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Resumen

La congestión venosa sistémica (CVS) es un factor crítico en pacientes con insuficiencia cardíaca
(IC) e insuficiencia renal, lo que se conoce como síndrome cardiorrenal (SCR). La congestión es
la principal causa de ingreso hospitalario por IC aguda descompensada, subrayando la necesidad
urgente de mejorar su comprensión y manejo. El protocolo Venous Excess Ultrasound grading System
(VEXUS) representa un avance significativo en la evaluación de la CVS mediante el empleo de la
ecografía a pie de cama. Sin embargo, la implementación de este protocolo enfrenta desafíos técnicos,
entre los cuales, la determinación con precisión del diámetro máximo de la vena cava inferior (VCI)
es el primero de ellos.

Se propone la segmentación y caracterización de la VCI de forma automática, a través de un algo-
ritmo de preprocesado y segmentación de imágenes ecográficas en modo M de la VCI. Las imágenes
se suavizan usando un filtro bilateral y son binarizadas. Los bordes detectados se procesan para iden-
tificar los pares correspondientes a las paredes de la VCI.

La muestra de imágenes se compone de 55 exploraciones pertenecientes a 25 pacientes con SCR.
procedentes del departamento de Medicina Interna del Hospital Clínico Universitario Lozano Blesa
(HCULB) de Zaragoza.

Para la evaluación del método se dispone de la medida del diámetro máximo de la VCI regis-
trado durante la práctica clínica y la segmentación manual de la VCI realizada por 3 expertos del
HCULB.

Los resultados muestran que, para la obtención del diámetro máximo, el error cometido por el mé-
todo automático con respecto a las anotaciones (0,105± 0,231 cm) mejora a las anotaciones clínicas
(0,114 ± 0,234 cm). La correlación y concordancia de las segmentaciones obtenidas con las anota-
ciones manuales, ρs = 0,931 y ρc = 0,878, demuestran la validez del método, avalado también por
un alto valor del coeficiente de Dice-Sørensen (DSC), comprendido entre 0,91 − 0,92. Los valores
medios de correlación y concordancia entre los anotadores, ρs = 0,953 y ρc = 0,960, muestran una
baja variabilidad inter-observador, lo que garantiza la robustez de los resultados obtenidos.

El método propuesto ha demostrado un elevado grado de precisión en la identificación de la VCI.
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Abstract

Systemic venous congestion (SVC) is a critical factor in patients with heart failure (HF) and renal
failure, known as cardiorenal syndrome (CRS). Congestion is the main cause of hospital admission
for acute decompensated HF, highlighting the urgent need to improve its understanding and mana-
gement. The Venous Excess Ultrasound grading System (VEXUS) protocol represents a significant
advancement in the evaluation of SVC through bedside ultrasound. However, the implementation of
this protocol faces technical challenges, among which the precise determination of the maximum
diameter of the inferior vena cava (IVC) is the foremost.

The proposed approach involves the automatic segmentation and characterization of the IVC th-
rough a preprocessing and segmentation algorithm of ultrasound images in M-mode of the IVC. The
images are smoothed using a bilateral filter and binarized. The detected edges are processed to identify
the pairs corresponding to the walls of the IVC.

The sample of images consists of 55 scans belonging to 25 CRS patients from the Internal Medicine
Department of the Hospital Clínico Universitario Lozano Blesa (HCULB) in Zaragoza.

The evaluation of the method makes use of the maximum diameter measurement of the IVC recor-
ded during clinical practice and the manual segmentation of the IVC performed by three experts from
HCULB.

The results show that for obtaining the maximum diameter, the error made by the automatic method
compared to the annotations (0,105±0,231 cm) improves over the clinical annotations (0,114±0,234

cm). The correlation and concordance of the segmentations obtained with the manual annotations,
ρs = 0,931 and ρc = 0,878, demonstrate the validity of the method, also supported by a high value
of the Dice-Sørensen coefficient (DSC), ranging between 0,91 − 0,92. The average values of corre-
lation and concordance among the annotators, ρs = 0,953 and ρc = 0,960, show low inter-observer
variability, ensuring the robustness of the obtained results.

The proposed method has demonstrated a high degree of accuracy in the identification of the
IVC.
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Capítulo 1

Introducción

1.1 Motivación
Las enfermedades cardiovasculares son la principal causa de muerte a nivel global, con 17.9 mi-

llones de fallecimientos en 2019, representando el 32 % de la mortalidad mundial [1]. Entre estas,
la insuficiencia cardíaca (IC) es de las más prevalentes. Con el envejecimiento de la población y el
aumento de la esperanza de vida, la incidencia de la IC sigue en aumento, siendo la principal causa
de hospitalización en personas mayores de 65 años y representando entre el 2 % y el 3 % del gasto
sanitario español; además de suponer la primera causa de ingreso en los servicios de Medicina Interna
[2].

1.2 Insuficiencia cardíaca
La IC se caracteriza por la incapacidad del corazón para bombear una cantidad adecuada de sangre

que satisfaga las necesidades del cuerpo. Es una enfermedad altamente compleja en la que múltiples
vías fisiopatológicas se activan con el objetivo de lograr una readaptación para compensar la disfun-
ción cardíaca producida por las múltiples etiologías capaces de afectar el miocardio [3, 4, 5].

La congestión venosa sistémica (CVS), entendida como el incremento de las presiones de llenado
telediastólicas del ventrículo izquierdo, y el consiguiente incremento de la presión venosa central,
se ha considerado tradicionalmente como la consecuencia de la claudicación del gasto cardíaco [6],
durante principios del siglo XXI, la CVS se ha convertido en la gran protagonista de la IC, al ha-
berse demostrado su implicación ya no solo pronóstica, si no por su papel clave en la fisiopatología,
especialmente en pacientes en los que coexisten la IC y la insuficiencia renal, lo que se conoce como
síndrome cardiorrenal (SCR) [3, 7].

1.2.1 Síndrome cardiorrenal
El SCR se define como una interacción bidireccional compleja entre el corazón y el riñón, actual-

mente existe un esfuerzo creciente por redefinir los subtipos de SCR según los mecanismos fisio-
patológicos [8]. La CVS es un factor hemodinámico que promueve el deterioro de la función renal
en pacientes con insuficiencia cardíaca aguda descompensada [9]. Esta comorbilidad se asocia con
un mayor riesgo de mortalidad cardiovascular [10]. Una de las principales consecuencias del empeo-
ramiento de la función renal es la génesis de remodelación cardíaca, produciendo alteraciones en la
recaptación de calcio por el retículo sarcoplásmico. Esta prolongación del transitorio de calcio cito-
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INSUFICIENCIA CARDÍACA

sólico aumenta la duración del potencial de acción y promueve la aparición de posdespolarizaciones
tardías, lo que puede desencadenar arritmias, favorecidas aún más por anomalías de conducción vin-
culadas a la fibrosis y el agrandamiento en corazones hipertrofiados [11]. Por el contrario, la hipoxia
y el bajo gasto cardíaco en la IC crónica pueden causar un daño renal crónico permanente.

1.2.2 Detección y diagnóstico
Los pacientes con SCR suponen un reto para los profesionales médicos debido a la gran comple-

jidad que presentan, especialmente en casos graves, donde la exploración física o la realización de
controles analíticos convencionales pueden resultar insuficientes para poder establecer un diagnóstico
preciso y adaptar el tratamiento. [12, 13].

En este sentido, y con el objetivo de mejorar en la atención médica prestada a los pacientes con
SCR, durante los últimos años se han desarrollado diferentes herramientas clínicas que pretenden
complementar a la exploración física, a fin de poder disponer de una información más detallada que
permita aproximar de una manera más real el estado congestivo del paciente y actuar en consecuencia
a la hora de ajustar el tratamiento. Entre las diferentes herramientas, se encuentran, por ejemplo, el
uso de biomarcadores sanguíneos, como el CA125 [14, 15], o el uso de técnicas ecográficas a pie de
cama [16, 17].

1.2.3 Ecografía a pie de cama
Los ecógrafos portátiles, o también llamados equipos POCUS (Point-Of-Care UltraSounds), pro-

porcionan imágenes para la guía diagnóstica y de procedimientos. Son utilizados por el facultativo,
en el punto de atención y en tiempo real, lo que permite una correlación directa con los signos y
síntomas del paciente [18]. Están a su vez integrados en la rutina clínica y contribuyen a aumentar
la rapidez de los diagnósticos y la precisión de los procedimientos, así como a disminuir los costes
generales [19]. Estos equipos destacan por su versatilidad para utilizarse en diversos entornos médi-
cos, incluidas intervenciones de emergencia, unidades de cuidados intensivos, clínicas ambulatorias
y entornos prehospitalarios. Las aplicaciones comunes incluyen ecografías cardíacas, abdominales,
torácicas, vasculares o musculoesqueléticas.

La ecografía clínica a pie de cama ha supuesto una verdadera revolución en el acto médico durante
la última década, debido fundamentalmente al desarrollo tecnológico y la posibilidad de disponer de
equipos portátiles que permiten responder a preguntas sencillas generadas durante la exploración mé-
dica. En el campo de la IC, por ejemplo, el análisis de la presencia de congestión pulmonar mediante
la detección de líneas b pulmonares ha permitido mejorar el pronóstico de los pacientes de manera
ambulatoria [20]; o el análisis de la morfología de la vena cava inferior (VCI) como marcador in-
directo del incremento de la presión en la aurícula izquierda, presenta valor pronóstico y se usa de
manera rutinaria en la atención de pacientes con IC aguda [21].

Una de sus limitaciones, más allá de factores técnicos, es que la precisión y calidad de la imagen
obtenida depende de la habilidad y experiencia del propio operador. Por ello, los médicos que usan

2



INSUFICIENCIA CARDÍACA

POCUS generalmente reciben capacitación y certificación específica para garantizar la competencia
en la realización e interpretación de la prueba.

1.2.4 Protocolo VExUS
Dentro de cualquier sistema vascular venoso, el volumen adicional asociado con factores congesti-

vos alcanzará eventualmente el límite superior de capacidad venosa sistémica, causando un rápido au-
mento de las presiones venosas. Se han propuesto varios marcadores de las presiones asociadas a este
proceso, incluyendo la evaluación de grandes venas (cava, yugular interna), así como la detección de
formas de onda venosa anormales en la vena porta, venas hepáticas y venas renales [22]. Todos estos
marcadores se han asociado con consecuencias adversas de la hipertensión venosa, tanto en contextos
agudos como crónicos [23, 24, 25, 26]. Sin embargo, todos ellos tienen limitaciones significativas que
pueden dificultar su utilidad clínica cuando se interpretan de forma aislada [27, 28, 29].

Recientemente, y con el objetivo de mejorar la cuantificación de la congestión en pacientes con
SCR, Beaubien-Souligny W. et al.[30, 31] propusieron un nuevo protocolo ecográfico a pie de cama
denominado VEXUS, fundamentado en el análisis de los diferentes patrones venosos observados
mediante ecografía Doppler pulsada en tres venas abdominales (venas suprahepáticas, vena porta y
venas renales lobares), previa evaluación del diámetro observado en la VCI. Este protocolo permite
discernir entre un empeoramiento de la función renal transitorio de origen congestivo y un verdadero
deterioro de la función renal provocado por el avance del SCR. El resumen del protocolo se muestra
en la Figura 1.1:
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Figura 1.1: Resumen del protocolo VExUS. Imagen obtenida de
www.Pocus101.com

Desde su introducción en 2020, el protocolo VEXUS ha atraído una atención significativa, reflejo
de la búsqueda continua de los especialistas por herramientas objetivas para la evaluación del grado
de congestión, como lo demuestra el hecho de que el artículo original haya sido citado más de 300
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veces hasta la fecha [32]. A pesar de las perspectivas prometedoras de este protocolo, se necesita
más investigación para superar sus limitaciones, que incluyen aspectos técnicos relacionados con la
variabilidad inter-observador, variabilidad anatómica del paciente, calidad del equipo ecográfico, etc.
Por tanto, se requiere de mayor evidencia para incluirlo en un protocolo de valoración de pacientes
con SCR [33].

1.3 Captación de imagen médica
La imagen médica juega un papel fundamental en el diagnóstico y seguimiento del SCR, en el que

las ecografías de corazón y riñón se emplean en el protocolo habitual, tanto para diagnóstico como
para su empleo como guía en múltiples procedimientos intervencionistas.

1.3.1 Principios físicos de la ecografía
La ecografía es una técnica de imagen basada en la emisión y recepción de ondas sonoras, con una

frecuencia superior al límite de audición humano, conocidas como ultrasonidos (US). Es una técnica
no invasiva, con la ventaja de no emitir radiaciones ionizantes.

El generador del ecógrafo transmite un pulso eléctrico de bajo voltaje que produce una vibración
del cristal piezoeléctrico del transductor y la transmisión de un haz de US de corta duración. El US
se propaga dentro del paciente y es parcialmente reflejado y transmitido por los tejidos con los que
se encuentra. La energía reflejada regresa al transductor y produce vibraciones en el cristal piezoeléc-
trico que son transformadas en corriente eléctrica y posteriormente procesadas para transformarse en
imágenes. [34]

La impedancia acústica (z) es el grado de resistencia que ofrecen los tejidos al ser atravesados por
el sonido, y se expresa matemáticamente como:

z = v · d, (1.1)

donde v es la velocidad de propagación de la onda de US, constante en los tejidos, y d es la densidad
del medio. Mientras dos materiales presenten la misma impedancia acústica, el sonido progresa a
través de la interfase sin reflejarse. En cambio, si existe diferencia, se producirá una reflexión que
puede ir desde un eco débil, cuando es pequeña, a una reflexión completa del ultrasonido cuando es
grande.

La imagen se obtiene mediante el procesamiento de los haces de US reflejados por las distintas
interfases tisulares y estructuras corporales. Existen diferentes modos de representación de la ima-
gen:

Modo A (amplitud): solo muestra datos de una línea del haz de US.

Modo M (movimiento): también conocido como tiempo-movimiento y empleado en ecocardio-
grafía y sistema vascular.

Modo B (brillo): obtiene una imagen bidimensional en tiempo real.
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Modo Doppler: se basa en el cambio de frecuencia del sonido al chocar la onda acústica con
una interfase en movimiento.

Entre los factores que pueden afectar a la calidad de la imagen resultante se encuentran: la resolu-
ción espacial, resolución temporal, resolución de contraste, rango dinámico, ganancia, ruido acústico,
ruido electrónico y presencia de armónicos.

1.3.2 Modo M de la vena cava inferior
Estimar la presión auricular derecha (PAD) constituye el primer paso del protocolo VEXUS. La

ecografía modo M de la VCI (véase Figura 1.2) se utiliza para evaluar la PAD en pacientes que
respiran de manera espontánea. El principio subyacente es que un vaso pequeño que colapsa al ins-
pirar sugiere una PAD normal, mientras que uno grande indica una PAD elevada [35]. El protocolo
VEXUS adopta un punto de corte de 2 cm para el diámetro anteroposterior máximo de la VCI pa-
ra indicar una PAD elevada. Dado que la colapsabilidad está influenciada por la fuerza y el estado
ventilatorio de cada individuo, emplear el diámetro como parámetro principal es una elección lógica.
Aunque este criterio es un punto de partida práctico, existen factores como la dilatación basal de la
VCI en atletas de resistencia, la presión abdominal o la superficie corporal, que han de tenerse en
cuenta antes de sacar conclusiones [36].

Figura 1.2: Imagen ecográfica en modo M

En la práctica clínica los especialistas visualizan la imagen a través de un software dedicado, ya sea
en la pantalla del propio ecógrafo o en un equipo distinto, y realizan la medición del diámetro máximo
con una herramienta de anotación disponible en el propio software. La decisión del punto de la imagen
que muestra el mayor diámetro se hace atendiendo a la experiencia y criterio del operador.
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1.3.3 Segmentación de imagen médica
La segmentación es un problema fundamental en el análisis de imágenes médicas. Consiste en

extraer automáticamente objetos/regiones significativas de toda la imagen para ayudar a caracterizar
la anatomía o el evento de interés, con el objetivo de mejorar el diagnóstico [37]. Este tipo de técnicas
sustituyen a una segmentación manual que consume mucho tiempo y es propensa a la variabilidad
intra- e inter-observador [37, 34]. Las técnicas de segmentación de imágenes varían desde el filtrado y
umbralizado [34, 38], algoritmos basados en el crecimiento de regiones o watershed [39, 40], análisis
de textura [41], basados en atlas [42], hasta enfoques de aprendizaje profundo, siempre y cuando el
número de muestras y referencias sea lo suficientemente grande [43, 44]. El uso de estas técnicas
para la segmentación de imágenes en ecografía puede mejorar la precisión diagnóstica y reducir la
variabilidad humana [34, 45], reducir errores en el diagnóstico y permitir la adquisición de nuevos
conocimientos a través del análisis de grandes cantidades de datos [46].

1.4 Objetivo del trabajo

Este trabajo propone el desarrollo y la evaluación de un método de segmentación automatizado
de la VCI en imágenes de ultrasonido en modo M, con el objetivo de mejorar la reproducibilidad y
objetividad de la primera fase del protocolo VEXUS.

1.5 Descripción del documento

El resto del documento se organiza en las siguientes secciones:

Capítulo 2: Metodología
Introduce los materiales utilizados en este trabajo fin de máster, así como la descripción del
algoritmo de segmentación desarrollado y el protocolo de evaluación de este.

Capítulo 3: Resultados
Presenta los resultados obtenidos evaluando diferentes dimensiones del sistema desarrollado,
desde el nivel de eficacia del método automático, la precisión en la medida de los diámetros
máximos de la VCI comparándolo con segmentaciones manuales realizadas por expertos y la
base de datos clínica, la correspondencia de la región segmentada de forma automática con
la región segmentada por expertos, y, finalmente, el nivel de variabilidad inter-observador de
estos.

Capítulo 4: Discusión
Analiza e interpreta los resultados obtenidos, describiendose tanto las fortalezas como las limi-
taciones del método de segmentación desarrollado.

Capítulo 5: Conclusiones
Resume las conclusiones derivadas de la realización del trabajo y los resultados obtenidos.

Capítulo 6: Líneas futuras
Se proponen líneas de mejora y se enmarca el trabajo dentro de un proyecto mayor.
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Capítulo 2

Metodología

2.1 Materiales

La adquisición de las imágenes ecográficas y los datos clínicos necesarios para el trabajo corres-
ponden a un estudio de cohortes, prospectivo, unicéntrico y sin intervención farmacológica, que se
llevará a cabo por los facultativos del servicio de Medicina Interna del Hospital Clínico Universitario
Lozano Blesa (HCULB) de Zaragoza entre 2023 y 2025.

La muestra poblacional se compondrá de aquellos pacientes que ingresen en el servicio de Medicina
Interna del HCULB con los diagnósticos de insuficiencia cardíaca aguda o insuficiencia cardíaca
crónica descompensada, y que cumplan los siguientes criterios de inclusión/exclusión:

Criterios de inclusión:

1. Pacientes con una edad igual o superior a 18 años.

2. Presencia de síntomas y/o signos sugestivos de insuficiencia cardíaca congestiva (edemas, cre-
pitantes, ascitis, ingurgitación venosa yugular).

3. Niveles elevados de péptidos natriuréticos durante las primeras 24 horas de ingreso (NT-proBNP
>1000 pg/mL).

4. Ecocardiograma transtorácico realizado durante los 12 meses anteriores o en el mes siguiente a
la fecha de inclusión en el estudio.

5. Consentimiento informado por escrito.

Criterios de exclusión:

1. Ingreso procedente de la unidad de cuidados intensivos.

2. Ingreso procedente de la sala de observación de Urgencias, y cuya estancia haya sido igual o
superior a 24 horas.

3. Negativa del paciente a participar en el estudio ya sea oral o por ausencia de consentimiento
informado por escrito.

4. Dependencia funcional significativa, entendido como aquel que impide acudir a los controles
posteriores ambulatorios presenciales.
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5. Deterioro cognitivo significativo, entendido como aquel que impide acudir a los controles pos-
teriores ambulatorios presenciales.

6. Trasplante renal, enfermedad renal crónica avanzada (Estadío V según la fórmula CKD-EPI-
Creatinina) o pacientes en tratamiento con hemodiálisis o diálisis peritoneal.

La recogida de datos clínicos, analíticos y ecográficos se realizará en tres momentos clave de la
hospitalización:

Ingreso: Definida como el momento de la inclusión en el estudio (primeras 24 horas de ingreso
en el servicio de Medicina Interna).

Control: Definida como el periodo comprendido entre las 48 y 72 horas posteriores al ingreso
en el servicio de Medicina Interna.

Alta: Definida como el periodo comprendido entre las 24 horas previas al alta médica del ser-
vicio de Medicina Interna.

Se han establecido las condiciones necesarias para garantizar el cumplimiento de la Ley Orgánica
3/2018 de Protección de Datos Personales y garantía de los derechos digitales de forma que el acceso
a ellos es restringido y únicamente con fines de investigación científica. De esta manera se garantiza
la absoluta anonimidad de los pacientes y que los datos no serán utilizados con otro fin que no fuera
el de cumplir los objetivos del protocolo clínico aprobado por el Comité de Ética de la Investigación
de la Comunidad Autónoma de Aragón el 16 de noviembre de 2022 (código: PI22/481) y a los que
este trabajo fin de máster se adhiere.

2.1.1 Obtención de imágenes ecográficas
La exploración ecográfica y obtención de imágenes se llevará a cabo con la sonda sectorial y con

el preset abdominal utilizando el ecógrafo portátil Philips Lumify.

El protocolo VEXUS se llevará a cabo por los facultativos del HCULB según el artículo de
Beaubien-Souligny W. et al. [30, 31]. Las imágenes se almacenarán en el propio dispositivo y se-
rán transferidas posteriormente a un disco duro destinado a dicho fin tras encriptación y anonimizado.
El protocolo se considerará adecuado para el estudio cuando se almacenen de manera satisfactoria las
siguientes imágenes:

Plano subxifoideo longitudinal: Imagen ecográfica bidimensional en modo M de la VCI en su
apertura con la vena suprahepática (Figura 2.1, panel a) que incluye un vídeo de 10 segundos
de duración.

Plano coronal línea axilar media y posterior:

• Imagen bidimensional de ultrasonido Doppler pulsado de la vena suprahepática (Figura
2.1, panel b) que incluye un video de 10 segundos de duración.

• Imagen bidimensional de ultrasonido Doppler pulsado de la vena porta (Figura 2.1, panel
c) que incluye un video de 10 segundos de duración
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• Imagen bidimensional de ultrasonido Doppler pulsado de vasos interlobares renales (Fi-
gura 2.1, panel d) que incluye un video de 10 segundos de duración.

Figura 2.1: Imagenes de ultrasonido adquiridas durante el protocolo VE-
xUS: a) Vena Cava Inferior en su apertura con la vena suprahepática, b)
Flujo Doppler de la vena suprahepática, c) Flujo Doppler de la vena porta y
d) Flujo Doppler de los vasos interlobares renales.

Las imágenes ecográficas ilustradas en el panel a) de la Figura 2.1, correspondientes al modo M de
la VCI, serán usadas para el diseño del sistema de segmentación automática objeto de este trabajo fin
de máster.

2.1.2 Muestra disponible
Se dispone de un total de 55 exploraciones ecográficas procedentes de 25 pacientes, con una edad

media de 85.52 ± 5.53 años, de los cuales el 48 % son mujeres, 83 % padecen tensión arterial, 30 %
padecen diabetes mellitus y la media de la fracción de eyección del ventrículo izquierdo es de 47.05 ±
13.02 %. Cada uno de los pacientes presenta entre 1 y 3 imágenes, correspondientes a alguno/s o todos
los momentos clave de la hospitalización mencionados anteriormente (ingreso, control y alta).

Atendiendo al protocolo VEXUS, en esta primera exploración de la VCI, la variable clínica re-
levante es el diámetro máximo de la VCI, registrada por el clínico responsable de cada una de las
exploraciones. En total, se dispone de 51 medidas del diámetro máximo debido a inconsistencias en
la base de datos facilitada.

Las imágenes ecográficas en modo M de la VCI han sido segmentadas a mano por 3 facultativos
distintos del servicio de Medicina Interna del HCULB de Zaragoza, todos ellos familiarizados con
el protocolo VEXUS y experimentados en el diagnóstico con imagen ecográfica. Este proceso se ha
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realizado haciendo uso del software MicroDICOM y la herramienta “open curve”, fuera de la práctica
clínica habitual favoreciendo una situación de estrés minimo.

La Tabla 2.1 resume el número de imágenes para las que se tiene tanto el diámetro máximo de la
base de datos clínicos como la segmentación manual de un anotador determinado.

n Clínico A1 A2 A3
Clínico 51 51 47 43
A1 55 51 46
A2 51 43
A3 46

Tabla 2.1: Número de imágenes comunes disponibles entre la base de datos
clínica (Clínico) y las segmentaciones de los anotadores (anotador 1: A1,
anotador 2: A2, anotador 3: A3)

El número de imágenes que cuentan con segmentaciones de todos los anotadores y diámetro clínico
disponible es de 40. El número de imágenes que cuentan con segmentación de cada anotador es de
43.

2.2 Desarrollo de la herramienta

El desarrollo del software ha sido elaborado completamente en el lenguaje de programación Python,
haciendo uso de los paquetes de tratamiento y análisis de datos “NumPY”, “SciPy” y “MatPlotLib”,
y el paquete de procesado y visualización de imágenes “OpenCV”. La implementación de las solu-
ciones, adaptadas al tipo de imágenes y objetivo particular del trabajo, ha requerido de la creación y
programación de algoritmos propios.

2.2.1 Preprocesado
En la etapa de preprocesado se acondiciona las imágenes para facilitar su posterior segmentación.

Las exploraciones recibidas se encuentran en formato DICOM. La zona de la imagen que contiene la
VCI, la cual es susceptible de ser segmentada, se extrae recortando los bordes de la imagen inicial
por una cantidad fija (Figura 2.2 a).

A continuación, se realiza una ecualización del histograma de la imagen para maximizar el con-
traste sin perder información de tipo estructural. Seguidamente, se aplica un filtro bilateral [47] con
el objetivo de reducir el ruido presente en la imagen, mientras se preservan los bordes.

Sea I la imagen en escala de grises, S el conjunto de posibles posiciones en la imagen y p,q

posiciones de píxeles, el filtro bilateral se define como:

BF [I]p =
1

Wp

∑
q∈S

Gσs(∥ p− q ∥)Gσr(Ip − Iq)Iq, (2.1)

donde Gσ denota un filtro gausiano bidimensional y Wp es un factor de normalización:
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Wp =
∑
q∈S

Gσs(∥ p− q ∥)Gσr(Ip − Iq) (2.2)

El filtro se modula por dos parámetros: σs, que regula la distancia desde el punto p sobre la cual
actúa el filtro Gσs y σr que regula el rango de intensidad asumible para aplicar el filtro Gσr . Para este
caso particular, la region S (tamaño del kernel) se define como una región cuadrada de tamaño l × l

cuyo tamaño se calcula como un valor proporcional pl de la diagonal de la imagen:

l = ⌊⌊
√
n2 ∗m2 ∗ pl⌉√

2
⌉, (2.3)

donde n y m son el número de píxeles en el eje vertical y horizontal de la imagen, y pl = 0,02. Si l
resulta en un valor par, se utiliza l + 1 en su lugar.

Los parámetros σs y σr se definen en base a un porcentaje pv la varianza presente en la imagen:

σs = σr = ⌊std2 ∗ pv⌉, (2.4)

donde pv = 0,35 y std es la desviación estándar de las intensidades de I .

En este punto, las interfases de la imagen ecográfica se encuentran bien diferenciadas y la región
perteneciente a la VCI se distingue con más claridad (Figura 2.2 b). Es ahora cuando se umbraliza
la imagen siguiendo el método de Otsu [48], para obtener una imagen binarizada (Figura 2.2 c). Para
finalizar el preprocesado, se realizan dos operaciones morfológicas:

Apertura: para eliminar objetos pequeños y líneas finas, a la vez que se conserva la forma y el
tamaño de los objetos grandes. Se ha empleado un elemento estructural en forma de cruz de
tamaño 3× 3 definido de la siguiente forma:

Ec =


0 1 0

1 1 1

0 1 0

 (2.5)

Cierre: para rellenar huecos pequeños. En este caso se ha empleado un elemento estructural de
tamaño 5× 1 para dar continuidad a los objetos en la dirección horizontal que es aquella en la
que se representa la VCI en la imagen ecográfica:

eTr =
[
1 1 1 1 1

]
(2.6)

Tras el preprocesado se dispone de una segmentación preliminar (Figura 2.2 d), en la que las com-
ponentes conexas resultantes representan regiones que podrían formar parte de la VCI. En este caso
una de estas componentes correspondería a la segmentación de la VCI. Sin embargo, esta correspon-
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Figura 2.2: Ejemplo de transformación de una imagen a lo largo del pre-
procesado con identificación positiva de la VCI: a) modo M recortado, b)
filtrada, c) umbralizada y d) tras las operaciones morfológicas

dencia no es siempre directa, como se puede apreciar en la Figura 2.3.

Figura 2.3: Ejemplo de transformación de una imagen a lo largo del pre-
procesado con identificación confusa de la VCI: a) modo M recortado, b)
filtrada, c) umbralizada y d) tras las operaciones morfológicas

2.2.2 Segmentación de la vena cava inferior
Se propone un algoritmo que persigue trazar las líneas candidatas a ser pared de la VCI píxel a

píxel a partir de la imagen binarizada obtenida del paso anterior.

De esta imagen, se extraen los bordes de las componentes conexas restando a la máscara binaria
su versión erosionada (proceso morfológico) haciendo uso del elemento morfológico especificado
en la ecuación (2.5) y multiplicando el resultado por el gradiente en dirección vertical. Este proceso
permite definir con un valor positivo aquellos cambios de intensidades (bordes) que representan un
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paso de negro a blanco (pared superior de la VCI) y con un valor negativo un cambio de blanco a
negro (pared inferior de la VCI). Un ejemplo de los bordes obtenidos se puede visualizar en la Figura
2.5 a).

Sea B una matriz de tamaño n×m,∋ n,m ∈ Z, donde cada píxel se identifica por las coordenadas
x, y ∈ Z ∋ x = {0, . . . , n}, y = {0, . . . ,m}, y que representa los bordes identificados con su signo de
la imagen binarizada. Sea entonces bj =[b0,j, b1,j, . . . , bn,j]T , j ∈ Z ∋ 0 ≤ j ≤ m, el vector columna
que representa la j-ésima columna de la matriz B. Entonces, para el trazado de líneas candidatas se
siguen los siguientes pasos:

1. Comenzando en la columna j = 0 y un conjunto de líneas identificadas, l1 = ϕ.

2. Se identifica la coordenada de las filas, xi, que verifican que el elemento bxi,j ̸= 0, i ∈ Z ∋ 0 ≤
i ≤ n. Cada pareja de coordenadas (xi, j) representa los píxeles iniciales de una línea candidata
lci .

3. Para cada lci se localiza la coordenada de las filas, xa, con a ={xi−r, . . . , xi+r},a, r ∈ Z, que
verifica que signo(bxa,j+1) = signo(bxi,j)∧min

a
(|xi−xa|), donde r = 5. Este proceso se repite

para cada valor de j hasta que no se encuentra una xa que cumpla la condición o j = m+1 (fin
de la imagen).

4. Al conjunto de líneas identificadas, l1, se añadirán aquellas líneas candidatas, lci , que tengan
una longitud superior al 10 % del tamaño horizontal de la imagen, decartándose las demás.

5. Se repite el proceso a partir del paso 2) sin considerar los píxeles que se han procesado en los
pasos anteriores y hasta que j = m+ 1.

Este proceso se realiza también con la imagen espejada en el eje horizontal, resultando en un
conjunto de líneas, l2, de derecha a izquierda. Por lo tanto, el conjunto de líneas candidatas finales se
construye como:

l = l1 ∪ l2 (2.7)

Tras lo cual, se identifican los pares de líneas que tienen puntos en común pero que no son la misma
línea. Esto ocurre cuando el borde de las componentes conexas del preprocesado tiene más de un valor
de distancia para un mismo instante de tiempo (lo que carece de sentido físico y puede deberse a un
artefacto en la imagen o un fallo de captación), como se ilustra en la Figura 2.4. La unión de estas
líneas se realiza sustituyendo los tramos de discrepancia por una interpolación de spline cúbico entre
las coordenadas a cada lado de dicho tramo. Al final de este proceso, se tienen las líneas candidatas
finales l que representan un fragmento o la totalidad de la pared de la vena en la imagen (Figura 2.5
b).

En muchas ocasiones (véase ejemplo en la Figura 2.5 b), lo que debería ser una única línea, repre-
sentando un punto de tejido a lo largo del tiempo, se encuentra interrumpida a causa de defectos en
la captación de algún tramo de la imagen. Cuando este tramo es pequeño, se considera que dos o más
líneas extraídas en el procesado anterior son parte de una misma línea cuando:
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Figura 2.4: Contorno de una línea distorsionada (en blanco) por un artefacto
en la imagen. Se muestra la delineación en sentido positivo (en azul), en
sentido negativo (en naranja) y la interpolación entre los puntos discordantes
(en morado) para obtener la unión de las líneas

La distancia entre las coordenadas de sus extremos más cercanos, en el eje horizontal, es menor
al 10 % del tiempo total de la imagen.

El rango de alturas de ambas ± un valor de vecindad v = 11 contiene algún valor común.

No presentan superposición en el eje horizontal.

Todos los grupos resultantes se unen realizando una interpolación con un spline de Akima [49]
(Figura 2.5 c). La interpolación en spline de Akima ofrece un spline cúbico modificado para tener una
apariencia más suave y natural, parecida a una traza hecha a mano de forma intuitiva [50].

Sin embargo, cuando el tramo interrumpido es mayor, no resulta prudente considerar que dos lí-
neas son la misma bajo las condiciones anteriores, por lo que se incluye un criterio diferente que
posibilite restablecer los pares de líneas candidatas de pertenecer a una pared de la VCI. Para ello, se
diferencian las líneas obtenidas hasta ahora entre aquellas con signo positivo (candidatas a pertenecer
a la pared superior) y aquellas con signo negativo (candidatas a pertenencer a la pared inferior), y se
establece la correspondencia entre cada línea positiva con aquellas líneas negativas que se encuentran
directamente debajo de ella, sin tener que atravesar ninguna otra línea a lo largo de la misma vertical,
calculando el número de instantes de tiempo para los que se puede hacer esta asociación, este valor
será considerado como una puntuación de correspondencia entre líneas.

Posteriormente, se establecen todas las combinaciones (rutas) entre las líneas positivas que cumplan
las condiciones indicadas anteriormente (salvo la relativa al tiempo máximo entre los extremos). Se
sealiza el mismo procedimiento con las líneas de signo negativo (rutas negativas).

El conjunto de las rutas (positivas o negativas) representan las candidatas a paredes completas de
la VCI. Para emparejar rutas positivas con rutas negativas se calcula la puntuación compuesta por la
suma de las puntuaciones de cada una de las líneas que las componen, estableciendo como candidatas
de representar la VCI todas las parejas que tengan la mayor puntuación compuesta. Las rutas que
forman parte de las parejas resultantes se establecen como las líneas finales, volviendo a recurrir a la
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DESARROLLO DE LA HERRAMIENTA

Figura 2.5: Pasos de la segmentación: a) identificación de bordes, b) trazado
de líneas, c) suma de líneas y d) selección de las paredes de la VCI

interpolación de Akima en aquellos casos en los que hubiere huecos entre líneas.

Finalmente, entre todas las parejas de rutas candidatas de representar la VCI, se calcula la media de
intensidad de imagen de los píxeles contenidos entre la pared superior e inferior, escogiendo aquella
pareja de líneas que presente el menor valor como segmentación final de la VCI (Figura 2.5 d)).

2.2.3 Extracción de medidas
Descarte de segmentaciones erróneas

Antes de extraer medidas de la segmentación se evalúa la validez de la región de interés segmentada.
Esta comparativa se realiza tomando como referencia las segmentaciones del experto A1, que cuenta
con todas las exploraciones segmentadas. Los criterios de descarte son los siguientes:

Nula intersección en la imagen entre la región segmentada y la anotación manual.

Identifiación errónea de una de las paredes de la VCI.

Si se incurre en cualquiera de los criterios se considera que la segmentación no es válida y no se
calculan las métricas posteriores. De las 55 imágenes procesadas, 5 fueron descartadas siguiendo este
criterio.

Perfiles de anchura de la vena cava inferior

A partir de la segmentación, se registra la distancia en píxeles entre las paredes de la VCI (superior
e inferior), para todos los instantes de tiempo posibles. Estos valores se multiplican por la resolución
espacial de la imagen, ∆y, para obtener el perfil de anchuras de la segmentación. Adicionalmente, se
extrae una versión suavizada de este perfil con un filtro de media móvil de longitud w, dada por:

w = ⌊td ∗ pt
∆x

⌉, (2.8)
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donde td representa la duración de los datos, ∆x es la resolución temporal de la imagen y pt = 0,05.
Si w resulta en un valor par, se utiliza w + 1 en su lugar.

Este procedimiento se hace para las segmentaciones automáticas y manuales. Cabe señalar que, en
la segmentación automática, no se tienen en cuenta los puntos procedentes de una interpolación para
la extracción de los perfiles de anchura de la VCI.

2.3 Protocolo de evaluación

Se dipone de la medida del diámetro maximo de la VCI obtenida durante la práctica clínica me-
diante el uso de la herramienta de medición del software del ecógrafo. Sin embargo, aunque este
parámetro sea el valor de cribado para la continuidad del protocolo VEXUS, no tendrá la considera-
ción de gold standard para este trabajo fin de máster al considerarse que su obtención no esta libre
de error. Es por ello que, de cara a evaluar el sistema desarrollado, se considerara el promedio de las
segmentaciones de los 3 expertos como gold standard.

Los errores entre las medidas obtenidas se expresarán en media ± desviación estándar. Debido a
las características de la imagen ecográfica en modo M, en la que cada franja vertical de la imagen
representa un instante de tiempo, los datos presentan un orden intrínseco. Por ello, para calcular el
nivel de correspondencia entre las medidas se usa la correlación de Spearman, ρs [51].

La segunda medida de correlación empleada es el coeficiente de correlación de concordancia de
Lin, ρc [52]. Este coeficiente mide el acuerdo absoluto entre dos valoraciones cuantitativas continuas
de una misma variable, estimando la medida en que los puntos de las dos mediciones se aproximan o
coinciden con la diagonal que representa la coincidencia perfecta entre los dos métodos de medida.

Para complementar los valores anteriores y facilitar un análisis visual se emplean diagramas de
Bland-Altman [53], que muestran el grado de concordancia entre dos métodos para hacer una medi-
ción mediante la construcción de límites de tolerancia.

Para evaluar de forma adicional la calidad de las segmentaciones se utiliza el coeficiente de Dice-
Sørensen (por sus siglas en inglés, DSC) [54], una medida de similitud entre dos conjuntos de datos,
generalmente representados como matrices binarias. En el contexto de la segmentación de imágenes,
el DSC se utiliza para evaluar la similitud entre una máscara de segmentación predicha y la máscara de
segmentación real (o ground truth). El DSC varía entre 0 (ninguna superposición) y 1 (superposición
perfecta), matemáticamente se define como:

DSC =
2 · V P

2 · V P + FP + FN
, (2.9)

donde V P representa los verdaderos positivos, es decir, el número de pixeles correctamente identifi-
cados; FP representa los falsos positivos, es decir, el número de píxeles incorrectamente identificados
según el ground truth y FN representa los falsos negativos, es decir, el número de píxeles que no han
sido identificados pero el ground truth indica que sí deberían de haberlo sido.
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Capítulo 3

Resultados

3.1 Características de las imágenes

Las imagenes disponibles muestran una resolución temporal de 0.003 ± 0.001 s/pixel y una reso-
lución espacial (en profundidad) de 0.044 ± 0.007 cm/pixel.

3.2 Evaluación del cálculo del diámetro máximo de la vena cava in-
ferior

Los resultados que se muestran en este apartado proceden de una muesta de 35 imágenes pertene-
cientes a 20 pacientes distintos.

La Tabla 3.1 muestra las características de los diámetros máximos de la VCI según el método de
cálculo. Se observa que las segmentaciones manuales registran el valor medio más elevado, mientras
que la segmentación automática se asemeja al procedimiento clínico, que muestra el menor grado de
variabilidad. Los valores entre distintos anotadores son similares.

Método Diámetro máximo (cm)
Auto 2.382 ± 0.555 (1.461 - 3.430)
AAA 2.487 ± 0.549 (1.556 - 3.816)
Clínico 2.373 ± 0.493 (1.600 - 3.500)
A1 2.519 ± 0.562 ( 1.497 - 3.831)
A2 2.540 ± 0.547 (1.532 - 3.875)
A3 2.550 ± 0.553 (1.639 - 3.831)

Tabla 3.1: Características de las mediciones: media ± desviación estándar
(rango). Auto: sistema de segmentación automático, AAA (All Annotators
Average): promedio de los diferentes anotadores, A1, A2, A3: segmenta-
ciones de los expertos por separado, Clínico: apunte manual realizado en la
base de datos clínica.

La Tabla 3.2 muestra el error observado entre los distintos métodos. El error cometido por el método
de segmentación comparado con el promedio de las segmentaciones manuales es inferior al cometido
durante la práctica clínica (0,105 ± 0,231 vs 0,114 ± 0,234, respectivamente). El menor error se
observa entre el método automático y la práctica clínica, aunque también presenta la mayor dispersión
(−0,010±0,320). Cuando se utiliza el suavizado de las segmentaciones, la práctica clínica se asemeja
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al promedio de las anotaciones (0,075±0,233), mientras que las segmentaciones automáticas incurren
en un error medio mayor tanto con las segmentaciones manuales suavizadas (0,167 ± 0,225), como
con el procedimiento clínico (0,089± 0,316). La Figura 3.1 muestra los diagramas de Bland-Altman
correspondientes, donde no se observa un patrón específico del error.

Error (cm) Auto vs AAA Clínico vs AAA Auto vs Clínico
Sin suavizado 0.105 ± 0.231 0.114 ± 0.234 -0.010 ± 0.320
Con suavizado 0.167 ± 0.225 0.075 ± 0.233 0.089 ± 0.316

Tabla 3.2: Media ± desviación estándar del error de los perfiles de la VCI
sin y con suavizado para la comparación de el método de segmentación au-
tomático (Auto) y los valores de la base de datos clínica (Clínico) contra el
promedio de los tres anotadores expertos (AAA).

(a) (b) (c)

Figura 3.1: Diagramas de Bland-Altman de los errores del diámetro máximo
sobre el perfil de la VCI sin suavizado (fila superior) y con suavizado (fila
inferior) : a) Auto vs. AAA, b) Clínico vs. AAA y c) Auto vs. Clínico.

Por otra parte, la Tabla 3.3 muestra los errores de los diámetros máximos obtenidos por el método
automático y por el valor anotado en la base de datos clínica frente a cada uno de los anotadores
manuales. Los errores obtenidos están en concordancia con lo observado en la Tabla 3.2.

Las Tablas 3.4 y 3.5 muestran, respectivamente, el coeficiente de correlación de Spearman, ρs,
y el coeficiente de concordancia de Lin, ρc, para el cálculo de los diámetros máximos extraídos de
los perfiles de la VCI. La segmentación automática presenta un alto nivel de correlación respecto
al promedio de todos los anotadores, ya sea con los perfiles sin suavizar (ρc = 0,905) o suavizados
(ρc = 0,906), además los valores de ρs son consistentes entre los distintos anotadores. La Figura 3.2
contrasta los métodos de medida estudiados.
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Comparación Sin suavizado (cm) Con suavizado (cm)
Auto vs A1 0.137 ± 0.255 0.192 ± 0.243
Auto vs A2 0.157 ± 0.236 0.214 ± 0.226
Auto vs A3 0.167 ± 0.254 0.211 ± 0.236
Clínico vs A1 0.146 ± 0.254 0.097 ± 0.231
Clínico vs A2 0.167 ± 0.249 0.121 ± 0.250
Clínico vs A3 0.177 ± 0.245 0.118 ± 0.244

Tabla 3.3: Media ± desviación estandar del error del diámetro máximo me-
dido sobre los perfiles de la VCI sin y con suavizado para las comparaciones
entre el método automático (Auto) o la base de datos clínica (Clínico) y los
diferentes expertos anotadores (A1, A2 y A3).

con suavizado
sin suavizado Auto Clínico AAA A1 A2 A3

Auto - 0.800 0.905 0.888 0.885 0.901
Clínico 0.800 - 0.885 0.879 0.857 0.879
AAA 0.906 0.879 - - - -

A1 0.889 0.884 - - 0.942 0.976
A2 0.891 0.884 - 0.949 - 0.967
A3 0.894 0.887 - 0.978 0.973 -

Tabla 3.4: Valores de la correlación de Spearman, ρs, para los para valores
máximos medidos sobre los perfiles de la VCI sin suavizado (parte triangular
superior) y con suavizado (parte triangular inferior). p-valor ≤ 0,05.

con suavizado
sin suavizado Auto Clínico AAA A1 A2 A3

Auto - 0.814 0.897 0.871 0.874 0.864
Clínico 0.804 - 0.879 0.853 0.844 0.844
AAA 0.875 0.890 - - - -

A1 0.849 0.885 - - 0.958 0.982
A2 0.851 0.861 - 0.966 - 0.970
A3 0.848 0.871 - 0.984 0.976 -

Tabla 3.5: Valores del coeficiente de concordancia de Lin, ρc, para valores
máximos medidos sobre los perfiles de la VCI sin suavizado (parte triangular
superior) y con suavizado (parte triangular inferior). p-valor ≤ 0,05.

3.3 Evaluación de la segmentación

Los resultados que se muestran en este apartado proceden de una muesta de 38 imágenes perte-
necientes a 22 pacientes distintos. La Tabla 3.6 muestra las características de las distancias medidas
sobre los perfiles de las VCI para cada instante de tiempo.
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EVALUACIÓN DE LA SEGMENTACIÓN

(a) (b) (c)

Figura 3.2: Valores máximos medidos sobre el perfil de la VCI sin suavi-
zado (fila superior) y con suavizado (fila inferior) indicando la recta unidad
indicada en color gris: a) Auto vs. AAA, b) Clínico vs. AAA y c) Auto vs.
Clínico.

Método Diámetro (cm)
Auto 1.935 ± 0.593 (0.071 - 3.430)
AAA 2.153 ± 0.579 (0.392 - 3.816)
A1 2.121 ± 0.577 (0.285 - 3.831)
A2 2.163 ± 0.587 (0.356 - 3.875)
A3 2.176 ± 0.596 (0.321 - 3.831)

Tabla 3.6: Características de las mediciones: media ± desviación estándar
(rango). Métodos: sistema de segmentación automático (Auto), promedio de
los diferentes anotadores (All annotators average - AAA), sus segmentacio-
nes por separado (A1, A2, A3)

En esta ocasión, se emplean los datos procedentes de los perfiles de anchuras de las segmentaciones
automáticas y manuales (29345). Estos datos, que no tienen en cuenta los instantes de tiempo donde
el método automático recurre a una interpolación para trazar el límite de la VCI, representan el
86% de los instantes de tiempo registrados en las exploraciones (34101). El número de datos de las
segmentaciones, contando con los tramos interpolados (30854), eleva este porcentaje al 90%, y se
empleará para el cálculo del coeficiente de Dice-Sørensen (DSC).

Los errores obtenidos en la comparación con los distintos anotadores se muestran en la Tabla 3.7.
El método automático muestra menor error con respecto al anotador A1; con respecto al resto de
anotadores presenta un error similar. La versión suavizada no altera el sentido de los resultados. En la
Figura 3.3 se muestran los diagramas de Bland-Altman correspondientes a esta comparación.
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Error (cm) Auto vs AAA Auto vs A1 Auto vs A2 Auto vs A3
Sin suavizado 0.219 ± 0.204 0.187 ± 0.235 0.228 ± 0.215 0.241 ± 0.222
Con suavizado 0.218 ± 0.189 0.186 ± 0.217 0.226 ± 0.199 0.243 ± 0.206

Tabla 3.7: Media ± desviación estandar del error del diámetro medido sobre
los perfiles de la VCI sin y con suavizado para las comparaciones entre el
método automático (Auto), el promedio de todos los anotadores (AAA) y
los diferentes expertos anotadores (A1, A2 y A3).

(a) (b)

Figura 3.3: Diagramas de Bland-Altman de los errores del diámetro medido
sobre el perfil de la VCI sin suavizar (a) y suavizado (b) para la comparación
entre el método automático y el promedio de los tres anotadores expertos.

En la Figura 3.3 a) se observan valores fuera de los límites de la media ±2 std. En la Figura 3.3 b)
estos valores se agrupan formando patrones que sería interesante estudiar.

En la Tabla 3.8 se muestran los coeficientes de correlación de Spearman, ρs y los coeficientes de
concordancia de Lin, ρc, entre el método automático y las segmentaciones manuales. Existe una alta
correlación (ρc = 0,931) con la segmentación promedio de los anotadores. El valor para el coeficiente
de Lin (0,878) se mantiene cercano (0,897) al obtenido en el apartado 3.2 (Tabla 3.5). La Figura 3.4
contrasta las medidas obtenidas de las segmentaciones estudiadas.

Correlación Auto vs AAA Auto vs A1 Auto vs A2 Auto vs A3

ρs
Sin suavizado 0.931 0.910 0.921 0.920
Con suavizado 0.936 0.917 0.926 0.926

ρc
Sin suavizado 0.878 0.875 0.869 0.859
Con suavizado 0.881 0.881 0.873 0.861

Tabla 3.8: Valores de correlación de Spearman, ρs, y coeficiente de concor-
dancia de Lin , ρc, del diámetro del perfil de la VCI sin suavizado y con
suavizado

Por último, el calculo coeficiente de Dice-Sørensen (DSC) entre la segmentación automática y las
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(a) Auto vs AAA (b) Clínico vs AAA

Figura 3.4: Valores del diámetro del perfil de la VCI sin suavizar (a) y sua-
vizado (b), indicando la recta unidad indicada en color gris.

segmentaciónes manuales se muestra en la Tabla 3.9. Este coeficiente se calcula tanto para el tamaño
completo de las máscaras obtenidas como únicamente para aquellos instantes de tiempo (píxeles
horizontales) en los que el método automático ha sido capaz de identificar la VCI. El valor del DSC
es consistente para los distintos anotadores, siendo (en media) de 0,872 si consideramos la máscara
completa y de 0,919 si consideramos los instantes de tiempo (pixeles horizontales) compartidos.

Tamaño de máscara Auto vs A1 Auto vs A2 Auto vs A3
Completo 0.873 ± 0.134 0.872 ± 0.135 0.872 ± 0.133
Compartido 0.921 ± 0.048 0.919 ± 0.049 0.918 ± 0.049

Tabla 3.9: Media ± dseviación estándar del coeficiente de Dice-Sørensen
(CDS) del método automático y los distintos anotadores.

3.4 Estudio de la variabilidad inter-observador

Los resultados que se muestran en este apartado comparten la muestra del apartado anterior. En la
Tabla 3.10 se muestra el error medio entre anotadores, observándose que éste es muy bajo y del orden
de un píxel de discrepancia entre A1 y A2 o A3. Además, este error medio es prácticamente nulo
entre A2 y A3. La dispersión del error es muy similar en todas las comparaciones.

A1 vs A2 A1 vs A3 A2 vs A3
0.046 ± 0.185 0.051 ± 0.172 0.005 ± 0.154

Tabla 3.10: Media ± desviación estandar del error medido entre los perfiles
de la VCI de cada par de anotadores.

La Tabla 3.11 muestra las comparaciones de cada uno de los anotadores contra las segmentaciones
promedio del resto. En ella se observa que el anotador A1 es el que presenta un mayor error.
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A1 vs Resto (A2 & A3) A2 vs Resto (A1 & A3) A3 vs Resto (A1 & A2)
0.049 ± 0.162 - 0.021 ± 0.146 - 0.028 ± 0.134

Tabla 3.11: Media ± desviación estandar del error medido entre los perfiles
de la VCI de cada anotador y el resto.

En la Tabla 3.12 se muestra el coeficiente de correlación de Spearman, ρs, y el coeficiente de
correlación de concordancia de Lin, ρc, entre los distintos anotadores, donde se ilustra un alto grado
de correlación y concordancia entre ellos.

ρc

ρs A1 A2 A3 Resto

A1 - 0.945 0.955 0.960
A2 0.952 - 0.959 0.963
A3 0.958 0.970 - 0.970

Resto 0.962 0.971 0.975 -

Tabla 3.12: Valores de la correlación de Spearman, ρs (parte triangular su-
perior) y de la correlación de Lin, ρc (parte triangular inferior)
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Capítulo 4

Discusión

El objetivo planteado en este trabajo fin de máster es el desarrollo de un método de segmentación
automatizado de la vena cava inferior en imágenes de ultrasonido en modo M, que suponga una
alternativa para el cálculo del diámetro máximo de la VCI en la primera fase del protocolo VEXUS,
con respecto a la obtención de dicha medida de forma manual durante la práctica clínica, la cual está
sujeta a la variabilidad inter-observador de los propios facultativos.

Para contrastar las segmentaciones automáticas obtenidas se utilizan las anotaciones manuales rea-
lizadas por tres expertos y los apuntes clínicos del diámetro máximo de la VCI presentes en la base
de datos de los pacientes.

4.1 Diámetro máximo de la vena cava inferior

Como se indica en el apartado 2.3, se considera el promedio de las anotaciones manuales como la
referencia a partir de la cual se evalúa la validez del método de segmentación propuesto.

El error cometido por el método automático con respecto a las anotaciones es menor al que se
obtiene de la medida del máximo de la VCI durante la práctica clínica: 0,105± 0,231 cm vs. 0,114±
0,234 cm, respectivamente (véase Tabla 3.2). Ambos conjuntos de medida subestiman el diámetro
máximo de la VCI con respecto a el promedio de las delineaciones manuales.

El uso de las versiones suavizadas del perfil de la VCI no mejora los resultados. Esto es debido
a que el suavizado de las anotaciones reduce el valor de los máximos medidos, proceso que afecta
tanto a las medidas automáticas como a las medidas manuales y no a los valores presentes en la
base de datos clínica. Además, este suavizado reduce los máximos en mayor medida para las medidas
automáticas que para las anotaciones manuales, que ya presentan un aspecto más suave de partida.

Las correlaciones, tanto la de Spearman (Tabla 3.4) como la de Lin (Tabla 3.5), son superiores entre
el método automático y el promedio de las anotaciones manuales, que entre el los apuntes de la base
de datos clínica y el promedio de las anotaciones manuales (ρs = 0,905 vs. ρs = 0,885, ρc = 0,897

vs. ρc = 0,880, respectivamente). En este caso, el suavizado de los perfiles mejora, aunque en una
magnitud pequeña, los resultados de correlación y concordancia obtenidos.

El error cometido por el método automático respecto a los anotadores expertos A1, A2 y A3 por
separado (0.137 ± 0.255, 0.157 ± 0.236 y 0.167 ± 0.245 cm, respectivamente) es mayor que el obteni-
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do para el promedio de los tres (0.105 ± 0.231 cm). Resultado que está en consonancia con el hecho
de que las anotaciones promedio integran el conocimiento de los expertos y minimizan posibles dife-
rencias entre ellos.

4.2 Segmentación automática contra manual
En la comparación de las segmentaciones automáticas y manuales, se han tenido en cuenta un total

de 29345 instantes de tiempo. Esto es debido a que no se han utilizado datos procedentes de los
tramos interpolados en la segmentación automática ya que el uso de splines de Akima no representa
una curva característica de una pared venosa en una ecografía en modo M, ni se ha desarrollado para
tal fin. La obtención precisa de estas curvas, que podría requerir una aproximación totalmente distinta
a la empleada, se encuentra fuera del alcance de este trabajo fin de máster.

La media del error es del orden del doble respecto al caso en el que solo se evalúa el calculo del valor
máximo de la VCI (0,219± 0,204 cm vs. 0,105± 0,231 cm, respectivamente), aunque la dispersión
ha disminuido. Este error indica, nuevamente, que la delineación automática subestima el diámetro
de la VCI en comparación con los anotadores expertos. Esta diferencia representa aproximadamente
5 píxeles en la imagen o, visto de otro modo, el método se segmentación está trazando cada una de
las paredes de la VCI con un desfase de entre 2 y 3 píxeles.

En cuanto a las correlaciones, sin embargo, estas mejoran o se mantientn respecto al caso discutido
en la sección 4.1 (véase Tabla 3.8). Este incremento de la correlación es mayor en el caso de la
correlación de Spearman (ρs = 0,931 vs. ρs = 0,905) que para el coeficiente de concordancia de Lin
(ρc = 0,878 vs. ρc = 0,875). Esto indica que la segmentación automática sigue la misma tendencia de
incremento o decremento de anchura que las delineaciones realizadas por los médicos a lo largo del
eje temporal (pixeles horizontales); sin embargo, el nivel de concordancia se mantiene aún por debajo
de 0,9.

Adicionalmente, se obtuvo el coeficiente de Dice-Sørensen (DSC), el cual representa una media
armónica de la precisión y sensibilidad en la clasificación de los píxeles como parte de la VCI y es
equivalente al F1-score. Como se ha indicado anteriormente, existen tramos en los que el método
de segmentación automático no detecta la vena y realiza una interpolación. Por tanto, el calculo del
DSC se realiza en dos situaciones diferenciadas: cuando se consideran únicamente los instantes de
tiempo (tramos) comunes, el valor del DSC es de 0,91− 0,92, reduciéndose hasta 0,87 en el caso en
que se consideran todos los posibles instantes de tiempo en la imagen (píxeles horizontales). No se ha
encontrado ningún estudio previo de segmentación de la VCI en ecografía en modo M, por lo que no
se dispone de una referencia para establecer un punto de corte concreto, por lo tanto, en este trabajo
fin de máster se considera un valor > 0,80 como bueno y un valor > 0,90 como muy bueno.

4.3 Variabilidad entre anotadores
El hecho de que los errores entre los anotadores de forma individual (Tabla 3.10) y en comparación

de uno contra dos (Tabla 3.11) sean del orden o inferiores a la resolución espacial disponible, así como
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LIMITACIONES

una alta correlación y concordancia entre ellos (Tabla 3.12) sugiere que tienen una una interpretación
similar y consistente de los límites de la VCI en la imagen. Esto avala la validez de dicha información
como gold standard.

4.4 Limitaciones
La primera limitanción de este trabajo fin de máster es la muesta poblacional disponible. Solo se

disponen de 55 imágenes correspondientes a 25 pacientes. De las 55 imágenes disponibles, en 5 de
ellas no se consiguió segmentar la VCI de forma apropiada, lo que representa una eficacia del método
del 91 %. En dos de ellas (paneles a) y b) de la Figura 4.1), la delineación de una de las paredes de la
VCI es completamente errónea y en las tres restantes (paneles c), d) y e) de la Figura 4.1), la elección
del par de líneas correspondientes de la VCI no es la correcta.

Figura 4.1: Casos de fallo en la segmentación.

Para las imágenes ilustradas en los paneles a) y b) de la Figura 4.1 el flujo de preprocesado no es
capaz de diferenciar las componentes conexas de interés (vasos y regiones con baja densidad) del resto
de la imagen, lo que se traduce en un punto de partida erróneo para el algoritmo de segmentación.
Por otro lado, en los paneles c), d) y e) de la Figura 4.1 existe un nivel de ruido localizado dentro de
la VCI que conduce al método a escoger como paredes de la VCI otro par de líneas con valores de
brillo menor en el espacio comprendido entre ellas.

Por otra parte, aunque el método propuesto ha demostrado tener una alta correlación y concordancia
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LIMITACIONES

con las anotaciones manuales realizadas por expertos (ρs = 0,931 y ρc = 0,878), esta correlación, en
especial el nivel de concordancia, son niveles mejorables, pero denotan una muy buena precisión de
la solución propuesta.
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Capítulo 5

Conclusiones

Durante la elaboración de este trabajo fin de máster se ha desarrollado un método de segmentación
automático de la VCI en imágenes de ultrasonido en modo M, con la capacidad de procesar con éxito
la gran mayoría de los casos reales pertenecientes a una muestra de 55 exploraciones de pacientes
con SCR procedentes del servicio de Medicina Interna del Hospital Clínico Universitario Lozano
Blesa (HCULB) de Zaragoza. Como materiales para la evaluación del método automático, se han
utilizado los diámetros máximos de la VCI obtenidos durante la práctica clínica y las segmentaciones
manuales de 3 facultativos distintos del HCULB.

Después de analizar los resultados obtenidos, se concluye que, tomando como gold standard el
promedio de las anotaciones manuales de los expertos, el método de segmentación automática ha
mejorado a las anotaciones clínicas en la determinación del diámetro máximo de la VCI presentando
un error menor y un nivel de correlación y concordancia mayor. La diferencia, sin embargo, no es lo
suficientemente notable como para proponer una sustitución directa y el método presenta margen de
mejora.

La calidad de la segmentación no alcanza el nivel de un anotador experto, los resultados indican
un sesgo en la estimación del tamaño de la VCI como causante de la diferencia. El coeficiente de
correlación de Spearman obtenido entre el método automático y los anotadores, sin embargo, ya es
indicativo de una buena segmentación, y está al nivel de la propia correlación entre anotadores. El
valor del coeficiente de Dice-Sørensen (DSC) muestra que las segmentaciones automáticas coinciden
en posición con las segmentaciones manuales en un porcentaje elevado.

La variabilidad entre las segmentaciones de los anotadores resultó ser mínima, concluyendo que
todos tienen una una interpretación similar y consistente de los límites de la VCI en la imagen. Este
resultado refuerza la idea de que esta metodología es más robusta que el protocolo clínico habitual pa-
ra la determinación del diámetro máximo, basado en la elección de los puntos de la VCI más alejados
ente sí tras inspección visual. En el entorno clínico, sin embargo, la adopción de esta metodología no
es viable por el evidente consumo de tiempo adicional que supondría. Es por ello que la implantación
de un sistema de segmentación automático, como el desarrollado en este trabajo fin de máster, sería
de gran ayuda.

Por todo lo expuesto con anterioridad, se concluye que el método de segmentación propuesto es
suficientemente preciso para identificar la VCI en imágenes de US en modo M, con pequeños errores
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de exactitud y limitaciones para imágenes que presentan un ruido elevado o grandes distorsiones. Se
espera, a su vez, que el conocimiento obtenido en el desarrollo de este método, sea de utilidad a la
hora de afrontar la extracción automática de medidas de interés en el resto de exploraciones de imagen
recogidas en el protocolo VEXUS.

Además, unos resultados preliminares de este trabajo han sido aceptados para su exposición en
el congreso internacional Computing in Cardiology (CinC) que se celebrará entre el 8 y 11 de Sep-
tiembre de 2024 en Karlsruhe (Alemania). El abstract aceptado se incluye en el Anexo A de este
documento.
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Capítulo 6

Líneas futuras

Este trabajo fin de máster presenta el primer paso de un sistema más completo que tiene como
objetivo automatizar todos los pasos del protocolo VEXUS para objetivizar y mejorar la precisión de
la caracterización de la congestión en pacientes con SCR.

Teniendo en cuenta las limitaciones expuestas en el apartado 4.4 y el sistema avanzado en el que se
integrarán los desarrollos presentados en este trabajo fin de máster, se proponen las siguientes líneas
de mejora y actuación:

Ajustar los parámetros de preprocesado para eliminar el ruido de la imagen de una manera más
efectiva y reducir los errores mostrados en las figuras 4.1 a) y b).

Modificar el criterio de elección la las parejas de líneas candidatas a ser la VCI, incluyendo
criterios morfológicos para reducir los errores de las figuras 4.1 c) d) y e).

Desarrollar un método de interpolación capaz de unir la delineación fragmentada de la VCI con
una curva fisiológicamente realista.

Proponer y desarrollar nuevos biomarcadores basados en los perfiles de la VCI para una mejor
discriminación del grado de congestión en pacientes con SCR.
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Anexo A

Abstract aceptado en el congreso Computing
in Cardiology

A continuación se muestra el abstract aceptado en el congreso internacional ”Computing in Car-

diology" (CinC) donde se presentan los resultados obtenidos con una versión preliminar del trabajo
expuesto en este documento.
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Automatic Segmentation of the Inferior Vena Cava
from M-mode Ultrasound Images

David Chaparro-Victoria*, Amelia Campos-Saenz de Santamarı́a,
Silvia Crespo-Aznarez, Laura Esterellas-Sánchez, Vanesa
Garcés-Horna, Marta Sánchez-Marteles, Juan Pablo Martı́nez, Violeta
Monasterio, Jorge Rubio-Gracia, Alejandro Alcaine

CoMBA Group, Universidad San Jorge.
Villanueva de Gállego, Zaragoza, Spain.

Aims: Point-of-care ultrasonography is a widely used diagnostic tool for
assessing renal congestion in patients with cardio-renal syndrome (CRS). The
Venous Excess Ultrasound grading system (VExUS) has recently been pro-
posed as a systematic assessment of renal congestion in such patients. Its pri-
mary goal is the measurement of the inferior vena cava (IVC) diameter from
M-mode ultrasound images, a manual task performed during patient evalua-
tion that can be highly observer-dependent. The aim of this work is to propose
an automated segmentation pipeline for the IVC diameter measurement from
M-mode ultrasound images.

Materials: A total of 20 images from 13 CRS patients admitted to the Inter-
nal Medicine Department of the Hospital Clı́nico Universitario Lozano Blesa
(Zaragoza, Spain) were processed. The images were acquired using a portable
ultrasound device with an abdominal probe and exported in DICOM format.

Example of IVC segmentation
(top) and its diameter profile

(bottom).

Methods: Images were smoothed us-
ing a bilateral filter and binarized. The
edges were detected from the binary
mask and processed to identify pairs cor-
responding to the IVC walls, from which
the IVC diameter profile was extracted.
This profile was smoothed with a running
average window of length 5% of the total
recording time and the maximum diame-
ter was obtained (see figure).

Results: Automated maximum diam-
eter measurements were compared with
manual ones made by clinicians. The re-
sults showed an error of -0.015 ± 0.318
cm and a correlation coefficient of 0.864.

Conclusions: The proposed IVC segmentation pipeline provided accurate
diameter measurements, which may help to improve the assessment of renal
congestion in CRS patients.
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