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Detección de botnets en escenarios de IoT mediante 
técnicas de Inteligencia Artificial 

RESUMEN 
El objetivo del Trabajo Fin de Máster (TFM) es evaluar la efectividad de diversos algoritmos de 

clasificación en la detección de tráfico malicioso en el entorno de Internet de las Cosas (IoT) 

utilizando conjuntos de datos específicos que incluyen tanto tráfico benigno como diversos tipos 

de ataques. Además, este trabajo muestra y discute el análisis multi-base de datos y examina cómo 

la heterogeneidad de estas bases afecta los resultados conjuntos complicando su aplicabilidad final. 

En este trabajo fin de máster se ha analizado el entorno IoT actual, abarcando desde los dispositivos 

más utilizados hasta los más atacados, así como las amenazas más comunes, con un enfoque 

especial en la botnet Mirai y sus ataques típicos. Se han estudiado diversos conjuntos de datos IoT, 

seleccionando IoTD20, IoT-23 y CIC-IoT-2023, que incluyen tráfico benigno y ataques como DDoS, 

fuerza bruta y escaneo de puertos.  

Se ha propuesto un exhaustivo banco de pruebas para evaluar nueve algoritmos de clasificación 

(Decision Tree, Gaussian Naive Bayes, Bernouilli Naive Bayes, Stochastic Gradient Descent, Random 

Forest, Bagging con Decision Tree, AdaBoost con Decision Tree, NearestCentroid y Multilayer 

Perceptron) que permitan diferenciar entre tráfico benigno y malicioso. Se utilizó la herramienta 

Zeek para extraer y etiquetar la información de los flujos de tráfico. Las librerías Scikit-learn, Pandas 

y Dask se emplean para el preprocesado y análisis de datos. 

Las pruebas se han realizado en clasificación binaria y multiclase, demostrando que los algoritmos 

basados en árboles de decisión (Decision Tree, Random Forest, Boosting Tree y Bagging Tree) 

resultaron ser los más eficientes, alcanzando valores F1 superiores a 0.99 en la evaluación individual 

de los datasets y a 0.9 en la mayoría de las pruebas de evaluación con datasets combinados. Los 

resultados indican que los modelos entrenados con datos distintos al conjunto de evaluación son 

subóptimos, resaltando la necesidad de incluir datos y ataques variados para obtener resultados 

más realistas y eficientes en la detección de botnets.  

Los resultados obtenidos en este trabajo subrayan la importancia de usar datasets adecuados para 

evaluar la efectividad de los modelos de Machine Learning en la detección de botnets, asegurando 

su aplicabilidad en entornos reales y diversos. 
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1. Introducción 
En este capítulo se presenta la temática que aborda el trabajo, comenzando con una breve 

revisión del estado del arte de los sistemas de detección de intrusos en entornos IoT (Internet 

of Things) basados en la utilización de técnicas de Inteligencia Artificial (en cuyos aspectos más 

importantes se irá profundizando a lo largo de la memoria), y los principales objetivos que se 

pretenden cumplir. A continuación, se describe el contexto en que se ha llevado a cabo el trabajo 

y se muestra un cronograma del mismo. Finalmente se indica cómo se ha organizado la 

memoria.  

1.1. Estado del arte 

Hoy en día, la preocupación por la seguridad en las redes de comunicaciones y sistemas de 

información es evidente, lo que ha llevado al desarrollo de nuevas técnicas tanto preventivas 

como reactivas para abordar este problema. En este contexto, surgieron los Sistemas de 

Detección de Intrusiones (IDS), cuyo objetivo es identificar actividades maliciosas en redes y 

sistemas. Las técnicas de aprendizaje automático (Machine Learning, ML) y aprendizaje 

profundo (Deep Learning) son particularmente útiles en este ámbito, ya que pueden 

automatizar la detección de ataques y diferenciar entre diversos tipos de tráfico gracias a la 

inteligencia artificial. 

La seguridad en el ámbito de Internet de las Cosas (IoT) y en redes domésticas y de trabajo 

también se ha vuelto crucial. Los dispositivos IoT, debido a su interconexión y susceptibilidad a 

ataques, requieren medidas de seguridad especializadas. Los IDS aplicados a entornos IoT 

utilizan avanzados algoritmos de ML y Deep Learning para analizar grandes volúmenes de datos 

en tiempo real, identificar patrones anómalos y detectar actividades maliciosas antes de que 

causen daños significativos. 

Recientemente, se han creado nuevos conjuntos de datos (datasets) que incluyen tanto tráfico 

benigno como diversos tipos de ataques en entornos IoT, los cuales se utilizan como bancos de 

prueba para los sistemas de detección de intrusos. Estos datasets permiten evaluar el 

rendimiento de los algoritmos y técnicas de ML que sustentan los IDS propuestos. Varios 

estudios previos ofrecen revisiones sistemáticas sobre la detección de ataques de 

ciberseguridad en el escenario de IoT, utilizando diferentes métodos de inteligencia artificial, 

incluyendo técnicas de aprendizaje profundo (DL) y de aprendizaje automático (ML (da Costa et 

al., 2019; Zarpelão et al., 2017)). El trabajo en (Zarpelão et al., 2017)  presenta una revisión sobre 

los avances en IDS para IoT, identificando las principales tendencias, problemas abiertos y 

posibles líneas de investigación futuras. Además, el trabajo en (da Costa et al., 2019) presenta 

una revisión de técnicas de ML aplicadas en IoT para la detección de intrusiones. En los capítulos 

2 y 3, donde se detallan los materiales y métodos de este trabajo, se profundiza en el estado del 

arte específico de cada tecnología utilizada. 
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1.2. Objetivos 
El objetivo principal de este trabajo es el estudio y análisis de diversos conjuntos de datos de 

tráfico de comunicaciones en entornos IoT, centrándose en la identificación de ataques de 

botnets como Mirai y Gafgyt, mediante la aplicación de técnicas de ML. 

Además, los objetivos específicos del TFM son: 

● Realizar un estudio detallado e individualizado de los conjuntos de datos, extrayendo 

parámetros comunes para poder realizar una evaluación conjunta. 

● Realizar un estudio a partir de la unión de los tres conjuntos seleccionados, y obtener 

métricas detalladas, para posteriormente estudiar el funcionamiento de los modelos 

con datos provenientes de diferentes conjuntos de datos. 

● Estudiar el rendimiento y escalabilidad de los modelos de clasificación al ser entrenados 

mediante un conjunto de datos diferente al empleado en la evaluación, analizando su 

comportamiento frente a ataques similares extraídos de diversos conjuntos de datos, 

pero empleando parámetros comunes.  

1.3. Contexto 

Este trabajo se enmarca en la línea de investigación de ciberseguridad del departamento de 

Ingeniería Electrónica y Comunicaciones, específicamente del grupo de investigación 

Communications Networks and Information Technologies (CeNIT) del Instituto de Investigación 

en Ingeniería de Aragón (I3A). Tiene relación directa con la materia de formación obligatoria de 

"Redes y servicios" del Máster en Ingeniería de Telecomunicación. 

En este TFM se aborda el estudio y comparación de diversos conjuntos de datos de tráfico de 

comunicaciones en entornos IoT, centrándose en la identificación y detección de ataques de 

botnets. Las técnicas de Machine Learning evaluadas en este estudio corresponden a la 

categoría de aprendizaje automático supervisado. Este trabajo se ha llevado a cabo en el marco 

de una beca de investigación concedida por el I3A, que permite iniciarse en tareas de 

investigación vinculadas con los estudios y facilita una futura orientación profesional o 

investigadora. Además, se enmarca en las tareas de investigación del proyecto “Optimización de 

redes WLAN coordinadas de última generación basadas en arquitecturas programables y 

virtualizadas (NeWLAN)” PID2022-136476OB-I00.  

1.4. Cronograma 
En la Figura 1 se presenta de forma gráfica la organización temporal del trabajo. Por orden 

cronológico, se distribuyó en las siguientes etapas: 

● Estudio del estado del arte y búsqueda de bases de datos para su evaluación. 5 semanas. 

● Adaptación de las bases de datos. 3 semanas. 

● Obtención de nuevos parámetros comunes con Zeek y etiquetado de flujos de tráfico. 4 

semanas. 

● Aplicación de técnicas de ML y DL sobre las bases de datos. 4 semanas. 

● Evaluación y discusión de los resultados obtenidos. 4 semanas. 

● Redacción de la memoria. 4 semanas. 
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Figura 1: Diagrama de Gantt.  

1.5. Estructura del documento 
El documento se organiza de la siguiente forma: 

● En el capítulo 1 se incluye la Introducción, donde se presenta el estado del arte, y se han 

planteado los objetivos principales del trabajo, contexto y cronograma. 

● En el capítulo 2 se realiza un Análisis exhaustivo del entorno IoT, donde se introducen los 

dispositivos IoT más usados, los dispositivos atacados con mayor frecuencia, los ataques 

más comunes (entrando en detalle en la botnet Mirai), así como los principales conjuntos 

de datos. 

● En el capítulo 3 se introducen las Técnicas de Machine Learning, desarrollando en mayor 

profundidad aquellas empleadas en este estudio, junto con los indicadores de rendimiento 

utilizados para evaluar los resultados. 

● En el capítulo 4 se presenta el Sistema de detección de botnets, que abarca todo el proceso 

de transformación de las capturas de tráfico de los datasets originales mediante la 

herramienta Zeek y diferentes librerías de Python para poder transformar los conjuntos de 

datos, eliminar flujos de datos erróneos, asignarles etiquetas y unificar los atributos. En este 

capítulo se desarrolla la metodología empleada y se analiza la estructura de los datos 

transformados.  

● En el capítulo 5 se presenta la Aplicación de técnicas de ML sobre los conjuntos de datos. 

Se describe la metodología empleada para la clasificación, seguida de la presentación y 

discusión de los resultados obtenidos para los dos escenarios de pruebas planteados: por 

un lado, análisis de los tres conjuntos de datos de forma individual con clasificación 

multiclase, y por otro lado, análisis empleando los tres conjuntos de datos de forma 

combinada. Para este segundo escenario de pruebas, en una primera evaluación se unieron 

los tres datasets y se generaron los conjuntos de train y test, realizando clasificación binaria 

y multiclase; y en la segunda prueba se utilizó como conjunto de test un dataset diferente 

al de evaluación, también de forma binaria y multiclase.  

● Finalmente, en el capítulo 6 se abordan las Conclusiones más relevantes de este TFM y 

posibles líneas futuras. 
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2. Análisis del entorno IoT 
2.1. Dispositivos IoT más atacados  

En el ámbito de Internet de las Cosas, los dispositivos conectados a la red pueden estar 

expuestos a ataques debido a diversas razones: firmware desactualizado, sistemas de 

autenticación débiles, protocolos de comunicación inseguros o configuraciones de red 

inseguras. Es importante destacar que muchos usuarios de estos dispositivos no son conscientes 

de estas vulnerabilidades. Según el informe (Cybersecurity Report 2023: Consumer Devices 

Under Threat, 2022), el 67% de los hogares sufren una amenaza online al mes.  Además, algunos 

fabricantes no invierten suficiente esfuerzo en securizar adecuadamente los productos. Los 

atacantes, conscientes de estas deficiencias, aprovechan estas brechas de seguridad para 

acceder o comprometer los dispositivos con fines maliciosos. Dentro de las marcas de 

dispositivos más atacados, encontramos Hikivision en primer puesto, seguida de D-Link y de 

Apple. Sin embargo, es necesario mencionar que el número de dispositivos influye 

significativamente en esta estadística.  

El ecosistema de Internet de las Cosas consta de miles de millones de dispositivos conectados a 

Internet, y estos se presentan en formas muy variadas, desde electrodomésticos, impresoras, 

hasta cámaras IP y sensores. Como se puede apreciar en la Figura 2, según el mismo informe 

(Cybersecurity Report 2023: Consumer Devices Under Threat, 2022), siete tipos de dispositivos 

concentran el 90% de las amenazas: ordenadores y teléfonos móviles componen 

aproximadamente el 46%, mientras que las cámaras IP, a pesar de representar solo el 1.2% de 

los dispositivos, sufren un 24% de los ataques.  

 

Figura 2: Índice de amenaza por tipo de dispositivo. 
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Con esto se concluye que los dispositivos que se encuentran bajo mayor riesgo de amenaza son: 

en primer lugar los NAS (Network-Attached Storage) o dispositivos de almacenamiento 

conectados a la red, ya que necesitan tener determinados puertos abiertos para su 

funcionamiento, seguidos de los DVR (Digital Video Recorders) o dispositivos de grabación de 

vídeo digital, cuya función es grabar el vídeo proveniente de elementos como cámaras IP, y 

poseen una configuración de fábrica muy poco segura, a continuación encontramos las cámaras 

IP, conocidas por la poca seguridad que presentan de fábrica, pueden convertirse fácilmente en 

parte de una botnet. Finalmente, también cabe mencionar los monitores de bebé y los 

dispositivos de audio y vídeo. 

La información del informe "(The Riskiest Connected Devices in 2023, 2023)" complementa los 

datos sobre las vulnerabilidades en dispositivos IoT. Según el informe, los dispositivos IoT que 

mayor riesgo tienen de ser atacados incluyen cámaras IP, impresoras y VoIP, que suelen estar 

expuestos en Internet y han sido históricamente blanco de APTs (Advanced persistent threat). 

Además, se identifican dos nuevas entradas problemáticas: los dispositivos NAS y OOBM (out-

of-band management). Los dispositivos NAS han ganado popularidad entre los actores de 

ransomware debido a los valiosos datos que almacenan y sus numerosas vulnerabilidades. Por 

otro lado, los dispositivos de gestión out-of-band (OOBM) permiten la administración remota de 

equipos a través de interfaces alternativas, pero enfrentan serias vulnerabilidades críticas, 

algunas de las cuales han sido explotadas por malware sofisticado, incluso hasta finales de 2022. 

Esta situación subraya la necesidad urgente de mejorar las medidas de seguridad y la 

concienciación entre fabricantes y usuarios de dispositivos IoT, especialmente en dispositivos 

específicos como NAS y OOBM, que pueden comprometer redes críticas si no se protegen 

adecuadamente. 

En cuanto a los sistemas operativos utilizados por los dispositivos, el mismo informe indica que 

predominan los sistemas operativos "tradicionales" como Windows, Linux, Mac y UNIX. Esto 

incluye varios dispositivos especializados de IoT/OT/IoMT que ejecutan Linux o Windows.  

Finalmente, el infome concluye que más de 4000 vulnerabilidades afectan a los dispositivos en 

el conjunto de datos analizado. De estas vulnerabilidades, el 78% afecta a dispositivos IT, el 14% 

a dispositivos IoT, el 6% a dispositivos OT y el 2% a dispositivos IoMT. Aunque la mayoría de las 

vulnerabilidades afectan a dispositivos IT, casi el 80% de estas tienen solo alta severidad. Por 

otro lado, los dispositivos IoMT tienen menos vulnerabilidades, pero el 80% de ellas son críticas, 

lo que típicamente permite la toma de control completa de un dispositivo. De manera similar, 

más de la mitad de las vulnerabilidades que afectan a dispositivos OT e IoT son críticas. 

2.2. Amenazas más frecuentes en entornos IoT 

Considerando la tendencia hacia la automatización inteligente en todos los ámbitos, los hogares 

de todo el mundo en 2022 ya poseían dispositivos inteligentes y se espera que esta cifra siga 

aumentando. Junto con los altavoces inteligentes, otros dispositivos de alta demanda incluyen 

sistemas de seguridad, grandes y pequeños electrodomésticos, detectores de humo y hubs y 

gateways, como se puede observar en la Figura 3.  
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Figura 3: Número de dispositivos en la actualidad y previsión para 2027 (Armstrong, 2022). 

El aumento masivo de dispositivos IoT ha ampliado significativamente la superficie de ataque, 

convirtiéndolos tanto en puntos de acceso inicial como en posibles atacantes. Las amenazas más 

comunes incluyen: 

● Explotación de Firmware: Vulnerabilidades en el software de bajo nivel que controla 

el hardware. 

● Explotación de vulnerabilidades en endpoints conectados a dispositivos IoT: Debido a 

sistemas operativos desactualizados o configuraciones inseguras. 

● Ataques de Ransomware: Especialmente dirigidos a dispositivos IoT como cámaras IP 

y dispositivos de almacenamiento NAS, debido a los datos valiosos que pueden 

contener. 

● Hardware no protegido: Dispositivos IoT con hardware vulnerable que puede ser 

comprometido fácilmente. 

● Acceso no autorizado a dispositivos IoT: Debido a la falta de autenticación adecuada y 

configuraciones de red inseguras. 

Además, el 98% del tráfico IoT no está encriptado, exponiendo información personal y 

confidencial al riesgo de interceptación (Law, 2023). Los puertos abiertos en dispositivos IoT 

representan uno de los factores de riesgo más críticos debido a su capacidad para exponer 

vulnerabilidades conocidas y desconocidas, incluyendo exploits zero-day. Entre los protocolos 

más comúnmente explotados en 2022 se encuentran el Protocolo SMB (Server Message Block), 

utilizado por sistemas Windows para compartir archivos y acceder a servicios remotos; el 

Protocolo RDP (Remote Desktop Protocol), que facilita la gestión remota mediante una interfaz 

gráfica; SSH (Secure Shell), empleado para la gestión remota mediante una interfaz de línea de 

comandos, especialmente en servidores Linux/UNIX y dispositivos IoT; y Telnet, utilizado 
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principalmente para la gestión remota de dispositivos especializados heredados (The Riskiest 

Connected Devices in 2023, 2023). 

En cuanto a la exposición a Internet, los dispositivos de infraestructura de red IT y los dispositivos 

de seguridad son los más vulnerables, ya que actúan como el perímetro entre las redes internas 

y externas. Después de estos, las cámaras IP son los dispositivos más expuestos, representando 

el 23% del total de exposición, seguidas por dispositivos NAS con un 7% y VoIP con un 3%, según 

la Figura 4. 

 

Figura 4: Dispositivos más expuestos (The Riskiest Connected Devices in 2023, 2023). 

2.3. Botnets en entornos IoT 

Las botnets representan una amenaza significativa en entornos IoT, consistiendo en redes de 

dispositivos interconectados, que han sido infectados con malware y son controlados de manera 

remota por un actor o grupo malicioso conocido como "bot herder". Según el informe (Altares 

et al., 2023), entre las familias de malware más comunes se destacan variantes como Mirai, 

Gafgyt, y sus híbridos como Kyton o Keksec, además de otras botnets como RapperBot y Zerobot. 

Estas botnets son conocidas por lanzar una variedad de ataques, incluyendo ataques de 

denegación de servicio distribuido (DDoS), robo de datos, campañas de spam y amenazas 

persistentes avanzadas (APTs). 

El aumento de dispositivos IoT, a menudo con medidas de seguridad deficientes, los convierte 

en objetivos principales para las infecciones de botnets. Estos dispositivos son comprometidos 

fácilmente explotando procesos de autenticación y autorización débiles, permitiendo al 

botherder controlar una red extensa de dispositivos infectados con propósitos maliciosos. 

Además, el informe (IoT Botnet activity in Consumer Networks, 2023) revela que las botnets 

suelen aprovechar múltiples exploits, con un aumento significativo en el uso de vulnerabilidades 

recientemente descubiertas, indicando un incremento en la sofisticación y frecuencia de los 

ataques. 
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Los tipos de botnets varían en función de su arquitectura de comando y control (C&C). Las 

arquitecturas centralizadas, como las botnets IRC y HTTP, dependen de servidores específicos 

para la comunicación de C&C. Las botnets IRC utilizan la red IRC para enviar comandos a los bots, 

aprovechando su simplicidad, disponibilidad amplia y anonimato. Estas botnets contactan con 

el C&C a través de IRC para registrar nuevos bots y comenzar a recibir órdenes. El método más 

común para este procedimiento es tomar el control de uno o varios servidores IRC para enviar 

órdenes a los nodos de la red. Por otro lado, las botnets HTTP utilizan servidores web para 

distribuir comandos a los bots, lo que las hace más difíciles de detectar y bloquear que las 

botnets IRC, ya que su tráfico puede mezclarse con el tráfico web regular y pasar por políticas 

de firewall existentes (Imam et al., 2014).  

Las botnets POP3 utilizan protocolos de correo electrónico para la comunicación C&C, donde los 

bots recuperan comandos de servidores de correo POP3 mediante la descarga de mensajes de 

correo electrónico que contienen instrucciones adjuntas. Esta forma de comunicación es menos 

detectable que las botnets IRC, proporcionando un canal encubierto efectivo para los comandos 

maliciosos. 

Las botnets P2P representan una evolución en la arquitectura de botnets, eliminando la 

necesidad de un servidor centralizado para C&C. En lugar de eso, los bots en una botnet P2P se 

comunican directamente entre sí, utilizando sistemas de publicación/suscripción para distribuir 

comandos. Esta estructura descentralizada hace que las botnets P2P sean más resistentes a los 

intentos de desmantelamiento y más difíciles de monitorear para los defensores. 

Para evitar la detección, los diseñadores de botnets suelen utilizar protocolos ampliamente 

utilizados para su C&C, como IRC, HTTP, POP3 o P2P, y en ocasiones incluso redes sociales en 

línea. Estos protocolos ofrecen diferentes niveles de anonimato, resistencia y capacidad de 

mezclarse con el tráfico normal de Internet, dificultando los esfuerzos para mitigar las amenazas 

de botnets. 

Además de las diversas arquitecturas de botnets mencionadas, los adversarios emplean 

múltiples técnicas de ofuscación y cifrado para ocultar y proteger las comunicaciones de 

comando y control (C&C). Estas técnicas incluyen el cifrado de datos utilizando técnicas 

convencionales como ASCII, Unicode o Base64, así como compresión de datos mediante 

esquemas como gzip. Para dificultar aún más la detección, los adversarios utilizan ofuscación de 

datos, que incluye la inserción de datos basura en el tráfico del protocolo, técnicas para ocultar 

información dentro de archivos de imagen u otros medios digitales, y la impersonación de 

protocolos válidos para disfrazar las comunicaciones. Además, los adversarios pueden emplear 

técnicas de resolución dinámica, como el uso de DNS de flujo rápido, algoritmos de generación 

de dominios (DGAs), y cálculos DNS, para cambiar dinámicamente los dominios, direcciones IP y 

números de puerto utilizados por la infraestructura de comando y control. Estas estrategias 

permiten a las botnets eludir las detecciones convencionales y adaptarse rápidamente a las 

contramedidas implementadas (What Is Command and Control (C&C or C2) in Cybersecurity? - 

Zenarmor.Com, 2023).  

 La generación de una botnet consta de tres pasos: 

● Explotación: Se busca una debilidad para explotar. Esta debilidad podría encontrarse en 

un sitio web, en el acceso sin protección a una aplicación o en un software mal 

configurado.  
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● Creación de Bots: Una vez que el dispositivo ha sido infectado, se convierte en un 

zombie, listo para seguir las órdenes del bot herder. El bot herder repite este proceso 

una y otra vez. 

● Ataque: Una vez que han infectado cientos, miles o incluso decenas de miles de 

dispositivos, se enlazan y lanzan ataques. 

2.3.1. Principales amenazas: Botnet Mirai  

En la sección anterior, se ha discutido cómo las botnets pueden explotar dispositivos IoT 

vulnerables. Un ejemplo destacado de esto es la botnet Mirai. A diferencia de otras 

ciberamenazas, el malware Mirai afecta principalmente a dispositivos inteligentes conectados a 

la red, como routers, termostatos, monitores para bebés, frigoríficos, etc. Al apuntar al sistema 

operativo Linux que muchos dispositivos IoT utilizan, el malware Mirai está diseñado para 

explotar vulnerabilidades en los gadgets inteligentes y enlazarlos en una red de dispositivos 

infectados. Una vez que forman parte de la botnet, el hardware es empleado para llevar a cabo 

ataques adicionales como parte de un enjambre de máquinas zombies. Tradicionalmente, las 

botnets se han utilizado para realizar campañas de phishing y ataques masivos de spam, pero la 

naturaleza de los dispositivos IoT hace que las botnets Mirai sean ideales para saturar sitios web 

o servidores mediante ataques DDoS (Distributed Denial of Service). 

Primero, el malware Mirai escanea direcciones IP para identificar dispositivos inteligentes que 

ejecutan determinadas versiones de Linux en procesadores ARC. Luego, Mirai explota 

vulnerabilidades de seguridad en el dispositivo IoT para obtener acceso a la red mediante 

combinaciones de nombre de usuario y contraseña predeterminadas. Si estas configuraciones 

no se han cambiado o actualizado, Mirai puede iniciar sesión en el dispositivo e infectarlo con 

malware (The Mirai Botnet – Threats and Mitigations). La mayoría de los dispositivos que ataca 

la botnet Mirai son routers domésticos y cámaras, pero casi cualquier dispositivo inteligente es 

susceptible a las botnets IoT. La misma conexión de red que da funcionalidad a las aspiradoras 

robotizadas, intercomunicadores IP, electrodomésticos de cocina en un hogar inteligente, 

también es una puerta trasera potencial para el malware. En su apogeo en septiembre de 2016, 

Mirai paralizó temporalmente varios servicios de alto perfil, como OVH, Dyn y Krebs on Security, 

a través de ataques masivos DDoS. OVH informó que estos ataques superaron 1 Tbps, el más 

grande registrado públicamente. Lo notable de estos ataques récord es que se llevaron a cabo a 

través de pequeños y aparentemente inofensivos dispositivos IoT como routers domésticos, 

monitores de calidad del aire y cámaras de vigilancia personales. En su punto máximo, Mirai 

infectó más de 600000 dispositivos IoT vulnerables (Inside the Infamous Mirai IoT Botnet: A 

Retrospective Analysis, 2017). 
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Figura 5: Tipos de dispositivos infectados por Mirai (Inside the Infamous Mirai IoT Botnet: A Retrospective 

Analysis, 2017). 

Mirai comienza como un gusano auto-replicante, es decir, es un programa malicioso que se 

replica encontrando, atacando e infectando dispositivos IoT vulnerables. También se considera 

una botnet porque los dispositivos infectados son controlados a través de un conjunto central 

de servidores de comando y control (C&C). Estos servidores indican a los dispositivos infectados 

qué sitios atacar a continuación. En general, Mirai está compuesto por dos componentes clave: 

un módulo de replicación y un módulo de ataque. 

El módulo de replicación (véase Figura 6) es responsable de aumentar el tamaño de la botnet 

esclavizando tantos dispositivos IoT vulnerables como sea posible. Lo hace escaneando 

aleatoriamente todo Internet en busca de objetivos viables y atacándolos. Una vez que se 

compromete un dispositivo vulnerable, el módulo informa a los servidores C&C para que pueda 

ser infectado con la última carga útil de Mirai. Para comprometer dispositivos, la versión inicial 

de Mirai se basó exclusivamente en un conjunto fijo de 64 combinaciones de inicio de 

sesión/contraseña predeterminadas ampliamente conocidas y comúnmente utilizadas por los 

dispositivos IoT.  

El módulo de ataque es responsable de llevar a cabo ataques DDoS contra los objetivos 

especificados por los servidores C&C. Este módulo implementa la mayoría de las técnicas de 

ataque DDoS, como la inundación HTTP, la inundación UDP y todas las opciones de inundación 

TCP. Esta amplia gama de métodos permitió a Mirai realizar ataques volumétricos, ataques a 

nivel de aplicación y ataques de agotamiento de estado TCP (Inside the Infamous Mirai IoT 

Botnet: A Retrospective Analysis, 2017). 
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Figura 6: Módulo de replicación de Mirai (Inside the Infamous Mirai IoT Botnet: A Retrospective Analysis, 

2017). 

El código fuente de Mirai sigue activo y ha dado lugar a variantes como Okiru, Satori, Masuta y 

PureMasuta. Por ejemplo, PureMasuta es capaz de explotar la vulnerabilidad HNAP en 

dispositivos D-Link, mientras que la cepa OMG transforma los dispositivos IoT en proxies que 

permiten a los ciberdelincuentes permanecer en el anonimato. Además, se ha descubierto 

recientemente una poderosa botnet conocida como IoTrooper y Reaper, que es capaz de 

comprometer dispositivos IoT a un ritmo mucho más rápido que Mirai. Reaper puede dirigirse a 

un mayor número de fabricantes de dispositivos y tiene un control mucho mayor sobre sus bots 

(¿Qué Es La Botnet Mirai? | Cloudflare). 

Según el informe (Lella et al., 2023), los ataques DDoS se están construyendo cada vez más sobre 

dispositivos IoT. Los dispositivos y sensores son objetivos adecuados para los ataques DDoS 

debido a sus recursos limitados que a menudo resultan en una seguridad deficiente. Estos 

dispositivos son fáciles de corromper, ya que a menudo vienen con configuraciones incorrectas 

(por ejemplo, contraseñas débiles). La creciente complejidad de estos sistemas móviles hace 

que la falta de habilidades de seguridad de los usuarios sea cada vez más relevante. Esta 

tendencia también ha sido confirmada por Microsoft, que observa que los ataques DDoS 

consistentemente utilizan dispositivos IoT. Varios ataques han adaptado malware existente (por 

ejemplo, Mirai) y botnets para involucrar IoT. 

Muchos de los vectores de ataque en Mirai están basados en tipos tradicionales de ataques 

DDoS, pero han sido personalizados y/o mejorados para su uso específico en esta botnet. A 

continuación, se detallan en la Tabla I los diferentes tipos de ataques incluidos en el código 

original de Mirai, así como algunos que quedaron incompletos. La botnet Mirai originalmente 

estaba diseñada para permitir la multitenencia y el acceso transaccional. Una vez que el servidor 

de comando y control (C2) y la botnet eran establecidos, se podían añadir usuarios adicionales 

a la plataforma. Esto significaba que el acceso público a la botnet era tan sencillo como realizar 

una transacción comercial (Winward, 2018). 
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Tabla I: Ataques de Mirai.  

Protocolo  Ataque Perfil Ancho Banda Descripción 

TCP 
SYN Flood Moderado BPS, Alto PPS 

Clásico SYN Flood que envía una cantidad 
masiva de solicitudes de sincronización. 

ACK Flood Alto BPS, Medio PPS 
Inunda con paquetes ACK y causa que 
genere respuestas RST hasta ser abrumado. 

STOMP Flood Alto BPS, Bajo PPS 
Supera ciertas técnicas de mitigación de 
DDoS. Establece una conexión TCP legítima y 
luego inunda con paquetes ACK. 

HTTP Flood Bajo BPS, Bajo PPS 
Es muy flexible y personalizable. Ejecuta 
ataques HTTP GET repetidos para agotar los 
recursos del objetivo. 

UDP 
UDP Flood Alto BPS, Moderado PPS 

Único debido a su capacidad para aleatorizar 
puertos de origen y destino, haciendo difícil 
su identificación. 

VSE Flood Medio BPS, Alto PPS 
Ataque a servidores que ejecutan juegos de 
Valve Corporation. 

DNS Flood Medio BPS, Alto PPS 

Inundación de consultas DNS de 
subdominios aleatorios dentro del dominio 
especificado. Envía esta solicitud a su 
servidor DNS recursivo local. 

UDPPLAIN Flood Alto BPS, Medio PPS 
Tiene menos opciones que el ataque UDP 
normal, permitiendo mayor PPS. 

GRE 
GREIP Flood Alto BPS, Medio PPS 

Interesante por su velocidad y flexibilidad. 
Encapsula paquetes dentro de GRE. 
Direcciones IP y puertos aleatorios. 

GREETH Flood Alto BPS, Medio PPS 
Paquetes GRE encapsulados con tramas 
Ethernet transparentes, dificultando 
distinguirlo. Incluye una trama L2. 

 

2.3.2. Otros ataques: DDoS, fuerza bruta, escaneo de puertos y de 
sistema operativo. 

Otros ataques que aparecen con frecuencia en entornos IoT incluyen DDoS-PSHACK Flood, 

DDoS-RSTFIN Flood, Dictionary Brute Force, OS Scan y Port Scan, y representan una variedad de 

métodos que los atacantes pueden emplear para comprometer la seguridad y funcionalidad de 

los dispositivos IoT. Todos estos tipos de ataques se incluyen en las bases de datos que se 

emplearán en el trabajo. En el Anexo I se detalla cada uno de ellos.  

Ataque de Fuerza Bruta de Diccionario: Utiliza un diccionario predefinido de palabras comunes 

y frases para descifrar contraseñas. Automatiza el proceso de introducir y verificar cada palabra 

del diccionario contra el sistema de autenticación. Es efectivo contra contraseñas débiles o 

previsibles. 

Escaneo de Sistema Operativo (OS Scan): Determina el sistema operativo en un dispositivo de 

red enviando paquetes específicos y analizando las respuestas para identificar patrones 

característicos de diferentes sistemas operativos. Herramientas como Nmap son comúnmente 

usadas. 

Escaneo de Puertos (Port Scan): Identifica qué puertos están abiertos en un dispositivo de red 

enviando solicitudes a diferentes puertos y analizando las respuestas. Los puertos abiertos 

revelan servicios activos y posibles puntos de entrada para ataques. 
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DDoS PSHACK Flood: Ataca un servidor enviando una gran cantidad de paquetes TCP con los 

flags PSH y ACK activados, saturando los recursos del servidor y provocando una denegación de 

servicio. Puede recibir o no un paquete RST en respuesta. (ACK-PSH Flood | Knowledge Base | 

MazeBolt) 

DDoS RSTFIN Flood: Utiliza paquetes TCP con los flags RST y FIN activados para saturar un 

servidor. El servidor intenta cerrar las conexiones repetidamente, gastando recursos en el 

proceso. Este ataque puede provocar la degradación del rendimiento del servidor y la 

denegación de servicio. (RST-FIN Flood | Knowledge Base | MazeBolt) 

2.4. Conjuntos de datos en entornos IoT 

En esta sección se presentan los conjuntos de datos más relevantes en el escenario de ataques 

en IoT (véase la Tabla II), describiendo sus principales características y los tipos de ataques que 

incluyen. Es crucial contar con conjuntos de datos representativos para poder evaluar de forma 

correcta un escenario IoT. Cada uno de estos conjuntos de datos ha sido analizado en función 

de los ataques presentes, la disponibilidad de las capturas de tráfico originales y de las reglas de 

etiquetado utilizadas para garantizar su utilidad y validez en la evaluación de sistemas de 

detección de botnets. Tras este análisis, se decidió que los conjuntos de datos que mejor 

cumplían con las características que permitirían llevar a cabo la propuesta de evaluación de este 

trabajo eran los siguientes: IoTD20, IoT-23 y CIC-IoT-2023. A continuación se describe en mayor 

detalle cada uno de ellos. 

Tabla II: Listado de Conjuntos de Datos en entornos IoT estudiados. 

Dataset Características Ataques 

BOT-IoT 
(Koroniotis et 

al., 2018) 

Servicios como DNS, FTP, HTTP y SSH  
32 características 
72,000,000 de registros 
Simulados tráfico normal y ataques DoS y DDoS. 

DoS y DDoS:  SYN, TCP, UDP, HTTP. 
Escaneo de Puertos y Sistemas Operativos 
Robo de Información 
Keylogging 

HIKARI  
(Ferriyan et 

al., 2021) 

517,582 flujos de tráfico benigno 
37,696 flujos de tráfico malicioso 
Etiquetado con categorías Benigno o Ataque 
Ataques simulados  

Brute Force tradicional 
Brute Force con diferentes vectores de ataque 
(XMLRPC) 
Probing 
Botnet XMRIGCC CryptoMiner 

IoT-BDA  
(Trajanovski 

& Zhang, 
2021) 

Honeypots simulando servicios vulnerables con 
analizadores estáticos y dinámicos. 
4077 muestras únicas de botnets 
39 columnas en total. 
Nombre del archivo, Botnet, hash MD5, arquitectura de 
CPU, técnicas anti-análisis, resultados de análisis de 
VirusTotal. 

Comunicaciones C2 
Ataques DDoS 
Escaneo de puertos 

AWID-3 
(Chatzoglou 
et al., 2021)  

Cada captura de menos de 2.5 millones de frames y 
duración total de 10 minutos 
Entorno de laboratorio físico simulando infraestructura 
empresarial 
16 dispositivos. 
Variaciones de tráfico normal y de ataque. 
254 características extraídas.  

Explotación de vulnerabilidades como Krack y 
Kr00k y creación de puntos de acceso falsos. 
Fuerza bruta y creación de botnets mediante 
infección de STAs  
Inyección SQL para manipular bases de datos web 
y la amplificación SSDP (DDoS) 
Evil_Twin que combina envenenamiento ARP y 
DNS para Website Spoofing 
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MedBIoT  
(Guerra-

Manzanares 
et al., 2020) 

80 dispositivos virtuales y 3 físicos. 
Red de Internet para configuración de dispositivos. Red 
de monitoreo para almacenamiento y análisis. Red IoT 
LAN con dispositivos IoT. 
100 características estadísticas de tráfico en diferentes 
ventanas de tiempo (100ms, 500ms, 1.5s, 10s, 1min). 
4,143,276 paquetes de BashLite, 842,674 paquetes de 
Mirai, 319,139 paquetes de Torii, y 12,540,478 paquetes 
de tráfico benigno. 

Mirai: infectó 25 dispositivos 
BashLite (Yakuza version): infectó 40 dispositivos 
Torii: infectó 12 dispositivos. 

Edge-IIoT  
(Al Nuaimi et 

al., 2023) 

Generación de tráfico benigno y 14 tipos de ataques 
simulados 
61 características seleccionadas de las 1176 
características iniciales encontradas 

DoS/DDoS, recolección de información, ataques 
de hombre en el medio, inyección de código y 
ataques de malware. 

MBB-IoT  
(Qing et al., 

2023) 

Dispositivos IoT reales para simular entornos de ataque, 
generando tráfico normal. Controlados por LAN de 
Raspberry Pi. 
Simulan dos escenarios: tráfico normal y de alto tráfico 
87 características para analizar ataques DDoS. 
Etiquetado como “anómalo" o "benigno" 

Malware Mirai y BASHLITE descargados y 
ejecutados en dispositivos IoT mediante 
servidores en la nube. 
Ataques DDoS hacia servidores WEB utilizando los 
dispositivos infectados, con diferentes variantes 
de ataques  

N-BaIoT  
(Meidan et 
al., 2018) 

Dispositivos IoT infectados utilizando binarios   
C2 dentro del entorno de laboratorio 
115 características estadísticas para describir el 
comportamiento del tráfico, ventanas temporales de 
100ms, 500ms, 1.5s, 10s y 1 minuto. 

BASHLITE: exploración, UDPFlood y TCPFlood y 
envío de datos no deseados 
Mirai: exploración, ACKFlood, SYNFlood y 
UDPFlood, optimizados para aumentar la tasa de 
paquetes por segundo (PPS). 

 

2.4.1. Descripción de IoTD20 

El dataset IoTID20 (Ullah & Mahmoud, 2020) se centra en un entorno doméstico inteligente IoT, 

utilizando dispositivos como el SKT NGU y la cámara Wi-Fi EZVIZ como dispositivos víctimas. 

Además, incluye dispositivos adicionales como portátiles, tablets y smartphones que actúan 

como dispositivos atacantes. Se simularon diversos tipos de ataques dentro de este entorno, 

capturando el tráfico en archivos pcap. Los dispositivos están conectados a un router Wi-Fi 

doméstico, lo que proporciona una topología de red típica para un hogar inteligente. 

El dataset incluye ataques simulados y reales. Entre los ataques simulados se encuentran 

UDP/ACK/HTTP Flood, típicos de la botnet Mirai. Además, se capturaron ataques reales 

utilizando herramientas como Nmap para escaneos de hosts y puertos, y ataques de spoofing 

ARP. Para la botnet Mirai, los paquetes fueron generados en un portátil y fueron manipulados 

para simular haber sido generados desde el dispositivo IoT. La implantación de malware incluye 

la simulación de ataques de la botnet Mirai, donde los dispositivos comprometidos generan 

tráfico malicioso como parte del dataset. La captura de tráfico se realizó en modo monitor 

utilizando adaptadores de red inalámbrica, con eliminación de cabeceras de red. 

El dataset está compuesto por 42 archivos pcap que contienen paquetes de red capturados en 

diferentes momentos. El tamaño total del dataset es de aproximadamente 1.45 GB. En la Figura 

7 se muestra la distribución de los ataques. En la Tabla III se detalla el número de instancias para 

cada clase; estos datos corresponden al número de paquetes capturados; y en el Anexo II se 

detallan en forma de instancias del dataset en formato csv.  
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Figura 7: Distribución de ataques de IoTD20 en clases y subclases  (Ullah & Mahmoud, 2020). 

 

Tabla III: Número de paquetes por categoría y subcategoría en IoTD20. (Ullah & Mahmoud, 2020). 

Categoría Subcategoría Paquetes 

Normal Normal 1,756,276 

Scanning 
 

Host Discovery 2,454 

Port Scanning 20,939 

OS/Version Detection 1,817 

Man in the Middle (MITM) ARP Spoofing 101,885 

Denial of Service (DoS) SYN Flooding 64,646 

Mirai Botnet 

Host Discovery 673 

Telnet Brute Force 1,924 

UDP Flooding 949,284 

ACK Flooding 75,632 

HTTP Flooding 10,464 

 

El dataset IoTID20 se caracteriza por sus 83 atributos de red y tres atributos de etiqueta, 

diseñados para la detección de intrusiones en entornos de IoT. Estos atributos se extraen de 

archivos pcap utilizando la aplicación CICflowmeter y se presentan en formato CSV. 

2.4.2. Descripción de IoT-23 

El dataset IoT-23 (Garcia et al., 2020) es una compilación de tráfico de red capturado de 

dispositivos IoT, que se divide en escenarios benignos y maliciosos. Desarrollado por el 

Laboratorio Stratosphere de la Universidad CTU en Praga, proporciona datos etiquetados, 

capturas de tráfico originales y las reglas empleadas para el etiquetado. 

En los 20 escenarios maliciosos de IoT-23, se ejecutaron muestras de malware en dispositivos 

Raspberry Pi dentro de un entorno controlado. Cada captura de tráfico, en formato .pcap, 

registra las interacciones de red generadas por el malware, generalmente limitados a 24 horas 

debido al volumen creciente de tráfico. Este enfoque asegura la captura de comportamientos 

significativos y realistas de las infecciones por malware en dispositivos IoT. Cada uno contiene 

tráfico de una Botnet, como se muestra en el Anexo II, donde también se indica el número de 

flujos y la duración de cada escenario. Para este trabajo, se han utilizado todos los escenarios 

que contienen Mirai y los escenarios con tráfico benigno. En contraste, se incluyen tres capturas 
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de tráfico de dispositivos IoT no infectados: una lámpara LED inteligente Philips HUE, un 

asistente personal inteligente Amazon Echo y una cerradura inteligente Somfy. 

El análisis de las capturas de tráfico se realiza utilizando Zeek, una herramienta para el análisis 

de redes que genera archivos conn.log detallando flujos de conexión. Cada archivo conn.log es 

posteriormente etiquetado utilizando un proceso manual y automático para caracterizar el 

comportamiento del tráfico, este último recibe el nombre de Flaber, un script personalizado 

desarrollado en Zeek. Estas etiquetas proporcionan una descripción detallada de las 

interacciones de red observadas, y poseen una estructura en la que se concatenan todos los 

nombres de los ataques en el flujo. Las características presentes en el archivo conn.log se 

adjuntan en el Anexo II, junto a la explicación de cada una de ellas. Contiene 21 atributos que 

corresponden al número de parámetros obtenidos del archivo conn.log además de 2 campos de 

etiquetado. Cada carpeta de captura incluye un archivo README.md que detalla información 

relevante, como el nombre y características del malware, hash (MD5, SHA1, SHA256) de la 

muestra, la duración de la captura en segundos y enlaces a análisis adicionales de muestras de 

malware en VirusTotal. Además, también se adjuntan los archivos .pcap originales y 

conn.log.labeled. 

Los posibles valores que pueden encontrarse en las etiquetas son los mostrados en la Tabla IV: 

Tabla IV: Valores posibles del campo “etiqueta” en el conjunto de datos IoT-23. 

Attack FileDownload PartOfAHorizontalPortScan 

Benign HeartBeat Torii 

C&C (Command & Control) Mirai  

DDoS  Okiru  

El dataset IoT-23 ofrece una combinación única de datos reales y simulados de tráfico de 

dispositivos IoT.  A continuación, se detalla cómo se distribuye la simulación dentro del dataset: 

Datos Reales: Los escenarios benignos del dataset IoT-23 están compuestos por capturas de 

tráfico de dispositivos IoT reales y no infectados. Estos incluyen una lámpara LED inteligente 

Philips HUE, un asistente personal inteligente Amazon Echo y una cerradura inteligente Somfy. 

Estos dispositivos funcionan en un entorno controlado y proporcionan un reflejo auténtico de 

los patrones de tráfico normales en dispositivos IoT no comprometidos. 

Datos Simulados: Por otro lado, los escenarios maliciosos del dataset implican la ejecución 

controlada de muestras de malware en dispositivos Raspberry Pi. Cada captura de malware 

captura el comportamiento y las interacciones generadas por el malware durante un período 

limitado, generalmente menos de 24 horas debido al volumen de tráfico generado. 

En el Anexo VIII se adjunta las reglas empleadas para el etiquetado, generadas a partir de 

atributos de Zeek. Si un flujo cumple más de una regla, se concatenan todas las etiquetas 

correspondientes. En el Anexo II se muestra la distribución de etiquetas para cada escenario 

empleado en este trabajo. 

2.4.3. Descripción de CIC-IoT-2023 

El dataset CICIoT2023 (Neto et al., 2023) destaca por simular un entorno realista de IoT con 

dispositivos distribuidos en un laboratorio que imita un hogar inteligente. Se emplean 105 

dispositivos IoT, divididos en categorías como dispositivos domésticos inteligentes, cámaras, 
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sensores y microcontroladores. Estos dispositivos están configurados tanto para 

comportamientos benignos como para ejecutar ataques maliciosos. El tráfico de red capturado 

incluye tanto actividades benignas como maliciosas. Las actividades benignas incluyen 

interacciones humanas como datos de sensores y solicitudes de dispositivos, mientras que los 

ataques maliciosos cubren diversas técnicas como DDoS, DoS, y explotación de vulnerabilidades 

web. 

La topología de red se divide en dos partes principales conectadas a través de un router ASUS 

un switch, y un punto de acceso. Esta configuración simula un entorno típico de hogar 

inteligente, con dispositivos distribuidos físicamente en diferentes ubicaciones dentro del 

laboratorio. Se utilizan botnets simuladas para llevar a cabo ataques como DDoS, DoS, y 

explotación de vulnerabilidades web. Estos ataques son ejecutados por dispositivos IoT 

maliciosos dirigidos a otros dispositivos vulnerables dentro del mismo entorno simulado. En el 

Anexo II se especifica la distribución de las etiquetas por ataque y el número de instancias de 

cada clase. 

El tráfico de red es capturado mediante un Gigamon Network Tap, que proporciona acceso 

pasivo y no intrusivo al tráfico completo de la red. Los datos capturados son analizados y 

almacenados utilizando herramientas como Wireshark. Los datos capturados se almacenan en 

archivos pcap y csv. Los archivos pcap contienen datos originales capturados, mientras que los 

archivos csv contienen características extraídas de ventanas de paquetes fijos para análisis 

posterior. Se extraen múltiples características de los datos capturados utilizando herramientas 

como DPKT. Estas características incluyen estadísticas de paquetes, patrones de tráfico y 

comportamientos anómalos. Incluye un total de 47 características extraídas de los datos 

capturados (véase Anexo II). 

Los datos capturados son preprocesados para limpiar y estructurar adecuadamente los 

paquetes de red. Además, cada conjunto de datos se etiqueta según el tipo de actividad, ya sea 

benigna o maliciosa, facilitando así el entrenamiento de modelos de aprendizaje automático. El 

dataset incluye múltiples flujos de datos capturados durante un período de tiempo específico, 

con un total de aproximadamente 548 GB de tráfico. Las herramientas utilizadas incluyen 

TCPDUMP para la conversión de archivos pcap a csv, DPKT para la extracción de características, 

y Pandas para el procesamiento y análisis de datos. El etiquetado se realiza asignando la misma 

etiqueta a todos los flujos procedentes de la captura de tráfico del ataque en cuestión. 
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3. Técnicas de ML 
 

La Inteligencia Artificial es la capacidad de un dispositivo para realizar tareas de manera similar 

a un humano, utilizando la computación para imitar las funciones cognitivas humanas. Este 

concepto abarca más que el aprendizaje automático o Machine Learning (ML), que se puede 

considerar como una subárea de la Inteligencia Artificial enfocada en la capacidad de las 

máquinas para procesar conjuntos de datos y realizar predicciones basadas en estos, adaptando 

los algoritmos conforme aprenden de manera continua por sí mismas (Kubat, 2021; Molina 

López & García Herrero, 2006). En la Figura 8 se presentan las principales técnicas de ML, 

mientras que en la siguiente sección se profundiza en aquellas utilizadas en este trabajo. Las 

principales categorías de aprendizaje automático son: el aprendizaje supervisado, el aprendizaje 

no supervisado, el semisupervisado, el aprendizaje profundo y el aprendizaje de refuerzo. 

 

Figura 8: Categorías de Técnicas de Machine Learning. 

 

3.1. Técnicas de Machine Learning para clasificación e 
indicadores de rendimiento  

En esta sección se detallan las técnicas utilizadas para la clasificación de flujos de tráfico. 

Primero, se explican los fundamentos de las técnicas de clasificación basadas en aprendizaje 

supervisado y, posteriormente, se describen los principales indicadores de rendimiento de estos 

clasificadores. 

Un algoritmo de clasificación supervisado tiene como objetivo extraer conocimiento de un 

conjunto de datos (training set) y modelar dicho conocimiento para aplicarlo en la toma de 

decisiones sobre un nuevo conjunto de datos (test set). Matemáticamente, en el aprendizaje 

supervisado se trabaja con un conjunto de datos compuesto por ejemplos etiquetados (xi, yi)} 
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con i=1 … N. Cada elemento  xi  es un vector de características, en el que cada dimensión j=1, ..., 

D contiene un valor que describe el ejemplo.  Este valor se llama característica y se denota como 

xi(j). Para todos los ejemplos en el conjunto de datos, la característica en la posición j del vector 

de características siempre contiene el mismo tipo de información (por ejemplo, el número de 

paquetes de los que consta un flujo de tráfico). La etiqueta (label) denotada como yi puede 

pertenecer a un conjunto finito de clases {1, 2, ... ,C}, representando una categoría a la que 

pertenece una instancia, como un tipo específico de ataque. El objetivo de un algoritmo de 

aprendizaje supervisado es usar el conjunto de datos {(xi, yi)} para producir un modelo de 

clasificación que permita tomar un nuevo vector de características x como información de 

entrada y que como salida pueda deducir la etiqueta que debería asignarse a dicho vector 

(Kubat, 2021). Las etiquetas de un conjunto de datos pueden ser cuantitativas (valores 

continuos) o cualitativas (valores discretos que pertenecen a una clase). En este trabajo, las 

etiquetas son cualitativas ya que corresponden a los nombres de los diferentes ataques o a la 

etiqueta de tráfico benigno. Generalmente, los datos con etiquetas cualitativas se asocian a 

algoritmos de clasificación, mientras que los datos con etiquetas cuantitativas se asocian a 

algoritmos de regresión. 

3.2. Técnicas de clasificación 
El problema de clasificación se aborda utilizando atributos simbólicos. Si se emplean atributos 

numéricos, es necesario discretizarlos previamente en intervalos para representar 

adecuadamente los valores de la clase. A continuación, se describen las familias de clasificadores 

más comunes, junto con una breve explicación de los clasificadores específicos empleados en 

este trabajo. 

Clasificadores Bayesianos 

Los métodos bayesianos ofrecen una medida probabilística cuantitativa de la relevancia de las 

variables en un problema de clasificación. Al aplicar estos métodos, es crucial evitar la presencia 

de correlaciones entre los atributos del conjunto de entrenamiento, ya que esto podría invalidar 

los resultados obtenidos. 

● Naive Bayes: Un clasificador Naïve Bayes es un método probabilístico que utiliza el 

teorema de Bayes y las probabilidades condicionales, asumiendo que todas las variables 

predictoras son independientes entre sí (García et al., 2018; John, 1995; Kubat, 2021). 

Esta simplificación crea un modelo con un único nodo raíz (la clase) y nodos hoja (los 

atributos). Una ventaja del clasificador Naïve Bayes es que requiere pocos datos de 

entrenamiento para estimar los parámetros necesarios para la clasificación. Aunque la 

hipótesis de independencia es difícil de cumplir y puede ser distorsionada por atributos 

altamente correlacionados, esta técnica puede funcionar bien cuando se combina con 

técnicas de selección de atributos para eliminar redundancias. 

● El clasificador Naïve Bayes de Bernoulli es adecuado para problemas de clasificación 

binaria o multiclase donde las características son binarias (por ejemplo, la presencia o 

ausencia de una palabra en un documento). Este clasificador modela la probabilidad de 

cada característica dada la clase como una distribución de Bernoulli. Por lo tanto, esta 

clase requiere que las muestras se representen como vectores de características 

binarias; si se le proporciona cualquier otro tipo de datos, una instancia de BernoulliNB 

puede binarizar su entrada. 
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● Por otro lado, el clasificador Naïve Bayes Gaussiano se utiliza cuando las características 

son continuas y se asume que siguen una distribución gaussiana (normal). Este 

clasificador modela la probabilidad de cada característica dada la clase como una 

distribución gaussiana. 

Funciones 

En este grupo de métodos se han incluido aquellos que generan una función de clasificación y 

que no obtienen de forma explícita un árbol o conjunto de reglas. 

● Multi-layer Perceptron (MLP): El perceptrón multicapa (MLP) es una red neuronal 

artificial diseñada para resolver problemas no linealmente separables (García et al., 

2018; Kubat, 2021) Suele tener una capa de entrada para atributos, una o más capas 

ocultas donde se calculan sumas ponderadas de las entradas multiplicadas por los pesos 

sinápticos, y una capa de salida que clasifica las instancias según las clases deseadas. 

Durante el entrenamiento, se ajustan los pesos de las conexiones utilizando 

retropropagación, un proceso que minimiza el error entre la salida predicha y el 

resultado esperado. 

 

Figura 9: Ejemplo de perceptrón multicapa (MLP) con una capa oculta. 

Aprendizaje basado en instancias  

En este enfoque de aprendizaje, se mantienen almacenados los ejemplos de entrenamiento. 

Cuando se necesita clasificar una nueva instancia, se identifican las instancias previamente 

clasificadas más similares y se utiliza su etiqueta para clasificar la nueva instancia. Este tipo de 

métodos se conocen como "aprendizaje perezoso" (lazy learners), donde el proceso de 

aprendizaje inicial es mínimo y el tiempo se consume principalmente en la fase de clasificación.  

● Nearest Centroid: es un algoritmo sencillo que representa cada clase mediante el 

centroide de sus miembros. Esto lo hace similar a la fase de actualización de etiquetas 

del algoritmo KMeans (Nearest Centroid Classification — Scikit-Learn 0.18.2 

Documentation). A diferencia de otros métodos, no tiene parámetros para ajustar. El 

método de K-Means es un enfoque de clasificación no paramétrico que determina la 

clase de una instancia según las clases de sus k instancias de entrenamiento más 

cercanas. Durante el entrenamiento, se almacenan los vectores de características y las 

etiquetas de las clases de los ejemplos en un espacio multidimensional. K-Means 

investiga cada instancia, calculando sus distancias a todos los centroides. El centroide 

más cercano define el cluster al que pertenece la instancia. Si ya está en ese cluster, no 

se realiza ninguna acción; de lo contrario, se transfiere al cluster correcto. Después de 

la reubicación, se recalculan los centroides de los clusters afectados. En la fase de 
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clasificación, la instancia se asigna a la clase más frecuente entre sus k vecinos más 

cercanos, asumiendo que estos vecinos proporcionan una buena clasificación basada en 

la similitud en el espacio de características. 

 

 

Figura 10: Ejemplo de funcionamiento del algoritmo Nearest Centroid (Nearest Centroid Classification — 

Scikit-Learn 0.18.2 Documentation). 

Metaclasificadores  

En esta categoría se encuentran los clasificadores complejos, los cuales son obtenidos mediante 

la composición de clasificadores simples o incluyen preprocesamiento de datos.  

● Adaptive Boosting (AB): AdaBoost es un meta-algoritmo de clasificación que utiliza una 

combinación secuencial de clasificadores débiles para mejorar la precisión del 

clasificador final. En cada iteración, se ajusta un clasificador débil que se centra en 

corregir los errores de clasificación cometidos por los clasificadores anteriores. La 

contribución de cada clasificador débil a la predicción final se pondera según su 

desempeño, favoreciendo aquellos que tienen mejor capacidad predictiva. Este 

algoritmo se aplica principalmente en problemas de clasificación binaria, aunque puede 

extenderse al caso multiclase. La característica distintiva de AdaBoost es su capacidad 

para mejorar progresivamente el rendimiento del modelo combinando múltiples 

clasificadores débiles. 

 

Figura 11: Ejemplo de funcionamiento del algoritmo Adaptive Boosting. 
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● Bagging: es una técnica que utiliza múltiples clasificadores para mejorar la precisión. 

Varios clasificadores operan simultáneamente para predecir las etiquetas de clase de 

los ejemplos. Un clasificador principal combina estas predicciones mediante votación 

mayoritaria. Cada clasificador en el conjunto aborda diferentes aspectos del problema, 

lo que mejora el rendimiento global sobre clasificadores individuales (Kubat, 2021). Para 

implementar Bagging, se generan subconjuntos de entrenamiento T₁ ,...,Tₙ  mediante 

bootstrapping del conjunto original T. Cada subconjunto se utiliza para entrenar un 

clasificador Cᵢ , como árboles de decisión ajustados con parámetros definidos por el 

usuario. Esta técnica aprovecha la diversidad de los clasificadores para reducir errores; 

si un clasificador falla en un ejemplo, es probable que los otros clasificadores lo 

clasifiquen correctamente.  

Árboles de decisión 

Un árbol de decisión es un clasificador que trata de hallar la mejor opción en cada paso o 

decisión que se toma en el árbol, de modo que cada partición seleccionada maximice algún 

criterio de discriminación (error de clasificación, ganancia de entropía, etc.)(García et al., 2018; 

Kubat, 2021). Los árboles constituyen un modo intuitivo para visualizar la clasificación de un 

conjunto de datos.  

● Decision Tree: Se basa en la creación de reglas de decisión simples derivadas de las 

características de los datos. Esta estructura jerárquica se construye mediante divisiones 

recursivas de los datos en subconjuntos cada vez más homogéneos en términos de la 

variable objetivo. Una ventaja de los árboles de decisión es su capacidad para manejar 

datos sin requerir normalización ni transformación de variables, y algunos algoritmos 

pueden manejar automáticamente valores faltantes. Además, el coste computacional 

crece de manera logarítmica con el tamaño del conjunto de entrenamiento, lo cual los 

hace eficientes para conjuntos de datos extensos. No obstante, los árboles de decisión 

pueden sufrir de sobreajuste, donde el modelo se ajusta demasiado a los datos de 

entrenamiento y no generaliza bien a nuevos datos. Para mitigar este problema, se 

emplean técnicas de poda que limitan la profundidad del árbol o reducen el número de 

nodos, mejorando así su capacidad de generalización. El algoritmo Decision 

TreeClassifier de Scikit-Learn implementa árboles de decisión utilizando una versión 

optimizada del algoritmo CART (Classification and Regression Trees). CART es uno de los 

métodos más comunes y efectivos para construir árboles de decisión. 

 

● Random Forest (RF): En esta técnica se construyen bosques aleatorios (Random Forest) 

creando conjuntos de árboles aleatorios o random trees (Breiman, 2001; Kubat, 2021). 

Los árboles creados con el algoritmo de Random Tree consideran un número específico 

de características aleatorias en cada nodo, sin realizar poda.  El algoritmo explora 

aleatoriamente una variedad de modelos, lo que permite combinar cientos de árboles 

de decisión y entrenar cada uno con una selección diferente de instancias. Las 

predicciones finales del bosque aleatorio se obtienen promediando las predicciones de 

cada árbol individual (ver Figura 12). Usando Random Forest, se puede mitigar el efecto 

de sobreajuste de los árboles de decisión individuales al promediar los resultados de 

predicción de múltiples árboles, aunque esto también incrementa la complejidad 

computacional del método. 
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Figura 12: Ejemplo de funcionamiento del algoritmo Random Forest. 

Stochastic Gradient Descent (SGD) 

SGD es una técnica de optimización y no corresponde a una familia específica de modelos de 

aprendizaje automático. Las ventajas del descenso de gradiente estocástico (SGD) son su 

eficiencia y facilidad de implementación (muchas oportunidades para ajustar el código). La clase 

SGDClassifier de Scikit-Learn admite diferentes funciones de pérdida y penalizaciones para la 

clasificación. SGD ajusta un modelo lineal a los datos de entrenamiento. Admite la clasificación 

multiclase combinando múltiples clasificadores binarios en un esquema "uno contra todos" 

(OVA). Para cada una de las K clases, se aprende un clasificador binario que discrimina entre esa 

clase y las otras K−1 clases. En el momento de la prueba, se calcula la medida de confianza (es 

decir, las distancias al hiperplano) para cada clasificador y se elige la clase con la mayor 

confianza. Se muestra un ejemplo de clasificación multiclase en la Figura 13. 

 

Figura 13: Ejemplo de superficie de decisión de SGD. (Stochastic Gradient Descent — Scikit-Learn 1.5.0 

Documentation). 
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3.3. Indicadores de rendimiento de los clasificadores 
A continuación, se presentan las métricas o indicadores de rendimiento más comúnmente 

utilizados en la evaluación de técnicas de clasificación, especialmente aplicados al problema de 

la detección de botnets. Se definen los siguientes factores de clasificación: TP (verdaderos 

positivos) es el número de flujos de ataques correctamente identificados, TN (verdaderos 

negativos) es el número de flujos correctamente identificados como normales, FP (falsos 

positivos) es el número de flujos normales incorrectamente clasificados como ataques, y FN 

(falsos negativos) es el número de flujos de ataques incorrectamente clasificados como 

normales. La matriz de confusión muestra el número de flujos clasificados de manera correcta 

o incorrecta, tal como se presenta en la Tabla V. A partir de estos elementos, se definen los 

siguientes indicadores (Kubat, 2021). 

. 

Tabla V: Matriz de confusión para clasificación de tráfico anómalo. 

Class\Prediction Normal Attack 

Normal TN FP 

Attack FN TP 

 

Exactitud (accuracy): Representa la proporción de flujos de tráfico clasificados correctamente 

respecto al número total de flujos. Es una métrica común para evaluar la eficacia de los 

algoritmos de clasificación y también se conoce como tasa de clasificación (CR). Su 

complementario (1-Acc) es la tasa de error. 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

En dominios desequilibrados (imbalanced), donde las instancias de una clase superan en número 

a las de la otra (por ejemplo, un número significativamente mayor de flujos de tráfico normales 

frente a flujos de ataques), la exactitud puede resultar engañosa. En estos casos, es necesario 

emplear otros indicadores como el recall y la precisión. 

Recall o Tasa de verdaderos positivos (TPR): Representa la probabilidad de que un ejemplo 

positivo sea correctamente identificado por el clasificador. También se conoce como tasa de 

detección o sensibilidad. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Precisión: Representa la proporción de verdaderos positivos respecto a todos los ejemplos 

clasificados como positivos. Es una medida de la probabilidad estimada de una predicción 

positiva correcta y también se denomina valor predictivo positivo. Cuando los TP son 0 (ningún 

ataque clasificado correctamente) y los FP son 0 (todos los benignos clasificados 

correctamente), no se obtiene un resultado numérico válido. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖ó𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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Mientras que la precisión indica la frecuencia de verdaderos positivos (ataques reales) entre 

todos los ejemplos considerados como positivos por el clasificador (flujos clasificados como 

ataques), el recall mide la frecuencia de verdaderos positivos (ataques reales) entre todos los 

ejemplos positivos en el conjunto de datos (ataques en el dataset). 

F-Measure o F1: El indicador F combina precisión y recall en un único valor ponderado. Si se 

asigna el mismo peso a ambos, se obtiene F1. 

𝐹1 =
2 𝑇𝑃

2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
= 2

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Receiver Operating Characteristic (ROC): este diagrama gráfico se utiliza para evaluar el 

rendimiento de un algoritmo de clasificación binario. La curva ROC se crea trazando la tasa de 

verdaderos positivos frente a la tasa de falsos positivos en diversas configuraciones de 

funcionamiento, y el área bajo la curva ROC indica la calidad del clasificador. 

 

Además de los indicadores de rendimiento descritos previamente, existen diferentes métodos 

de validación de los algoritmos que permiten obtener los indicadores de distinta forma. La 

técnica más básica es la conocida como validación simple o train-test, en la que se elabora el 

modelo utilizando el conjunto de entrenamiento y se aplica sobre el conjunto test. Se pueden 

establecer diferentes divisiones (porcentaje de split) para dividir un conjunto original en los 

subconjuntos de train y test. Otras técnicas utilizadas son la validación cruzada, técnicas de 

Bootstrap, etc. que son más costosas computacionalmente. 
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4. Sistema de detección de botnets 
4.1. Arquitectura general del sistema 

En este capítulo se desarrolla el procedimiento seguido para realizar la detección de botnets a 
partir de los nuevos parámetros de tráfico obtenidos aplicando Zeek sobre las capturas de 
paquetes con las que se generaron los datasets originales IoTD20, IoT-23 y CIC-IoT-2023, así 
como el análisis de los resultados de clasificación obtenidos utilizando dichos parámetros. Este 
se ilustra en la Figura 14. El objetivo es detectar en primer lugar los flujos de tráfico utilizando 
Zeek a partir de los ficheros que contienen las capturas directas de los paquetes generados 
durante la construcción de los datasets (ficheros de captura de paquetes de tráfico en formato 
.pcap), y posteriormente encontrar atributos o características de dichos flujos de tráfico para 
ser utilizados como datos de entrada de los clasificadores. Gracias a esto, los atributos son 
comunes en los tres conjuntos de datos, y se puede estudiar el rendimiento de un único modelo 
que es entrenado con un conjunto de datos diferente al que se emplea para su evaluación. 
Además, se podrá comparar cómo varía el rendimiento en la clasificación de los flujos de tráfico 
al utilizar los atributos obtenidos utilizando Zeek respecto al rendimiento obtenido utilizando 
los atributos que contienen los flujos en los datasets originales. Para llevar a cabo estas pruebas 
se empleó el software Zeek, un analizador de tráfico de red pasivo y de código abierto. Esta 
sección se subdivide en los apartados 5.1, que especifica la metodología empleada y el apartado 
5.2, en el que se presentan y analizan los resultados obtenidos. 

El esquema general de trabajo seguido en este estudio se representa en la Figura 14, donde se 

pueden observar las diferentes etapas de este. En primer lugar, la etapa de generación de logs 

se utiliza para obtener información y estadísticas a partir de los flujos de tráfico extraídos de las 

capturas. Tras obtener los logs, se combinaron en un único archivo. El siguiente paso es el 

etiquetado de los flujos de tráfico, aplicando tanto las etiquetas originales también contenidas 

en los datasets originales, como otras que serán comunes entre los tres conjuntos de datos. 

Como se puede apreciar en la Figura 14, cada uno de estos ficheros fue transformado para la 

unificación de formato y limpieza de datos. Una vez se tienen los conjuntos de datos listos, se 

puede llevar a cabo la división en conjunto de entrenamiento y de test. En función de la prueba 

realizada, puede realizarse una selección de atributos para emplear solamente los elegidos en 

dicha prueba. Finalmente, se entrena el modelo y se evalúa, para obtener resultados. 

 

Figura 14: Esquema general de la metodología utilizada. 
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4.2. Obtención de logs y atributos mediante Zeek 
En esta sección se detallan las transformaciones aplicadas para obtener los flujos de tráfico y los 

atributos que los caracterizan (que después se emplean en la clasificación), así como el 

etiquetado de dichos flujos. La Figura 14 muestra este procedimiento. En líneas generales, 

primero se empleó Zeek para obtener los distintos logs a partir del fichero de captura de 

paquetes .pcap, ejecutando un script que permite obtener los datos de cada conexión completa 

(con_statistics.zeek), es decir, de cada flujo de tráfico. Para estas pruebas, se obtuvieron los 

atributos propios el archivo conn.log de Zeek, que contiene detalles de cada conexión a nivel de 

los protocolos IP, TCP, UDP e ICMP, además de otras estadísticas relacionadas con los atributos 

originales. En un futuro se podrían añadir atributos a partir de otros logs más específicos. 

Después se realiza la conversión a CSV mediante otro script desarrollado en Python. Tras esto, 

se unen todos los ficheros csv correspondientes a un único dataset en un mismo archivo csv 

mediante otro script de Python. Posteriormente, se añaden a los flujos las etiquetas originales 

además de las etiquetas nuevas que se emplearán en la clasificación, y se realiza la limpieza de 

los datos. En la limpieza, se intercambia cualquier posible valor vacío por 0 o el carácter 

correspondiente si es un atributo categórico (además de unificar los valores de los atributos 

local_orig y local_resp). Por último, se codifican todos aquellos atributos que sean de tipo string 

para asegurar la compatibilidad con todos los algoritmos.  

Para obtener los flujos a partir de las capturas de tráfico, se ha utilizado Zeek. Cuando se analiza 

una captura de tráfico con Zeek, obtenemos los logs del Anexo III. Para este trabajo, se empleó 

el script personalizado conn_statistics.zeek (véase Anexo IV).  

El primer fichero se encarga de obtener información de los distintos campos de los paquetes 

para generar un archivo .log en el que, para cada flujo, indica direcciones IP origen y destino, 

puertos, protocolo, servicio, bytes enviados y recibidos, entre otros parámetros. A continuación, 

se muestran todos los parámetros obtenidos del conn_statistics.log en la Tabla VI. En el Anexo 

III se explican en mayor detalle los atributos. Este fichero nos aporta la información principal de 

los flujos, además de medidas estadísticas como la media, desviación estándar, valor máximo y 

mínimo de atributos como los bytes enviados desde origen y en respuesta, o la cantidad de 

paquetes que no tienen payload vacío. Estas medidas pueden ser de utilidad para caracterizar 

el comportamiento de ciertos tipos de ataque, como pueden la media de bytes de origen y de 

destino para ataques que se basan en inundar con paquetes a la víctima.  

Tabla VI: Nuevos atributos obtenidos con Zeek a partir de conn_statistics.log. 

ATRIBUTOS 

TimeStamp Bytes IP respuesta Paquetes origen cero 

IP origen Tunnel parents Paquetes resp. cero 

Puerto origen Media bytes orig. Media tiempo 

IP destino Media bytes resp. Desv. estándar tiempo 

Puerto destino Desv. estándar bytes orig. Mín tiempo 

Protocolo Desv. estándar bytes resp. Máx tiempo 

Servicio Media bytes orig no cero Media tiempo origen 
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Duración Media bytes resp no cero Desv. estándar tiempo origen 

Bytes origen Desv. estándar bytes orig no cero Mín tiempo origen 

Bytes respuesta Desv. estándar bytes resp no cero Máx tiempo origen 

Conn_state Mín bytes orig. Media tiempo resp. 

Missed Bytes Mín bytes resp. Desv. estándar tiempo resp. 

History Máx bytes orig. Mín tiempo resp. 

Paquetes origen Máx bytes resp. Máx tiempo resp. 

Bytes IP origen Paquetes origen no cero  

Paquetes respuesta Paquetes resp. no cero  

 

4.3. Manipulación y limpieza de datos 
Una vez obtenidos los logs con los atributos de Zeek, se realizó la conversión al formato .csv 

mediante un script de Python (véase Anexo V y Anexo VI). Este paso corresponde a la selección 

de flujos en la Figura 14. Al analizar los logs mediante la herramienta Zui, se observó que había 

cierta pérdida de paquetes en las capturas de tráfico de los conjuntos de datos. Por ello, se 

decidió analizar en mayor profundidad y se diseñaron scripts de Python (véase Anexo IX y Anexo 

X) para obtener aquellos flujos de tráfico con pérdidas superiores a un umbral. 

Para poder estimar la cantidad de flujos que podían presentar este defecto, se decidió 

representar gráficamente el porcentaje de bytes perdidos por flujos para cada log individual. En 

la Figura 15 y Figura 16 se pueden observar dos ejemplos de las gráficas generadas, en este caso 

en la base de datos IoTD20: 

 

Figura 15: Porcentaje de Bytes perdidos para cada flujo de tráfico. 



 

37 

 

Figura 16: Distribución de número de flujos según porcentaje de bytes perdidos. 

Como se puede apreciar, varios flujos de tráfico presentan pérdidas considerables de bytes. Por 

ello, mediante los scripts adjuntos en el Anexo IX, se decidió identificar todos aquellos flujos que 

superasen el 1% de bytes perdidos, extraerlos de los ficheros que contenían todos los logs de 

cada conjunto de datos, y almacenarlos por separado para poder eliminarlos.  

En la Tabla VII se presentan estadísticas para cada base de datos y los flujos eliminados: 

Tabla VII: Número de flujos de tráfico totales y eliminados. 

Dataset Flujos totales Flujos eliminados 
Flujos > 10% missed 

bytes 

IoTD20 123185 1765 1631 

IoT-23 128693450 30 16 

CIC-IoT-2023 205611728 78050 51570 

Se consideró relevante su eliminación, ya que introducirían información errónea a los modelos. 

Esto sucede debido a que, si se intentan relacionar los parámetros de bytes enviados con el 

número de paquetes enviados, no concuerda. En la Tabla VIII se muestra un ejemplo de ello. El 

número de paquetes de respuesta es demasiado pequeño y no corresponde con la cantidad de 

bytes de respuesta. 

Tabla VIII: Ejemplo de atributos para un flujo con pérdida de bytes. 

Atributo Valor 

orig_bytes 9936 

resp_bytes 1478577359 

missed_bytes 1478547639 

orig_pkts 962 

orig_ip_bytes 56270 

resp_pkts 3044 

resp_ip_bytes 4437560 
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Para la lectura de los logs una vez fueron convertidos a formato csv, se emplearon las librerías 

Pandas y Dask para poder realizar el resto de operaciones de tratamiento de datos. Ambas 

librerías, convierten el archivo leído en un formato de tabla llamado Dataframe. Lee la cabecera 

del archivo csv, que contiene el nombre de cada una de las columnas (siendo estas las 

características), y permite realizar operaciones sobre columnas completas o sobre filas, en 

función de las necesidades. Con Pandas, es posible realizar una amplia gama de operaciones de 

limpieza y transformación de datos, como eliminar columnas, filtrar filas, y reemplazar valores 

faltantes o incorrectos. Pero esta presenta un inconveniente, requiere muchos recursos de 

memoria RAM si el tamaño de los datos es elevado, y, si bien es cierto que puede solventar este 

problema realizando las tareas de forma incremental fragmentando los datos en chunks o 

bloques, no es capaz de realizar determinadas tareas en las que el tamaño de las bases de datos 

supera al espacio en memoria, también llamadas tareas OOM (Out Of Memory).   

Una vez filtrados los conjuntos de datos, el siguiente paso que se llevó a cabo fue el etiquetado 

de los flujos. Primero se recrearon las etiquetas originales para agruparlas más tarde en los 

grupos de ataques deseados. Para ello, se siguieron las reglas empleadas por los autores de los 

datasets, véase Anexo VIII y se generaron los scripts correspondientes, véase Anexo VII. Una vez 

obtenidas las etiquetas, se pudo observar que existía un patrón de ataques común entre los tres 

conjuntos de datos, por lo que se creó otro grupo de etiquetas nuevo para poder unificar las 

categorías de ataques entre datasets. Estos tres valores son:  DoS, Scan, Brute Force y Benign. 

Se eliminaron determinados flujos de la base de datos IoT-23 que quedaron excluidos de este 

nuevo grupo de etiquetas.  

Siguiendo el esquema de la Figura 14, el último paso previo al entrenamiento de los modelos de 

aprendizaje automático es la “limpieza” de datos y codificación de aquellos atributos que lo 

necesiten. Se seleccionan todos los atributos excepto las direcciones IP destino, IP origen, puerto 

origen y puerto destino, que son excluidas del estudio, así como el ID del flujo y el TimeStamp, 

puesto que todos ellos se han utilizado para definir un mismo flujo de tráfico o están asociados 

a los paquetes pertenecientes al mismo. Al considerarse que forma parte de la información que 

define el flujo, para un mejor entrenamiento y creación de los modelos, es mejor no disponer 

de información de puertos y direcciones IP en dicha fase.  Si los ataques se generaron desde la 

misma IP y en los mismos puertos, no se representará fielmente la realidad y serán fácilmente 

identificables como ataques al aparecer flujos de tráfico con los mismos valores tanto en el 

conjunto de training como en el de test, pudiendo llevar al modelo a generar respuestas 

dependientes de la implementación de los escenarios y por ello se ha optado por no emplear 

ninguno de dichos atributos.  Adicionalmente, se decidió eliminar el campo tunnel_parents ya 

que estaba vacío en la gran mayoría de flujos de los tres conjuntos de datos.  

Analizando todos los posibles valores de las bases de datos, se observó que en muchos casos 

había valores vacíos para determinados atributos. Por ello, se rellenaron aquellos campos sin 

valor con el carácter necesario, siguiendo la Tabla IX. Además, se unificaron los valores de los 

campos “local_orig” y “local_resp”, ya que se detectaron varios valores que representaban el 

concepto “True” y “False”. El código empleado para poder lograrlo se adjunta en el Anexo XI. 

Tabla IX: Valores referidos a campos vacíos y valores sustitutos. 

Atributo Valores sustituidos Valor sustituto 

Atributos numéricos “”, “ “, “-“, ”[]”, <NA> o NaN 0 

 “history” y “conn_state” “”, “ “, ”[]”, <NA> o NaN “-“ 

 “service” y “proto” “”, “ “, “-“, ”[]”, <NA> o NaN “unknown” 

 “local_orig” y “local_resp” “T”, “F” “True” o “False” 
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Tras unificar los valores, se procedió a codificar lo valores de los atributos categóricos, siendo 

estos: “history”, “conn_state”, “service”, “proto” “local_orig” y “local_resp”. Como se buscaba 

que la codificación fuese común entre los tres conjuntos de datos para posteriormente realizar 

pruebas con los datos de los datasets combinados, el primer paso fue obtener los valores únicos 

estos atributos mediante la función unique o drop_duplicates. La librería empleada para la 

codificación, Scikit-Learn, es una biblioteca de Python especializada en Machine Learning y 

análisis de datos. Scikit-Learn también proporciona herramientas robustas para la selección de 

modelos, preprocesamiento de datos, ajuste de modelos, validación de modelos y evaluación 

de resultados. En la siguiente sección se utiliza para realizar la clasificación de los datos. 

Para optimizar todo el proceso de manipulación y limpieza de datos, se realizó de forma paralela 

mediante la clase ThreadPoolExecutor. Esta facilita la ejecución de operaciones de 

entrada/salida y otros trabajos en paralelo, aprovechando múltiples hilos de ejecución. Fue 

especialmente útil ya que en este trabajo se tratan grandes volúmenes de datos que pueden 

dividirse en fragmentos más manejables. En este caso, se empleó para leer y procesar múltiples 

archivos simultáneamente, aplicando transformaciones como la limpieza de datos o la 

normalización en paralelo. Esto no solo mejora el rendimiento, sino que también reduce 

significativamente el tiempo de procesamiento en comparación con la ejecución secuencial. 

Gracias a ella, se aprovecharon los recursos de CPU y RAM de forma eficiente. 

Una vez codificados los atributos, los conjuntos de datos ya están listos para ser entregados a 

los modelos de Machine Learning. Se organizó el escenario de pruebas en dos subgrupos, por 

un lado, se obtuvieron resultados alimentando a los modelos con los conjuntos de datos de 

forma separada para así comparar los resultados obtenidos con los resultados de los autores; 

por otro lado, se entrenó primero el modelo con una base de datos y se evaluó con las dos 

restantes, y en otra prueba se entrenó y evaluó el modelo con una mezcla de los tres conjuntos 

de datos. 

A continuación, se realiza una comparación entre los flujos obtenidos con la herramienta Zeek 

y los flujos originales de los datasets. Los flujos de CIC-IoT-2023 se construyeron a partir de 

archivos .pcap utilizando la herramienta CICFlowMeter, que genera archivos .csv donde cada fila 

corresponde a un flujo. CICFlowMeter define un flujo como un intercambio bidireccional de 

paquetes de red que pertenecen a la misma tupla de dirección IP de origen, dirección IP de 

destino, puerto de origen, puerto de destino y protocolo de capa de transporte, dentro de un 

período de tiempo determinado. Un flujo finaliza cuando se agota el tiempo de espera o cuando 

se cierra la conexión. La estructura de datos de Zeek es una conexión que sigue los mecanismos 

típicos de identificación de flujo, siguiendo el enfoque de 5 tuplas mencionado anteriormente. 

Para un protocolo orientado a la conexión como TCP, la definición de una conexión es más clara; 

sin embargo, para otros como UDP e ICMP, Zeek implementa una abstracción similar a un flujo 

para agregar paquetes. Cada paquete pertenece a una conexión. En la Tabla X se muestra el 

número de flujos tanto en los datasets originales como los obtenidos en este trabajo utilizando 

Zeek. En IoTD20 es importante recalcar que los autores obtuvieron los flujos mediante la 

herramienta CIC-FlowMeter. Además, el número de flujos obtenidos con Zeek para este trabajo 

no incluye aquellos que contienen pérdidas de bytes superiores al 1%. 
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Tabla X: Flujos de cada conjunto de datos. 

Dataset Fichero Flujos originales Flujos Zeek 

IoTD20 

Mirai-UDP Flooding 183554 500 

Mirai-Ackflooding 55124 38609 

Mirai-Hostbruteforce 121181 163 

Mirai-HTTP Flooding 55818 3882 

DoS-Synflooding 59391 59489 

Scan Port OS 53073 35 

Scan Hostport 22192 16251 

Normal 40073 12211 

IoT-23 

Malware-Capture-7-1 11454715 11454714 

Malware-Capture-34-1 23153 8990 

Malware-Capture-35-1 10447788 8257565 

Malware-Capture-43-1 67321810 67321799 

Malware-Capture-44-1 238 228 

Malware-Capture-48-1 3394346 3393634 

Malware-Capture-49-1 5410562 6021586 

Malware-Capture-52-1 19781379 32232712 

Honeypot-Capture-4-1 453 735 

Honeypot-Capture-5-1 1375 1358 

Honeypot-Capture-7-1 131 131 

CIC-IoT-2023 

Mirai Greeth 991867 193689830 

Mirai Greip 751683 144690088 

Mirai UDP Plain 890577 286556 

PortScan 82285 207402 

OSScan 98260 182672 

DDoS HTTP 28791 616156 

DDoS PSHACK 4094756 69941338 

DictionaryBruteForce 13065 6735 

Benign 1098196 589912 

4.4. Aplicación de técnicas de ML 
Como se comentará más adelante, para la generación de resultados se dividen los datasets en 

conjunto de entrenamiento y conjunto de test. Para ello, se empleó la función train_test_split, 

propia de la librería de Python SciKit-Learn. Se indica el porcentaje deseado de datos de test, en 

este caso un 60%, y se indica que realice la división de forma aleatoria.  

En determinadas pruebas realizadas, la lectura del conjunto de datos en un sólo DataFrame 

requería más memoria de la disponible en la máquina. Por ello, se optó por emplear la librería 

Dask. Dask es una biblioteca de Python diseñada para manejar cálculos paralelos y distribuidos, 

permitiendo el procesamiento de grandes conjuntos de datos que no caben en la memoria de 

un solo ordenador. Dask extiende las funcionalidades de Pandas y NumPy para trabajar de 

manera eficiente con datos en entornos de big data. Al igual que Pandas, Dask permite leer y 

escribir datos en varios formatos, pero lo hace distribuyendo la carga de trabajo a través de 

múltiples hilos o incluso múltiples máquinas.  
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Una vez divididos, determinados modelos requieren un escalado de datos previo para funcionar 

correctamente. Estos son: MLP, Nearest Centroid y SGD. Para ello se emplea la clase 

StandardScaler(), que necesita ser entrenada con los datos a utilizar mediante la función fit(), y 

posteriormente se transforman para hacer efectivo el escalado (véase Anexo XII). Si se decide 

realizar la clasificación con sólo una fracción de las características, se realiza una selección de 

atributos. En este trabajo, una de las pruebas realizadas emplea esta técnica de preprocesado. 

Para ello, se empleó la función de Scikit-Learn mutual_info_classif, que obtiene una métrica que 

permite traducir numéricamente a una métrica qué atributos son más relevantes. Esta métrica 

se entrega a un selector de características, como por ejemplo KBest, y escoge el número de 

características deseado (véase Anexo XIII). 

A continuación, se introducen en el modelo empleando la función fit() para su entrenamiento. 

Entre los algoritmos disponibles se incluyen regresión lineal, árboles de decisión, máquinas de 

soporte vectorial (SVM), k-vecinos más cercanos (KNN), y clustering con k-means, entre otros. 

Una vez entrenado el modelo, procede a ser evaluado con los datos de test. La evaluación 

devuelve una predicción de las etiquetas que el modelo ha estimado, y, a partir de estas y de las 

etiquetas originales, se realizan comparaciones y obtienen distintas métricas para evaluar el 

rendimiento del modelo. Scikit-Learn también facilita la visualización de resultados a través de 

gráficos, por lo que se han generado curvas ROC y matrices de confusión para todos los modelos, 

lo que permite medir la eficacia de los modelos de manera detallada.  

4.5. Entorno de trabajo de las pruebas 
El puesto de trabajo empleado para el procesado de los datos y posterior clasificación posee las 

siguientes características: 

Tabla XI: Especificaciones de la máquina empleada en el trabajo. 

Sistema Operativo Debian 11 

Nº procesadores disponibles 16 

Modelo CPU Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz 

Memoria RAM 156 GB 

Zeek version 7.0.0-dev.247 

Python version Python 3.9.2 

Sci-kit Learn version 1.4.2 

Pandas version 2.2.2 
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5. Resultados 
En este capítulo se presenta el proceso seguido para obtener los resultados tras aplicar las 

técnicas de clasificación descritas en el capítulo 3. Los diferentes modelos de clasificación fueron 

generados a partir de los tres conjuntos de datos descritos en el capítulo anterior por separado, 

así como a partir de un único dataset obtenido a partir de los tres. Para llevar a cabo la 

clasificación del tráfico se ha hecho uso de las técnicas de ML empleando la librería de Scikit-

Learn sobre los archivos obtenidos que contienen todos los atributos de los flujos de tráfico 

(ficheros en formato .csv), tal y como se ha descrito en el capítulo 4. En la sección 5.1 se describe 

la metodología seguida en el banco de pruebas realizadas, y los resultados obtenidos y la 

discusión de los mismos se presentan en la sección 5.2. Las principales conclusiones de este 

capítulo se recopilan en el capítulo de Conclusiones. 

5.1. Banco de pruebas realizadas 
Tras conseguir tres conjuntos de datos con etiquetas comunes entre ambos, y un conjunto de 

datos obtenido a partir de la combinación de los tres anteriores, se procedió a realizar las 

correspondientes pruebas con diferentes algoritmos de Machine Learning.  

La clasificación en todas las pruebas realizadas se ha llevado a cabo definiendo los conjuntos de 

entrenamiento y test, empleando el 40% del fichero para entrenamiento, y el resto para test. Se 

considera que es mejor no utilizar validación cruzada ya que, si el dataset se dividiese por 

ejemplo en 10 subconjuntos, empleando 9 partes para entrenar el modelo, aumentaría la 

probabilidad de que información de un mismo flujo de tráfico se hallase en el conjunto de 

entrenamiento y en el de prueba, conllevando un sobreajuste (overfitting) de clasificación. Para 

la clasificación se seleccionaron los algoritmos: Decission Tree, Nearest Centroid, Random Forest, 

Gaussian Naïve Bayes, Bernoulli Naïve Bayes, Stochastic Gradient Descend, Bagging con 

Decission Tree, AdaBoost con Decission Tree y Multilayer Perceptron. 

El banco de pruebas llevado a cabo se ha organizado en dos etapas (véanse Figura 17 y Figura 

18), realizando por un lado, la evaluación sobre los datasets IoTD20, IoT-23 y CIC-IoT-2023 de 

forma independiente (Figura 17); y por otro lado, se lleva a cabo la evaluación empleando los 

tres datasets de forma combinada (Figura 18). En la primera etapa de pruebas se definen los 

conjuntos de entrenamiento (training) y de prueba (test) en cada dataset. Se generan los 

correspondientes modelos de clasificación (aplicando las diferentes técnicas de ML) en cada 

conjunto de entrenamiento, y posteriormente, cada modelo es evaluado sobre el conjunto de 

prueba asociado, tal y como se ilustra en la Figura 17. 

Figura 17: Primera etapa de pruebas: evaluación sobre los datasets IoTD20-Zeek, IoT-23-Zeek y CIC-IoT-2023-

Zeek de forma independiente. 
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En la segunda etapa de pruebas, se consideran dos escenarios de evaluación. Se plantea por un 

lado el entrenamiento y evaluación de los modelos con una mezcla aleatoria de los tres datasets 

(escenario 1 de la Figura 18), y por otro, el entrenamiento mediante un único conjunto de datos 

(CIC-IoT-2023-Zeek) y la evaluación sobre los otros dos: IoTD20-Zeek e IoT-23-Zeek (escenario 2 

de la Figura 18). En este punto del proceso (véase la Figura 14), se distinguen además dos formas 

diferentes de llevar a cabo la definición de los conjuntos de training y test: la primera 

corresponde a las pruebas de clasificación multiclase (multiclass), y la segunda corresponde a 

las pruebas de clasificación binaria (binary). En la clasificación multiclase se distinguen los 

diferentes tipos de ataques determinados por las etiquetas comunes (e.g. Scan, DoS, etc.). Por 

otro lado, para llevar a cabo la clasificación binaria, se han agrupado los ataques presentes en 

cada archivo mediante un script de Python. De este modo, se han eliminado las etiquetas que 

los distinguían y se ha incluido una genérica que indica 0 para tráfico benigno, y 1 para tráfico 

maligno. Por lo tanto, el clasificador tendrá que llevar a cabo una distinción binaria entre 0 y 1.  

 

Figura 18: Segunda etapa de pruebas: evaluación sobre el dataset combinado a partir de IoTD20-Zeek, IoT-23-

Zeek y CIC-IoT-2023-Zeek (escenario 1), y evaluación sobre IoTD20-Zeek e IoT-23-Zeek mediante el modelo 

generado con CIC-IoT-2023-Zeek. 

 

5.2. Resultados y discusión 

5.2.1. Primera etapa de pruebas: clasificación individual sobre IoTD20, 
IoT-23 y CIC-IoT-2023 (clasificación multiclase) 

En esta sección se presentan y analizan los resultados obtenidos al aplicar las técnicas de ML 

para la clasificación multiclase de los flujos de tráfico, por lo tanto, diferenciando entre los 

distintos ataques que hay en un mismo fichero, y utilizando todos los atributos disponibles (42 

características para cada flujo). En la Tabla XII se muestran los resultados de rendimiento 

correspondientes al parámetro F1 para las diferentes técnicas, mientras que los resultados de 

los parámetros de precision y recall, pueden consultarse en las correspondientes tablas del 

Anexo XIV. Como comentario general de los resultados obtenidos sobre cada uno de los datasets 

(Tabla XII), se puede decir que los métodos de ML han funcionado con elevadas tasas de 

clasificación en la mayoría de los tipos de ataque y en la clase benigna.  
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En general se observa un mejor comportamiento en la clasificación de los flujos de tipo DoS y 

Scan respecto a la clase Brute Force, lo que resulta razonable teniendo en cuenta que los ficheros 

de los datasets contienen clases desbalanceadas (el número de instancias de flujos Brute Force 

respecto a flujos de otros ataques es mucho menor, véase la Tabla X de la sección 4.3). Como es 

habitual, se presenta la dicotomía clásica entre dos enfoques: diseñar datasets que favorezcan 

la presencia de clases minoritarias o considerar una situación que refleje lo más fielmente 

posible un entorno real en términos de la frecuencia de ataques presentes. 

Al comparar los resultados de las diferentes técnicas (Tabla XII) se puede observar que destaca 

el rendimiento de los algoritmos Decision Tree, Random Forest, Bagging Tree, Boosting Tree y 

MLP, que obtienen valores de F1 por encima del 98% en 7 de los 8 ataques presentes en los tres 

datasets (solo el caso de Brute Force en CIC-IoT-2023 se halla por debajo de dicho valor). Como 

puede observarse también, el valor de F1 promediado para todas las clases de tráfico en cada 

dataset (incluyendo ataques y benigno) supera el valor de 0,99 mediante la aplicación de estos 

algoritmos. En el dataset CIC-IoT-2023, la clasificación fue más compleja, lo que puede 

apreciarse en los resultados. Principalmente, se debe al desbalance de clases, que se hace 

presente de forma más visible en este conjunto de datos, ya que la diferencia de número de 

instancias entre las clases Brute Force, y por ejemplo DoS, es del orden de casi 10⁵. En los tres 

conjuntos de datos, los algoritmos Decision Tree, Random Forest, Bagging Tree y Boosting Tree 

obtienen resultados muy similares, pero Decision Tree lo lleva a cabo en el menor tiempo, por 

lo que puede ser un buen candidato para tareas más enfocadas a analizar datos en tiempo real. 

En esta primera etapa de pruebas no se consideró necesario llevar a cabo la clasificación binaria 

dado que los resultados en clasificación multiclase (más compleja que la clasificación binaria) 

son excelentes. 

Se incluyen a continuación algunos resultados del análisis de la complejidad computacional de 

los algoritmos utilizados. Como ejemplo, en la Figura 19 se presentan los tiempos de ejecución 

(escala logarítmica en segundos) para el dataset CIC-IoT-2023 tanto en la fase de construcción 

del modelo (training) como en la de evaluación del mismo (test). Tal y como se podía prever, 

aquellas técnicas de mayor complejidad computacional dan lugar a tiempos de cálculo más 

elevados y, por tanto, a un menor número de flujos por segundo analizados. En los otros dos 

datasets evaluados se observó este mismo comportamiento en los tiempos de ejecución de las 

técnicas de ML aplicadas. 

 

Figura 19: Tiempos de cálculo (expresado en flujos por segundo analizados) de los algoritmos de ML en el 

dataset CIC-IoT-2023. 



 

 

Tabla XII: Medida F1 para la primera etapa de pruebas, clasificación multiclase individual de IoTD20, IoT-23 y CIC-IoT-2023.  

 

 

Dataset name Label DecissionTree Gaussian NB BernouilliNB SGD Random Forest BaggingTree BoostingTree NearestCentroid MLP 

IoTD20 

Brute Force 1,00 0,01 0,15 0,42 1,00 1,00 0,98 0,06 1,00 

DoS 1,00 0,57 0,9 0,98 1,00 1,00 1,00 0,88 0,99 

Scan 1,00 0,00 0,97 0,98 1,00 1,00 1,00 0,64 1,00 

Benign 0.96 0,10 0,26 0,7 0,96 0,96 0,95 0,39 0,92 

Average 0,99 0,46 0,86 0,96 0,99 0,99 0,99 0,81 0,99 

IoT-23 

DoS 1,00 0,84 0,81 0,99 1,00 1,00 1,00 0,86 1,00 

Scan 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,98 1,00 

Benign 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,98 1,00 

Average 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,98 1,00 

CIC-IoT-2023 

Brute Force 0,84 0,00 0,00 0,00 0,83 0,88 0,85 0,01 0,47 

DoS 1,00 0,21 0,94 1,00 1,00 1,00 1,00 1,00 1,00 

Scan 0,98 0,00 0,05 0,59 0,99 0,99 0,99 0,63 0,96 

Benign 0,98 0,01 0,03 0,41 0,97 0,98 0,98 0,37 0,88 

Average 1,00 0,21 0,94 1,00 1,00 1,00 1,00 0,99 1,00 
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A continuación, se presentan algunos ejemplos del funcionamiento de los clasificadores que mejores 

resultados han logrado. Una muestra de ello es el árbol de decisión creado por Decision Tree para la 

base de datos de IoTD20. En las primeras divisiones, es capaz de diferenciar una clase con una 

probabilidad de 0,938 empleando características como history, proto u orig_ip_bytes.  

En la Figura 20 se presentan, respectivamente, la matriz de confusión genérica y la matriz de confusión 

normalizada para el algoritmo Random Forest en el conjunto de datos IoT-23, donde se puede apreciar 

que el número de instancias incorrectamente clasificadas es muy reducido. 

 

Si comparamos los resultados de nuestro banco de pruebas con los resultados obtenidos por los 

autores de las respectivas bases de datos, por ejemplo, para el conjunto de datos CIC-IoT-2023, 

podemos apreciar resultados considerablemente mejores en términos de F1 en nuestro estudio. La 

Tabla XIII muestra los resultados obtenidos en (Neto et al., 2023) sobre todo el dataset, incluyendo 

pruebas con diferentes clases de ataques. Comparando con las clasificaciones de 8 y 2 clases, se puede 

observar que los algoritmos Perceptron, Adaboost y Random Forest, también utilizados en este trabajo, 

obtienen resultados similares a los obtenidos en la tabla. Al igual que en este trabajo, Random Forest 

y Adaboost (análogo a Boosting Tree) son aquellos con mejores resultados, que en nuestro banco de 

pruebas han alcanzado valores de F1 incluso más elevados.  

Tabla XIII: Medida F1 obtenida por los autores de CIC-IoT-2023.  

  Logistic regression Perceptron Adaboost Random Forest 
Deep Neural 

Network 

CIC-IoT-2023 (Neto 
et al., 2023) 

Binary 0,88 0,81 0,96 0,96 0,94 

8 classes 0,54 0,55 0,37 0,72 0,70 

 

 

 

Figura 20: Matrices de confusión para IotD20 utilizando RandomForest.  
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También se llevó a cabo la comparación con los resultados obtenidos por los autores de IoTD20 (Ullah 

& Mahmoud, 2020). Si comparamos los valores de F1 presentados en dicho trabajo, podemos apreciar 

ciertas similitudes en el comportamiento de los algoritmos. No obstante, en nuestro estudio, los 

algoritmos Decision Tree, Random Forest, Bagging, BoostingTree y MLP mostraron valores de F1 muy 

superiores a los alcanzados en (Ullah & Mahmoud, 2020). 

Tabla XIV: Medida F1 obtenida por los autores de IoTD20. 

  SVM Gaussian NB LDA 
Logistic 

regression 
Decision 

Tree 
Random 
Forest 

Ensemble 

IoTD20 (Ullah & 
Mahmoud, 2020) 

Binary 0,16 0,62 0,70 0,30 0,88 0,84 0,87 

 

Finalmente, respecto al conjunto de datos de IoT-23, los autores no presentaron ningún resultado de 

evaluación, y sólo se dispone del propio dataset e información relacionada con el etiquetado de los 

flujos. 

5.2.2. Segunda etapa de pruebas, escenarios 1 y 2: clasificación sobre IoTD20, 
IoT-23 y CIC-IoT-2023 combinados (clasificaciones multiclase y binaria) 

Escenario 1  

Tras haber obtenido las métricas para los tres conjuntos de datos de forma individual, se plantearon 

dos escenarios de pruebas más en una segunda etapa. A continuación, se analiza el primer escenario, 

en el que se entrenan los modelos con un subconjunto de la unión de los tres datasets, y se evalúa con 

el subconjunto restante (Figura 18). Al igual que en el análisis de la sección previa, se emplea el 40% 

de los datos para el entrenamiento y 60% para el test. Para este escenario 1, la división en 

subconjuntos de entrenamiento y de evaluación se llevó a cabo previamente sobre cada conjunto de 

datos, y posteriormente se unieron los correspondientes subconjuntos de entrenamiento y test entre 

sí. Se decidió evaluar primero la clasificación de forma binaria, ya que computacionalmente es más 

simple, y posteriormente se llevó a cabo con las distintas clases de ataque.  

A continuación, se presentan y analizan los resultados de clasificación binaria, mostrados en la Tabla 

XV. Se puede apreciar que los valores de F1 son superiores a 0.99 para todos los clasificadores excepto 

GaussianNB, BernouilliNB y Nearest Centroid. Esto se puede deber a la complejidad de los datos, ya 

que, en este caso, se está intentando obtener el perfil de tráfico benigno y de ataques procedentes de 

conjuntos de datos diferentes, generados mediante procedimientos y dispositivos IoT diferentes. Por 

lo tanto, algoritmos más simples no consiguen diferenciarlos de forma correcta. Para todos los 

algoritmos basados en árboles (Decision Tree, Random Forest, Bagging Tree, y Boosting Tree) se han 

obtenido valores de F1=1, lo que pone de manifiesto que al utilizar un conjunto de entrenamiento 

combinado se incluyen los diferentes comportamientos de los flujos de tráfico provenientes de 

distintos datasets y se pueden lograr resultados de clasificación muy buenos. 

Después, se realizó la clasificación multiclase cuyos resultados también se muestran en la Tabla XV. En 

general, se han obtenido valores de F1 elevados para todas las clases de tráfico, exceptuando la clase 

minoritaria Brute Force, en la que se aprecia un descenso notable. Para el resto de clases, todos los 

clasificadores excepto GaussianNB y BernoulliNB han obtenido valores de F1 superiores a 0,99.  



 

48 

Como se puede observar en el ejemplo de la Figura 20, en esta clasificación, el número de instancias 

incorrectamente clasificadas como benignas siendo ataques, y el tráfico benigno clasificado como 

ataque, es inusualmente alto. Tras analizar los conjuntos de datos, se plantea la posibilidad de que se 

deba a que el etiquetado realizado por los autores de CIC-IoT-2023 difiere respecto al empleado en los 

datasets restantes. Mientras que en CIC-IoT-2023 se etiquetan todos los flujos de una misma captura 

de tráfico como ataque o como benigno, en IoT-23 e IoTD20 se proporcionan reglas específicas para 

separar flujos o paquetes malignos del tráfico benigno que se encuentran en las capturas de ataque. 

 

Figura 21: Matriz de confusión para clasificador Bagging 
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Tabla XV: Medida F1 para la segunda etapa de pruebas. 

Dataset name Label DecissionTree Gaussian NB BernouilliNB SGD Random Forest BaggingTree BoostingTree NearestCentroid MLP 

Escenario 1 
Binary 

Benign 1,00 0,4 0,82 0,99 1,00 1,00 1,00 0,63 0,99 
Malign 1,00 0,15 0,94 1,00 1,00 1,00 1,00 0,79 1,00 

Average 1,00 0,21 0,91 0,99 1,00 1,00 1,00 0,75 1,00 

Escenario 1 
Multiclass 

Brute Force 0,41 0,00 0,00 0,00 0,44 0,44 0,41 0,02 0,3 

DoS 1,00 0,21 0,86 0,99 1,00 1,00 1,00 0,98 1,00 

Scan 1,00 0,00 0,91 0,99 1,00 1,00 1,00 0,91 1,00 

Benign 1,00 0,00 0,83 0,99 1,00 1,00 1,00 0,91 1,00 

Average 1,00 0,11 0,87 0,99 1,00 1,00 1,00 0,95 1,00 

Escenario 1 
Multiclass & FS 

Brute Force  0,38 0,00  0,00 0,00 0,42 0,42 0,39 0,02 0,00 

DoS 1,00 0,21  0,73 0,99 1,00 1,00 1,00 0,99 1,00 

Scan 1,00 0,00 0,97 0,93 1,00 1,00 1,00 0,93 0,99 

Benign 1,00 0,00 0,00 0,90 0,99 0,99 0,99 0,91 0,99 

Average 1,00 0,11 0,62 0,90 1,00 1,00 1,00 0,96 0,99 

Escenario 2 

Binary 

Benign 0,00 0,64 0,00 0,12 0,00 0,01 0,00 0,00 0,12 

Malign 0,69 0,00 0,69 0,01 0,69 0,69 0,69 0,69 0,01 

Average 0,37 0,30 0,37 0,06 0,37 0,37 0,37 0,37 0,06 

Escenario 2 
Multiclass 

Brute Force 0,00 0,00 0,07 0,00 0,00 0,00 0,03 0,03 0,07 
DoS 0,00 0,00 0,00 0,01 0,01 0,00 0,01 0,01 0,56 
Scan 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,94 1,00 

Benign 0,00 0,00 0,00 0,12 0,24 0,24 0,24 0,00 0,99 
Average 0,12 0,00 0,00 0,06 0,12 0,12 0,12 0,49 0,99 



 

50 

Por último, se decidió analizar cuáles eran las características más relevantes para la clasificación 

incluidas en el banco de pruebas. Para ello se consideró este conjunto de datos generado a partir de 

la unión de los tres datasets correspondiente al escenario 1. Es bien sabido que las técnicas de 

selección de atributos (feature selection) se utilizan frecuentemente como un paso previo al 

entrenamiento de los modelos de clasificación para reducir la dimensionalidad de los datos y mejorar 

la precisión al eliminar características irrelevantes y/o redundantes (Khalid et al., 2014). Por ejemplo, 

el método de la ganancia de información (information gain) mide la reducción en la entropía o 

incertidumbre de los datos tras dividirlos según un atributo específico, es decir, la ganancia de 

información con respecto a la clase.  De este modo, el método de FS proporciona una lista ordenada 

de atributos en la que se prioriza la reducción de la entropía sobre la cantidad de información que 

aporta. En Tabla XVI se muestra el resultado obtenido al aplicar el método de FS donde los atributos 

se hallan ordenados según su information gain. Obviamente, existen otros métodos de FS más 

sofisticados, por ejemplo, basados no en un ranking individual de atributos sino en la selección de 

subconjuntos óptimos de atributos, como el método CFS (Correlation-based Feature Subset Selection) 

en el que se considera la capacidad predictiva individual de los atributos junto con el grado de 

redundancia entre ellos (Rodríguez et al., 2022). Para poder tener una primera aproximación al efecto 

de incorporar los métodos de FS, se realizó la clasificación con los 15 primeros atributos según su valor 

de information gain. Los resultados de F1 obtenidos se muestran en laTabla XV. Los resultados 

obtenidos en esta clasificación son similares o idénticos a los alcanzados sin aplicar la selección de 

atributos, excepto en algún caso aislado como Bernoulli para la clase benigna. La aplicación de FS 

puede ser una opción interesante cuando el tiempo de cálculo es crítico, dado que en la mayoría de 

los casos éste se ha visto reducido considerablemente. 

Tabla XVI: Listado de características ordenadas según la media Infomation Gain. 

nº Característica InfoGain nº Característica InfoGain 
11 orig_ip_bytes  0.939904 12 resp_pkts  0.011722 
28  orig_pkts_cero  0.804201 4   resp_bytes  0.004483 
33  time_max  0.622759 25  resp_bytes_max  0.004215 
2 duration  0.622723 19  resp_bytes_mean_nocero  0.004075 

30 time_mean  0.622511 15 resp_bytes_mean  0.003886 
31  time_std  0.622102 38  resp_time_mean  0.001945 
10 orig_pkts  0.558826 41 resp_time_max  0.001838 
9  history  0.367382 27  resp_pkts_nocero  0.001695 

34  orig_time_mean  0.100194 17  resp_bytes_std  0.001382 
37 orig_time_max  0.099999 39 resp_time_std  0.001152 
18  orig_bytes_mean_nocero  0.048777 21 resp_bytes_std_nocero  0.001078 
24  orig_bytes_max  0.048595 32  time_min  0.000009 
3 orig_bytes  0.048549 0  proto  0.000000 

14 orig_bytes_mean  0.048504 8   missed_bytes  0.000000 
35 orig_time_std  0.044491 6   local_orig  0.000000 
16  orig_bytes_std  0.042997 5   conn_state  0.000000 
20 orig_bytes_std_nocero  0.042741 1  service  0.000000 
26  orig_pkts_nocero  0.034696 22  orig_bytes_min  0.000000 
13 resp_ip_bytes  0.020950 23  resp_bytes_min  0.000000 
7 local_resp  0.017107 36 orig_time_min  0.000000 

29  resp_pkts_cero  0.016615 40 resp_time_min  0.000000 
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Escenario 2  

El escenario 2 de la segunda etapa de pruebas consistió en considerar como conjunto de 

entrenamiento un dataset, y como conjunto de evaluación, otro distinto. En concreto, se empleó el 

conjunto de datos CIC-IoT-2023 para entrenamiento y se evaluó con IoTD20 e IoT-23. Primero se 

analizan los resultados de utilizar el dataset de CIC-IoT como conjunto de train, tanto para clasificación 

binaria como multiclase. En esta prueba, se decidió muestrear la clase DoS en un 15%, para que la 

computación fuese viable, manteniendo intactas las otras tres clases. Tras el muestreado, el número 

de instancias de DoS pasó a ser de 30 millones, superando igualmente al resto de clases en un factor 

100.  

Los resultados obtenidos en la clasificación binaria (véase la Tabla XV) indican que la clase “maligna” 

se etiqueta de forma correcta, pero surgen dificultades a la hora de etiquetar correctamente la clase 

benigna. Esto puede deberse al método de etiquetado ya comentado anteriormente. Si existe tráfico 

realmente benigno dentro de las capturas de tráfico malignas, pero está siendo considerado durante 

el entrenamiento con la etiqueta “maligna”, en la evaluación, al analizar los flujos benignos de IoTD20 

e IoT-23, estos podrán ser etiquetados como malignos. Esto se puede observar en la matriz de 

confusión para el algoritmo Random Forest mostrada en la Figura 22. Los resultados ponen de 

manifiesto en este caso que al generar el modelo de clasificación en un dataset y evaluarlo en otro no 

se logran incluir los diferentes comportamientos de los flujos de tráfico provenientes de distintos 

datasets, o bien como se ha comentado que el propio etiquetado de los flujos en cada dataset no los 

hace coherentes, y esto se traduce en resultados de clasificación mucho peores. El descenso en los 

valores de F1 es especialmente significativo en todos los algoritmos basados en árboles.  

 

Figura 22: Matriz de confusión para clasificación binaria en el segundo escenario empleando Random Forest 

Si ahora se analizan las métricas obtenidas para la clasificación multiclase (véase la Tabla XV), los 

valores de F1 siguen siendo muy reducidos. El algoritmo MLP obtiene los mejores resultados, y la 

matriz de confusión presenta una diagonal con valores significativos. Aunque se sigue observando que 

la etiqueta “benign” presenta un número muy alto de instancias etiquetadas como ataque, y la mayoría 

de clasificaciones erróneas se producen en la clase DoS. Esto puede deberse a la presencia 

predominante de la clase en el conjunto de entrenamiento. 
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6. Conclusiones y líneas futuras 
6.1. Conclusiones 

En este trabajo fin de máster se ha hecho un análisis del entorno IoT actual, desde los dispositivos más 

utilizados a los atacados con mayor frecuencia, las amenazas más comunes, detallando una de las más 

conocidas, la botnet Mirai, y los ataques típicos de esta, además de otros ataques comunes que están 

presentes en los conjuntos de datos empleados.  

Además, se han estudiado en profundidad diferentes conjuntos de datos en el ámbito IoT disponibles 

en la actualidad. Todos ellos presentan gran diversidad de ataques, y en la mayoría de estos está 

presente el tráfico de botnets. Tras el análisis efectuado, se seleccionaron los conjuntos de datos 

IoTD20, IoT-23 y CIC-IoT-2023, organizados en capturas de tráfico. Dichos datasets contienen tráfico 

benigno y diferentes ataques: diferentes tipos de DDoS como Mirai GREETH, Mirai GREIP, Mirai 

UDPPlain, DDoS HTTP o DDoS PSHACK, ataque de fuerza bruta, escaneo de puertos y de sistema 

operativo. 

También se han estudiado distintas técnicas de aprendizaje automático con el objetivo de clasificar los 

diferentes ataques característicos de una botnet y se ha profundizado en aquellas que han sido 

empleadas. Dentro de las técnicas de clasificación se escogieron nueve algoritmos para caracterizar y 

poder diferenciar el tráfico benigno de las clases malignas DoS, Scan y BruteFoce: Decision Tree, 

Gaussian Naive Bayes, Bernouilli Naive Bayes, Stochastic Gradient Descent, Random Forest, Bagging 

con Decision Tree, AdaBoost con Decision Tree, NearestCentroid y Mulltilayer Perceptron.  

Después, a partir de las capturas de tráfico, se analizaron los flujos y se extrajo la información detallada 

de las conexiones en distintos logs mediante la herramienta Zeek utilizando un script personalizado 

que proporciona datos a nivel de los protocolos IP, TCP, UDP, ICMP, etc., y se etiquetó el tráfico 

mediante scripts que comparan la dirección IP, los puertos origen y destino, el protocolo empleado y 

atributos como history y conn_state. Durante el etiquetado también se eliminaron algunos flujos que 

presentaron pérdidas de bytes debido a una posible mala configuración en la captura de tráfico por 

parte de los autores originales, y se llevaron a cabo las tareas de conversión de formato, limpieza de 

datos y unificación de estructura de determinados atributos, para finalmente obtener tres conjuntos 

de datos que contienen los mismos atributos y etiquetas. 

Para aplicar los algoritmos de ML se emplearon las librerías Scikit-learn, Pandas y Dask que permiten 

llevar a cabo funciones de lectura de datos, tratamiento y transformación, preprocesado de datos, 

clasificación, selección de atributos, asociación y visualización de datos. Se planteó un extenso banco 

de pruebas considerando la evaluación sobre los datasets IoTD20-Zeek, IoT-23-Zeek y CIC-IoT-2023-

Zeek de forma independiente y de forma combinada, tanto en clasificación binaria como multiclase. 

En cada una de estas pruebas se consideró un 40% del dataset para entrenamiento y el resto para test. 

Es importante señalar que no se incluyeron atributos como direcciones IP de origen o destino, ni 

puertos de origen o destino, debido a que estos valores son altamente dependientes de la 

implementación, lo que haría que el experimento no fuera realista. Además, la inclusión de estos 

atributos facilitaría la identificación de los ataques. Para medir cuantitativamente los resultados 

obtenidos, se analizó en profundidad la medida de rendimiento F1. A partir de los resultados 

obtenidos, se puede concluir que los algoritmos que alcanzan los mejores resultados, manteniendo un 

tiempo de cálculo razonable, son DecisionTree, Random Forest, Boosting Tree y Bagging Tree. Por lo 
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tanto, los métodos basados en árboles de decisión han demostrado ser los más eficientes, lo cual es 

beneficioso para su implementación en un entorno real, dado que estas técnicas son las más 

fácilmente interpretables. Estos algoritmos lograron valores de F1 superiores a 0.99 sin selección de 

atributos en el análisis individual de cada conjunto de datos, y superiores a 0.9 en la mayoría de las 

clases en todas las pruebas en las que se consideró la unión de conjuntos de datos, presentando 

además una variación mínima con la selección de atributos (con 15 atributos seleccionados usando el 

método de Information Gain). Un tiempo reducido para generar el modelo y realizar las pruebas es 

esencial si se pretende aplicar el modelo en un sistema que funcione en tiempo real. Los resultados 

obtenidos en la clasificación binaria mostraron también que al reducir la complejidad de la clasificación 

se pueden obtener mejores resultados en menos tiempo. En cuanto a la selección de atributos, es 

destacable la reducción de tiempo a costa de una ligera disminución en el valor de F1. 

Es relevante destacar que los resultados obtenidos en la clasificación llevada a cabo al entrenar con un 

conjunto de datos diferente al de evaluación fueron subóptimos. Esto deja entrever la problemática 

que surge de generar conjuntos de datos siguiendo procedimientos tan diferentes. Aunque se 

obtengan resultados prometedores al evaluar de forma aislada estos conjuntos de datos, es necesario 

analizar el comportamiento de los modelos con datos generados por diferentes dispositivos y ataques 

capturados en condiciones diferentes. De este modo los modelos desarrollados podrán enfrentarse a 

situaciones más realistas, y así se podrá evaluar mejor el potencial de la aplicación de técnicas de 

Machine Learning a la detección de botnets. 

6.2. Líneas futuras 
A continuación se proponen algunas líneas futuras de investigación que se podrían abordar: 

• Plantear la posibilidad de emplear Zeek en tiempo real, ya que las pruebas actuales se han 

basado en capturas de tráfico almacenadas. 

• Analizar en mayor profundidad qué atributos de Zeek son más importantes para una 

clasificación efectiva. 

• Analizar únicamente el primer minuto de cada fichero desde el inicio del ataque para 

comprobar si es posible detectar los ataques de forma temprana. 

• Plantear el estudio y clasificación empleando técnicas de Deep Learning. 

• Considerar la inclusión de información proveniente de otros ficheros generados por Zeek. 

• Realizar capturas propias de tráfico benigno en diferentes hogares y con nuevos dispositivos 

IoT para mejorar los análisis efectuados. 
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7. Anexos 
 

Para facilitar la lectura del código diseñado en este trabajo, se adjunta un enlace al repositorio donde 

se recopilan todos los scripts. 

https://github.com/MariaRodriguezGarcia/TFM.git  

  

https://github.com/MariaRodriguezGarcia/TFM.git
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Anexo I: Otros ataques comunes 
A continuación, se detallan más ataques que aparecen con frecuencia en conjuntos de datos en 

entornos IoT.  

Ataques de Fuerza Bruta de Diccionario 
Un ataque de fuerza bruta de diccionario es un tipo de ataque de fuerza bruta que utiliza un diccionario 

predefinido de palabras y combinaciones comunes para intentar descifrar contraseñas. En lugar de 

probar todas las combinaciones posibles de caracteres, un ataque de diccionario se basa en la 

probabilidad de que las contraseñas más utilizadas estén presentes en una lista de palabras comunes, 

frases, combinaciones de números y letras, y otros patrones frecuentes. Estos ataques son efectivos 

cuando los usuarios utilizan contraseñas débiles o previsibles. 

El proceso de un ataque de diccionario implica lo siguiente: 

1. Recopilación de diccionarios: Los atacantes recogen listas de palabras que contienen 

contraseñas comunes y frases utilizadas frecuentemente. 

2. Automatización del proceso: Usando software automatizado, el atacante introduce cada 

palabra del diccionario como posible contraseña. 

3. Verificación: Cada intento se verifica contra el sistema de autenticación objetivo hasta 

encontrar una coincidencia correcta o agotar las opciones del diccionario. 

Escaneo de Sistema Operativo (OS Scan) 
El escaneo de sistema operativo, o OS scan, es una técnica utilizada por los atacantes para determinar 

el sistema operativo que se está ejecutando en un dispositivo de red. Este tipo de escaneo es crucial 

para los ciberdelincuentes, ya que les permite identificar vulnerabilidades específicas del sistema 

operativo identificado. Herramientas como Nmap son comúnmente utilizadas para realizar este tipo 

de escaneo. 

El proceso de escaneo de sistema operativo incluye: 

1. Envío de paquetes: El atacante envía paquetes diseñados específicamente para obtener 

respuestas que revelen características del sistema operativo. 

2. Análisis de respuestas: Las respuestas de los dispositivos son analizadas para identificar 

patrones específicos que son característicos de diferentes sistemas operativos. 

3. Identificación del sistema operativo: Basándose en los datos recogidos, el atacante puede 

determinar con alta probabilidad el sistema operativo del dispositivo objetivo. 

Escaneo de Puertos (Port Scan) 
El escaneo de puertos es una técnica utilizada para identificar qué puertos están abiertos en un 

dispositivo de red. Los puertos abiertos pueden revelar servicios activos y posibles puntos de entrada 

para ataques. Este tipo de escaneo es a menudo el primer paso en un ataque, proporcionando 

información vital sobre la estructura y vulnerabilidades de la red objetivo. 

Los pasos en un escaneo de puertos incluyen: 

1. Envío de solicitudes: El atacante envía solicitudes a diferentes puertos en el dispositivo 

objetivo. 

2. Recepción de respuestas: Las respuestas indican si un puerto está abierto, cerrado o filtrado. 

3. Análisis de servicios: Los puertos abiertos son analizados para identificar los servicios que 

están corriendo y sus posibles vulnerabilidades. 
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DDoS-PSHACK Flood 
El ataque DDoS PSHACK Flood es un tipo de ataque que se enfoca en utilizar los paquetes TCP con los 

flags PSH (Push) y ACK (Acknowledgment) activados. Este tipo de ataque está diseñado para saturar al 

servidor objetivo enviando una gran cantidad de estos paquetes, consumiendo los recursos del 

servidor y provocando una denegación de servicio.  A veces se recibe un RST en respuesta al paquete 

ACK-PSH original porque la pila TCP que recibe el paquete ACK-PSH nunca tuvo una secuencia 

correspondiente de SYN - SYN+ACK +ACK (handshake TCP). Algunos entornos pueden optar por no 

enviar un paquete RST de vuelta al origen del paquete ACK-PSH.  

Características del PSHACK Flood: 

1. Protocolo: TCP 

2. Perfil de Ancho de Banda: Alto BPS (bits por segundo), Medio PPS (paquetes por segundo) 

Proceso del PSHACK Flood: 

1. Envío de Paquetes: Los bots envían una gran cantidad de paquetes TCP con las flags PSH y 

ACK activadas. 

2. Respuesta del Servidor: El servidor intenta procesar cada paquete, lo que consume sus 

recursos. 

3. Agotamiento de Recursos: La saturación del servidor con estos paquetes lleva a una 

denegación de servicio. 

DDoS-RSTFIN Flood 
El ataque DDoS RSTFIN Flood utiliza paquetes TCP con los flags RST (Reset) y FIN (Finish) activados. 

Este ataque se aprovecha del comportamiento de los servidores que intentan cerrar conexiones TCP. 

Para cerrar una sesión TCP SYN, se intercambian paquetes RST o FIN entre el cliente y el host. Durante 

un RST o FIN flood, el servidor víctima recibe paquetes RST o FIN falsificados a alta velocidad que no 

están relacionados con ninguna de las sesiones en la base de datos del servidor. Como resultado, el 

servidor víctima se ve obligado a asignar una cantidad significativa de recursos del sistema para 

emparejar los paquetes entrantes con las conexiones actuales, lo que provoca un rendimiento de 

servidor degradado e inaccesibilidad parcial. 

 

Características del RSTFIN Flood: 

1. Protocolo: TCP 

2. Perfil de Ancho de Banda: Moderado a Alto BPS, Alto PPS 

3. Tamaño del Paquete: Pequeño a Medio 

4. Notas: Utiliza las banderas RST y FIN para cerrar conexiones, lo que puede confundir y 

sobrecargar al servidor. 

Proceso del RSTFIN Flood: 

1. Envío de Paquetes: Los bots envían una gran cantidad de paquetes TCP con las banderas RST 

y FIN activadas. 

2. Respuesta del Servidor: El servidor intenta cerrar las conexiones repetidamente, gastando 

recursos en el proceso. 

3. Agotamiento de Recursos: La saturación con estos paquetes lleva a la denegación de 

servicio. 

  



 

60 

Anexo II: Detalles de las bases de datos seleccionadas 
En este anexo se recopilan detalles como la distribución de etiquetas para los ataques y subataques, 

incluyendo número de flujos por clase. 

Número de instancias para el dataset IoTD20 (fichero .csv) 

 

Etiquetado IoTD20 
Flow_ID Flow_Pkts/s Fwd_Pkts/s Fwd_Blk_Rate_Avg 

Src_IP Flow_IAT_Mean Bwd_Pkts/s Bwd_Byts/b_Avg 

Src_Port Flow_IAT_Std Pkt_Len_Min Bwd_Pkts/b_Avg 

Dst_IP Flow_IAT_Max Pkt_Len_Max Bwd_Blk_Rate_Avg 

Dst_Port Flow_IAT_Min Pkt_Len_Mean Subflow_Fwd_Pkts 

Protocol Fwd_IAT_Tot Pkt_Len_Std Subflow_Fwd_Byts 

Timestamp Fwd_IAT_Mean Pkt_Len_Var Subflow_Bwd_Pkts 

Flow_Duration Bwd_IAT_Mean FIN_Flag_Cnt Subflow_Bwd_Byts 

Tot_Fwd_Pkts Fwd_IAT_Max SYN_Flag_Cnt Init_Fwd_Win_Byts 

Tot_Bwd_Pkts Fwd_IAT_Min RST_Flag_Cnt Init_Bwd_Win_Byts 

TotLen_Fwd_Pkts Bwd_IAT_Tot PSH_Flag_Cnt Fwd_Act_Data_Pkts 

TotLen_Bwd_Pkts Bwd_IAT_Mean ACK_Flag_Cnt Fwd_Seg_Size_Min 

Fwd_Pkt_Len_Max Bwd_IAT_Std URG_Flag_Cnt Active_Mean 

Fwd_Pkt_Len_Min Bwd_IAT_Max CWE_Flag_Count Active_Std 

Fwd_Pkt_Len_Mean Bwd_IAT_Min ECE_Flag_Cnt Active_Max 

Fwd_Pkt_Len_Std Fwd_PSH_Flags Down/Up_Ratio Active_Min 

Bwd_Pkt_Len_Max Bwd_PSH_Flags Pkt_Size_Avg Idle_Mean 

Bwd_Pkt_Len_Min Fwd_URG_Flags Fwd_Seg_Size_Avg Idle_Std 

Bwd_Pkt_Len_Mean Bwd_URG_Flags Bwd_Seg_Size_Avg Idle_Max 

Bwd_Pkt_Len_Std Fwd_Header_Len Fwd_Byts/b_Avg Idle_Min 

Flow_Byts/s Bwd_Header_Len Fwd_Pkts/b_Avg   
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IoT-23: distribución de escenarios 
Los escenarios seleccionados para Mirai son: CTU-IoT-Malware 34,  CTU-IoT-Malware 35,  CTU-IoT-

Malware 43,  CTU-IoT-Malware 44  CTU-IoT-Malware 48,  CTU-IoT-Malware 49,  CTU-IoT-Malware 52,  

CTU-IoT-Malware 7, y CTU-HoneyPot-4-1, CTU-HoneyPot-5-1 y  CTU-HoneyPot-7-1.  

 

 

Explicación etiquetas IoT-23 
1. Attack: Indica que ha ocurrido algún tipo de ataque desde el dispositivo infectado hacia otro 

host, aprovechando servicios vulnerables mediante técnicas como fuerza bruta en 

autenticación Telnet o inyecciones de comandos en solicitudes GET. 

2. Benign: Se utiliza para indicar que no se encontraron actividades sospechosas o maliciosas en 

las conexiones analizadas. 
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3. C&C (Command & Control): Indica que el dispositivo infectado se ha conectado a un servidor 

de C&C. Este comportamiento se identifica por conexiones periódicas con el servidor, 

descargas de binarios desde el mismo o intercambio de órdenes codificadas al estilo IRC. 

4. DDoS (Distributed Denial of Service): Se aplica cuando el dispositivo infectado está ejecutando 

un ataque de denegación de servicio distribuido, detectado por la gran cantidad de flujos 

dirigidos a una misma dirección IP. 

5. FileDownload: Indica que se está descargando un archivo hacia el dispositivo infectado, 

identificado por conexiones con bytes de respuesta superiores a 3KB o 5KB, frecuentemente 

hacia puertos o direcciones IP conocidos como servidores de C&C. 

6. HeartBeat: Se utiliza cuando los paquetes enviados en una conexión se utilizan para mantener 

un seguimiento del dispositivo infectado por parte del servidor de C&C. Esto se detecta por 

conexiones con bytes de respuesta muy bajos y conexiones periódicas, usualmente hacia 

puertos o direcciones IP sospechosas. 

7. Mirai: Etiqueta que indica características típicas de un botnet Mirai en los flujos de conexión. 

Se aplica cuando los flujos muestran patrones similares a los ataques más comunes asociados 

con Mirai. 

8. Okiru: Similar a Mirai, pero identifica características específicas de un botnet Okiru, que 

aunque menos común, presenta comportamientos similares en términos de patrones de 

conexión. 

9. PartOfAHorizontalPortScan: Indica que los flujos están siendo utilizados para realizar un 

escaneo horizontal de puertos, recopilando información para futuros ataques. Esta etiqueta 

se basa en patrones donde las conexiones comparten el mismo puerto, una cantidad similar 

de bytes transmitidos y múltiples direcciones IP de destino diferentes. 

10. Torii: Se utiliza para etiquetar flujos que muestran características típicas de un botnet Torii, 

similar a Mirai y Okiru pero menos común en su detección. 

IoT-23: distribución de etiquetas por fichero 
En este apartado se especifica el número de instancias por clase y escenario. El número de instancias 

corresponde al obtenido por los autores mediante la herramienta Zeek. 

CTU-IoT-Malware-Capture-34-1 (Mirai) 

Label Flows 

Benign 1,923 

C&C 6,706 

DDoS 14,394 

PartOfAHorizontalPortScan 122 

CTU-IoT-Malware-Capture-35-1 (Mirai) 

Label Flows 

Attack 3 

Benign 8,262,389 

C&C 81 

C&C-FileDownload 12 

DDoS 2,185,302 
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CTU-IoT-Malware-Capture-43-1 (Mirai) 

Label Flows 

Benign 20,574,934 

C&C 3,498 

C&C-FileDownload 14 

DDoS 65,803 

FileDownload 1 

Okiru 8,765,885 

PartOfAHorizontalPortScan 37,911,674 

CTU-IoT-Malware-Capture-44-1 (Mirai) 

Label Flows 

Benign 211 

C&C 14 

C&C-FileDownload 11 

DDoS 1 

CTU-IoT-Malware-Capture-48-1 (Mirai) 

Label Flows 

Attack 2,752 

Benign 3,734 

C&C-HeartBeat-Attack 834 

C&C-HeartBeat-FileDownload 11 

C&C-PartOfAHorizontalPortScan 888 

PartOfAHorizontalPortScan 3,386,119 

CTU-IoT-Malware-Capture-49-1 (Mirai) 

Label Flows 

Benign 3,665 

C&C 1,922 

C&C-FileDownload 1 

PartOfAHorizontalPortScan 5,404,959 

CTU-IoT-Malware-Capture-52-1 (Mirai) 

Label Flows 

Benign 1,794 

C&C 6 

C&C-FileDownload 12 

PartOfAHorizontalPortScan 19,779,564 

CTU-IoT-Malware-Capture-7-1 (Linux.Mirai) 

Label Flows 

Benign 75,955 

C&C-HeartBeat 5,778 

DDoS 39,584 

Okiru 11,333,397 
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CIC-IoT-2023: distribución de clases de ataque y número de flujos  
En la tabla se muestran los ataques (correspondiente al campo label), los subataques (campo detailed-

label), el número de instancias dentro del csv y la herramienta empleada para generarlos. 
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CIC-IoT-2023: características originales 
Las características de este conjunto de datos son las siguientes: 



 

 

Anexo III: Estudio de Zeek 

Archivos generados por Zeek 
Fichero Descripción 

conn.log Detalles de conexión IP, TCP, UDP, ICMP 

conn_statistics.log Detalles de conexión IP, TCP, UDP, ICMP con medidas estadísticas 

dhcp.log Actividad de los leases de DHCP 

dns.log Detalles sobre solicitudes y respuestas DNS 

dpd.log Fallos de detección de protocolo dinámico 

files.log Resultados de análisis de archivos 

ftp.log Detalles de solicitudes y respuestas FTP 

http.log Detalles de solicitudes y respuestas HTTP 

irc.log Detalles de comunicación IRC 

Kerberos.log Autenticación de kerberos 

mysql.log Comandos y respuestas del servidor 

radius.log Intentos de autenticación radius 

sip.log Análisis de SIP 

smtp.log Transacciones SMTP 

software.log Software usado en la red según host 

ssh.log Handshakes de SSH 

ssl.log Handshakes de SSL 

syslog.log Mensajes syslog 

tunnel.log Detalles sobre túneles de encapsulación 

weird.log Actividad inesperada de protocolo o red 

X509.log Información sobre el certificado X.509 

dce_rpc.log Detalles en los mensajes DCE/RPC 

ntlm.log Información sobre NT LAN Manager 

rdp.log Información sobre Remote Desktop Protocol 

smb_files.log Detalles sobre archivos smb 

smb_mapping.log Mapeo de SMB 

 

En el capítulo 5 se muestra el proceso para obtener nuevos atributos, que posteriormente se 

emplearon en la clasificación de los flujos obtenidos a partir de las capturas. En este anexo se 

explica el significado de los atributos obtenidos a partir de Zeek. 

● ts: tiempo del primer paquete en formato UTC (el timestamp en .pcap CICIDS es UTC-3) 
● duration: cuánto ha durado la conexión (campo de tipo intervalo, sus unidades son segundos) 
● orig_bytes: número de bytes de origen a destino 
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● resp_bytes: número de bytes de destino a origen 
● conn_state (Posibles valores): 

○ S0: Intento de conexión visto, sin respuesta. 
○ S1: Conexión establecida, no terminada. 
○ SF: Establecimiento normal y terminación. Mismo símbolo que para el estado S1. Para 

distinguirlos, en S1 no hay ningún recuento de bytes en el resumen. 
○ REJ: Intento de conexión rechazado. 
○ S2: Conexión establecida e intento de cierre por parte del origen visto. Sin respuesta del 

destino.  
○ S3: Conexión establecida e intento de cierre por parte del destino visto. Sin respuesta 

del origen. 
○ RSTO: Conexión establecida, el origen abortó la conexión. Envió un RST.  
○ RSTR: El destino mandó un RST.  
○ RSTOS0: El origen envió un SYN seguido de un RST, nunca se vio un SYN-ACK del destino. 
○ RSTRH: El destino envió un SYN ACK seguido de un RST, nunca se vio un SYN del 

(supuesto) origen. 
○ SH: El origen envió un SYN seguido de un FIN, nunca se vio un SYN ACK del destino (por 

lo tanto, la conexión estaba "medio" abierta). 
○ SHR: El destino envió un SYN ACK seguido de un FIN, nunca se vio un SYN del autor. 
○ OTH: No se ve SYN, solo tráfico intermedio (un ejemplo de esto es una "conexión parcial" 

que no se cerró más tarde). 
● missed_bytes: cantidad de bytes perdidos en los gaps (representa los paquetes perdidos en 

la conexión) 
● history: es una cadena de letras que representa la historia del estado de la conexión.  

Si el evento proviene del origen, la letra está en mayúsculas; si proviene del destino, está en 
minúsculas. 
○ s: SYN sin el bit ACk activo 
○ h: SYN+ACK (handshake) 
○ a: ACK puro 
○ d: paquete con payload (“datos”) 
○ f: paquete con bit FIN activo 
○ r: paquete con bit RST activo 
○ c: paquete con checksum erróneo (se aplica a UDP también) 
○ g: gap 
○ t: paquete con payload retransmitido 
○ w: paquete con anuncio de ventana cero  
○ i: paquete inconsistente (por ejemplo, bits FIN+RST) 
○ q: paquete multi-flag (SYN+FIN o SYN+RST) 
○ ^: la dirección de la conexión fue invertida por la heurística de Zeek 

● orig_pkts: paquetes de origen a destino 
● resp_pkts: paquetes de destino a origen 
● orig_ip_bytes: número de bytes IP enviados por origen. 
● orig_bytes_no_cero:  bytes de los paquetes que no tienen Payload nula. 
● pkts_orig_cero:  paquetes que tienen Payload nula emitidos de origen a destino. 
● pkts_orig_no_cero:   paquetes que no tienen Payload nula emitidos de origen a destino. 
● time: medida de tiempo entre paquetes.  

 

Además se incluyen medidas estadísticas como la media y desviación estándar, valor máximo y 

mínimo de ciertos atributos. 
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Anexo IV: Scripts de Zeek 
A continuación se muestra un ejemplo de script que utiliza conn_statistics.zeek para la obtención 

de atributos a partir de las capturas de tráfico. Éste es llamado dentro del archivo local.zeek y 

genera un nuevo log llamado con_statistics.log, con los atributos propios del archivo conn.log 

además de otras medidas ya explicadas en el capítulo . Este script itera sobre cada archivo en una 

carpeta que contiene capturas de tráfico y crea otra carpeta que contiene los logs 

correspondientes a estas. 

#!/bin/bash 

# Directorio de origen 

source_dir="/root/bbdd/iotd20/pcaps/dos/" 

# Directorio de destino 

dest_dir="/root/bbdd/logs-zeek/iotd20-logs/logs-dos/" 

# Obtener una lista de archivos pcap en el directorio de origen 

files=$(ls "$source_dir"*.pcap) 

# Iterar sobre cada archivo 

for file_with_extension in $files 

do 

    # Obtener el nombre del archivo sin la extensión 

    filename=$(basename -- "$file_with_extension") 

    filename_no_extension="${filename%.*}" 

    # Crear el nombre de la carpeta de destino 

    dest_folder="$dest_dir$filename_no_extension-logs" 

    # Crear la carpeta de destino 

    mkdir -p "$dest_folder" 

    # Ejecutar Zeek en el archivo actual 

    zeek -C -r "$file_with_extension" /usr/local/zeek/share/zeek/site/local.zeek Log::default_logdir="$dest_folder" 

done 

Cada uno de los logs generados tiene una estructura similar a la mostrada a continuación: 

{"ts":1558922777.824831,"startTime":"2019-05-27 

02:06:17","uid":"CSsw4d1rySllO7hBS3","id.orig_h":"192.168.0.14","id.orig_p":54685,"id.resp_h

":"192.168.0.1","id.resp_p":80,"proto":"tcp","duration":0.08716106414794922,"orig_bytes":0,"

resp_bytes":89574,"conn_state":"SHR","local_orig":true,"local_resp":true,"missed_bytes":0,"hi

story":"^hadf","orig_pkts":0,"orig_ip_bytes":0,"resp_pkts":68,"resp_ip_bytes":93118,"tunnel_

parents":[],"orig_bytes_mean":0.0,"resp_bytes_mean":1336.9253731343283,"resp_bytes_std"

:347.3232961417521,"orig_bytes_mean_nocero":0.0,"resp_bytes_mean_nocero":1399.59375,"

orig_bytes_std_nocero":0.0,"resp_bytes_std_nocero":355.3704631012208,"orig_bytes_min":1

000,"resp_bytes_min":0,"orig_bytes_max":0,"resp_bytes_max":2318,"orig_pkts_nocero":0,"re

sp_pkts_nocero":64,"orig_pkts_cero":0,"resp_pkts_cero":4,"time_mean":0.0012817803551169

002,"time_std":0.003319510976490021,"time_min":0.0,"time_max":0.01996302604675293,"o

rig_time_mean":0.0,"orig_time_min":10000.0,"orig_time_max":0.0,"resp_time_mean":0.0012

810446999289773,"resp_time_std":0.0033617492476943843,"resp_time_min":0.0,"resp_time

_max":0.01996302604675293}  

El archivo .log está formado por una serie de registros en formato JSON que describen conexiones 

de red. Cada registro representa una conexión individual y contiene múltiples campos con 

información sobre la conexión. 
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Anexo V: Scripts de Python para conversión a .csv 
A continuación se presenta un ejemplo del código empleado para convertir a formato csv los logs 

que presentan formato .json. En las bases de datos CIC-IoT-2023 e IoT-23 ha sido necesario el uso 

de la opción chunks para leer de forma fragmentada el archivo debido a que el tamaño de los logs 

superaba al de la memoria RAM disponible. 

import sys 

import json 

import pandas as pd 

from datetime import datetime 

 

# Rutas de los archivos de entrada y salida 

zeek_log_path = r"/root/bbdd/iot-23/CTU-IoT-Malware-Capture-33-1/bro/conn-labeled.log" 

csv_output_path = r"/root/bbdd/iot-23/CTU-IoT-Malware-Capture-33-1/bro/output.csv" 

 

# Función para aplicar transformaciones a un chunk de datos 

def apply_transformations(chunk): 

    # Aplicar transformación a la columna 'ts' 

    chunk['ts'] = chunk['ts'].apply(datetime.fromtimestamp) 

    # Dividir la columna 'tunnel_parents label detailed-label' 

    chunk[['tunnel_parents', 'label', 'detailed-label']] = chunk['tunnel_parents   label   detailed-label'].str.split('\s{3}', expand=True) 

    # Eliminar la columna original 

    chunk.drop(columns=['tunnel_parents   label   detailed-label'], inplace=True) 

    return chunk 

 

# Función para procesar un chunk de datos 

def process_chunk(chunk): 

    return apply_transformations(chunk) 

 

# Tamaño del chunk 

chunk_size = 50000 

 

# Leer el archivo de registro de Zeek en chunks 

with open(zeek_log_path, 'r') as file: 

    header_line = file.readlines()[6].strip().split('\t')[1:] 

chunks = pd.read_csv(zeek_log_path, sep='\t', skiprows=8, names=header_line, engine='python', chunksize=chunk_size) 

 

# Aplicar transformaciones a cada chunk y concatenar los resultados 

processed_chunks = [process_chunk(chunk) for chunk in chunks] 

df = pd.concat(processed_chunks, ignore_index=True) 

 

# Guardar el DataFrame resultante como archivo CSV 

df.to_csv(csv_output_path, index=False) 

 

# Imprimir mensaje de éxito 

print("Archivo CSV guardado exitosamente.")  
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Anexo VI: Scripts de unión de archivos .csv 
Una vez se ha obtenido el log en formato .csv, se deben unir todos aquellos que corresponden a 

un mismo dataset, por lo que obtendremos tres ficheros. En el caso de IoTD20, cuyo tamaño es 

reducido y es posible realizarlo sin fragmentarlo en chunks, se hizo de la siguiente forma: 

import os 
import pandas as pd 
 
def concatenate_csv_files(main_directory,save_directory): 
    """ 
    Concatenate all CSV files in subdirectories of the main directory into a single CSV file. 
     
    Parameters: 
    main_directory (str): Path to the main directory containing subdirectories with CSV files. 
     
    The function saves the concatenated CSV file in the main directory, named as the main directory name + '_all.csv'. 
    """ 
     
    # Get the main directory name for the output file 
    main_directory_name = os.path.basename(os.path.normpath(main_directory)) 
    # Initialize an empty list to hold DataFrames 
    data_frames = [] 
    header_saved = False 
    column_order = [] 
 
    total_length = 0  # Initialize total length counter 
    # Walk through each subfolder in the main directory 
    for subdir, _, files in os.walk(main_directory): 
        for file in files: 
            # Check if the file is a CSV file 
            if file.endswith('.csv'): 
                file_path = os.path.join(subdir, file) 
                # Read the CSV file and append the DataFrame to the list 
                if not header_saved: 
                    # Read the first CSV file with headers 
                    df = pd.read_csv(file_path) 
                    header_saved = True 
                    column_order = df.columns.tolist()  # Save the column order 
                    print(column_order) 
                else: 
                    # Read subsequent CSV files 
                    df = pd.read_csv(file_path) 
                    # Reorder the columns of the DataFrame to match the column order of the first DataFrame 
                    df = df.reindex(column_order, axis=1) 
                data_frames.append(df) 
                total_length += len(df)  # Add length of current DataFrame to total length 
 
    # Concatenate all DataFrames in the list into a single DataFrame 
    concatenated_df = pd.concat(data_frames, ignore_index=True) 
 
    # Save the concatenated DataFrame to a new CSV file in the main directory 
    output_file = os.path.join(save_directory, f'{main_directory_name}_all.csv') 
    concatenated_df.to_csv(output_file, index=False) 
 
    print(f'Total length of concatenated CSV: {total_length}') 
    print(f'All CSV files have been concatenated and saved to {output_file}') 
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Sin embargo, para los datasets IoT-23 y CIC-IoT-2023 requieren su lectura y escritura 

fragmentadas: 

import os 

import pandas as pd 

 

def concatenate_csv_files(main_directory, save_directory, chunk_size=50000): 

    """ 

    Concatenate all CSV files in subdirectories of the main directory into a single CSV file. 

    Parameters: 

    main_directory (str): Path to the main directory containing subdirectories with CSV files. 

    save_directory (str): Path to the directory where the concatenated CSV file will be saved. 

    chunk_size (int): Number of rows per chunk to read from each CSV file. 

    """ 

    # Get the main directory name for the output file 

    main_directory_name = os.path.basename(os.path.normpath(main_directory)) 

    output_file = os.path.join(save_directory, f'{main_directory_name}_all.csv') 

    # Initialize a flag to indicate whether to write header 

    header_written = False 

    column_order = [] 

    total_length = 0  # Initialize total length counter 

    # Walk through each subfolder in the main directory 

    for subdir, _, files in os.walk(main_directory): 

        for file in files: 

            # Check if the file is a CSV file 

            if file.endswith('.csv'): 

                file_path = os.path.join(subdir, file) 

                 

                # Process the CSV file in chunks 

                for chunk in pd.read_csv(file_path, chunksize=chunk_size): 

                    if not header_written: 

                        # Write the first chunk with headers and save column order 

                        chunk.to_csv(output_file, mode='w', header=True, index=False) 

                        header_written = True 

                        column_order = chunk.columns.tolist() 

                    else: 

                     # Ensure chunk has same column order and write without headers 

                        chunk = chunk.reindex(columns=column_order) 

                        chunk.to_csv(output_file, mode='a', header=False, index=False) 

                    # Add length of current chunk to total length    

                    total_length += len(chunk)   

 

    print(f'Total length of concatenated CSV: {total_length}') 

    print(f'All CSV files have been concatenated and saved to {output_file}') 
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Anexo VII: Scripts de etiquetado 
A continuación, se muestra uno de los scripts empleados para el etiquetado de los flujos en el 

capítulo 5. Para ello se ha empleado la librería pandas de Python. Se genera la etiqueta original 

detailed-label, la etiqueta común label, y la etiqueta binaria binary-label. Después, en función del 

nombre del archivo, que sirve como indicativo del tipo de ataque contenido, comprueba los flujos 

maliciosos mediante campos como puerto origen y destino (id.orig_p e id.resp_p), direcciones 

origen y destino (id.orig_h e id.rsep_h), protocolo (proto), estado de conexión (conn_state), y si 

se ha empleado algún tipo de flag, empleando el campo history para este último caso. 

import os 
import pandas as pd 
def process_conn_log(folder_path): 
    conn_log_path = os.path.join(folder_path, "conn_stadistics.log") 
    # Check if conn_stadistics.log file exists 
    if os.path.exists(conn_log_path): 
        # Extract file name from folder path 
        folder_name = os.path.basename(folder_path) 
 
        # Read conn_stadistics.log into a DataFrame 
        df = pd.read_json(conn_log_path, lines=True) 
 
        # Create a column to hold binary-label with default value 'benign' 
        df['binary-label'] = '0' 
        df['label'] = 'benign' 
        df['detailed-label'] = 'benign' 
 
        if "mirai-udpflooding" in folder_name: 
            conditions = df["id.orig_h"] == "210.89.164.90" 
            df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Mirai", "Mirai-UDPFlood"] 
 
        elif "mirai-ackflooding" in folder_name: 
            conditions = df["id.orig_h"] == "210.89.164.90" 
            df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Mirai", "Mirai-ACKFlood"] 
 
        elif "mirai-httpflooding" in folder_name: 
            conditions = df["id.orig_h"] == "210.89.164.90" 
            df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Mirai", "Mirai-HTTPFlood"] 
 
        elif "mirai-hostbruteforce" in folder_name: 
            if ("mirai-hostbruteforce-1" in folder_name or "mirai-hostbruteforce-3" in folder_name or "mirai-hostbruteforce-5" in 
folder_name): 
                conditions = (df["id.orig_h"] == "192.168.0.13") & (df["proto"] == "tcp") & (df["id.resp_p"] == 23) 
                df.loc[conditions, 'label'] = 'Mirai' 
                df.loc[conditions, 'binary-label'] = 1  # Assuming you want binary label as 1 
                df.loc[conditions, 'detailed-label'] = 'Mirai-TelnetBruteforce' 
 
            elif ("mirai-hostbruteforce-2" in folder_name or "mirai-hostbruteforce-4" in folder_name): 
                print("mirando hbf2 o hbf4") 
                conditions = (df["id.orig_h"] == "192.168.0.24") & (df["proto"] == "tcp") & (df["id.resp_p"] == 23) 
                df.loc[conditions, 'label'] = 'Mirai' 
                df.loc[conditions, 'binary-label'] = 1  # Assuming you want binary label as 1 
                df.loc[conditions, 'detailed-label'] = 'Mirai-TelnetBruteforce' 
 
        else: 
            print(f"No matching condition found for folder {folder_path}") 
            return 
        # Save the DataFrame as conn_stadistics_labeled.csv 
        df.to_csv(os.path.join(folder_path, "conn_stadistics_labeled.csv"), index=False) 
        print(f"Saved conn_stadistics_labeled.csv in {folder_path}") 
 
    else: 
        print(f"conn_stadistics.log not found in {folder_path}") 
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# Etiquetado DoS 
import ipaddress 

def is_ipv4(address): 

    try: 

        ipaddress.IPv4Address(address) 

        return True 

    except ipaddress.AddressValueError: 

        return False 

def process_conn_log(folder_path): 

    conn_log_path = os.path.join(folder_path, "conn_stadistics.log") 

    # Check if conn_stadistics.log file exists 

    if os.path.exists(conn_log_path): 

        # Extract file name from folder path 

        folder_name = os.path.basename(folder_path) 

        # Read conn_stadistics.log into a DataFrame 

        df = pd.read_json(conn_log_path, lines=True) 

        # Create a column to hold binary-label with default value 'benign' 

        df['binary-label'] = '0' 

        df['label'] = 'benign' 

        df['detailed-label'] = 'benign' 

        if "dos-synflooding-1-dec" in folder_name or "dos-synflooding-2-dec" in folder_name : 

            # Apply is_ipv4 function to id.orig_h column to check if each value is an IPv4 address 

            ipv4_mask = df["id.orig_h"].apply(is_ipv4) 

            network_range = ipaddress.ip_network("222.0.0.0/8") 

            # Apply ipaddress.ip_address() function only to IPv4 addresses in the id.orig_h column 

            ipv4_addresses = df.loc[ipv4_mask, "id.orig_h"].apply(ipaddress.ip_address) 

            # Check if the IPv4 addresses are in the network range 

            ip_in_net = ipv4_addresses.apply(lambda x: x in network_range) 

            conditions = (ip_in_net) & (df["history"].str.lower().str.contains("s")) & (df["id.resp_h"] == "192.168.0.13") & (df["id.resp_p"] 

== 554) & (df["proto"] == "tcp") 

            df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "DoS", "DoS-SYNFlood"] 

 

        elif "dos-synflooding-3-dec" in folder_name: 

            ipv4_mask = df["id.orig_h"].apply(is_ipv4) 

            network_range = ipaddress.ip_network("111.0.0.0/8") 

            # Apply ipaddress.ip_address() function only to IPv4 addresses in the id.orig_h column 

            ipv4_addresses = df.loc[ipv4_mask, "id.orig_h"].apply(ipaddress.ip_address) 

            # Check if the IPv4 addresses are in the network range 

            ip_in_net = ipv4_addresses.apply(lambda x: x in network_range) 

 

            conditions = (ip_in_net) & (df["history"].str.lower().str.contains("s")) & (df["id.resp_h"] == "192.168.0.13") & (df["proto"] == 

"tcp") & (df["id.resp_p"] == 554) 

            df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "DoS", "DoS-SYNFlood"] 

        elif "dos-synflooding-4-dec" in folder_name or "dos-synflooding-5-dec" in folder_name or "dos-synflooding-6-dec" in 

folder_name : 

            ipv4_mask = df["id.orig_h"].apply(is_ipv4) 

            network_range = ipaddress.ip_network("111.0.0.0/8") 

            # Apply ipaddress.ip_address() function only to IPv4 addresses in the id.orig_h column 

            ipv4_addresses = df.loc[ipv4_mask, "id.orig_h"].apply(ipaddress.ip_address) 

            # Check if the IPv4 addresses are in the network range 

            ip_in_net = ipv4_addresses.apply(lambda x: x in network_range) 

            conditions = (ip_in_net) & (df["history"].str.lower().str.contains("s")) & (df["id.resp_h"] == "192.168.0.24") & (df["proto"] == 

"tcp")& (df["id.resp_p"] == 19604) 

            df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "DoS", "DoS-SYNFlood"] 

        else: 

            print(f"No matching condition found for folder {folder_path}") 

            return 

        # Save the DataFrame as conn_stadistics_labeled.csv 

        df.to_csv(os.path.join(folder_path, "conn_stadistics_labeled.csv"), index=False) 

        print(f"Saved conn_stadistics_labeled.csv in {folder_path}") 

    else: 

        print(f"conn_stadistics.log not found in {folder_path}") 

for folder in os.listdir(main_directory): 

    folder_path = os.path.join(main_directory, folder) 

    if os.path.isdir(folder_path): 

        process_conn_log(folder_path) 
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# Etiquetado Scan  
main_directory = "/root/bbdd/logs-zeek/iotd20-logs/logs-scan/" 

def process_conn_log(folder_path): 

    conn_log_path = os.path.join(folder_path, "conn_stadistics.log") 

 

    # Check if conn_stadistics.log file exists 

    if os.path.exists(conn_log_path): 

        # Extract file name from folder path 

        folder_name = os.path.basename(folder_path) 

 

        # Read conn_stadistics.log into a DataFrame 

        df = pd.read_json(conn_log_path, lines=True) 

 

        # Create a column to hold binary-label with default value 'benign' 

        df['binary-label'] = '0' 

        df['label'] = 'benign' 

        df['detailed-label'] = 'benign' 

 

        if "scan-hostport-1-dec" in folder_name or "scan-hostport-2-dec" in folder_name or "scan-hostport-3-dec" in folder_name : 

            conditions = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") & 

((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r"))) 

            df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"] 

 

        elif "scan-hostport-4-dec" in folder_name or "scan-hostport-5-dec" in folder_name or "scan-hostport-6-dec" in folder_name: 

            conditions = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") & 

((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r"))) 

            df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"] 

 

 

        elif "scan-portos-1-dec" in folder_name or "scan-portos-2-dec" in folder_name or "scan-portos-3-dec" in folder_name: 

            conditions = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") & 

((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r"))) 

            df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"] 

 

            conditions2 = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") & (df["proto"] != "icmp") & 

~((df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") & (((df["proto"] == "tcp") & 

(df["history"].str.lower().str.contains("s"))) | (df["history"].str.lower().str.contains("r"))))  

            df.loc[conditions2, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-OSDetection"] 

 

        elif "scan-portos-4-dec" in folder_name or "scan-portos-5-dec" in folder_name or "scan-portos-6-dec" in folder_name: 

            conditions = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") & 

((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r"))) 

            df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"] 

 

            conditions2 = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") & (df["proto"] != "icmp") & 

~((df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") & (((df["proto"] == "tcp") & 

(df["history"].str.lower().str.contains("s"))) | (df["history"].str.lower().str.contains("r"))))  

            df.loc[conditions2, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-OSDetection"] 

         

        else: 

            print(f"No matching condition found for folder {folder_path}") 

            return 

 

        # Save the DataFrame as conn_stadistics_labeled.csv 

        df.to_csv(os.path.join(folder_path, "conn_stadistics_labeled.csv"), index=False) 

        print(f"Saved conn_stadistics_labeled.csv in {folder_path}") 

 

    else: 

        print(f"conn_stadistics.log not found in {folder_path}") 

 

for folder in os.listdir(main_directory): 

    folder_path = os.path.join(main_directory, folder) 

    if os.path.isdir(folder_path): 

        process_conn_log(folder_path) 
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# Etiquetado MITM 

main_directory = "/root/bbdd/logs-zeek/iotd20-logs/logs-mitm/" 

 

def process_conn_log(folder_path): 

    conn_log_path = os.path.join(folder_path, "conn_stadistics.log") 

 

    # Check if conn_stadistics.log file exists 

    if os.path.exists(conn_log_path): 

        # Extract file name from folder path 

        folder_name = os.path.basename(folder_path) 

 

        # Read conn_stadistics.log into a DataFrame 

        df = pd.read_json(conn_log_path, lines=True) 

 

        # Create a column to hold binary-label with default value 'benign' 

        df['binary-label'] = '0' 

        df['label'] = 'benign' 

        df['detailed-label'] = 'benign' 

 

        if "scan-hostport-1-dec" in folder_name or "scan-hostport-2-dec" in folder_name or "scan-hostport-3-dec" in folder_name : 

            conditions = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") & 

((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r"))) 

            df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-HostDiscovery"] 

 

        elif "scan-hostport-4-dec" in folder_name or "scan-hostport-5-dec" in folder_name or "scan-hostport-6-dec" in folder_name: 

            conditions = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") & 

((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r"))) 

            df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-HostDiscovery"] 

        elif "scan-portos-1-dec" in folder_name or "scan-portos-2-dec" in folder_name or "scan-portos-3-dec" in folder_name: 

            conditions = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") & 

((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r"))) 

            df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"] 

 

            conditions2 = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") & (df["proto"] != "icmp") & 

~((df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.13") & (((df["proto"] == "tcp") & 

(df["history"].str.lower().str.contains("s"))) | (df["history"].str.lower().str.contains("r"))))  

            df.loc[conditions2, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-OSDetection"] 

 

        elif "scan-portos-4-dec" in folder_name or "scan-portos-5-dec" in folder_name or "scan-portos-6-dec" in folder_name: 

            conditions = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") & 

((df["history"].str.lower().str.contains("s")) | (df["history"].str.lower().str.contains("r"))) 

            df.loc[conditions, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-PortScan"] 

 

            conditions2 = (df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") & (df["proto"] != "icmp") & 

~((df["id.orig_h"] == "192.168.0.15") & (df["id.resp_h"] == "192.168.0.24") & (((df["proto"] == "tcp") & 

(df["history"].str.lower().str.contains("s"))) | (df["history"].str.lower().str.contains("r"))))  

            df.loc[conditions2, ['binary-label', 'label', 'detailed-label']] = ["1", "Scan", "Scan-OSDetection"] 

         

        else: 

            print(f"No matching condition found for folder {folder_path}") 

            return 

        # Save the DataFrame as conn_stadistics_labeled.csv 

        df.to_csv(os.path.join(folder_path, "conn_stadistics_labeled.csv"), index=False) 

        print(f"Saved conn_stadistics_labeled.csv in {folder_path}") 

    else: 

        print(f"conn_stadistics.log not found in {folder_path}") 
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# Para benign 

main_directory = "/root/bbdd/logs-zeek/iotd20-logs/logs-benign" 

def process_conn_log(folder_path): 

    conn_log_path = os.path.join(folder_path, "conn_stadistics.log") 

 

    # Check if conn_stadistics.log file exists 

    if os.path.exists(conn_log_path): 

        # Extract file name from folder path 

        folder_name = os.path.basename(folder_path) 

 

        # Read conn_stadistics.log into a DataFrame 

        with open(conn_log_path, 'r') as file: 

            header_line = file.readlines()[6].strip().split('\t')[1:] 

        df = pd.read_csv(conn_log_path, sep='\t', skiprows=8, names=header_line, skipfooter=1, engine='python') 

 

        # Create a column to hold binary-label with default value 'benign' 

        df['binary-label'] = '0' 

        df['label'] = 'benign' 

        df['detailed-label'] = 'benign' 

        # Save the DataFrame as conn_stadistics_labeled.csv 

        df.to_csv(os.path.join(folder_path, "conn_stadistics_labeled.csv"), index=False) 

        print(f"Saved conn_stadistics_labeled.csv in {folder_path}") 

 

    else: 

        print(f"conn_stadistics.log not found in {folder_path}") 

for folder in os.listdir(main_directory): 

    folder_path = os.path.join(main_directory, folder) 

    if os.path.isdir(folder_path): 

        process_conn_log(folder_path) 

 

Para el etiquetado del cojunto de datos IoT-23 se realiza de forma separada por escenarios, ya 

que cada uno de estos necesita un etiquetado diferente. Para este dataset, fue necesario emplear 

otra técnica de etiquetado, ya que las condiciones empleadas por los autores del dataset estaban 

formuladas de forma que pudisen superponerse etiquetas en ciertos casos. 

import json 

 

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-IoT-Malware-Capture-34-1/conn_stadistics.log" 

output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-IoT-Malware-Capture-34-1.csv" 

label_1 = "C&C" 

label_2 = "PartOfAHorizontalPortscan" 

label_3 = "DDoS" 

 

# Initialize label checks 

label_checked = [False] * 3 

 

all_keys = ["ts", "startTime", "uid", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto", "service", "duration", "orig_bytes",  

            "resp_bytes", "conn_state", "local_orig", "local_resp", "missed_bytes", "history", "orig_pkts", "orig_ip_bytes", "resp_pkts",  

            "resp_ip_bytes", "tunnel_parents", "orig_bytes_mean", "resp_bytes_mean", "orig_bytes_std", "resp_bytes_std", 

"orig_bytes_mean_nocero",   "resp_bytes_mean_nocero", "orig_bytes_std_nocero", "resp_bytes_std_nocero", "orig_bytes_min", 

"resp_bytes_min", "orig_bytes_max",  "resp_bytes_max", "orig_pkts_nocero", "resp_pkts_nocero", "orig_pkts_cero", 

"resp_pkts_cero", "time_mean", "time_std", "time_min",  "time_max", "orig_time_mean", "orig_time_std", "orig_time_min", 

"orig_time_max", "resp_time_mean", "resp_time_std", "resp_time_min", "resp_time_max"] 

 

with open(input_file, "r") as f_in, open(output_file, "w") as f_out: 

    f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local

_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes

_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_n

ocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pk

ts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,r

esp_time_std,resp_time_min,resp_time_max,label,binary-label\n") 

    for line in f_in: 

        data = json.loads(line) 
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        for key in all_keys: 

            if key not in data: 

                data[key] = "" 

        binary_label = 0 

        labels = []  # Start empty 

        if data["id.resp_p"] == "6667" and not label_checked[0]: 

            labels.append(label_1) 

            binary_label = 1 

            label_checked[0] = True 

        if data["id.resp_p"] == "63798" and not label_checked[1]: 

            labels.append(label_2) 

            binary_label = 1 

            label_checked[1] = True 

        if data["id.resp_p"] == "256" and not label_checked[1]: 

            labels.append(label_2) 

            binary_label = 1 

            label_checked[1] = True 

        if data["id.resp_h"] == "123.59.209.185" and not label_checked[2]: 

            labels.append(label_3) 

            binary_label = 1 

            label_checked[2] = True 

        if data["id.resp_h"] == "71.61.66.148" and not label_checked[2]: 

            labels.append(label_3) 

            binary_label = 1 

            label_checked[2] = True 

        if data["id.resp_h"] == "74.91.117.248" and not label_checked[2]: 

            labels.append(label_3) 

            binary_label = 1 

            label_checked[2] = True 

        if data["id.resp_p"] == "5376" and not label_checked[2]: 

            labels.append(label_3) 

            binary_label = 1 

            label_checked[2] = True 

         

 

        # Reset label checks if all labels are checked 

        # If no labels are added, assign "benign" 

        if not labels: 

            labels.append("benign") 

         

        values = [str(data[key]) for key in all_keys] 

        labels_joined = '-'.join(labels) 

        csv_line = ','.join(values) + f',{labels_joined},{binary_label}\n'         

        f_out.write(csv_line) 

 

        label_checked = [False] * 3 

 

# Escenario 35 

import json 

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-IoT-Malware-Capture-35-1/conn_stadistics.log" 

output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-IoT-Malware-Capture-35-1.csv" 

 

label_1 = "C&C" 

label_2 = "FileDownload" 

label_3 = "Attack" 

label_4 = "DDoS" 

 

# Initialize label checks 

label_checked = [False] * 4 

 

with open(input_file, "r") as f_in, open(output_file, "w") as 

f_out:    f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_stat

e,local_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp

_bytes_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes

_std_nocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,r
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esp_pkts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_

mean,resp_time_std,resp_time_min,resp_time_max,label,binary-label\n") 

 

    for line in f_in: 

        data = json.loads(line) 

        for key in all_keys: 

            if key not in data: 

                data[key] = "" 

        binary_label = 0 

        labels = []  # Start empty 

        if data["id.resp_h"] == "104.248.160.24" and not label_checked[0]: 

            labels.append(label_1) 

            binary_label = 1 

            label_checked[0] = True 

        if data["id.resp_h"] == "104.248.160.24" and data["resp_ip_bytes"] > 30000 and not label_checked[1]: 

            labels.append(label_2) 

            binary_label = 1 

            label_checked[1] = True 

        if data["id.resp_h"] == "110.183.76.177" and not label_checked[2]: 

            labels.append(label_3) 

            binary_label = 1 

            label_checked[2] = True 

        if data["id.resp_h"] == "112.27.30.87" and not label_checked[2]: 

            labels.append(label_3) 

            binary_label = 1 

            label_checked[2] = True 

        if data["id.resp_h"] == "85.217.225.181" and not label_checked[2]: 

            labels.append(label_3) 

            binary_label = 1 

            label_checked[2] = True 

        if data["id.resp_p"] == "992" and not label_checked[3]: 

            labels.append(label_4) 

            binary_label = 1 

            label_checked[3] = True 

        if data["id.resp_h"] == "209.97.190.136" and not label_checked[3]: 

            labels.append(label_4) 

            binary_label = 1 

            label_checked[3] = True 

        if data["id.resp_h"] == "173.113.172.138" and not label_checked[3]: 

            labels.append(label_4) 

            binary_label = 1 

            label_checked[3] = True 

        if data["id.resp_h"] == "216.18.168.16" and not label_checked[3]: 

            labels.append(label_4) 

            binary_label = 1 

            label_checked[3] = True 

        if data["id.resp_h"] == "24.165.115.195" and not label_checked[3]: 

            labels.append(label_4) 

            binary_label = 1 

            label_checked[3] = True 

        if data["id.resp_h"] == "54.39.87.104" and not label_checked[3]: 

            labels.append(label_4) 

            binary_label = 1 

            label_checked[3] = True 

 

        # Reset label checks if all labels are checked 

        # If no labels are added, assign "benign" 

        if not labels: 

            labels.append("benign") 

         

        values = [str(data[key]) for key in all_keys] 

        labels_joined = '-'.join(labels) 

        csv_line = ','.join(values) + f',{labels_joined},{binary_label}\n'         

        f_out.write(csv_line) 

        label_checked = [False] * 4 
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# Escenario 43 

import json 

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-IoT-Malware-Capture-43-1/conn_stadistics.log" 

output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-IoT-Malware-Capture-43-1.csv" 

label_1 = "C&C" 

label_2 = "DDoS" 

label_3 = "Okiru" 

label_4 = "PartOfAHorizontalPortScan" 

label_5 = "FileDonwload" 

 

# Initialize label checks 

label_checked = [False] * 5 

with open(input_file, "r") as f_in, open(output_file, "w") as 

f_out:   f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state

,local_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_

bytes_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_

std_nocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,re

sp_pkts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_m

ean,resp_time_std,resp_time_min,resp_time_max,label,binary-label\n") 

 

    for line in f_in: 

        data = json.loads(line) 

        for key in all_keys: 

            if key not in data: 

                data[key] = "" 

        binary_label = 0 

        labels = []  # Start empty 

        if data["id.resp_p"] == 45 and not label_checked[0]: 

            labels.append(label_1) 

            binary_label = 1 

            label_checked[0] = True 

 

        if data["id.resp_h"] == "142.11.219.83" and not label_checked[0]: 

            labels.append(label_1) 

            binary_label = 1 

            label_checked[0] = True 

 

        if data["id.resp_p"] == 27015 and not label_checked[1]: 

            labels.append(label_2) 

            binary_label = 1 

            label_checked[1] = True 

 

        if data["id.resp_p"] == 37215 and not label_checked[2]: 

            labels.append(label_3) 

            binary_label = 1 

            label_checked[2] = True 

             

        if data["id.resp_p"] == 52869 and data["conn_state"] == "S0" and not label_checked[3]: 

            labels.append(label_4) 

            binary_label = 1 

            label_checked[3] = True 

 

        if data["resp_ip_bytes"] > 50000 and not label_checked[4]: 

            labels.append(label_5) 

            binary_label = 1 

            label_checked[4] = True 

         

        # If no labels are added, assign "benign" 

        if not labels: 

            labels.append("benign") 

         

        values = [str(data[key]) for key in all_keys] 

        labels_joined = '-'.join(labels) 

        csv_line = ','.join(values) + f',{labels_joined},{binary_label}\n'         

        f_out.write(csv_line) 

        label_checked = [False] * 5 
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# Escenario 44 

import json 

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-IoT-Malware-Capture-44-1/conn_stadistics.log" 

output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-IoT-Malware-Capture-44-1.csv" 

 

label_1 = "C&C" 

label_2 = "DDoS" 

label_3 = "FileDonwload" 

 

# Initialize label checks 

label_checked = [False] * 3 

with open(input_file, "r") as f_in, open(output_file, "w") as f_out: 

    f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local

_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes

_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_n

ocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pk

ts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,r

esp_time_std,resp_time_min,resp_time_max,label,binary-label\n") 

 

    for line in f_in: 

        data = json.loads(line) 

         

        for key in all_keys: 

            if key not in data: 

                data[key] = "" 

                 

        binary_label = 0 

        labels = []  # Start empty 

        if data["id.resp_h"] == "46.101.251.172" and (data['proto'] == "tcp") and not label_checked[0]: 

            labels.append(label_1) 

            binary_label = 1 

            label_checked[0] = True 

 

        if data["id.resp_p"] == 80 and (data['proto'] == "udp") and not label_checked[1]: 

            labels.append(label_2) 

            binary_label = 1 

            label_checked[1] = True 

 

        if data["id.resp_h"] == "86.136.151.56"  and not label_checked[1]: 

            labels.append(label_2) 

            binary_label = 1 

            label_checked[1] = True 

 

        if data['resp_ip_bytes'] > 50000 and not label_checked[2]: 

            labels.append(label_3) 

            binary_label = 1 

            label_checked[2] = True 

             

         

 

        # Reset label checks if all labels are checked 

        # If no labels are added, assign "benign" 

        if not labels: 

            labels.append("benign") 

         

        values = [str(data[key]) for key in all_keys] 

        labels_joined = '-'.join(labels) 

        csv_line = ','.join(values) + f',{labels_joined},{binary_label}\n'         

        f_out.write(csv_line) 

 

        label_checked = [False] * 3 
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# Escenario 48 

import json 

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-IoT-Malware-Capture-48-1/conn_stadistics.log" 

output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-IoT-Malware-Capture-48-1.csv" 

label_1 = "C&C" 

label_2 = "HeartBeat" 

label_3 = "FileDownload" 

label_4 = "PartOfAHorizontalPortScan" 

label_5 = "Attack" 

 

# Initialize label checks 

label_checked = [False] * 5 

with open(input_file, "r") as f_in, open(output_file, "w") as f_out: 

    f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local

_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes

_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_n

ocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pk

ts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,r

esp_time_std,resp_time_min,resp_time_max,label,binary-label\n") 

    for line in f_in: 

        data = json.loads(line) 

        for key in all_keys: 

            if key not in data: 

                data[key] = "" 

 

        binary_label = 0 

        labels = []  # Start empty 

        if data["id.resp_h"] == "167.99.182.238" and not label_checked[0]: 

            labels.append(label_1) 

            binary_label = 1 

            label_checked[0] = True 

 

        if data["id.resp_h"] == "167.99.182.238" and (data['resp_ip_bytes'] > 1) and not label_checked[1]: 

            labels.append(label_2) 

            binary_label = 1 

            label_checked[1] = True 

 

        if data["id.resp_p"] == 80 and (data['resp_ip_bytes'] > 50000) and not label_checked[2]: 

            labels.append(label_3) 

            binary_label = 1 

            label_checked[2] = True 

 

        if data["id.resp_p"] == 23 and (data['conn_state'] == 'S0') and not label_checked[3]: 

            labels.append(label_4) 

            binary_label = 1 

            label_checked[3] = True 

             

        if data["id.resp_p"] == 23 and (data['orig_ip_bytes'] > 7) and not label_checked[4]: 

            labels.append(label_5) 

            binary_label = 1 

            label_checked[4] = True 

 

        # Reset label checks if all labels are checked 

        # If no labels are added, assign "benign" 

        if not labels: 

            labels.append("benign") 

         

        values = [str(data[key]) for key in all_keys] 

        labels_joined = '-'.join(labels) 

        csv_line = ','.join(values) + f',{labels_joined},{binary_label}\n'         

        f_out.write(csv_line) 

 

        label_checked = [False] * 5 

 

 



 

82 

# Escenario 49 

import json 

 

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-IoT-Malware-Capture-49-1/conn_stadistics.log" 

output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-IoT-Malware-Capture-49-1.csv" 

 

label_1 = "C&C" 

label_2 = "PartOfAHorizontalPortScan" 

label_3 = "FileDownload" 

 

# Initialize label checks 

label_checked = [False] * 3 

 

with open(input_file, "r") as f_in, open(output_file, "w") as f_out: 

 f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local_

orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes_

mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_no

cero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pkt

s_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,re

sp_time_std,resp_time_min,resp_time_max,label,binary-label\n") 

    for line in f_in: 

        data = json.loads(line) 

        for key in all_keys: 

            if key not in data: 

                data[key] = "" 

 

        binary_label = 0 

        labels = []  # Start empty 

        if data["id.resp_p"] == 4554 and not label_checked[0]: 

            labels.append(label_1) 

            binary_label = 1 

            label_checked[0] = True 

 

        if data["id.resp_p"] == 8081 and (data['conn_state'] == 'S0') and not label_checked[1]: 

            labels.append(label_2) 

            binary_label = 1 

            label_checked[1] = True 

 

        if data['resp_ip_bytes'] > 30000 and not label_checked[2]: 

            labels.append(label_3) 

            binary_label = 1 

            label_checked[2] = True 

 

        # Reset label checks if all labels are checked 

        # If no labels are added, assign "benign" 

        if not labels: 

            labels.append("benign") 

         

        values = [str(data[key]) for key in all_keys] 

        labels_joined = '-'.join(labels) 

        csv_line = ','.join(values) + f',{labels_joined},{binary_label}\n'         

        f_out.write(csv_line) 

 

        label_checked = [False] * 3 
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# Escenario 52 

import json 

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-IoT-Malware-Capture-52-1/conn_stadistics.log" 

output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-IoT-Malware-Capture-52-1.csv" 

label_1 = "C&C" 

label_2 = "Mirai" 

label_3 = "FileDownload" 

label_4 = "PartOfAHorizontalPortscan" 

 

# Initialize label checks 

label_checked = [False] * 4 

with open(input_file, "r") as f_in, open(output_file, "w") as f_out: 

    f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local

_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes

_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_n

ocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pk

ts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,r

esp_time_std,resp_time_min,resp_time_max,label,binary-label\n") 

    for line in f_in: 

        data = json.loads(line) 

        for key in all_keys: 

            if key not in data: 

                data[key] = "" 

        binary_label = 0 

        labels = []  # Start empty 

        if data["id.resp_h"] == "185.244.25.108" and not label_checked[0]: 

            labels.append(label_1) 

            binary_label = 1 

            label_checked[0] = True 

 

        if data["id.resp_p"] == 4441 and not label_checked[1]: 

            labels.append(label_2) 

            binary_label = 1 

            label_checked[1] = True 

 

        if data["id.resp_p"] == 80 and (data['resp_ip_bytes'] > 30000) and not label_checked[2]: 

            labels.append(label_3) 

            binary_label = 1 

            label_checked[2] = True 

             

        if data["id.resp_p"] == 23 and not label_checked[3]: 

            labels.append(label_4) 

            binary_label = 1 

            label_checked[3] = True 

         

        if data["id.resp_p"] == 2323 and not label_checked[3]: 

            labels.append(label_4) 

            binary_label = 1 

            label_checked[3] = True 

         

        # Reset label checks if all labels are checked 

        # If no labels are added, assign "benign" 

        if not labels: 

            labels.append("benign") 

         

        values = [str(data[key]) for key in all_keys] 

        labels_joined = '-'.join(labels) 

        csv_line = ','.join(values) + f',{labels_joined},{binary_label}\n'         

        f_out.write(csv_line) 

 

        label_checked = [False] * 4 
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# Escenario 7 

import json 

input_file = "/root/bbdd/logs-zeek/iot-23-logs/CTU-IoT-Malware-Capture-7-1/conn_stadistics.log" 

output_file = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/json-labeled-CTU-IoT-Malware-Capture-7-1.csv" 

label_1 = "C&C" 

label_2 = "Okiru" 

label_3 = "HeartBeat" 

label_4 = "DDoS" 

# Initialize label checks 

label_checked = [False] * 4 

 

with open(input_file, "r") as f_in, open(output_file, "w") as f_out: 

    f_out.write("ts,startTime,uid,id.orig_h,id.orig_p,id.resp_h,id.resp_p,proto,service,duration,orig_bytes,resp_bytes,conn_state,local

_orig,local_resp,missed_bytes,history,orig_pkts,orig_ip_bytes,resp_pkts,resp_ip_bytes,tunnel_parents,orig_bytes_mean,resp_bytes

_mean,orig_bytes_std,resp_bytes_std,orig_bytes_mean_nocero,resp_bytes_mean_nocero,orig_bytes_std_nocero,resp_bytes_std_n

ocero,orig_bytes_min,resp_bytes_min,orig_bytes_max,resp_bytes_max,orig_pkts_nocero,resp_pkts_nocero,orig_pkts_cero,resp_pk

ts_cero,time_mean,time_std,time_min,time_max,orig_time_mean,orig_time_std,orig_time_min,orig_time_max,resp_time_mean,r

esp_time_std,resp_time_min,resp_time_max,label,binary-label\n") 

    for line in f_in: 

        data = json.loads(line) 

        for key in all_keys: 

            if key not in data: 

                data[key] = "" 

        binary_label = 0 

        labels = []  # Start empty 

        if data["id.resp_h"] == "185.130.215.13" and not label_checked[0]: 

            labels.append(label_1) 

            binary_label = 1 

            label_checked[0] = True 

 

        if data["id.resp_h"] == "102.157.125.155" and not label_checked[1]: 

            labels.append(label_2) 

            binary_label = 1 

            label_checked[1] = True 

 

        if data["id.resp_p"] == 37215 and not label_checked[1]: 

            labels.append(label_2) 

            binary_label = 1 

            label_checked[1] = True 

             

        if data["id.resp_p"] == 57722 and not label_checked[2]: 

            labels.append(label_3) 

            binary_label = 1 

            label_checked[2] = True 

         

        if data["id.resp_p"] == 80 and not label_checked[3]: 

            labels.append(label_4) 

            binary_label = 1 

            label_checked[3] = True 

        # Reset label checks if all labels are checked 

        # If no labels are added, assign "benign" 

        if not labels: 

            labels.append("benign") 

         

        values = [str(data[key]) for key in all_keys] 

        labels_joined = '-'.join(labels) 

        csv_line = ','.join(values) + f',{labels_joined},{binary_label}\n'         

        f_out.write(csv_line) 

 

        label_checked = [False] * 4 
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# Etiquetado Benign 

import pandas as pd 

 

# Read the JSON file into a DataFrame 

df = pd.read_json(input_file, lines=True) 

# Create two new columns with default values 

df['label'] = 'benign' 

df['binary-label'] = 0 

df.to_csv(output_file, index=False) 

# Display the DataFrame 

df.head() 

 

Finalmente, para etiquetar el conjunto de datos de CIC-IoT-2023, se siguió la misma metodología 

que emplearon los autores, etiquetando todos los flujos de una misma captura de tráfico según 

el nombre del archivo, que indica el ataque contenido. 

def process_conn_log(folder_path): 

    conn_log_path = os.path.join(folder_path, "conn_stadistics.log") 

     

    # Check if conn.log file exists 

    if os.path.exists(conn_log_path): 

        folder_name = os.path.basename(folder_path) 

        with open(conn_log_path, 'r') as file: 

            header_line = file.readlines()[6].strip().split('\t')[1:] 

        df = pd.read_csv(conn_log_path, sep='\t', skiprows=8, names=header_line, skipfooter=1, engine='python') 

         

        print(folder_name) 

        # Check for the file with name folder_name + _loss_rows.csv   

        loss_rows_path = os.path.join(loss_directory, f'{folder_name}_loss_rows.csv') 

        if os.path.exists(loss_rows_path): 

            print(f"Loss rows file found: {loss_rows_path}") 

            df_loss = pd.read_csv(loss_rows_path) 

            # Identify rows to be removed 

            rows_to_remove = df[df['uid'].isin(df_loss['uid'])] 

 

            # Print the rows that are going to be removed 

            print("Rows to be removed:") 

            print(rows_to_remove) 

            # Remove rows from df where df['uid'] is in df_loss['uid'] 

            df = df[~df['uid'].isin(df_loss['uid'])] 

            # Save concatenated data frame to CSV 

            output_path = "/root/bbdd/logs-zeek/cic-iot-2023-logs/labeled-csv/"  # Change this to the desired directory path 

            csv_filename = os.path.join(output_path, f"{folder_name}_labeled.csv") 

            df.to_csv(csv_filename, index=False) 

        else: 

            print(f"Loss rows file not found for {folder_name}") 

        # Once found, open that loss file as csv, look for the uids to remove them in the new df we are going to create 

    else: 

        print(f"conn.log not found in {folder_path}") 

 

for folder in os.listdir(main_directory): 

    folder_path = os.path.join(main_directory, folder) 

    if os.path.isdir(folder_path): 

        process_conn_log(folder_path) 

 

 



 

 

Anexo VIII: Normas de etiquetado 
Cada base de datos empleó un método distinto de etiquetado, por lo que, para poder recrearlo, se siguieron las reglas proporcionadas por los diferentes 

autores. 

Para la base de datos IoTD20, las reglas se adaptaron para poder etiquetar mediante los atributos generados en Zeek. En concreto, se etiquetó el tráfico 

benigno y los siguientes ataques: DoS SYN-Flood, PortScan, OS Scan, UDP Flood, HTTP Flood, ACK Flood y Telnet BruteForce. 

No. File Name 
Creation 

Date* 
Category Sub-category Wireshark Rule to Filter Only Attack Packets 

1 benign-dec.pcap 20/05/2019 Normal Normal - 

8 dos-synflooding-1-dec.pcap 31/05/2019 
Denial of Service 
(DoS) 

SYN Flooding 
ip.src == 222.0.0.0/8 and tcp.flags.syn == 1 and ip.dst == 192.168.0.13 and tcp.dstport 
== 554 and tcp 

9 dos-synflooding-2-dec.pcap 31/05/2019 
Denial of Service 
(DoS) 

SYN Flooding 
ip.src == 222.0.0.0/8 and tcp.flags.syn == 1 and ip.dst == 192.168.0.13 and tcp.dstport 
== 554 and tcp 

10 dos-synflooding-3-dec.pcap 31/05/2019 
Denial of Service 
(DoS) 

SYN Flooding 
ip.src == 111.0.0.0/8 and tcp.flags.syn == 1 and ip.dst == 192.168.0.13 and tcp.dstport 
== 554 and tcp 

11 dos-synflooding-4-dec.pcap 05/06/2019 
Denial of Service 
(DoS) 

SYN Flooding 
ip.dst == 192.168.0.24 and tcp.flags.syn == 1 and ip.src == 111.0.0.0/8 and tcp and 
tcp.dstport == 19604 

12 dos-synflooding-5-dec.pcap 05/06/2019 
Denial of Service 
(DoS) 

SYN Flooding 
ip.dst == 192.168.0.24 and tcp.flags.syn == 1 and ip.src == 111.0.0.0/8 and tcp and 
tcp.dstport == 19604 

13 dos-synflooding-6-dec.pcap 05/06/2019 
Denial of Service 
(DoS) 

SYN Flooding 
ip.dst == 192.168.0.24 and tcp.flags.syn == 1 and ip.src == 111.0.0.0/8 and tcp and 
tcp.dstport == 19604 

14 scan-hostport-1-dec.pcap 11/07/2019 Scanning Port Scanning 
ip.src == 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and 
tcp.window_size == 1024) or tcp.flags.reset == 1) 

15 scan-hostport-2-dec.pcap 11/07/2019 Scanning Port Scanning 
ip.src == 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and 
tcp.window_size == 1024) or tcp.flags.reset == 1) 

16 scan-hostport-3-dec.pcap 11/07/2019 Scanning Port Scanning 
ip.src == 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and 
tcp.window_size == 1024) or tcp.flags.reset == 1) 

17 scan-hostport-4-dec.pcap 11/07/2019 Scanning Port Scanning 
ip.src == 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and 
tcp.window_size == 1024) or tcp.flags.reset == 1) 



 

87 

18 scan-hostport-5-dec.pcap 11/07/2019 Scanning Port Scanning 
ip.src == 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and 
tcp.window_size == 1024) or tcp.flags.reset == 1) 

19 scan-hostport-6-dec.pcap 11/07/2019 Scanning Port Scanning 
ip.src == 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and 
tcp.window_size == 1024) or tcp.flags.reset == 1) 

20 scan-portos-1-dec.pcap 11/07/2019 

Scanning Port Scanning 
ip.src == 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and 
tcp.window_size == 1024) or tcp.flags.reset == 1) 

Scanning 
OS/Version 
Detection 

(ip.src == 192.168.0.15 and ip.dst == 192.168.0.13) and (not icmp) and not (ip.src == 
192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and tcp.window_size 
== 1024) or tcp.flags.reset == 1)) 

21 scan-portos-2-dec.pcap 11/07/2019 

Scanning Port Scanning 
ip.src == 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and 
tcp.window_size == 1024) or tcp.flags.reset == 1) 

Scanning 
OS/Version 
Detection 

(ip.src == 192.168.0.15 and ip.dst == 192.168.0.13) and (not icmp) and not (ip.src == 
192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and tcp.window_size 
== 1024) or tcp.flags.reset == 1)) 

22 scan-portos-3-dec.pcap 11/07/2019 

Scanning Port Scanning 
ip.src == 192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and 
tcp.window_size == 1024) or tcp.flags.reset == 1) 

Scanning 
OS/Version 
Detection 

(ip.src == 192.168.0.15 and ip.dst == 192.168.0.13) and (not icmp) and not (ip.src == 
192.168.0.15 and ip.dst == 192.168.0.13 and ((tcp.flags.syn == 1 and tcp.window_size 
== 1024) or tcp.flags.reset == 1)) 

23 scan-portos-4-dec.pcap 11/07/2019 

Scanning Port Scanning 
ip.src == 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and 
tcp.window_size == 1024) or tcp.flags.reset == 1) 

Scanning 
OS/Version 
Detection 

(ip.src == 192.168.0.15 and ip.dst == 192.168.0.24) and (not icmp) and not (ip.src == 
192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and tcp.window_size 
== 1024) or tcp.flags.reset == 1)) 

24 scan-portos-5-dec.pcap 11/07/2019 

Scanning Port Scanning 
ip.src == 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and 
tcp.window_size == 1024) or tcp.flags.reset == 1) 

Scanning 
OS/Version 
Detection 

(ip.src == 192.168.0.15 and ip.dst == 192.168.0.24) and (not icmp) and not (ip.src == 
192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and tcp.window_size 
== 1024) or tcp.flags.reset == 1)) 

25 scan-portos-6-dec.pcap 11/07/2019 Scanning Port Scanning 
ip.src == 192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and 
tcp.window_size == 1024) or tcp.flags.reset == 1) 



 

88 

Scanning 
OS/Version 
Detection 

(ip.src == 192.168.0.15 and ip.dst == 192.168.0.24) and (not icmp) and not (ip.src == 
192.168.0.15 and ip.dst == 192.168.0.24 and ((tcp.flags.syn == 1 and tcp.window_size 
== 1024) or tcp.flags.reset == 1)) 

26 mirai-udpflooding-1-dec.pcap 01/08/2019 Mirai Botnet UDP Flooding ip.dst == 210.89.164.90 

27 mirai-udpflooding-2-dec.pcap 01/08/2019 Mirai Botnet UDP Flooding ip.dst == 210.89.164.90 

28 mirai-udpflooding-3-dec.pcap 01/08/2019 Mirai Botnet UDP Flooding ip.dst == 210.89.164.90 

29 mirai-udpflooding-4-dec.pcap 01/08/2019 Mirai Botnet UDP Flooding ip.dst == 210.89.164.90 

30 mirai-ackflooding-1-dec.pcap 01/08/2019 Mirai Botnet ACK Flooding ip.dst == 210.89.164.90 

31 mirai-ackflooding-2-dec.pcap 01/08/2019 Mirai Botnet ACK Flooding ip.dst == 210.89.164.90 

32 mirai-ackflooding-3-dec.pcap 01/08/2019 Mirai Botnet ACK Flooding ip.dst == 210.89.164.90 

33 mirai-ackflooding-4-dec.pcap 01/08/2019 Mirai Botnet ACK Flooding ip.dst == 210.89.164.90 

34 mirai-httpflooding-1-dec.pcap 01/08/2019 Mirai Botnet HTTP Flooding ip.dst == 210.89.164.90 

35 mirai-httpflooding-2-dec.pcap 01/08/2019 Mirai Botnet HTTP Flooding ip.dst == 210.89.164.90 

36 mirai-httpflooding-3-dec.pcap 01/08/2019 Mirai Botnet HTTP Flooding ip.dst == 210.89.164.90 

37 mirai-httpflooding-4-dec.pcap 01/08/2019 Mirai Botnet HTTP Flooding ip.dst == 210.89.164.90 

38 mirai-hostbruteforce-1-dec.pcap 05/09/2019 Mirai Botnet Telnet Bruteforce tcp.dstport==23 and ip.src==192.168.0.13 

39 mirai-hostbruteforce-2-dec.pcap 05/09/2019 Mirai Botnet Telnet Bruteforce tcp.dstport==23 and ip.src==192.168.0.24 

40 mirai-hostbruteforce-3-dec.pcap 10/09/2019 Mirai Botnet Telnet Bruteforce tcp.dstport==23 and ip.src==192.168.0.13 

41 mirai-hostbruteforce-4-dec.pcap 10/09/2019 Mirai Botnet Telnet Bruteforce tcp.dstport==23 and ip.src==192.168.0.24 

42 mirai-hostbruteforce-5-dec.pcap 10/09/2019 Mirai Botnet Telnet Bruteforce tcp.dstport==23 and ip.src==192.168.0.13 
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Para el dataset IoT-23, se siguieron las siguientes reglas: 

CTU-IoT-Malware-Capture-7-1 (Linux, Mirai)  

Id Field bro field number Data Comparator Label type connector 

1 id.resp_h 5 185.130.215.13 eq C&C Malicious - 

2 id.resp_h 5 102.157.125.155 eq Okiru Malicious - 

3 id.resp_p 6 37215 eq Okiru Malicious - 

4 id.resp_p 6 57722 eq HeartBeat Malicious - 

5 id.resp_p 6 80 eq DDoS Malicious - 

CTU-IoT-Malware-Capture-34-1 (Mirai)  

Id Field bro field number Data Comparator Label type connector 

1 id.resp_p 6 6667 eq C&C Malicious - 

2 id.resp_p 6 63798 eq PartOfAHorizontalPortscan Malicious - 

3 id.resp_p 6 256 eq PartOfAHorizontalPortscan Malicious - 

4 id.resp_h 5 123.59.209.185 eq DDoS Malicious - 

5 id.resp_h 5 71.61.66.148 eq DDoS Malicious - 

6 id.resp_h 5 74.91.117.248 eq DDoS Malicious - 

7 id.resp_p 6 5376 eq DDoS Malicious - 

CTU-IoT-Malware-Capture-35-1 (Mirai)  

Id Field bro field number Data Comparator Label type connector 

1 id.resp_h 5 104.248.160.24 eq C&C Malicious - 

2 id.resp_h 5 104.248.160.24 eq FileDownload Malicious and 3 

3 
resp_ip_byte

s 19 30000 gt FileDownload Malicious and 2 

4 id.resp_h 5 110.183.76.177 eq Attack Malicious - 

5 id.resp_h 5 112.27.30.87 eq Attack Malicious - 
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6 id.resp_p 6 85.217.225.181 eq Attack Malicious - 

7 id.resp_p 6 992 eq DDoS Malicious - 

8 id.resp_h 5 209.97.190.136 eq DDoS Malicious - 

9 id.resp_h 5 173.113.172.138 eq DDoS Malicious - 

10 id.resp_h 5 216.18.168.16 eq DDoS Malicious - 

11 id.resp_h 5 24.165.115.195 eq DDoS Malicious - 

12 id.resp_h 5 54.39.87.104 eq DDoS Malicious - 

CTU-IoT-Malware-Capture-43-1 (Mirai)  

Id Field 
bro field 
number Data Comparator Label type connector 

1 id.resp_p 6 45 eq C&C Malicious - 

2 id.resp_h 5 142.11.219.83 eq C&C Malicious - 

3 id.resp_p 6 27015 eq DDoS Malicious - 

4 id.resp_p 6 37215 eq Okiru Malicious - 

5 id.resp_p 6 52869 eq PartOfAHorizontalPortscan Malicious and 6 

6 conn_state 12 S0 eq PartOfAHorizontalPortScan Malicious and 5 

7 resp_ip_bytes 19 50000 gt FileDonwload Malicious - 

 

CTU-IoT-Malware-Capture-44-1 (Mirai)  

Id Field bro field number Data Comparator Label type connector 

1 id.resp_h 5 46.101.251.172 eq C&C Malicious and 2 

2 proto 7 tcp eq C&C Malicious and 1 

3 id.resp_p 6 80 eq DDoS Malicious and 4 

4 proto 7 udp eq DDoS Malicious and 3 

5 id.resp_h 5 86.136.151.56 eq DDoS Malicious - 

6 resp_ip_bytes 19 50000 gt FileDownload Malicious - 
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CTU-IoT-Malware-Capture-48-1 (Mirai) 

Id Field bro field number Data Comparator Label type connector 

1 id.resp_h 5 167.99.182.238 eq C&C Malicious - 

2 id.resp_h 5 167.99.182.238 eq HeartBeat Malicious and 3 

3 resp_ip_bytes 19 1 gt HeartBeat Malicious and 2 

4 id.resp_p 6 80 eq FileDownload Malicious and 5 

5 resp_ip_bytes 19 50000 gt FileDownload Malicious and 4 

6 id.resp_p 6 23 eq PartOfAHorizontalPortscan Malicious and 7 

7 conn_state 12 S0 eq PartOfAHorizontalPortScan Malicious and 6 

8 id.resp_p 6 23 eq Attack Malicious and 9 

9 orig_ip_bytes 17 7 gt Attack Malicious and 8 

CTU-IoT-Malware-Capture-49-1 (Mirai)  

Id Field bro field number Data Comparator Label type connector 

1 id.resp_p 6 4554 eq C&C Malicious - 

2 id.resp_p 6 8081 eq PartOfAHorizontalPortscan Malicious and 3 

3 conn_state 12 S0 eq PartOfAHorizontalPortScan Malicious and 2 

4 resp_ip_bytes 19 
3000

0 gt FileDownload Malicious - 

CTU-IoT-Malware-Capture-52-1 (Mirai)  

Id Field bro field number Data Comparator Label type connector 

1 id.resp_h 5 185.244.25.108 eq C&C Malicious - 

2 id.resp_p 6 4441 eq Mirai Malicious - 

3 id.resp_p 6 80 eq FileDownload Malicious and 4 

4 resp_ip_bytes 19 30000 gt FileDownload Malicious and 3 

5 id.resp_p 6 23 eq PartOfAHorizontalPortscan Malicious - 

6 id.resp_p 6 2323 eq PartOfAHorizontalPortscan Malicious - 



 

 

Anexo IX: Scripts de capture-loss 
Como ya se ha desarrollado en el capítulo , ha sido necesario el estudio de pérdida de información 

en las capturas de tráfico. Esto se pudo observar mediante la herramienta Zui, y por ello se decidió 

analizar en profundidad la cantidad de flujos que presentaban pérdida de información, y la 

magnitud de esta pérdida. 

Los scripts que se desarrollaron se muestran a continuación. Primero, se llevó a cabo un análisis 

en menor profundidad mediante estadísticas, para ello se empleó: 

import os 

import pandas as pd 

# Define the source directory containing capture loss logs 

source_dir = "/root/capture_loss_iotd20_logs" 

# Define the output file 

output_file = "/root/capture_loss_iotd20_logs/concatenated_logs.csv" 

# Create an empty list to store DataFrames 

dfs = [] 

# Iterate through each JSON file in the source directory 

for file_name in os.listdir(source_dir): 

    if file_name.endswith(".log"): 

        file_path = os.path.join(source_dir, file_name) 

        # Load the JSON file into a pandas DataFrame 

        df = pd.read_json(file_path, lines=True) 

        # Add a new column with the file name 

        df['file_name'] = file_name 

        # Append the DataFrame to the list 

        dfs.append(df) 

# Concatenate all DataFrames into a single DataFrame 

concatenated_df = pd.concat(dfs, ignore_index=True) 

concatenated_df.to_csv(output_file, index=False) 

print("Concatenation completed. Output file:", output_file) 

print("Número de filas en el DataFrame:", df.shape[0]) 

csv_file = output_file 

df = pd.read_csv(csv_file) 

# List the rows with the highest values in the percent_lost column 

top_percent_lost = df.nlargest(34, 'percent_lost')  # Change 10 to the desired number of rows 

selected_columns = ['ts_delta', 'gaps', 'acks', 'file_name', 'percent_lost'] 

top_percent_lost_selected = top_percent_lost[selected_columns] 

 

print(top_percent_lost_selected) 

# Ordenar primero por el nombre del archivo y luego por el porcentaje perdido 

top_percent_lost_sorted = top_percent_lost_selected.sort_values(by=['file_name', 'percent_lost'], ascending=[True, False]) 

 

print(top_percent_lost_sorted) 

import os 

import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 

pd.set_option('display.max_columns', None) 

pd.set_option('display.width', None) 

main_directory = "/root/bbdd/logs-zeek/iotd20-logs/logs-original/" 

# Function to process a conn.log file 
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def process_conn_log(folder_path): 

    conn_log_path = os.path.join(folder_path, "conn.log") 

    

    # Check if conn.log file exists 

    if os.path.exists(conn_log_path): 

        # Extract file name from folder path 

        folder_name = os.path.basename(folder_path) 

        

        # Read conn.log into a DataFrame 

        df = pd.read_json(conn_log_path, lines=True) 

        

        # Convert timestamp to datetime if needed 

        # df["timestamp"] = pd.to_datetime(df["timestamp"]) 

        

        # Create a dot plot of missed_bytes evolution 

        plt.scatter(df["ts"], df["missed_bytes"], s=10, marker='o') 

        plt.xlabel("Timestamp") 

        plt.ylabel("Missed Bytes") 

        plt.title(f"Evolution of Missed Bytes - {folder_name}") 

        plt.show() 

        

        # Calculate statistics 

        stats = df["missed_bytes"].describe() 

        print("Statistics:") 

        print(stats) 

        

        # Print top 15 highest values 

        top_15 = df.nlargest(15, "missed_bytes") 

        print("\nTop 15 highest missed_bytes:") 

        print(top_15[["uid", "missed_bytes", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto"]]) 

        

    else: 

        print(f"conn.log not found in {folder_path}") 

def process_conn_log(folder_path, thresholds=[(0, 0.05), (0.05, 0.1), (0.1, 0.2), (0.2, 1)]): 

    conn_log_path = os.path.join(folder_path, "conn_stadistics.log") 

    

    # Check if conn.log file exists 

    if os.path.exists(conn_log_path): 

        # Extract file name from folder path 

        folder_name = os.path.basename(folder_path) 

        

        # Read conn.log into a DataFrame 

        df = pd.read_json(conn_log_path, lines=True) 

 

        # Sample 5 flows with NaN values in either orig_bytes or resp_bytes before dropping 

        nan_flows = df[df['orig_bytes'].isnull() | df['resp_bytes'].isnull()].head(5) 

        if not nan_flows.empty: 

            print("Sample of 5 flows with NaN values in either orig_bytes or resp_bytes:") 

            print(nan_flows[["uid","missed_bytes","orig_bytes","resp_bytes", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto"]]) 

 

        # Notify and count rows with NaN values in both orig_bytes and resp_bytes columns 

        nan_count = df[df['orig_bytes'].isnull() & df['resp_bytes'].isnull()].shape[0] 

        if nan_count > 0: 
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            print(f"{nan_count} rows with NaN values in both orig_bytes and resp_bytes columns.") 

        

        # Calculate missed_bytes ratio 

        df['missed_ratio'] = np.where(df['missed_bytes'] == 0, 0, df['missed_bytes'] / (df['orig_bytes'] + df['resp_bytes']))         

        

        # Sort DataFrame by missed_ratio in descending order 

        df_sorted = df.sort_values(by='missed_ratio', ascending=False) 

        

        # Create a dot plot of missed_bytes ratio evolution 

        plt.scatter(range(1, len(df_sorted) + 1), df_sorted["missed_ratio"], s=10, marker='o') 

        plt.xlabel("Rank Position (sorted by missed ratio)") 

        plt.ylabel("Missed Bytes Ratio") 

        plt.title(f"Evolution of Missed Bytes Ratio - {folder_name}") 

        plt.show() 

        

        # Calculate statistics 

        stats = df_sorted["missed_ratio"].describe() 

        print("Statistics:") 

        print(stats) 

        

        # Print top 15 highest values 

        top_15 = df_sorted.head(15) 

        print("\nTop 15 highest missed_bytes ratios:") 

        print(top_15[["uid", "missed_ratio", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto"]]) 

        

        # Print the least 15 flows based on missed bytes ratio 

        print("\nLeast 15 flows based on missed bytes ratio:") 

        least_15 = df_sorted.tail(15) 

        print(least_15[["uid", "missed_ratio", "orig_bytes","resp_bytes", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto"]]) 

        # Initialize lists to store counts for each threshold range 

        threshold_counts = [0] * len(thresholds) 

               # Count number of flows in each threshold range 

        for i, (lower, upper) in enumerate(thresholds): 

            if upper is None: 

                num_flows = (df_sorted['missed_ratio'] >= lower).sum() 

            else: 

                num_flows = ((df_sorted['missed_ratio'] >= lower) & (df_sorted['missed_ratio'] <= upper)).sum() 

            threshold_counts[i] = num_flows 

        

        # Create grouped bar plot for the number of flows exceeding each threshold range 

        threshold_ranges = [f"{int(lower * 100)}% - {int(upper * 100)}%" if upper is not None else f"> {int(lower * 100)}%" for lower, upper 

in thresholds] 

        plt.bar(threshold_ranges, threshold_counts) 

        plt.xlabel("Missed Bytes Ratio Threshold Range") 

        plt.ylabel("Number of Flows") 

        plt.title(f"Number of Flows Exceeding Missed Bytes Ratio Thresholds - {folder_name}") 

        plt.show() 

    else: 

        print(f"conn.log not found in {folder_path}") 

for folder in os.listdir(main_directory): 

    folder_path = os.path.join(main_directory, folder) 

    if os.path.isdir(folder_path): 

        process_conn_log(folder_path) 
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Posteriormente, al ver que había flujos con una cantidad de pérdida significante, se diseñó otro 

script para detectarlos dentro de los conjuntos de datos, y eliminar todos aquellos que superasen 

la cantidad de 1% de pérdida de información.  

Para IoTD20 se realizó sobre el dataset entero, sin diferenciar por archivos, ya que su tamaño era 

reducido. 

import pandas as pd 

import numpy as np 

import os  

 
def process_conn_log(folder_path,columns = ['uid','missed_bytes','orig_bytes','resp_bytes']): 

 

    df = pd.read_csv(folder_path,usecols=columns) 

    df.loc[df['missed_bytes'] == '-', 'missed_bytes'] = np.nan  

    df.loc[df['orig_bytes'] == '-', 'missed_bytes'] = np.nan 

    df.loc[df['resp_bytes'] == '-', 'missed_bytes'] = np.nan   

 

    # Convert remaining NaNs to 0 after substitution 

    df['missed_bytes'] = pd.to_numeric(df['missed_bytes'], errors='coerce').fillna(0) 

    df['orig_bytes'] = pd.to_numeric(df['orig_bytes'], errors='coerce').fillna(0) 

    df['resp_bytes'] = pd.to_numeric(df['resp_bytes'], errors='coerce').fillna(0) 

 

    df['missed_ratio'] = np.where((df['missed_bytes'].isna()) | (df['missed_bytes'] == 0), 0, pd.to_numeric(df['missed_bytes']) / 

(pd.to_numeric(df['orig_bytes']) + pd.to_numeric(df['resp_bytes']))) 

             

    # Filter rows with loss > 0.01 and append to list 

    filtered_chunk = df[df['missed_ratio'] > 0.01] 

                 

    # Filter rows with loss > 0.01 and append to list 

    filtered_chunk = df[df['missed_ratio'] > 0.01].copy()  # Make a copy to avoid the warning 

    filtered_chunk.loc[:, 'missed_ratio'] = df['missed_ratio']  # Assign values using .loc[] 

 

    print("all_labeled_loss_rows.csv created") 

    # Save concatenated data frame to CSV 

    output_path = "/root/bbdd/logs-zeek/iotd20-logs/loss-rows/"  # Change this to the desired directory path 

    csv_filename = os.path.join(output_path, "all_labeled_loss_rows.csv") 

    filtered_chunk.to_csv(csv_filename, index=False) 

main_directory = "/root/bbdd/logs-zeek/iotd20-logs/all-labeled_all.csv" 

process_conn_log(main_directory) 

loss_rows_path = "/root/bbdd/logs-zeek/iotd20-logs/loss-rows/all_labeled_loss_rows.csv" 

df = pd.read_csv(main_directory) 

# Check for the file with name folder_name + _loss_rows.csv   

df_loss = pd.read_csv(loss_rows_path) 

# Identify rows to be removed 

rows_to_remove = df[df['uid'].isin(df_loss['uid'])] 

 

# Print the rows that are going to be removed 

print("Rows to be removed:") 

print(rows_to_remove) 

# Remove rows from df where df['uid'] is in df_loss['uid'] 

df = df[~df['uid'].isin(df_loss['uid'])] 

# Save concatenated data frame to CSV 

output_path = "/root/bbdd/logs-zeek/iotd20-logs/all-labeled-final.csv"  # Change this to the desired directory path 

df.to_csv(output_path, index=False) 
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En el caso del conjunto de datos IoT-23, se diseñó este script: 

import os 

import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 

main_directory = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/" 

import pandas as pd 

def process_conn_log(folder_name,columns = ['uid','missed_bytes','orig_bytes','resp_bytes']): 

    conn_log_path = os.path.join(main_directory, folder_name) 

    loss_rows_df = []  # Initialize a list to store data frames for chunks with loss > 0.01 

     

    # Check if conn.log file exists 

    if os.path.exists(conn_log_path): 

        for chunk in pd.read_csv(conn_log_path,usecols=columns, chunksize=50000): 

            # Calculate missed_bytes ratio 

            chunk['missed_ratio'] = np.where((chunk['missed_bytes'].isna()) | (chunk['missed_bytes'] == 0), 0, 

pd.to_numeric(chunk['missed_bytes']) / (pd.to_numeric(chunk['orig_bytes']) + pd.to_numeric(chunk['resp_bytes']))) 

             # Filter rows with loss > 0.01 and append to list 

            filtered_chunk = chunk[chunk['missed_ratio'] > 0.01].copy() 

            filtered_chunk.loc[:, 'missed_ratio'] = chunk['missed_ratio'] 

            loss_rows_df.append(filtered_chunk) 

 

    # Concatenate data frames in the list 

    loss_rows_df = pd.concat(loss_rows_df)   

    # Save concatenated data frame to CSV 

    output_path = "/root/bbdd/logs-zeek/iot-23-logs/loss-rows/"  # Change this to the desired directory path 

    csv_filename = os.path.join(output_path, f"{folder_name}_loss_rows.csv") 

    loss_rows_df.to_csv(csv_filename, index=False) 

json_files = [f for f in os.listdir(main_directory) if f.startswith("json")] 

for json_file in json_files: 

        process_conn_log(json_file) 

 

En el caso de CIC-IoT-2023, además de sustituir ciertos valores vacíos, se extraen los flujos con 

más de 1% de pérdidas, almacenándolos en otro fichero para su posterior análisis además de 

eliminarlos del conjunto de datos, identificándolos con el campo “uid”. 
import pandas as pd 

import numpy as np 

import os  

header = [ 

    'ts', 'startTime', 'uid', 'id.orig_h', 'id.orig_p', 'id.resp_h', 'id.resp_p', 'proto', 'service', 'duration', 

    'orig_bytes', 'resp_bytes', 'conn_state', 'local_orig', 'local_resp', 'missed_bytes', 'history', 'orig_pkts', 

    'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes', 'tunnel_parents', 'orig_bytes_mean', 'resp_bytes_mean', 

    'orig_bytes_std', 'resp_bytes_std', 'orig_bytes_mean_nocero', 'resp_bytes_mean_nocero', 'orig_bytes_std_nocero', 

    'resp_bytes_std_nocero', 'orig_bytes_min', 'resp_bytes_min', 'orig_bytes_max', 'resp_bytes_max', 'orig_pkts_nocero', 

    'resp_pkts_nocero', 'orig_pkts_cero', 'resp_pkts_cero', 'time_mean', 'time_std', 'time_min', 'time_max', 

    'orig_time_mean', 'orig_time_std', 'orig_time_min', 'orig_time_max', 'resp_time_mean', 'resp_time_std',  

    'resp_time_min', 'resp_time_max' ] 

def process_conn_log(folder_path,columns = ['uid','missed_bytes','orig_bytes','resp_bytes']): 

    conn_log_path = os.path.join(folder_path, "conn_stadistics.log") 

     

    # Check if conn.log file exists 

    if os.path.exists(conn_log_path): 

        folder_name = os.path.basename(folder_path) 

        #with open(conn_log_path, 'r') as file: 

            #header_line = file.readlines()[6].strip().split('\t')[1:] 

        df = pd.read_csv(conn_log_path, sep='\t', skiprows=8, names=header, skipfooter=1, engine='python',usecols=columns) 

        df.loc[df['missed_bytes'] == '-', 'missed_bytes'] = np.nan  

        df.loc[df['orig_bytes'] == '-', 'missed_bytes'] = np.nan 

        df.loc[df['resp_bytes'] == '-', 'missed_bytes'] = np.nan   

 

        # Convert remaining NaNs to 0 after substitution 

        df['missed_bytes'] = pd.to_numeric(df['missed_bytes'], errors='coerce').fillna(0) 

        df['orig_bytes'] = pd.to_numeric(df['orig_bytes'], errors='coerce').fillna(0) 

        df['resp_bytes'] = pd.to_numeric(df['resp_bytes'], errors='coerce').fillna(0) 
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        df['missed_ratio'] = np.where((df['missed_bytes'].isna()) | (df['missed_bytes'] == 0), 0, pd.to_numeric(df['missed_bytes']) / 

(pd.to_numeric(df['orig_bytes']) + pd.to_numeric(df['resp_bytes']))) 

             

        # Filter rows with loss > 0.01 and append to list 

        filtered_chunk = df[df['missed_ratio'] > 0.01] 

                 

        # Filter rows with loss > 0.01 and append to list 

        filtered_chunk = df[df['missed_ratio'] > 0.01].copy()  # Make a copy to avoid the warning 

        filtered_chunk.loc[:, 'missed_ratio'] = df['missed_ratio']  # Assign values using .loc[] 

 

    print(f"{folder_name}_loss_rows.csv created") 

    # Save concatenated data frame to CSV 

    output_path = "/root/bbdd/logs-zeek/cic-iot-2023-logs/loss-rows/"  # Change this to the desired directory path 

    csv_filename = os.path.join(output_path, f"{folder_name}_loss_rows.csv") 

    filtered_chunk.to_csv(csv_filename, index=False) 
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Anexo X: Scripts de representación de capture-loss 
# Create an empty list to store DataFrames 

dfs = [] 

# Iterate through each JSON file in the source directory 

for file_name in os.listdir(source_dir): 

    if file_name.endswith(".log"): 

        file_path = os.path.join(source_dir, file_name) 

         

        # Load the JSON file into a pandas DataFrame 

        df = pd.read_json(file_path, lines=True) 

         

        # Add a new column with the file name 

        df['file_name'] = file_name 

         

        # Append the DataFrame to the list 

        dfs.append(df) 

# Concatenate all DataFrames into a single DataFrame 

concatenated_df = pd.concat(dfs, ignore_index=True) 

concatenated_df.to_csv(output_file, index=False) 

print("Concatenation completed. Output file:", output_file) 

csv_file = output_file 

df = pd.read_csv(csv_file) 

 

# List the rows with the highest values in the percent_lost column 

top_percent_lost = df.nlargest(34, 'percent_lost')  # Change 10 to the desired number of rows 

selected_columns = ['ts_delta', 'gaps', 'acks', 'file_name', 'percent_lost'] 

top_percent_lost_selected = top_percent_lost[selected_columns] 

 

print(top_percent_lost_selected) 

# Ordenar primero por el nombre del archivo y luego por el porcentaje perdido 

top_percent_lost_sorted = top_percent_lost_selected.sort_values(by=['file_name', 'percent_lost'], ascending=[True, False]) 

 

print(top_percent_lost_sorted) 

# Function to process a conn.log file 

def process_conn_log(folder_path, thresholds=[(0, 0.05), (0.05, 0.1), (0.1, 0.2), (0.2, 1)]): 

    conn_log_path = os.path.join(folder_path, "conn_stadistics.log") 

     

    # Check if conn.log file exists 

    if os.path.exists(conn_log_path): 

        # Extract file name from folder path 

        folder_name = os.path.basename(folder_path) 

         

        # Read conn.log into a DataFrame 

        df = pd.read_json(conn_log_path, lines=True) 

 

        # Sample 5 flows with NaN values in either orig_bytes or resp_bytes before dropping 

        nan_flows = df[df['orig_bytes'].isnull() | df['resp_bytes'].isnull()].head(5) 

        if not nan_flows.empty: 

            print("Sample of 5 flows with NaN values in either orig_bytes or resp_bytes:") 

            print(nan_flows[["uid","missed_bytes","orig_bytes","resp_bytes", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto"]]) 

 

        # Notify and count rows with NaN values in both orig_bytes and resp_bytes columns 

        nan_count = df[df['orig_bytes'].isnull() & df['resp_bytes'].isnull()].shape[0] 

        if nan_count > 0: 

            print(f"{nan_count} rows with NaN values in both orig_bytes and resp_bytes columns.") 

         

        # Calculate missed_bytes ratio 

        df['missed_ratio'] = np.where(df['missed_bytes'] == 0, 0, df['missed_bytes'] / (df['orig_bytes'] + df['resp_bytes']))         

         

        # Sort DataFrame by missed_ratio in descending order 

        df_sorted = df.sort_values(by='missed_ratio', ascending=False) 

         

        # Create a dot plot of missed_bytes ratio evolution 

        plt.scatter(range(1, len(df_sorted) + 1), df_sorted["missed_ratio"], s=10, marker='o') 
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        plt.xlabel("Rank Position (sorted by missed ratio)") 

        plt.ylabel("Missed Bytes Ratio") 

        plt.title(f"Evolution of Missed Bytes Ratio - {folder_name}") 

        plt.show() 

         

        # Calculate statistics 

        stats = df_sorted["missed_ratio"].describe() 

        print("Statistics:") 

        print(stats) 

         

        # Print top 15 highest values 

        top_15 = df_sorted.head(15) 

        print("\nTop 15 highest missed_bytes ratios:") 

        print(top_15[["uid", "missed_ratio", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto"]]) 

         

        # Print the least 15 flows based on missed bytes ratio 

        print("\nLeast 15 flows based on missed bytes ratio:") 

        least_15 = df_sorted.tail(15) 

        print(least_15[["uid", "missed_ratio", "orig_bytes","resp_bytes", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto"]]) 

 

        # Initialize lists to store counts for each threshold range 

        threshold_counts = [0] * len(thresholds) 

         

        # Count number of flows in each threshold range 

        for i, (lower, upper) in enumerate(thresholds): 

            if upper is None: 

                num_flows = (df_sorted['missed_ratio'] >= lower).sum() 

            else: 

                num_flows = ((df_sorted['missed_ratio'] >= lower) & (df_sorted['missed_ratio'] <= upper)).sum() 

            threshold_counts[i] = num_flows 

         

        # Create grouped bar plot for the number of flows exceeding each threshold range 

        threshold_ranges = [f"{int(lower * 100)}% - {int(upper * 100)}%" if upper is not None else f"> {int(lower * 100)}%" for lower, 

upper in thresholds] 

        plt.bar(threshold_ranges, threshold_counts) 

        plt.xlabel("Missed Bytes Ratio Threshold Range") 

        plt.ylabel("Number of Flows") 

        plt.title(f"Number of Flows Exceeding Missed Bytes Ratio Thresholds - {folder_name}") 

        plt.show() 

 

    else: 

        print(f"conn.log not found in {folder_path}") 

 

for folder in os.listdir(main_directory): 

    folder_path = os.path.join(main_directory, folder) 

    if os.path.isdir(folder_path): 

        process_conn_log(folder_path) 

 

Para Iot-23 
import os 

import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 

from bokeh.plotting import figure, show, output_file 

from bokeh.models import HoverTool 

from bokeh.io import export_png 

 

main_directory = "/root/bbdd/logs-zeek/iot-23-logs/labeled-csv/" 

 

def process_conn_log(folder_name, thresholds=[(0, 0.05), (0.05, 0.1), (0.1, 0.2), (0.2, 1)], columns=["uid", "missed_bytes", 

"orig_bytes","resp_bytes", "id.orig_h", "id.orig_p", "id.resp_h", "id.resp_p", "proto", 'binary-label']): 

    conn_log_path = os.path.join(main_directory, folder_name) 

     

    # Check if conn.log file exists 

    if os.path.exists(conn_log_path) 
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        # Create Bokeh plot 

        p = figure(title=f"Evolution of Missed Bytes Ratio - {folder_name}", x_axis_label="Rank Position (sorted by missed ratio)", 

y_axis_label="Missed Bytes Ratio") 

 

        # Add hover tool 

        hover = HoverTool() 

        hover.tooltips = [("Index", "$index"), ("Missed Bytes Ratio", "@missed_ratio")] 

        p.add_tools(hover) 

        for chunk in pd.read_csv(conn_log_path, usecols=columns, chunksize=50000): 

            # Calculate missed_bytes ratio 

            chunk['missed_ratio'] = np.where((chunk['missed_bytes'].isna()) | (chunk['missed_bytes'] == 0), 0, 

pd.to_numeric(chunk['missed_bytes']) / (pd.to_numeric(chunk['orig_bytes']) + pd.to_numeric(chunk['resp_bytes']))) 

            if chunk['missed_ratio'].isnull().values.any(): 

                print("Warning: NaN value detected in missed_ratio column!") 

            # Define color based on binary-label 

            colors = ['green' if label == 0 else 'red' for label in chunk['binary-label']] 

            # Add scatter plot for the chunk 

            p.scatter(list(range(1, len(chunk) + 1)), chunk["missed_ratio"], size=10, color=colors, alpha=0.5) 

 

        # Show plot for the chunk 

        export_png(p,filename=f"{folder_name}.png") 

        show(p) 

        print(f"Saved in: {folder_name}") 

 

    else: 

        print(f"conn.log not found in {folder_path}") 

 

json_files = [f for f in os.listdir(main_directory) if f.startswith("json")] 

for json_file in json_files: 

        process_conn_log(json_file) 

 

  



 

101 

Anexo XI: Scripts de obtención de resultados 
Train-test para IoT-23 

import dask.dataframe as dd 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay, roc_curve, auc, RocCurveDisplay 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.svm import SVC 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.naive_bayes import GaussianNB, BernoulliNB 

from sklearn.linear_model import SGDClassifier 

from sklearn.ensemble import BaggingClassifier, AdaBoostClassifier, RandomForestClassifier 

from sklearn.neighbors import NearestCentroid 

from sklearn.neural_network import MLPClassifier 

from fpdf import FPDF 

import matplotlib.pyplot as plt 

import os 

from sklearn import tree 

import time 

import pandas as pd 

from concurrent.futures import ThreadPoolExecutor, as_completed 

from sklearn.preprocessing import StandardScaler, LabelBinarizer 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import roc_curve, auc, accuracy_score 

from sklearn.preprocessing import LabelBinarizer 

from sklearn.metrics import (classification_report, accuracy_score, confusion_matrix,  

                             ConfusionMatrixDisplay, roc_curve, RocCurveDisplay, precision_score, recall_score, f1_score) 

from sklearn.metrics import precision_score 

from sklearn.metrics import recall_score 

import numpy as np 

 

# Create PDF with fpdf 

class PDF(FPDF): 

    def header(self): 

        self.set_font('Arial', 'B', 12) 

        self.cell(0, 10, 'Classification Report with Metrics, Training, and Testing Time', 0, 1, 'C') 

 

    def chapter_title(self, title): 

        self.set_font('Arial', 'B', 12) 

        self.cell(0, 10, title, 0, 1, 'L') 

        self.ln(10) 

 

    def chapter_body(self, body): 

        self.set_font('Arial', '', 10) 

        self.multi_cell(0, 5, body) 

        self.ln() 

 

    def add_image(self, image_path, title=''): 

        if title: 

            self.chapter_title(title) 

        self.image(image_path, x=10, y=None, w=180) 

        self.ln(10) 

         

    def add_classification_report(self, report): 

        self.chapter_title("Classification Report:") 

        self.chapter_body(report) 

 

# Function to train and evaluate a single model 

def train_and_evaluate_model(name, model, X_train, X_test, y_train, y_test): 

    pdf = PDF() 

    output_folder = f"/root/resultados-ml/iot-23/{name}-60test" 

    if not os.path.exists(output_folder): 

        os.makedirs(output_folder) 
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    print(f"Start training {name}") 

    start_time = time.time() 

    if name in ["SVM", "KNN", "SGD", "MLP", "Nearest_Centroid"]: 

        scaler = StandardScaler() 

        X_train = scaler.fit_transform(X_train) 

        X_test = scaler.transform(X_test) 

         

        print(f"Scaling done for {name}") 

        if name == "SVM": 

            # Define parameter grid for grid search 

            param_grid = { 

                'C': [100, 1000], 

                'gamma': [1e-4, 1e-5], 

                'kernel': ['rbf', 'sigmoid'] 

            } 

            # Perform grid search 

            print(f"Start grid search for {name}") 

            grid_search = GridSearchCV(SVC(probability=True), param_grid, refit=True, verbose=2, cv=5, n_jobs=-1) 

            grid_search.fit(X_train, y_train) 

            print(f"End grid search for {name}") 

            # Use the best model with the best parameters 

            model = grid_search.best_estimator_ 

            params = grid_search.best_params_ 

            single_start_time = time.time() 

            model.fit(X_train, y_train) 

            single_train_time = time.time() - single_start_time 

            pdf.chapter_body(f"Best model: {model} Best params: {params} \n") 

            pdf.chapter_body(f"Best model Training time: {single_train_time:.4f} seconds\n") 

        else: 

            model.fit(X_train, y_train) 

    else: 

        model.fit(X_train, y_train) 

    train_time = time.time() - start_time 

    print(f"End training {name}") 

    start_time = time.time() 

    print(f"Start prediction for {name}") 

    y_pred = model.predict(X_test) 

    test_time = time.time() - start_time 

 

    pdf.add_page() 

    pdf.chapter_title('Training and Testing Time') 

    pdf.chapter_body(f"Training time: {train_time:.4f} seconds\nTesting time: {test_time:.4f} seconds\n") 

    print(f"Creating reports for {name}") 

 

    report = classification_report(y_test, y_pred) 

    pdf.add_classification_report(report) 

    print(f"Getting scores for {name}") 

    precision_scores = precision_score(y_test, y_pred, average=None) 

    recall_scores = recall_score(y_test, y_pred, average=None) 

 

    pdf.chapter_body("Precision and Recall Scores by Class with 8 decimals:\n") 

    unique_classes = np.unique(np.concatenate([y_test, y_pred])) 

    for i, class_name in enumerate(unique_classes): 

        precision = precision_scores[i] 

        recall = recall_scores[i] 

        pdf.chapter_body(f"Class '{class_name}':\n") 

        pdf.chapter_body(f"  Precision: {precision:.8f}\n") 

        pdf.chapter_body(f"  Recall: {recall:.8f}\n") 

 

    # Define the classes of interest 

    classes_of_interest = ["Scan", "benign", "DoS"] 

    print(f"Getting confusion matrix for {name}") 

    # Confusion matrix 

    cm = confusion_matrix(y_test, y_pred, labels=classes_of_interest) 

    disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=classes_of_interest) 

    # Save the confusion matrix plot as an image file 
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    cm_plot_path = os.path.join(output_folder, "confusion_matrix.png") 

    disp.plot() 

    plt.savefig(cm_plot_path) 

 

    # Add the confusion matrix plot to the PDF 

    pdf.add_image(cm_plot_path, title="Confusion Matrix Plot") 

    plt.show() 

    plt.close() 

 

    cm1 = confusion_matrix(y_test, y_pred, labels=classes_of_interest, normalize = 'true') 

    disp1 = ConfusionMatrixDisplay(confusion_matrix=cm1, display_labels=classes_of_interest) 

    # Save the confusion matrix plot as an image file 

    cm1_plot_path = os.path.join(output_folder, "confusion_matrix_normalized.png") 

    disp1.plot() 

    plt.savefig(cm1_plot_path) 

 

    # Add the confusion matrix plot to the PDF 

    pdf.add_image(cm1_plot_path, title="Normalized Confusion Matrix Plot") 

    plt.show() 

    plt.close() 

 

    if isinstance(model, DecisionTreeClassifier): 

        print(f"Plotting tree for {name}") 

        plt.figure(figsize=(25, 15))  # Adjust the size as needed 

        # Plot the decision tree 

        tree.plot_tree(model, feature_names=X.columns, filled=True, fontsize=8, proportion=True) 

 

        # Save the decision tree plot as an image file 

        tree_plot_path = os.path.join(output_folder, "decision_tree_default.png") 

        plt.savefig(tree_plot_path) 

        plt.close() 

        # Add the decision tree plot to the PDF 

        pdf.add_page() 

        pdf.chapter_title('Decision Tree') 

        pdf.add_image(tree_plot_path, title="Decision Tree Plot") 

 

    print(f"Start ROC plotting for {name}") 

    if name != "Nearest_Centroid": 

        y_prob = model.predict_proba(X_test) 

        label_binarizer = LabelBinarizer().fit(y_train) 

        y_onehot_test = label_binarizer.transform(y_test) 

        for class_of_interest in classes_of_interest: 

            class_id = np.flatnonzero(label_binarizer.classes_ == class_of_interest)[0] 

            fpr, tpr, _ = roc_curve(y_onehot_test[:, class_id], y_prob[:, class_id]) 

            display = RocCurveDisplay(fpr=fpr, tpr=tpr, estimator_name=f"{class_of_interest} vs the rest") 

            display.plot(color="darkorange") 

            plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') 

            plt.xlabel('False Positive Rate') 

            plt.ylabel('True Positive Rate') 

            plt.title(f"One-vs-Rest ROC curve: {class_of_interest} vs (all other classes)") 

            plt.legend(loc="lower right") 

            plot_file = os.path.join(output_folder, f"roc_plot_{class_of_interest}.png") 

            plt.savefig(plot_file) 

            plt.show() 

            plt.close() 

            # Add the ROC curve plot to the PDF 

            pdf.add_image(plot_file, title=f"ROC Curve: {class_of_interest} vs (all other classes)") 

    else: 

        print(f"ROC for Nearest Centroid for {name}") 

        centroids = model.centroids_ 

        distances = np.linalg.norm(X_test[:, np.newaxis] - centroids, axis=2) 

        label_binarizer = LabelBinarizer().fit(y_train) 

        y_onehot_test = label_binarizer.transform(y_test) 

        fpr = dict() 

        tpr = dict() 

        roc_auc = dict() 
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        for i, class_of_interest in enumerate(classes_of_interest): 

            fpr[i], tpr[i], _ = roc_curve(y_onehot_test[:, i], -distances[:, i]) 

            roc_auc[i] = auc(fpr[i], tpr[i]) 

            plt.figure() 

            display = RocCurveDisplay(fpr=fpr[i], tpr=tpr[i], estimator_name=f"{class_of_interest} vs the rest") 

            display.plot(color="darkorange") 

            plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') 

            plt.xlabel('False Positive Rate') 

            plt.ylabel('True Positive Rate') 

            plt.title(f"One-vs-Rest ROC curve: {class_of_interest} vs (all other classes)") 

            plt.legend(loc="lower right") 

            plot_file = os.path.join(output_folder, f"roc_plot_{class_of_interest}.png") 

            plt.savefig(plot_file) 

            plt.show() 

            plt.close() 

            # Add the ROC curve plot to the PDF 

            pdf.add_image(plot_file, title=f"ROC Curve: {class_of_interest} vs (all other classes)") 

 

    # Save PDF 

    pdf_output_path = f"/root/resultados-ml/iot-23/iot23-{name}-60test-classification_report.pdf" 

    pdf.output(pdf_output_path) 

    print(f"PDF saved for {name}") 

    return name, train_time, test_time, pdf_output_path 

 

# Read CSV using Dask 

ddf = dd.read_csv('/root/bbdd/logs-zeek/iot23-processed.csv') 

# Split data into training and testing sets 

X = ddf.drop(columns=['label', 'binary_label']) 

y = ddf['label'] 

X_train, X_test, y_train, y_test = train_test_split(X.compute(), y.compute(), test_size=0.4, random_state=42) 

 

# Define models 

models = { 

    "Decision_Tree": DecisionTreeClassifier(), 

    "Nearest_Centroid": NearestCentroid(), 

    "Random_Forest": RandomForestClassifier(n_estimators=100, random_state=0), 

    "Gaussian_NB": GaussianNB(), 

    "Bernoulli_NB": BernoulliNB(), 

    "SGD": SGDClassifier(loss='log_loss', max_iter=1000, tol=1e-3), 

    "Bagging_Tree": BaggingClassifier(estimator=DecisionTreeClassifier(), n_estimators=100, random_state=0), 

    "AdaBoost_Tree": AdaBoostClassifier(estimator=DecisionTreeClassifier(), n_estimators=100, random_state=0), 

    "MLP": MLPClassifier(max_iter=1000, random_state=42), 

    "KNN": KNeighborsClassifier(), 

    "SVM": SVC(probability=True) 

} 

 

# Train models and generate reports in parallel 

with ThreadPoolExecutor(max_workers=1) as executor: 

    futures = {executor.submit(train_and_evaluate_model, name, model, X_train, X_test, y_train, y_test): name for name, model in 

models.items()} 

    for future in as_completed(futures): 

        name = futures[future] 

        try: 

            name, train_time, test_time, pdf_output_path = future.result() 

            print(f"Completed {name}: Training time {train_time:.4f} seconds, Testing time {test_time:.4f} seconds, PDF saved at 

{pdf_output_path}") 

        except Exception as exc: 

            print(f"Error occurred for model {name}: {exc}") 
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Anexo XII: Script para muestreo de clase DoS 
Se presenta un script que realiza un muestreo previo de la clase DoS, para facilitar la clasificación 

y sea escalable. 

import pandas as pd 

from sklearn.preprocessing import LabelEncoder 

import time 

import pandas as pd 

 

# Define the CSV file path 

input_csv_path = "/root/bbdd/logs-zeek/cic-iot-2023-logs/labeled-csv_all.csv" 

output_csv_path = '/root/bbdd/logs-zeek/cic-iot-2023-encoded-common-12gb.csv' 

 

# Columns to drop 

columns_to_drop = ['tunnel_parents', 'ts', 'uid', 'id.orig_h', 'id.resp_h', 'id.orig_p', 'id.resp_p', 'startTime'] 

 

# Clean the DataFrame 

def clean_dataframe(df): 

    # Replace commas in 'service' column 

    df['service'] = df['service'].str.replace(',', '-') 

 

    # List of numeric and string columns 

    cols_num = ['duration', 'orig_bytes', 'resp_bytes', 'missed_bytes', 'orig_pkts', 'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes', 

'orig_bytes_mean', 'resp_bytes_mean', 'orig_bytes_std','resp_bytes_std', 'orig_bytes_mean_nocero', 

'resp_bytes_mean_nocero','orig_bytes_std_nocero', 'resp_bytes_std_nocero', 'orig_bytes_min','resp_bytes_min', 'orig_bytes_max', 

'resp_bytes_max','orig_pkts_nocero', 'resp_pkts_nocero', 'orig_pkts_cero','resp_pkts_cero', 'time_mean', 'time_std', 'time_min', 

'time_max','orig_time_mean', 'orig_time_std', 'orig_time_min', 'orig_time_max','resp_time_mean', 'resp_time_std', 

'resp_time_min', 'resp_time_max'] 

 

    cols_str = ['proto', 'service'] 

    cols_dash = ['conn_state', 'local_orig', 'local_resp', 'history'] 

 

    # Clean numeric columns 

    for col in cols_num: 

        df[col] = df[col].fillna('0').replace(['-', '', '[]', '<NA>'], '0').astype('float64') 

    # Clean string columns 

    for col in cols_str: 

        df[col] = df[col].fillna('unknown').replace(['-', '', '[]', '<NA>'], 'unknown').astype('object') 

    for col in cols_dash: 

        df[col] = df[col].fillna('-').replace(['', '[]', '<NA>'], '-').astype('object') 

    # Replace label values 

    df['label'] = df['label'].str.replace('Mirai', 'DoS').str.replace('Recon', 'Scan').str.replace('Scanning', 'Scan') \ 

        .str.replace('DDoS', 'DoS').str.replace('DictionaryBruteForce', 'BruteForce') 

 

    return df 

 

# Normalize local values 

def normalize_local(value): 

    if value in [True, 'True', 'T']: 

        return 'True' 

    elif value in [False, 'False', 'F']: 

        return 'False' 
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    else: 

        return value 

 

# Load values for encoding 

history_values = [] 

with open('history_values.txt', 'r') as f: 

    for line in f: 

        history_values.append(line.strip()) 

 

service_values = ['unknown', 'dns', 'http', 'ssl', 'ntp', 'gssapi-smb', 'dhcp', 'krb_tcp', 'xmpp', 'ldap_udp', 'geneve', 'radius', 'ssh', 'syslog', 

'vxlan', 'mqtt', 'ayiya', 'ssl-quic', 'quic-ssl', 'ssl-http', 'irc'] 

 

conn_state_values = ["S0", "S1", "SF", "REJ", "S2", "S3", "RSTO", "RSTR", 

                     "RSTOS0", "RSTRH", "SH", "SHR", "OTH", "-"] 

 

local_values = ["True", "False"] 

proto_values = ["tcp", "udp", "icmp", "unknown"] 

 

# Fit encoders for known unique value columns 

le_history = LabelEncoder() 

le_history.fit(history_values) 

le_service = LabelEncoder() 

le_service.fit(service_values) 

le_conn_state = LabelEncoder() 

le_conn_state.fit(conn_state_values) 

le_local_resp = LabelEncoder() 

le_local_resp.fit(local_values) 

le_local_orig = LabelEncoder() 

le_local_orig.fit(local_values) 

le_proto = LabelEncoder() 

le_proto.fit(proto_values) 

 

# Create a dictionary of encoders 

encoders = { 

    'conn_state': le_conn_state, 

    'local_resp': le_local_resp, 

    'local_orig': le_local_orig, 

    'proto': le_proto, 

    'service': le_service, 

    'history': le_history 

} 

 

columns_to_encode = ['proto', 'service', 'history', 'conn_state', 'local_orig', 'local_resp'] 

 

# Encode columns 

def encode_columns(df, columns_to_encode, encoders): 

    for col in columns_to_encode: 

        le = encoders[col] 

        df[col] = le.transform(df[col]) 

    return df 

 

# Read and process the CSV file in chunks 

chunk_size = 50000 
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chunks = pd.read_csv(input_csv_path, dtype=str, chunksize=chunk_size) 

# Write header to the output CSV 

first_chunk = next(chunks) 

first_chunk = first_chunk.drop(columns_to_drop, axis=1) 

first_chunk = clean_dataframe(first_chunk) 

first_chunk['local_orig'] = first_chunk['local_orig'].apply(normalize_local) 

first_chunk['local_resp'] = first_chunk['local_resp'].apply(normalize_local) 

first_chunk = encode_columns(first_chunk, columns_to_encode, encoders) 

first_chunk.to_csv(output_csv_path, mode='w', index=False, header=True) 

 

# Function to sample 30% of the DoS labeled rows 

def sample_majority_class(df, label_col, majority_class, frac, random_state=None): 

    majority_df = df[df[label_col] == majority_class] 

    minority_df = df[df[label_col] != majority_class] 

    sampled_majority_df = majority_df.sample(frac=frac, random_state=random_state) 

    return pd.concat([sampled_majority_df, minority_df], ignore_index=True) 

 

# Process and append remaining chunks 

for chunk in chunks: 

    chunk = chunk.drop(columns_to_drop, axis=1) 

    chunk = clean_dataframe(chunk) 

    chunk['local_orig'] = chunk['local_orig'].apply(normalize_local) 

    chunk['local_resp'] = chunk['local_resp'].apply(normalize_local) 

    chunk = encode_columns(chunk, columns_to_encode, encoders) 

    sampled_chunk = sample_majority_class(chunk, label_col='label', majority_class='DoS', frac=0.3, random_state=42) 

    sampled_chunk.to_csv(output_csv_path, mode='a', index=False, header=False) 

    print(f"Chunk appended.") 

 

print(f'DataFrame saved to {output_csv_path}') 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

108 

Anexo XIII: Script de entrenamiento y evaluación con 
selección de atributos 
 

# Create PDF with fpdf 

class PDF(FPDF): 

    def header(self): 

        self.set_font('Arial', 'B', 12) 

        self.cell(0, 10, 'Classification Report with Metrics, Training, and Testing Time', 0, 1, 'C') 

 

    def chapter_title(self, title): 

        self.set_font('Arial', 'B', 12) 

        self.cell(0, 10, title, 0, 1, 'L') 

        self.ln(10) 

 

    def chapter_body(self, body): 

        self.set_font('Arial', '', 10) 

        self.multi_cell(0, 5, body) 

        self.ln() 

 

    def add_image(self, image_path, title=''): 

        if title: 

            self.chapter_title(title) 

        self.image(image_path, x=10, y=None, w=180) 

        self.ln(10) 

        

    def add_classification_report(self, report): 

        self.chapter_title("Classification Report:") 

        self.chapter_body(report) 

 

# Define the chunk size 

chunk_size = 10000  # You can adjust this based on your system's memory capacity 

 

# Initialize an empty list to store the sampled chunks 

sampled_chunks = [] 

csv_path = '/root/bbdd/logs-zeek/cic-iot-2023-encoded-common-12gb.csv' 

# Iterate over the chunks in the CSV file 

# Function to sample the DoS labeled rows 

def sample_majority_class(df, label_col, majority_class, frac, random_state=None): 

    majority_df = df[df[label_col] == majority_class] 

    minority_df = df[df[label_col] != majority_class] 

    

    sampled_majority_df = majority_df.sample(frac=frac, random_state=random_state) 

    

    return pd.concat([sampled_majority_df, minority_df], ignore_index=True) 

 

for chunk in pd.read_csv(csv_path, chunksize=chunk_size): 

    # Sample 50% of the chunk 

    sampled_chunk = sample_majority_class(chunk, label_col='label', majority_class='DoS', frac=0.5, random_state=42) 

    # Append the sampled chunk to the list 

    sampled_chunks.append(sampled_chunk) 
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# Concatenate the sampled chunks into a single DataFrame 

sampled_cic_df = pd.concat(sampled_chunks) 

 

# Calculate the count of each label value 

label_counts = sampled_cic_df['label'].value_counts() 

 

# Print the label counts 

print(label_counts) 

 

# Define the chunk size 

chunk_size = 10000  # You can adjust this based on your system's memory capacity 

 

# Initialize an empty list to store the sampled chunks 

sampled_chunks = [] 

csv_path = '/root/bbdd/logs-zeek/iot23-encoded-joint.csv' 

# Iterate over the chunks in the CSV file 

for chunk in pd.read_csv(csv_path, chunksize=chunk_size): 

    # Sample 50% of the chunk 

    sampled_chunk = chunk.sample(frac=0.5, random_state=42) 

    # Append the sampled chunk to the list 

    sampled_chunks.append(sampled_chunk) 

 

# Concatenate the sampled chunks into a single DataFrame 

sampled_iot23_df = pd.concat(sampled_chunks) 

 

# Calculate the count of each label value 

label_counts = sampled_iot23_df['label'].value_counts() 

 

# Print the label counts 

print(label_counts) 

 

csv_path = '/root/bbdd/logs-zeek/encoded_iotd20_v2.csv' 

iotd20_df = pd.read_csv(csv_path) 

label_counts = iotd20_df['label'].value_counts() 

# Print the label counts 

print(label_counts) 

 

# Make sure all DataFrames have the same columns, irrespective of order 

columns = list(sampled_iot23_df.columns)  # assuming iotd20_df has all the columns you need 

 

# Reorder columns of each DataFrame to match the order in 'columns' 

sampled_iot23_df = sampled_iot23_df[columns] 

iotd20_df = iotd20_df[columns] 

sampled_cic_df = sampled_cic_df[columns] 

 

 

# List of DataFrames to concatenate 

dataframes = [iotd20_df, sampled_iot23_df, sampled_cic_df] 

# Concatenate the DataFrames 

# Lists to hold the train and test sets 

X_train_list = [] 

X_test_list = [] 

y_train_list = [] 
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y_test_list = [] 

 

# Split each dataframe individually 

for df in dataframes: 

    y = df['label'].values 

    X = df.drop(columns=['label', 'binary-label']).values 

    

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.6, random_state=42) 

    

    X_train_list.append(X_train) 

    X_test_list.append(X_test) 

    y_train_list.append(y_train) 

    y_test_list.append(y_test) 

columns = sampled_iot23_df.drop(columns=['label', 'binary-label']).columns 

# Concatenate the training and test sets from each dataframe 

X_train = np.concatenate(X_train_list, axis=0) 

X_test = np.concatenate(X_test_list, axis=0) 

y_train = np.concatenate(y_train_list, axis=0) 

y_test = np.concatenate(y_test_list, axis=0) 

print("train and test sets ready") 

 

del sampled_iot23_df, sampled_cic_df,X,y 

del dataframes, X_train_list, X_test_list, y_train_list, y_test_list 

 

import numpy as np 

import pandas as pd 

from sklearn.feature_selection import mutual_info_classif 

from sklearn.feature_selection import SelectKBest 

from sklearn.datasets import load_iris 

# Compute the information gain for each feature 

info_gain = mutual_info_classif(X_train, y_train) 

 

# Create a DataFrame to display the information gain for each feature 

feature_info_gain = pd.DataFrame({'Feature': columns, 'Information Gain': info_gain}) 

feature_info_gain = feature_info_gain.sort_values(by='Information Gain', ascending=False) 

 

# Display the information gain for each feature 

print("Information Gain for each feature:") 

print(feature_info_gain) 

 

# Select the top k features based on information gain 

k = 15  # Number of top features to select 

selector = SelectKBest(mutual_info_classif, k=k) 

X_train_fs = selector.fit_transform(X_train, y_train) 

 

# Get the selected feature names 

selected_features = columns[selector.get_support()] 

 

print(f"\nTop {k} features selected based on information gain:") 

print(selected_features) 

 

# Display the selected features 

print("\nSelected features dataset:") 
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print(X_train[selected_features]) 

 

# Transform the test set using the same selector 

X_test_fs = selector.transform(X_test) 

 

 

# Function to train and evaluate a single model 

def train_and_evaluate_model(name, model, X_train, X_test, y_train, y_test): 

    pdf = PDF() 

    output_folder = f"/root/resultados-ml/conjunto/{name}-60test-mix-train-multiclass-fs-presplit" 

    if not os.path.exists(output_folder): 

        os.makedirs(output_folder) 

 

    print(f"Start training {name}") 

    start_time = time.time() 

    if name in ["SGD", "MLP", "Nearest_Centroid"]: 

        scaler = StandardScaler() 

        X_train = scaler.fit_transform(X_train) 

        X_test = scaler.transform(X_test) 

        

        print(f"Scaling done for {name}") 

        model.fit(X_train, y_train) #quitar si descomento svc 

       

    else: 

        model.fit(X_train, y_train) 

    train_time = time.time() - start_time 

    print(f"End training {name}") 

    start_time = time.time() 

    print(f"Start prediction for {name}") 

    y_pred = model.predict(X_test) 

    test_time = time.time() - start_time 

 

    pdf.add_page() 

    pdf.chapter_title('Training and Testing Time') 

    pdf.chapter_body(f"Training time: {train_time:.4f} seconds\nTesting time: {test_time:.4f} seconds\n") 

    print(f"Creating reports for {name}") 

    try: 

        report = classification_report(y_test, y_pred) 

        pdf.add_classification_report(report) 

        print(f"Getting scores for {name}") 

        precision_scores = precision_score(y_test, y_pred, average=None) 

        recall_scores = recall_score(y_test, y_pred, average=None) 

 

        pdf.chapter_body("Precision and Recall Scores by Class with 8 decimals:\n") 

        unique_classes = np.unique(np.concatenate([y_test, y_pred])) 

        for i, class_name in enumerate(unique_classes): 

            precision = precision_scores[i] 

            recall = recall_scores[i] 

            pdf.chapter_body(f"Class '{class_name}':\n") 

            pdf.chapter_body(f"  Precision: {precision:.8f}\n") 

            pdf.chapter_body(f"  Recall: {recall:.8f}\n") 
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        # Define the classes of interest 

        classes_of_interest = ["Scan", "benign", "DoS","BruteForce"] 

        print(f"Getting confusion matrix for {name}") 

        # Confusion matrix 

        cm = confusion_matrix(y_test, y_pred, labels=classes_of_interest) 

        disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=classes_of_interest) 

        # Save the confusion matrix plot as an image file 

        cm_plot_path = os.path.join(output_folder, "confusion_matrix.png") 

        disp.plot() 

        plt.savefig(cm_plot_path) 

 

        # Add the confusion matrix plot to the PDF 

        pdf.add_image(cm_plot_path, title="Confusion Matrix Plot") 

        plt.show() 

        plt.close() 

 

        cm1 = confusion_matrix(y_test, y_pred, labels=classes_of_interest, normalize = 'true') 

        disp1 = ConfusionMatrixDisplay(confusion_matrix=cm1, display_labels=classes_of_interest) 

        # Save the confusion matrix plot as an image file 

        cm1_plot_path = os.path.join(output_folder, "confusion_matrix_normalized.png") 

        disp1.plot() 

        plt.savefig(cm1_plot_path) 

 

        # Add the confusion matrix plot to the PDF 

        pdf.add_image(cm1_plot_path, title="Normalized Confusion Matrix Plot") 

        plt.show() 

        plt.close() 

 

        if isinstance(model, DecisionTreeClassifier): 

            print(f"Plotting tree for {name}") 

            plt.figure(figsize=(25, 15))  # Adjust the size as needed 

            # Plot the decision tree 

            tree.plot_tree(model, feature_names=columns, filled=True, fontsize=8, proportion=True) 

 

            # Save the decision tree plot as an image file 

            tree_plot_path = os.path.join(output_folder, "decision_tree_default.png") 

            plt.savefig(tree_plot_path) 

            plt.close() 

            # Add the decision tree plot to the PDF 

            pdf.add_page() 

            pdf.chapter_title('Decision Tree') 

            pdf.add_image(tree_plot_path, title="Decision Tree Plot") 

 

        print(f"Start ROC plotting for {name}") 

        if name != "Nearest_Centroid": 

            y_prob = model.predict_proba(X_test) 

            

            label_binarizer = LabelBinarizer().fit(y_train) 

            y_onehot_test = label_binarizer.transform(y_test) 

            for class_of_interest in classes_of_interest: 

                class_id = np.flatnonzero(label_binarizer.classes_ == class_of_interest)[0] 

                fpr, tpr, _ = roc_curve(y_onehot_test[:, class_id], y_prob[:, class_id]) 

                display = RocCurveDisplay(fpr=fpr, tpr=tpr, estimator_name=f"{class_of_interest} vs the rest") 
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                display.plot(color="darkorange") 

                plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') 

                plt.xlabel('False Positive Rate') 

                plt.ylabel('True Positive Rate') 

                plt.title(f"One-vs-Rest ROC curve: {class_of_interest} vs (all other classes)") 

                plt.legend(loc="lower right") 

                plot_file = os.path.join(output_folder, f"roc_plot_{class_of_interest}.png") 

                plt.savefig(plot_file) 

                plt.show() 

                plt.close() 

                # Add the ROC curve plot to the PDF 

                pdf.add_image(plot_file, title=f"ROC Curve: {class_of_interest} vs (all other classes)") 

        else: 

            print(f"ROC for Nearest Centroid for {name}") 

            centroids = model.centroids_ 

            del X_train # OJO BORRAR 

            distances = np.linalg.norm(X_test[:, np.newaxis] - centroids, axis=2) 

            label_binarizer = LabelBinarizer().fit(y_train) 

            y_onehot_test = label_binarizer.transform(y_test) 

            fpr = dict() 

            tpr = dict() 

            roc_auc = dict() 

            

            for i, class_of_interest in enumerate(classes_of_interest): 

                fpr[i], tpr[i], _ = roc_curve(y_onehot_test[:, i], -distances[:, i]) 

                roc_auc[i] = auc(fpr[i], tpr[i]) 

                plt.figure() 

                display = RocCurveDisplay(fpr=fpr[i], tpr=tpr[i], estimator_name=f"{class_of_interest} vs the rest") 

                display.plot(color="darkorange") 

                plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') 

                plt.xlabel('False Positive Rate') 

                plt.ylabel('True Positive Rate') 

                plt.title(f"One-vs-Rest ROC curve: {class_of_interest} vs (all other classes)") 

                plt.legend(loc="lower right") 

                plot_file = os.path.join(output_folder, f"roc_plot_{class_of_interest}.png") 

                plt.savefig(plot_file) 

                plt.show() 

                plt.close() 

                # Add the ROC curve plot to the PDF 

                pdf.add_image(plot_file, title=f"ROC Curve: {class_of_interest} vs (all other classes)") 

    except Exception as e: 

            print(f"Error occurred for model {name}: {e}") 

            pdf.add_page() 

            pdf.chapter_title('Error') 

            pdf.chapter_body(f"An error occurred during the training or evaluation of the model {name}:\n{str(e)}") 

    

    finally: 

        # Save PDF 

        pdf_output_path = f"/root/resultados-ml/conjunto/conjunto-{name}-60test-mix-train-multiclass-fs-presplit-

classification_report.pdf" 

        pdf.output(pdf_output_path) 

        print(f"PDF saved for {name}") 

        return name, train_time, test_time, pdf_output_path 
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# Define models 

models = { 

    "Decision_Tree": DecisionTreeClassifier(), 

    "Random_Forest": RandomForestClassifier(n_estimators=100, random_state=0), 

    "Gaussian_NB": GaussianNB(), 

    "Bernoulli_NB": BernoulliNB(), 

    "SGD": SGDClassifier(loss='log_loss', max_iter=1000, tol=1e-3), 

    "Bagging_Tree": BaggingClassifier(estimator=DecisionTreeClassifier(), n_estimators=100, random_state=0), 

    "AdaBoost_Tree": AdaBoostClassifier(estimator=DecisionTreeClassifier(), n_estimators=100, random_state=0), 

    "MLP": MLPClassifier(max_iter=1000, random_state=42), 

    "Nearest_Centroid": NearestCentroid() 

    #"KNN": KNeighborsClassifier(), 

    #"SVM": SVC(probability=True) 

} 

 

# Train models and generate reports in parallel 

with ThreadPoolExecutor(max_workers=1) as executor: 

    futures = {executor.submit(train_and_evaluate_model, name, model, X_train, X_test, y_train, y_test): name for name, model in 

models.items()} 

    for future in as_completed(futures): 

        name = futures[future] 

        try: 

            name, train_time, test_time, pdf_output_path = future.result() 

            print(f"Completed {name}: Training time {train_time:.4f} seconds, Testing time {test_time:.4f} seconds, PDF saved at 

{pdf_output_path}") 

        except Exception as exc: 

            print(f"Error occurred for model {name}: {exc}") 

 



 

 

Anexo XIV: Tablas de Precision y Recall y Matrices de Confusión 

   

 

 

Precision 

Dataset name Label DecissionTree Gaussian NB BernouilliNB SGD RandomForest BaggingTree BoostingTree NearestCentroid MLP 

IoTD20 

BruteForce 0,99 0,00 0,08 1 1 0,99 0,98 0,03 1 

DoS 0,99 0,72 0,95 0,96 0,99 0,99 0,99 0,94 0,99 

Scan 1 0,3 1 0,96 1 1 1 0,5 1 

Benign 0,98 0,93 0,2 0,92 0,98 0,98 0,98 0,59 0,96 

Average 0.99 0.68 0.89 0.96 0.99 0.99 0.99 0.86 0.99 

IoT-23 

DoS 1 0,91 0,84 0,99 1 1 1 0,98 1 

Scan 1 1 1 1 1 1 1 0,96 1 

Benign 1 1 1 1 1 1 1 1 1 

Average 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00  

CIC-IoT-2023 

BruteForce 0,83 0,00 0,00 0,00 0,96 0,91 0,85 0,00 0,66 

DoS 1 1 1 1 1 1 1 1 1 

Scan 0,98 0,00 0,03 0,69 0,99 0,99 0,99 0,51 0,96 

Benign 0,97 0,28 0,01 0,55 0,97 0,98 0,97 0,28 0,85 

Average 1.00 1.00  1.00 1.00 1.00  1.00 1.00 1.00 1.00 
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Precision 

Dataset name Label DecissionTree Gaussian NB BernouilliNB SGD RandomForest BaggingTree BoostingTree NearestCentroid MLP 

Escenario 1 

Binary 

Benign 1 0,25 0,8 0,98 1 1 1 0,47 0,99 

Malign 1 1 0,95 1 1 1 1 0,99 1 

Average 1.00 0.82 0.91 1.00 1.00 1.00 1.00 0.87 1.00 

Escenario 1 

Multiclass 

BruteForce 0.44 0.00 0.00 0.00 0.55 0.55 0.46 0.01 0.82 

DoS 1 1.00 0.99 0.99 1 1 1 1.00 1.00 

Scan 1 0.00 0.85 0.99 1 1 1 0.85 1.00 

Benign 1 0.05 0.82 0.98 1 1 1 0.99 0.99 

Average 1.00 0.51 0.91 0.99 1.00 1.00 1.00 0.96 1.00 

Escenario 1 

Multiclass & FS 

BruteForce 0.42 0.00 0.00 0.00 0.53 0.51 0.43  0.01  0.04 

DoS 1 1.00 0.64 0.99 1 1 1 0.99 1 

Scan 1 0.00 0.95 0.88 1 1 1 0.88  0.99 

Benign 1 0.02 0.78 0.96 1 1 1 0.98  0.99 

Average 1.00 0.50 0.76 0.96 1.00 1.00 1.00 0.96 0.99 

Escenario 2 

Binary 

Benign 0.96 0.47 0.21 0.11 1.00 0.99  0.98 0.73 0.11 

Malign 0.53 0.28 0.53 0.01 0.53 0.53 0.53 0.53 0.01 

Average 0.68 0.37 0.38 0.06 0.75 0.75 0.74 0.58 0.06 

Escenario 2 

Multiclass 

BruteForce 0,00 0,00 0,03 0,00 0,00 0,00 0,02 0,02 0,07 

DoS 0,00 0,02 0,00 0,01 0,00 0,00 0,00 0,00 0,56 

Scan 0,06 0,07 0,11 0,17 0,14 0,04 0,19 0,88 1 

Benign 1 0,96 0,35 0,11 1 1 1 1 0,99 

Average 0.50 0.49 0.22 0.14 1.00 0.49 0.57 0.93 0.99 
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Recall 

Dataset name Label DecissionTree Gaussian NB BernouilliNB SGD RandomForest BaggingTree BoostingTree NearestCentroid MLP 

IoTD20 

BruteForce 1 1 1 0,27 1 1 1 1 0,99 

DoS 1 0,48 0,86 1 1 1 1 0,83 1 

Scan 1 0,00 0,95 0,99 1 1 1 0,89 1 

Benign 0,93 0,05 0,36 0,57 0,94 0,93 0,93 0,29 0,89 

Average 0.99 0.38 0.83 0.96 0.99 0.99 0.99 0.79 0.99 

IoT-23 

DoS 1 0,77 0,77 0,99 1 1 1 0,77 1 

Scan 1 1 1 1 1 1 1 1 1 

Benign 1 1 1 1 1 1 1 0,96 1 

Average 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00  

CIC-IoT-2023 

BruteForce 0,86 0,99 0,14 0,00 0,73 0,86 0,85 0,44 0,36 

DoS 1 0,12 0,89 1 1 1 1 0,99 1 

Scan 0,98 0,00 0,47 0,52 0,98 0,99 0,99 0,81 0,96 

Benign 0,98 0,01 0,74 0,33 0,98 0,99 0,98 0,53 0,90 

Average 1.00  0.12 0.89 1.00 1.00  1.00 1.00 0.99 1.00 
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Recall 

Dataset name Label DecissionTree Gaussian NB BernouilliNB SGD RandomForest BaggingTree BoostingTree NearestCentroid MLP 

Escenario 1 

Binario 

Benign 1 1 0,84 0,99 1 1 1.00 0,98 0.99 

Malign 1 0,08 0,93 0,99 1 1 1.00 0,65 1 

Average 1.00 0.30 0.91 0.99 1.00 1.00 1.00 0.73 1.00 

Escenario 1 

Multiclass 

BruteForce 0.38 0.99 0.79 0.00 0.36 0.37 0.38 0.67 0.18 

DoS 1.00 0.12 0.76 1.00 1.00 1.00 1.00 0.97 1.00 

Scan 1.00 0.00 0.99 0.99 1.00 1.00 1.00 0.99 0.99 

Benign 1.00 0.00 0.83 0.99 1.00 1.00 1.00 0.84 1.00 

Average 1.00  0.06 0.84 0.99 1.00 1.00 1.00 0.94 1.00 

Escenario 1 

Multiclass & FS 

BruteForce 0.36 1.00 0.66 0.00 0.35 0.35 0.35 0.09 0.00 

DoS 1.00 0.12 0.85 0.99 1.00 1.00 1.00 0.99 1.00 

Scan 1.00 0.00 0.99 0.98 1.00 1.00 1.00 0.99 0.99 

Benign 0.99 0.00 0.00 0.85 0.99 0.99 0.99 0.85 0.99 

Average 1.00  0.06 0.68 1.00 1.00 1.00 1.00 0.96 0.99 

Escenario 2 

DoS sampled 

Binary 

Benign 0.00 1.00 0.00 0.14 0.00 0.00 0.00 0.00 0.14 

Malign 1 0.00 1 0.01 1 1 1 1 0.01 

Average 0.68   0.47 0.53  0.07 0.53 0.53 0.74 0.53 0.99 

Escenario 2 

DoS sampled 

Rest for testing 

BruteForce 0,00 1 0,99 0,00 0,00 0,01 0,00 0,99 0,48 

DoS 0,5 0,00 0,12 0,71 0,67 0,49 0,00 0,49 0,95 

Scan 0,00 0,00 0,00 0,00 0,00 0,00 0,04 1 1 

Benign 0,14 0,00 0,00 0,14 0,14 0,14 0,14 0,00 0,98 

Average 0.07 0.00 0.00  0.07 0.07 0.07 0.07 0.53 0.99 
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Matrices de Confusión IoTD20 
DecisionTree 

 

Gaussian NB 

 

BernouilliNB 

 

SGD 

 

RandomForest 
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BaggingTree 

 

BoostingTreeNB 

 

NearestCentroid 

 

MLP 
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Matrices de Confusión IoT-23 
DecisionTree 

 

Gaussian NB 

 

BernouilliNB 

 

SGD 

 

RandomForest 
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BaggingTree 

 

BoostingTreeNB 

 

NearestCentroid 

 

MLP 
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Matrices de Confusión CIC-IoT-2023 
DecisionTree 

 

Gaussian NB 

 

BernouilliNB 

 

SGD 

 

RandomForest 
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BaggingTree 

 

BoostingTreeNB 

 

NearestCentroid 

 

MLP 
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Matrices de Confusión Escenario 1, binary  
DecisionTree 

 

Gaussian NB 

 

BernouilliNB 

 

SGD 

 

RandomForest 
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BaggingTree 

 

BoostingTreeNB 

 

NearestCentroid 

 

MLP 
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Matrices de Confusión Escenario 1, multiclass 
DecisionTree 

 

Gaussian NB 

 

BernouilliNB 

 

SGD 

 

RandomForest 
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BaggingTree 

 

BoostingTreeNB 

 

NearestCentroid 

 

MLP 
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Matrices de Confusión Escenario 1, multiclass feature selection 
DecisionTree 

 

Gaussian NB 

 

BernouilliNB 

 

SGD 

 

RandomForest 
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BaggingTree 

 

BoostingTreeNB 

 

NearestCentroid 

 

MLP 
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Matrices de Confusión Escenario 2 Binary 
DecisionTree 

 

Gaussian NB 

 

BernouilliNB 

 

SGD 

 

RandomForest 

 

 

 

 

 

 



 

132 

BaggingTree 

 

BoostingTreeNB 

 
NearestCentroid 

 

MLP 
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Matrices de Confusión Escenario 2 Multiclass 
DecisionTree 

 

Gaussian NB 

 

BernouilliNB 

 

SGD 

 

RandomForest 
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BaggingTree 

 

BoostingTreeNB 

 

NearestCentroid 

 

MLP 
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Anexo XV: Cálculo Tiempos Selección de atributos 
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