2024,

from https://scikit-learn.org/stable/modules/sgd.html

ACK-PSH Flood | Knowledge Base | MazeBolt. (n.d.). Retrieved June 25, 2024, from

https://kb.mazebolt.com/knowledgebase/ack-psh-flood/

Al Nuaimi, T., Al Zaabi, S., Alyilieli, M., AlMaskari, M., Alblooshi, S., Alhabsi, F., Yusof, M. F. Bin, & Al

Badawi, A. (2023). A comparative evaluation of intrusion detection systems on the edge-IIoT-

2022 dataset. Intelligent Systems with Applications, 20.

https://doi.org/10.1016/j.iswa.2023.200298

Altares, E., Salvio, J., & Tay, R. (2023). 2022 FORTINET IoT Threat Review.

Armstrong, M. (2022). Chart: Homes Are Only Getting Smarter | Statista.

https://www.statista.com/chart/27324/households-with-smart-devices-global-iot-mmo/

Chatzoglou, E., Kambourakis, G., & Kolias, C. (2021). Empirical Evaluation of Attacks against IEEE 802.11

Enterprise Networks: The AWID3 Dataset. IEEE Access, 9, 34188–34205.

https://doi.org/10.1109/ACCESS.2021.3061609

Cybersecurity Report 2023: Consumer Devices Under Threat. (2022).

da Costa, K. A. P., Papa, J. P., Lisboa, C. O., Munoz, R., & de Albuquerque, V. H. C. (2019). Internet of

Things: A survey on machine learning-based intrusion detection approaches. Computer Networks,

151, 147–157. https://doi.org/10.1016/J.COMNET.2019.01.023

Ferriyan, A., Thamrin, A. H., Takeda, K., & Murai, J. (2021). Generating network intrusion detection

dataset based on real and encrypted synthetic attack traffic. Applied Sciences (Switzerland),

11(17). https://doi.org/10.3390/app11177868

García, J., Molina, J. M., Berlanga, A., Patricio, M. A., Bustamante, Á. L., & Padilla, W. R. (2018). Ciencia

de datos: técnicas analíticas y aprendizaje estadístico en un enfoque práctico.

Garcia, S., Parmisano, A., & Erquiaga, M. J. (2020). IoT-23: A labeled dataset with malicious and benign

IoT network traffic. https://doi.org/10.5281/ZENODO.4743746

Guerra-Manzanares, A., Medina-Galindo, J., Bahsi, H., & Nomm, S. (2020). MedBIoT: Generation of an

IoT Botnet Dataset in a Medium-sized IoT Network. International Conference on Information

Systems Security and Privacy, 207–218. https://doi.org/10.5220/0009187802070218

Imam, M., Paul Nir, M., Mahmoud, M., Nir, M., & Matrawy, A. (2014). A Survey on Botnet Architectures,

Detection and Defences. In International Journal of Network Security (Vol. 0, Issue 0).

https://www.researchgate.net/publication/259932835

Inside the infamous Mirai IoT Botnet: A Retrospective Analysis. (2017).

https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/

IoT botnet activity in consumer networks. (2023).

John, G. H. (1995). 338 Estimating Continuous Distributions in Bayesian Classifiers. 338–345.

http://robotics.stanford.edu/-gjohn/

55

Khalid, S., Khalil, T., & Nasreen, S. (2014). A survey of feature selection and feature extraction

techniques in machine learning. Proceedings of 2014 Science and Information Conference, SAI

2014, 372–378. https://doi.org/10.1109/SAI.2014.6918213

Koroniotis, N., Moustafa, N., Sitnikova, E., & Turnbull, B. (2018). Towards the Development of Realistic

Botnet Dataset in the Internet of Things for Network Forensic Analytics: Bot-IoT Dataset.

http://arxiv.org/abs/1811.00701

Kubat, M. (2021). An Introduction to Machine Learning. In An Introduction to Machine Learning.

Springer International Publishing. https://doi.org/10.1007/978-3-030-81935-4

Law, M. (2023). Security essential in the growing Internet of Things network | Cyber Magazine.

https://cybermagazine.com/articles/security-essential-in-the-growing-internet-of-things-

network

Lella, I., Tsekmezoglou, E., Theocharidou, M., Magonara, E., Malatras, A., Naydenov, R. S., & Ciobanu,

C. (2023). ENISA THREAT LANDSCAPE 2023. https://doi.org/10.2824/782573

Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A., Breitenbacher, D., & Elovici, Y. (2018). N-

BaIoT-Network-based detection of IoT botnet attacks using deep autoencoders. IEEE Pervasive

Computing, 17(3), 12–22. https://doi.org/10.1109/MPRV.2018.03367731

Molina López, J. M., & García Herrero, J. (2006). TÉCNICAS DE ANÁLISIS DE DATOS APLICACIONES

PRÁCTICAS UTILIZANDO MICROSOFT EXCEL Y WEKA.

Nearest Centroid Classification — scikit-learn 0.18.2 documentation. (n.d.). Retrieved June 25, 2024,

from https://scikit-learn.org/0.18/auto_examples/neighbors/plot_nearest_centroid.html

Neto, E. C. P., Dadkhah, S., Ferreira, R., Zohourian, A., Lu, R., & Ghorbani, A. A. (2023). CICIoT2023: A

Real-Time Dataset and Benchmark for Large-Scale Attacks in IoT Environment. Sensors, 23(13).

https://doi.org/10.3390/s23135941

Qing, Y., Liu, X., & Du, Y. (2023). MBB-IoT: Construction and Evaluation of IoT DDoS Traffic Dataset from

a New Perspective. Computers, Materials and Continua, 76(2), 2095–2115.

https://doi.org/10.32604/cmc.2023.039980

¿Qué es la botnet Mirai? | Cloudflare. (n.d.). Retrieved June 25, 2024, from

https://www.cloudflare.com/es-es/learning/ddos/glossary/mirai-botnet/

Rodríguez, M., Alesanco, Á., Mehavilla, L., & García, J. (2022). Evaluation of Machine Learning

Techniques for Traffic Flow-Based Intrusion Detection. Sensors, 22(23).

https://doi.org/10.3390/s22239326

RST-FIN Flood | Knowledge Base | MazeBolt. (n.d.). Retrieved June 25, 2024, from

https://kb.mazebolt.com/knowledgebase/rst-fin-flood/

The Mirai Botnet – Threats and Mitigations. (n.d.). Retrieved June 25, 2024, from

https://www.cisecurity.org/insights/blog/the-mirai-botnet-threats-and-mitigations

The Riskiest Connected Devices in 2023. (2023).

56

Trajanovski, T., & Zhang, N. (2021). An Automated and Comprehensive Framework for IoT Botnet

Detection and Analysis (IoT-BDA). IEEE Access, 9, 124360–124383.

https://doi.org/10.1109/ACCESS.2021.3110188

Ullah, I., & Mahmoud, Q. H. (2020). A Scheme for Generating a Dataset for Anomalous Activity

Detection in IoT Networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 12109 LNAI, 508–520.

https://doi.org/10.1007/978-3-030-47358-7_52

What is Command and Control (C&C or C2) in Cybersecurity? - zenarmor.com. (2023).

https://www.zenarmor.com/docs/network-security-tutorials/what-is-command-and-control-c2

Winward, R. (2018). IoT Attack Handbook A Field Guide to Understanding IoT Attacks from the Mirai

Botnet to Its Modern Variants.

Zarpelão, B. B., Miani, R. S., Kawakani, C. T., & de Alvarenga, S. C. (2017). A survey of intrusion detection

in Internet of Things. Journal of Network and Computer Applications, 84, 25–37.

https://doi.org/10.1016/J.JNCA.2017.02.009

57

7. Anexos

Para facilitar la lectura del código diseñado en este trabajo, se adjunta un enlace al repositorio donde

se recopilan todos los scripts.

https://github.com/MariaRodriguezGarcia/TFM.git

https://github.com/MariaRodriguezGarcia/TFM.git

58

Anexo I: Otros ataques comunes
A continuación, se detallan más ataques que aparecen con frecuencia en conjuntos de datos en

entornos IoT.

Ataques de Fuerza Bruta de Diccionario
Un ataque de fuerza bruta de diccionario es un tipo de ataque de fuerza bruta que utiliza un diccionario

predefinido de palabras y combinaciones comunes para intentar descifrar contraseñas. En lugar de

probar todas las combinaciones posibles de caracteres, un ataque de diccionario se basa en la

probabilidad de que las contraseñas más utilizadas estén presentes en una lista de palabras comunes,

frases, combinaciones de números y letras, y otros patrones frecuentes. Estos ataques son efectivos

cuando los usuarios utilizan contraseñas débiles o previsibles.

El proceso de un ataque de diccionario implica lo siguiente:

1. Recopilación de diccionarios: Los atacantes recogen listas de palabras que contienen

contraseñas comunes y frases utilizadas frecuentemente.

2. Automatización del proceso: Usando software automatizado, el atacante introduce cada

palabra del diccionario como posible contraseña.

3. Verificación: Cada intento se verifica contra el sistema de autenticación objetivo hasta

encontrar una coincidencia correcta o agotar las opciones del diccionario.

Escaneo de Sistema Operativo (OS Scan)
El escaneo de sistema operativo, o OS scan, es una técnica utilizada por los atacantes para determinar

el sistema operativo que se está ejecutando en un dispositivo de red. Este tipo de escaneo es crucial

para los ciberdelincuentes, ya que les permite identificar vulnerabilidades específicas del sistema

operativo identificado. Herramientas como Nmap son comúnmente utilizadas para realizar este tipo

de escaneo.

El proceso de escaneo de sistema operativo incluye:

1. Envío de paquetes: El atacante envía paquetes diseñados específicamente para obtener

respuestas que revelen características del sistema operativo.

2. Análisis de respuestas: Las respuestas de los dispositivos son analizadas para identificar

patrones específicos que son característicos de diferentes sistemas operativos.

3. Identificación del sistema operativo: Basándose en los datos recogidos, el atacante puede

determinar con alta probabilidad el sistema operativo del dispositivo objetivo.

Escaneo de Puertos (Port Scan)
El escaneo de puertos es una técnica utilizada para identificar qué puertos están abiertos en un

dispositivo de red. Los puertos abiertos pueden revelar servicios activos y posibles puntos de entrada

para ataques. Este tipo de escaneo es a menudo el primer paso en un ataque, proporcionando

información vital sobre la estructura y vulnerabilidades de la red objetivo.

Los pasos en un escaneo de puertos incluyen:

1. Envío de solicitudes: El atacante envía solicitudes a diferentes puertos en el dispositivo

objetivo.

2. Recepción de respuestas: Las respuestas indican si un puerto está abierto, cerrado o filtrado.

3. Análisis de servicios: Los puertos abiertos son analizados para identificar los servicios que

están corriendo y sus posibles vulnerabilidades.

59

DDoS-PSHACK Flood
El ataque DDoS PSHACK Flood es un tipo de ataque que se enfoca en utilizar los paquetes TCP con los

flags PSH (Push) y ACK (Acknowledgment) activados. Este tipo de ataque está diseñado para saturar al

servidor objetivo enviando una gran cantidad de estos paquetes, consumiendo los recursos del

servidor y provocando una denegación de servicio. A veces se recibe un RST en respuesta al paquete

ACK-PSH original porque la pila TCP que recibe el paquete ACK-PSH nunca tuvo una secuencia

correspondiente de SYN - SYN+ACK +ACK (handshake TCP). Algunos entornos pueden optar por no

enviar un paquete RST de vuelta al origen del paquete ACK-PSH.

Características del PSHACK Flood:

1. Protocolo: TCP

2. Perfil de Ancho de Banda: Alto BPS (bits por segundo), Medio PPS (paquetes por segundo)

Proceso del PSHACK Flood:

1. Envío de Paquetes: Los bots envían una gran cantidad de paquetes TCP con las flags PSH y

ACK activadas.

2. Respuesta del Servidor: El servidor intenta procesar cada paquete, lo que consume sus

recursos.

3. Agotamiento de Recursos: La saturación del servidor con estos paquetes lleva a una

denegación de servicio.

DDoS-RSTFIN Flood
El ataque DDoS RSTFIN Flood utiliza paquetes TCP con los flags RST (Reset) y FIN (Finish) activados.

Este ataque se aprovecha del comportamiento de los servidores que intentan cerrar conexiones TCP.

Para cerrar una sesión TCP SYN, se intercambian paquetes RST o FIN entre el cliente y el host. Durante

un RST o FIN flood, el servidor víctima recibe paquetes RST o FIN falsificados a alta velocidad que no

están relacionados con ninguna de las sesiones en la base de datos del servidor. Como resultado, el

servidor víctima se ve obligado a asignar una cantidad significativa de recursos del sistema para

emparejar los paquetes entrantes con las conexiones actuales, lo que provoca un rendimiento de

servidor degradado e inaccesibilidad parcial.

Características del RSTFIN Flood:

1. Protocolo: TCP

2. Perfil de Ancho de Banda: Moderado a Alto BPS, Alto PPS

3. Tamaño del Paquete: Pequeño a Medio

4. Notas: Utiliza las banderas RST y FIN para cerrar conexiones, lo que puede confundir y

sobrecargar al servidor.

Proceso del RSTFIN Flood:

1. Envío de Paquetes: Los bots envían una gran cantidad de paquetes TCP con las banderas RST

y FIN activadas.

2. Respuesta del Servidor: El servidor intenta cerrar las conexiones repetidamente, gastando

recursos en el proceso.

3. Agotamiento de Recursos: La saturación con estos paquetes lleva a la denegación de

servicio.

60

Anexo II: Detalles de las bases de datos seleccionadas
En este anexo se recopilan detalles como la distribución de etiquetas para los ataques y subataques,

incluyendo número de flujos por clase.

Número de instancias para el dataset IoTD20 (fichero .csv)

Etiquetado IoTD20
Flow_ID Flow_Pkts/s Fwd_Pkts/s Fwd_Blk_Rate_Avg

Src_IP Flow_IAT_Mean Bwd_Pkts/s Bwd_Byts/b_Avg

Src_Port Flow_IAT_Std Pkt_Len_Min Bwd_Pkts/b_Avg

Dst_IP Flow_IAT_Max Pkt_Len_Max Bwd_Blk_Rate_Avg

Dst_Port Flow_IAT_Min Pkt_Len_Mean Subflow_Fwd_Pkts

Protocol Fwd_IAT_Tot Pkt_Len_Std Subflow_Fwd_Byts

Timestamp Fwd_IAT_Mean Pkt_Len_Var Subflow_Bwd_Pkts

Flow_Duration Bwd_IAT_Mean FIN_Flag_Cnt Subflow_Bwd_Byts

Tot_Fwd_Pkts Fwd_IAT_Max SYN_Flag_Cnt Init_Fwd_Win_Byts

Tot_Bwd_Pkts Fwd_IAT_Min RST_Flag_Cnt Init_Bwd_Win_Byts

TotLen_Fwd_Pkts Bwd_IAT_Tot PSH_Flag_Cnt Fwd_Act_Data_Pkts

TotLen_Bwd_Pkts Bwd_IAT_Mean ACK_Flag_Cnt Fwd_Seg_Size_Min

Fwd_Pkt_Len_Max Bwd_IAT_Std URG_Flag_Cnt Active_Mean

Fwd_Pkt_Len_Min Bwd_IAT_Max CWE_Flag_Count Active_Std

Fwd_Pkt_Len_Mean Bwd_IAT_Min ECE_Flag_Cnt Active_Max

Fwd_Pkt_Len_Std Fwd_PSH_Flags Down/Up_Ratio Active_Min

Bwd_Pkt_Len_Max Bwd_PSH_Flags Pkt_Size_Avg Idle_Mean

Bwd_Pkt_Len_Min Fwd_URG_Flags Fwd_Seg_Size_Avg Idle_Std

Bwd_Pkt_Len_Mean Bwd_URG_Flags Bwd_Seg_Size_Avg Idle_Max

Bwd_Pkt_Len_Std Fwd_Header_Len Fwd_Byts/b_Avg Idle_Min

Flow_Byts/s Bwd_Header_Len Fwd_Pkts/b_Avg

61

IoT-23: distribución de escenarios
Los escenarios seleccionados para Mirai son: CTU-IoT-Malware 34, CTU-IoT-Malware 35, CTU-IoT-

Malware 43, CTU-IoT-Malware 44 CTU-IoT-Malware 48, CTU-IoT-Malware 49, CTU-IoT-Malware 52,

CTU-IoT-Malware 7, y CTU-HoneyPot-4-1, CTU-HoneyPot-5-1 y CTU-HoneyPot-7-1.

Explicación etiquetas IoT-23
1. Attack: Indica que ha ocurrido algún tipo de ataque desde el dispositivo infectado hacia otro

host, aprovechando servicios vulnerables mediante técnicas como fuerza bruta en

autenticación Telnet o inyecciones de comandos en solicitudes GET.

2. Benign: Se utiliza para indicar que no se encontraron actividades sospechosas o maliciosas en

las conexiones analizadas.

62

3. C&C (Command & Control): Indica que el dispositivo infectado se ha conectado a un servidor

de C&C. Este comportamiento se identifica por conexiones periódicas con el servidor,

descargas de binarios desde el mismo o intercambio de órdenes codificadas al estilo IRC.

4. DDoS (Distributed Denial of Service): Se aplica cuando el dispositivo infectado está ejecutando

un ataque de denegación de servicio distribuido, detectado por la gran cantidad de flujos

dirigidos a una misma dirección IP.

5. FileDownload: Indica que se está descargando un archivo hacia el dispositivo infectado,

identificado por conexiones con bytes de respuesta superiores a 3KB o 5KB, frecuentemente

hacia puertos o direcciones IP conocidos como servidores de C&C.

6. HeartBeat: Se utiliza cuando los paquetes enviados en una conexión se utilizan para mantener

un seguimiento del dispositivo infectado por parte del servidor de C&C. Esto se detecta por

conexiones con bytes de respuesta muy bajos y conexiones periódicas, usualmente hacia

puertos o direcciones IP sospechosas.

7. Mirai: Etiqueta que indica características típicas de un botnet Mirai en los flujos de conexión.

Se aplica cuando los flujos muestran patrones similares a los ataques más comunes asociados

con Mirai.

8. Okiru: Similar a Mirai, pero identifica características específicas de un botnet Okiru, que

aunque menos común, presenta comportamientos similares en términos de patrones de

conexión.

9. PartOfAHorizontalPortScan: Indica que los flujos están siendo utilizados para realizar un

escaneo horizontal de puertos, recopilando información para futuros ataques. Esta etiqueta

se basa en patrones donde las conexiones comparten el mismo puerto, una cantidad similar

de bytes transmitidos y múltiples direcciones IP de destino diferentes.

10. Torii: Se utiliza para etiquetar flujos que muestran características típicas de un botnet Torii,

similar a Mirai y Okiru pero menos común en su detección.

IoT-23: distribución de etiquetas por fichero
En este apartado se especifica el número de instancias por clase y escenario. El número de instancias

corresponde al obtenido por los autores mediante la herramienta Zeek.

CTU-IoT-Malware-Capture-34-1 (Mirai)

Label Flows

Benign 1,923

C&C 6,706

DDoS 14,394

PartOfAHorizontalPortScan 122

CTU-IoT-Malware-Capture-35-1 (Mirai)

Label Flows

Attack 3

Benign 8,262,389

C&C 81

C&C-FileDownload 12

DDoS 2,185,302

63

CTU-IoT-Malware-Capture-43-1 (Mirai)

Label Flows

Benign 20,574,934

C&C 3,498

C&C-FileDownload 14

DDoS 65,803

FileDownload 1

Okiru 8,765,885

PartOfAHorizontalPortScan 37,911,674

CTU-IoT-Malware-Capture-44-1 (Mirai)

Label Flows

Benign 211

C&C 14

C&C-FileDownload 11

DDoS 1

CTU-IoT-Malware-Capture-48-1 (Mirai)

Label Flows

Attack 2,752

Benign 3,734

C&C-HeartBeat-Attack 834

C&C-HeartBeat-FileDownload 11

C&C-PartOfAHorizontalPortScan 888

PartOfAHorizontalPortScan 3,386,119

CTU-IoT-Malware-Capture-49-1 (Mirai)

Label Flows

Benign 3,665

C&C 1,922

C&C-FileDownload 1

PartOfAHorizontalPortScan 5,404,959

CTU-IoT-Malware-Capture-52-1 (Mirai)

Label Flows

Benign 1,794

C&C 6

C&C-FileDownload 12

PartOfAHorizontalPortScan 19,779,564

CTU-IoT-Malware-Capture-7-1 (Linux.Mirai)

Label Flows

Benign 75,955

C&C-HeartBeat 5,778

DDoS 39,584

Okiru 11,333,397

64

CIC-IoT-2023: distribución de clases de ataque y número de flujos
En la tabla se muestran los ataques (correspondiente al campo label), los subataques (campo detailed-

label), el número de instancias dentro del csv y la herramienta empleada para generarlos.

65

CIC-IoT-2023: características originales
Las características de este conjunto de datos son las siguientes:

Anexo III: Estudio de Zeek

Archivos generados por Zeek
Fichero Descripción

conn.log Detalles de conexión IP, TCP, UDP, ICMP

conn_statistics.log Detalles de conexión IP, TCP, UDP, ICMP con medidas estadísticas

dhcp.log Actividad de los leases de DHCP

dns.log Detalles sobre solicitudes y respuestas DNS

dpd.log Fallos de detección de protocolo dinámico

files.log Resultados de análisis de archivos

ftp.log Detalles de solicitudes y respuestas FTP

http.log Detalles de solicitudes y respuestas HTTP

irc.log Detalles de comunicación IRC

Kerberos.log Autenticación de kerberos

mysql.log Comandos y respuestas del servidor

radius.log Intentos de autenticación radius

sip.log Análisis de SIP

smtp.log Transacciones SMTP

software.log Software usado en la red según host

ssh.log Handshakes de SSH

ssl.log Handshakes de SSL

syslog.log Mensajes syslog

tunnel.log Detalles sobre túneles de encapsulación

weird.log Actividad inesperada de protocolo o red

X509.log Información sobre el certificado X.509

dce_rpc.log Detalles en los mensajes DCE/RPC

ntlm.log Información sobre NT LAN Manager

rdp.log Información sobre Remote Desktop Protocol

smb_files.log Detalles sobre archivos smb

smb_mapping.log Mapeo de SMB

En el capítulo 5 se muestra el proceso para obtener nuevos atributos, que posteriormente se

emplearon en la clasificación de los flujos obtenidos a partir de las capturas. En este anexo se

explica el significado de los atributos obtenidos a partir de Zeek.

● ts: tiempo del primer paquete en formato UTC (el timestamp en .pcap CICIDS es UTC-3)
● duration: cuánto ha durado la conexión (campo de tipo intervalo, sus unidades son segundos)
● orig_bytes: número de bytes de origen a destino

67

● resp_bytes: número de bytes de destino a origen
● conn_state (Posibles valores):

○ S0: Intento de conexión visto, sin respuesta.
○ S1: Conexión establecida, no terminada.
○ SF: Establecimiento normal y terminación. Mismo símbolo que para el estado S1. Para

distinguirlos, en S1 no hay ningún recuento de bytes en el resumen.
○ REJ: Intento de conexión rechazado.
○ S2: Conexión establecida e intento de cierre por parte del origen visto. Sin respuesta del

destino.
○ S3: Conexión establecida e intento de cierre por parte del destino visto. Sin respuesta

del origen.
○ RSTO: Conexión establecida, el origen abortó la conexión. Envió un RST.
○ RSTR: El destino mandó un RST.
○ RSTOS0: El origen envió un SYN seguido de un RST, nunca se vio un SYN-ACK del destino.
○ RSTRH: El destino envió un SYN ACK seguido de un RST, nunca se vio un SYN del

(supuesto) origen.
○ SH: El origen envió un SYN seguido de un FIN, nunca se vio un SYN ACK del destino (por

lo tanto, la conexión estaba "medio" abierta).
○ SHR: El destino envió un SYN ACK seguido de un FIN, nunca se vio un SYN del autor.
○ OTH: No se ve SYN, solo tráfico intermedio (un ejemplo de esto es una "conexión parcial"

que no se cerró más tarde).
● missed_bytes: cantidad de bytes perdidos en los gaps (representa los paquetes perdidos en

la conexión)
● history: es una cadena de letras que representa la historia del estado de la conexión.

Si el evento proviene del origen, la letra está en mayúsculas; si proviene del destino, está en
minúsculas.
○ s: SYN sin el bit ACk activo
○ h: SYN+ACK (handshake)
○ a: ACK puro
○ d: paquete con payload (“datos”)
○ f: paquete con bit FIN activo
○ r: paquete con bit RST activo
○ c: paquete con checksum erróneo (se aplica a UDP también)
○ g: gap
○ t: paquete con payload retransmitido
○ w: paquete con anuncio de ventana cero
○ i: paquete inconsistente (por ejemplo, bits FIN+RST)
○ q: paquete multi-flag (SYN+FIN o SYN+RST)
○ ^: la dirección de la conexión fue invertida por la heurística de Zeek

● orig_pkts: paquetes de origen a destino
● resp_pkts: paquetes de destino a origen
● orig_ip_bytes: número de bytes IP enviados por origen.
● orig_bytes_no_cero: bytes de los paquetes que no tienen Payload nula.
● pkts_orig_cero: paquetes que tienen Payload nula emitidos de origen a destino.
● pkts_orig_no_cero: paquetes que no tienen Payload nula emitidos de origen a destino.
● time: medida de tiempo entre paquetes.

Además se incluyen medidas estadísticas como la media y desviación estándar, valor máximo y

mínimo de ciertos atributos.

68

Anexo IV: Scripts de Zeek
A continuación se muestra un ejemplo de script que utiliza conn_statistics.zeek para la obtención

de atributos a partir de las capturas de tráfico. Éste es llamado dentro del archivo local.zeek y

genera un nuevo log llamado con_statistics.log, con los atributos propios del archivo conn.log

además de otras medidas ya explicadas en el capítulo . Este script itera sobre cada archivo en una

carpeta que contiene capturas de tráfico y crea otra carpeta que contiene los logs

correspondientes a estas.

#!/bin/bash

Directorio de origen

source_dir="/root/bbdd/iotd20/pcaps/dos/"

Directorio de destino

dest_dir="/root/bbdd/logs-zeek/iotd20-logs/logs-dos/"

Obtener una lista de archivos pcap en el directorio de origen

files=$(ls "$source_dir"*.pcap)

Iterar sobre cada archivo

for file_with_extension in $files

do

 # Obtener el nombre del archivo sin la extensión

 filename=$(basename -- "$file_with_extension")

 filename_no_extension="${filename%.*}"

 # Crear el nombre de la carpeta de destino

 dest_folder="$dest_dir$filename_no_extension-logs"

 # Crear la carpeta de destino

 mkdir -p "$dest_folder"

 # Ejecutar Zeek en el archivo actual

 zeek -C -r "$file_with_extension" /usr/local/zeek/share/zeek/site/local.zeek Log::default_logdir="$dest_folder"

done

Cada uno de los logs generados tiene una estructura similar a la mostrada a continuación:

{"ts":1558922777.824831,"startTime":"2019-05-27

02:06:17","uid":"CSsw4d1rySllO7hBS3","id.orig_h":"192.168.0.14","id.orig_p":54685,"id.resp_h

":"192.168.0.1","id.resp_p":80,"proto":"tcp","duration":0.08716106414794922,"orig_bytes":0,"

resp_bytes":89574,"conn_state":"SHR","local_orig":true,"local_resp":true,"missed_bytes":0,"hi

story":"^hadf","orig_pkts":0,"orig_ip_bytes":0,"resp_pkts":68,"resp_ip_bytes":93118,"tunnel_

parents":[],"orig_bytes_mean":0.0,"resp_bytes_mean":1336.9253731343283,"resp_bytes_std"

:347.3232961417521,"orig_bytes_mean_nocero":0.0,"resp_bytes_mean_nocero":1399.59375,"

orig_bytes_std_nocero":0.0,"resp_bytes_std_nocero":355.3704631012208,"orig_bytes_min":1

000,"resp_bytes_min":0,"orig_bytes_max":0,"resp_bytes_max":2318,"orig_pkts_nocero":0,"re

sp_pkts_nocero":64,"orig_pkts_cero":0,"resp_pkts_cero":4,"time_mean":0.0012817803551169

002,"time_std":0.003319510976490021,"time_min":0.0,"time_max":0.01996302604675293,"o

rig_time_mean":0.0,"orig_time_min":10000.0,"orig_time_max":0.0,"resp_time_mean":0.0012

810446999289773,"resp_time_std":0.0033617492476943843,"resp_time_min":0.0,"resp_time

_max":0.01996302604675293}

El archivo .log está formado por una serie de registros en formato JSON que describen conexiones

de red. Cada registro representa una conexión individual y contiene múltiples campos con

información sobre la conexión.

69

Anexo V: Scripts de Python para conversión a .csv
A continuación se presenta un ejemplo del código empleado para convertir a formato csv los logs

que presentan formato .json. En las bases de datos CIC-IoT-2023 e IoT-23 ha sido necesario el uso

de la opción chunks para leer de forma fragmentada el archivo debido a que el tamaño de los logs

superaba al de la memoria RAM disponible.

import sys

import json

import pandas as pd

from datetime import datetime

Rutas de los archivos de entrada y salida

zeek_log_path = r"/root/bbdd/iot-23/CTU-IoT-Malware-Capture-33-1/bro/conn-labeled.log"

csv_output_path = r"/root/bbdd/iot-23/CTU-IoT-Malware-Capture-33-1/bro/output.csv"

Función para aplicar transformaciones a un chunk de datos

def apply_transformations(chunk):

 # Aplicar transformación a la columna 'ts'

 chunk['ts'] = chunk['ts'].apply(datetime.fromtimestamp)

 # Dividir la columna 'tunnel_parents label detailed-label'

 chunk[['tunnel_parents', 'label', 'detailed-label']] = chunk['tunnel_parents label detailed-label'].str.split('\s{3}', expand=True)

 # Eliminar la columna original

 chunk.drop(columns=['tunnel_parents label detailed-label'], inplace=True)

 return chunk

Función para procesar un chunk de datos

def process_chunk(chunk):

 return apply_transformations(chunk)

Tamaño del chunk

chunk_size = 50000

Leer el archivo de registro de Zeek en chunks

with open(zeek_log_path, 'r') as file:

 header_line = file.readlines()[6].strip().split('\t')[1:]

chunks = pd.read_csv(zeek_log_path, sep='\t', skiprows=8, names=header_line, engine='python', chunksize=chunk_size)

Aplicar transformaciones a cada chunk y concatenar los resultados

processed_chunks = [process_chunk(chunk) for chunk in chunks]

df = pd.concat(processed_chunks, ignore_index=True)

Guardar el DataFrame resultante como archivo CSV

df.to_csv(csv_output_path, index=False)

Imprimir mensaje de éxito

print("Archivo CSV guardado exitosamente.")

70

Anexo VI: Scripts de unión de archivos .csv
Una vez se ha obtenido el log en formato .csv, se deben unir todos aquellos que corresponden a

un mismo dataset, por lo que obtendremos tres ficheros. En el caso de IoTD20, cuyo tamaño es

reducido y es posible realizarlo sin fragmentarlo en chunks, se hizo de la siguiente forma:

import os
import pandas as pd

def concatenate_csv_files(main_directory,save_directory):
 """
 Concatenate all CSV files in subdirectories of the main directory into a single CSV file.

 Parameters:
 main_directory (str): Path to the main directory containing subdirectories with CSV files.

 The function saves the concatenated CSV file in the main directory, named as the main directory name + '_all.csv'.
 """

 # Get the main directory name for the output file
 main_directory_name = os.path.basename(os.path.normpath(main_directory))
 # Initialize an empty list to hold DataFrames
 data_frames = []
 header_saved = False
 column_order = []

 total_length = 0 # Initialize total length counter
 # Walk through each subfolder in the main directory
 for subdir, _, files in os.walk(main_directory):
 for file in files:
 # Check if the file is a CSV file
 if file.endswith('.csv'):
 file_path = os.path.join(subdir, file)
 # Read the CSV file and append the DataFrame to the list
 if not header_saved:
 # Read the first CSV file with headers
 df = pd.read_csv(file_path)
 header_saved = True
 column_order = df.columns.tolist() # Save the column order
 print(column_order)
 else:
 # Read subsequent CSV files
 df = pd.read_csv(file_path)
 # Reorder the columns of the DataFrame to match the column order of the first DataFrame
 df = df.reindex(column_order, axis=1)
 data_frames.append(df)
 total_length += len(df) # Add length of current DataFrame to total length

 # Concatenate all DataFrames in the list into a single DataFrame
 concatenated_df = pd.concat(data_frames, ignore_index=True)

 # Save the concatenated DataFrame to a new CSV file in the main directory
 output_file = os.path.join(save_directory, f'{main_directory_name}_all.csv')
 concatenated_df.to_csv(output_file, index=False)

 print(f'Total length of concatenated CSV: {total_length}')
 print(f'All CSV files have been concatenated and saved to {output_file}')

71

Sin embargo, para los datasets IoT-23 y CIC-IoT-2023 requieren su lectura y escritura

fragmentadas:

import os

import pandas as pd

def concatenate_csv_files(main_directory, save_directory, chunk_size=50000):

 """

 Concatenate all CSV files in subdirectories of the main directory into a single CSV file.

 Parameters:

 main_directory (str): Path to the main directory containing subdirectories with CSV files.

 save_directory (str): Path to the directory where the concatenated CSV file will be saved.

 chunk_size (int): Number of rows per chunk to read from each CSV file.

 """

 # Get the main directory name for the output file

 main_directory_name = os.path.basename(os.path.normpath(main_directory))

 output_file = os.path.join(save_directory, f'{main_directory_name}_all.csv')

 # Initialize a flag to indicate whether to write header

 header_written = False

 column_order = []

 total_length = 0 # Initialize total length counter

 # Walk through each subfolder in the main directory

 for subdir, _, files in os.walk(main_directory):

 for file in files:

 # Check if the file is a CSV file

 if file.endswith('.csv'):

 file_path = os.path.join(subdir, file)

 # Process the CSV file in chunks

 for chunk in pd.read_csv(file_path, chunksize=chunk_size):

 if not header_written:

 # Write the first chunk with headers and save column order

 chunk.to_csv(output_file, mode='w', header=True, index=False)

 header_written = True

 column_order = chunk.columns.tolist()

 else:

 # Ensure chunk has same column order and write without headers

 chunk = chunk.reindex(columns=column_order)

 chunk.to_csv(output_file, mode='a', header=False, index=False)

 # Add length of current chunk to total length

 total_length += len(chunk)

 print(f'Total length of concatenated CSV: {total_length}')

 print(f'All CSV files have been concatenated and saved to {output_file}')

72

Anexo VII: Scripts de etiquetado
A continuación, se muestra uno de los scripts empleados para el etiquetado de los flujos en el

capítulo 5. Para ello se ha empleado la librería pandas de Python. Se genera la etiqueta original

detailed-label, la etiqueta común label, y la etiqueta binaria binary-label. Después, en función del

nombre del archivo, que sirve como indicativo del tipo de ataque contenido, comprueba los flujos

maliciosos mediante campos como puerto origen y destino (id.orig_p e id.resp_p), direcciones

origen y destino (id.orig_h e id.rsep_h), protocolo (proto), estado de conexión (conn_state), y si

se ha empleado algún tipo de flag, empleando el campo history para este último caso.

import os
import pandas as pd
def process_conn_log(folder_path):
 conn_log_path = os.path.join(folder_path, "conn_stadistics.log")
 # Check if conn_stadistics.log file exists
 if os.path.exists(conn_log_path):
 # Extract file name from folder path
 folder_name = os.path.basename(folder_path)

 # Read conn_stadistics.log into a DataFrame
 df = pd.read_json(conn_log_path, lines=True)

 # Create a column to hold binary-label with default value 'benign'
 df['binary-label'] = '0'
 df['label'] = 'benign'
 df['detailed-label'] = 'benign'

 if "mirai-udpflooding" in folder_name:
 conditions = df["id.orig_h"] == "210.89.164.90"
 df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Mirai", "Mirai-UDPFlood"]

 elif "mirai-ackflooding" in folder_name:
 conditions = df["id.orig_h"] == "210.89.164.90"
 df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Mirai", "Mirai-ACKFlood"]

 elif "mirai-httpflooding" in folder_name:
 conditions = df["id.orig_h"] == "210.89.164.90"
 df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Mirai", "Mirai-HTTPFlood"]

 elif "mirai-hostbruteforce" in folder_name:
 if ("mirai-hostbruteforce-1" in folder_name or "mirai-hostbruteforce-3" in folder_name or "mirai-hostbruteforce-5" in
folder_name):
 conditions = (df["id.orig_h"] == "192.168.0.13") & (df["proto"] == "tcp") & (df["id.resp_p"] == 23)
 df.loc[conditions, 'label'] = 'Mirai'
 df.loc[conditions, 'binary-label'] = 1 # Assuming you want binary label as 1
 df.loc[conditions, 'detailed-label'] = 'Mirai-TelnetBruteforce'

 elif ("mirai-hostbruteforce-2" in folder_name or "mirai-hostbruteforce-4" in folder_name):
 print("mirando hbf2 o hbf4")
 conditions = (df["id.orig_h"] == "192.168.0.24") & (df["proto"] == "tcp") & (df["id.resp_p"] == 23)
 df.loc[conditions, 'label'] = 'Mirai'
 df.loc[conditions, 'binary-label'] = 1 # Assuming you want binary label as 1
 df.loc[conditions, 'detailed-label'] = 'Mirai-TelnetBruteforce'

 else:
 print(f"No matching condition found for folder {folder_path}")
 return
 # Save the DataFrame as conn_stadistics_labeled.csv
 df.to_csv(os.path.join(folder_path, "conn_stadistics_labeled.csv"), index=False)
 print(f"Saved conn_stadistics_labeled.csv in {folder_path}")

 else:
 print(f"conn_stadistics.log not found in {folder_path}")

73

Etiquetado DoS
import ipaddress

def is_ipv4(address):

 try:

 ipaddress.IPv4Address(address)

 return True

 except ipaddress.AddressValueError:

 return False

def process_conn_log(folder_path):

 conn_log_path = os.path.join(folder_path, "conn_stadistics.log")

 # Check if conn_stadistics.log file exists

 if os.path.exists(conn_log_path):

 # Extract file name from folder path

 folder_name = os.path.basename(folder_path)

 # Read conn_stadistics.log into a DataFrame

 df = pd.read_json(conn_log_path, lines=True)

 # Create a column to hold binary-label with default value 'benign'

 df['binary-label'] = '0'

 df['label'] = 'benign'

 df['detailed-label'] = 'benign'

 if "dos-synflooding-1-dec" in folder_name or "dos-synflooding-2-dec" in folder_name :

 # Apply is_ipv4 function to id.orig_h column to check if each value is an IPv4 address

 ipv4_mask = df["id.orig_h"].apply(is_ipv4)

 network_range = ipaddress.ip_network("222.0.0.0/8")

 # Apply ipaddress.ip_address() function only to IPv4 addresses in the id.orig_h column

 ipv4_addresses = df.loc[ipv4_mask, "id.orig_h"].apply(ipaddress.ip_address)

 # Check if the IPv4 addresses are in the network range

 ip_in_net = ipv4_addresses.apply(lambda x: x in network_range)

 conditions = (ip_in_net) & (df["history"].str.lower().str.contains("s")) & (df["id.resp_h"] == "192.168.0.13") & (df["id.resp_p"]

== 554) & (df["proto"] == "tcp")

 df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "DoS", "DoS-SYNFlood"]

 elif "dos-synflooding-3-dec" in folder_name:

 ipv4_mask = df["id.orig_h"].apply(is_ipv4)

 network_range = ipaddress.ip_network("111.0.0.0/8")

 # Apply ipaddress.ip_address() function only to IPv4 addresses in the id.orig_h column

 ipv4_addresses = df.loc[ipv4_mask, "id.orig_h"].apply(ipaddress.ip_address)

 # Check if the IPv4 addresses are in the network range

 ip_in_net = ipv4_addresses.apply(lambda x: x in network_range)

 conditions = (ip_in_net) & (df["history"].str.lower().str.contains("s")) & (df["id.resp_h"] == "192.168.0.13") & (df["proto"] ==

"tcp") & (df["id.resp_p"] == 554)

 df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "DoS", "DoS-SYNFlood"]

 elif "dos-synflooding-4-dec" in folder_name or "dos-synflooding-5-dec" in folder_name or "dos-synflooding-6-dec" in

folder_name :

 ipv4_mask = df["id.orig_h"].apply(is_ipv4)

 network_range = ipaddress.ip_network("111.0.0.0/8")

 # Apply ipaddress.ip_address() function only to IPv4 addresses in the id.orig_h column

 ipv4_addresses = df.loc[ipv4_mask, "id.orig_h"].apply(ipaddress.ip_address)

 # Check if the IPv4 addresses are in the network range

 ip_in_net = ipv4_addresses.apply(lambda x: x in network_range)

 conditions = (ip_in_net) & (df["history"].str.lower().str.contains("s")) & (df["id.resp_h"] == "192.168.0.24") & (df["proto"] ==

"tcp")& (df["id.resp_p"] == 19604)

 df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "DoS", "DoS-SYNFlood"]

 else:

 print(f"No matching condition found for folder {folder_path}")

 return

 # Save the DataFrame as conn_stadistics_labeled.csv

 df.to_csv(os.path.join(folder_path, "conn_stadistics_labeled.csv"), index=False)

 print(f"Saved conn_stadistics_labeled.csv in {folder_path}")

 else:

 print(f"conn_stadistics.log not found in {folder_path}")

for folder in os.listdir(main_directory):

 folder_path = os.path.join(main_directory, folder)

 if os.path.isdir(folder_path):

 process_conn_log(folder_path)

74

Etiquetado Scan
main_directory = "/root/bbdd/logs-zeek/iotd20-logs/logs-scan/"

def process_conn_log(folder_path):

 conn_log_path = os.path.join(folder_path, "conn_stadistics.log")

 # Check if conn_stadistics.log file exists

 if os.path.exists(conn_log_path):

 # Extract file name from folder path

 folder_name = os.path.basename(folder_path)

 # Read conn_stadistics.log into a DataFrame

 df = pd.read_json(conn_log_path, lines=True)

 # Create a column to hold binary-label with default value 'benign'

 df['binary-label'] = '0'

 df['label'] = 'benign'

 df['detailed-label'] = 'benign'

 if "scan-hostport-1-dec" in folder_name or "scan-hostport-2-dec" in folder_name or "scan-hostport-3-dec" in folder_name :

 conditions = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") &

((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r")))

 df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"]

 elif "scan-hostport-4-dec" in folder_name or "scan-hostport-5-dec" in folder_name or "scan-hostport-6-dec" in folder_name:

 conditions = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") &

((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r")))

 df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"]

 elif "scan-portos-1-dec" in folder_name or "scan-portos-2-dec" in folder_name or "scan-portos-3-dec" in folder_name:

 conditions = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") &

((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r")))

 df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"]

 conditions2 = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") & (df["proto"] != "icmp") &

~((df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") & (((df["proto"] == "tcp") &

(df["history"].str.lower().str.contains("s"))) | (df["history"].str.lower().str.contains("r"))))

 df.loc[conditions2, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-OSDetection"]

 elif "scan-portos-4-dec" in folder_name or "scan-portos-5-dec" in folder_name or "scan-portos-6-dec" in folder_name:

 conditions = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") &

((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r")))

 df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"]

 conditions2 = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") & (df["proto"] != "icmp") &

~((df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") & (((df["proto"] == "tcp") &

(df["history"].str.lower().str.contains("s"))) | (df["history"].str.lower().str.contains("r"))))

 df.loc[conditions2, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-OSDetection"]

 else:

 print(f"No matching condition found for folder {folder_path}")

 return

 # Save the DataFrame as conn_stadistics_labeled.csv

 df.to_csv(os.path.join(folder_path, "conn_stadistics_labeled.csv"), index=False)

 print(f"Saved conn_stadistics_labeled.csv in {folder_path}")

 else:

 print(f"conn_stadistics.log not found in {folder_path}")

for folder in os.listdir(main_directory):

 folder_path = os.path.join(main_directory, folder)

 if os.path.isdir(folder_path):

 process_conn_log(folder_path)

75

Etiquetado MITM

main_directory = "/root/bbdd/logs-zeek/iotd20-logs/logs-mitm/"

def process_conn_log(folder_path):

 conn_log_path = os.path.join(folder_path, "conn_stadistics.log")

 # Check if conn_stadistics.log file exists

 if os.path.exists(conn_log_path):

 # Extract file name from folder path

 folder_name = os.path.basename(folder_path)

 # Read conn_stadistics.log into a DataFrame

 df = pd.read_json(conn_log_path, lines=True)

 # Create a column to hold binary-label with default value 'benign'

 df['binary-label'] = '0'

 df['label'] = 'benign'

 df['detailed-label'] = 'benign'

 if "scan-hostport-1-dec" in folder_name or "scan-hostport-2-dec" in folder_name or "scan-hostport-3-dec" in folder_name :

 conditions = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") &

((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r")))

 df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-HostDiscovery"]

 elif "scan-hostport-4-dec" in folder_name or "scan-hostport-5-dec" in folder_name or "scan-hostport-6-dec" in folder_name:

 conditions = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") &

((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r")))

 df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-HostDiscovery"]

 elif "scan-portos-1-dec" in folder_name or "scan-portos-2-dec" in folder_name or "scan-portos-3-dec" in folder_name:

 conditions = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") &

((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r")))

 df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"]

 conditions2 = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") & (df["proto"] != "icmp") &

~((df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") & (((df["proto"] == "tcp") &

(df["history"].str.lower().str.contains("s"))) | (df["history"].str.lower().str.contains("r"))))

 df.loc[conditions2, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-OSDetection"]

 elif "scan-portos-4-dec" in folder_name or "scan-portos-5-dec" in folder_name or "scan-portos-6-dec" in folder_name:

 conditions = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") &

((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r")))

 df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"]

 conditions2 = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") & (df["proto"] != "icmp") &

~((df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") & (((df["proto"] == "tcp") &

(df["history"].str.lower().str.contains("s"))) | (df["history"].str.lower().str.contains("r"))))

 df.loc[conditions2, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-OSDetection"]

 else:

 print(f"No matching condition found for folder {folder_path}")

 return

 # Save the DataFrame as conn_stadistics_labeled.csv

 df.to_csv(os.path.join(folder_path, "conn_stadistics_labeled.csv"), index=False)

 print(f"Saved conn_stadistics_labeled.csv in {folder_path}")

 else:

 print(f"conn_stadistics.log not found in {folder_path}")

76

Para benign

main_directory = "/root/bbdd/logs-zeek/iotd20-logs/logs-benign"

def process_conn_log(folder_path):

 conn_log_path = os.path.join(folder_path, "conn_stadistics.log")

 # Check if conn_stadistics.log file exists

 if os.path.exists(conn_log_path):

 # Extract file name from folder path

 folder_name = os.path.basename(folder_path)

 # Read conn_stadistics.log into a DataFrame

 with open(conn_log_path, 'r') as file:

 header_line = file.readlines()[6].strip().split('\t')[1:]

 df = pd.read_csv(conn_log_path, sep='\t', skiprows=8, names=header_line, skipfooter=1, engine='python')

 # Create a column to hold binary-label with default value 'benign'

 df['binary-label'] = '0'

 df['label'] = 'benign'

 df['detailed-label'] = 'benign'

 # Save the DataFrame as conn_stadistics_labeled.csv

 df.to_csv(os.path.join(folder_path, "conn_stadistics_labeled.csv"), index=False)

 print(f"Saved conn_stadistics_labeled.csv in {folder_path}")

 else:

 print(f"conn_stadistics.log not found in {folder_path}")

for folder in os.listdir(main_directory):

 folder_path = os.path.join(main_directory, folder)

 if os.path.isdir(folder_path):

 process_conn_log(folder_path)

Para el etiquetado del cojunto de datos IoT-23 se realiza de forma separada por escenarios, ya

que cada uno de estos necesita un etiquetado diferente. Para este dataset, fue necesario emplear

otra técnica de etiquetado, ya que las condiciones empleadas por los autores del dataset estaban

formuladas de forma que pudisen superponerse etiquetas en ciertos casos.

import json

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-IoT-Malware-Capture-34-1/conn_stadistics.log"

output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-IoT-Malware-Capture-34-1.csv"

label_1 = "C&C"

label_2 = "PartOfAHorizontalPortscan"

label_3 = "DDoS"

Initialize label checks

label_checked = [False] * 3

all_keys = ["ts", "startTime", "uid", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto", "service", "duration", "orig_bytes",

 "resp_bytes", "conn_state", "local_orig", "local_resp", "missed_bytes", "history", "orig_pkts", "orig_ip_bytes", "resp_pkts",

 "resp_ip_bytes", "tunnel_parents", "orig_bytes_mean", "resp_bytes_mean", "orig_bytes_std", "resp_bytes_std",

"orig_bytes_mean_nocero", "resp_bytes_mean_nocero", "orig_bytes_std_nocero", "resp_bytes_std_nocero", "orig_bytes_min",

"resp_bytes_min", "orig_bytes_max", "resp_bytes_max", "orig_pkts_nocero", "resp_pkts_nocero", "orig_pkts_cero",

"resp_pkts_cero", "time_mean", "time_std", "time_min", "time_max", "orig_time_mean", "orig_time_std", "orig_time_min",

"orig_time_max", "resp_time_mean", "resp_time_std", "resp_time_min", "resp_time_max"]

with open(input_file, "r") as f_in, open(output_file, "w") as f_out:

 f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local

_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes

_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_n

ocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pk

ts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,r

esp_time_std,resp_time_min,resp_time_max,label,binary-label\n")

 for line in f_in:

 data = json.loads(line)

77

 for key in all_keys:

 if key not in data:

 data[key] = ""

 binary_label = 0

 labels = [] # Start empty

 if data["id.resp_p"] == "6667" and not label_checked[0]:

 labels.append(label_1)

 binary_label = 1

 label_checked[0] = True

 if data["id.resp_p"] == "63798" and not label_checked[1]:

 labels.append(label_2)

 binary_label = 1

 label_checked[1] = True

 if data["id.resp_p"] == "256" and not label_checked[1]:

 labels.append(label_2)

 binary_label = 1

 label_checked[1] = True

 if data["id.resp_h"] == "123.59.209.185" and not label_checked[2]:

 labels.append(label_3)

 binary_label = 1

 label_checked[2] = True

 if data["id.resp_h"] == "71.61.66.148" and not label_checked[2]:

 labels.append(label_3)

 binary_label = 1

 label_checked[2] = True

 if data["id.resp_h"] == "74.91.117.248" and not label_checked[2]:

 labels.append(label_3)

 binary_label = 1

 label_checked[2] = True

 if data["id.resp_p"] == "5376" and not label_checked[2]:

 labels.append(label_3)

 binary_label = 1

 label_checked[2] = True

 # Reset label checks if all labels are checked

 # If no labels are added, assign "benign"

 if not labels:

 labels.append("benign")

 values = [str(data[key]) for key in all_keys]

 labels_joined = '-'.join(labels)

 csv_line = ','.join(values) + f',{labels_joined},{binary_label}\n'

 f_out.write(csv_line)

 label_checked = [False] * 3

Escenario 35

import json

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-IoT-Malware-Capture-35-1/conn_stadistics.log"

output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-IoT-Malware-Capture-35-1.csv"

label_1 = "C&C"

label_2 = "FileDownload"

label_3 = "Attack"

label_4 = "DDoS"

Initialize label checks

label_checked = [False] * 4

with open(input_file, "r") as f_in, open(output_file, "w") as

f_out: f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_stat

e,local_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp

_bytes_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes

_std_nocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,r

78

esp_pkts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_

mean,resp_time_std,resp_time_min,resp_time_max,label,binary-label\n")

 for line in f_in:

 data = json.loads(line)

 for key in all_keys:

 if key not in data:

 data[key] = ""

 binary_label = 0

 labels = [] # Start empty

 if data["id.resp_h"] == "104.248.160.24" and not label_checked[0]:

 labels.append(label_1)

 binary_label = 1

 label_checked[0] = True

 if data["id.resp_h"] == "104.248.160.24" and data["resp_ip_bytes"] > 30000 and not label_checked[1]:

 labels.append(label_2)

 binary_label = 1

 label_checked[1] = True

 if data["id.resp_h"] == "110.183.76.177" and not label_checked[2]:

 labels.append(label_3)

 binary_label = 1

 label_checked[2] = True

 if data["id.resp_h"] == "112.27.30.87" and not label_checked[2]:

 labels.append(label_3)

 binary_label = 1

 label_checked[2] = True

 if data["id.resp_h"] == "85.217.225.181" and not label_checked[2]:

 labels.append(label_3)

 binary_label = 1

 label_checked[2] = True

 if data["id.resp_p"] == "992" and not label_checked[3]:

 labels.append(label_4)

 binary_label = 1

 label_checked[3] = True

 if data["id.resp_h"] == "209.97.190.136" and not label_checked[3]:

 labels.append(label_4)

 binary_label = 1

 label_checked[3] = True

 if data["id.resp_h"] == "173.113.172.138" and not label_checked[3]:

 labels.append(label_4)

 binary_label = 1

 label_checked[3] = True

 if data["id.resp_h"] == "216.18.168.16" and not label_checked[3]:

 labels.append(label_4)

 binary_label = 1

 label_checked[3] = True

 if data["id.resp_h"] == "24.165.115.195" and not label_checked[3]:

 labels.append(label_4)

 binary_label = 1

 label_checked[3] = True

 if data["id.resp_h"] == "54.39.87.104" and not label_checked[3]:

 labels.append(label_4)

 binary_label = 1

 label_checked[3] = True

 # Reset label checks if all labels are checked

 # If no labels are added, assign "benign"

 if not labels:

 labels.append("benign")

 values = [str(data[key]) for key in all_keys]

 labels_joined = '-'.join(labels)

 csv_line = ','.join(values) + f',{labels_joined},{binary_label}\n'

 f_out.write(csv_line)

 label_checked = [False] * 4

79

Escenario 43

import json

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-IoT-Malware-Capture-43-1/conn_stadistics.log"

output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-IoT-Malware-Capture-43-1.csv"

label_1 = "C&C"

label_2 = "DDoS"

label_3 = "Okiru"

label_4 = "PartOfAHorizontalPortScan"

label_5 = "FileDonwload"

Initialize label checks

label_checked = [False] * 5

with open(input_file, "r") as f_in, open(output_file, "w") as

f_out: f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state

,local_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_

bytes_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_

std_nocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,re

sp_pkts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_m

ean,resp_time_std,resp_time_min,resp_time_max,label,binary-label\n")

 for line in f_in:

 data = json.loads(line)

 for key in all_keys:

 if key not in data:

 data[key] = ""

 binary_label = 0

 labels = [] # Start empty

 if data["id.resp_p"] == 45 and not label_checked[0]:

 labels.append(label_1)

 binary_label = 1

 label_checked[0] = True

 if data["id.resp_h"] == "142.11.219.83" and not label_checked[0]:

 labels.append(label_1)

 binary_label = 1

 label_checked[0] = True

 if data["id.resp_p"] == 27015 and not label_checked[1]:

 labels.append(label_2)

 binary_label = 1

 label_checked[1] = True

 if data["id.resp_p"] == 37215 and not label_checked[2]:

 labels.append(label_3)

 binary_label = 1

 label_checked[2] = True

 if data["id.resp_p"] == 52869 and data["conn_state"] == "S0" and not label_checked[3]:

 labels.append(label_4)

 binary_label = 1

 label_checked[3] = True

 if data["resp_ip_bytes"] > 50000 and not label_checked[4]:

 labels.append(label_5)

 binary_label = 1

 label_checked[4] = True

 # If no labels are added, assign "benign"

 if not labels:

 labels.append("benign")

 values = [str(data[key]) for key in all_keys]

 labels_joined = '-'.join(labels)

 csv_line = ','.join(values) + f',{labels_joined},{binary_label}\n'

 f_out.write(csv_line)

 label_checked = [False] * 5

80

Escenario 44

import json

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-IoT-Malware-Capture-44-1/conn_stadistics.log"

output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-IoT-Malware-Capture-44-1.csv"

label_1 = "C&C"

label_2 = "DDoS"

label_3 = "FileDonwload"

Initialize label checks

label_checked = [False] * 3

with open(input_file, "r") as f_in, open(output_file, "w") as f_out:

 f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local

_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes

_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_n

ocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pk

ts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,r

esp_time_std,resp_time_min,resp_time_max,label,binary-label\n")

 for line in f_in:

 data = json.loads(line)

 for key in all_keys:

 if key not in data:

 data[key] = ""

 binary_label = 0

 labels = [] # Start empty

 if data["id.resp_h"] == "46.101.251.172" and (data['proto'] == "tcp") and not label_checked[0]:

 labels.append(label_1)

 binary_label = 1

 label_checked[0] = True

 if data["id.resp_p"] == 80 and (data['proto'] == "udp") and not label_checked[1]:

 labels.append(label_2)

 binary_label = 1

 label_checked[1] = True

 if data["id.resp_h"] == "86.136.151.56" and not label_checked[1]:

 labels.append(label_2)

 binary_label = 1

 label_checked[1] = True

 if data['resp_ip_bytes'] > 50000 and not label_checked[2]:

 labels.append(label_3)

 binary_label = 1

 label_checked[2] = True

 # Reset label checks if all labels are checked

 # If no labels are added, assign "benign"

 if not labels:

 labels.append("benign")

 values = [str(data[key]) for key in all_keys]

 labels_joined = '-'.join(labels)

 csv_line = ','.join(values) + f',{labels_joined},{binary_label}\n'

 f_out.write(csv_line)

 label_checked = [False] * 3

81

Escenario 48

import json

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-IoT-Malware-Capture-48-1/conn_stadistics.log"

output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-IoT-Malware-Capture-48-1.csv"

label_1 = "C&C"

label_2 = "HeartBeat"

label_3 = "FileDownload"

label_4 = "PartOfAHorizontalPortScan"

label_5 = "Attack"

Initialize label checks

label_checked = [False] * 5

with open(input_file, "r") as f_in, open(output_file, "w") as f_out:

 f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local

_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes

_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_n

ocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pk

ts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,r

esp_time_std,resp_time_min,resp_time_max,label,binary-label\n")

 for line in f_in:

 data = json.loads(line)

 for key in all_keys:

 if key not in data:

 data[key] = ""

 binary_label = 0

 labels = [] # Start empty

 if data["id.resp_h"] == "167.99.182.238" and not label_checked[0]:

 labels.append(label_1)

 binary_label = 1

 label_checked[0] = True

 if data["id.resp_h"] == "167.99.182.238" and (data['resp_ip_bytes'] > 1) and not label_checked[1]:

 labels.append(label_2)

 binary_label = 1

 label_checked[1] = True

 if data["id.resp_p"] == 80 and (data['resp_ip_bytes'] > 50000) and not label_checked[2]:

 labels.append(label_3)

 binary_label = 1

 label_checked[2] = True

 if data["id.resp_p"] == 23 and (data['conn_state'] == 'S0') and not label_checked[3]:

 labels.append(label_4)

 binary_label = 1

 label_checked[3] = True

 if data["id.resp_p"] == 23 and (data['orig_ip_bytes'] > 7) and not label_checked[4]:

 labels.append(label_5)

 binary_label = 1

 label_checked[4] = True

 # Reset label checks if all labels are checked

 # If no labels are added, assign "benign"

 if not labels:

 labels.append("benign")

 values = [str(data[key]) for key in all_keys]

 labels_joined = '-'.join(labels)

 csv_line = ','.join(values) + f',{labels_joined},{binary_label}\n'

 f_out.write(csv_line)

 label_checked = [False] * 5

82

Escenario 49

import json

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-IoT-Malware-Capture-49-1/conn_stadistics.log"

output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-IoT-Malware-Capture-49-1.csv"

label_1 = "C&C"

label_2 = "PartOfAHorizontalPortScan"

label_3 = "FileDownload"

Initialize label checks

label_checked = [False] * 3

with open(input_file, "r") as f_in, open(output_file, "w") as f_out:

 f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local_

orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes_

mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_no

cero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pkt

s_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,re

sp_time_std,resp_time_min,resp_time_max,label,binary-label\n")

 for line in f_in:

 data = json.loads(line)

 for key in all_keys:

 if key not in data:

 data[key] = ""

 binary_label = 0

 labels = [] # Start empty

 if data["id.resp_p"] == 4554 and not label_checked[0]:

 labels.append(label_1)

 binary_label = 1

 label_checked[0] = True

 if data["id.resp_p"] == 8081 and (data['conn_state'] == 'S0') and not label_checked[1]:

 labels.append(label_2)

 binary_label = 1

 label_checked[1] = True

 if data['resp_ip_bytes'] > 30000 and not label_checked[2]:

 labels.append(label_3)

 binary_label = 1

 label_checked[2] = True

 # Reset label checks if all labels are checked

 # If no labels are added, assign "benign"

 if not labels:

 labels.append("benign")

 values = [str(data[key]) for key in all_keys]

 labels_joined = '-'.join(labels)

 csv_line = ','.join(values) + f',{labels_joined},{binary_label}\n'

 f_out.write(csv_line)

 label_checked = [False] * 3

83

Escenario 52

import json

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-IoT-Malware-Capture-52-1/conn_stadistics.log"

output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-IoT-Malware-Capture-52-1.csv"

label_1 = "C&C"

label_2 = "Mirai"

label_3 = "FileDownload"

label_4 = "PartOfAHorizontalPortscan"

Initialize label checks

label_checked = [False] * 4

with open(input_file, "r") as f_in, open(output_file, "w") as f_out:

 f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local

_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes

_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_n

ocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pk

ts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,r

esp_time_std,resp_time_min,resp_time_max,label,binary-label\n")

 for line in f_in:

 data = json.loads(line)

 for key in all_keys:

 if key not in data:

 data[key] = ""

 binary_label = 0

 labels = [] # Start empty

 if data["id.resp_h"] == "185.244.25.108" and not label_checked[0]:

 labels.append(label_1)

 binary_label = 1

 label_checked[0] = True

 if data["id.resp_p"] == 4441 and not label_checked[1]:

 labels.append(label_2)

 binary_label = 1

 label_checked[1] = True

 if data["id.resp_p"] == 80 and (data['resp_ip_bytes'] > 30000) and not label_checked[2]:

 labels.append(label_3)

 binary_label = 1

 label_checked[2] = True

 if data["id.resp_p"] == 23 and not label_checked[3]:

 labels.append(label_4)

 binary_label = 1

 label_checked[3] = True

 if data["id.resp_p"] == 2323 and not label_checked[3]:

 labels.append(label_4)

 binary_label = 1

 label_checked[3] = True

 # Reset label checks if all labels are checked

 # If no labels are added, assign "benign"

 if not labels:

 labels.append("benign")

 values = [str(data[key]) for key in all_keys]

 labels_joined = '-'.join(labels)

 csv_line = ','.join(values) + f',{labels_joined},{binary_label}\n'

 f_out.write(csv_line)

 label_checked = [False] * 4

84

Escenario 7

import json

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-IoT-Malware-Capture-7-1/conn_stadistics.log"

output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-IoT-Malware-Capture-7-1.csv"

label_1 = "C&C"

label_2 = "Okiru"

label_3 = "HeartBeat"

label_4 = "DDoS"

Initialize label checks

label_checked = [False] * 4

with open(input_file, "r") as f_in, open(output_file, "w") as f_out:

 f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local

_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes

_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_n

ocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pk

ts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,r

esp_time_std,resp_time_min,resp_time_max,label,binary-label\n")

 for line in f_in:

 data = json.loads(line)

 for key in all_keys:

 if key not in data:

 data[key] = ""

 binary_label = 0

 labels = [] # Start empty

 if data["id.resp_h"] == "185.130.215.13" and not label_checked[0]:

 labels.append(label_1)

 binary_label = 1

 label_checked[0] = True

 if data["id.resp_h"] == "102.157.125.155" and not label_checked[1]:

 labels.append(label_2)

 binary_label = 1

 label_checked[1] = True

 if data["id.resp_p"] == 37215 and not label_checked[1]:

 labels.append(label_2)

 binary_label = 1

 label_checked[1] = True

 if data["id.resp_p"] == 57722 and not label_checked[2]:

 labels.append(label_3)

 binary_label = 1

 label_checked[2] = True

 if data["id.resp_p"] == 80 and not label_checked[3]:

 labels.append(label_4)

 binary_label = 1

 label_checked[3] = True

 # Reset label checks if all labels are checked

 # If no labels are added, assign "benign"

 if not labels:

 labels.append("benign")

 values = [str(data[key]) for key in all_keys]

 labels_joined = '-'.join(labels)

 csv_line = ','.join(values) + f',{labels_joined},{binary_label}\n'

 f_out.write(csv_line)

 label_checked = [False] * 4

85

Etiquetado Benign

import pandas as pd

Read the JSON file into a DataFrame

df = pd.read_json(input_file, lines=True)

Create two new columns with default values

df['label'] = 'benign'

df['binary-label'] = 0

df.to_csv(output_file, index=False)

Display the DataFrame

df.head()

Finalmente, para etiquetar el conjunto de datos de CIC-IoT-2023, se siguió la misma metodología

que emplearon los autores, etiquetando todos los flujos de una misma captura de tráfico según

el nombre del archivo, que indica el ataque contenido.

def process_conn_log(folder_path):

 conn_log_path = os.path.join(folder_path, "conn_stadistics.log")

 # Check if conn.log file exists

 if os.path.exists(conn_log_path):

 folder_name = os.path.basename(folder_path)

 with open(conn_log_path, 'r') as file:

 header_line = file.readlines()[6].strip().split('\t')[1:]

 df = pd.read_csv(conn_log_path, sep='\t', skiprows=8, names=header_line, skipfooter=1, engine='python')

 print(folder_name)

 # Check for the file with name folder_name + _loss_rows.csv

 loss_rows_path = os.path.join(loss_directory, f'{folder_name}_loss_rows.csv')

 if os.path.exists(loss_rows_path):

 print(f"Loss rows file found: {loss_rows_path}")

 df_loss = pd.read_csv(loss_rows_path)

 # Identify rows to be removed

 rows_to_remove = df[df['uid'].isin(df_loss['uid'])]

 # Print the rows that are going to be removed

 print("Rows to be removed:")

 print(rows_to_remove)

 # Remove rows from df where df['uid'] is in df_loss['uid']

 df = df[~df['uid'].isin(df_loss['uid'])]

 # Save concatenated data frame to CSV

 output_path = "/root/bbdd/logs-zeek/cic-iot-2023-logs/labeled-csv/" # Change this to the desired directory path

 csv_filename = os.path.join(output_path, f"{folder_name}_labeled.csv")

 df.to_csv(csv_filename, index=False)

 else:

 print(f"Loss rows file not found for {folder_name}")

 # Once found, open that loss file as csv, look for the uids to remove them in the new df we are going to create

 else:

 print(f"conn.log not found in {folder_path}")

for folder in os.listdir(main_directory):

 folder_path = os.path.join(main_directory, folder)

 if os.path.isdir(folder_path):

 process_conn_log(folder_path)

Anexo VIII: Normas de etiquetado
Cada base de datos empleó un método distinto de etiquetado, por lo que, para poder recrearlo, se siguieron las reglas proporcionadas por los diferentes

autores.

Para la base de datos IoTD20, las reglas se adaptaron para poder etiquetar mediante los atributos generados en Zeek. En concreto, se etiquetó el tráfico

benigno y los siguientes ataques: DoS SYN-Flood, PortScan, OS Scan, UDP Flood, HTTP Flood, ACK Flood y Telnet BruteForce.

No. File Name
Creation

Date*
Category Sub-category Wireshark Rule to Filter Only Attack Packets

1 benign-dec.pcap 20/05/2019 Normal Normal -

8 dos-synflooding-1-dec.pcap 31/05/2019
Denial of Service
(DoS)

SYN Flooding
ip.src == 222.0.0.0/8 and tcp.flags.syn == 1 and ip.dst == 192.168.0.13 and tcp.dstport
== 554 and tcp

9 dos-synflooding-2-dec.pcap 31/05/2019
Denial of Service
(DoS)

SYN Flooding
ip.src == 222.0.0.0/8 and tcp.flags.syn == 1 and ip.dst == 192.168.0.13 and tcp.dstport
== 554 and tcp

10 dos-synflooding-3-dec.pcap 31/05/2019
Denial of Service
(DoS)

SYN Flooding
ip.src == 111.0.0.0/8 and tcp.flags.syn == 1 and ip.dst == 192.168.0.13 and tcp.dstport
== 554 and tcp

11 dos-synflooding-4-dec.pcap 05/06/2019
Denial of Service
(DoS)

SYN Flooding
ip.dst == 192.168.0.24 and tcp.flags.syn == 1 and ip.src == 111.0.0.0/8 and tcp and
tcp.dstport == 19604

12 dos-synflooding-5-dec.pcap 05/06/2019
Denial of Service
(DoS)

SYN Flooding
ip.dst == 192.168.0.24 and tcp.flags.syn == 1 and ip.src == 111.0.0.0/8 and tcp and
tcp.dstport == 19604

13 dos-synflooding-6-dec.pcap 05/06/2019
Denial of Service
(DoS)

SYN Flooding
ip.dst == 192.168.0.24 and tcp.flags.syn == 1 and ip.src == 111.0.0.0/8 and tcp and
tcp.dstport == 19604

14 scan-hostport-1-dec.pcap 11/07/2019 Scanning Port Scanning
ip.src == 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and
tcp.window_size == 1024) or tcp.flags.reset == 1)

15 scan-hostport-2-dec.pcap 11/07/2019 Scanning Port Scanning
ip.src == 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and
tcp.window_size == 1024) or tcp.flags.reset == 1)

16 scan-hostport-3-dec.pcap 11/07/2019 Scanning Port Scanning
ip.src == 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and
tcp.window_size == 1024) or tcp.flags.reset == 1)

17 scan-hostport-4-dec.pcap 11/07/2019 Scanning Port Scanning
ip.src == 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and
tcp.window_size == 1024) or tcp.flags.reset == 1)

87

18 scan-hostport-5-dec.pcap 11/07/2019 Scanning Port Scanning
ip.src == 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and
tcp.window_size == 1024) or tcp.flags.reset == 1)

19 scan-hostport-6-dec.pcap 11/07/2019 Scanning Port Scanning
ip.src == 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and
tcp.window_size == 1024) or tcp.flags.reset == 1)

20 scan-portos-1-dec.pcap 11/07/2019

Scanning Port Scanning
ip.src == 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and
tcp.window_size == 1024) or tcp.flags.reset == 1)

Scanning
OS/Version
Detection

(ip.src == 192.168.0.15 and ip.dst == 192.168.0.13) and (not icmp) and not (ip.src ==
192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and tcp.window_size
== 1024) or tcp.flags.reset == 1))

21 scan-portos-2-dec.pcap 11/07/2019

Scanning Port Scanning
ip.src == 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and
tcp.window_size == 1024) or tcp.flags.reset == 1)

Scanning
OS/Version
Detection

(ip.src == 192.168.0.15 and ip.dst == 192.168.0.13) and (not icmp) and not (ip.src ==
192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and tcp.window_size
== 1024) or tcp.flags.reset == 1))

22 scan-portos-3-dec.pcap 11/07/2019

Scanning Port Scanning
ip.src == 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and
tcp.window_size == 1024) or tcp.flags.reset == 1)

Scanning
OS/Version
Detection

(ip.src == 192.168.0.15 and ip.dst == 192.168.0.13) and (not icmp) and not (ip.src ==
192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and tcp.window_size
== 1024) or tcp.flags.reset == 1))

23 scan-portos-4-dec.pcap 11/07/2019

Scanning Port Scanning
ip.src == 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and
tcp.window_size == 1024) or tcp.flags.reset == 1)

Scanning
OS/Version
Detection

(ip.src == 192.168.0.15 and ip.dst == 192.168.0.24) and (not icmp) and not (ip.src ==
192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and tcp.window_size
== 1024) or tcp.flags.reset == 1))

24 scan-portos-5-dec.pcap 11/07/2019

Scanning Port Scanning
ip.src == 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and
tcp.window_size == 1024) or tcp.flags.reset == 1)

Scanning
OS/Version
Detection

(ip.src == 192.168.0.15 and ip.dst == 192.168.0.24) and (not icmp) and not (ip.src ==
192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and tcp.window_size
== 1024) or tcp.flags.reset == 1))

25 scan-portos-6-dec.pcap 11/07/2019 Scanning Port Scanning
ip.src == 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and
tcp.window_size == 1024) or tcp.flags.reset == 1)

88

Scanning
OS/Version
Detection

(ip.src == 192.168.0.15 and ip.dst == 192.168.0.24) and (not icmp) and not (ip.src ==
192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and tcp.window_size
== 1024) or tcp.flags.reset == 1))

26 mirai-udpflooding-1-dec.pcap 01/08/2019 Mirai Botnet UDP Flooding ip.dst == 210.89.164.90

27 mirai-udpflooding-2-dec.pcap 01/08/2019 Mirai Botnet UDP Flooding ip.dst == 210.89.164.90

28 mirai-udpflooding-3-dec.pcap 01/08/2019 Mirai Botnet UDP Flooding ip.dst == 210.89.164.90

29 mirai-udpflooding-4-dec.pcap 01/08/2019 Mirai Botnet UDP Flooding ip.dst == 210.89.164.90

30 mirai-ackflooding-1-dec.pcap 01/08/2019 Mirai Botnet ACK Flooding ip.dst == 210.89.164.90

31 mirai-ackflooding-2-dec.pcap 01/08/2019 Mirai Botnet ACK Flooding ip.dst == 210.89.164.90

32 mirai-ackflooding-3-dec.pcap 01/08/2019 Mirai Botnet ACK Flooding ip.dst == 210.89.164.90

33 mirai-ackflooding-4-dec.pcap 01/08/2019 Mirai Botnet ACK Flooding ip.dst == 210.89.164.90

34 mirai-httpflooding-1-dec.pcap 01/08/2019 Mirai Botnet HTTP Flooding ip.dst == 210.89.164.90

35 mirai-httpflooding-2-dec.pcap 01/08/2019 Mirai Botnet HTTP Flooding ip.dst == 210.89.164.90

36 mirai-httpflooding-3-dec.pcap 01/08/2019 Mirai Botnet HTTP Flooding ip.dst == 210.89.164.90

37 mirai-httpflooding-4-dec.pcap 01/08/2019 Mirai Botnet HTTP Flooding ip.dst == 210.89.164.90

38 mirai-hostbruteforce-1-dec.pcap 05/09/2019 Mirai Botnet Telnet Bruteforce tcp.dstport==23 and ip.src==192.168.0.13

39 mirai-hostbruteforce-2-dec.pcap 05/09/2019 Mirai Botnet Telnet Bruteforce tcp.dstport==23 and ip.src==192.168.0.24

40 mirai-hostbruteforce-3-dec.pcap 10/09/2019 Mirai Botnet Telnet Bruteforce tcp.dstport==23 and ip.src==192.168.0.13

41 mirai-hostbruteforce-4-dec.pcap 10/09/2019 Mirai Botnet Telnet Bruteforce tcp.dstport==23 and ip.src==192.168.0.24

42 mirai-hostbruteforce-5-dec.pcap 10/09/2019 Mirai Botnet Telnet Bruteforce tcp.dstport==23 and ip.src==192.168.0.13

89

Para el dataset IoT-23, se siguieron las siguientes reglas:

CTU-IoT-Malware-Capture-7-1 (Linux, Mirai)

Id Field bro field number Data Comparator Label type connector

1 id.resp_h 5 185.130.215.13 eq C&C Malicious -

2 id.resp_h 5 102.157.125.155 eq Okiru Malicious -

3 id.resp_p 6 37215 eq Okiru Malicious -

4 id.resp_p 6 57722 eq HeartBeat Malicious -

5 id.resp_p 6 80 eq DDoS Malicious -

CTU-IoT-Malware-Capture-34-1 (Mirai)

Id Field bro field number Data Comparator Label type connector

1 id.resp_p 6 6667 eq C&C Malicious -

2 id.resp_p 6 63798 eq PartOfAHorizontalPortscan Malicious -

3 id.resp_p 6 256 eq PartOfAHorizontalPortscan Malicious -

4 id.resp_h 5 123.59.209.185 eq DDoS Malicious -

5 id.resp_h 5 71.61.66.148 eq DDoS Malicious -

6 id.resp_h 5 74.91.117.248 eq DDoS Malicious -

7 id.resp_p 6 5376 eq DDoS Malicious -

CTU-IoT-Malware-Capture-35-1 (Mirai)

Id Field bro field number Data Comparator Label type connector

1 id.resp_h 5 104.248.160.24 eq C&C Malicious -

2 id.resp_h 5 104.248.160.24 eq FileDownload Malicious and 3

3
resp_ip_byte

s 19 30000 gt FileDownload Malicious and 2

4 id.resp_h 5 110.183.76.177 eq Attack Malicious -

5 id.resp_h 5 112.27.30.87 eq Attack Malicious -

90

6 id.resp_p 6 85.217.225.181 eq Attack Malicious -

7 id.resp_p 6 992 eq DDoS Malicious -

8 id.resp_h 5 209.97.190.136 eq DDoS Malicious -

9 id.resp_h 5 173.113.172.138 eq DDoS Malicious -

10 id.resp_h 5 216.18.168.16 eq DDoS Malicious -

11 id.resp_h 5 24.165.115.195 eq DDoS Malicious -

12 id.resp_h 5 54.39.87.104 eq DDoS Malicious -

CTU-IoT-Malware-Capture-43-1 (Mirai)

Id Field
bro field
number Data Comparator Label type connector

1 id.resp_p 6 45 eq C&C Malicious -

2 id.resp_h 5 142.11.219.83 eq C&C Malicious -

3 id.resp_p 6 27015 eq DDoS Malicious -

4 id.resp_p 6 37215 eq Okiru Malicious -

5 id.resp_p 6 52869 eq PartOfAHorizontalPortscan Malicious and 6

6 conn_state 12 S0 eq PartOfAHorizontalPortScan Malicious and 5

7 resp_ip_bytes 19 50000 gt FileDonwload Malicious -

CTU-IoT-Malware-Capture-44-1 (Mirai)

Id Field bro field number Data Comparator Label type connector

1 id.resp_h 5 46.101.251.172 eq C&C Malicious and 2

2 proto 7 tcp eq C&C Malicious and 1

3 id.resp_p 6 80 eq DDoS Malicious and 4

4 proto 7 udp eq DDoS Malicious and 3

5 id.resp_h 5 86.136.151.56 eq DDoS Malicious -

6 resp_ip_bytes 19 50000 gt FileDownload Malicious -

91

CTU-IoT-Malware-Capture-48-1 (Mirai)

Id Field bro field number Data Comparator Label type connector

1 id.resp_h 5 167.99.182.238 eq C&C Malicious -

2 id.resp_h 5 167.99.182.238 eq HeartBeat Malicious and 3

3 resp_ip_bytes 19 1 gt HeartBeat Malicious and 2

4 id.resp_p 6 80 eq FileDownload Malicious and 5

5 resp_ip_bytes 19 50000 gt FileDownload Malicious and 4

6 id.resp_p 6 23 eq PartOfAHorizontalPortscan Malicious and 7

7 conn_state 12 S0 eq PartOfAHorizontalPortScan Malicious and 6

8 id.resp_p 6 23 eq Attack Malicious and 9

9 orig_ip_bytes 17 7 gt Attack Malicious and 8

CTU-IoT-Malware-Capture-49-1 (Mirai)

Id Field bro field number Data Comparator Label type connector

1 id.resp_p 6 4554 eq C&C Malicious -

2 id.resp_p 6 8081 eq PartOfAHorizontalPortscan Malicious and 3

3 conn_state 12 S0 eq PartOfAHorizontalPortScan Malicious and 2

4 resp_ip_bytes 19
3000

0 gt FileDownload Malicious -

CTU-IoT-Malware-Capture-52-1 (Mirai)

Id Field bro field number Data Comparator Label type connector

1 id.resp_h 5 185.244.25.108 eq C&C Malicious -

2 id.resp_p 6 4441 eq Mirai Malicious -

3 id.resp_p 6 80 eq FileDownload Malicious and 4

4 resp_ip_bytes 19 30000 gt FileDownload Malicious and 3

5 id.resp_p 6 23 eq PartOfAHorizontalPortscan Malicious -

6 id.resp_p 6 2323 eq PartOfAHorizontalPortscan Malicious -

Anexo IX: Scripts de capture-loss
Como ya se ha desarrollado en el capítulo , ha sido necesario el estudio de pérdida de información

en las capturas de tráfico. Esto se pudo observar mediante la herramienta Zui, y por ello se decidió

analizar en profundidad la cantidad de flujos que presentaban pérdida de información, y la

magnitud de esta pérdida.

Los scripts que se desarrollaron se muestran a continuación. Primero, se llevó a cabo un análisis

en menor profundidad mediante estadísticas, para ello se empleó:

import os

import pandas as pd

Define the source directory containing capture loss logs

source_dir = "/root/capture_loss_iotd20_logs"

Define the output file

output_file = "/root/capture_loss_iotd20_logs/concatenated_logs.csv"

Create an empty list to store DataFrames

dfs = []

Iterate through each JSON file in the source directory

for file_name in os.listdir(source_dir):

 if file_name.endswith(".log"):

 file_path = os.path.join(source_dir, file_name)

 # Load the JSON file into a pandas DataFrame

 df = pd.read_json(file_path, lines=True)

 # Add a new column with the file name

 df['file_name'] = file_name

 # Append the DataFrame to the list

 dfs.append(df)

Concatenate all DataFrames into a single DataFrame

concatenated_df = pd.concat(dfs, ignore_index=True)

concatenated_df.to_csv(output_file, index=False)

print("Concatenation completed. Output file:", output_file)

print("Número de filas en el DataFrame:", df.shape[0])

csv_file = output_file

df = pd.read_csv(csv_file)

List the rows with the highest values in the percent_lost column

top_percent_lost = df.nlargest(34, 'percent_lost') # Change 10 to the desired number of rows

selected_columns = ['ts_delta', 'gaps', 'acks', 'file_name', 'percent_lost']

top_percent_lost_selected = top_percent_lost[selected_columns]

print(top_percent_lost_selected)

Ordenar primero por el nombre del archivo y luego por el porcentaje perdido

top_percent_lost_sorted = top_percent_lost_selected.sort_values(by=['file_name', 'percent_lost'], ascending=[True, False])

print(top_percent_lost_sorted)

import os

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

pd.set_option('display.max_columns', None)

pd.set_option('display.width', None)

main_directory = "/root/bbdd/logs-zeek/iotd20-logs/logs-original/"

Function to process a conn.log file

93

def process_conn_log(folder_path):

 conn_log_path = os.path.join(folder_path, "conn.log")

 # Check if conn.log file exists

 if os.path.exists(conn_log_path):

 # Extract file name from folder path

 folder_name = os.path.basename(folder_path)

 # Read conn.log into a DataFrame

 df = pd.read_json(conn_log_path, lines=True)

 # Convert timestamp to datetime if needed

 # df["timestamp"] = pd.to_datetime(df["timestamp"])

 # Create a dot plot of missed_bytes evolution

 plt.scatter(df["ts"], df["missed_bytes"], s=10, marker='o')

 plt.xlabel("Timestamp")

 plt.ylabel("Missed Bytes")

 plt.title(f"Evolution of Missed Bytes - {folder_name}")

 plt.show()

 # Calculate statistics

 stats = df["missed_bytes"].describe()

 print("Statistics:")

 print(stats)

 # Print top 15 highest values

 top_15 = df.nlargest(15, "missed_bytes")

 print("\nTop 15 highest missed_bytes:")

 print(top_15[["uid", "missed_bytes", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto"]])

 else:

 print(f"conn.log not found in {folder_path}")

def process_conn_log(folder_path, thresholds=[(0, 0.05), (0.05, 0.1), (0.1, 0.2), (0.2, 1)]):

 conn_log_path = os.path.join(folder_path, "conn_stadistics.log")

 # Check if conn.log file exists

 if os.path.exists(conn_log_path):

 # Extract file name from folder path

 folder_name = os.path.basename(folder_path)

 # Read conn.log into a DataFrame

 df = pd.read_json(conn_log_path, lines=True)

 # Sample 5 flows with NaN values in either orig_bytes or resp_bytes before dropping

 nan_flows = df[df['orig_bytes'].isnull() | df['resp_bytes'].isnull()].head(5)

 if not nan_flows.empty:

 print("Sample of 5 flows with NaN values in either orig_bytes or resp_bytes:")

 print(nan_flows[["uid","missed_bytes","orig_bytes","resp_bytes", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto"]])

 # Notify and count rows with NaN values in both orig_bytes and resp_bytes columns

 nan_count = df[df['orig_bytes'].isnull() & df['resp_bytes'].isnull()].shape[0]

 if nan_count > 0:

94

 print(f"{nan_count} rows with NaN values in both orig_bytes and resp_bytes columns.")

 # Calculate missed_bytes ratio

 df['missed_ratio'] = np.where(df['missed_bytes'] == 0, 0, df['missed_bytes'] / (df['orig_bytes'] + df['resp_bytes']))

 # Sort DataFrame by missed_ratio in descending order

 df_sorted = df.sort_values(by='missed_ratio', ascending=False)

 # Create a dot plot of missed_bytes ratio evolution

 plt.scatter(range(1, len(df_sorted) + 1), df_sorted["missed_ratio"], s=10, marker='o')

 plt.xlabel("Rank Position (sorted by missed ratio)")

 plt.ylabel("Missed Bytes Ratio")

 plt.title(f"Evolution of Missed Bytes Ratio - {folder_name}")

 plt.show()

 # Calculate statistics

 stats = df_sorted["missed_ratio"].describe()

 print("Statistics:")

 print(stats)

 # Print top 15 highest values

 top_15 = df_sorted.head(15)

 print("\nTop 15 highest missed_bytes ratios:")

 print(top_15[["uid", "missed_ratio", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto"]])

 # Print the least 15 flows based on missed bytes ratio

 print("\nLeast 15 flows based on missed bytes ratio:")

 least_15 = df_sorted.tail(15)

 print(least_15[["uid", "missed_ratio", "orig_bytes","resp_bytes", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto"]])

 # Initialize lists to store counts for each threshold range

 threshold_counts = [0] * len(thresholds)

 # Count number of flows in each threshold range

 for i, (lower, upper) in enumerate(thresholds):

 if upper is None:

 num_flows = (df_sorted['missed_ratio'] >= lower).sum()

 else:

 num_flows = ((df_sorted['missed_ratio'] >= lower) & (df_sorted['missed_ratio'] <= upper)).sum()

 threshold_counts[i] = num_flows

 # Create grouped bar plot for the number of flows exceeding each threshold range

 threshold_ranges = [f"{int(lower * 100)}% - {int(upper * 100)}%" if upper is not None else f"> {int(lower * 100)}%" for lower, upper

in thresholds]

 plt.bar(threshold_ranges, threshold_counts)

 plt.xlabel("Missed Bytes Ratio Threshold Range")

 plt.ylabel("Number of Flows")

 plt.title(f"Number of Flows Exceeding Missed Bytes Ratio Thresholds - {folder_name}")

 plt.show()

 else:

 print(f"conn.log not found in {folder_path}")

for folder in os.listdir(main_directory):

 folder_path = os.path.join(main_directory, folder)

 if os.path.isdir(folder_path):

 process_conn_log(folder_path)

95

Posteriormente, al ver que había flujos con una cantidad de pérdida significante, se diseñó otro

script para detectarlos dentro de los conjuntos de datos, y eliminar todos aquellos que superasen

la cantidad de 1% de pérdida de información.

Para IoTD20 se realizó sobre el dataset entero, sin diferenciar por archivos, ya que su tamaño era

reducido.

import pandas as pd

import numpy as np

import os

def process_conn_log(folder_path,columns = ['uid','missed_bytes','orig_bytes','resp_bytes']):

 df = pd.read_csv(folder_path,usecols=columns)

 df.loc[df['missed_bytes'] == '-', 'missed_bytes'] = np.nan

 df.loc[df['orig_bytes'] == '-', 'missed_bytes'] = np.nan

 df.loc[df['resp_bytes'] == '-', 'missed_bytes'] = np.nan

 # Convert remaining NaNs to 0 after substitution

 df['missed_bytes'] = pd.to_numeric(df['missed_bytes'], errors='coerce').fillna(0)

 df['orig_bytes'] = pd.to_numeric(df['orig_bytes'], errors='coerce').fillna(0)

 df['resp_bytes'] = pd.to_numeric(df['resp_bytes'], errors='coerce').fillna(0)

 df['missed_ratio'] = np.where((df['missed_bytes'].isna()) | (df['missed_bytes'] == 0), 0, pd.to_numeric(df['missed_bytes']) /

(pd.to_numeric(df['orig_bytes']) + pd.to_numeric(df['resp_bytes'])))

 # Filter rows with loss > 0.01 and append to list

 filtered_chunk = df[df['missed_ratio'] > 0.01]

 # Filter rows with loss > 0.01 and append to list

 filtered_chunk = df[df['missed_ratio'] > 0.01].copy() # Make a copy to avoid the warning

 filtered_chunk.loc[:, 'missed_ratio'] = df['missed_ratio'] # Assign values using .loc[]

 print("all_labeled_loss_rows.csv created")

 # Save concatenated data frame to CSV

 output_path = "/root/bbdd/logs-zeek/iotd20-logs/loss-rows/" # Change this to the desired directory path

 csv_filename = os.path.join(output_path, "all_labeled_loss_rows.csv")

 filtered_chunk.to_csv(csv_filename, index=False)

main_directory = "/root/bbdd/logs-zeek/iotd20-logs/all-labeled_all.csv"

process_conn_log(main_directory)

loss_rows_path = "/root/bbdd/logs-zeek/iotd20-logs/loss-rows/all_labeled_loss_rows.csv"

df = pd.read_csv(main_directory)

Check for the file with name folder_name + _loss_rows.csv

df_loss = pd.read_csv(loss_rows_path)

Identify rows to be removed

rows_to_remove = df[df['uid'].isin(df_loss['uid'])]

Print the rows that are going to be removed

print("Rows to be removed:")

print(rows_to_remove)

Remove rows from df where df['uid'] is in df_loss['uid']

df = df[~df['uid'].isin(df_loss['uid'])]

Save concatenated data frame to CSV

output_path = "/root/bbdd/logs-zeek/iotd20-logs/all-labeled-final.csv" # Change this to the desired directory path

df.to_csv(output_path, index=False)

96

En el caso del conjunto de datos IoT-23, se diseñó este script:

import os

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

main_directory = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/"

import pandas as pd

def process_conn_log(folder_name,columns = ['uid','missed_bytes','orig_bytes','resp_bytes']):

 conn_log_path = os.path.join(main_directory, folder_name)

 loss_rows_df = [] # Initialize a list to store data frames for chunks with loss > 0.01

 # Check if conn.log file exists

 if os.path.exists(conn_log_path):

 for chunk in pd.read_csv(conn_log_path,usecols=columns, chunksize=50000):

 # Calculate missed_bytes ratio

 chunk['missed_ratio'] = np.where((chunk['missed_bytes'].isna()) | (chunk['missed_bytes'] == 0), 0,

pd.to_numeric(chunk['missed_bytes']) / (pd.to_numeric(chunk['orig_bytes']) + pd.to_numeric(chunk['resp_bytes'])))

 # Filter rows with loss > 0.01 and append to list

 filtered_chunk = chunk[chunk['missed_ratio'] > 0.01].copy()

 filtered_chunk.loc[:, 'missed_ratio'] = chunk['missed_ratio']

 loss_rows_df.append(filtered_chunk)

 # Concatenate data frames in the list

 loss_rows_df = pd.concat(loss_rows_df)

 # Save concatenated data frame to CSV

 output_path = "/root/bbdd/logs-zeek/iot-23-logs/loss-rows/" # Change this to the desired directory path

 csv_filename = os.path.join(output_path, f"{folder_name}_loss_rows.csv")

 loss_rows_df.to_csv(csv_filename, index=False)

json_files = [f for f in os.listdir(main_directory) if f.startswith("json")]

for json_file in json_files:

 process_conn_log(json_file)

En el caso de CIC-IoT-2023, además de sustituir ciertos valores vacíos, se extraen los flujos con

más de 1% de pérdidas, almacenándolos en otro fichero para su posterior análisis además de

eliminarlos del conjunto de datos, identificándolos con el campo “uid”.
import pandas as pd

import numpy as np

import os

header = [

 'ts', 'startTime', 'uid', 'id.orig_h', 'id.orig_p', 'id.resp_h', 'id.resp_p', 'proto', 'service', 'duration',

 'orig_bytes', 'resp_bytes', 'conn_state', 'local_orig', 'local_resp', 'missed_bytes', 'history', 'orig_pkts',

 'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes', 'tunnel_parents', 'orig_bytes_mean', 'resp_bytes_mean',

 'orig_bytes_std', 'resp_bytes_std', 'orig_bytes_mean_nocero', 'resp_bytes_mean_nocero', 'orig_bytes_std_nocero',

 'resp_bytes_std_nocero', 'orig_bytes_min', 'resp_bytes_min', 'orig_bytes_max', 'resp_bytes_max', 'orig_pkts_nocero',

 'resp_pkts_nocero', 'orig_pkts_cero', 'resp_pkts_cero', 'time_mean', 'time_std', 'time_min', 'time_max',

 'orig_time_mean', 'orig_time_std', 'orig_time_min', 'orig_time_max', 'resp_time_mean', 'resp_time_std',

 'resp_time_min', 'resp_time_max']

def process_conn_log(folder_path,columns = ['uid','missed_bytes','orig_bytes','resp_bytes']):

 conn_log_path = os.path.join(folder_path, "conn_stadistics.log")

 # Check if conn.log file exists

 if os.path.exists(conn_log_path):

 folder_name = os.path.basename(folder_path)

 #with open(conn_log_path, 'r') as file:

 #header_line = file.readlines()[6].strip().split('\t')[1:]

 df = pd.read_csv(conn_log_path, sep='\t', skiprows=8, names=header, skipfooter=1, engine='python',usecols=columns)

 df.loc[df['missed_bytes'] == '-', 'missed_bytes'] = np.nan

 df.loc[df['orig_bytes'] == '-', 'missed_bytes'] = np.nan

 df.loc[df['resp_bytes'] == '-', 'missed_bytes'] = np.nan

 # Convert remaining NaNs to 0 after substitution

 df['missed_bytes'] = pd.to_numeric(df['missed_bytes'], errors='coerce').fillna(0)

 df['orig_bytes'] = pd.to_numeric(df['orig_bytes'], errors='coerce').fillna(0)

 df['resp_bytes'] = pd.to_numeric(df['resp_bytes'], errors='coerce').fillna(0)

97

 df['missed_ratio'] = np.where((df['missed_bytes'].isna()) | (df['missed_bytes'] == 0), 0, pd.to_numeric(df['missed_bytes']) /

(pd.to_numeric(df['orig_bytes']) + pd.to_numeric(df['resp_bytes'])))

 # Filter rows with loss > 0.01 and append to list

 filtered_chunk = df[df['missed_ratio'] > 0.01]

 # Filter rows with loss > 0.01 and append to list

 filtered_chunk = df[df['missed_ratio'] > 0.01].copy() # Make a copy to avoid the warning

 filtered_chunk.loc[:, 'missed_ratio'] = df['missed_ratio'] # Assign values using .loc[]

 print(f"{folder_name}_loss_rows.csv created")

 # Save concatenated data frame to CSV

 output_path = "/root/bbdd/logs-zeek/cic-iot-2023-logs/loss-rows/" # Change this to the desired directory path

 csv_filename = os.path.join(output_path, f"{folder_name}_loss_rows.csv")

 filtered_chunk.to_csv(csv_filename, index=False)

98

Anexo X: Scripts de representación de capture-loss
Create an empty list to store DataFrames

dfs = []

Iterate through each JSON file in the source directory

for file_name in os.listdir(source_dir):

 if file_name.endswith(".log"):

 file_path = os.path.join(source_dir, file_name)

 # Load the JSON file into a pandas DataFrame

 df = pd.read_json(file_path, lines=True)

 # Add a new column with the file name

 df['file_name'] = file_name

 # Append the DataFrame to the list

 dfs.append(df)

Concatenate all DataFrames into a single DataFrame

concatenated_df = pd.concat(dfs, ignore_index=True)

concatenated_df.to_csv(output_file, index=False)

print("Concatenation completed. Output file:", output_file)

csv_file = output_file

df = pd.read_csv(csv_file)

List the rows with the highest values in the percent_lost column

top_percent_lost = df.nlargest(34, 'percent_lost') # Change 10 to the desired number of rows

selected_columns = ['ts_delta', 'gaps', 'acks', 'file_name', 'percent_lost']

top_percent_lost_selected = top_percent_lost[selected_columns]

print(top_percent_lost_selected)

Ordenar primero por el nombre del archivo y luego por el porcentaje perdido

top_percent_lost_sorted = top_percent_lost_selected.sort_values(by=['file_name', 'percent_lost'], ascending=[True, False])

print(top_percent_lost_sorted)

Function to process a conn.log file

def process_conn_log(folder_path, thresholds=[(0, 0.05), (0.05, 0.1), (0.1, 0.2), (0.2, 1)]):

 conn_log_path = os.path.join(folder_path, "conn_stadistics.log")

 # Check if conn.log file exists

 if os.path.exists(conn_log_path):

 # Extract file name from folder path

 folder_name = os.path.basename(folder_path)

 # Read conn.log into a DataFrame

 df = pd.read_json(conn_log_path, lines=True)

 # Sample 5 flows with NaN values in either orig_bytes or resp_bytes before dropping

 nan_flows = df[df['orig_bytes'].isnull() | df['resp_bytes'].isnull()].head(5)

 if not nan_flows.empty:

 print("Sample of 5 flows with NaN values in either orig_bytes or resp_bytes:")

 print(nan_flows[["uid","missed_bytes","orig_bytes","resp_bytes", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto"]])

 # Notify and count rows with NaN values in both orig_bytes and resp_bytes columns

 nan_count = df[df['orig_bytes'].isnull() & df['resp_bytes'].isnull()].shape[0]

 if nan_count > 0:

 print(f"{nan_count} rows with NaN values in both orig_bytes and resp_bytes columns.")

 # Calculate missed_bytes ratio

 df['missed_ratio'] = np.where(df['missed_bytes'] == 0, 0, df['missed_bytes'] / (df['orig_bytes'] + df['resp_bytes']))

 # Sort DataFrame by missed_ratio in descending order

 df_sorted = df.sort_values(by='missed_ratio', ascending=False)

 # Create a dot plot of missed_bytes ratio evolution

 plt.scatter(range(1, len(df_sorted) + 1), df_sorted["missed_ratio"], s=10, marker='o')

99

 plt.xlabel("Rank Position (sorted by missed ratio)")

 plt.ylabel("Missed Bytes Ratio")

 plt.title(f"Evolution of Missed Bytes Ratio - {folder_name}")

 plt.show()

 # Calculate statistics

 stats = df_sorted["missed_ratio"].describe()

 print("Statistics:")

 print(stats)

 # Print top 15 highest values

 top_15 = df_sorted.head(15)

 print("\nTop 15 highest missed_bytes ratios:")

 print(top_15[["uid", "missed_ratio", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto"]])

 # Print the least 15 flows based on missed bytes ratio

 print("\nLeast 15 flows based on missed bytes ratio:")

 least_15 = df_sorted.tail(15)

 print(least_15[["uid", "missed_ratio", "orig_bytes","resp_bytes", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto"]])

 # Initialize lists to store counts for each threshold range

 threshold_counts = [0] * len(thresholds)

 # Count number of flows in each threshold range

 for i, (lower, upper) in enumerate(thresholds):

 if upper is None:

 num_flows = (df_sorted['missed_ratio'] >= lower).sum()

 else:

 num_flows = ((df_sorted['missed_ratio'] >= lower) & (df_sorted['missed_ratio'] <= upper)).sum()

 threshold_counts[i] = num_flows

 # Create grouped bar plot for the number of flows exceeding each threshold range

 threshold_ranges = [f"{int(lower * 100)}% - {int(upper * 100)}%" if upper is not None else f"> {int(lower * 100)}%" for lower,

upper in thresholds]

 plt.bar(threshold_ranges, threshold_counts)

 plt.xlabel("Missed Bytes Ratio Threshold Range")

 plt.ylabel("Number of Flows")

 plt.title(f"Number of Flows Exceeding Missed Bytes Ratio Thresholds - {folder_name}")

 plt.show()

 else:

 print(f"conn.log not found in {folder_path}")

for folder in os.listdir(main_directory):

 folder_path = os.path.join(main_directory, folder)

 if os.path.isdir(folder_path):

 process_conn_log(folder_path)

Para Iot-23
import os

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from bokeh.plotting import figure, show, output_file

from bokeh.models import HoverTool

from bokeh.io import export_png

main_directory = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/"

def process_conn_log(folder_name, thresholds=[(0, 0.05), (0.05, 0.1), (0.1, 0.2), (0.2, 1)], columns=["uid", "missed_bytes",

"orig_bytes","resp_bytes", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto", 'binary-label']):

 conn_log_path = os.path.join(main_directory, folder_name)

 # Check if conn.log file exists

 if os.path.exists(conn_log_path)

100

 # Create Bokeh plot

 p = figure(title=f"Evolution of Missed Bytes Ratio - {folder_name}", x_axis_label="Rank Position (sorted by missed ratio)",

y_axis_label="Missed Bytes Ratio")

 # Add hover tool

 hover = HoverTool()

 hover.tooltips = [("Index", "$index"), ("Missed Bytes Ratio", "@missed_ratio")]

 p.add_tools(hover)

 for chunk in pd.read_csv(conn_log_path, usecols=columns, chunksize=50000):

 # Calculate missed_bytes ratio

 chunk['missed_ratio'] = np.where((chunk['missed_bytes'].isna()) | (chunk['missed_bytes'] == 0), 0,

pd.to_numeric(chunk['missed_bytes']) / (pd.to_numeric(chunk['orig_bytes']) + pd.to_numeric(chunk['resp_bytes'])))

 if chunk['missed_ratio'].isnull().values.any():

 print("Warning: NaN value detected in missed_ratio column!")

 # Define color based on binary-label

 colors = ['green' if label == 0 else 'red' for label in chunk['binary-label']]

 # Add scatter plot for the chunk

 p.scatter(list(range(1, len(chunk) + 1)), chunk["missed_ratio"], size=10, color=colors, alpha=0.5)

 # Show plot for the chunk

 export_png(p,filename=f"{folder_name}.png")

 show(p)

 print(f"Saved in: {folder_name}")

 else:

 print(f"conn.log not found in {folder_path}")

json_files = [f for f in os.listdir(main_directory) if f.startswith("json")]

for json_file in json_files:

 process_conn_log(json_file)

101

Anexo XI: Scripts de obtención de resultados
Train-test para IoT-23

import dask.dataframe as dd

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay, roc_curve, auc, RocCurveDisplay

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.naive_bayes import GaussianNB, BernoulliNB

from sklearn.linear_model import SGDClassifier

from sklearn.ensemble import BaggingClassifier, AdaBoostClassifier, RandomForestClassifier

from sklearn.neighbors import NearestCentroid

from sklearn.neural_network import MLPClassifier

from fpdf import FPDF

import matplotlib.pyplot as plt

import os

from sklearn import tree

import time

import pandas as pd

from concurrent.futures import ThreadPoolExecutor, as_completed

from sklearn.preprocessing import StandardScaler, LabelBinarizer

from sklearn.model_selection import GridSearchCV

from sklearn.metrics import roc_curve, auc, accuracy_score

from sklearn.preprocessing import LabelBinarizer

from sklearn.metrics import (classification_report, accuracy_score, confusion_matrix,

 ConfusionMatrixDisplay, roc_curve, RocCurveDisplay, precision_score, recall_score, f1_score)

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

import numpy as np

Create PDF with fpdf

class PDF(FPDF):

 def header(self):

 self.set_font('Arial', 'B', 12)

 self.cell(0, 10, 'Classification Report with Metrics, Training, and Testing Time', 0, 1, 'C')

 def chapter_title(self, title):

 self.set_font('Arial', 'B', 12)

 self.cell(0, 10, title, 0, 1, 'L')

 self.ln(10)

 def chapter_body(self, body):

 self.set_font('Arial', '', 10)

 self.multi_cell(0, 5, body)

 self.ln()

 def add_image(self, image_path, title=''):

 if title:

 self.chapter_title(title)

 self.image(image_path, x=10, y=None, w=180)

 self.ln(10)

 def add_classification_report(self, report):

 self.chapter_title("Classification Report:")

 self.chapter_body(report)

Function to train and evaluate a single model

def train_and_evaluate_model(name, model, X_train, X_test, y_train, y_test):

 pdf = PDF()

 output_folder = f"/root/resultados-ml/iot-23/{name}-60test"

 if not os.path.exists(output_folder):

 os.makedirs(output_folder)

102

 print(f"Start training {name}")

 start_time = time.time()

 if name in ["SVM", "KNN", "SGD", "MLP", "Nearest_Centroid"]:

 scaler = StandardScaler()

 X_train = scaler.fit_transform(X_train)

 X_test = scaler.transform(X_test)

 print(f"Scaling done for {name}")

 if name == "SVM":

 # Define parameter grid for grid search

 param_grid = {

 'C': [100, 1000],

 'gamma': [1e-4, 1e-5],

 'kernel': ['rbf', 'sigmoid']

 }

 # Perform grid search

 print(f"Start grid search for {name}")

 grid_search = GridSearchCV(SVC(probability=True), param_grid, refit=True, verbose=2, cv=5, n_jobs=-1)

 grid_search.fit(X_train, y_train)

 print(f"End grid search for {name}")

 # Use the best model with the best parameters

 model = grid_search.best_estimator_

 params = grid_search.best_params_

 single_start_time = time.time()

 model.fit(X_train, y_train)

 single_train_time = time.time() - single_start_time

 pdf.chapter_body(f"Best model: {model} Best params: {params} \n")

 pdf.chapter_body(f"Best model Training time: {single_train_time:.4f} seconds\n")

 else:

 model.fit(X_train, y_train)

 else:

 model.fit(X_train, y_train)

 train_time = time.time() - start_time

 print(f"End training {name}")

 start_time = time.time()

 print(f"Start prediction for {name}")

 y_pred = model.predict(X_test)

 test_time = time.time() - start_time

 pdf.add_page()

 pdf.chapter_title('Training and Testing Time')

 pdf.chapter_body(f"Training time: {train_time:.4f} seconds\nTesting time: {test_time:.4f} seconds\n")

 print(f"Creating reports for {name}")

 report = classification_report(y_test, y_pred)

 pdf.add_classification_report(report)

 print(f"Getting scores for {name}")

 precision_scores = precision_score(y_test, y_pred, average=None)

 recall_scores = recall_score(y_test, y_pred, average=None)

 pdf.chapter_body("Precision and Recall Scores by Class with 8 decimals:\n")

 unique_classes = np.unique(np.concatenate([y_test, y_pred]))

 for i, class_name in enumerate(unique_classes):

 precision = precision_scores[i]

 recall = recall_scores[i]

 pdf.chapter_body(f"Class '{class_name}':\n")

 pdf.chapter_body(f" Precision: {precision:.8f}\n")

 pdf.chapter_body(f" Recall: {recall:.8f}\n")

 # Define the classes of interest

 classes_of_interest = ["Scan", "benign", "DoS"]

 print(f"Getting confusion matrix for {name}")

 # Confusion matrix

 cm = confusion_matrix(y_test, y_pred, labels=classes_of_interest)

 disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=classes_of_interest)

 # Save the confusion matrix plot as an image file

103

 cm_plot_path = os.path.join(output_folder, "confusion_matrix.png")

 disp.plot()

 plt.savefig(cm_plot_path)

 # Add the confusion matrix plot to the PDF

 pdf.add_image(cm_plot_path, title="Confusion Matrix Plot")

 plt.show()

 plt.close()

 cm1 = confusion_matrix(y_test, y_pred, labels=classes_of_interest, normalize = 'true')

 disp1 = ConfusionMatrixDisplay(confusion_matrix=cm1, display_labels=classes_of_interest)

 # Save the confusion matrix plot as an image file

 cm1_plot_path = os.path.join(output_folder, "confusion_matrix_normalized.png")

 disp1.plot()

 plt.savefig(cm1_plot_path)

 # Add the confusion matrix plot to the PDF

 pdf.add_image(cm1_plot_path, title="Normalized Confusion Matrix Plot")

 plt.show()

 plt.close()

 if isinstance(model, DecisionTreeClassifier):

 print(f"Plotting tree for {name}")

 plt.figure(figsize=(25, 15)) # Adjust the size as needed

 # Plot the decision tree

 tree.plot_tree(model, feature_names=X.columns, filled=True, fontsize=8, proportion=True)

 # Save the decision tree plot as an image file

 tree_plot_path = os.path.join(output_folder, "decision_tree_default.png")

 plt.savefig(tree_plot_path)

 plt.close()

 # Add the decision tree plot to the PDF

 pdf.add_page()

 pdf.chapter_title('Decision Tree')

 pdf.add_image(tree_plot_path, title="Decision Tree Plot")

 print(f"Start ROC plotting for {name}")

 if name != "Nearest_Centroid":

 y_prob = model.predict_proba(X_test)

 label_binarizer = LabelBinarizer().fit(y_train)

 y_onehot_test = label_binarizer.transform(y_test)

 for class_of_interest in classes_of_interest:

 class_id = np.flatnonzero(label_binarizer.classes_ == class_of_interest)[0]

 fpr, tpr, _ = roc_curve(y_onehot_test[:, class_id], y_prob[:, class_id])

 display = RocCurveDisplay(fpr=fpr, tpr=tpr, estimator_name=f"{class_of_interest} vs the rest")

 display.plot(color="darkorange")

 plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')

 plt.xlabel('False Positive Rate')

 plt.ylabel('True Positive Rate')

 plt.title(f"One-vs-Rest ROC curve: {class_of_interest} vs (all other classes)")

 plt.legend(loc="lower right")

 plot_file = os.path.join(output_folder, f"roc_plot_{class_of_interest}.png")

 plt.savefig(plot_file)

 plt.show()

 plt.close()

 # Add the ROC curve plot to the PDF

 pdf.add_image(plot_file, title=f"ROC Curve: {class_of_interest} vs (all other classes)")

 else:

 print(f"ROC for Nearest Centroid for {name}")

 centroids = model.centroids_

 distances = np.linalg.norm(X_test[:, np.newaxis] - centroids, axis=2)

 label_binarizer = LabelBinarizer().fit(y_train)

 y_onehot_test = label_binarizer.transform(y_test)

 fpr = dict()

 tpr = dict()

 roc_auc = dict()

104

 for i, class_of_interest in enumerate(classes_of_interest):

 fpr[i], tpr[i], _ = roc_curve(y_onehot_test[:, i], -distances[:, i])

 roc_auc[i] = auc(fpr[i], tpr[i])

 plt.figure()

 display = RocCurveDisplay(fpr=fpr[i], tpr=tpr[i], estimator_name=f"{class_of_interest} vs the rest")

 display.plot(color="darkorange")

 plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')

 plt.xlabel('False Positive Rate')

 plt.ylabel('True Positive Rate')

 plt.title(f"One-vs-Rest ROC curve: {class_of_interest} vs (all other classes)")

 plt.legend(loc="lower right")

 plot_file = os.path.join(output_folder, f"roc_plot_{class_of_interest}.png")

 plt.savefig(plot_file)

 plt.show()

 plt.close()

 # Add the ROC curve plot to the PDF

 pdf.add_image(plot_file, title=f"ROC Curve: {class_of_interest} vs (all other classes)")

 # Save PDF

 pdf_output_path = f"/root/resultados-ml/iot-23/iot23-{name}-60test-classification_report.pdf"

 pdf.output(pdf_output_path)

 print(f"PDF saved for {name}")

 return name, train_time, test_time, pdf_output_path

Read CSV using Dask

ddf = dd.read_csv('/root/bbdd/logs-zeek/iot23-processed.csv')

Split data into training and testing sets

X = ddf.drop(columns=['label', 'binary_label'])

y = ddf['label']

X_train, X_test, y_train, y_test = train_test_split(X.compute(), y.compute(), test_size=0.4, random_state=42)

Define models

models = {

 "Decision_Tree": DecisionTreeClassifier(),

 "Nearest_Centroid": NearestCentroid(),

 "Random_Forest": RandomForestClassifier(n_estimators=100, random_state=0),

 "Gaussian_NB": GaussianNB(),

 "Bernoulli_NB": BernoulliNB(),

 "SGD": SGDClassifier(loss='log_loss', max_iter=1000, tol=1e-3),

 "Bagging_Tree": BaggingClassifier(estimator=DecisionTreeClassifier(), n_estimators=100, random_state=0),

 "AdaBoost_Tree": AdaBoostClassifier(estimator=DecisionTreeClassifier(), n_estimators=100, random_state=0),

 "MLP": MLPClassifier(max_iter=1000, random_state=42),

 "KNN": KNeighborsClassifier(),

 "SVM": SVC(probability=True)

}

Train models and generate reports in parallel

with ThreadPoolExecutor(max_workers=1) as executor:

 futures = {executor.submit(train_and_evaluate_model, name, model, X_train, X_test, y_train, y_test): name for name, model in

models.items()}

 for future in as_completed(futures):

 name = futures[future]

 try:

 name, train_time, test_time, pdf_output_path = future.result()

 print(f"Completed {name}: Training time {train_time:.4f} seconds, Testing time {test_time:.4f} seconds, PDF saved at

{pdf_output_path}")

 except Exception as exc:

 print(f"Error occurred for model {name}: {exc}")

105

Anexo XII: Script para muestreo de clase DoS
Se presenta un script que realiza un muestreo previo de la clase DoS, para facilitar la clasificación

y sea escalable.

import pandas as pd

from sklearn.preprocessing import LabelEncoder

import time

import pandas as pd

Define the CSV file path

input_csv_path = "/root/bbdd/logs-zeek/cic-iot-2023-logs/labeled-csv_all.csv"

output_csv_path = '/root/bbdd/logs-zeek/cic-iot-2023-encoded-common-12gb.csv'

Columns to drop

columns_to_drop = ['tunnel_parents', 'ts', 'uid', 'id.orig_h', 'id.resp_h', 'id.orig_p', 'id.resp_p', 'startTime']

Clean the DataFrame

def clean_dataframe(df):

 # Replace commas in 'service' column

 df['service'] = df['service'].str.replace(',', '-')

 # List of numeric and string columns

 cols_num = ['duration', 'orig_bytes', 'resp_bytes', 'missed_bytes', 'orig_pkts', 'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes',

'orig_bytes_mean', 'resp_bytes_mean', 'orig_bytes_std','resp_bytes_std', 'orig_bytes_mean_nocero',

'resp_bytes_mean_nocero','orig_bytes_std_nocero', 'resp_bytes_std_nocero', 'orig_bytes_min','resp_bytes_min', 'orig_bytes_max',

'resp_bytes_max','orig_pkts_nocero', 'resp_pkts_nocero', 'orig_pkts_cero','resp_pkts_cero', 'time_mean', 'time_std', 'time_min',

'time_max','orig_time_mean', 'orig_time_std', 'orig_time_min', 'orig_time_max','resp_time_mean', 'resp_time_std',

'resp_time_min', 'resp_time_max']

 cols_str = ['proto', 'service']

 cols_dash = ['conn_state', 'local_orig', 'local_resp', 'history']

 # Clean numeric columns

 for col in cols_num:

 df[col] = df[col].fillna('0').replace(['-', '', '[]', '<NA>'], '0').astype('float64')

 # Clean string columns

 for col in cols_str:

 df[col] = df[col].fillna('unknown').replace(['-', '', '[]', '<NA>'], 'unknown').astype('object')

 for col in cols_dash:

 df[col] = df[col].fillna('-').replace(['', '[]', '<NA>'], '-').astype('object')

 # Replace label values

 df['label'] = df['label'].str.replace('Mirai', 'DoS').str.replace('Recon', 'Scan').str.replace('Scanning', 'Scan') \

 .str.replace('DDoS', 'DoS').str.replace('DictionaryBruteForce', 'BruteForce')

 return df

Normalize local values

def normalize_local(value):

 if value in [True, 'True', 'T']:

 return 'True'

 elif value in [False, 'False', 'F']:

 return 'False'

106

 else:

 return value

Load values for encoding

history_values = []

with open('history_values.txt', 'r') as f:

 for line in f:

 history_values.append(line.strip())

service_values = ['unknown', 'dns', 'http', 'ssl', 'ntp', 'gssapi-smb', 'dhcp', 'krb_tcp', 'xmpp', 'ldap_udp', 'geneve', 'radius', 'ssh', 'syslog',

'vxlan', 'mqtt', 'ayiya', 'ssl-quic', 'quic-ssl', 'ssl-http', 'irc']

conn_state_values = ["S0", "S1", "SF", "REJ", "S2", "S3", "RSTO", "RSTR",

 "RSTOS0", "RSTRH", "SH", "SHR", "OTH", "-"]

local_values = ["True", "False"]

proto_values = ["tcp", "udp", "icmp", "unknown"]

Fit encoders for known unique value columns

le_history = LabelEncoder()

le_history.fit(history_values)

le_service = LabelEncoder()

le_service.fit(service_values)

le_conn_state = LabelEncoder()

le_conn_state.fit(conn_state_values)

le_local_resp = LabelEncoder()

le_local_resp.fit(local_values)

le_local_orig = LabelEncoder()

le_local_orig.fit(local_values)

le_proto = LabelEncoder()

le_proto.fit(proto_values)

Create a dictionary of encoders

encoders = {

 'conn_state': le_conn_state,

 'local_resp': le_local_resp,

 'local_orig': le_local_orig,

 'proto': le_proto,

 'service': le_service,

 'history': le_history

}

columns_to_encode = ['proto', 'service', 'history', 'conn_state', 'local_orig', 'local_resp']

Encode columns

def encode_columns(df, columns_to_encode, encoders):

 for col in columns_to_encode:

 le = encoders[col]

 df[col] = le.transform(df[col])

 return df

Read and process the CSV file in chunks

chunk_size = 50000

107

chunks = pd.read_csv(input_csv_path, dtype=str, chunksize=chunk_size)

Write header to the output CSV

first_chunk = next(chunks)

first_chunk = first_chunk.drop(columns_to_drop, axis=1)

first_chunk = clean_dataframe(first_chunk)

first_chunk['local_orig'] = first_chunk['local_orig'].apply(normalize_local)

first_chunk['local_resp'] = first_chunk['local_resp'].apply(normalize_local)

first_chunk = encode_columns(first_chunk, columns_to_encode, encoders)

first_chunk.to_csv(output_csv_path, mode='w', index=False, header=True)

Function to sample 30% of the DoS labeled rows

def sample_majority_class(df, label_col, majority_class, frac, random_state=None):

 majority_df = df[df[label_col] == majority_class]

 minority_df = df[df[label_col] != majority_class]

 sampled_majority_df = majority_df.sample(frac=frac, random_state=random_state)

 return pd.concat([sampled_majority_df, minority_df], ignore_index=True)

Process and append remaining chunks

for chunk in chunks:

 chunk = chunk.drop(columns_to_drop, axis=1)

 chunk = clean_dataframe(chunk)

 chunk['local_orig'] = chunk['local_orig'].apply(normalize_local)

 chunk['local_resp'] = chunk['local_resp'].apply(normalize_local)

 chunk = encode_columns(chunk, columns_to_encode, encoders)

 sampled_chunk = sample_majority_class(chunk, label_col='label', majority_class='DoS', frac=0.3, random_state=42)

 sampled_chunk.to_csv(output_csv_path, mode='a', index=False, header=False)

 print(f"Chunk appended.")

print(f'DataFrame saved to {output_csv_path}')

108

Anexo XIII: Script de entrenamiento y evaluación con
selección de atributos

Create PDF with fpdf

class PDF(FPDF):

 def header(self):

 self.set_font('Arial', 'B', 12)

 self.cell(0, 10, 'Classification Report with Metrics, Training, and Testing Time', 0, 1, 'C')

 def chapter_title(self, title):

 self.set_font('Arial', 'B', 12)

 self.cell(0, 10, title, 0, 1, 'L')

 self.ln(10)

 def chapter_body(self, body):

 self.set_font('Arial', '', 10)

 self.multi_cell(0, 5, body)

 self.ln()

 def add_image(self, image_path, title=''):

 if title:

 self.chapter_title(title)

 self.image(image_path, x=10, y=None, w=180)

 self.ln(10)

 def add_classification_report(self, report):

 self.chapter_title("Classification Report:")

 self.chapter_body(report)

Define the chunk size

chunk_size = 10000 # You can adjust this based on your system's memory capacity

Initialize an empty list to store the sampled chunks

sampled_chunks = []

csv_path = '/root/bbdd/logs-zeek/cic-iot-2023-encoded-common-12gb.csv'

Iterate over the chunks in the CSV file

Function to sample the DoS labeled rows

def sample_majority_class(df, label_col, majority_class, frac, random_state=None):

 majority_df = df[df[label_col] == majority_class]

 minority_df = df[df[label_col] != majority_class]

 sampled_majority_df = majority_df.sample(frac=frac, random_state=random_state)

 return pd.concat([sampled_majority_df, minority_df], ignore_index=True)

for chunk in pd.read_csv(csv_path, chunksize=chunk_size):

 # Sample 50% of the chunk

 sampled_chunk = sample_majority_class(chunk, label_col='label', majority_class='DoS', frac=0.5, random_state=42)

 # Append the sampled chunk to the list

 sampled_chunks.append(sampled_chunk)

109

Concatenate the sampled chunks into a single DataFrame

sampled_cic_df = pd.concat(sampled_chunks)

Calculate the count of each label value

label_counts = sampled_cic_df['label'].value_counts()

Print the label counts

print(label_counts)

Define the chunk size

chunk_size = 10000 # You can adjust this based on your system's memory capacity

Initialize an empty list to store the sampled chunks

sampled_chunks = []

csv_path = '/root/bbdd/logs-zeek/iot23-encoded-joint.csv'

Iterate over the chunks in the CSV file

for chunk in pd.read_csv(csv_path, chunksize=chunk_size):

 # Sample 50% of the chunk

 sampled_chunk = chunk.sample(frac=0.5, random_state=42)

 # Append the sampled chunk to the list

 sampled_chunks.append(sampled_chunk)

Concatenate the sampled chunks into a single DataFrame

sampled_iot23_df = pd.concat(sampled_chunks)

Calculate the count of each label value

label_counts = sampled_iot23_df['label'].value_counts()

Print the label counts

print(label_counts)

csv_path = '/root/bbdd/logs-zeek/encoded_iotd20_v2.csv'

iotd20_df = pd.read_csv(csv_path)

label_counts = iotd20_df['label'].value_counts()

Print the label counts

print(label_counts)

Make sure all DataFrames have the same columns, irrespective of order

columns = list(sampled_iot23_df.columns) # assuming iotd20_df has all the columns you need

Reorder columns of each DataFrame to match the order in 'columns'

sampled_iot23_df = sampled_iot23_df[columns]

iotd20_df = iotd20_df[columns]

sampled_cic_df = sampled_cic_df[columns]

List of DataFrames to concatenate

dataframes = [iotd20_df, sampled_iot23_df, sampled_cic_df]

Concatenate the DataFrames

Lists to hold the train and test sets

X_train_list = []

X_test_list = []

y_train_list = []

110

y_test_list = []

Split each dataframe individually

for df in dataframes:

 y = df['label'].values

 X = df.drop(columns=['label', 'binary-label']).values

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.6, random_state=42)

 X_train_list.append(X_train)

 X_test_list.append(X_test)

 y_train_list.append(y_train)

 y_test_list.append(y_test)

columns = sampled_iot23_df.drop(columns=['label', 'binary-label']).columns

Concatenate the training and test sets from each dataframe

X_train = np.concatenate(X_train_list, axis=0)

X_test = np.concatenate(X_test_list, axis=0)

y_train = np.concatenate(y_train_list, axis=0)

y_test = np.concatenate(y_test_list, axis=0)

print("train and test sets ready")

del sampled_iot23_df, sampled_cic_df,X,y

del dataframes, X_train_list, X_test_list, y_train_list, y_test_list

import numpy as np

import pandas as pd

from sklearn.feature_selection import mutual_info_classif

from sklearn.feature_selection import SelectKBest

from sklearn.datasets import load_iris

Compute the information gain for each feature

info_gain = mutual_info_classif(X_train, y_train)

Create a DataFrame to display the information gain for each feature

feature_info_gain = pd.DataFrame({'Feature': columns, 'Information Gain': info_gain})

feature_info_gain = feature_info_gain.sort_values(by='Information Gain', ascending=False)

Display the information gain for each feature

print("Information Gain for each feature:")

print(feature_info_gain)

Select the top k features based on information gain

k = 15 # Number of top features to select

selector = SelectKBest(mutual_info_classif, k=k)

X_train_fs = selector.fit_transform(X_train, y_train)

Get the selected feature names

selected_features = columns[selector.get_support()]

print(f"\nTop {k} features selected based on information gain:")

print(selected_features)

Display the selected features

print("\nSelected features dataset:")

111

print(X_train[selected_features])

Transform the test set using the same selector

X_test_fs = selector.transform(X_test)

Function to train and evaluate a single model

def train_and_evaluate_model(name, model, X_train, X_test, y_train, y_test):

 pdf = PDF()

 output_folder = f"/root/resultados-ml/conjunto/{name}-60test-mix-train-multiclass-fs-presplit"

 if not os.path.exists(output_folder):

 os.makedirs(output_folder)

 print(f"Start training {name}")

 start_time = time.time()

 if name in ["SGD", "MLP", "Nearest_Centroid"]:

 scaler = StandardScaler()

 X_train = scaler.fit_transform(X_train)

 X_test = scaler.transform(X_test)

 print(f"Scaling done for {name}")

 model.fit(X_train, y_train) #quitar si descomento svc

 else:

 model.fit(X_train, y_train)

 train_time = time.time() - start_time

 print(f"End training {name}")

 start_time = time.time()

 print(f"Start prediction for {name}")

 y_pred = model.predict(X_test)

 test_time = time.time() - start_time

 pdf.add_page()

 pdf.chapter_title('Training and Testing Time')

 pdf.chapter_body(f"Training time: {train_time:.4f} seconds\nTesting time: {test_time:.4f} seconds\n")

 print(f"Creating reports for {name}")

 try:

 report = classification_report(y_test, y_pred)

 pdf.add_classification_report(report)

 print(f"Getting scores for {name}")

 precision_scores = precision_score(y_test, y_pred, average=None)

 recall_scores = recall_score(y_test, y_pred, average=None)

 pdf.chapter_body("Precision and Recall Scores by Class with 8 decimals:\n")

 unique_classes = np.unique(np.concatenate([y_test, y_pred]))

 for i, class_name in enumerate(unique_classes):

 precision = precision_scores[i]

 recall = recall_scores[i]

 pdf.chapter_body(f"Class '{class_name}':\n")

 pdf.chapter_body(f" Precision: {precision:.8f}\n")

 pdf.chapter_body(f" Recall: {recall:.8f}\n")

112

 # Define the classes of interest

 classes_of_interest = ["Scan", "benign", "DoS","BruteForce"]

 print(f"Getting confusion matrix for {name}")

 # Confusion matrix

 cm = confusion_matrix(y_test, y_pred, labels=classes_of_interest)

 disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=classes_of_interest)

 # Save the confusion matrix plot as an image file

 cm_plot_path = os.path.join(output_folder, "confusion_matrix.png")

 disp.plot()

 plt.savefig(cm_plot_path)

 # Add the confusion matrix plot to the PDF

 pdf.add_image(cm_plot_path, title="Confusion Matrix Plot")

 plt.show()

 plt.close()

 cm1 = confusion_matrix(y_test, y_pred, labels=classes_of_interest, normalize = 'true')

 disp1 = ConfusionMatrixDisplay(confusion_matrix=cm1, display_labels=classes_of_interest)

 # Save the confusion matrix plot as an image file

 cm1_plot_path = os.path.join(output_folder, "confusion_matrix_normalized.png")

 disp1.plot()

 plt.savefig(cm1_plot_path)

 # Add the confusion matrix plot to the PDF

 pdf.add_image(cm1_plot_path, title="Normalized Confusion Matrix Plot")

 plt.show()

 plt.close()

 if isinstance(model, DecisionTreeClassifier):

 print(f"Plotting tree for {name}")

 plt.figure(figsize=(25, 15)) # Adjust the size as needed

 # Plot the decision tree

 tree.plot_tree(model, feature_names=columns, filled=True, fontsize=8, proportion=True)

 # Save the decision tree plot as an image file

 tree_plot_path = os.path.join(output_folder, "decision_tree_default.png")

 plt.savefig(tree_plot_path)

 plt.close()

 # Add the decision tree plot to the PDF

 pdf.add_page()

 pdf.chapter_title('Decision Tree')

 pdf.add_image(tree_plot_path, title="Decision Tree Plot")

 print(f"Start ROC plotting for {name}")

 if name != "Nearest_Centroid":

 y_prob = model.predict_proba(X_test)

 label_binarizer = LabelBinarizer().fit(y_train)

 y_onehot_test = label_binarizer.transform(y_test)

 for class_of_interest in classes_of_interest:

 class_id = np.flatnonzero(label_binarizer.classes_ == class_of_interest)[0]

 fpr, tpr, _ = roc_curve(y_onehot_test[:, class_id], y_prob[:, class_id])

 display = RocCurveDisplay(fpr=fpr, tpr=tpr, estimator_name=f"{class_of_interest} vs the rest")

113

 display.plot(color="darkorange")

 plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')

 plt.xlabel('False Positive Rate')

 plt.ylabel('True Positive Rate')

 plt.title(f"One-vs-Rest ROC curve: {class_of_interest} vs (all other classes)")

 plt.legend(loc="lower right")

 plot_file = os.path.join(output_folder, f"roc_plot_{class_of_interest}.png")

 plt.savefig(plot_file)

 plt.show()

 plt.close()

 # Add the ROC curve plot to the PDF

 pdf.add_image(plot_file, title=f"ROC Curve: {class_of_interest} vs (all other classes)")

 else:

 print(f"ROC for Nearest Centroid for {name}")

 centroids = model.centroids_

 del X_train # OJO BORRAR

 distances = np.linalg.norm(X_test[:, np.newaxis] - centroids, axis=2)

 label_binarizer = LabelBinarizer().fit(y_train)

 y_onehot_test = label_binarizer.transform(y_test)

 fpr = dict()

 tpr = dict()

 roc_auc = dict()

 for i, class_of_interest in enumerate(classes_of_interest):

 fpr[i], tpr[i], _ = roc_curve(y_onehot_test[:, i], -distances[:, i])

 roc_auc[i] = auc(fpr[i], tpr[i])

 plt.figure()

 display = RocCurveDisplay(fpr=fpr[i], tpr=tpr[i], estimator_name=f"{class_of_interest} vs the rest")

 display.plot(color="darkorange")

 plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')

 plt.xlabel('False Positive Rate')

 plt.ylabel('True Positive Rate')

 plt.title(f"One-vs-Rest ROC curve: {class_of_interest} vs (all other classes)")

 plt.legend(loc="lower right")

 plot_file = os.path.join(output_folder, f"roc_plot_{class_of_interest}.png")

 plt.savefig(plot_file)

 plt.show()

 plt.close()

 # Add the ROC curve plot to the PDF

 pdf.add_image(plot_file, title=f"ROC Curve: {class_of_interest} vs (all other classes)")

 except Exception as e:

 print(f"Error occurred for model {name}: {e}")

 pdf.add_page()

 pdf.chapter_title('Error')

 pdf.chapter_body(f"An error occurred during the training or evaluation of the model {name}:\n{str(e)}")

 finally:

 # Save PDF

 pdf_output_path = f"/root/resultados-ml/conjunto/conjunto-{name}-60test-mix-train-multiclass-fs-presplit-

classification_report.pdf"

 pdf.output(pdf_output_path)

 print(f"PDF saved for {name}")

 return name, train_time, test_time, pdf_output_path

114

Define models

models = {

 "Decision_Tree": DecisionTreeClassifier(),

 "Random_Forest": RandomForestClassifier(n_estimators=100, random_state=0),

 "Gaussian_NB": GaussianNB(),

 "Bernoulli_NB": BernoulliNB(),

 "SGD": SGDClassifier(loss='log_loss', max_iter=1000, tol=1e-3),

 "Bagging_Tree": BaggingClassifier(estimator=DecisionTreeClassifier(), n_estimators=100, random_state=0),

 "AdaBoost_Tree": AdaBoostClassifier(estimator=DecisionTreeClassifier(), n_estimators=100, random_state=0),

 "MLP": MLPClassifier(max_iter=1000, random_state=42),

 "Nearest_Centroid": NearestCentroid()

 #"KNN": KNeighborsClassifier(),

 #"SVM": SVC(probability=True)

}

Train models and generate reports in parallel

with ThreadPoolExecutor(max_workers=1) as executor:

 futures = {executor.submit(train_and_evaluate_model, name, model, X_train, X_test, y_train, y_test): name for name, model in

models.items()}

 for future in as_completed(futures):

 name = futures[future]

 try:

 name, train_time, test_time, pdf_output_path = future.result()

 print(f"Completed {name}: Training time {train_time:.4f} seconds, Testing time {test_time:.4f} seconds, PDF saved at

{pdf_output_path}")

 except Exception as exc:

 print(f"Error occurred for model {name}: {exc}")

Anexo XIV: Tablas de Precision y Recall y Matrices de Confusión

Precision

Dataset name Label DecissionTree Gaussian NB BernouilliNB SGD RandomForest BaggingTree BoostingTree NearestCentroid MLP

IoTD20

BruteForce 0,99 0,00 0,08 1 1 0,99 0,98 0,03 1

DoS 0,99 0,72 0,95 0,96 0,99 0,99 0,99 0,94 0,99

Scan 1 0,3 1 0,96 1 1 1 0,5 1

Benign 0,98 0,93 0,2 0,92 0,98 0,98 0,98 0,59 0,96

Average 0.99 0.68 0.89 0.96 0.99 0.99 0.99 0.86 0.99

IoT-23

DoS 1 0,91 0,84 0,99 1 1 1 0,98 1

Scan 1 1 1 1 1 1 1 0,96 1

Benign 1 1 1 1 1 1 1 1 1

Average 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00

CIC-IoT-2023

BruteForce 0,83 0,00 0,00 0,00 0,96 0,91 0,85 0,00 0,66

DoS 1 1 1 1 1 1 1 1 1

Scan 0,98 0,00 0,03 0,69 0,99 0,99 0,99 0,51 0,96

Benign 0,97 0,28 0,01 0,55 0,97 0,98 0,97 0,28 0,85

Average 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

116

Precision

Dataset name Label DecissionTree Gaussian NB BernouilliNB SGD RandomForest BaggingTree BoostingTree NearestCentroid MLP

Escenario 1

Binary

Benign 1 0,25 0,8 0,98 1 1 1 0,47 0,99

Malign 1 1 0,95 1 1 1 1 0,99 1

Average 1.00 0.82 0.91 1.00 1.00 1.00 1.00 0.87 1.00

Escenario 1

Multiclass

BruteForce 0.44 0.00 0.00 0.00 0.55 0.55 0.46 0.01 0.82

DoS 1 1.00 0.99 0.99 1 1 1 1.00 1.00

Scan 1 0.00 0.85 0.99 1 1 1 0.85 1.00

Benign 1 0.05 0.82 0.98 1 1 1 0.99 0.99

Average 1.00 0.51 0.91 0.99 1.00 1.00 1.00 0.96 1.00

Escenario 1

Multiclass & FS

BruteForce 0.42 0.00 0.00 0.00 0.53 0.51 0.43 0.01 0.04

DoS 1 1.00 0.64 0.99 1 1 1 0.99 1

Scan 1 0.00 0.95 0.88 1 1 1 0.88 0.99

Benign 1 0.02 0.78 0.96 1 1 1 0.98 0.99

Average 1.00 0.50 0.76 0.96 1.00 1.00 1.00 0.96 0.99

Escenario 2

Binary

Benign 0.96 0.47 0.21 0.11 1.00 0.99 0.98 0.73 0.11

Malign 0.53 0.28 0.53 0.01 0.53 0.53 0.53 0.53 0.01

Average 0.68 0.37 0.38 0.06 0.75 0.75 0.74 0.58 0.06

Escenario 2

Multiclass

BruteForce 0,00 0,00 0,03 0,00 0,00 0,00 0,02 0,02 0,07

DoS 0,00 0,02 0,00 0,01 0,00 0,00 0,00 0,00 0,56

Scan 0,06 0,07 0,11 0,17 0,14 0,04 0,19 0,88 1

Benign 1 0,96 0,35 0,11 1 1 1 1 0,99

Average 0.50 0.49 0.22 0.14 1.00 0.49 0.57 0.93 0.99

117

Recall

Dataset name Label DecissionTree Gaussian NB BernouilliNB SGD RandomForest BaggingTree BoostingTree NearestCentroid MLP

IoTD20

BruteForce 1 1 1 0,27 1 1 1 1 0,99

DoS 1 0,48 0,86 1 1 1 1 0,83 1

Scan 1 0,00 0,95 0,99 1 1 1 0,89 1

Benign 0,93 0,05 0,36 0,57 0,94 0,93 0,93 0,29 0,89

Average 0.99 0.38 0.83 0.96 0.99 0.99 0.99 0.79 0.99

IoT-23

DoS 1 0,77 0,77 0,99 1 1 1 0,77 1

Scan 1 1 1 1 1 1 1 1 1

Benign 1 1 1 1 1 1 1 0,96 1

Average 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00

CIC-IoT-2023

BruteForce 0,86 0,99 0,14 0,00 0,73 0,86 0,85 0,44 0,36

DoS 1 0,12 0,89 1 1 1 1 0,99 1

Scan 0,98 0,00 0,47 0,52 0,98 0,99 0,99 0,81 0,96

Benign 0,98 0,01 0,74 0,33 0,98 0,99 0,98 0,53 0,90

Average 1.00 0.12 0.89 1.00 1.00 1.00 1.00 0.99 1.00

118

Recall

Dataset name Label DecissionTree Gaussian NB BernouilliNB SGD RandomForest BaggingTree BoostingTree NearestCentroid MLP

Escenario 1

Binario

Benign 1 1 0,84 0,99 1 1 1.00 0,98 0.99

Malign 1 0,08 0,93 0,99 1 1 1.00 0,65 1

Average 1.00 0.30 0.91 0.99 1.00 1.00 1.00 0.73 1.00

Escenario 1

Multiclass

BruteForce 0.38 0.99 0.79 0.00 0.36 0.37 0.38 0.67 0.18

DoS 1.00 0.12 0.76 1.00 1.00 1.00 1.00 0.97 1.00

Scan 1.00 0.00 0.99 0.99 1.00 1.00 1.00 0.99 0.99

Benign 1.00 0.00 0.83 0.99 1.00 1.00 1.00 0.84 1.00

Average 1.00 0.06 0.84 0.99 1.00 1.00 1.00 0.94 1.00

Escenario 1

Multiclass & FS

BruteForce 0.36 1.00 0.66 0.00 0.35 0.35 0.35 0.09 0.00

DoS 1.00 0.12 0.85 0.99 1.00 1.00 1.00 0.99 1.00

Scan 1.00 0.00 0.99 0.98 1.00 1.00 1.00 0.99 0.99

Benign 0.99 0.00 0.00 0.85 0.99 0.99 0.99 0.85 0.99

Average 1.00 0.06 0.68 1.00 1.00 1.00 1.00 0.96 0.99

Escenario 2

DoS sampled

Binary

Benign 0.00 1.00 0.00 0.14 0.00 0.00 0.00 0.00 0.14

Malign 1 0.00 1 0.01 1 1 1 1 0.01

Average 0.68 0.47 0.53 0.07 0.53 0.53 0.74 0.53 0.99

Escenario 2

DoS sampled

Rest for testing

BruteForce 0,00 1 0,99 0,00 0,00 0,01 0,00 0,99 0,48

DoS 0,5 0,00 0,12 0,71 0,67 0,49 0,00 0,49 0,95

Scan 0,00 0,00 0,00 0,00 0,00 0,00 0,04 1 1

Benign 0,14 0,00 0,00 0,14 0,14 0,14 0,14 0,00 0,98

Average 0.07 0.00 0.00 0.07 0.07 0.07 0.07 0.53 0.99

119

Matrices de Confusión IoTD20
DecisionTree

Gaussian NB

BernouilliNB

SGD

RandomForest

120

BaggingTree

BoostingTreeNB

NearestCentroid

MLP

121

Matrices de Confusión IoT-23
DecisionTree

Gaussian NB

BernouilliNB

SGD

RandomForest

122

BaggingTree

BoostingTreeNB

NearestCentroid

MLP

123

Matrices de Confusión CIC-IoT-2023
DecisionTree

Gaussian NB

BernouilliNB

SGD

RandomForest

124

BaggingTree

BoostingTreeNB

NearestCentroid

MLP

125

Matrices de Confusión Escenario 1, binary
DecisionTree

Gaussian NB

BernouilliNB

SGD

RandomForest

126

BaggingTree

BoostingTreeNB

NearestCentroid

MLP

127

Matrices de Confusión Escenario 1, multiclass
DecisionTree

Gaussian NB

BernouilliNB

SGD

RandomForest

128

BaggingTree

BoostingTreeNB

NearestCentroid

MLP

129

Matrices de Confusión Escenario 1, multiclass feature selection
DecisionTree

Gaussian NB

BernouilliNB

SGD

RandomForest

130

BaggingTree

BoostingTreeNB

NearestCentroid

MLP

131

Matrices de Confusión Escenario 2 Binary
DecisionTree

Gaussian NB

BernouilliNB

SGD

RandomForest

132

BaggingTree

BoostingTreeNB

NearestCentroid

MLP

133

Matrices de Confusión Escenario 2 Multiclass
DecisionTree

Gaussian NB

BernouilliNB

SGD

RandomForest

134

BaggingTree

BoostingTreeNB

NearestCentroid

MLP

135

Anexo XV: Cálculo Tiempos Selección de atributos

136

137

