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Entroṕıas de Rényi
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Máster en F́ısica y Tecnoloǵıas F́ısicas
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Índice

1 Introducción 1
1.1 Operador densidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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1. Introducción

En una contestación [1] al conocido art́ıculo de Einstein, Podolski y Rosen (EPR) [2],
Schrödinger acuña el término entrelazamiento para referirse a aquellas correlaciones de
naturaleza exclusivamente cuántica que pueden darse entre sistemas f́ısicos. Estas corre-
laciones hab́ıan sido empleadas por EPR para tratar de argumentar que la Mecánica
Cuántica da una descripción incompleta de la realidad f́ısica y la necesidad de una teoŕıa
que superara sus caracteŕısticas intŕınsecamente indeterministas, dando pie a las llama-
das teoŕıas de variables ocultas. En su respuesta a EPR, Schrödinger señala que el en-
trelazamiento no es una más de las propiedades de la Mecánica Cuántica sino su rasgo
fundamental pues carece de análogo clásico. En este sentido, Schrödinger reconoce en el
entrelazamiento el reflejo de que el conocimiento completo del estado de un sistema cuánti-
co no implica el total conocimiento del estado de las partes que lo forman, a diferencia de
lo que sucede en los sistemas clásicos. Más adelante, Bell [3] encuentra que en las teoŕıas
de variables ocultas locales existen ligaduras sobre las correlaciones de los observables
(desigualdades de Bell), que son violadas por los estados entrelazados. La preparación de
estados entrelazados en el laboratorio y la comprobación experimental de la existencia
de estas ligaduras inclinaŕıa la balanza a favor de la teoŕıa cuántica convencional frente
a las variables ocultas locales. Es el grupo de Aspect [4] quien da la primera prueba ex-
perimental convincente de la violación de las mencionadas desigualdades. Experimentos
posteriores han vuelto a confirmar la existencia de estados entrelazados y la validez de las
predicciones de la Mecánica Cuántica.

En las últimas décadas, el interés por comprender el entrelazamiento no ha dejado de au-
mentar. Por un lado, parece ser uno de los ingredientes necesarios a la hora de desarrollar
ordenadores cuánticos y, en general, para la realización de tareas clásicamente imposibles.
Este tipo de investigaciones han originado un nuevo campo de trabajo denominado in-
formación cuántica. Por otro, resulta clave en distintos ámbitos y en la comprensión de
algunos fenómenos f́ısicos: decoherencia [5], sistemas en no equilibrio [6], transiciones de
fase [7, 8], superconductividad [9], f́ısica de agujeros negros [10], teoŕıas de campos [11, 12],
principio holográfico [13]... En la actualidad, uno de los aspectos que más interés suscita
es la forma de cuantificar el grado de entrelazamiento entre sistemas. Se han propuesto
diferentes medidas, cada una adecuada a determinandas circunstancias [14]. En el caso
de un sistema en un estado puro y dividido en dos partes, una de las magnitudes más
apropiadas para medir las correlaciones cuánticas entre ambas es la entroṕıa de Rényi del
estado reducido de una de ellas.

Las cadenas unidimensionales de fermiones y de spines resultan ser sistemas muy atracti-
vos donde analizar esta medida. Por un lado, porque uno de los soportes más prometedores
para abordar la construcción de un ordenador cuántico escalable es el de iones atrapados
[15]. Actualmente ya se ha conseguido mantener alineados y entrelazados más de una
docena de iones (usualmente de elementos alcalinotérreos o de metales de transición como
Zn+, Hg+, Cd+ o Yb+). Los modelos matemáticos que describen estas alineaciones de
iones, cada uno representando un qubit, son las cadenas de fermiones o de spines. Por
otra parte, porque existen distintos métodos anaĺıticos sencillos y algoritmos numéricos
eficientes para obtener la entroṕıa de Rényi en estos modelos. Numéricamente, la comple-
jidad de calcularla aumenta exponencialmente con el tamaño del subsistema considerado.
No obstante, si el estado de la cadena cumple la propiedad de descomposición de Wick es
posible reducirla a una dependencia polinomial, siendo suficientes las correlaciones para
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2 1.1. Operador densidad

obtenerla [8, 16]. En ciertos caso, si el Hamiltoniano es además invariante bajo transla-
ciones, la matriz de correlaciones de un intervalo de la cadena es Toeplitz. Este hecho
permite llegar a una expansión de la entroṕıa en función de su longitud para cualquiera
de los autoestados de la enerǵıa [17, 18]. Desgraciadamente, las correlaciones de varios
intervalos disjuntos no forman una matriz de Toeplitz. Sin embargo, puede conjeturarse
una generalización de la expresión de la entroṕıa de Rényi para ese caso que verificamos
numéricamente en [19]. Existen más aproximaciones a esta cuestión. Por ejemplo, si el
Hamiltoniano es local (contiene únicamente interacciones de corto alcance) y cŕıtico (el
conjunto de sus autoestados forma un continuo), pueden aprovecharse técnicas de la teoŕıa
de campos conformes para hallar su expresión en el estado fundamental [11, 20]. Éstas
pueden extenderse al caso de varios intervalos [21] y a ciertos estados excitados [22].

En esta memoria aplicaremos estos métodos para evaluar la entroṕıa de Rényi de un
intervalo en distintas cadenas de fermiones y spines que se encuentran a una cierta tem-
peratura. En este caso, su estado ya no es puro sino una mezcla estad́ıstica por lo que a
las correlaciones cuánticas hay que añadir las de origen térmico. En [23] se analiza este
mismo problema desde otro punto de vista.

En los párrafos anteriores hemos ido introduciendo ciertos términos técnicos que es ne-
cesario definir de forma precisa. Por ello, esta primera sección la dedicamos a introducir
los conceptos generales de Mecánica Cuántica necesarios para trabajar con la entroṕıa de
Rényi. También veremos los resultados genéricos que la invariancia conforme permite ob-
tener e introduciremos de manera general las cadenas de fermiones y de spines, aśı como la
estrecha relación que existe entre ambas. A continuación, calcularemos constructivamente
la entroṕıa de Rényi en distintas cadenas; es decir, los resultados que obtengamos en el
primer modelo, cadena de fermiones homogénea y local (sección 2), nos permitirán calcu-
lar esta magnitud en escaleras de fermiones (sección 3) y en el modelo de Ising cuántico
(sección 4) .

1.1 Operador densidad

En general, el estado de un sistema cuántico puede ser puro o mezcla. El primer caso
corresponde a un vector normalizado |ψ〉 del espacio de estados H del sistema. El segundo
consiste en una colectividad estad́ıstica de estados puros {|ψi〉}Qi=1 de manera que si {λi}Qi=1

es el conjunto de probabilidades de encontrarse en cada uno de ellos, el operador densidad

ρ =

Q∑
i=1

λi |ψi〉 〈ψi|

caracteriza dicho estado. Este operador también permite dar cuenta del estado puro |ψ〉,
para el cual la expresión anterior se reduce a ρ = |ψ〉 〈ψ| .

El operador densidad se caracteriza por ser hermı́tico (ρ† = ρ), de traza unidad (Tr ρ = 1)
y semidefinido positivo (sus autovalores son no negativos). Si corresponde a un estado pu-
ro es un proyector; es decir, ρ2 = ρ y entonces Tr ρ2 = 1. Por el contrario, para un estado
mezcla ρ2 6= ρ que, unido al hecho de que es semidefinido positivo, implica Tr ρ2 < 1. Esta
propiedad permite discernir la pureza de ρ.
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Si O es un observable de nuestro sistema, su valor esperado 〈O〉 se obtiene a partir de ρ
a través de

〈O〉 = Tr(ρO).

Cuando ρ = |ψ〉 〈ψ|, la expresión anterior puede reexpresarse como 〈O〉 = 〈ψ|O |ψ〉 .

En esta memoria divideremos los sistemas considerados en dos subsistemas X e Y de
manera que el espacio de estados total H puede escribirse como el producto tensorial
H = HX ⊗ HY siendo HX y HY los espacios de estados de X e Y respectivamente. El
estado de X está dado por la matriz densidad reducida

ρX = TrY ρ,

donde TrY es la traza parcial al subsistema Y , que implica sumar a los estados corres-
pondientes a Y . Es decir, si {|Xj〉} e {|Yj〉} son bases de HX y HY respectivamente, los
elementos de matriz de ρX son

(ρX)nm =
∑
j

(〈Xn| ⊗ 〈Yj|) ρ (|Xm〉 ⊗ |Yj〉) .

De manera análoga, el estado de Y queda caracterizado por ρY = TrX ρ.

1.2 Entroṕıa de Rényi

Se denomina entroṕıa de Rényi de la matriz densidad reducida a

Sα(X) =
1

1− α log Tr ραX ,

donde α > 1. Por definición, Sα(X) ≥ 0. Además, si d es la dimension de HX entonces
el máximo valor que puede alcanzar Sα(X) es log d. En el ĺımite α → 1 obtenemos la
entroṕıa de von Neumann,

S1(X) = −Tr(ρX log ρX).

Para un estado puro, esta magnitud cuantifica el grado de entrelazamiento existente entre
X e Y . Decimos que ambas partes se encuentran entrelazadas si el estado total |ψ〉 del
sistema no puede factorizarse en el producto tensorial del estado de cada subsistema; es
decir,

|ψ〉 6= |X〉 ⊗ |Y 〉 ,
de manera que ρX y ρY son estados mezcla y, por tanto, Sα(X) = Sα(Y ) > 0. En caso
contrario, el sistema es separable, ρX y ρY son estado puros (ρX = |X〉 〈X|, ρY = |Y 〉 〈Y |),
por lo que Sα(X) = Sα(Y ) = 0.

Para un estado mezcla, la noción de entrelazamiento es menos clara y es necesario un
criterio más general de separabilidad (como concepto opuesto a entrelazamiento). En este
caso, la entroṕıa de Rényi de la matriz densidad reducida no es única, Sα(X) 6= Sα(Y ).

Como hemos dicho al inicio, aqúı estamos interesados en analizar el comportamiento
de Sα(X) cuando el sistema se encuentra a una cierta temperatura 1/β (en unidades de
la inversa de la constante de Boltzmann). Su estado es entonces una mezcla estad́ıstica
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de los autoestados {|ϕi〉} de su Hamiltoniano H cada uno con una probabilidad {e−βEi}
(colectividad canónica o estado de Gibbs) siendo Ei la enerǵıa de |ϕi〉. Por tanto,

ρ =

∑
i e
−βEi |ϕi〉 〈ϕi|∑
i e
−βEi

,

es decir,

ρ = Z−1e−βH , (1.1)

donde Z = Tr e−βH es la función de partición. Ahora Sα(X) cuantifica tanto las correla-
ciones cuánticas como térmicas existentes entre X e Y .

1.3 Entroṕıa de Rényi y teoŕıa de campos conforme

La función de partición de un sistema estad́ıstico unidimensional es equivalente al pro-
pagador de una teoŕıa de campos definida sobre un espacio-tiempo bidimensional (una
dimensión espacial+una dimensión temporal). En particular, a un sistema cuyo Hamilto-
niano H es local y cŕıtico le corresponde una teoŕıa de campos invariante bajo transfor-
maciones conformes; es decir, aquellas que preservan ángulos pero no distancias y entre
las que se incluyen translaciones, rotaciones y reescalados. Aprovechando la simetŕıa con-
forme de la teoŕıa de campos subyacente es posible determinar la entroṕıa de Rényi de un
subsistema. En particular, si X es un intervalo de longitud L y se toma el ĺımite termo-
dinámico del sistema, Holzhey, Larsen y Wilczek [20] y Calabrese y Cardy [11] obtienen
que en el estado fundamental (temperatura cero)

SGSα (X) =
α + 1

α

c

6
logL+ Cα, (1.2)

donde c es la denominada carga central, un parámetro que da el número de part́ıculas sin
masa de la correspondiente teoŕıa de campos conforme.

A partir de este resultado y utilizando también la simetŕıa conforme, puede encontrarse
una expresión para Sα(X) a una temperatura finita 1/β. La clave a la hora de emplear es-
tas técnicas es observar que existe una clara analoǵıa entre el estado térmico ρ = Z−1e−βH

y el operador evolución temporal U(t) = e−itH si efectuamos el cambio it 7→ τ (rotación
de Wick) con τ ∈ [0, β]. El operador U(t) da el propagador de la teoŕıa: la amplitud
de probabilidad de que el sistema evolucione de un cierto estado a otro, transcurrido
un intervalo t de tiempo. En el formalismo de la integral de camino, dicha amplitud de
probabilidad puede escribirse como la suma sobre todas las posibles configuraciones del
sistema que llevan de un estado a otro. En teoŕıa de campos, dicha suma está defini-
da sobre el plano formado por el espacio-tiempo (minkowskiano). En base a la analoǵıa
entre el operador evolución temporal y el estado de Gibbs, los elementos de matriz de
este último pueden también escribirse como una integral de caminos definida sobre una
banda del espacio-tiempo (eucĺıdeo) de anchura β. De esta forma, ρX se obtiene al unir
los extremos de dicha banda (que corresponden con τ = 0 y τ = β) salvo aquellos puntos
del espacio que pertenecen a X, obteniendo el cilindro de radio β/(2π) de la figura 1.1.
A temperatura nula, β → ∞, dicho cilindro es un plano. En [11], Calabrese y Cardy
determinan cómo cambia la entroṕıa (1.2) al efectuar una transformación conforme sobre
los puntos del plano. En particular, la aplicación exp(2πz/β) lleva los puntos z del plano a
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un cilindro de radio β/(2π), que corresponde a un sistema a temperatura 1/β. Al efectuar
dicha transformación sobre (1.2) se obtiene [11, 24],

Sα(X) =
α + 1

α

c

6
log

[
β

π
sinh

(
πL

β

)]
+ C ′α. (1.3)

Cuando L� β recuperamos la expresión (1.2). Por el contrario, cuando L� β tenemos
que

Sα(X) =
α + 1

α

c

6

πL

β
+
α + 1

α

c

6
log

(
β

2π

)
+ C ′α. (1.4)
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ρX = TrY ρ
ρ = Z−1e−βH

β

Figura 1.1: Los elementos de matriz de ρ = Z−1e−βH están definidos sobre una banda de anchura
β del espacio-tiempo eucĺıdeo (x, τ) de la teoŕıa de campos subyacente. La zona rayada verticalmente
corresponde a los puntos del intervalo X elegido. Los elementos de ρX se obtienen al unir los bordes de
la banda salvo aquellos puntos que pertenecen a X.

1.4 Cadenas de fermiones y de spines

En esta memoria vamos a trabajar con cadenas de fermiones y de spines. Ambos son
sistemas cuánticos constituidos por una red unidimensional de N puntos o sites cuyo
espacio de estados es C2, de manera que el total H es

H = C2 ⊗ · · · ⊗ C2 = C2N .

Dividiremos estos sistemas en dos partes X, formada por L sites contiguos, e Y , que
contiene N − L sites, y analizaremos su entroṕıa de Rényi Sα(X) para L grande a una
cierta temperatura 1/β; es decir, cuando ρ = Z−1e−βH , donde H es el Hamiltoniano, que
caracteriza las interacciones entre los distintos sites. De acuerdo a esta división, H puede
escribirse como

H = HX ⊗HY ,

donde
HX = C2 ⊗ · · · ⊗ C2 = C2L , HY = C2N−L

.

Diremos que el sistema es una cadena de fermiones si sobre cada site n definimos los
operadores fermiónicos de creación y aniquilación an, a†n que satisfacen las reglas canónicas
de anticonmutación

{a†n, am} = δnm, {an, am} = {a†n, a†m} = 0, n,m = 1, . . . , N, (1.5)
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donde δnm es la delta de Kronecker. Por otra parte, se tratará de una cadena de spines si
sobre cada site n definimos una variable de spin 1/2 a través de los operadores de Pauli
σµn , con µ = x, y, z, que siguen las reglas de conmutación

[σµn, σ
ν
m] = 2iδnm

∑
τ=x,y,z

εµντστn, µ, ν = x, y, z, (1.6)

siendo εµντ el śımbolo totalmente antisimétrico de Levi-Civita, y las relaciones de anti-
conmutación

{σµn, σνn} = 2δµν . (1.7)

Existe una estrecha relación entre las cadenas de fermiones y de spines. Los operadores
escalera sobre cada site de una cadena de spines

σ+
n =

1

2
(σxn + iσyn), σ−n =

1

2
(σxn − iσyn), (1.8)

presentan reglas de anticonmutación,

{σ+
n , σ

−
n } = 1, {σ+

n , σ
+
n } = {σ−n , σ−n } = 0,

análogas a las de los operadores an y a†n sobre el site n. No obstante, las reglas de anticon-
mutación fermiónicas involucran, en general, operadores que actúan sobre distintos sites
de la cadena. Como el conmutador de los operadores de Pauli sobre dos sites distintos es
nulo, [σµn, σ

ν
m] = 0, entonces {σµn, σνm} = 2σµnσ

ν
m. Por tanto,

{σ+
n , σ

−
m} = 2σ+

n σ
−
m, {σ+

n , σ
+
m} = 2σ+

n σ
+
m, {σ−n , σ−m} = 2σ−n σ

−
m.

Es decir, los operadores escalera sobre distintos sites no siguen las reglas de anticonmu-
tación de los operadores fermiónicos. De hecho, sus conmutadores,

[σ+
n , σ

−
m] = [σ+

n , σ
+
m] = [σ−n , σ

−
m] = 0.

son semejantes a los de los operadores bosónicos de creación y aniquilación. En definitiva,
no podemos identificar directamente los operadores escalera con operadores fermiónicos o
bosónicos. No obstante, si introducimos un cierto factor no local, podemos definir a partir
de ellos un conjunto de operadores que śı satisfacen las reglas (1.5):

an :=
n−1∏
j=1

(−σzj )σ−n , a†n :=
n−1∏
j=1

(−σzj )σ+
n . (1.9)

Esta relación entre operadores de 1/2-spin y operadores fermiónicos se denomina trans-
formación de Jordan-Wigner [25]. Además, teniendo en cuenta la regla [σ+

n , σ
−
n ] = 2σzn,

σzn = a†nan −
1

2
.

Observamos que
a†nan = σ+

n σ
−
n , (1.10)

por lo que el número de a-fermiones es igual al número de 1/2-spines cuya componente
z es +1/2. La transformación de Jordan-Wigner establece una equivalencia entre sistemas
de fermiones y de spines que, en general, permite extender inmediatamente las propiedades
que conozcamos de uno de los dos sistemas al otro; por ejemplo, a la hora de evaluar su
espectro de enerǵıa o la entroṕıa de Rényi de un intervalo de sites contiguos.



2. Cadenas homogéneas de fermiones

Comencemos considerando una cadena de fermiones cuyas interacciones están dadas por
un Hamiltoniano homogéneo (es decir, invariante bajo translaciones) de la forma,

Hferm =
N∑
n=1

N/2∑
l=1

Jla
†
nan+l + h.c., (2.1)

donde h.c. denota hermı́tico conjugado. Tomaremos que an+N ≡ an y admitiremos
que las constantes de acoplo Jl tomen valores complejos. Se dice además que este Ha-
miltoniano es libre puesto que existe una transformación que permite reexpresarlo en
términos de otros operadores fermiónicos que se encuentran desacoplados. En dicha base
el Hamiltoniano es diagonal. En nuestro caso, debido a su invariancia translacional basta
una transformación de Fourier discreta para diagonalizarlo. En efecto, introduciendo los
operadores fermiónicos

bk =
1√
N

N∑
n=1

eiθknan; θk =
2πk

N
; k = −N

2
, . . . ,

N

2
− 1, (2.2)

y sus adjuntos

b†k =
1√
N

N∑
n=1

e−iθkna†n,

nuestro Hamiltoniano queda expresado expĺıcitamente en teŕminos de fermiones libres

Hferm =

N/2−1∑
k=−N/2

Λkb
†
kbk.

En este caso, la relación de dispersión es

Λk =

N/2∑
l=1

Jle
iθkl + c.c., (2.3)

donde c.c. denota complejo conjugado. Los autoestados de este Hamiltoniano son los
determinantes de Slater,

|ΨK〉 =
∏
k∈K

b†k |0〉 ,

donde |0〉 representa el vaćıo, es decir bk |0〉 = 0 ∀k, y K ⊂ {−N/2, . . . , N/2 − 1} es el
subconjunto de modos k ocupados en |ΨK〉. De esta forma,

Hferm |ΨK〉 = EK |ΨK〉 ,

siendo EK =
∑

k∈K Λk la enerǵıa del estado |ΨK〉. El estado fundamental de Hferm es

|GS〉 =
∏

Λk<0

b†k |0〉 .

La entroṕıa de Rényi de un intervalo es bien conocida para los estados |ΨK〉. Inicial-
mente, Jin y Korepin [17] la calcularon para |GS〉 mediante el teorema de Fisher-Hartwig
para matrices de Toeplitz. En [18] extendemos este resultado a cualquier autoestado de
la enerǵıa. Aqúı aplicaremos dicho teorema en el estado de Gibbs.

7



8 2.1. Entroṕıa y matriz de correlaciones

2.1 Entroṕıa y matriz de correlaciones

En principio, si queremos calcular Sα(X) necesitamos obtener el espectro de autovalores
de ρX , cuya dimensión es 2L. En consecuencia, para L suficientemente grandes su diago-
nalización es, en general, inviable; aún empleando métodos numéricos. No obstante, si el
estado de la cadena satisface la propiedad de descomposición de Wick es posible reducir
la complejidad del cómputo de Sα(X). Esta propiedad consiste en que las funciones de
correlación de 2J sites pueden expresarse en términos de las correlaciones de las posibles
parejas; es decir,

Tr(ρd1 . . . d2J) =
1

J !

∑
σ∈S′2J

J∏
j=1

(−1)|σ|Tr(ρdσ(2j−1)dσ(j)) (2.4)

donde dl es una combinación lineal dl = αla
†
l + βlal,

S ′2J = {σ ∈ S2J |σ(2j − 1) < σ(2j), j = 1 . . . J}

es el conjunto de permutaciones que preserva el orden en cada par y |σ| es la signatura
de la permutacion σ. Lo interesante de que un estado de una cadena fermiónica cum-
pla esta propiedad es que permite construir ρ a partir de la matrices de correlaciones
Cnm = Tr(ρa†nam) y Fnm = Tr(ρanam)[8, 16]. Además, como ρX y ρY heredan la propie-
dad de Wick, también pueden construirse a partir de la restricción de C y F al subsistema
en cuestión.

El estado térmico del Hamiltoniano (2.1), ρferm = Z−1e−βHferm , verifica la descomposi-
ción de Wick. En ese caso, como Hferm no posee términos del tipo anam y a†na

†
m, tenemos

que Fnm = 0 mientras que

Cnm =
1

N

∑
k

eiθk(n−m)

eβΛk + 1
. (2.5)

Si escribimos esta expresión en forma matricial,

C = ΘDΘ†,

donde (Θ)kn = eiθkn/
√
N y (D)kk′ = (eβΛk + 1)−1δkk′ . Dado que Θ es unitaria, los au-

tovalores µk de la matriz C son iguales a los de la matriz D, que ya es diagonal. Por
tanto,

µk = (eβΛk + 1)−1, (2.6)

y, de esta forma, podemos determinar ρferm a partir de la matriz de correlaciones C. La
base de esta idea es que el estado térmico cumple el teorema de Wick, propiedad que
conservan ρX y ρY que, por tanto, pueden construirse a partir de C restringida a X e Y
respectivamente. Empleando la expresión (2.6), encontramos

Tr(ραferm) =
∏
k

1 + e−αβΛk

(1 + e−βΛk)α
=
∏
k

[(1− µk)α + µαk ] .

De esta forma,

Sα(ρferm) =
1

1− α
∑
k

log [(1− µk)α + µαk ] ,



2. Cadenas homogéneas de fermiones 9

y para α→ 1 tenemos la entroṕıa de von Neumann

S1(ρferm) = −
∑
k

[(1− µk) log(1− µk) + µk log µk] .

Si denotamos por CX la restricción de C al subsistema X, su entroṕıa de Rényi es

Sα(X) =
1

1− α Tr log [(I − CX)α + Cα
X ] , (2.7)

y cuando α→ 1

S1(X) = −Tr [(I − CX) log(I − CX) + CX logCX ] .

2.2 Cadenas locales: entroṕıa y matrices de Toeplitz

Los elementos de matriz Cnm (2.5) únicamente dependen de la diferencia n−m. Es decir,
todos los elementos de cada subdiagonal paralela a la diagonal principal de dicha matriz
son iguales. Las matrices que satisfacen esta caracteŕıstica se denominan matrices de Toe-
plitz. Esta propiedad es heredada por cualquier submatriz CX obtenida de la restricción a
un subsistema X constituido por un único intervalo de sites contiguos. Sin embargo, esto
no se cumple si tomamos un subsistema formado por sites no adyacentes. En la figura 2.1
representamos ambos casos.
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Figura 2.1: La matriz A es una matriz de Toeplitz: todos los elementos de cada subdiagonal paralela a la
principal, representadas por las bandas rayadas, son iguales. La matriz B es una matriz por bloques en
el que cada uno de ellos es una matriz de Toeplitz.

En esta sección consideraremos subsistemas similares a la situación expuesta en A en
los que CX es una matriz de Toeplitz. Aprovecharemos esta propiedad para obtener una
expansión de la entroṕıa de X con su longitud L en el ĺımite termodinámico N → ∞
cuando el Hamiltoniano (2.1) es local ; es decir, sus acoplos Jl decaen rápidamente con l,

lim
l→∞

Jll
γ = 0, ∀γ ∈ R.

En el ĺımite termodinámico podemos efectuar el paso al continuo θk = 2πk/N → θ ∈
[−π, π] de manera que la relación de dispersión (2.3) para un Hamiltoniano local,

Λ(θ) =
∞∑
l=1

Jle
iθl + c.c.,
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es una función periódica, continua y suave. Si los acoplos son tales que Λ(θ) nunca se
anula diremos que la cadena es no cŕıtica. Si, por el contrario, tiene un número par ν de
ceros en los que cambia de signo, consideraremos que es cŕıtica.

Si introducimos la matriz VX = 2CX − I, que también es Toeplitz,

Vnm = − 1

N

∑
k

tanh

(
βΛk

2

)
eiθk(n−m),

la expresión (2.7) queda de la forma

Sα(X) =
1

1− α Tr log

[(
I + VX

2

)α
+

(
1− VX

2

)α]
. (2.8)

En el ĺımite termodinámico, podemos reemplazar en los elementos Vnm la suma discreta
por una integral tal que

Vnm = − 1

2π

∫ π

−π
tanh

(
βΛ(θ)

2

)
eiθ(n−m)dθ.

Si aplicamos ahora el teorema de los residuos de Cauchy en (2.8), escribimos Sα(X) en
términos de la integral de contorno

Sα(X) = lim
ε→0+

1

2πi

∮
C
fα(1 + ε, λ)

d log det(λI − VX)

dλ
dλ, (2.9)

donde

fα(x, y) =
1

1− α log

[(
x+ y

2

)α
+

(
x− y

2

)α]
,

y el contorno C rodea a los polos del integrando, que son los autovalores vl de VX . El
contorno de integración, los polos y los cortes de la función fα están representados en la
figura 2.2.

������������ ����������
���������������������������������������

�
�
�

�
�
�
�
��������������������������������������

−1 +1

ε1+ε−1− v
l

�� �� �� �� ��

Figura 2.2: Contorno de integración C, cortes (×) y polos (•) para el cálculo de Sα(X). Los cortes de la
función fα se extienden a ±∞.

El teorema de Fisher-Hartwig [26, 27] permite obtener una expansión del determinante
de la matriz de Toeplitz λI − VX en términos de L en el ĺımite termodinámico N → ∞.
Gracias a este resultado, podemos determinar expĺıcitamente la dependencia de Sα(X)
con la longitud del intervalo,

Sα(X) = Aα(β)L+ Cα(β) + · · · , (2.10)
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donde los puntos suspensivos expresan los restantes términos de la expansión, que se
anulan en el ĺımite de gran L. Puede comprobarse numéricamente que este desarrollo es
únicamente válido cuando β � L, como también se desprende de la comparación con el
resultado conforme (1.3).

El coeficiente de la expansión correspondiente al término lineal es de la forma

Aα(β) = lim
ε→0+

1

4π2i

∮
C
fα(1 + ε, λ)

d

dλ

∫ π

−π
log[λ+ tanh(βΛ(θ)/2)]dλ,

que puede simplificarse,

Aα(β) =
1

2π

∫ π

−π
fα[1, tanh(βΛ(θ)/2)]dθ. (2.11)

El término de la expansión independiente de L es

Cα(β) = lim
ε→0+

1

2πi

∮
C
fα(1 + ε, λ)

d

dλ

∞∑
k=1

ksks−k, (2.12)

donde sk denota al k-ésimo modo de Fourier del log[λ+ tanh(βΛ(θ)/2)],

sk =
1

2π

∫ π

−π
log[λ+ tanh(βΛ(θ)/2)]e−ikθdθ.

En este caso, no hemos encontrado un camino para deshacernos de la integral sobre el
contorno C y llegar a una expresión que al menos pueda calcularse de manera numérica
para cada β, como sucede con Aα(β).

Cuando α→ 1, entroṕıa de von Neumann, encontramos

S1(X) = − L

2π

∫ π

−π
[(1− nFD) log (1− nFD) + nFD log nFD] dθ + C1(β) + · · · ,

donde

nFD =
1

eβΛ(θ) + 1

es la distribución de Fermi-Dirac. El factor que acompaña a L es la densidad de entroṕıa
termodinámica de un gas de fermiones [28]. También puede comprobarse que en la en-
troṕıa de toda la cadena no tenemos el término Cα(β). Por tanto, podemos concluir que
Aα(β) se debe exclusivamente a las correlaciones térmicas mientras que Cα(β) refleja la
dependencia con la temperatura de las correlaciones cuánticas entre X e Y . Además,
éste último sigue la ley del área. Esta propiedad establece que el entrelazamiento en el
estado fundamental crece con el número de enlaces que se rompen cuando aislamos el
subsistema. En sistemas unidimensionales, este resultado se traduce en que la entroṕıa es
independiente del tamaño del subsistema. Por contra, el término Aα(β)L sigue una ley de
volumen pues es proporcional al tamaño del subsistema.

En el ĺımite de alta temperatura, β → 0, tenemos que fα(1, 0) = log 2, y, por tanto,
Aα(0) = log 2. Además, Cα(0) = 0. En consecuencia, únicamente existen correlaciones de
naturaleza térmica,

Sα(X) = L log 2, β = 0.
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Como en este caso la dimensión del espacio de estados de X es 2L, el máximo valor que
puede tomar Sα(X) es justamente L log 2. Cuando β → 0, la expresión general para Sα(X)
que se obtiene mediante la teoŕıa conforme (1.3) diverge. La razón es que el espacio de
estados de una teoŕıa de campos conforme es de dimensión infinita. Por tanto, esta técnica
no es la apropiada para tratar con sistemas fermiónicos o de spines a alta temperatura,
donde el comportamiento de la entroṕıa depende de la dimensión del espacio de estados.

2.2.1 Ĺımite β →∞
A diferencia de lo que sucede a alta temperatura, en el ĺımite opuesto β →∞ el compor-
tamiento de Sα(X) depende de si la relación de dispersión Λ(θ) cambia o no de signo.

Cuando la cadena no es cŕıtica y β →∞,

Sα(X) ≈ α

α− 1
e−βm

(
1− e(1−α)βm

α

)
L, α > 1,

donde m es el valor mı́nimo que toma Λ(θ) que corresponde con el gap entre la enerǵıa
del estado fundamental y el primer excitado y es inversamente proporcional a la longitud
de correlación del sistema. Cuando α→ 1,

S1(X) ≈ (1 + βm)e−βmL.

Por tanto, para una cadena no cŕıtica la entroṕıa de un intervalo decae exponencialmente
a cero a baja temperatura. De hecho, en el estado fundamental, |GS〉 = |0〉, se anula de
manera exacta [18].

En una cadena cŕıtica, como hemos dicho, existen una o más parejas de modos cŕıti-
cos o de Fermi en los que la relación de dispersión Λ(θ) cambia de signo. Supongamos
que tenemos ν modos cŕıticos θi, i = 1, . . . , ν, en los que Λ(θi) = 0. Al igual que sucede
en el estado fundamental, este hecho modifica radicalmente el comportamiento de Sα(X)
cuando β →∞ ya que existen modos θ ∈ (θi − δi, θi + δi) para los cuales Aα(β) no decae
exponencialemente a cero con β.

β → ∞
1

β1

β2

β1 < β2

θi
θ

fα[1, tanh(βΛ(θ)/2)]

θi − δi θi θi + δi

+1

-1

β →∞ tanh(βΛ(θ)/2) ≈

pendiente≈ Λ′(θi)

Figura 2.3: A la izquierda, representamos la aproximación a baja temperatura, β → ∞, de la función
fα[1, tanh(βΛ(θ)/2)] en el entorno de un modo cŕıtico θi. A la derecha, aproximación considerada en los
cálculos para la función tanh(βΛ(θ)/2) en las proximidades de θi cuando β →∞.
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Como se desprende de la figura 2.3 (izquierda), la anchura de cada entorno es inversa-
mente proporcional a β|Λ′(θi)|, donde Λ′(θi) denota la derivada de la relación de dispersión
en θi; es decir, la velocidad de Fermi de θi. Por lo tanto, δi = 2π/(β|Λ′(θi)|). Para valores
de θ suficientemente alejados de los modos cŕıticos tenemos una situción idéntica a la del
caso no cŕıtico.

De acuerdo con estas ideas, dividamos la integral del término lineal (2.11) en ν piezas,

Aα(β) =
1

2π

ν∑
i=1

∫ θi+δi

θi−δi
fα [1, tanh(βΛ(θ)/2)] dθ + · · · ,

donde los puntos suspensivos denotan el resto de partes cuyo integrando decae exponen-
cialmente a cero a baja temperatura. Si efectuamos el cambio de variable ξ = tanh(βΛ/2)
y consideramos la aproximación de la figura 2.3 derecha para la función tanh(βΛ(θ)/2)
en cada cambio de signo de Λ(θ) cuando β →∞, tenemos

Aα(β) ≈
ν∑
i=1

1

πβ|Λ′(θi)|

∫ 1

−1

fα(1, ξ)

(1− ξ2)
dξ + · · · . (2.13)

La integral de la expresión (2.13) puede ser resuelta anaĺıticamente mediante el cambio
de variable ξ = (t− 1)/(t+ 1),

1

1− α

∫ 1

−1

log

[(
1 + ξ

2

)α
+

(
1− ξ

2

)α]
dξ

1− ξ2
=
π2

12

α + 1

α
. (2.14)

En definitiva, si Λ(θ) posee ν cambios de signo en θi, i = 1, . . . ν, entonces

Aα(β) ≈ α + 1

α

π

12β

ν∑
i=1

1

|Λ′(θi)|
+ · · · , β →∞,

donde los puntos suspensivos denotan términos que decaen exponencialmente a cero.

El problema a la hora de tratar con el término independiente de L, Cα(β), se encuentra
en determinar la serie

∑∞
k=1 ksks−k, donde, recordemos, sk representa el k-ésimo modo de

Fourier de la función log[λ+ tanh(βΛ(θ)/2)].
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θi−δi θi
θi+δi θ

i+1

θ
i+1
θ
i+1

log(λ+ 1)

log(λ− 1)

β →∞, log[λ+ tanh(βΛ(θ)/2)] ≈

−δ
i+1

+δ
i+1

θi−δi
θi

θi+δi

θ
i+1

θ
i+1

θ
i+1

2δ
i+1

log λ+1
λ−1

−2δi log λ+1
λ−1

β →∞, d
dθ

log[λ+ tanh(βΛ(θ)/2)] ≈

−δ
i+1

+δ
i+1

Figura 2.4: A la izquierda, representamos la aproximación de la función log[λ + tanh(βΛ(θ)/2)] que
consideramos a la hora de obtener Cα(β) a bajas temperaturas, β →∞. Aqúı hemos dibujado únicamente
dos modos cŕıticos θi y θi+1 consecutivos tales que Λ′(θi) < 0 y Λ′(θi+1) > 0. A la derecha, representamos
la derivada en θ de la aproximación de la izquierda que empleamos para calcular en primera aproximación
los modos de Fourier iksk.

Observemos que iksk es el modo k-ésimo de d
dθ

log[λ + tanh(βΛ(θ)/2)]. En el ĺımite
β → ∞, la función log[λ + tanh(βΛ(θ)/2)] puede tomarse constante en θ salvo en los
entornos de cada cero de Λ(θ), para los cuales, en primera aproximación la consideraremos
lineal, tal y como refleja la figura 2.4 izquierda. De esta forma, su primera derivada es nula
salvo para los modos θ ∈ (θi − δi, θi + δi), en los cuales es constante. Calculando iksk con
dicha aproximación y quedándonos al sumar la serie con los términos dominantes cuando
β →∞ se llega a

∞∑
k=1

ksks−k ≈
1

4π2

[
log

(
λ+ 1

λ− 1

)]2 ν∑
i=1

log

(
2π

β|Λ′(θi)|

)
+ · · · ; β →∞.

Llevando este resultado a la expresión de Cα(β), (2.12),

Cα(β) =
1

8π3i

ν∑
i=1

log

(
2π

β|Λ′(θi)|

)
Iα,

donde

Iα = lim
ε→0+

∮
C
fα(1 + ε, λ)

d

dλ

[
log

(
λ+ 1

λ− 1

)]2

dλ.

Existen distintas formas de proceder con esta integral. La más adecuada es efectuar una
integración por partes puesto que eliminamos directamente las divergencias que de otro
modo aparecen. Si a continuación integramos a lo largo del contorno C llegamos a una
integral idéntica a (2.14). De esta manera,

Cα(β) =
α + 1

12α

ν∑
i=1

log

(
β|Λ′(θi)|

2π

)
+ · · · , β →∞.

Agrupando los resultados anteriores, tenemos que en una cadena fermiónica local cuya
relación de dispersión posee ν cambios de signo en los modos θi, i = 1, . . . , ν, la entroṕıa
de Rényi de un intervalo a baja temperatura, β →∞, es en primera aproximación
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Sα(X) ≈ α + 1

α

π

12β

ν∑
i=1

1

|Λ′(θi)|
L+

α + 1

12α

ν∑
i=1

log

(
β|Λ′(θi)|

2π

)
+ · · · ,

que escala en L y β de manera similar a la prevista por la expresión conforme (1.4)
cuando β � L. De hecho, salvo por la constante C ′α, nuestro resultado se reduce a (1.4)
cuando las velocidades de Fermi |Λ′(θi)| valen la unidad. La carga central c es igual al
número de parejas de cambios de signo de Λ(θ), de forma que cada uno de ellos puede
identificarse con una de las part́ıculas sin masa de la teoŕıa de campos conforme subya-
cente.

A diferencia del caso no cŕıtico, aqúı Sα(X) no tiende de manera continua a su expresión
para el estado fundamental de Hferm local y cŕıtico, |GS〉 =

∏
Λk<0 b

†
k |0〉. En efecto, de

acuerdo con [18], para este estado

SGSα (X) =
α + 1

α

ν

12
logL+ νΥα +

∑
1≤i 6=j≤ν

log[2− 2 cos(θi − θj)]
6

, (2.15)

donde

Υα =
1

2πi

∫ 1

−1

dfα(1, λ)

dλ
log

[
Γ(1/2− iω(λ))

Γ(1/2 + iω(λ))

]
dλ, ω(λ) =

1

2π
log

∣∣∣∣λ+ 1

λ− 1

∣∣∣∣ ,
es un término universal, que no vaŕıa bajo pequeñas modificaciones de los acoplos, y Γ es
la función Gamma de Euler.

2.2.2 Ejemplo: Tight Binding Model

Un caso particular de Hamiltoniano local de la forma (2.1) es el del Tight Binding Model,

HTBM =
N∑
n=1

[
J0a

†
nan + J1a

†
n(an−1 + an+1)

]
, (2.16)

suponiendo los acoplos J0 y J1 reales y J1 < 0. Su relación de dispersión es

ΛTBM(θ) = J0 + 2J1 cos(θ).

Si |J0| > 2|J1|, no tiene ningún cero. Por el contrario si |J0| < 2|J1| hay dos valores de θ

θ1 = arccos

(
− J0

2J1

)
y θ2 = −θ1,

para los cuales cambia de signo; es decir, ν = 2. De acuerdo con los resultados de la
sección anterior, en el ĺımite a baja temperatura β →∞ la entroṕıa de von Neumann de
un intervalo L es

STBM

1 (X) ≈ [1 + β(J0 − 2J1)]e−β(J0−2J1)L, si |J0| > 2|J1|,

ya que aqúı m = J0 − 2J1, y

STBM

1 (X) ≈ π

3β
√

(2J1)2 − J2
0︸ ︷︷ ︸

ATBM
1

L+
1

3
log

(
β
√

(2J1)2 − J2
0

2π

)
︸ ︷︷ ︸

CTBM
1

, si |J0| < 2|J1|. (2.17)



16 2.2. Cadenas locales: entroṕıa y matrices de Toeplitz

Observemos que, salvo por el término constante aditivo C ′1, este resultado es el que se
obtiene de la simetŕıa conforme cuando L � β (1.4) con carga central c = 1. Podemos
determinar la constante C ′1 para este modelo mediante un estudio numérico de S1(X).
Para ello, como el estado térmico satisface la descomposición de Wick, basta con obtener
la matriz de correlaciones C (2.5) para cada tamaño L de intervalo y temperatura 1/β,
diagonalizarla y aplicar la expresión (2.7). Para hallar el espectro de autovalores, hemos
empleado la rutina correspondiente a matrices complejas hermı́ticas incluida en GNU
Scientific Library [29] escrita para el lenguaje C.

Si tomamos J1 = −1/2 el Hamiltoniano (2.16) será cŕıtico cuando |J0| < 1. En primer
lugar, consideremos J0 = 0, fijemos el valor de la temperatura 1/β y evaluemos S1(X)
modificando la longitud del intervalo entre L = 500 y L = 4500 sites en una cadena con un
total de N = 10000 sites. Los puntos de la figura 2.5 representan los resultado numéricos
para distintos valores de β. La tabla 2.1 recoge los coeficientes del ajuste a una función
lineal aL + c de cada serie de puntos numéricos con β fijo. También contiene los valores
numéricos de las aproximaciones de ATBM

1 y CTBM
1 cuando β → ∞. La última columna

representa la diferencia entre c y CTBM
1 , que es un valor prácticamente idéntico al que

obtenemos para el término independiente de la entroṕıa de von Neumann de un intervalo
en el estado fundamental de (2.16) cuando J0 = 0 y J1 = −1/2, |GS〉 =

∏
|k|<N/4 b

†
k |0〉,

SGS1 (X) = 1/3 logL+ 0.726067... (2.18)

con Υ1 = 0.247509....
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Figura 2.5: entroṕıa de von Neumann, S1(X), de un intervaloX de un TBM (2.16) con J0 = 0 y J1 = −1/2
en función de su longitud L para distintas temperaturas 1/β. Los puntos representan los valores obtenidos
numéricamente mientras que las rectas corresponden a la expresión anaĺıtica (2.17) para cada valor de β
más la constante aditiva C ′TBM

1 = 0.726067....
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Ajuste Anaĺıtico β →∞
β a (×10−3) c ATBM

1 (×10−3) CTBM
1 C ′TBM

1 = c− CTBM
1

50 20.9631 1.41691 20.9440 0.69138 0.72553
200 5.23624 1.87951 5.23599 1.15348 0.72603
500 2.09445 2.18497 2.09440 1.45891 0.72606
1000 1.04877 2.41110 1.04720 1.68996 0.72115

Tabla 2.1: a y c son los coeficientes del ajuste a la función lineal aL+ c de los valores numéricos de S1(X)
que obtenemos a una temperatura fija 1/β variando la longitud L de un intervalo de un TBM (2.16) con
J0 = 0 y J1 = −1/2. Las columnas ATBM

1 y CTBM
1 contienen los correspondientes valores numéricos de

estos coeficientes para β →∞ dados por (2.17). Obsérvese que la resta c− CTBM
1 es un número cercano

al término constante de la entroṕıa del intervalo en el estado fundamental (2.18).

En la figura 2.5 las ĺıneas continuas representa la aproximacion (2.17) más la corrección
aditiva C ′TBM

1 = 0.726067.... En vista de estos resultados, conjeturamos que C ′TBM
1 es el

término independiente de la entroṕıa de un intervalo en el estado fundamental (2.15) del
Hamiltoniano (2.16) cŕıtico, |GS〉 =

∏
Λk<0 b

†
k |0〉,

C ′TBM

1 = 0.4950179...+
1

6
log[2− 2 cos(2θ1)]. (2.19)

Para comprobar esta hipótesis, estudiamos numéricamente S1(X) para distintos valo-
res de J0 < 1 con J1 = −1/2, variando L entre 500 y 4500 sites y fijando la temperatura
en β = 200. En la tabla 2.2 recogemos los coeficientes a y c del ajuste de los valores
numéricos de S1(X) que obtenemos para cada J0, comparándolos con los correspondien-
tes coeficientes ATBM

1 y CTBM
1 + C ′TBM

1 .

Ajuste Anaĺıtico β →∞
J0 a (×10−3) c ATBM

1 (×10−3) CTBM
1 + C ′TBM

1

0.1 5.26263 1.87615 5.26237 1.87620
0.3 5.48920 1.84805 5.48881 1.84811
0.5 6.04687 1.78356 6.04600 1.78365
0.7 7.33500 1.65487 7.33185 1.65510
0.9 12.0641 0.247412 12.0122 1.32597

Tabla 2.2: a y c son los parámetros que obtenemos al ajustar a una dependencia lineal aL+ c los valores
numéricos que obtenemos para S1(X) al variar el tamaño L del intervalo X de un TBM a β = 200 para
cada acoplo J0, con J1 = −1/2. Las columnas ATBM

1 y CTBM
1 + C ′TBM

1 recogen los valores que da la
expresión (2.17) para los dos primeros y (2.19) en el caso de C ′TBM

1 .

Como se desprende de la tabla 2.2, los resultados numéricos corroboran la conjetura
propuesta salvo para J0 = 0.9. A medida que aumentamos este acoplo y nos aproximamos
al valor para el cual el Hamiltoniano deja de ser cŕıtico (esto es, J0 = 1), los ceros de
ΛTBM(θ) se van acercando. Hemos comprobado numericamente que la expresión (2.19)
para el término independiente de L de la entroṕıa del estado fundamental no es válida
cuando θ1 y −θ1 están suficientemente cerca, como sucede en el caso J0 = 0.9.
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3. Escaleras de fermiones

Los resultados que hemos obtenido para la entroṕıa de un intervalo de una cadena ho-
mogénea y local de fermiones a una cierta temperatura van a servirnos para obtener la
entroṕıa de partes de sistemas más complicados. En esta sección consideraremos una es-
calera de fermiones en forma de prisma con q aristas o railes cuyas interacciones están
descritas por el Hamiltoniano

Hladder =
N∑
n=1

q−1∑
p=0

N/(2q)∑
l=0

Jp,la
†
nan+pN/q+l + h.c. (3.1)

Supondremos que los acoplos Jp,l decaen rápidamente en l. Un ejemplo de este tipo de
escaleras con q = 3 y Jp,l = 0 para l ≥ 2 se muestra en la figura 3.1 izquierda.
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0-π π θ

Λs(θ)

s = 2

s = 0s = 1

1

Figura 3.1: A la izquierda, representación de una escalera de fermiones (3.1) de tres railes, q = 3. Los
extremos de cada rail con la misma letra están unidos, formando un anillo retorcido. Por simplicidad,
únicamente hemos dibujado (con ĺıneas más finas) las interacciones a segundos vecinos de la cara inferior
del prisma. Los sites oscuros corresponden al fragmento X elegido. A la derecha, representamos las bandas
de la relación de dispersión de una posible escalera de fermiones (3.1) con tres railes, q = 3.

Este Hamiltoniano también puede interpretarse como una cadena unidimensional (2.1)
con acoplos no locales. Por tanto, es diagonalizable introduciendo los operadores bk (2.2)
y sus autoestados son los determinantes de Slater |ΨK〉. En este caso, la relación de
dispersión del sistema,

Λk =
∑
p,l

Jp,le
2πik(pN/q+l)/N + h.c.,

puede descomponerse en q bandas o ramas. En efecto, si tomamos k = s en mod q tenemos
que

Λk =

q−1∑
p=0

e2πisp/q

N/(2q)∑
l=0

Jp,le
2πikl/N + h.c.,

y, en el ĺımite termodinámico 2πk/N → θ,

Λs(θ) =

q−1∑
p=0

e2πisp/q

∞∑
l=0

Jp,le
iθl + h.c.

Por tanto, hay una relación de dispersión independiente Λs(θ) para cada valor de s =
0, . . . , q − 1. Cada banda es una función periódica, continua y suave que puede tener un

19
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número par νs de cambios de signo. En la figura 3.1 derecha mostramos un caso genérico
para q = 3.

En las escaleras resulta natural elegir como subsistema X un fragmento de longitud L de
la misma; esto es, q intervalos de tamaño L situados cada uno de ellos en uno de los railes
y perfectamente enfrentados entre si. Desde el punto de vista de una cadena unidimen-
sional no local, esto equivale a tomar q intervalos disjuntos de longitud L separados entre
si por una distancia N/q − L. Por tanto,

X =

q−1⋃
p=0

Xp,

donde Xp = {1 + pN/q, · · · , L + pN/q} es el intervalo de sites contiguos de longitud L
situado en el rail p-ésimo. Nuestro objetivo es calcular la entroṕıa de Rényi de X en el
ĺımite termodinámico de una escalera que se encuentra a una cierta temperatura 1/β.

En principio podemos proceder como en el caso de una cadena local, introduciendo la
matriz VX , de dimensión qL, que se obtiene de restringir

Vnm = − 1

N

∑
k

tanh

(
βΛk

2

)
eiθk(n−m)

a los ı́ndices que pertenecen a X. Sin embargo, esta matriz ya no es Toeplitz. Es una
matriz por bloques en la que cada bloque es Toeplitz (situación B de la figura 2.1). Por
tanto, no podemos aplicar directamente el teorema de Fisher-Hartwig como hicimos para
un intervalo de la cadena local. No obstante, teniendo en mente la separación en ramas
de la relación de dispersión, descompongamos V de la siguiente forma

V =
1

q

q−1∑
s=0

Vs,

donde

(Vs)nm = − q

N

∑
k=s(modq)

tanh

(
βΛk

2

)
eiθk(n−m).

Observemos que tenemos la propiedad de simetŕıa

(Vs)n+pN/q,m+p′N/q = e2πis(p−p′)/q(Vs)n,m. (3.2)

Aprovechándola, podemos escribir la matriz Vs retringida a X, Vs,X , como

Vs,X = Vs,X0 ⊗ Ts =

 Vs,X0 e2πis/qVs,X0 . . .
e−2πis/qVs,X0 Vs,X0 . . .

...
...

. . .

 ,

donde Vs,X0 es la restricción de Vs al intervalo X0 = {1, . . . , L} y Ts son matrices con
elementos

(Ts)pp′ = e2πis(p−p′)/q, p, p′ = 0, . . . , q − 1.
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De esta forma tenemos que

VX =
1

q

q−1∑
s=0

Vs,X0 ⊗ Ts.

Las matrices Ts conmutan entre si por lo que existe una transformación que las diagonaliza
simultáneamente

(UTsU
−1)pp′ = qδs,pδs,p′

donde U es la matriz unitaria de elementos

Upp′ =
1√
q
e2πipp′/q.

Entonces,

(I ⊗ U)VX(I ⊗ U−1) =


V0,X0 0 · · · 0

0 V1,X0 · · · 0
· · · · · · · · · · · ·
· · · · · · · · · · · ·
0 0 · · · Vq−1,X0

 .

Las matrices Vs,X0 śı que son matrices de Toeplitz tales que, en el ĺımite termodinámico,

(Vs)nm = − 1

2π

∫ π

−π
tanh

(
βΛs(θ)

2

)
eiθ(n−m)dθ.

El espectro de una matriz suma directa de matrices es la unión de los espectros de cada
matriz de la suma directa. Por tanto,

Sα(X) =

q−1∑
s=0

Sα,s(X0), (3.3)

donde

Sα,s(X0) =
1

1− α Tr log

[(
I + Vs,X0

2

)α
+

(
I − Vs,X0

2

)α]
,

que puede calcularse a partir de los resultados de la cadena local. El estado fundamental
de la escalera,

∏
Λs,k<0 b

†
k |0〉, también satisface la simetŕıa (3.2). En ese caso, cada SGSα,s (X0)

está dado por la expresión (2.15) aplicada a la banda Λs(θ).

3.1 Ejemplo: escalera de dos railes q = 2

El caso más sencillo de escalera de fermiones es la de dos railes, q = 2, descrita por el
Hamiltoniano

Hladder =
N∑
n=1

(J0a
†
nan + J1a

†
nan+1 + JN/2a

†
nan+N/2) + h.c. (3.4)

Consideremos que los acoplos toman valores reales. En este caso la relación de dispersión,

Λk = 2J0 + 2J1 cos

(
2πk

N

)
+ 2(−1)kJN/2,
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posee dos bandas. Una correspondiente a los momentos k pares,

Λkpar = 2(J0 + JN/2) + 2J1 cos

(
2πk

N

)
,

y la otra para los k impares,

Λkimpar = 2(J0 − JN/2) + 2J1 cos

(
2πk

N

)
.

Para simplicar las expresiones, tomemos JN/2 = J0. En ese caso, en el ĺımite termodinámi-
co tenemos que

Λpar(θ) = 4J0 + 2J1 cos(θ),

y

Λpar(θ) = 2J1 cos(θ).

Por tanto, de acuerdo con los resultados obtenidos anteriormente (3.3), la entroṕıa de un
fragmento X de tamaño L viene dada por

Sα(X) = Sα,par(X0) + Sα,impar(X0).

donde Sα,par(X0) y Sα,impar(X0) son las entroṕıas de un intervalo X0 de tamaño L de una
cadena de fermiones local cuya relación de dispersión es Λpar(θ) y Λimpar(θ) respectivamente.

Si suponemos que J1 < 0 y |J1| < 2|J0|, entonces la banda Λpar carece de ceros, νpar = 0,
mientras que Λimpar se anula en ±π/2 independientemente del valor de los acoplos. Por
tanto, νimpar = 2. Como en este caso la banda par no cambia de signo, su contribución a la
entroṕıa en el ĺımite β →∞ decae exponencialmente a cero y puede despreciarse frente a
la de la banda impar. Particularizando a esta banda los resultados obtenidos en la sección
2.2.1 cuando β →∞, tenemos que la entroṕıa de von Neumann del fragmento X será

S1(X) ≈ S1,impar(X0) ≈ 1

3

π

2|J1|β︸ ︷︷ ︸
A1,impar

L+
1

3
log

(
2|J1|β

2π

)
︸ ︷︷ ︸

C1,impar

+ · · · , |J1| < 2|J0|. (3.5)

En este caso, la entroṕıa del fragmento escala de manera similar a la de un intervalo
en el TBM cŕıtico (2.17) con JTBM

0 = 0. Estudiémosla numéricamente para comprobar
si también tenemos una constante aditiva de la que Fisher-Hartwig no da cuenta. De
nuevo, para reducir la complejidad y alcanzar tamaños mayores, calculamos la entroṕıa
de von Neumann del fragmento X a partir de la matriz de correlaciónes Cnm restringida
a dicho subsistema. Los puntos de la figura 3.2 son los valores que obtenemos para dicha
magnitud tomando una escalera deN = 10000 sites con J0 = 1 y J1 = −1/2, para distintas
temperaturas 1/β y modificando el tamaño del fragmento entre L = 500 y L = 2250 sites.
La tabla 3.1 recoge los coeficientes a y c del ajuste a una función lineal aL + c de cada
serie de puntos a una determinada temperatura, aśı como el valor de A1,impar y C1,impar

para cada caso.
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Ajuste Anaĺıtico β →∞
β a (×10−3) c A1,impar (×10−3) C1,impar c− C1,impar

50 20.9634 1.41692 20.9440 0.69138 0.72554
200 5.23629 1.87951 5.23599 1.15348 0.72603
500 2.09463 2.18460 2.09440 1.45891 0.72569
1000 1.05292 2.40585 1.04720 1.68996 0.71589

Tabla 3.1: a y c son los parámetros del ajuste a una función lineal aL + c de los valores numéricos de
S1(X) que obtenemos a una temperatura fija 1/β variando el tamaño L de un fragmento X de la escalera
(3.4) con J0 = JN/2 = 1 y J1 = −1/2. Las columnas A1,ladder y C1,ladder contienen los correspondientes
valores numéricos de estos coeficientes para β → ∞, dados por (3.5). La diferencia c − C1,impar es un
número próximo al término constante de la entroṕıa del fragmento en el estado fundamental (3.6) de esta
escalera.
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Figura 3.2: entroṕıa de von Neumann, S1(X), de un fragmento X de la escalera (3.4) con J0 = JN/2 = 1 y
J1 = −1/2 en función de su tamaño L para diferentes valores de β. Los puntos corresponden a los valores
obtenidos mediante la diagonalización numérica de las correlaciones. Cada recta representa la expresión
anaĺıtica (3.5) con los coeficientes A1,impar y C1,impar de la tabla 3.1 para cada valor de β más la constante
aditiva 0.726067....

La entroṕıa de un fragmento en el estado fundamental de esta escalera, |GS〉 =∏
Λk,impar<0 b

†
k |0〉, es similar a la de un intervalo del TBM cŕıtico con JTBM

0 = 0 en su
estado fundamental,

SGS1 (X) = SGS1,impar(X0) ≈ 1

3
logL+ 0.726067... (3.6)

Por lo tanto, examinando la última columna de la tabla 3.1, parece claro que también
tenemos aqúı un término constante adicional en la entroṕıa que parece corresponder al
término independiente de L de la entroṕıa del fragmento en el estado fundamental de la
escalera.

Comprobemos esta conjetura considerando la situación |J1| > 2|J0|. En ese caso, la banda
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Λpar también se anula en ± arccos(−2J0/J1) por lo que no puede despreciarse su contri-
bución a la entroṕıa del fragmento cuando β →∞. Aśı tenemos que,

S1(X) ≈

Aladder
1 =A1,par+A1,impar︷ ︸︸ ︷

1

3

(
1√

(2J1)2 − (4J0)2
+

1

2|J1|

)
π

β
L

+
1

3

[
log

(√
(2J1)2 − (4J0)2β

2π

)
+ log

(
2|J1|β

2π

)]
︸ ︷︷ ︸

Cladder
1 =C1,par+C1,impar

+ · · · ,

más una constante aditiva C ′ladder1 que, conjeturamos, es el término independiente de la
entroṕıa del fragmento X en el estado fundamental de la escalera, |GS〉 =

∏
Λk<0 b

†
k |0〉.

Cuando α = 1,

SGS1 (X) = SGS1,par(X0) + SGS1,impar(X0)

≈ 2

3
logL+ 0.4950179...+

1

6
log[2− 2 cos(2 arccos(−2J0/J1))] + 0.726067...︸ ︷︷ ︸

C′ladder1

Comprobemos esta hipótesis numéricamente. Fijamos N = 10000 sites, β = 200, J1 =
−1/2, y calculamos S1(X) para distintos acoplos J0 < 1/4 variando la longitud de X
entre L = 500 y L = 2250 sites. Ajustamos cada serie de valores de S1(X) para un J0 fijo
a una relación lineal aL + c. La tabla 3.2 recoge los valores de a y c que obtenemos en
cada ajuste aśı como los de los correspondientes Aladder

1 y C ladder
1 + C ′ladder1 .

Ajuste Anaĺıtico β →∞
J0 = JN/2 a c Aladder

1 C ladder
1 + C ′ladder1

0 1.04726 3.75903 1.04720 3.75909
0.05 1.05806 3.74542 1.05799 3.74549
0.1 1.09498 3.70089 1.09489 3.70097

Tabla 3.2: a y c son los coeficientes del ajuste a la función lineal aL + c de los valores numéricos de
S1(X) que obtenemos a un β fijo variando la longitud L del fragmento X de la escalera (3.4) para
distintos acoplos J0 = JN/2 y J1 = −1/2. Aladder

1 y C ladder
1 corresponden a los valores numéricos de estos

coeficientes previstos por la aproximación que hemos obtenido cuando β → ∞. Por su parte, C ′ladder1 lo
calculamos a partir de la expresión del término independiente de L de la entroṕıa de X en el estado
fundamental.

Comparando las columnas de c y C ladder
1 + C ′ladder1 podemos concluir que nuestra con-

jetura es acertada. Como suced́ıa en el TBM, la expresión que tenemos para el término
independiente de L de la entroṕıa en |GS〉 deja de ser válida cuando los ceros de la banda
par están lo suficientemente cerca.
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Los resultados obtenidos para la entroṕıa de una cadena fermiónica local no sólo sirven
para calcular la de un fragmento de una escalera fermiónica. Como mencionamos al princi-
pio, dicho resultado es también aplicable a la correspondiente cadena de spines con la que
se relaciona mediante la transformación de Jordan-Wigner. Ahora veremos que también
permite conocer la de un modelo de Ising cuántico. Para ello, debemos explorar primero
el conocido modelo XY. Se trata de una cadena unidimensional de spines descrita por el
Hamiltoniano

HXY =
N∑
n=1

[
1 + γ

2
σxnσ

x
n+1 +

1− γ
2

σynσ
y
n+1 + hσzn

]
, (4.1)

donde γ y h son dos constantes reales. F́ısicamente, γ es un parámetro de anisotroṕıa
entre los acoplos de las componentes x e y de cada spin con sus vecinos mientras que h
representa la interacción de los spines con un campo magnético en la dirección z. Consi-
deramos condiciones de borde periódicas, de manera que σµN+1 = σµ1 .

Para γ = 0 obtenemos el Hamiltoniano del modelo XX,

HXX =
N∑
n=1

[
1

2
σxnσ

x
n+1 +

1

2
σynσ

y
n+1 + hσzn

]
, (4.2)

en el que la interacción entre vecinos es isótropa. El valor γ = 1 corresponde al Hamilto-
niano del modelo de Ising cuántico,

HI =
N∑
n=1

[
σxnσ

x
n+1 + hσzn

]
, (4.3)

en el que únicamente interaccionan las componentes x de los spines vecinos. Este Ha-
miltoniano se obtiene también al efectuar la técnica de la matriz de transferencia en el
modelo de Ising bidimensional.

4.1 Diagonalización del Hamiltoniano XY

La transformación de Jordan-Wigner permite expresar el Hamiltoniano XY en términos
de los operadores fermiónicos an, a†n (1.5),

HXY = −Nh
2

+
N−1∑
n=1

[
γ(a†na

†
n+1 − anan+1) + (a†nan+1 − ana†n+1)

]
+eiπP

[
γ(−a†Na†1 + aNa1) + (−a†Na1 + aNa

†
1)
]

+
N∑
n=1

ha†nan,

donde P es el operador

P =
N∑
n=1

σ+
n σ
−
n =

N∑
n=1

a†nan,

que aplicado sobre un estado |Φ〉 de la cadena

P |Φ〉 = p |Φ〉 ,
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indica el número de spines p con componente z +1/2 que presenta. En virtud de la trans-
formación de Jordan-Wigner (1.10), éste es igual al número de a-excitaciones en la cadena
fermiónica equivalente. Obsérvese que si p es par tenemos que aN+1 ≡ −a1 (condiciones
de borde antiperiódicas). Por el contrario, si p es impar, entonces aN+1 ≡ a1 (condiciones
de borde periódicas). Este término introduce en los observables correcciones O(1/N) [30].
Como en el resto del trabajo, estamos interesados en el ĺımite termodinámico N →∞. En
ese caso, su contribución puede despreciarse, de manera que podemos tomar condiciones
de borde periódicas tanto para p impar como para p par; es decir, el Hamiltoniano

HXY = −Nh
2

+
N∑
n=1

[
γ(a†na

†
n+1 − anan+1) + (a†nan+1 − ana†n+1)

]
+

N∑
n=1

ha†nan, (4.4)

en lugar del inicial (4.1).
Si sobre éste efectuamos una transformación de Fourier introduciendo los operadores

fermiónicos bk, b
†
k (2.2),

HXY =
∑
k>0

(
b†k, b−k

)( ck sk
−sk −ck

)(
bk
b†−k

)
, (4.5)

donde
ck = h+ 2 cosϕk, sk = 2γ sinϕk.

Como ahora tenemos interacciones anam y a†na
†
m, no basta esta transformación para expre-

sarlo en términos de fermiones libres. Para conseguirlo, recurrimos a una transformación
de Bogoliubov, que consiste en definir unos nuevos operadores dk, d

†
k a partir de bk y b†k,

dk = cos ξkbk − i sin ξkb
†
−k

d†k = cos ξkb
†
k + i sin ξkb−k.

Llamaremos ángulo de Bogoliubov a ξk, definido por

cos(2ξk) =
ck

ΛXY
k

; sin(2ξk) = − sk
ΛXY
k

, donde ΛXY

k =
√
c2
k + s2

k.

Dado que la transformación de Bogoliubov es unitaria, los operadores dk, d
†
k son también

fermiónicos, siguiendo reglas de anticonmutación idénticas a (1.5). El Hamiltoniano XY
queda, de esta manera, expresado expĺıcitamente en términos de fermiones libres,

HXY =

N/2−1∑
k=−N/2

ΛXY

k d†kdk (4.6)

Los autoestados de este Hamiltoniano son los determinantes de Slater

|ΦK〉 =
∏
k∈K

d†k |0〉 , (4.7)

donde |0〉 representa el vaćıo (es decir dk |0〉 = 0 ∀k) y K ⊂ {−N/2, . . . , N/2 − 1} es el
subconjunto de modos ocupados en |ΦK〉. De esta manera,

HXY |ΦK〉 = EXY

K |ΦK〉 ,
siendo EXY

K =
∑

k∈K ΛXY
k la enerǵıa del estado |ΦK〉. Dado que ΛXY

k ≥ 0, el estado funda-
mental de HXY es el vaćıo |0〉.

Observemos que si en (4.4) hacemos γ = 0 (modelo XX) obtenemos un Hamiltoniano
fermiónico HXX análogo a HTBM (2.16).
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4.2 Matrices de correlaciones térmicas del modelo XY

El estado térmico del modelo XY, ρXY = Z−1e−βHXY , también satisface el teorema de
descomposición de Wick. Por tanto, podemos construirlo a partir de las correlaciones
fermiónicas a dos sites Cnm y Fnm. La principal diferencia con el caso de las cadenas
fermiónicas iniciales (2.1) es que ahora el Hamiltoniano presenta acoplos anam y a†na

†
m

y, por tanto, los elementos Fnm no son nulos. Efectivamente, para el estado térmico del
modelo XY tenemos

CXY

nm = − 1

2N

∑
k

e−iθk(n−m) cos(2ξk) tanh

(
βΛXY

k

2

)
+
δnm
2
, (4.8)

y

F XY

nm =
i

2N

∑
k

e−iθk(n−m) sin(2ξk) tanh

(
βΛXY

k

2

)
. (4.9)

Definiendo la matriz

Gnm = CXY

nm −
δnm
2
− F XY

nm = − 1

2N

∑
k

e−i[θk(n−m)−2ξk] tanh

(
βΛXY

k

2

)
, (4.10)

de manera que G† = CXY − I/2 + F XY. Efectuando el producto entre ellas, encontramos

(
GG†

)
nm

=
1

4N

∑
k

e−iθk(n−m) tanh2

(
βΛXY

k

2

)
, (4.11)

expresión que podemos escribir en forma matricial,

GG† = ΘD′Θ†, (4.12)

donde (Θ)kn = eiθkn/
√
N y (D′)kk′ = 1

4
tanh2 (βΛXY

k /2) δkk′ . Dado que Θ es unitaria, los
autovalores ηk de la matriz GG† son los de la matriz D′, que ya es diagonal. Por tanto,

ηk =
1

4
tanh2

(
βΛXY

k

2

)
. (4.13)

De esta forma, podemos determinar ρXY, cuya dimensión es 2N , a partir de la matriz GG†,
de dimensión N . Puesto que las matrices densidad reducidas heredan esta propiedad, las
ideas anteriores también pueden aplicarse en ellas siempre que X e Y sean, cada uno, un
único intervalo de spines contiguos. Por el contrario, cuando están formados por varios
intervalos disjuntos, esta propiedad no se transmite debido a la no localidad de la trans-
formación de Jordan-Wigner. Observemos que si Fnm = 0 recuperamos el caso descrito
en la sección 2.1.

Con esta técnica podemos escribir la entroṕıa de Rényi de ρXY en términos de los au-
tovalores de GG†. Utilizando la expresión (4.13), tenemos que

Tr(ραXY) =
∏
k

1 + e−αβΛXY
k(

1 + e−βΛXY
k

)α =
∏
k

[(
1

2
+
√
ηk

)α
+

(
1

2
−√ηk

)α]
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y, por tanto,

Sα(ρXY) =
1

1− α
∑
k

log

[(
1

2
+
√
ηk

)α
+

(
1

2
−√ηk

)α]
.

Cuando α→ 1, encontramos la expresión para la entroṕıa de von Neumann,

S1(ρXY) = −
∑
k

[(
1

2
+
√
ηk

)
log

(
1

2
+
√
ηk

)
+

(
1

2
−√ηk

)
log

(
1

2
−√ηk

)]
.

Aśı, la entroṕıa de Rényi de X puede obtenerse a partir de la restricción de G siempre
que dicho subsistema esté constituido por spines contiguos

Sα(X) =
1

1− α Tr log

[(
I

2
+

√
GXG

†
X

)α
+

(
I

2
−
√
GXG

†
X

)α]
,

y

S1(X) = −Tr

[(
1

2
+

√
GXG

†
X

)
log

(
I

2
+

√
GXG

†
X

)
+

(
I

2
−
√
GXG

†
X

)
log

(
I

2
−
√
GXG

†
X

)]
.

En este caso, la matriz interesante a la hora de obtener la entroṕıa es GG† que es Toeplitz
cuando consideramos toda la cadena. Sin embargo, para un subsistema X, GXG

†
X ya no

lo es, aun siendo X un único intervalo de spines. Por lo tanto, no podemos aplicar el
teorema de Fisher-Hartwig. Sin embargo, la introducción de estas matrices no ha sido en
vano puesto que presentan interesantes simetŕıas bajo ciertas condiciones que permiten
establecer relaciones entre las entroṕıas de Rényi de los distintos modelos de spines que
acabamos de presentar.

4.3 Relación entre las entroṕıas de los modelos XY e Ising

En [31], Igloi y Juhasz demuestran que la entroṕıa en el estado fundamental de un modelo
XY de N spines con campo magnético hXY = 0 es igual a la suma de las entroṕıas de dos
modelos de Ising (γ = 1), llamémoslos I1 e I2, de N/2 spines cada uno y cuyos campos
hI1 y hI2 están relacionados con la constante de anisotroṕıa γXY del modelo XY,

hI1 = 2
1− γXY

1 + γXY

, y hI2 = 2
1 + γXY

1− γXY

. (4.14)

Esta propiedad puede generalizarse a cualquier configuración excitada del modelo XY en
la que si un modo k está ocupado también lo están los modos −k y k+N/2. Aqúı exten-
deremos esta relación al estado térmico.

Partamos de un modelo XY de tamaño total N sites a temperatura 1/βXY. Llamemos

qk(n−m) = − tanh

(
βXYΛXY

k

2

)
e−i[θk(n−m)−2ξk]

Si tomamos su campo magnético nulo, hXY = 0, tenemos que 2ξk+N/2 = 2ξk+π y ΛXY

k+N/2 =
ΛXY
k . Entonces

qk+N/2(n−m) = −e−iπ(n−m)qk(n−m),
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y, por lo tanto,
qk+N/2(n−m) = −qk(n−m), si n−m par,

qk+N/2(n−m) = qk(n−m), si n−m impar.

De esta manera, si n = 2p (pares) y m = 2q (pares) ó n = 2p− 1 (impares) y m = 2q− 1
(impares)

G2p,2q = G2p−1,2q−1 = 0.

Sin embargo, para n = 2p (pares) y m = 2q − 1 (impares)

G2p,2q−1 = − 1

2N/2

N/4−1∑
k=−N/4

tanh

(
βXYΛXY

k

2

)
e−i[2θk(p−q)+θk−2ξk],

mientras que si n = 2p− 1 (impares) y m = 2q (pares)

G2p−1,2q = − 1

2N/2

N/4−1∑
k=−N/4

tanh

(
βXYΛXY

k

2

)
e−i[2θk(p−q)−θk−2ξk].

Identificando

θI1

k = θI2

k = 2θk =
2πk

N/2
, 2ξI1

k = θk − 2ξk, y 2ξI2

k = −θk − 2ξk,

se obtienen las relaciones (4.14) cuando γI1 = γI2 = 1. Introduciéndolas en la relación de
dispersión del modelo XY inicial (con hXY = 0) y tras un poco de álgebra puede verse que

ΛXY

k =
ΛI1
k

1 + hI1/2
=

ΛI2
k

1 + hI2/2

para I1 e I2 respectivamente.

Por lo tanto,

G(I1)
p,q = G2p,2q−1 = − 1

2N/2

N/4−1∑
k=−N/4

tanh

(
βI1Λ

I1
k

2

)
e−i[θ

I1
k (p−q)−2ξI1]

son los elementos de la matriz de correlaciones G(I1) de un modelo de Ising de tamaño
total N/2 y campo magnético hI1 a temperatura

βI1 =
βXY

1 + hI1/2
.

Por su parte,

G(I2)
p,q = G2p−1,2q = − 1

2N/2

N/4−1∑
k=−N/4

tanh

(
βI2Λ

I2
k

2

)
e−i[θ

I2
k (p−q)−2ξI2]

son los elementos de la matriz G(I2) de un modelo de Ising de tamaño total N/2, campo
magnético hI2, a temperatura

βI2 =
βXY

1 + hI2/2
.
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Si escribimos G en la base en la que separamos los sites pares de los impares

G =

(
0 G(I2)

G(I1) 0

)
,

tenemos que

GG† =

(
G(I1)G(I1)† 0

0 G(I2)G(I2)†

)
.

Por lo tanto, la matrix GG†, de un intervalo L, de este modelo XY sin campo magnético
se puede descomponer como la suma directa de las matrices GG†, de dos intervalos L/2,
de I1 e I2. En consecuencia, el espectro de autovalores de la primera será la unión de los
espectros de las dos segundas. Transladando este resultado a la entroṕıa,

SXY

α (L, βXY) = SI1

α (L/2, βI1) + SI2

α (L/2, βI2).

Cuando γXY = 0 (es decir, cuando el modelo XY se reduce al XX), ambos modelos de
Ising son iguales (hI1 = hI2 = 2, I1 ≡ I2 ≡ I), y se encuentran a la misma temperatura
βI = βXX/2 por lo que

SXX

α (L, βXX) = 2SI

α(L/2, βI). (4.15)

De acuerdo con Jordan-Wigner, el equivalente fermiónico del modelo de spines XX es
el TBM. Si nuestro subsistema es un intervalo de spines contiguos, los resultados para
la entroṕıa de un modelo fermiónico pueden trasladarse directamente al de spines. En
consecuencia, utilizando (4.15), podemos obtener también la entroṕıa de un intervalo de
un modelo de Ising cuántico a una cierta temperatura.



5. Conclusiones

El objetivo principal de esta memoria ha sido el estudio de la entroṕıa de Rényi Sα(X) de
un intervalo X de diferentes cadenas de fermiones y spines en el estado térmico o de Gibbs,
ρ = Z−1e−βH . En primer lugar hemos considerado cadenas de fermiones homogéneas y
locales, demostrando que Sα(X) puede obtenerse a partir de las correlaciones de X. Este
hecho resulta muy útil a la hora de estudiarla. Numéricamente reduce la complejidad
de computarla, que crece exponencialmente con el tamaño L de X, a una dependencia
polinomial con L. Anaĺıticamente permite escribirla en términos del determinante de una
matriz que en este caso es Toeplitz. Para este tipo de matrices, el teorema de Fisher-
Hartwig da una expansión de su determinante y, en nuestro caso, un desarrollo de Sα(X)
en términos de L en el ĺımite termodinámico de la cadena. A partir de este resultado,
hemos encontrado algunas propiedades muy interesantes:

• En el estado de Gibbs Sα(X) es, al igual que la entroṕıa termodinámica, extensiva
siempre que β � L. Por contra, en el estado fundamental, la entroṕıa de X crece
con el logL si la relación de dispersión es cŕıtica, mientras que se anula de manera
exacta si no lo es.

• Hemos visto que el coeficiente Aα(β) del término que escala con L corresponde, para
von Neumann, a la densidad de entroṕıa termodinámica de un gas de fermiones.
Además, en la entroṕıa de Rényi de toda la cadena no tenemos el coeficiente Cα(β)
independiente de L. Aśı hemos interpretado que Aα(β) es debido a las correlaciones
térmicas mientras que Cα(β) da cuenta de la dependencia con β del entrelazamiento
entre X e Y . Además, Aα(β)L sigue una ley de volumen mientras que Cα(β) cumple
la ley del área, caracteŕıstica de las correlaciones cuánticas.

• A alta temperatura, tenemos correlaciones de naturaleza exclusivamente térmica
puesto que el único término que no se anula es Aα(β), que en dicho ĺımite depende
de la dimensión del espacio de estados de X.

• A baja temperatura, Sα(X) depende del número de cambios de signo de la relación
de dispersión (modos de Fermi) y de su derivada en ellos (velocidades de Fermi).
En este sentido, al igual que sucede en el estado fundamental, Sα(X) detecta a baja
temperatura si el sistema es cŕıtico o no.

• En el estado fundamental, el factor del término que escala con logL es univer-
sal puesto que es invariante bajo pequeños cambios en el valor de los acoplos del
Hamiltoniano, mientras que el término independiente de L contiene una parte no
universal. A bajas temperaturas, los coeficientes Aα(β) y Cα(β) de la expansión de
Sα(X) son no universales pues dependen directamente de los acoplos a través de las
velocidades de Fermi.

• El desarrollo a bajas temperaturas que hemos encontrado a partir de la expansión
de Fisher-Hartwig es similar a la expresión conforme de Sα(X) cuando β � L (1.4),
salvo por una constante aditiva C ′α independiente de L y β. Las técnicas conformes
dan cuenta de la existencia de este término pero no de la forma que tiene. Aqúı hemos
conjeturado que es igual al término independiente de la entroṕıa de un intervalo en
el estado fundamental. Por tanto, es debido a la correlaciones cuánticas entre X
y el resto del sistema. Hemos verificado esta hipótesis en el Tight Binding Model.
Podemos explicar este resultado mediante la invariancia conforme. La entroṕıa (1.3)
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para un sistema de tamaño infinito a una cierta temperatura se relaciona con la de
un sistema de tamaño finito en el estado fundamental (temperatura cero) mediante
una rotación de Wick: esencialemente cambiar la dirección de compactificación, de
la temporal a la espacial, en el cilindro de la figura 1.1. Esta rotación no modifica
el término independiente del tamaño del intervalo.

También hemos visto que este resultado sirve para obtener la entroṕıa de Rényi de un
fragmento de una escalera local de fermiones. La clave está en darse cuenta que la relación
de dispersión de una escalera se descompone en tantas bandas como railes tiene. Cada
banda puede interpretarse como la relación de dispersión de una cadena local. De esta
forma, la entroṕıa de un fragmento de tamaño L de la escalera es la suma de las entroṕıas
de un intervalo de longitud L de una cadena local dada por cada banda. También hemos
extendido al estado térmico la relación entre la entroṕıa de Rényi de un intervalo de
un modelo de spines XY sin campo magnético y las de dos modelos de Ising cuánticos.
En particular, hemos visto que esta relación permite obtener la entroṕıa de Rényi de un
intervalo de un Ising cuántico a partir de la de un modelo XX sin campo magnético cuyo
equivalente fermiónico es, de acuerdo con la transformación de Jordan-Wigner, el Tight
Binding Model.
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