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RESUMEN

Control multi-robot para el transporte de objetos
deformables

El transporte de objetos deformables mediante equipos de múltiples robots móviles

es una tarea compleja que requiere un control muy preciso y coordinado. Por ello,

el presente Trabajo de Fin de Máster se centra en el desarrollo, implementación y

análisis de un controlador avanzado para sistemas multi-robot, modelados mediante

dinámicas de integrador simple, cuyo fin es transportar objetos deformables hacia

una configuración deseada. Durante la tarea se controla la forma, escala, posición

y orientación de la formación, restringiendo las deformaciones a modos lineales y

cuadráticos. Estas restricciones permiten conservar la integridad del objeto, además

de hacer el sistema más flexible.

El trabajo se estructura en dos partes fundamentales. La primera se basa en el

desarrollo del algoritmo de control y su implementación en entornos 2D. La segunda

parte extiende este control a espacios 3D, donde los robots tienen mayor libertad de

movimiento. En este contexto, se implementan y comparan dos técnicas de control de

rotación: la aproximación mediante rotaciones infinitesimales y el algoritmo de Kabsch.

Para la evaluación experimental del controlador desarrollado se han diseñado diversos

escenarios, ejecutados en simulación con MATLAB y con robots f́ısicos en la plataforma

robótica remota Robotarium, ubicada en el Instituto de Tecnoloǵıa de Georgia. El

resultado final de esta investigación es la validación exitosa del algoritmo de control,

demostrando su efectividad tanto en entornos 2D como 3D.

Este trabajo se ha realizado dentro del Programa de Becas y Ayudas del Instituto

de Investigación en Ingenieŕıa de Aragón (I3A), en colaboración con la Cátedra de

Transformación Industrial (Universidad de Zaragoza - Gobierno de Aragón).
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4.3. Transporte de objeto deformable en entorno 2D con obstáculo . . . . . 23
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D.1. Gráficas de la simulación 6.1 . . . . . . . . . . . . . . . . . . . . . . . . 89

D.1.1. Resultados cuando no se controlan las deformaciones . . . . . . 95
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Caṕıtulo 1

Introducción

El crecimiento de la robótica durante las últimas décadas ha transformado

profundamente múltiples sectores de la sociedad y la industria. Desde las ((tortugas))

de Grey Walter, capaces de ejecutar acciones simples de forma autónoma, hasta los

complejos sistemas de múltiples robots actuales, la robótica móvil ha ido evolucionando

hasta convertirse en una disciplina clave dentro de la ingenieŕıa y la tecnoloǵıa [1].

Uno de los grandes sectores que más interés ha suscitado recientemente es el control de

sistemas de múltiples robots móviles para realizar tareas complejas de forma precisa y

coordinada [2]. En particular, la manipulación y el transporte de objetos deformables

por parte de equipos multi-robot es un área de investigación muy extendida que se

enfrenta a continuos desaf́ıos.

El presente Trabajo de Fin de Máster, desarrollado en colaboración con el Instituto de

Investigación en Ingenieŕıa de Aragón (I3A) y la Cátedra de Transformación Industrial

(Universidad de Zaragoza - Gobierno de Aragón), pretende continuar la ĺınea de trabajo

del Trabajo de Fin de Grado ((Control de forma multi-robot en el Robotarium)) [3],

aportando soluciones avanzadas para el transporte multi-robot de objetos deformables,

tanto superficiales como volumétricos (Figura 1.1). Este tipo de tareas requieren un

control estricto, de manera que se logre transportar el objeto sin que este sufra daños.
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(a) Objeto superficial (b) Objeto volumétrico

Figura 1.1: Ejemplos de objetos deformables que pueden ser transportados por equipos multi-robot.

La problemática tratada a lo largo de las siguientes páginas se centra en el control

coordinado de un equipo de robots móviles encargados de transportar un objeto

deformable desde una configuración inicial a otra final, asegurando que, siempre que sea

posible, el objeto mantenga su forma. En aquellas situaciones donde, por las condiciones

del entorno, la formación robótica deba cambiar de forma, lo hará de manera controlada

según modos de deformación lineales y cuadráticos. Esta idea se refleja gráficamente

en la Figura 1.2 para una mejor comprensión.

Figura 1.2: Esquema orientativo de la aplicación del control de forma con modos de deformación (u)
a un equipo de robots que transporta una lámina flexible.

1.1. Objetivos

El objetivo principal de este TFM es implementar y validar el controlador antes

mencionado mediante el diseño de un algoritmo que modele una formación de múltiples

robots móviles con dinámicas de integrador simple y controle los cuatro parámetros

que definen la configuración del equipo (forma, escala, posición y orientación).
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El trabajo se divide en dos partes fundamentales. La primera de ellas se centra en

el control de la formación robótica en un entorno bidimensional. Se desarrollarán

diferentes estrategias y escenarios que permitirán verificar el correcto funcionamiento

del controlador en simulaciones de MATLAB y en la plataforma Robotarium [4]. En la

segunda parte, se extiende este control al entorno tridimensional, donde la complejidad

aumenta significativamente debido a una mayor libertad de traslación y rotación por

parte del equipo de robots. Para abordar este desaf́ıo, se implementarán y compararán

dos métodos de control de rotación: el algoritmo de Kabsch y la aproximación mediante

rotaciones infinitesimales. Los experimentos aqúı realizados se validarán por medio de

simulaciones en MATLAB.

Como objetivo personal, se busca ampliar conocimientos en el área del control de robots

para la manipulación y transporte de objetos deformables, aśı como profundizar en el

ámbito de la investigación cient́ıfica.

1.2. Contribuciones

Como resultado de la primera parte del TFM, basada en el control multi-robot en

entornos 2D, se ha publicado un art́ıculo de investigación en el 4th Workshop on

Representing and Manipulating Deformable Objects del congreso internacional IEEE

International Conference on Robotics and Automation (ICRA) de 2024 [5] [6]. En

trabajos anteriores se empleaban modos de deformación lineales. Los modos cuadráticos

propuestos en el presente trabajo proporcionan una mayor flexibilidad y un control

más refinado de la deformación durante la tarea multi-robot. El art́ıculo mencionado

se muestra en el Anexo A.

La segunda parte del TFM extiende el uso de modos de deformación a entornos

3D. Además, se propone una formulación novedosa del control multi-robot basada

en rotaciones infinitesimales que, comparada con métodos ya existentes, resulta más

simple de tratar y evita el uso de algoritmos numéricos durante la ejecución.

Todo el trabajo plasmado en esta memoria contribuye a sentar las bases para

futuras investigaciones sobre la manipulación y el transporte de objetos deformables

mediante equipos de robots, ámbito de gran relevancia en diversas industrias como la

manufacturera, la loǵıstica o, incluso, la biomédica.
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1.3. Planificación

El desarrollo de este proyecto se ha realizado en varias fases bien definidas que han

permitido abordar con éxito los objetivos planteados.

− Programación de un algoritmo de control que asegure la conservación de la forma

del objeto durante su transporte en el espacio 2D, permitiendo deformaciones

cuadráticas en aquellas situaciones donde las condiciones del entorno lo requieran.

− Diseño de experimentos para el análisis y validación del correcto funcionamiento

del controlador. Simulación en MATLAB y ejecución real en Robotarium.

− Adaptación del controlador a entornos 3D, abordando la complejidad adicional

del movimiento en tres dimensiones.

− Implementación de dos métodos de control de rotación tridimensional: el

algoritmo de Kabsch y las rotaciones infinitesimales. Comparación de su

efectividad y aplicabilidad.

− Simulación en MATLAB de diferentes experimentos de validación de los métodos

desarrollados en entornos 3D y análisis de los parámetros más relevantes.

− Recopilación de todo el trabajo realizado y redacción de la memoria, exponiendo

las conclusiones alcanzadas.

1.4. Estructura de la memoria

A continuación, se presenta una breve descripción de la estructura de la memoria,

destacando los contenidos y objetivos de cada uno de los caṕıtulos que la componen.

− El Caṕıtulo 1 plantea el contexto, alcance y objetivos del proyecto.

− En el Caṕıtulo 2 se exponen, de forma resumida, herramientas e investigaciones

previas en las que se fundamenta el trabajo realizado.

− En el Caṕıtulo 3 se define el marco teórico en el que se basa el algoritmo de

control en entornos 2D, y en el Caṕıtulo 4 se presenta la información relativa a

los experimentos realizados con dicho controlador y el análisis de los mismos.
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− El Caṕıtulo 5 muestra la adaptación del controlador a entornos 3D, aśı como la

implementación de las dos técnicas de control de rotación. Los resultados de las

simulaciones realizadas se recogen en el Caṕıtulo 6.

− Por último, el Caṕıtulo 7 reúne todas las conclusiones alcanzadas y posibles

futuras ĺıneas de investigación.

− Esta memoria se completa con una serie de Anexos que ofrecen información

más detallada sobre algunos aspectos del proyecto, además de algunos resultados

adicionales.

1.5. Nomenclatura

Este apartado pretende aunar la nomenclatura básica utilizada a lo largo de la memoria

para facilitar la interpretación y consulta de la misma. Como comentario adicional,

notar que las magnitudes escalares están escritas en letra normal, los vectores en

minúscula y negrita, y las matrices en mayúscula y negrita.

− ⊗ representa el producto de Kronecker.

− ṗ denota la derivada temporal de p.

− ∥·∥ es la norma eucĺıdea y ∥·∥F la norma de Frobenius.

− (·)⊺ indica la traspuesta de una matriz.

− (·)+ representa la pseudoinversa de Moore-Penrose.

− tr(·) es la traza de una matriz.

− atan2(y, x) es la función arcotangente de los parámetros x e y.

− vec(A) ∈ Rmn×1 es un vector columna que se obtiene al apilar las columnas de

la matriz A ∈ Rm×n.

− 1N es un vector columna de N unos.

− IN es la matriz identidad de dimensiones N ×N .

− S = [ [0, 1]⊺ , [−1, 0]⊺ ] es una matriz de rotación de 90° en sentido antihorario.

− [a]× = [ [0, a3,−a2]
⊺, [−a3, 0, a1]

⊺, [a2,−a1, 0]
⊺ ] denota la matriz antisimétrica del

vector a = [a1, a2, a3]
⊺.
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Caṕıtulo 2

Estado de la materia

Este caṕıtulo introduce algunas investigaciones y trabajos previos relevantes en la

manipulación y transporte de objetos deformables, sobre los cuales se construye este

Trabajo de Fin de Máster. También se presenta la plataforma Robotarium, cuyo uso

ha sido imprescindible para alcanzar algunos de los objetivos planteados.

2.1. Control de forma de equipos multi-robot

Transportar un objeto deformable puede resultar complicado, sobre todo si es grande,

pesado o frágil. Parece lógico pensar que, si la tarea se realiza mediante un equipo de

robots, el transporte será más sencillo. En cambio, esto conlleva desaf́ıos adicionales,

como la necesidad de asegurar una elevada coordinación entre agentes. El control

de forma permite que estos sistemas multi-robot manipulen dichos objetos con

movimientos muy precisos, garantizando, en todo momento, la integridad del objeto.

La manipulación de objetos deformables con múltiples robots es un campo ampliamente

tratado en trabajos anteriores [7] e implementado en diferentes escenarios [8]-[12]. Un

ejemplo de ello es el trabajo realizado por Aranda et al. [13], que combina la traslación

del equipo con la conservación de forma y las transformaciones afines respecto a una

configuración de referencia. Esto permite que la formación robótica, modelada mediante

dinámicas de integrador simple, pueda ejecutar un movimiento coordinado y eficiente.

Otros estudios ofrecen un enfoque alternativo asumiendo dinámicas de doble integrador

[14] para introducir el efecto de la inercia en el sistema. El objetivo del controlador

propuesto por Herguedas et al. es dirigir un equipo de múltiples robots que transportan
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un objeto deformable desde una configuración inicial a otra final, definida por la

combinación de una forma, escala, posición y orientación deseadas, en el entorno 2D.

Este art́ıculo fue el pilar fundamental del Trabajo de Fin de Grado ((Control de forma

multi-robot en el Robotarium)) [3], en el cual se implementó el controlador mencionado y

se verificó su correcto funcionamiento en diversos entornos. En la Figura 2.1 se muestra

un ejemplo sencillo de la aplicación de este control.

Figura 2.1: Ejemplo sencillo donde un equipo de robots transporta una lámina flexible desde una
configuración inicial hasta una configuración final deformada, resultado de implementar el controlador
propuesto en [14].

2.2. Modelos basados en modos de deformación

El análisis modal a menudo se utiliza para el modelado de estructuras en distintos

contextos. Un ejemplo de ello es su gran relevancia en la computación gráfica para

modelar objetos deformables. Dos ejemplos de investigaciones en este campo son el

trabajo de Pentland y Williams [15], donde se utiliza el Método de Elementos Finitos,

y el trabajo de Müller et al. [16], que plantea un método basado en el shape matching

y estudia las deformaciones lineales, cuadráticas y mixtas que puede sufrir un objeto.

Este último enfoque puede extenderse a aplicaciones en robótica, permitiendo estimar

las diversas maneras en las que un objeto puede deformarse al ser manipulado por

los robots, tal como exponen Güler et al. [17]. Otros trabajos que abordan conceptos

relacionados con la temática tratada a lo largo de esta investigación son [18]-[22].

En los siguientes caṕıtulos se detalla la relación espećıfica de estos estudios con el

presente trabajo.

8



2.3. Robotarium

Robotarium nace a manos del Instituto de Tecnoloǵıa de Georgia con el objetivo de

ofrecer a cualquier usuario acceso a una plataforma donde poder realizar experimentos

con robots reales de forma remota y libre [4].

Este laboratorio (Figura 2.2a) alberga una flota de pequeños robots móviles

diferenciales1 de tipo uniciclo, denominados GRITSbots (Figura 2.2b). Estos robots

cuentan con dos ruedas laterales y una esfera delantera, lo cual les permite girar sobre

su propio eje, pero tienen restringido el desplazamiento lateral. Por tanto, son robots

no holonómicos2.

(a) Plataforma robótica para pruebas experimentales (b) GRITSbot X

Figura 2.2: Robotarium, ubicado en las instalaciones del Georgia Tech [4].

El movimiento de estos robots es analizado por las ocho cámaras de alta precisión

instaladas en el techo de la sala, que obtienen información sobre la posición de cada

agente. El usuario remoto puede ejecutar un algoritmo de control basado en estas

posiciones. Además, durante la ejecución, el sistema es capaz de predecir futuras

colisiones y corregir el rumbo automáticamente. Esto se consigue gracias a las Control

Barrier Functions (CBF) que incorpora Robotarium en su software, evitando que los

robots choquen entre ellos o con los ĺımites del banco de pruebas donde se realiza el

experimento.

1Se entiende por veh́ıculo diferencial aquel en el que cada rueda puede girar en un sentido y
velocidad diferentes.

2De manera simplificada, se considera que un robot es no holonómico cuando no puede cambiar
su dirección de manera inmediata y, por tanto, precisa realizar maniobras previas de desplazamiento
y/o rotación.
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Caṕıtulo 3

Control multi-robot con modos de
deformación en entornos 2D

Se propone un controlador cuyo objetivo es dirigir un equipo de múltiples robots

móviles, gobernados por dinámicas de integrador simple, utilizando modos de

deformación que permitan controlar, en todo momento, la deformación que pueda sufrir

la formación durante su trayectoria.

Este control se ha diseñado considerando un grupo de N robots encargados de

transportar un objeto deformable en un espacio bidimensional hasta una configuración

deseada, resultante de la combinación de cuatro parámetros: forma, escala, posición

y orientación. Se ha supuesto que los robots están unidos al objeto mediante

articulaciones rotacionales, por lo que el giro de los mismos sobre su propio eje no

afecta a la deformación del elemento transportado.

Puesto que se asumen dinámicas de integrador simple, cada robot i ∈ {1, . . . , N}
se mueve según ṗi = ui, donde pi = [pix, piy]

⊺ denota la posición del agente

y ui = [uix, uiy]
⊺ es la velocidad calculada por el controlador. Agrupar posiciones

y velocidades según p = [p⊺
1, . . . ,p

⊺
N ]

⊺ ∈ R2N y u = [u⊺
1, . . . ,u

⊺
N ]

⊺ ∈ R2N ,

respectivamente, facilita definir el control de todo el equipo de robots al mismo tiempo.

La estrategia de control, desarrollada a lo largo de los siguientes apartados, se plantea

como una combinación lineal de los controladores individuales de los cuatro parámetros

que definen la configuración de la formación (forma, escala, posición y orientación).

Nótese que el control de la forma incluye, por un lado, el control de la conservación de

forma y, por otro, el control de las deformaciones sufridas. Aunque ambos influyen en

la forma del equipo de robots, se controlan de manera independiente.
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Aśı, la ley de control completa, u, se define como sigue:

u = uH + uG + us + uc + uθ , (3.1)

donde uH es el control de conservación de forma, uG es el control de deformaciones, us

es el control de escala, uc es el control de posición y uθ es el control de orientación.

3.1. Control de la deformación

Una caracteŕıstica de los objetos deformables es su capacidad para adaptarse a la forma

del equipo de robots que los transporta. Por ello, su deformación se puede restringir

controlando directamente la forma y la escala de la formación robótica.

3.1.1. Control de forma

El control de forma se realiza respecto a una configuración de referencia (Figura 3.1a)

definida por c = [c⊺1, . . . , c
⊺
N ]

⊺ ∈ R2N , donde ci = [cix, ciy]
⊺ es la posición del robot i.

Esto es aśı porque se considera que la forma de la configuración deseada es igual a la de

la configuración de referencia, independientemente de la escala, posición y orientación.

(a) (b)

Figura 3.1: (a) Configuración de referencia. (b) Representación de dos configuraciones alcanzables por
el equipo de robots durante el transporte de un objeto deformable al implementar el controlador con
modos de deformación propuesto.
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La formación se encuentra en una configuración de conservación de forma

(Configuración C1 en la Figura 3.1b) si las posiciones pi resultan de aplicar una

traslación, rotación y escalado a las posiciones ci. Por conveniencia y practicidad, el

componente de traslación se trata moviendo los dos conjuntos de posiciones para hacer

su centroide cero. Concretamente, definiendo p′
i = pi − g y c′i = ci − gc, donde g y gc

representan los centroides de los grupos de puntos pi y ci, la condición a cumplir es

p′
i = Hc′i para todo i , (3.2)

donde la matriz H representa un escalado y una rotación, y se define como

H =

[
h1 −h2

h2 h1

]
∈ R2×2 . (3.3)

La condición anterior se puede expresar de manera conjunta para todos los robots como
[
p1x . . . pNx

p1y . . . pNy

]
·KN = H ·

[
c1x . . . cNx

c1y . . . cNy

]
·KN , (3.4)

donde KN = (IN − (1/N)1N1
⊺
N) es una matriz, denominada centering matrix, que

traslada el centroide de la configuración al origen de coordenadas.

En otras palabras, para considerar que se está en una configuración de conservación

de forma, la formación robótica debe tener la misma forma que la configuración de

referencia. Definiendo la siguiente matriz, donde K2N = KN ⊗ I2 ∈ R2N×2N :

CH = K2N ·
[
c1x c1y . . . cNx cNy

−c1y c1x . . . −cNy cNx

]⊺
∈ R2N×2 , (3.5)

la condición de la Ecuación 3.4 equivale a K2Np−CHhH = 0, con hH = [h1, h2]
⊺ ∈ R2.

Se busca definir un término de control para lograr que las posiciones pi cumplan la

condición de conservación de forma. Para este fin, en primer lugar se escoge el valor

de hH usando la técnica de los mı́nimos cuadrados, de manera que ∥K2Np−CHhH∥
sea mı́nimo. Se puede demostrar que C+

HK2N = C+
H y, por lo tanto, se tiene que hH =

C+
HK2Np = C+

Hp. Con esto, se define la función de coste asociada con la conservación

de forma:

γH =
1

2
∥K2Np−CHhH∥2 =

1

2
p⊺AHp , (3.6)

donde AH = K2N − CHC
+
H es una matriz constante, simétrica1, idempotente2 y

semidefinida positiva3.

1Una matriz es simétrica si es cuadrada e igual a su traspuesta.
2Una matriz A es idempotente si A2 = A.
3Una matriz simétrica A ∈ Rn×n es semidefinida positiva si x⊺Ax ≥ 0 para todo x ∈ Rn no nulo.
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Aśı, siendo kH una ganancia de control positiva, el término de control relativo a la

conservación de forma del equipo de robots se define siguiendo el gradiente negativo

de γH :

uH = −kHAHp . (3.7)

Por otro lado, de manera similar, el equipo de robots se encuentra en una

configuración deformada expresada por modos de deformación de orden

dos (Configuración C2 en la Figura 3.1b) si

[
p1x ... pNx

p1y ... pNy

]
·KN = G ·




c1x ... cNx

c1y ... cNy

c21x ... c2Nx

c21y ... c2Ny

c1x c1y ... cNx cNy



·KN , (3.8)

donde G es una matriz que engloba los parámetros lineales (li), cuadráticos (qi)

y mixtos (mi) encargados de generar una configuración deformada respecto de la

configuración de referencia. Esta matriz se define como

G =

[
l1 l2 q1 q2 m1

l3 l4 q3 q4 m2

]
∈ R2×5 . (3.9)

Si la formación robótica se encuentra en este tipo de configuración, la deformación

sufrida estará causada por estiramiento (stretch), cizalla (shear), doblado (bend),

torsión (twist) o cualquier combinación de los mismos. Los dos primeros modos de

deformación se representan mediante términos lineales, mientras que los dos últimos se

describen usando términos cuadráticos. En la Figura 3.2 se ejemplifican cuatro posibles

deformaciones que puede sufrir la configuración rectangular de referencia considerada.

Figura 3.2: Modos de deformación. De izquierda a derecha: stretch, shear, bend y twist.

Para ver más ejemplos de deformaciones alcanzables generadas por cada término

individual de la Ecuación 3.9 acudir al Anexo B.
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Inspirado en el trabajo de Müller et al. [16], se define la matriz

CG = K2N ·



L1 Q1 M1
...

...
...

LN QN MN


 ∈ R2N×10 , (3.10)

donde los términos lineales (Li), cuadráticos (Qi) y mixtos (Mi) se calculan como:

Li =

[
cix ciy 0 0
0 0 cix ciy

]
∈ R2×4 , (3.11)

Qi =

[
c2ix c2iy 0 0
0 0 c2ix c2iy

]
∈ R2×4 , (3.12)

Mi =

[
cixciy 0
0 cixciy

]
∈ R2×2 . (3.13)

De forma similar al control de conservación de forma, se busca un vector hG ∈ R10 que

minimice ∥K2Np−CGhG∥. Tras calcular la función de coste

γG =
1

2
∥K2Np−CGhG∥2 =

1

2
p⊺AGp , (3.14)

se propone el término de control asociado a la deformación del equipo de robots:

uG = −kGAGp , (3.15)

donde kG es una ganancia de control positiva y AG = K2N − CGC
+
G es una matriz

constante, simétrica, idempotente y semidefinida positiva.

En la Figura 3.3 se expone el resultado de aplicar, por separado, cada uno de los

controladores mencionados en este apartado. Con esto, se pretende mostrar cómo

el controlador uH provoca que la formación alcance la forma de la configuración de

referencia, mientras que el controlador uG dirige a los robots hacia una configuración

deformada cuadráticamente. El efecto de usar ambos controles combinados, uH + uG,

se refleja en la Figura 3.4a.
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(a) Efecto del controlador uH (b) Efecto del controlador uG

Figura 3.3: Trayectorias de los robots al aplicar el control de conservación de forma, uH , y el control
de deformación, uG, individualmente. El equipo de robots se encuentra inicialmente en las posiciones
marcadas por ćırculos unidos con ĺınea azul discontinua y, al aplicar los controladores, alcanzan la
configuración representada por estrellas unidas con ĺınea negra continua. Los cuadrados conectados
por ĺıneas rojas punteadas indican el estado al que llegaŕıa la formación robótica si se aplicase el
control completo, u, que corresponde con la configuración deseada.

3.1.2. Control de escala

Para controlar por completo la deformación del equipo de robots es necesario controlar

también la escala, definida como s = ∥hH∥. El siguiente término de control garantiza

que la formación tienda hacia la escala deseada, sd:

us = ks (sd − s) (1/s)CHhH , (3.16)

donde ks es una ganancia de control positiva. El resultado de controlar únicamente la

escala de la formación puede verse en la Figura 3.4b. En este caso, se ha definido

la configuración inicial más pequeña que la configuración deseada para una mejor

visualización.
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(a) Efecto del controlador uH + uG (b) Efecto del controlador us

Figura 3.4: Trayectorias de los robots al aplicar el control de forma, uH + uG, y el control de escala,
us, individualmente. El equipo de robots se encuentra inicialmente en las posiciones marcadas por
ćırculos unidos con ĺınea azul discontinua y, al aplicar los controladores, alcanzan la configuración
representada por estrellas unidas con ĺınea negra continua. Los cuadrados conectados por ĺıneas rojas
punteadas indican el estado al que llegaŕıa la formación robótica si se aplicase el control completo, u,
que corresponde con la configuración deseada.

3.2. Control de traslación y control de rotación

La traslación y la rotación del equipo no afectan a la deformación del objeto, ya que

no modifican las posiciones relativas de los robots. El control de traslación se encarga

de dirigir a la formación robótica en conjunto de forma que su centroide, definido como

g = 1
N
[p1, . . . ,pN ]1N , alcance la posición del centroide deseado, gd. Por otro lado, el

control de orientación rota la forma del equipo en torno a su centroide hasta que el

ángulo en el que está orientado, θ = atan2 (h2, h1), coincida con el ángulo deseado, θd.

En la práctica, se puede tomar θd = 0 por conveniencia.

A continuación, se proponen los términos de control asociados a la posición y la

orientación, respectivamente:

uc = kc 1N ⊗ (gd − g) , (3.17)

uθ = kθ (θd − θ) (IN ⊗ S)CHhH , (3.18)

donde kc y kθ son ganancias de control positivas. El resultado de implementar los

controles de posición y de orientación de forma individual se refleja en la Figura 3.5.

17



(a) Efecto del controlador uc (b) Efecto del controlador uθ

Figura 3.5: Trayectorias de los robots al aplicar el control de posición, uc, y el control de orientación,
uθ, individualmente. El equipo de robots se encuentra inicialmente en las posiciones marcadas por
ćırculos unidos con ĺınea azul discontinua y, al aplicar los controladores, alcanzan la configuración
representada por estrellas unidas con ĺınea negra continua. Los cuadrados conectados por ĺıneas rojas
punteadas indican el estado al que llegaŕıa la formación robótica si se aplicase el control completo, u,
que corresponde con la configuración deseada.

3.3. Métricas de error

La evolución de los errores de los cuatro parámetros considerados durante el

desplazamiento del equipo de robots permite validar el correcto funcionamiento del

controlador propuesto. El error de forma se evalúa mediante las funciones de coste

γH (Ecuación 3.6) y γG (Ecuación 3.14). Los errores de posición (eg), escala (es) y

orientación (eθ) se definen a continuación:

eg = ∥g − gd∥ , (3.19)

es = s− sd , (3.20)

eθ =| θ − θd | . (3.21)

En el caṕıtulo siguiente, se utilizarán estas variables de error para analizar la efectividad

del controlador completo en diferentes escenarios, tanto simulados como reales.
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Caṕıtulo 4

Evaluación experimental en
entornos 2D

Para verificar el correcto funcionamiento del controlador, se plantean diferentes

configuraciones y escenarios en los que el equipo de robots debe transportar un objeto

deformable hasta una configuración final deseada.

La evaluación experimental del algoritmo de control propuesto se ha llevado a

cabo mediante diversas simulaciones en el simulador de MATLAB proporcionado

por Robotarium, aśı como de forma remota en su banco de pruebas con robots

reales. Estos experimentos se describen y analizan detalladamente en los siguientes

apartados. Además, se dedica una sección para explicar el proceso de implementación

del controlador en Robotarium y la problemática encontrada durante la misma. Salvo

que se indique lo contrario, los objetos deformables en los ejemplos mostrados en esta

memoria se simulan utilizando el método As-Rigid-As-Possible (ARAP) [23], bajo la

premisa de que el objeto se deforme lo mı́nimo necesario.

El Anexo C recoge resultados gráficos adicionales de los experimentos mostrados a

continuación, aśı como algún ensayo complementario.

4.1. Implementación en Robotarium

Utilizar Robotarium aporta muchas ventajas a la hora de ajustar y analizar el

controlador desarrollado, pero también posee ciertas limitaciones y requisitos a tener

en cuenta, como no poder realizar los experimentos con objetos reales.
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Un aspecto muy importante a tener en cuenta es el relativo al movimiento de los

GRITSbots, los cuales se desplazan en base a órdenes de velocidad. El controlador

implementado devuelve el parámetro de velocidad como un vector cartesiano (ux, uy),

puesto que utiliza dinámicas de integrador simple. Por el contrario, los robots, al ser

uniciclos, solo son capaces de interpretar los comandos en términos de velocidad lineal

(v) y velocidad angular (ω). La adaptación de velocidades holonómicas a velocidades de

uniciclo se consigue mediante una serie de transformaciones geométricas que implican

la proyección de la posición del robot una distancia l en la dirección de movimiento.

El hecho de tener que aplicar esta distancia de proyección supone que el controlador

trabaje con una posición ((ficticia)) de los robots, lo que genera un error final en la

posición y una rotación constante de los robots sobre su propio eje cuando están

próximos a la posición deseada. El primer problema se soluciona proyectando la posición

final del centroide una distancia igual a la distancia de proyección, cuyo valor óptimo

se ha considerado como l = 5 cm. Para el segundo, basta con imponer una condición

de parada, de manera que cada robot se detenga cuando esté a menos de 2 cm de su

posición final.

Otro requisito imprescindible es el uso de las CBF para evitar cualquier posible colisión.

Sin ellas, Robotarium no permite ejecutar ningún experimento en sus instalaciones.

Estas funciones modifican la dirección de la velocidad en caso de que los robots

se encuentren a menos de cierta distancia de seguridad de un obstáculo o de otro

robot. También pueden reducir el módulo de la velocidad si el valor calculado por el

controlador excede el máximo permitido, que en todos los experimentos realizados en

Robotarium a lo largo de este trabajo se ha asumido como vmax = 0.2 m/s.

La Figura 4.1 resume, en forma de diagrama de bloques, la implementación del bucle

de control desarrollado.

Figura 4.1: Diagrama de bloques del bucle de control utilizado, donde γd representa la forma deseada
y γ la forma de la formación en cada iteración.

El código desarrollado para implementar el controlador propuesto en Robotarium se

muestra en el Anexo E. Para más información sobre el proceso de implantación del

algoritmo de control en la plataforma Robotarium, consultar [3].
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4.2. Transporte de objeto deformable en entorno

2D sin obstáculos

La parte más novedosa del controlador implementado frente al de trabajos anteriores

es la incorporación del control de deformaciones, restringiendo el cambio de forma

del equipo de robots durante toda la tarea de transporte. Para analizar el efecto

que tiene este controlador individual en el conjunto de la formación se considera

un experimento, evaluado mediante simulación en MATLAB, en el que 12 robots se

encuentran, inicialmente, en una configuración puramente doblada y son dirigidos hacia

una configuración final rectangular. A continuación, se plantean dos situaciones.

Caso 1. Se controlan todos los parámetros de la formación, excepto el relativo a las

deformaciones cuadráticas. Para ello, se escogen los siguientes valores de ganancias de

control: kH = 5, kG = 0, ks = 2, kc = 0.5 y kθ = 0.15. Como se puede ver en la

Figura 4.2a, el equipo de robots alcanza la configuración deseada, pero el objeto sufre

deformaciones durante el transporte que podŕıan dañarlo.

Caso 2. Se controlan todos los parámetros de la formación, esta vez tomando kG = 10.

El resto de ganancias de control tienen el mismo valor que en el Caso 1. Aqúı, las

deformaciones del objeto están controladas y su integridad f́ısica está garantizada. En

la Figura 4.2b se puede apreciar que el objeto transportado tiende a mantener una

configuración cuadrática bend.

(a) Caso 1: kG = 0 (b) Caso 2: kG = 10

Figura 4.2: Comparación de la configuración de la formación en el instante t = 0.8 s en los dos
casos considerados del experimento simulado donde el equipo de robots pasa de una configuración
puramente doblada a una configuración rectangular.

Desde el Anexo F.1 se puede acceder al v́ıdeo de esta simulación, donde se comparan

las deformaciones sufridas a lo largo del transporte en ambos casos.
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Aunque la diferencia de forma durante el transporte es el cambio más notable, el efecto

de aplicar el controlador uG también se refleja en las gráficas de evolución de los errores

(Figura 4.3). En el Caso 1, la variable γG alcanza valores cercanos a cero prácticamente

al mismo tiempo que γH . Recordando lo explicado en el Caṕıtulo 3, la función de coste

γG representa la diferencia de forma entre la configuración de referencia deformada

según modos de orden dos y la configuración de la formación en un instante dado. Por

tanto, parece lógico que el equipo de robots solo alcance una configuración cuadrática

al mismo tiempo que llega a la configuración de conservación de forma, modelada por

uH . Esto es aśı porque se considera que la configuración de conservación de forma

pertenece al conjunto de posibles configuraciones deformadas. Es decir, γH = 0 implica

que γG = 0. Y, en ese caso, G = [H,0].

Por el contrario, puesto que en el Caso 2 śı se controlan las deformaciones durante el

transporte, γG converge antes que γH . Es decir, la formación alcanza una configuración

deformada cuadráticamente (en este caso, una configuración bend) antes de llegar a

la configuración deseada. El resto de variables de error se ven ligeramente afectadas

como consecuencia de las nuevas maniobras que ejecutan los robots, pero no se percibe

ningún cambio significativo.

(a) Caso 1: kG = 0 (b) Caso 2: kG = 10

Figura 4.3: Comparación de la evolución de las variables de error en los dos casos considerados del
experimento simulado donde el equipo de robots pasa de una configuración puramente doblada a una
configuración rectangular.

El resto de resultados obtenidos en esta simulación se recogen en el Anexo C.1.
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4.3. Transporte de objeto deformable en entorno

2D con obstáculo

Uno puede pensar que la simulación anterior se trata de un caso particular donde el

control uG ha cumplido su función por estar la configuración inicial ya deformada.

Para confirmar que el controlador implementado funciona correctamente cuando las

deformaciones deben realizarse en mitad de la tarea de transporte, se propone una

simulación en un espacio bidimensional con obstáculos.

El objetivo es dirigir un equipo de 8 robots desde una configuración inicial rectangular

hasta una configuración deseada de la misma forma y escala, pero rotada 90°. En

mitad del área de movimiento, se ha ubicado un obstáculo circular que la formación

debe esquivar para llegar a la posición deseada garantizando, en todo momento, que el

objeto transportado no sufra ningún daño. Se plantean dos situaciones.

Caso 1. Se escogen las siguientes ganancias de control: kH = 0.2, kG = 0, ks = 0.15,

kc = 0.1 y kθ = 0.15. Es decir, las deformaciones que surjan durante el transporte no

estarán controladas. En la Figura 4.4a, se percibe claramente cómo el equipo de robots

está deformando el objeto de manera extraña para poder esquivar el obstáculo. Si se

tratase de un objeto real, esta deformación podŕıa dañarlo o, incluso, llegar a romperlo.

Caso 2. El único cambio en las ganancias respecto al Caso 1 es que ahora kG = 2, por

lo que el equipo se deformará de manera controlada. Como se muestra en la Figura

4.4b, la deformación que sufre el objeto es mucho más natural.

(a) Caso 1: kG = 0 (b) Caso 2: kG = 2

Figura 4.4: Comparación de la configuración de la formación en el instante t = 2 s en los dos casos
considerados del experimento simulado donde el equipo de robots debe esquivar un obstáculo circular.

Desde el Anexo F.2 se puede acceder al v́ıdeo donde se comparan ambos casos.
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La evolución de las variables de error (Figura 4.5) también permite apreciar la diferencia

entre aplicar el control de deformaciones o no. Es importante darse cuenta de que los

valores de γH y γG graficados son un orden de magnitud superiores a los reales para

facilitar la comparación entre casos.

En el Caso 1, tanto γH como γG sufren una fuerte variación durante el tramo de

simulación en el que la formación robótica está esquivando el obstáculo. Aun aśı,

γG es, aproximadamente, cuatro veces inferior a γH . Esto se debe a que, durante la

deformación, el equipo de robots está más próximo a una configuración deformada

cuadráticamente que a la configuración de conservación de forma.

En el Caso 2, se percibe una reducción de los valores de γH y γG, especialmente de

esta última variable. Al controlar cómo se puede deformar la formación robótica, γG

permanece en valores prácticamente nulos durante toda la simulación. Esto hace que,

a su vez, el error de forma γH también se vea reducido.

Analizando el resto de variables se observa que casi no se ven afectadas por la aplicación

del controlador uG, pero se distinguen unos pequeños ((rebotes)) en es y eθ. En el caso

de es, se debe a la propia deformación, que obliga al equipo de robots a modificar

su escala. Si mantener la escala del objeto fuese de gran importancia, se podŕıa dar

más peso a us, ya que este controlador está desacoplado del resto. En cuanto a eθ, el

cambio brusco es consecuencia de calcularlo como valor absoluto, aunque la evolución

del ángulo θ a lo largo del tiempo es suave. Para más resultados de esta simulación, aśı

como un ensayo adicional, acudir al Anexo C.2.

(a) Caso 1: kG = 0 (b) Caso 2: kG = 2

Figura 4.5: Comparación de la evolución de las variables de error en los dos casos considerados del
experimento simulado donde el equipo de robots debe esquivar un obstáculo circular.
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4.4. Transporte de objeto deformable en entorno

2D por pasillo curvo

Los resultados obtenidos mediante simulación ofrecen una primera aproximación

del comportamiento del sistema, pero no tienen en cuenta factores externos que

pueden afectar al movimiento de los robots. Para realizar una evaluación más

completa del controlador y ratificar su correcto funcionamiento, resulta fundamental

su implementación y análisis con Robotarium.

Se propone un experimento en el que un equipo de 8 robots reales debe transportar un

objeto deformable a través de un pasillo curvo. En la Figura 4.6 se muestra el escenario

donde tiene lugar este experimento.

Figura 4.6: Representación del escenario en el que se va a llevar a cabo el experimento donde el equipo
de robots recorre un pasillo curvo en un espacio 2D. Los puntos de colores son las posiciones iniciales
de los robots y los ćırculos huecos representan las posiciones finales deseadas.

Habitualmente, el control de robots móviles en entornos complejos suele requerir la

implementación de algoritmos de planificación de rutas que indiquen a los robots el

camino a seguir. Este es uno de esos casos que precisan de una planificación previa

de la ruta. Los robots, al no conocer a priori la existencia de los obstáculos, tienden a

moverse directamente hacia la parte superior, donde se localiza la configuración final

que deben alcanzar. Al hacer esto, llegan a un estado de bloqueo.

Por ello, se ha decidido introducir tres puntos intermedios, o waypoints, a lo largo

del pasillo, representados por una cruz gris en la figura anterior. El controlador uc se

encarga de dirigir al equipo hacia el siguiente waypoint del recorrido, aśı hasta llegar a

la posición final. Estos waypoints están definidos de forma manual como la combinación

de la forma, escala, posición y orientación que debe tener la formación en este momento.
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Se plantean tres situaciones para estudiar este experimento, dos de ellas bajo las mismas

condiciones de control que las simulaciones de los apartados anteriores.

Caso 0. Solo se controlan tres de los cuatro parámetros que definen la configuración:

posición, orientación y escala. La forma del equipo de robots no se restringe. Los valores

elegidos para las ganancias de control son kH = 0, kG = 0, ks = 0.1, kc = 0.1 y kθ = 0.1.

En la Figura 4.7a, se puede ver, en los momentos más avanzados del experimento,

cómo el objeto está totalmente deformado. Al no estar controlada la conservación de

forma durante el transporte, cualquier maniobra no coordinada o bloqueo provoca una

excesiva deformación.

Caso 1. La estrategia aplicada en este caso consiste en controlar la conservación de

forma del objeto, pero no las deformaciones. Por eso, se escogen kH = 0.2 y kG = 0.

El resto de ganancias son iguales al caso anterior. La Figura 4.7b muestra cómo el

equipo de robots trata de mantener la forma original del objeto, pero se ve obligado a

deformarse al evitar chocar con las paredes del pasillo. Estas deformaciones no están

controladas, por lo que el objeto adquiere una forma extraña.

Caso 2. Se controlan todos los parámetros de la configuración, incluidas la conservación

de forma y las deformaciones. Ahora, se escoge kG = 1, mientras que el resto de

ganancias tienen el mismo valor que en el Caso 1. En la Figura 4.7c, se observa que,

aunque la formación robótica deba deformarse, lo hace cuadráticamente.

El conjunto de fotogramas seleccionado muestra la gran utilidad del controlador

propuesto. En espacios libres donde el equipo de robots no tiene que deformarse, como

el primer tramo recto del pasillo, cualquiera de las estrategias seguidas en los Casos 1

o 2 daŕıa buenos resultados. Con la estrategia del Caso 0, cada robot iŕıa directo a su

posición final sin tener en cuenta la integridad del objeto transportado.

En cambio, cuando la formación es forzada a deformarse, como al doblar la esquina del

pasillo, claramente el control de forma con modos de deformación del Caso 2 es una

mejor opción. Con él, el equipo de robots realiza movimientos de forma coordinada

teniendo en cuenta, en todo momento, las propiedades del objeto transportado para

deformarlo de manera controlada.
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(a) Caso 0: kH = 0 y kG = 0

(b) Caso 1: kH = 0.2 y kG = 0

(c) Caso 2: kH = 0.2 y kG = 1

Figura 4.7: Comparación de la configuración de la formación en los instantes t = 15 s (izquierda),
t = 35 s (centro) y t = 50 s (derecha) en los tres casos considerados del experimento donde el equipo
de robots recorre un pasillo curvo en un espacio 2D.

En el Anexo F.3 se muestran los enlaces para acceder a los v́ıdeos donde se comparan

los tres casos del experimento en simulación y con robots reales.

La evolución de los errores durante la tarea (Figura 4.8) también refleja la diferencia

entre las tres estrategias. Por un lado, en el Caso 0, la tendencia de γH y γG es creciente.

Es decir, al no estar controlando la forma, el controlador nunca corregirá este error y su

valor solo podrá aumentar. En este caso particular, γH y γG toman valores tan elevados

debido a que uno de los robots se queda bloqueado en la parte inferior del pasillo.

En cuanto a los Casos 1 y 2, se puede observar que γH y γG śı convergen a cero, aunque

con alguna oscilación intermedia, más suaves en el segundo de estos casos por estar

las deformaciones controladas. Además, en el tramo temporal comprendido entre 50 y

100 segundos, la variable γH permanece constante y positiva, consecuencia del bloqueo

momentáneo de un robot.
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Por otro lado, se puede observar que los errores de posición y orientación casi no vaŕıan

entre un caso y otro, mientras que el de escala śı se ve afectado en cierta medida por

la deformación sufrida. Nótese que los valores de γH y γG han sido multiplicados por

10 en las gráficas de los Casos 1 y 2.

(a) Caso 0: kH = 0 y kG = 0 (b) Caso 1: kH > 0 y kG = 0 (c) Caso 2: kH > 0 y kG > 0

Figura 4.8: Comparación de la evolución de las variables de error en los tres casos considerados del
experimento donde el equipo de robots recorre un pasillo curvo en un espacio 2D.

Otro parámetro interesante es la velocidad lineal de los uniciclos (Figura 4.9), cuyo

mejor resultado se obtiene en el Caso 2. Los cambios bruscos observados en las gráficas

se deben a la presencia de los waypoints, ya que la formación reduce su velocidad al

aproximarse a uno de ellos y, cuando se encuentra a cierta distancia, pasa a dirigirse

hacia el siguiente waypoint, aumentando considerablemente la velocidad.

(a) Caso 0: kH = 0 y kG = 0 (b) Caso 1: kH > 0 y kG = 0 (c) Caso 2: kH > 0 y kG > 0

Figura 4.9: Comparación de la variación de velocidad lineal de cada robot en los tres casos considerados
del experimento donde el equipo de robots recorre un pasillo curvo en un espacio 2D.

Con todo esto, viendo que la deformación que sufre el objeto durante su transporte

sigue patrones cuadráticos y que todas las variables de error convergen a cero, se

puede concluir que el controlador implementado cumple los objetivos propuestos. En

el Anexo C.3 se muestran más gráficas de este experimento, tanto de simulación como

de los ensayos con robots reales.
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Caṕıtulo 5

Extensión del controlador a
entornos 3D

La manipulación de objetos deformables no solo es una tarea relevante en espacios

bidimensionales. El constante desarrollo tecnológico y el auge de la robótica aérea

hacen que trasportar estos objetos en entornos 3D resulte un tema de gran interés en

el ámbito de la investigación. Por ello, se pretende adaptar el controlador propuesto en

el Caṕıtulo 3 para dirigir un equipo de robots en entornos tridimensionales. Debido a la

posibilidad de rotación en las tres dimensiones del espacio, el control de este parámetro

es más complejo y requiere la aplicación de métodos adicionales, como la aproximación

mediante rotaciones infinitesimales o el uso del algoritmo de Kabsch.

Se siguen asumiendo dinámicas de integrador simple, por lo que el comando de

movimiento de cada robot i ∈ {1, . . . , N} también viene dado por ṗi = ui. Las

posiciones y velocidades se definen como pi = [pix, piy, piz]
⊺ y ui = [uix, uiy, uiz]

⊺,

agrupadas en p = [p⊺
1, . . . ,p

⊺
N ]

⊺ ∈ R3N y u = [u⊺
1, . . . ,u

⊺
N ]

⊺ ∈ R3N . La configuración de

referencia se denota por c = [c⊺1, . . . , c
⊺
N ]

⊺ ∈ R3N , con ci = [cix, ciy, ciz]
⊺.

La estrategia de control se mantiene, combinar linealmente los controles individuales de

forma (uH +uG), escala (us), posición (uc) y rotación (uR según el Apartado 5.1 o uHd

según el Apartado 5.2) en un único controlador (u). La ley de control implementada

cuando se usan rotaciones infinitesimales es, por tanto,

u = uH + uG + us + uc + uR , (5.1)

mientras que, al utilizar el algoritmo de Kabsch, la ley de control se describe como

u = uH + uG + us + uc + uHd . (5.2)
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5.1. Control con rotaciones infinitesimales

Una rotación se considera infinitesimal cuando el ángulo rotado en torno a un eje es

muy pequeño, permitiendo simplificar en gran medida la representación de la matriz

de rotación. Por tanto, ofrece resultados aproximados, no exactos. En particular, en

el contexto de este trabajo, la representación de las rotaciones como infinitesimales

permite evitar el uso de algoritmos numéricos, como el de Kabsch, en la ley de control.

5.1.1. Control de forma

Configuración de conservación de forma. Igual que en el caso 2D, el equipo

de robots se encuentra en esta configuración si pi = Hci, con centroide en

(0, 0, 0). Inspirado en [19], se considera una matriz H de alineación óptima cuya

estructura representa un escalado uniforme y rotaciones infinitesimales1 respecto de

la configuración de referencia:

H =




hs −hrz hry

hrz hs −hrx

−hry hrx hs


 ∈ R3×3 , (5.3)

cuyos parámetros pueden agruparse en un único vector hH = [hs,h
⊺
r ]

⊺ ∈ R4×1, siendo

hr = [hrx, hry, hrz]
⊺.

La condición anterior equivale a K3Np−CHhH = 0, donde K3N = KN ⊗I3 ∈ R3N×3N .

Ahora, la matriz CH se define como sigue:

CH = K3N ·




c1x c1y c1z . . . cNx cNy cNz

0 −c1z c1y . . . 0 −cNz cNy

c1z 0 −c1x . . . cNz 0 −cNx

−c1y c1x 0 . . . −cNy cNx 0




⊺

∈ R3N×4 . (5.4)

Mediante la técnica de los mı́nimos cuadrados, se busca el vector hH óptimo que

minimice ∥K3Np−CHhH∥. Esto se puede resolver como hH = C+
HK3Np = C+

Hp =

[hs, hrx, hry, hrz]
⊺.

1Esta representación de H asume una estructura de la matriz de rotación como la mostrada en
la Ecuación 5.11. Es comúnmente usada para representar rotaciones con ángulos infinitesimales y
resulta de tomar una aproximación de primer orden del seno y el coseno del ángulo de la rotación.
Por tanto, representa una aproximación válida cuando el ángulo de rotación es pequeño. A lo largo
de la memoria, se denomina ((rotaciones infinitesimales)) a todas aquellas que poseen esta estructura.
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Aśı, la función de coste asociada a la conservación de forma es

γH =
1

2
∥K3Np−CHhH∥2 =

1

2
p⊺AHp , (5.5)

donde AH = K3N −CHC
+
H sigue siendo una matriz constante, simétrica, idempotente

y semidefinida positiva.

El término de control que modela la conservación de forma se define igual que en la

Ecuación 3.7.

Configuración deformada según modos de orden dos. El equipo se encuentra

en esta configuración si pi = G ·
[
cix, ciy, ciz, c

2
ix, c

2
iy, c

2
iz, cixciy, ciyciz, cizcix

]⊺
para todos

los robots i, de nuevo tomando el centroide en (0, 0, 0), y siendo

G =



l1 l2 l3 q1 q2 q3 m1 m2 m3

l4 l5 l6 q4 q5 q6 m4 m5 m6

l7 l8 l9 q7 q8 q9 m7 m8 m9


 ∈ R3×9 . (5.6)

En este caso, la matriz CG se define como

CG = K3N ·



L1 Q1 M1
...

...
...

LN QN MN


 ∈ R3N×27 , (5.7)

donde, ahora, los términos lineales (Li ∈ R3×9), cuadráticos (Qi ∈ R3×9) y mixtos

(Mi ∈ R3×9) son:

Li =



cix ciy ciz 0 0 0 0 0 0
0 0 0 cix ciy ciz 0 0 0
0 0 0 0 0 0 cix ciy ciz


 , (5.8)

Qi =



c2ix c2iy c2iz 0 0 0 0 0 0
0 0 0 c2ix c2iy c2iz 0 0 0
0 0 0 0 0 0 c2ix c2iy c2iz


 , (5.9)

Mi =



cixciy ciyciz cizcix 0 0 0 0 0 0
0 0 0 cixciy ciyciz cizcix 0 0 0
0 0 0 0 0 0 cixciy ciyciz cizcix


 . (5.10)

La función de coste γG y el control de deformaciones uG se expresan igual que en las

Ecuaciones 3.14 y 3.15, respectivamente.

31



5.1.2. Control de escala, posición y orientación

El control de escala es igual a la Ecuación 3.16, pero con s = hs. Lo mismo ocurre con

el término de control de posición, idéntico a la Ecuación 3.17, con g ∈ R3.

En cambio, el control de orientación se ve ligeramente modificado, debido a la

posibilidad de rotación en los tres ejes del espacio. Como se ha mencionado antes,

la matriz de transformación H es una combinación de escalado y rotación, por lo que

su valor óptimo se puede reformular comoH = hsR, dondeR es la matriz de rotaciones

infinitesimales, definida como sigue:

R =




1 −hrz/hs hry/hs

hrz/hs 1 −hrx/hs

−hry/hs hrx/hs 1


 ∈ R3×3 . (5.11)

Esta matriz de rotación también se puede escribir como R = I3 + Sr, siendo Sr

una matriz antisimétrica2 formulada, a partir de los elementos del vector hH , como

Sr =
[

1
hs

hr

]
×
. Nótese, además, que R−1 ≈ R⊺ = I3 − Sr.

El control de orientación tiene como objetivo rotar la formación alrededor del centroide

para llegar a una rotación deseada Rd. Dándose cuenta de que Sr es equivalente a la

matriz antisimétrica S de la Ecuación 3.18, se puede definir el término de control de

orientación de igual forma que en 2D:

uR = kR (IN ⊗ (Rd −R))CHhH = −kR (IN ⊗ Sr)CHhH , (5.12)

donde kR es una ganancia de control positiva y Rd = I3 por simplicidad y por

consistencia con la aproximación (R) de la rotación, la cual es más precisa cuanto

más cercana es la rotación real a I3. La ventaja del método descrito en este apartado

es que ofrece una definición anaĺıtica del controlador.

5.2. Control con algoritmo de Kabsch

El algoritmo de Kabsch es una técnica matemática utilizada para calcular la matriz de

rotación óptima que minimice la diferencia entre dos conjuntos de puntos. Esta matriz

influye no solo en el control de orientación, sino también en el control de forma y el

control de escala, tal como se explica en los siguientes apartados.

2Una matriz A se considera antisimétrica si cumple que A⊺ = −A.
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El método seguido para calcular la matriz de rotación se basa en el trabajo de Sorkine

y Rabinovich [20]. A partir de las matrices de posición, con centroide en (0, 0, 0), en la

configuración de referencia Cb = [c1 . . . cN ] ·KN ∈ R3×N y en la configuración actual

Pb = [p1 . . .pN ] ·KN ∈ R3×N , se calcula la matriz de covarianza (MK) según

MK = CbWPb , (5.13)

donde W es una matriz de pesos que, en este caso, toma el valor W = IN . El sub́ındice

K indica que la variable correspondiente se ha calculado siguiendo el algoritmo de

Kabsch, facilitando aśı la diferenciación con las variables del apartado anterior.

Tras aplicar la descomposición en valores singulares (SVD) a esta matriz de covarianza,

tal que MK = UKSKV
⊺
K , se obtiene la matriz de rotación como sigue:

RK = VK ·




1
1

. . .

1
det(VKU

⊺
K)



·UK . (5.14)

5.2.1. Control de forma

Configuración de conservación de forma. Se toma como referencia el método

descrito en Aranda et al. [21], el cual fue también usado en el trabajo [22]. Se

define la matriz de transformación HK = sKRK , donde la escala se calcula como

sK = tr(P⊺
bRKCb)/cs, con cs = tr(CbC

⊺
b) = ∥Cb∥2F .

La función de coste que permite evaluar la disparidad de forma se formula, ahora, como

γH =
1

2
∥Pb −HKCb∥2F . (5.15)

Aśı, el término de control asociado a la conservación de forma queda definido como

uH = kH · vec (HKCb −Pb) . (5.16)

Este control de forma implica el uso de un algoritmo numérico en cada instante

de tiempo durante la ejecución. Por su parte, el control de forma con rotaciones

infinitesimales, el cual se implementa de acuerdo a la Ecuación 3.7, tiene una

formulación anaĺıtica y que depende linealmente de las posiciones de los robots siendo,

por tanto, más fácil de tratar.
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Configuración deformada según modos de orden dos. El control de las

deformaciones durante la tarea de transporte, aśı como el cálculo de su función de

coste, se realizan exactamente igual que lo explicado en el Apartado 5.1.

5.2.2. Control de escala, posición y orientación

El control de posición es idéntico a la Ecuación 3.17, con g ∈ R3, mientras que el

término de control de escala se reformula de la siguiente forma:

us = ks · vec ((sd − sK) (1/sK)HKCb) . (5.17)

En cuanto a la rotación, se propone un término de control que engloba tanto la

orientación como la escala (uHd). El objetivo es que el equipo de robots se mueva

hacia una transformación final deseada HKd = sdRd, aplicando escalado y rotación.

Como es posible controlar la escala de la formación de manera independiente con el

controlador de la Ecuación 5.17, el siguiente término de control es una manera efectiva

de controlar la orientación:

uHd = kHd · vec (HKdCb −Pb) , (5.18)

donde kHd es una ganancia de control positiva.

5.3. Métricas de error en entornos 3D

Igual que en 2D, el error de forma se evalúa a partir de las funciones de coste γH y γG.

La primera de estas variables se calcula según las Ecuaciones 5.5 y 5.15, dependiendo de

si se implementa el control con rotaciones infinitesimales o con el algoritmo de Kabsch,

respectivamente. La variable γG se expresa según la Ecuación 3.14 en ambos casos.

Asimismo, los errores de posición y escala se definen, respectivamente, mediante la

Ecuación 3.19, con g ∈ R3, y la Ecuación 3.20, con s = sK en caso de aplicar el

algoritmo de Kabsch.

El error en la orientación (eR) se obtiene a partir de la matriz de rotación. Sabiendo

que una matriz multiplicada por su inversa es la matriz identidad, con rotaciones

infinitesimales se tiene que

eR = ∥I3 −RR−1
d ∥F , (5.19)
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mientras que con el algoritmo de Kabsch se calcula como

eR = ∥I3 −RKR
−1
d ∥F . (5.20)

Además, resulta interesante comparar el error de orientación en las tres dimensiones

de espacio respecto del ángulo deseado θd = 0. Estos errores se calculan en base a los

ejes x (eθx), y (eθy) y z (eθz) de la referencia local de la configuración deseada, siendo

eθx =| θx − θd | , (5.21)

eθy =| θy − θd | , (5.22)

eθz =| θz − θd | , (5.23)

con θx, θy y θz los ángulos de Euler en el eje local correspondiente.
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Caṕıtulo 6

Evaluación experimental en
entornos 3D

Ya comprobado el correcto funcionamiento en entornos 2D, se debe proceder de igual

manera para verificar que el controlador propuesto también permite dirigir un equipo de

robots en un espacio tridimensional. Por ello, se plantean diversos ejemplos en los que

una formación robótica transporta un objeto deformable desde una configuración inicial

hasta una configuración final. En todos los experimentos realizados se ha considerado

que el objeto transportado es superficial, excepto en el Apartado 6.3, donde se muestra

una simulación con un objeto volumétrico.

A diferencia del caso 2D, solo se han podido realizar los ensayos en simulación, donde

los robots se han modelado mediante dinámicas de integrador simple. Además, los

resultados permitirán comparar el control de rotación mediante el algoritmo de Kabsch

y las rotaciones infinitesimales en términos de precisión y estabilidad y, aśı, determinar

el más adecuado para el control de equipos multi-robot en entornos 3D.

Todos los resultados mostrados a continuación pertenecen a experimentos donde se

controlan todos los parámetros de la formación, como son la conservación de forma, las

deformaciones sufridas durante el transporte, la escala, la posición y la orientación. En

el Anexo D se recogen resultados adicionales, aśı como experimentos complementarios.
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6.1. Transporte de objeto deformable en entorno

3D sin rotación

Se propone un experimento en el que un equipo de 14 robots se encuentra, inicialmente,

en una configuración puramente doblada y se dirigen hacia una configuración final

rectangular en el espacio 3D. En este primer ejemplo no existe rotación relativa entre

ambas configuraciones, con el fin de facilitar el análisis del efecto de los controladores

en la deformación del objeto. Los valores escogidos para las ganancias de control son

kH = 1, kG = 5, ks = 0.5, kc = 1 y kR = kHd = 0.8.

La Figura 6.1 demuestra que la deformación sufrida, tanto al aplicar el control con

rotaciones infinitesimales como con el algoritmo de Kabsch, es muy similar. La principal

diferencia es el tamaño de la configuración en el instante representado. Esto puede verse

también en la Figura 6.2, donde el error de escala con rotaciones infinitesimales es más

lento que con el algoritmo de Kabsch, tanto que no termina de converger en el tiempo

de simulación fijado. Para tiempos de simulación mayores, el error de escala alcanza

valores nulos. Por otro lado, el error de forma γH vaŕıa ligeramente, reduciéndose más

suavemente en el caso de las rotaciones infinitesimales.

Los errores de posición (eg) y deformación (γG) no se ven modificados y, puesto que

se calculan de forma idéntica en ambos casos, esto es un indicativo del desacople entre

los dos conjuntos de controladores.

(a) Control con rotaciones infinitesimales (b) Control con algoritmo de Kabsch

Figura 6.1: Comparación de la configuración de la formación en el instante t = 0.4 s al aplicar los dos
métodos de control considerados, con kG = 5, en el experimento simulado donde el equipo de robots
pasa de una configuración puramente doblada a una configuración rectangular en un espacio 3D.
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(a) Control con rotaciones infinitesimales (b) Control con algoritmo de Kabsch

Figura 6.2: Comparación de la evolución de las variables de error al aplicar los dos métodos de
control considerados, con kG = 5, en el experimento simulado donde el equipo de robots pasa de una
configuración puramente doblada a una configuración rectangular en un espacio 3D.

Las trayectorias de la Figura 6.3 muestran las diferencias en el movimiento de la

formación robótica. Dado que la matriz de rotación es siempre igual a I3 en ambos

casos, las diferencias observadas son principalmente debidas a que en el control con

el algoritmo de Kabsch hay dos términos (Ecuaciones 5.17 y 5.18) que corrigen

conjuntamente (y por tanto, más rápidamente) el error es.

(a) Control con rotaciones infinitesimales (b) Control con algoritmo de Kabsch

Figura 6.3: Comparación de las trayectorias seguidas por los robots al aplicar los dos métodos de
control considerados, con kG = 5, en el experimento simulado donde el equipo de robots pasa de una
configuración puramente doblada a una configuración rectangular en un espacio 3D.

El Anexo D.1 completa estos resultados con gráficas que permiten comparar el efecto

de implementar o no el controlador uG. El v́ıdeo donde se puede ver la deformación

sufrida por el objeto durante el transporte está accesible a través del Anexo F.5.
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6.2. Transporte de objeto deformable en entorno

3D con rotación

Para poder realizar un estudio completo del funcionamiento del controlador debe

haber cierta rotación entre la configuración inicial y la final. Por eso, en el siguiente

experimento se dirige un equipo de 8 robots desde una configuración inicial deformada

en las tres dimensiones del espacio hasta una configuración deseada rectangular y con

una orientación diferente. Las ganancias de control toman los siguientes valores: kH = 1,

kG = 2, ks = 0.5, kc = 0.5 y kR = kHd = 0.8. En la Figura 6.4 se puede ver el escenario

descrito, aśı como la deformación del objeto en el instante t = 0.8 s, diferente según el

control implementado. Se puede acceder al v́ıdeo a través del Anexo F.6.

(a) Control con rotaciones infinitesimales (b) Control con algoritmo de Kabsch

Figura 6.4: Comparación de la configuración de la formación en el instante t = 0.8 s al aplicar los dos
métodos de control considerados, con kG = 2, en el experimento simulado donde el equipo de robots
pasa de una configuración deformada a una configuración rectangular y rotada en un espacio 3D.

La Figura 6.5 permite comparar la evolución de las variables de error. Debido a la

distinta formulación de los dos controladores y puesto que en este ejemplo la tarea

implica una rotación, el valor inicial de algunos errores vaŕıa de un caso a otro.

Además, se observa que el error de rotación converge a cero en el mismo tiempo en

ambos casos, aunque lo hace de manera más progresiva en el segundo de ellos. Por

otro lado, mientras que con las rotaciones infinitesimales el error de conservación de

forma se reduce progresivamente, al utilizar el algoritmo de Kabsch se observa una

oscilación en los primeros momentos de la simulación, coincidente con el inicio de la

rápida disminución del error eR. Aun aśı, es importante destacar que, aunque dicho

error aumente momentáneamente, nunca alcanzará valores superiores a los de t = 0 s.

Si esta oscilación se considerase problemática en un experimento concreto, se puede

reducir o, incluso, eliminar reduciendo el valor de la ganancia kHd, aunque esto hará

que el cambio de escala y la rotación sean más lentos.
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(a) Control con rotaciones infinitesimales (b) Control con algoritmo de Kabsch

Figura 6.5: Comparación de la evolución de las variables de error al aplicar los dos métodos de
control considerados, con kG = 2, en el experimento simulado donde el equipo de robots pasa de una
configuración deformada a una configuración rectangular y rotada en un espacio 3D.

Cabe destacar que, a diferencia de los experimentos 2D donde la orientación se describ́ıa

mediante un único ángulo, en 3D se define la rotación mediante los tres ángulos de

Euler. La Figura 6.6 refleja la evolución del error de orientación de estos ángulos

en torno a los ejes locales del objeto. Se observa una reducción suave en el caso de

las rotaciones infinitesimales frente a una disminución más progresiva en los primeros

segundos al usar el algoritmo de Kabsch. Además, en este último caso, el error de

orientación en el eje x presenta una oscilación, la cual ocurre en el mismo instante

temporal que la oscilación del error de conservación de forma comentado anteriormente.

(a) Control con rotaciones infinitesimales (b) Control con algoritmo de Kabsch

Figura 6.6: Comparación de la evolución del error de los ángulos de rotación al aplicar los dos métodos
de control considerados, con kG = 2, en el experimento simulado donde el equipo de robots pasa de
una configuración deformada a una configuración rectangular y rotada en un espacio 3D.
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Por último, la Figura 6.7 refleja las trayectorias seguidas por cada robot. Se observa que

el controlador que modela las rotaciones como infinitesimales funciona correctamente

aunque las rotaciones reales a realizar sean considerables, como en este ejemplo. El uso

conjunto de todos los términos de control propuestos permite obtener una evolución

adecuada de la formación. Para más resultados, acudir al Anexo D.2.

(a) Control con rotaciones infinitesimales (b) Control con algoritmo de Kabsch

Figura 6.7: Comparación de las trayectorias seguidas por los robots al aplicar los dos métodos de
control considerados, con kG = 2, en el experimento simulado donde el equipo de robots pasa de una
configuración deformada a una configuración rectangular y rotada en un espacio 3D.

6.3. Transporte de objeto deformable volumétrico

La variedad de objetos deformables es enorme, desde una lámina flexible o una sábana

como se ha mostrado en los experimentos realizados anteriormente, hasta un colchón

o una almohada. Para verificar que el controlador también es válido en el transporte

de objetos deformables volumétricos, se propone el siguiente experimento. En él, un

equipo de 6 robots transporta un colchón a lo largo de un pasillo curvo, el cual obliga

a la formación a rotar para evitar colisiones y deformaciones.

Para simular este objeto se ha usado el método Meshless Shape Matching [16], el cual

es apropiado para representar objetos volumétricos. El objeto se ha simulado con las

dimensiones t́ıpicas de un colchón real (1.5× 2.1× 0.3 metros). Igual que en el ejemplo

del Apartado 4.4, se definen manualmente tres waypoints intermedios que gúıan a la

formación a través del escenario planteado.

La idea, además de validar el controlador, es demostrar que también se puede aplicar

en tareas de transporte que requieren mantener la forma y escala del objeto en reposo.
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Por ello, se escogen los siguientes valores para las ganancias: kH = 50, kG = 5, ks = 50,

kc = 1 y kHd = 1.5. Puesto que en los apartados anteriores ya se han analizado las

diferencias entre el control con rotaciones infinitesimales y con el algoritmo de Kabsch,

a continuación solo se van a mostrar los resultados obtenidos con el segundo método.

En la Figura 6.8 puede verse el colchón en un momento concreto del transporte, aśı

como las trayectorias seguidas por cada robot desde su posición inicial hasta la final.

El enlace de acceso al v́ıdeo del experimento se encuentra en el Anexo F.7.

(a) Fotograma del instante t = 6 s (b) Trayectorias

Figura 6.8: Representación de la configuración de la formación en el instante t = 6 s y las trayectorias
seguidas por los robots en el experimento simulado donde el equipo de robots transporta un colchón
a lo largo de un pasillo curvo en un espacio 3D.

Al estar rotando, el objeto se deformaŕıa de manera descontrolada de no ser por el

controlador implementado. En cambio, puede comprobarse que el colchón mantiene

su forma y escala original. Esto también se refleja en las gráficas de evolución de los

errores de la Figura 6.9.

Se puede observar que los errores de forma y escala son prácticamente nulos durante

toda la tarea. En la representación de esta última variable de error se aprecian ligeras

oscilaciones en dos momentos concretos de la simulación, coincidentes con los cambios

de orientación que realiza el equipo de robots. Tratándose de un colchón, aun siendo

un objeto bastante ŕıgido, posee cierta deformabilidad, por lo que estas pequeñas

variaciones de escala no supondŕıan un problema.

En el Anexo D.3 puede verse el movimiento completo del objeto a lo largo del pasillo,

aśı como resultados adicionales.
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(a) Evolución de las variables de error (b) Errores de los tres ángulos de rotación

Figura 6.9: Representación de la evolución de las variables de error y de los ángulos de rotación en el
experimento simulado donde el equipo de robots transporta un colchón a lo largo de un pasillo curvo
en un espacio 3D.
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Caṕıtulo 7

Conclusiones y trabajo futuro

7.1. Conclusiones alcanzadas

Al comienzo de esta investigación se estableció como objetivo principal la

implementación del controlador de forma con modos de deformación en sistemas

multi-robot y su posterior análisis en diferentes entornos.

La primera parte recoge el desarrollo teórico del control aplicado en escenarios 2D,

aśı como los resultados de los diferentes experimentos realizados para su validación.

Estos experimentos abarcan desde simples desplazamientos, donde el equipo de robots

debe deformarse para alcanzar la configuración final deseada, hasta escenarios más

complejos en los que el movimiento de los robots está restringido por obstáculos.

Se han podido observar las ventajas que ofrece este controlador frente a otros que

no limiten el rango de deformaciones. De esta forma, se garantiza que el objeto no

sufra daños que afecten a su integridad f́ısica. Además, el resto de parámetros de la

configuración también se controlan satisfactoriamente. Como contribución adicional,

el trabajo realizado en esta primera parte se ha presentado en el 4th Workshop on

Representing and Manipulating Deformable Objects del congreso internacional IEEE

International Conference on Robotics and Automation (ICRA) de 2024.

En la segunda parte se explica el proceso de adaptación del controlador a entornos 3D.

Al existir mayor libertad de movimiento en estos espacios, el control de rotación es

más complejo, por lo que se han planteado dos métodos distintos para ello, como son

la aproximación mediante rotaciones infinitesimales y el algoritmo de Kabsch. Ambas

técnicas son una buena solución, aunque poseen ciertas diferencias. Por un lado, las
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rotaciones infinitesimales implican el uso de aproximaciones de las rotaciones óptimas

reales, pero permiten tener un controlador formulado anaĺıticamente. Por otro lado,

el algoritmo de Kabsch permite usar las rotaciones óptimas exactas, pero dificulta

su tratamiento por ser un método numérico. Se han realizado diversos ensayos en

simulación que han posibilitado la comparación de ambos métodos, aśı como comprobar

que el controlador funciona correctamente también en espacios tridimensionales para

transportar objetos deformables superficiales y volumétricos.

El uso de Robotarium ha sido esencial para probar y ajustar experimentalmente el

controlador propuesto. Además, ha permitido demostrar su viabilidad y efectividad,

tanto en simulación como con robots reales. Por otro lado, el hecho de simular el

objeto transportado ha facilitado la interpretación de las deformaciones que podŕıa

sufrir un objeto real.

Todo el trabajo recogido entre estas páginas permite afirmar que los objetivos marcados

se han alcanzado favorablemente. La implementación del controlador en entornos 2D

y 3D ha resultado exitosa. Puede considerarse como una buena alternativa de control

multi-robot para el transporte de objetos deformables, principalmente de aquellos en

los que, por sus propiedades f́ısicas, sea primordial controlar cómo y cuánto pueden

deformarse.

7.2. Trabajo futuro

Aunque este TFM engloba muchos elementos relacionados con la robótica móvil

y el transporte de objetos deformables, algunos de ellos podŕıan tratarse más en

profundidad en futuras ĺıneas de investigación.

En los experimentos realizados en entornos complejos, los obstáculos eran fijos y los

robots pod́ıan corregir su trayectoria y esquivarlos gracias a las CBF incorporadas

en Robotarium. Para implementar el controlador propuesto en otros entornos más

realistas, con mayor cantidad de obstáculos o, incluso, con la presencia de obstáculos

móviles, se podŕıa trabajar en la idea de sensorizar los robots. De esta forma, podŕıan

analizar su área de movimiento en cada instante y recalcular sus trayectorias antes de

sufrir colisiones, sin necesidad de que el usuario deba predefinir el espacio de trabajo.
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Otra posible dirección de trabajo seŕıa la planificación de trayectorias. Aqúı, se han

usado puntos intermedios, o waypoints, para indicar al equipo de robots el camino

a seguir. Otra alternativa podŕıa ser el desarrollo de algoritmos que calculen la ruta

óptima entre diferentes puntos, teniendo en cuenta la ubicación de los obstáculos, o

implementar algoritmos de planificación ya existentes.

Por último, también se podŕıan considerar en el control las propiedades f́ısicas del

objeto transportado, de manera que la formación robótica no se deforme más de lo que

el ĺımite elástico permite.
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Deformable Objects With Collision Avoidance,)) IEEE Systems Journal, vol. 17,
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Anexo A

Workshop 2024

Todo el trabajo realizado durante el desarrollo, implementación y validación del

controlador propuesto en entornos bidimensionales ha servido de base para la redacción

del art́ıculo de investigación recogido en las siguientes páginas. Este paper, también

accesible en [5], se ha presentado en el 4th Workshop on Representing and Manipulating

Deformable Objects del IEEE International Conference on Robotics and Automation

(ICRA) de 2024.

Además, se ha grabado un v́ıdeo explicativo del art́ıculo, presentado en el propio

workshop y publicado en su canal de YouTube [6].
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Multirobot transport of deformable objects using deformation modes

Raquel Marcos-Saavedra, Miguel Aranda, and Gonzalo López-Nicolás

Abstract— We present a formation controller for transporting
deformable objects in 2D space with a team of mobile robots.
We assume the deformation of the transported object is deter-
mined by the deformation of the robotic formation. The goal
is to reach a target configuration consisting of a desired shape,
scale, position and orientation, allowing linear and quadratic
deformations of the robotic formation relative to the target
configuration. The use of this range of deformation modes
enables preserving the integrity of the object while making
the transport system highly flexible. The controller is tested in
simulations and in real experiments with unicycle robots.

I. INTRODUCTION

Transporting a deformable object with a team of robots
can be a challenging task that requires high coordination,
especially if the object is large, heavy or fragile, or if the
trajectory to follow requires the team of robots to execute
very specific actions. Formation control allows multirobot
systems to manipulate these objects with very accurate
movements to prevent damage during the transport.

The manipulation of deformable objects with multiple
robots is a field widely covered in prior works [1]. In
this context, transport tasks have been considered in dif-
ferent scenarios [2]–[6]. Some related work [7] presents
the coordinated motion of the team of robots, modelled
by single-integrator dynamics, through a linear combination
of translation, shape-preserving transformation and affine
transformation of a reference configuration. This combi-
nation enables the robots to carry out efficient rotation
and resizing maneuvers. Other studies propose a solution
exploiting measures of deformation with a linear control
law considering single-integrator dynamics [8] or assuming
double-integrator dynamics [9] to add inertial effects to the
system. The controller in [9] allows driving a deformable
object to a desired state by driving the team to a target
configuration, defined as a combination of shape, scale,
position and orientation in 2D space.

Deformation modes have been used to model deformable
objects in computer graphics. Two examples are [10], which
exploited the Finite Element Method, and [11], which pro-
posed a geometric approach based on shape matching. This

The authors are with Instituto de Investigación en Ingenierı́a de Aragón
(I3A), Universidad de Zaragoza, Spain. E-mail: 739917@unizar.es;
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de Transformación Industrial (Universidad de Zaragoza - Gobierno
de Aragón). M. Aranda was supported via a Marı́a Zambrano Fel-
lowship funded by the Spanish Ministry of Universities and by the
European Union-NextGenerationEU.

Fig. 1. (Left) Reference configuration of the formation. (Right) Represen-
tation of two achievable configurations (C1 and C2) during the transport of
a deformable object by a team of mobile robots steered with the proposed
controller to a target configuration, defined as a combination of desired
shape, scale, position and orientation. If the task does not require that the
object’s shape is modified, the formation will be kept in a shape-preserving
configuration (C1). However, if the formation needs to deform the object, the
deformed formation will be constrained to linear and quadratic deformation
modes allowing stretching, shearing, bending and twisting while avoiding
other unsuitable and unpredictable deformation patterns (C2).

latter approach was used in [12] to estimate deformability in
robotics applications. Modal analysis has also been recently
exploited for shape control [13]. Linear deformation modes
(i.e., stretching and shearing) were considered in [9] to con-
trol deformation during the transport, enhancing flexibility.

In this paper, we propose a method to transport a de-
formable object grasped around its contour by multiple mo-
bile robots that allows the agents to perform maneuvers that
deform the object only with linear and quadratic deformation
modes during the trajectory. Some situations require the
transported object to be deformed linearly, stretching or
shearing it, as considered in [9]. Others, however, also need
to deform it in a quadratic way, especially when the task
entails changes in direction, causing the object to bend or
twist. Therefore, we introduce quadratic deformation modes,
inspired by [11], to increase adaptability relative to [9].

II. MULTIROBOT CONTROL WITH DEFORMATION MODES

We consider a formation of N robots moving in a 2D space
grasping the transported object through rotational joints, as
illustrated in Fig. 1. We denote the position of robot i ∈
{1, . . . , N} by pi. We assume single-integrator dynamics,
i.e., ṗi = ui, with ui the control input. We group for the full
team p = [p⊺

1 , . . . ,p
⊺
N ]

⊺ ∈ R2N and u = [u⊺
1 , . . . ,u

⊺
N ]

⊺ ∈
R2N . The control strategy is based on separately controlling
each configuration parameter (shape, scale, position and ori-
entation) and using a linear combination of those controllers.



As in [9], we assume that by suitably controlling the
shape and scale of the team of robots we can control the
deformation of the object and maintain its integrity. This
assumption is valid, e.g., for highly deformable objects
whose shape adapts to the shape of the team of robots.

Shape Control. We define ci = [cix, ciy]
⊺ as the position

of the robot i in the reference configuration. Note that the
target configuration is defined with the same shape as the
reference one up to a scale, translation and rotation (Fig.
1). In order to control the shape of the formation during
the transport, two types of configurations are considered.
The shape-preserving configuration keeps the team in the
same shape as the reference configuration. Let us define the
following matrix:

CH = K

[
c1x c1y . . . cNx cNy

−c1y c1x . . . −cNy cNx

]⊺
∈ R2N×2,

(1)
where K = (IN − (1/N)1N1⊺

N ) ⊗ I2 ∈ R2N×2N is a
centering matrix which translates the centroid to zero, IN
is the N ×N identity matrix, 1N is a column vector of N
ones and ⊗ denotes the Kronecker product.

Notice that for any hH = [hH1, hH2]
⊺ the con-

dition Kp − CHhH = 0 is equivalent to pi =
[[hH1, hH2]

⊺
, [−hH2, hH1]

⊺
] ci for every robot i with the

sets of points pi and ci both having zero centroid. This
represents a rotation and uniform scaling of the reference
configuration [9]. Note that we use centering for optimality
[9], [11]. Therefore, if this condition is satisfied while the
robots are moving, the team’s shape will be kept. To define
hH we propose to use a least-squares shape alignment strat-
egy: i.e., we choose hH so that ∥Kp−CHhH∥ is minimum,
being ∥ · ∥ the Euclidean norm. We define henceforth hH =
C+

HKp = C+
Hp, as C+

HK = C+
H , where + denotes the

Moore-Penrose inverse. We can formulate the following cost
function associated with shape preservation:

γH =
1

2
∥Kp−CHhH∥2 =

1

2
p⊺AHp , (2)

where AH = K − CHC+
H . Note that AH is constant,

symmetric, idempotent and positive semidefinite. Then, we
propose a controller for preserving the shape of the team
following the negative gradient of γH :

uH = −kHAHp , (3)

where kH is a positive control gain.
The second configuration we consider is the deformed

configuration which is expressed by deformation modes up to
order two, allowing the formation to deform in a controlled
way. Inspired by [11], we define this deformation with linear
(Li), quadratic (Qi) and mixed (Mi) terms. Analogously to
CH above, we can define the matrix

CG = K



L1 Q1 M1

...
...

...
LN QN MN


 ∈ R2N×10, (4)

Li =

[
cix ciy 0 0
0 0 cix ciy

]
∈ R2×4, (5)

Qi =

[
c2ix c2iy 0 0
0 0 c2ix c2iy

]
∈ R2×4, (6)

Mi =

[
cixciy 0
0 cixciy

]
∈ R2×2, (7)

where Li terms can only represent shear and stretch, whereas
Qi and Mi terms can represent bend and twist.

Similarly to the shape-preserving control, we choose a
vector hG ∈ R10 which minimizes ∥Kp−CGhG∥. Then,
we propose a deformation controller following the negative
gradient of a cost function γG = 1

2p
⊺AGp:

uG = −kGAGp , (8)

being kG a positive control gain and AG = K − CGC
+
G,

which is constant, symmetric, idempotent and positive
semidefinite.

Scale Control. To fully control the deformation we also
control the scale of the team using the variable s = ∥hH∥.
For achieving the desired scale, sd, we propose the following
control term, where ks is a positive control gain and s > 0
can be assumed [9]:

us = ks (sd − s) (1/s)CHhH . (9)

Translation and Rotation Control. Translation and ro-
tation of the formation do not alter the relative positions of
the robots, so they do not affect the object’s deformation.
The translation controller is responsible for driving the team
of robots as a whole to achieve a desired absolute position,
gd, of the formation centroid g = 1

N [p1, . . . ,pN ]1N . The
rotation controller rotates the shape around the formation
centroid until the desired angle, θd, is reached. The angle
can be obtained as θ = atan2 (hH2, hH1). Control terms to
achieve these transformations are, respectively,

uc = kc 1N ⊗ (gd − g) , (10)

uθ = kθ (θd − θ) (IN ⊗ S)CHhH , (11)

where kc and kθ are positive control gains and S =
[[0, 1]

⊺
, [−1, 0]

⊺
]. In practice it is possible to take θd = 0

for convenience and without loss of generality.
Full Formation Controller. The full control law results

from the linear combination of the individual controllers:

u = uH + uG + us + uc + uθ . (12)

III. EXPERIMENTAL VALIDATION

We validate our controller using the Robotarium [14]
with multiple unicycle robots. Note that dynamic model
conversion and avoidance of collisions (between agents, and
with obstacles) are handled by the Robotarium. We define
error variables for position, scale and orientation as eg =
g − gd, es = s− sd, eθ = θ − θd, respectively.

We first conduct simulations for a formation of twelve
robots manipulating a deformable sheet. The object is mod-
elled with the As-Rigid-As-Possible (ARAP) technique [15].
The results are illustrated in Fig. 2. The videos of the
simulations can be seen in [16].



Fig. 2. Simulation results. From left to right, the plots are: 1st, initial configuration (blue circles, bottom) and target configuration (red squares, top); 2nd

and 3rd, robot paths and error variables in Case 1; 4th and 5th, robot paths and error variables in Case 2. The configuration of the formation at instant
t = 0.8 [s] is overlapped on the paths for both cases, showing that only in Case 2 the deformation tends to preserve a quadratic, bending-like pattern. In
both cases, control gains are kH = 5, kc = 0.5, ks = 2, and kθ = 0.15.

Fig. 3. Experimental results. For each row, the five plots from left to right are: representative top-view snapshots, robot paths, control errors, unicycle
linear velocities, and unicycle angular velocities. Each row corresponds to a different shape-control strategy: 1st, the shape is not controlled in any way,
kH = kG = 0, and the shape errors (γH , γG) do not converge to zero; 2nd, deformation is not controlled, kH ̸= 0 and kG = 0; and 3rd, deformation
is controlled, kH ̸= 0 and kG ̸= 0. In the 2nd and 3rd cases, although the shape cannot be preserved, all the errors reach zero values, but only in the 3rd

strategy the object deforms in a controlled manner. The improvement of the parameters in the 3rd case with respect to the 2nd one can be seen in the error
evolution between 50–100 [s]. The values of the remaining control gains are kc = ks = kθ = 0.1 in the three tests.

We consider a situation where a bent initial configuration
has to be driven to a straight target one. We test two cases.
For Case 1 we choose kG = 0. The team of robots quickly
approaches the same shape as the reference configuration,
but deforming the object in an uncontrolled way. For Case
2 we select kG = 10. This allows the formation to maintain
a quadratic deformation. The movements are more efficient
than in Case 1, producing gradual changes and staying close
to a quadratic deformation pattern during the transient period.

Finally, we test the proposed controller in a real scenario
with obstacles, where a team of eight robots transports a
simulated sheet (also modelled with ARAP) along a curved
corridor to a target configuration (Fig. 3). To achieve the
experiment’s goal we manually define three intermediate
waypoints, as a combination of shape, scale, position and
orientation, to guide the team during the task. The first

strategy we test is to control the formation scale, position and
orientation, but not the shape. Therefore, all errors converge
to zero except those related to shape. The second strategy
consists in applying kH = 0.2 while maintaining kG = 0, so
that the formation tends to preserve the shape of the object
but the deformations, which appear inevitably due to the
constraints of this particular scenario, are uncontrolled. In
the third strategy, we use kH = 0.1 and kG = 1. In this
case, the object deforms in a controlled way, preserving its
integrity. In the last two strategies all error variables converge
to zero. These results support the interest of the proposed
approach based on linear and quadratic deformation modes.
Video results of these experiments are in [16].

Future work may involve the formal analysis of the con-
troller, or the extension to 3D, with a different formulation
of the rotation and uniform scaling transformation.
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Anexo B

Ejemplos de deformaciones
alcanzables

Este Anexo recoge una serie de gráficas que representan diferentes ejemplos de

deformación que sufre una configuración dada al implementar el controlador de

deformaciones, uG. El objetivo es reflejar la influencia de cada término de deformación

(li, qi y mi) en el cambio de forma respecto de la configuración de referencia, c.

Cabe destacar que los resultados mostrados a continuación son espećıficos de la

situación concreta considerada. Cualquier modificación en la configuración de referencia

original puede hacer que los términos de deformación actúen de manera diferente.

Dado el vector hG = [l1 l2 l3 l4 q1 q2 q3 q4 m1 m2]
⊺, la configuración deformada se

obtiene como cdef = c+CGhG, con CG calculada según el Apartado 3.1.1. Se considera

una configuración de referencia rectangular y ligeramente rotada sobre la que se aplican

diferentes combinaciones de los términos de deformación. La Figura B.1 muestra esta

configuración de referencia sin deformar y la forma que alcanzaŕıa al aplicar un valor

unitario a todos los términos de hG.

En la Figura B.2 se ilustran las configuraciones obtenidas al deformar la configuración

de referencia según los términos lineales, los términos cuadráticos y los términos mixtos.

Las gráficas de las Figuras B.3, B.4 y B.5 representan el efecto que tiene cada término

individual en la deformación de la configuración de referencia. Se puede comprobar

que los términos lineales generan stretch y shear. Concretamente, los términos l1 y l4

transforman la configuración según el primer modo de deformación, mientras que l2 y

l3 lo hacen según el segundo de ellos. Por otro lado, los términos cuadráticos producen

bend y los mixtos twist.
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(a) hG = [0 0 0 0 0 0 0 0 0 0]
⊺

(b) hG = [1 1 1 1 1 1 1 1 1 1]
⊺

Figura B.1: Representación de la configuración de referencia (izquierda) y la configuración de referencia
deformada, cdef , al aplicar todos los términos de deformación (derecha).

(a) hG = [1 1 1 1 0 0 0 0 0 0]
⊺

(b) hG = [0 0 0 0 1 1 1 1 0 0]
⊺

(c) hG = [0 0 0 0 0 0 0 0 1 1]
⊺

Figura B.2: Representación de la configuración de referencia deformada, cdef , al aplicar los términos
lineales (izquierda), cuadráticos (centro) y mixtos (derecha).
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(a) hG = [1 0 0 0 0 0 0 0 0 0]
⊺

(b) hG = [0 1 0 0 0 0 0 0 0 0]
⊺

(c) hG = [0 0 1 0 0 0 0 0 0 0]
⊺

(d) hG = [0 0 0 1 0 0 0 0 0 0]
⊺

Figura B.3: Representación de la configuración de referencia deformada, cdef , al aplicar cada uno de
los términos lineales individualmente. Modos de deformación stretch y shear.
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(a) hG = [0 0 0 0 1 0 0 0 0 0]
⊺

(b) hG = [0 0 0 0 0 1 0 0 0 0]
⊺

(c) hG = [0 0 0 0 0 0 1 0 0 0]
⊺

(d) hG = [0 0 0 0 0 0 0 1 0 0]
⊺

Figura B.4: Representación de la configuración de referencia deformada, cdef , al aplicar cada uno de
los términos cuadráticos individualmente. Modo de deformación bend.

(a) hG = [0 0 0 0 0 0 0 0 1 0]
⊺

(b) hG = [0 0 0 0 0 0 0 0 0 1]
⊺

Figura B.5: Representación de la configuración de referencia deformada, cdef , al aplicar cada uno de
los términos mixtos individualmente. Modo de deformación twist.
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Anexo C

Resultados gráficos en entornos 2D

C.1. Gráficas de la simulación 4.2

Se presentan el resto de resultados obtenidos en la simulación del transporte de un

objeto deformable en un entorno 2D libre de obstáculos. Las Figuras C.1 y C.2

permiten comparar la deformación sufrida por el objeto durante la tarea en los dos casos

considerados, observando que en el Caso 2 esta deformación sigue patrones cuadráticos.

t = 0 s t = 0.4 s t = 0.8 s

t = 1.2 s t = 2 s t = 10 s

Figura C.1: Deformación de un objeto deformable durante su transporte en el Caso 1 (kG = 0) del
experimento simulado donde el equipo de robots pasa de una configuración puramente doblada a una
configuración rectangular. Vı́deo F.1.
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t = 0 s t = 0.4 s t = 0.8 s

t = 1.2 s t = 2 s t = 10 s

Figura C.2: Deformación de un objeto deformable durante su transporte en el Caso 2 (kG = 10) del
experimento simulado donde el equipo de robots pasa de una configuración puramente doblada a una
configuración rectangular. Vı́deo F.1.

El resto de figuras mostradas representan las trayectorias y posiciones de cada robot

hasta llegar a su posición final, aśı como las velocidades lineales y angulares alcanzadas

en cada instante de tiempo. En las figuras relativas a la velocidad se aprecia un salto

brusco a valores nulos, entre los 4 y 6 segundos, consecuencia de la condición de parada

definida para evitar la constante rotación de los robots en posiciones cercanas a la final.

(a) Caso 1: kG = 0 (b) Caso 2: kG = 10

Figura C.3: Comparación de las trayectorias seguidas por los robots en los dos casos considerados del
experimento simulado donde el equipo de robots pasa de una configuración puramente doblada a una
configuración rectangular.
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(a) Caso 1: kG = 0 (b) Caso 2: kG = 10

Figura C.4: Comparación de la variación de las coordenadas X e Y de posición en los dos casos
considerados del experimento simulado donde el equipo de robots pasa de una configuración puramente
doblada a una configuración rectangular.

(a) Caso 1: kG = 0 (b) Caso 2: kG = 10

Figura C.5: Comparación de la variación de la velocidad lineal de uniciclo en los dos casos considerados
del experimento simulado donde el equipo de robots pasa de una configuración puramente doblada a
una configuración rectangular.
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(a) Caso 1: kG = 0 (b) Caso 2: kG = 10

Figura C.6: Comparación de la variación de la velocidad angular de uniciclo en los dos casos
considerados del experimento simulado donde el equipo de robots pasa de una configuración puramente
doblada a una configuración rectangular.

(a) Caso 1: kG = 0 (b) Caso 2: kG = 10

Figura C.7: Comparación de la variación de las componentes X e Y de velocidad lineal en los dos
casos considerados del experimento simulado donde el equipo de robots pasa de una configuración
puramente doblada a una configuración rectangular.
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(a) Caso 1: kG = 0 (b) Caso 2: kG = 10

Figura C.8: Comparación de la variación del módulo de velocidad lineal en los dos casos considerados
del experimento simulado donde el equipo de robots pasa de una configuración puramente doblada a
una configuración rectangular.

C.2. Gráficas de la simulación 4.3

A continuación, se muestran resultados adicionales de la simulación de transporte

de un objeto deformable en un entorno 2D con un obstáculo circular que impide el

desplazamiento directo del equipo de robots hacia su posición final. En las Figuras C.9

y C.10, se muestran diferentes fotogramas de la tarea de transporte en los dos casos

considerados. Se puede observar que las deformaciones sufridas en el Caso 2 están

restringidas a modos de orden dos, frente a las deformaciones sin control del Caso 1.

Las Figuras C.11 y C.12 muestran las trayectorias seguidas por cada robot y sus

coordenadas X e Y en cada instante de tiempo, respectivamente. En el Caso 1, las

trayectorias son más directas, lo que influye en una mayor deformación del objeto.

El resto de figuras representan la evolución de diferentes variables de velocidad. Todas

convergen a valores próximos a cero de forma adecuada. Debido a la condición de

parada impuesta, las velocidades pasan a ser cero en torno a los 24 segundos en este

ejemplo.
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t = 0 s t = 0.5 s t = 1 s

t = 1.5 s t = 2 s t = 3 s

t = 4 s t = 5 s t = 6 s

t = 8 s t = 30 s

Figura C.9: Deformación de un objeto deformable durante su transporte en el Caso 1 (kG = 0) del
experimento simulado donde el equipo de robots debe esquivar un obstáculo circular. Vı́deo F.2.
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t = 0 s t = 0.5 s t = 1 s

t = 1.5 s t = 2 s t = 3 s

t = 4 s t = 5 s t = 6 s

t = 8 s t = 30 s

Figura C.10: Deformación de un objeto deformable durante su transporte en el Caso 2 (kG = 2) del
experimento simulado donde el equipo de robots debe esquivar un obstáculo circular. Vı́deo F.2.
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(a) Caso 1: kG = 0 (b) Caso 2: kG = 2

Figura C.11: Comparación de las trayectorias seguidas por los robots en los dos casos considerados
del experimento simulado donde el equipo de robots debe esquivar un obstáculo circular.

(a) Caso 1: kG = 0 (b) Caso 2: kG = 2

Figura C.12: Comparación de la variación de las coordenadas X e Y de posición en los dos casos
considerados del experimento simulado donde el equipo de robots debe esquivar un obstáculo circular.
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(a) Caso 1: kG = 0 (b) Caso 2: kG = 2

Figura C.13: Comparación de la variación de la velocidad lineal de uniciclo en los dos casos considerados
del experimento simulado donde el equipo de robots debe esquivar un obstáculo circular.

(a) Caso 1: kG = 0 (b) Caso 2: kG = 2

Figura C.14: Comparación de la variación de la velocidad angular de uniciclo en los dos casos
considerados del experimento simulado donde el equipo de robots debe esquivar un obstáculo circular.
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(a) Caso 1: kG = 0 (b) Caso 2: kG = 2

Figura C.15: Comparación de la variación de las componentes X e Y de velocidad lineal en los dos
casos considerados del experimento simulado donde el equipo de robots debe esquivar un obstáculo
circular.

(a) Caso 1: kG = 0 (b) Caso 2: kG = 2

Figura C.16: Comparación de la variación del módulo de velocidad lineal en los dos casos considerados
del experimento simulado donde el equipo de robots debe esquivar un obstáculo circular.
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C.2.1. Conservación de forma durante el transporte

En las gráficas anteriores se ha visto que, en el Caso 1, la formación se deforma de

manera no controlada al esquivar el obstáculo. Después, acaba convergiendo a la forma

final deseada que, en este caso, coincide con la forma del objeto en reposo. También se

puede considerar el caso en el que resulte imprescindible conservar la forma del objeto

durante todo el transporte. A continuación, se muestran los resultados más relevantes

obtenidos al simular esta situación, con los siguientes valores de ganancias de control:

kH = 50, kG = 2, ks = 0.15, kc = 0.1 y kθ = 0.15.

t = 0 s t = 0.5 s t = 1 s

t = 1.5 s t = 2 s t = 3 s

t = 4 s t = 5 s t = 6 s

t = 8 s t = 30 s

Figura C.17: Conservación de forma de un objeto deformable durante su transporte (kH = 50) en el
experimento simulado donde el equipo de robots debe esquivar un obstáculo circular. Vı́deo F.2.1.
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En la Figura C.18, se puede comprobar que el error de forma se ha reducido a valores

muy próximos a cero y que las trayectorias siguen un contorno prácticamente circular,

evitando que el objeto se deforme.

(a) Evolución de las variables de error (b) Trayectorias

Figura C.18: Representación de la evolución de las variables de error y las trayectorias seguidas por
los robots en el experimento simulado donde el equipo de robots debe esquivar un obstáculo circular
con kH = 50.

C.3. Gráficas del experimento 4.4

En este apartado se recogen los resultados gráficos obtenidos en el simulador y en la

plataforma experimental con robots reales del experimento donde el equipo de robots

transporta un objeto deformable a lo largo de un pasillo curvo. Esto permite comparar

las diferencias y similitudes entre simulación y experimento real.

C.3.1. Resultados obtenidos en simulación

A continuación, se muestran los resultados de las simulaciones realizadas en los tres

casos considerados en este experimento. En las Figuras C.19, C.20 y C.21 se aprecia la

deformación que sufre el objeto durante su transporte, pudiéndose comprobar que en la

peor situación, el Caso 0, la formación se deforma sin control y llega a la posición final

sin recuperar su forma original. En el Caso 1 se nota cierta variación en γG, mientras

que en el Caso 2 es constante y nula. Todo esto también se puede ver en las gráficas

de la evolución de errores de la Figura C.22.
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t = 0 s t = 15 s t = 20 s

t = 30 s t = 40 s t = 45 s

t = 50 s t = 60 s t = 148 s

Figura C.19: Deformación de un objeto deformable durante su transporte en el Caso 0 (kH = 0 y
kG = 0) del experimento simulado donde el equipo de robots recorre un pasillo curvo en un espacio
2D. Vı́deo F.3.1.
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t = 0 s t = 15 s t = 20 s

t = 30 s t = 40 s t = 45 s

t = 50 s t = 60 s t = 148 s

Figura C.20: Deformación de un objeto deformable durante su transporte en el Caso 1 (kH = 0.2 y
kG = 0) del experimento simulado donde el equipo de robots recorre un pasillo curvo en un espacio
2D. Vı́deo F.3.1.
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t = 0 s t = 15 s t = 20 s

t = 30 s t = 40 s t = 45 s

t = 50 s t = 60 s t = 148 s

Figura C.21: Deformación de un objeto deformable durante su transporte en el Caso 2 (kH = 0.2 y
kG = 1) del experimento simulado donde el equipo de robots recorre un pasillo curvo en un espacio
2D. Vı́deo F.3.1.

(a) Caso 0: kH = 0 y kG = 0 (b) Caso 1: kH = 0.2 y kG = 0 (c) Caso 2: kH = 0.2 y kG = 1

Figura C.22: Comparación de la evolución de las variables de error en los tres casos considerados del
experimento simulado donde el equipo de robots recorre un pasillo curvo en un espacio 2D.
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(a) Caso 0: kH = 0 y kG = 0 (b) Caso 1: kH = 0.2 y kG = 0 (c) Caso 2: kH = 0.2 y kG = 1

Figura C.23: Comparación de las trayectorias seguidas por los robots en los tres casos considerados
del experimento simulado donde el equipo de robots recorre un pasillo curvo en un espacio 2D.

(a) Caso 0: kH = 0 y kG = 0 (b) Caso 1: kH = 0.2 y kG = 0 (c) Caso 2: kH = 0.2 y kG = 1

Figura C.24: Comparación de la variación de las coordenadas X e Y de posición en los tres casos
considerados del experimento simulado donde el equipo de robots recorre un pasillo curvo en un
espacio 2D.
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(a) Caso 0: kH = 0 y kG = 0 (b) Caso 1: kH = 0.2 y kG = 0 (c) Caso 2: kH = 0.2 y kG = 1

Figura C.25: Comparación de la variación de la velocidad lineal de uniciclo en los tres casos
considerados del experimento simulado donde el equipo de robots recorre un pasillo curvo en un
espacio 2D.

(a) Caso 0: kH = 0 y kG = 0 (b) Caso 1: kH = 0.2 y kG = 0 (c) Caso 2: kH = 0.2 y kG = 1

Figura C.26: Comparación de la variación de la velocidad angular de uniciclo en los tres casos
considerados del experimento simulado donde el equipo de robots recorre un pasillo curvo en un
espacio 2D.
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(a) Caso 0: kH = 0 y kG = 0 (b) Caso 1: kH = 0.2 y kG = 0 (c) Caso 2: kH = 0.2 y kG = 1

Figura C.27: Comparación de la variación de las componentes X e Y de velocidad lineal en los tres
casos considerados del experimento simulado donde el equipo de robots recorre un pasillo curvo en un
espacio 2D.

(a) Caso 0: kH = 0 y kG = 0 (b) Caso 1: kH = 0.2 y kG = 0 (c) Caso 2: kH = 0.2 y kG = 1

Figura C.28: Comparación de la variación del módulo de velocidad lineal en los tres casos considerados
del experimento simulado donde el equipo de robots recorre un pasillo curvo en un espacio 2D.
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C.3.2. Resultados obtenidos con robots reales

Las siguientes gráficas recogen los resultados restantes obtenidos tras la ejecución de

este experimento con robots reales.

(a) Caso 0: kH = 0 y kG = 0 (b) Caso 1: kH = 0.2 y kG = 0 (c) Caso 2: kH = 0.2 y kG = 1

Figura C.29: Comparación de las trayectorias seguidas por los robots en los tres casos considerados
del experimento donde el equipo de robots recorre un pasillo curvo en un espacio 2D.

(a) Caso 0: kH = 0 y kG = 0 (b) Caso 1: kH = 0.2 y kG = 0 (c) Caso 2: kH = 0.2 y kG = 1

Figura C.30: Comparación de la variación de las coordenadas X e Y de posición en los tres casos
considerados del experimento donde el equipo de robots recorre un pasillo curvo en un espacio 2D.
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(a) Caso 0: kH = 0 y kG = 0 (b) Caso 1: kH = 0.2 y kG = 0 (c) Caso 2: kH = 0.2 y kG = 1

Figura C.31: Comparación de la variación de la velocidad angular de uniciclo en los tres casos
considerados del experimento donde el equipo de robots recorre un pasillo curvo en un espacio 2D.

(a) Caso 0: kH = 0 y kG = 0 (b) Caso 1: kH = 0.2 y kG = 0 (c) Caso 2: kH = 0.2 y kG = 1

Figura C.32: Comparación de la variación de las componentes X e Y de velocidad lineal en los tres
casos considerados del experimento donde el equipo de robots recorre un pasillo curvo en un espacio
2D.
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(a) Caso 0: kH = 0 y kG = 0 (b) Caso 1: kH = 0.2 y kG = 0 (c) Caso 2: kH = 0.2 y kG = 1

Figura C.33: Comparación de la variación del módulo de velocidad lineal en los tres casos considerados
del experimento donde el equipo de robots recorre un pasillo curvo en un espacio 2D.

C.3.3. Justificación de la necesidad de waypoints

Este experimento ha llegado a buen término gracias a que se han definido una serie

de puntos intermedios que marcasen la ruta que deb́ıa seguir el equipo de robots.

Para justificar la necesidad de incorporar estos waypoints, en la Figura C.34 se

muestran algunos fotogramas del movimiento que realizan los robots cuando no se

planifica previamente su trayectoria. Se puede observar que la formación intenta rotar

y desplazarse en un espacio limitado para alcanzar la configuración deseada, llegando

a una situación de bloqueo.

t = 0 s t = 5 s t = 10 s

t = 15 s t = 30 s t = 148 s

Figura C.34: Deformación de un objeto deformable durante su transporte en el experimento simulado
donde el equipo de robots recorre un pasillo curvo sin planificación de la trayectoria en un espacio 2D.
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C.4. Transporte con diferente número de robots

En este apartado se incluye un experimento adicional en el que un equipo de

robots transporta un objeto deformable desde una configuración deformada hasta

una configuración rectangular en un espacio bidimensional. El objetivo es comparar

la influencia del número de robots involucrado en el transporte. Además, se usará uno

de estos ejemplos para demostrar que el controlador implementado está desacoplado.

Las ganancias de control son: kH = 0.1, kG = 2, ks = 0.15, kc = 0.08 y kθ = 0.15.

Cabe destacar que en los siguientes ejemplos no se ha corregido la posición final de la

formación. Por tanto, como consecuencia de la condición de parada, el error de posición

no convergerá a cero.

A partir de las gráficas de deformación, evolución de errores y trayectorias mostradas

a continuación, se puede comprobar que solo tiene sentido aplicar el controlador con

modos de deformación cuando el número de robots encargados de transportar el objeto

deformable es, como mı́nimo, seis.

Cuando la tarea se lleva a cabo por 4 robots, la variable γG es constante e igual a

cero durante todo el experimento. Esto es porque cualquier deformación que sufra la

formación será siempre una combinación de transformaciones lineales. En ningún caso

podrá alcanzar una configuración bend. En cambio, con seis o más robots, el objeto śı

puede sufrir deformaciones cuadráticas y, por tanto, γG vaŕıa.

(a) 4 robots (b) 6 robots (c) 8 robots

Figura C.35: Deformación de un objeto deformable en el instante t = 4 s de su transporte con diferente
número de robots en un espacio 2D. Vı́deo F.4.
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(a) 4 robots (b) 6 robots (c) 8 robots

Figura C.36: Comparación de la evolución de las variables de error del experimento donde un equipo
de diferente número de robots transporta un objeto deformable en un espacio 2D.

(a) 4 robots (b) 6 robots (c) 8 robots

Figura C.37: Comparación de las trayectorias del experimento donde un equipo de diferente número
de robots transporta un objeto deformable en un espacio 2D.

C.4.1. Demostración de control de escala desacoplado

Como se ha visto en la Figura C.36, el error de escala sufre cierta oscilación en los

tres casos. Esta variación se puede reducir o, incluso, eliminar aumentando el peso de

la ganancia de control relativa a la escala. Para demostrar esto, se propone el mismo

ejemplo de antes con 8 robots, pero tomando ks = 2.

Comparando la Figura C.38 con la evolución de los errores del apartado anterior se

observa que el error de escala se ha reducido prácticamente por completo sin apenas

afectar al resto de variables.
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Figura C.38: Evolución de las variables de error del experimento donde un equipo de 8 robots
transporta un objeto deformable en un espacio 2D cuando se quiere conservar la escala.
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Anexo D

Resultados gráficos en entornos 3D

D.1. Gráficas de la simulación 6.1

Este apartado recoge gráficas adicionales de la simulación donde el equipo de robots

pasa de una configuración puramente doblada a una configuración rectangular en un

espacio 3D. Las Figuras D.1 y D.2 muestran una vista completa, además de la vista

superior, frontal y lateral de la deformación del objeto en el instante t = 0.4 s.

Comparando los dos grupos de imágenes se observan las diferencias ya comentadas

entre utilizar un control con rotaciones infinitesimales y con el algoritmo de Kabsch.

El resto de gráficas hacen referencia a las trayectorias, posiciones y velocidades de los

agentes. Nótese que, al no haber rotación y ser la configuración simétrica, muchas de

las ĺıneas de estas gráficas aparecen superpuestas sobre otras.
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(a) Vista superior (b) Vista 3D

(c) Vista frontal (d) Vista lateral

Figura D.1: Deformación de un objeto deformable en el instante t = 0.4 s en el experimento
simulado donde el equipo de robots pasa de una configuración puramente doblada a una configuración
rectangular en un espacio 3D al aplicar el control con rotaciones infinitesimales, con kG = 5. Vı́deo
F.5.
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(a) Vista superior (b) Vista 3D

(c) Vista frontal (d) Vista lateral

Figura D.2: Deformación de un objeto deformable en el instante t = 0.4 s en el experimento
simulado donde el equipo de robots pasa de una configuración puramente doblada a una configuración
rectangular en un espacio 3D al aplicar el control con el algoritmo de Kabsch, con kG = 5. Vı́deo F.5.
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(a) Control con rotaciones infinitesimales (b) Control con algoritmo de Kabsch

Figura D.3: Comparación de las trayectorias seguidas por los robots al aplicar los dos métodos de
control considerados, con kG = 5, del experimento simulado donde el equipo de robots pasa de una
configuración puramente doblada a una configuración rectangular en un espacio 3D. En cada fila se
muestra una vista: 1ª, vista frontal; 2ª, vista superior; 3ª, vista lateral.
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(a) Control con rotaciones infinitesimales

(b) Control con algoritmo de Kabsch

Figura D.4: Comparación de la variación de las coordenadas X, Y y Z de posición al aplicar los dos
métodos de control considerados, con kG = 5, del experimento simulado donde el equipo de robots
pasa de una configuración puramente doblada a una configuración rectangular en un espacio 3D.
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(a) Control con rotaciones infinitesimales

(b) Control con algoritmo de Kabsch

Figura D.5: Comparación de la variación de las componentes X, Y y Z de velocidad lineal al aplicar
los dos métodos de control considerados, con kG = 5, del experimento simulado donde el equipo de
robots pasa de una configuración puramente doblada a una configuración rectangular en un espacio
3D.

(a) Control con rotaciones infinitesimales (b) Control con algoritmo de Kabsch

Figura D.6: Comparación de la variación del módulo de velocidad lineal al aplicar los dos métodos de
control considerados, con kG = 5, del experimento simulado donde el equipo de robots pasa de una
configuración puramente doblada a una configuración rectangular en un espacio 3D.
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D.1.1. Resultados cuando no se controlan las deformaciones

A continuación, se muestran las gráficas de deformación y trayectorias correspondientes

al experimento de simulación donde el equipo de robots pasa de una configuración

puramente doblada a una configuración rectangular en un espacio 3D cuando no se

controlan las deformaciones durante el transporte. Es decir, kG = 0. Se observa que

los movimientos son más directos que con kG = 5, lo cual genera deformaciones no

deseadas en el objeto.

(a) Vista superior (b) Vista 3D

(c) Vista frontal (d) Vista lateral

Figura D.7: Deformación de un objeto deformable en el instante t = 0.4 s en el experimento
simulado donde el equipo de robots pasa de una configuración puramente doblada a una configuración
rectangular en un espacio 3D al aplicar el control con rotaciones infinitesimales, con kG = 0.
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(a) Vista superior (b) Vista 3D

(c) Vista frontal (d) Vista lateral

Figura D.8: Deformación de un objeto deformable en el instante t = 0.4 s en el experimento
simulado donde el equipo de robots pasa de una configuración puramente doblada a una configuración
rectangular en un espacio 3D al aplicar el control con el algoritmo de Kabsch, con kG = 0.
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(a) Control con rotaciones infinitesimales (b) Control con algoritmo de Kabsch

Figura D.9: Comparación de las trayectorias seguidas por los robots al aplicar los dos métodos de
control considerados, con kG = 0, del experimento simulado donde el equipo de robots pasa de una
configuración puramente doblada a una configuración rectangular en un espacio 3D. En cada fila se
muestra una vista: 1ª, vista 3D; 2ª, vista frontal; 3ª, vista superior; 4ª, vista lateral.
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D.2. Gráficas de la simulación 6.2

A continuación, se muestran las gráficas de posiciones y velocidades de la simulación

donde el equipo de robots pasa de una configuración deformada a una configuración

rectangular y rotada en un espacio 3D. Puesto que en el apartado anterior, aśı como

en los experimentos 2D, ya se han analizado las diferencias entre restringir o no las

deformaciones durante el transporte, en esta sección solo se recogen los resultados

obtenidos cuando kG = 2.

(a) Control con rotaciones infinitesimales

(b) Control con algoritmo de Kabsch

Figura D.10: Comparación de la variación de las coordenadas X, Y y Z de posición al aplicar los dos
métodos de control considerados, con kG = 2, del experimento simulado donde el equipo de robots
pasa de una configuración deformada a una configuración rectangular y rotada en un espacio 3D.
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(a) Control con rotaciones infinitesimales

(b) Control con algoritmo de Kabsch

Figura D.11: Comparación de la variación de las componentes X, Y y Z de velocidad lineal al aplicar
los dos métodos de control considerados, con kG = 2, del experimento simulado donde el equipo de
robots pasa de una configuración deformada a una configuración rectangular y rotada en un espacio
3D.

(a) Control con rotaciones infinitesimales (b) Control con algoritmo de Kabsch

Figura D.12: Comparación de la variación del módulo de velocidad lineal al aplicar los dos métodos
de control considerados, con kG = 2, del experimento simulado donde el equipo de robots pasa de una
configuración deformada a una configuración rectangular y rotada en un espacio 3D.
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D.2.1. Resultados cuando no se controla la rotación

Un caso particular de este experimento es una situación en la que no se controle la

rotación. En el caso de implementar el control con el algoritmo de Kabsch, la formación

alcanza la forma, escala y posición deseadas, pero no la orientación. En cambio, al

utilizar las rotaciones infinitesimales, los resultados no son los esperados. Considerando

las mismas condiciones que en el Apartado 6.2, pero con kR = 0, la formación alcanza

un tamaño distinto al de la configuración deseada, tal como refleja la Figura D.13.

Figura D.13: Representación de la configuración de la formación al aplicar rotaciones infinitesimales,
con kR = 0, en el experimento simulado donde el equipo de robots pasa de una configuración deformada
a una configuración rectangular y rotada en un espacio 3D. Los puntos de colores son las posiciones
iniciales de los robots y los ćırculos huecos representan las posiciones finales deseadas.

Además, en la Figura D.14, al comienzo de la simulación se observa que, tanto el error

de rotación como los errores individuales de orientación en torno a cada eje, se reducen

ligeramente. Después, convergen a valores constantes durante el resto del experimento.

Los efectos ((no deseados)) que se observan en la configuración final se deben a que

la matriz R usada es una aproximación menos precisa que una matriz de rotación

verdadera, puesto que difiere bastante de la matriz identidad. En la práctica, estos

efectos se pueden evitar utilizando kR > 0 o aplicando el algoritmo de Kabsch antes

de que los robots inicien su movimiento para redefinir c.

Como ya se ha mencionado, esto solo ocurre en este caso concreto. Controlando la

rotación, la formación robótica converge correctamente a la configuración deseada.
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(a) Evolución de las variables de error (b) Errores de los tres ángulos de rotación

Figura D.14: Representación de la evolución de las variables de error y de los ángulos de rotación al
aplicar rotaciones infinitesimales, con kR = 0, en el experimento simulado donde el equipo de robots
pasa de una configuración deformada a una configuración rectangular y rotada en un espacio 3D.
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D.3. Gráficas de la simulación 6.3

En este apartado se muestran resultados complementarios de la simulación donde el

equipo de robots transporta un colchón a lo largo de un pasillo curvo en un espacio 3D.

Recordar que el experimento se ha realizado implementando el algoritmo de Kabsch y

limitando las deformaciones (kG = 5). En la Figura D.15 se puede ver el movimiento del

colchón durante la tarea, manteniendo su forma y escala originales en todo momento

hasta llegar a la configuración deseada.

t = 0 s t = 1.5 s t = 3 s

t = 4.5 s t = 6 s t = 7.5 s

t = 9 s t = 16 s

Figura D.15: Deformación de un colchón durante su transporte en simulación a lo largo de un pasillo
curvo en un espacio 3D.
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Las siguientes gráficas reflejan la evolución de las posiciones y velocidades de cada

robot durante la tarea de transporte.

Figura D.16: Representación de la variación de las coordenadas X, Y y Z de posición al aplicar el
algoritmo de Kabsch, con kG = 5, del experimento simulado donde el equipo de robots transporta un
colchón a lo largo de un pasillo curvo en un espacio 3D.

Figura D.17: Representación de la variación de las componentes X, Y y Z de velocidad lineal al aplicar
el algoritmo de Kabsch, con kG = 5, del experimento simulado donde el equipo de robots transporta
un colchón a lo largo de un pasillo curvo en un espacio 3D.

Figura D.18: Representación de la variación del módulo de velocidad lineal al aplicar el algoritmo de
Kabsch, con kG = 5, del experimento simulado donde el equipo de robots transporta un colchón a lo
largo de un pasillo curvo en un espacio 3D.
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Anexo E

Fragmentos de código

En este Anexo se recoge el script principal del algoritmo de control implementado

en los experimentos 2D. Por simplicidad, la definición de los diferentes parámetros

de cada configuración, aśı como de la forma de la configuración de referencia, se

han definido en archivos independientes (create exp parameters y create reference conf,

respectivamente). Lo mismo ocurre con el diseño de los obstáculos (create obstacles) y

la definición de los waypoints (create waypoints).

El controlador multirobot controller se describe también en un archivo individual. En

él, se ha programado el conjunto de ecuaciones de control definidas en el Caṕıtulo 3.

Puesto que los ensayos en entornos 2D se han realizado con Robotarium, en el código

se incluye la implementación en dicha plataforma.

La metodoloǵıa para ejecutar los experimentos en entornos 3D es similar. Basta con

sustituir las ecuaciones de control por las indicadas en el Caṕıtulo 5 y eliminar del

código aquellas partes que involucren a Robotarium.

1 % Mul t i robo t con t ro l in a 2D workspace with a team of un i cyc l e mobi le robo t s f o r
2 % deformable o b j e c t t ranspor t
3
4 % The goa l o f the c o n t r o l l e r i s to keep , to the ex t en t po s s i b l e , the shape
5 % of the robo t s formation on i t s way from an i n i t i a l to a de s i r ed con f i gu ra t i on
6 % with d i f f e r e n t shape , s i z e , c en t ro id and ro t a t i on wh i l e a l l ow ing l i n e a r
7 % and quadra t i c deformations .
8
9 % Author : Raquel Marcos Saavedra , February 2024

10
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
13
14 ob type = 1 ; % 1 = f o r shee t o b j e c t
15 w i t h ob s t a c l e s = 0 ; % 1 = i f the experiment has o b s t a c l e s
16 with waypoints = 0 ; % 1 = i f the experiment has waypoints
17
18 %% We de f ine the ob j ec t ’ s nodes arranged in a rec tangu la r g r i d
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19
20 nx = 7 ; % number o f nodes in x d i r e c t i on o f the g r i d
21 ny = 7 ; % number o f nodes in y d i r e c t i on o f the g r i d
22
23 sx = 2 ; % leng t h o f the o b j e c t in x d i r e c t i on ( in the graphics , i t w i l l
24 % be the ’ y ’ d i r e c t i on )
25 sy = 3 ; % leng t h o f the o b j e c t in y d i r e c t i on ( in the graphics , i t w i l l
26 % be the x d i r e c t i on )
27
28 % We need to reduce the de f ined o b j e c t f o r the Robotarium experiment because
29 % i t s working area i s sma l l e r .
30 s c a l e ob = 0 . 3 ;
31
32 % mesh of the o b j e c t : i t s shape and the l i n k s between nodes
33 omesh = create mesh (nx , ny , sx * s ca l e ob , sy * s c a l e ob ) ;
34 Pob0 = omesh . shape ’ ; % ” r e s t ” shape o f the o b j e c t ( x , y , z coord ina te s f o r each node )
35
36
37 %% We i n i t i a l i z e the model (As=Rigid=As=Pos s i b l e ) o f the deformable o b j e c t
38 % And we a l s o de f i ne the de s i r ed con f i gu ra t i on o f the team of robots , as they are
39 % at tached to the o b j e c t
40
41 % The shee t i s s imula ted in 3D, but we w i l l on ly d i s p l a y i t s p ro j e c t i on
42 % on the XY plane
43
44 handled nodes = [1 15 29 43 49 35 21 7 ] ; % the nodes o f the o b j e c t where we p lace
45 % the robo t s
46 N = length ( handled nodes ) ; % number o f robo t s ( equa l to the number
47 % of o b j e c t nodes they are a t tached to )
48 K = kron (eye (N)=(1/N)* ones (N,N) , eye ( 2 ) ) ; % cente r ing matrix 2Nx2N
49 S = [0 =1; 1 0 ] ;
50 T = kron (eye (N) , S ) ;
51
52 % We de f ine the parameters o f the i n i t i a l and de s i r ed con f i gu ra t i on s
53 % ( centro ids , s c a l e s and o r i en t a t i on s ) f o r each experiment in order to
54 % make i t e a s i e r to s e l e c t them .
55 shape = ’ d e f au l t ’ ; % shape o f the re f e r ence con f i gu ra t i on we want in the
56 % current experiment
57 c r ea t e exp paramete r s ; % execute the s c r i p t wi th the parameters d e f i n i t i o n
58
59 % We de f ine the i n i t i a l c on f i gu ra t i on fo r the team of robots , p0
60
61 % Pos i t i ons o f the robo t s (2D) with cen t ro id (0 ,0) , b e f o r e r o t a t i n g = vec to r 2Nx1
62 p00 = K * reshape (Pob0 ( 1 : 2 , handled nodes ) , [ 2*N, 1 ] ) ;
63
64 R00 = [ cos ( th0 ) =sin ( th0 ) ; sin ( th0 ) cos ( th0 ) ] ; % ro ta t i on matrix 2x2
65 R0 = kron (eye (N) , R00 ) ; % ro ta t i on matrix 2Nx2N
66
67 % I n i t i a l p o s i t i o n s o f the robo t s (2D) with cen t ro id g0 = vec to r 2Nx1
68 p0 = ( s0 * R0 * p00 ) + reshape ( g0 * ones (1 ,N) , [ 2*N, 1 ] ) ;
69
70 % Value o f 2 or 3 : the h igher the va lue the s t i f f e r the s imula ted o b j e c t
71 n i t e r s a r a p = 3 ;
72 % Create model parameters
73 arap params = cr ea t e pa rams f o r a r ap ( omesh , handled nodes , [ ] , n i t e r s a r a p ) ;
74
75 % We de f ine the re f e r ence con f i gura t ion , c
76 c r e a t e r e f e r e n c e c o n f ; % execute the s c r i p t wi th the re f e r ence con f i gu ra t i on
77 % de f i n i t i o n
78
79 % We de f ine the t a r g e t con f i gu ra t i on fo r the team of robots , pd
80 pd0 = c ; % the t a r g e t shape i s the same as the re f e r ence one ( but we w i l l
81 % sca l e i t , r o t a t e i t , t r a n s l a t e i t ) , c en t ro id (0 ,0)
82 hd0 = [ sd0*cos ( thd0 ) , sd0* sin ( thd0 ) ] ’ ; % des i r ed shape pre se rv ing
83 % trans format ion
84 Rd00 = [ cos ( thd0 ) =sin ( thd0 ) ; sin ( thd0 ) cos ( thd0 ) ] ; % ro ta t i on matrix 2x2
85 Rd0 = kron (eye (N) , Rd00 ) ; % ro ta t i on matrix 2Nx2N
86 pd = ( sd0 * Rd0 * pd0 ) ; % f i n a l ro ta t ed and sca l ed con f i gu ra t i on with cen t ro id (0 ,0)
87
88 % Target formation s ca l e and ro t a t i on . Since we have a l ready ro ta t ed and sca l ed
89 % pd when we de f ined i t above , then we can s e l e c t sd = 1 and thd = 0.
90 sd = 1 ;
91 thd = 0 ; % [ radians ]

106



92 Rd = [ cos ( thd ) =sin ( thd ) ; sin ( thd ) cos ( thd ) ] ; % ro ta t i on matrix 2x2
93 Rd = kron (eye (N) , Rd ) ; % ro ta t i on matrix 2Nx2N
94 % Target con f i gu ra t i on
95 PT = ( sd * Rd * pd) + reshape ( gd * ones (1 ,N) , [ 2*N, 1 ] ) ; % f i n a l con f i gura t ion ,
96 % cent ro id in gd
97
98 % Control terms are c a l c u l a t e d with c . As the code i s de f ined here , we can
99 % rep lace c with pd in the con t ro l terms code or do the f o l l ow i n g :

100 c = K * PT;
101
102
103 %% Waypoints d e f i n i t i o n
104
105 num waypoint = 1 ;
106 i f with waypoints == 1
107 waypoint des ign = ’ d e f au l t ’ ; % name of the waypoints des ign de f ined
108 % in crea te waypo in t s
109 [ waypoints gd , waypoints c ] = crea te waypo int s ( ob type , waypoint des ign , . . .
110 gd , c , N, p00 , K) ;
111 waypoint gd = waypoints gd ( : , 1 ) ; % cent ro id o f the f i r s t waypoint
112 waypoint c = waypoints c ( : , 1 ) ; % con f i gu ra t i on o f the f i r s t waypoint
113 else
114 waypoints gd = gd ;
115 waypoints c = c ;
116 waypoint gd = waypoints gd ;
117 waypoint c = waypoints c ;
118 end
119
120
121 %% I n i t i a l cond i t i ons o f the s imu la t ion and requ i red s imu la t ion parameters
122
123 % I n i t i a l c on f i gu ra t i on o f the o b j e c t
124 Pob = Pob0 ;
125
126 % I n i t i a l p o s i t i o n s o f the robo t s
127 p = p0 ; % p matrix 2Nx1
128
129 % I n i t i a l v e l o c i t y o f the robo t s
130 v = 0 ;
131
132 % Time parameters = The s imula ted time in seconds w i l l be n i t * dt
133 dt = 0 . 0 3 3 ; % time s t ep o f the s imu la t ion
134 n i t e r s = 4500 ; % number o f i t e r a t i o n s o f the con t ro l loop
135
136 %%%%%%%%%%%%%%%%%%%%%%%%%%%
137
138 % Gain va lue s f o r the con t ro l
139 k H = 0 . 2 ; % for moving toward shape=pre se rv ing trans format ion
140 k G = 1 ; % for moving toward a con f i gu ra t i on con s i s t en t with our deformation modes
141 k c = 0 . 1 ; % for cen t ro id t r an s l a t i o n
142 k s = 0 . 1 ; % for s c a l i n g
143 k th = 0 . 1 ; % for ro t a t i on
144
145 %%%%%%%%%%%%%%%%%%%%%%%%%%%
146
147 % Each of the f o l l ow i n g w i l l be a growing array t ha t w i l l s t o r e the va lue s o f v a r i a b l e s
148 ps = [ ] ; % pos i t i o n s
149 gammas H = [ ] ; % cos t r e l a t i v e to shape=pre se rv ing trans format ion
150 gammas G = [ ] ; % cos t r e l a t i v e to con f i gu ra t i on con s i s t en t with our deformation modes
151 hs = [ ] ; % parameters o f the opt imal shape=pre se rv ing trans format ion
152 egs = [ ] ; % cent ro id er ror s
153 e s s = [ ] ; % sca l e e r ror s
154 eths = [ ] ; % ang le e r ror s
155 dx uni s = [ ] ; % unicyc l e v e l o c i t i e s
156 vs = [ ] ; % l i n e a r v e l o c i t i e s
157 nvs = [ ] ; % l i n e a r v e l o c i t i e s norm
158
159
160 %% Obtac les d e f i n i t i o n
161 ob s t a c l e s = [ ] ;
162 ob s t a c l e d e s i g n = ’ d e f au l t ’ ; % name of the o b s t a c l e s des ign de f ined in c r e a t e o b s t a c l e s
163
164 i f wi th ob s t a c l e s == 1
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165 c r e a t e o b s t a c l e s ;
166 end
167
168
169 %% Robotarium I n i t i l i z a t i o n
170 r = Robotarium ( ’NumberOfRobots ’ , N, ’ ShowFigure ’ , true , ’ I n i t i a lC ond i t i o n s ’ , . . .
171 [ reshape (p0 , [ 2 ,N ] ) ; thr0 ] ) ;
172
173 % Projec t ion parameters
174 p r o j e c t i o n d i s t a n c e = 0 . 0 5 ;
175 pro j e c t ed gd = gd ;
176 ang l e c = zeros (1 ,N) ;
177 p r o j e c t ed c = zeros (2*N, 1 ) ;
178 p ro j e c t gd = 1 ;
179 data cur r en t . g = g0 ;
180
181 % Secur i t y d i s t ance (margin ) , robo t s w i l l s top i f the d i s t ance between
182 % them and other e lements i s < margin
183 margin = 0 . 0 2 ;
184
185 % Angular v e l o c i t y l im i t
186 a n g v e l l im i t = pi /10 ;
187
188 %%%%%%%%%%%%%%%%%%%%%%%%%%%
189
190 % We i n i t i a l i z e c o n t r o l l e r s and ba r r i e r func t i on to avoid c o l l i s i o n s
191 mu l t i r o b o t c o n t r o l l e r = c r e a t e mu l t i r o b o t c on t r o l l e r d e f mod e s ( . . .
192 ’ r e f s hap e ’ , waypoint c , ’ gd ’ , waypoint gd , ’ sd ’ , sd , . . .
193 ’ thd ’ , thd , ’ hd ’ , hd0 , ’ k H ’ , k H , ’ k G ’ , k G , . . .
194 ’ k c ’ , k c , ’ k s ’ , k s , ’ k th ’ , k th , ’ k Hd ’ , k Hd ) ;
195
196 [ s i t o un i dynamic s , u n i t o s i s t a t e s ] = c r e a t e s i t o un i mapp ing ( . . .
197 ’ Pro j e c t i onDi s tance ’ , p r o j e c t i o n d i s t a n c e ) ;
198 b a r r i e r c e r t i f i c a t e = c r e a t e u n i b a r r i e r c e r t i f i c a t e w i t h b o und a r y ( ) ;
199
200 % We a l so need to i n i t i a l i z e the c o n t r o l l e r us ing the f i n a l r e f e r ence con f i gu ra t i on
201 % in order to c a l c u l a t e the r e a l error between i n i t i a l and t a r g e t c on f i gu ra t i on s .
202 c a l c u l a t e cu r r en t pa r ame t e r s = c r e a t e mu l t i r o b o t c on t r o l l e r d e f mod e s ( . . .
203 ’ r e f s hap e ’ , c , ’ gd ’ , gd , ’ sd ’ , sd , ’ thd ’ , thd , . . .
204 ’hd ’ , hd0 , ’ k H ’ , k H , ’ k G ’ , k G , ’ k c ’ , k c , . . .
205 ’ k s ’ , k s , ’ k th ’ , k th , ’ k Hd ’ , k Hd ) ;
206
207 % We save the current i n i t i a l p o s i t i o n s o f the robo t s
208 robo t cu r r en t po s = r . g e t po s e s ( ) ; % matrix 3xN (x , y , th r o f each robot )
209 r . s tep ( ) ;
210
211
212 %% Control loop
213 for i t l o o p = 1 : n i t e r s
214
215 robo t cu r r en t po s = r . g e t po s e s ( ) ; % we save the current s t a t e s ( po s i t i on +
216 % or i en t a t i on ) o f the robo t s
217
218 % We update the de s i r ed cen t ro id f o r the c o n t r o l l e r
219 i f num waypoint < s ize ( waypoints gd , 2 )
220 i f norm( da ta cur r en t . g = waypoint gd ) < 0 .3
221 num waypoint = num waypoint + 1 ;
222 waypoint gd = waypoints gd ( : , num waypoint ) ;
223 waypoint c = waypoints c ( : , num waypoint ) ;
224 mu l t i r o b o t c o n t r o l l e r = c r e a t e mu l t i r o b o t c on t r o l l e r d e f mod e s ( . . .
225 ’ r e f s hap e ’ , waypoint c , ’ gd ’ , waypoint gd , ’ sd ’ , sd , . . .
226 ’ thd ’ , thd , ’ hd ’ , hd0 , . . .
227 ’ k H ’ , k H , ’ k G ’ , k G , ’ k c ’ , k c , ’ k s ’ , k s , . . .
228 ’ k th ’ , k th , ’ k Hd ’ , k Hd ) ;
229 end
230
231 else % We pro j e c t the t a r g e t cen t ro id to co r r e c t the f i n a l p o s i t i on error
232 d i s t an c e g = data cur r en t . g = waypoint gd ;
233 i f norm( d i s t an c e g ) > 0 .02
234 ang l e g = atan2 ( d i s t an c e g ( 2 ) , d i s t an c e g ( 1 ) ) ;
235 pro j e c t ed gd (1 ) = waypoint gd (1 ) = ( p r o j e c t i o n d i s t a n c e * cos ( ang l e g ) ) ;
236 pro j e c t ed gd (2 ) = waypoint gd (2 ) = ( p r o j e c t i o n d i s t a n c e * sin ( ang l e g ) ) ;
237
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238 mu l t i r o b o t c o n t r o l l e r = c r e a t e mu l t i r o b o t c on t r o l l e r d e f mod e s ( . . .
239 ’ r e f s hap e ’ , waypoint c , ’ gd ’ , p ro j ec ted gd , ’ sd ’ , sd , . . .
240 ’ thd ’ , thd , ’ hd ’ , hd0 , . . .
241 ’ k H ’ , k H , ’ k G ’ , k G , ’ k c ’ , k c , ’ k s ’ , k s , . . .
242 ’ k th ’ , k th , ’ k Hd ’ , k Hd ) ;
243 end
244
245 end
246
247 %%%%%%%%%%%%%%%%%%%%%%%%%%%
248
249 % MULTIROBOT CONTROL
250
251 s i s t a t e s = u n i t o s i s t a t e s ( r obo t cu r r en t po s ) ; % matrix 2xN = Pro jec t s the
252 % s ing l e=i n t e g r a t o r system a d i s t ance
253 % in f ron t o f the un i cyc l e one
254 s i s t a t e s = reshape ( s i s t a t e s , [ 2*N, 1 ] ) ; % matrix 2Nx1
255
256 [ v , data ] = mu l t i r o b o t c o n t r o l l e r ( s i s t a t e s ) ; % v = matrix 2Nx1
257 v = reshape (v , [ 2 ,N ] ) ; % v = matrix 2xN
258
259 % We execute the c o n t r o l l e r again j u s t to c a l c u l a t e the error v a r i a b l e s with
260 % respec t to the t a r g e t con f i gu ra t i on and with the ac tua l robot po s i t i on s ,
261 % not the p ro j e c t a t e d ones . Ve loc i t y va lue s are u s e l e s s here .
262 [ v u s e l e s s , da ta cur r en t ] = ca l cu l a t e cu r r en t pa r ame t e r s ( . . .
263 reshape ( r obo t cu r r en t po s ( 1 : 2 , : ) , [ 2*N, 1 ] ) ) ;
264
265 % To stop each robot when i t i s near i t s f i n a l p o s i t i on
266 d i s t a n c e t o t a r g e t = reshape (PT, [ 2 ,N] ) = r obo t cu r r en t po s ( 1 : 2 , : ) ;
267
268 for i = 1 :N
269 i f (norm( d i s t a n c e t o t a r g e t ( 1 : 2 , i ) ) <= margin ) & (norm( d i s t an c e g ) < 0 .005 )
270 v ( : , i ) = zeros ( 2 , 1 ) ;
271 end
272
273 end
274
275
276 % We compute the norm of the v e l o c i t y
277 for i = 1 :N
278 nv ( i ) = norm( v ( : , i ) ) ; % we s t o r e the norms o f v e l o c i t y
279 end
280
281 dx uni = s i t o un i dynami c s (v , r obo t cu r r en t po s ) ; % we adapt the v e l o c i t y to one
282 % su i t a b l e f o r unycyc le dinamics
283 dx uni ( 2 , : ) = an g v e l l im i t * dx uni ( 2 , : ) / (pi /2 ) ;
284
285 % We apply the ba r r i e r func t i on to avoid c o l l i s i o n s
286 dx uni = b a r r i e r c e r t i f i c a t e ( dx uni , r obot cu r r en t pos , o b s t a c l e s ) ;
287
288 r . s e t v e l o c i t i e s ( 1 :N, dx uni ) ;
289 r . s tep ( ) ;
290
291 %%%%%%%%%%%%%%%%%%%%%%%%%%%
292
293 % We s to r e current p o s i t i o n s
294 ps = [ ps ; r obo t cu r r en t po s ( 1 : 2 , : ) ] ;
295
296 % We s to r e current con t ro l e r ror s
297 gammas H = [ gammas H ; data cur r en t . gamma H ] ;
298 gammas G = [ gammas G ; data cur r en t . gamma G ] ;
299 egs = [ egs ; norm( da ta cur r en t . g = gd ) ] ;
300 e s s = [ e s s ; da ta cur r en t . s = sd ] ;
301 eths = [ eths ; abs ( da ta cur r en t . th = thd ) ] ;
302 dx uni s = [ dx uni s ; dx uni ] ;
303 vs = [ vs ; v ] ;
304 nvs = [ nvs ; nv ] ;
305
306 end
307
308 r . debug ( ) ;
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Anexo F

Lista de v́ıdeos

Los v́ıdeos de todos los experimentos mostrados en este trabajo se han publicado en

YouTube, cuyos enlaces se muestran a continuación. Se puede acceder directamente

a la lista de reproducción completa en: https://youtube.com/playlist?list=

PLjm-KzNA87Cr5kKu05J4Xq5I8yQy9On7E&si=iK 4s6U0UcPbFV1q

F.1. Vı́deo de transporte en entorno 2D sin

obstáculos

En este v́ıdeo se comparan los dos casos considerados en el Apartado 4.2, donde el

equipo de robots pasa de una configuración puramente doblada a una configuración

rectangular. Se aprecian las diferentes deformaciones que sufre el objeto en cada caso.

Enlace: https://youtu.be/TOWJh2FlV6k

Figura F.1: Vı́deo de transporte de objeto deformable en entorno 2D libre de obstáculos.
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F.2. Vı́deo de transporte en entorno 2D con

obstáculo

Se comparan los dos casos considerados en el Apartado 4.3, donde el equipo de robots

debe esquivar un obstáculo circular para llegar hasta la configuración final deseada.

Enlace: https://youtu.be/WBm3PmGxnnc

Figura F.2: Vı́deo de transporte de objeto deformable en entorno 2D con obstáculo circular.

F.2.1. Vı́deo de conservación de forma durante el transporte

Se muestra el efecto en el transporte de un objeto deformable cuando se quiere mantener

su forma original durante toda la tarea, tal como se ha comentado en el Anexo C.2.1.

Enlace: https://youtu.be/ yszU12wJSw

Figura F.3: Vı́deo de conservación de forma durante el transporte de objeto deformable en entorno
2D con obstáculo circular.
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F.3. Vı́deo de transporte en entorno 2D por pasillo

curvo

Se comparan los tres casos considerados en el Apartado 4.4, donde el equipo de robots

recorre un pasillo curvo en un entorno 2D.

F.3.1. Vı́deo de simulación

Simulaciones de los tres casos. Enlace: https://youtu.be/uKMtPEytEL4

Figura F.4: Vı́deo de simulación de transporte de objeto deformable en entorno 2D por pasillo curvo.

F.3.2. Vı́deo con robots reales

Ensayos reales en Robotarium de los tres casos. Enlace: https://youtu.be/

dE9uZ2wGbb4

Figura F.5: Vı́deo de experimento real de transporte de objeto deformable en entorno 2D por pasillo
curvo.
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F.4. Vı́deo de transporte en entorno 2D con

diferente número de robots

Se comparan las tres situaciones del experimento del Anexo C.4,donde se transporte

un objeto deformable desde una configuración deformada hasta una configuración

rectangular en un entorno 2D. Enlace: https://youtu.be/1w7Od9VmXeU

Figura F.6: Vı́deo de experimento de transporte de objeto deformable en entorno 2D con diferente
número de robots.

F.5. Vı́deo de transporte en entorno 3D sin

rotación

Se muestra la comparación en la deformación del objeto del experimento del Apartado

6.1 al aplicar un control con rotaciones infinitesimales y un control con el algoritmo de

Kabsch. Enlace: https://youtu.be/44VsutZjQeE

Figura F.7: Vı́deo de experimento de transporte de objeto deformable en entorno 3D sin rotación.
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F.6. Vı́deo de transporte en entorno 3D con

rotación

Se compara el movimiento realizado por los robots durante el transporte de un

objeto deformable en el experimento del Apartado 6.2. Enlace: https://youtu.be/

gvfp5jWNhmI

Figura F.8: Vı́deo de experimento de transporte de objeto deformable en entorno 3D con rotación.

F.7. Vı́deo de transporte de objeto deformable

volumétrico

Se muestra la deformación que sufre un colchón en su transporte en el experimento del

Apartado 6.3. Enlace: https://youtu.be/HCGDKxh5TnQ

Figura F.9: Vı́deo de experimento de transporte de objeto deformable volumétrico.

115

https://youtu.be/gvfp5jWNhmI
https://youtu.be/gvfp5jWNhmI
https://youtu.be/HCGDKxh5TnQ

	Introducción
	Objetivos
	Contribuciones
	Planificación
	Estructura de la memoria
	Nomenclatura

	Estado de la materia
	Control de forma de equipos multi-robot
	Modelos basados en modos de deformación
	Robotarium

	Control multi-robot con modos de deformación en entornos 2D
	Control de la deformación
	Control de forma
	Control de escala

	Control de traslación y control de rotación
	Métricas de error

	Evaluación experimental en entornos 2D
	Implementación en Robotarium
	Transporte de objeto deformable en entorno 2D sin obstáculos
	Transporte de objeto deformable en entorno 2D con obstáculo
	Transporte de objeto deformable en entorno 2D por pasillo curvo

	Extensión del controlador a entornos 3D
	Control con rotaciones infinitesimales
	Control de forma
	Control de escala, posición y orientación

	Control con algoritmo de Kabsch
	Control de forma
	Control de escala, posición y orientación

	Métricas de error en entornos 3D

	Evaluación experimental en entornos 3D
	Transporte de objeto deformable en entorno 3D sin rotación
	Transporte de objeto deformable en entorno 3D con rotación
	Transporte de objeto deformable volumétrico

	Conclusiones y trabajo futuro
	Conclusiones alcanzadas
	Trabajo futuro

	Bibliografía
	Anexos
	Workshop 2024
	Ejemplos de deformaciones alcanzables
	Resultados gráficos en entornos 2D
	Gráficas de la simulación 4.2
	Gráficas de la simulación 4.3
	Conservación de forma durante el transporte

	Gráficas del experimento 4.4
	Resultados obtenidos en simulación
	Resultados obtenidos con robots reales
	Justificación de la necesidad de waypoints

	Transporte con diferente número de robots
	Demostración de control de escala desacoplado


	Resultados gráficos en entornos 3D
	Gráficas de la simulación 6.1
	Resultados cuando no se controlan las deformaciones

	Gráficas de la simulación 6.2
	Resultados cuando no se controla la rotación

	Gráficas de la simulación 6.3

	Fragmentos de código
	Lista de vídeos
	Vídeo de transporte en entorno 2D sin obstáculos
	Vídeo de transporte en entorno 2D con obstáculo
	Vídeo de conservación de forma durante el transporte

	Vídeo de transporte en entorno 2D por pasillo curvo
	Vídeo de simulación
	Vídeo con robots reales

	Vídeo de transporte en entorno 2D con diferente número de robots
	Vídeo de transporte en entorno 3D sin rotación
	Vídeo de transporte en entorno 3D con rotación
	Vídeo de transporte de objeto deformable volumétrico


