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1. Introduccion

En una contestacion [I] al conocido articulo de Einstein, Podolski y Rosen (EPR) [2],
Schrodinger acuna el término entrelazamiento para referirse a aquellas correlaciones de
naturaleza exclusivamente cuantica que pueden darse entre sistemas fisicos. Estas corre-
laciones habian sido empleadas por EPR para tratar de argumentar que la Mecanica
Cuantica da una descripcién incompleta de la realidad fisica y la necesidad de una teoria
que superara sus caracteristicas intrinsecamente indeterministas, dando pie a las llama-
das teorias de variables ocultas. En su respuesta a EPR, Schrodinger senala que el en-
trelazamiento no es una mas de las propiedades de la Mecénica Cuantica sino su rasgo
fundamental pues carece de analogo clasico. En este sentido, Schrodinger reconoce en el
entrelazamiento el reflejo de que el conocimiento completo del estado de un sistema cuanti-
co no implica el total conocimiento del estado de las partes que lo forman, a diferencia de
lo que sucede en los sistemas clasicos. Més adelante, Bell [3] encuentra que en las teorias
de variables ocultas locales existen ligaduras sobre las correlaciones de los observables
(desigualdades de Bell), que son violadas por los estados entrelazados. La preparacién de
estados entrelazados en el laboratorio y la comprobacion experimental de la existencia
de estas ligaduras inclinaria la balanza a favor de la teoria cuantica convencional frente
a las variables ocultas locales. Es el grupo de Aspect [4] quien da la primera prueba ex-
perimental convincente de la violacién de las mencionadas desigualdades. Experimentos
posteriores han vuelto a confirmar la existencia de estados entrelazados y la validez de las
predicciones de la Mecanica Cuantica.

En las tultimas décadas, el interés por comprender el entrelazamiento no ha dejado de au-
mentar. Por un lado, parece ser uno de los ingredientes necesarios a la hora de desarrollar
ordenadores cuanticos y, en general, para la realizacion de tareas clasicamente imposibles.
Este tipo de investigaciones han originado un nuevo campo de trabajo denominado in-
formacion cuantica. Por otro, resulta clave en distintos dmbitos y en la comprension de
algunos fenémenos fisicos: decoherencia [5], sistemas en no equilibrio [6], transiciones de
fase [7, 8], superconductividad [9], fisica de agujeros negros [10], teorias de campos [11],12],
principio holografico [13]... En la actualidad, uno de los aspectos que mas interés suscita
es la forma de cuantificar el grado de entrelazamiento entre sistemas. Se han propuesto
diferentes medidas, cada una adecuada a determinandas circunstancias [I4]. En el caso
de un sistema en un estado puro y dividido en dos partes, una de las magnitudes mas
apropiadas para medir las correlaciones cudnticas entre ambas es la entropia de Rényi del
estado reducido de una de ellas.

Las cadenas unidimensionales de fermiones y de spines resultan ser sistemas muy atracti-
vos donde analizar esta medida. Por un lado, porque uno de los soportes mas prometedores
para abordar la construccion de un ordenador cudntico escalable es el de iones atrapados
[T5]. Actualmente ya se ha conseguido mantener alineados y entrelazados més de una
docena de iones (usualmente de elementos alcalinotérreos o de metales de transicién como
Zn*, Hg*, Cd™ o Yb'"). Los modelos matematicos que describen estas alineaciones de
iones, cada uno representando un qubit, son las cadenas de fermiones o de spines. Por
otra parte, porque existen distintos métodos analiticos sencillos y algoritmos numéricos
eficientes para obtener la entropia de Rényi en estos modelos. Numéricamente, la comple-
jidad de calcularla aumenta exponencialmente con el tamano del subsistema considerado.
No obstante, si el estado de la cadena cumple la propiedad de descomposicién de Wick es
posible reducirla a una dependencia polinomial, siendo suficientes las correlaciones para
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obtenerla [§, [16]. En ciertos caso, si el Hamiltoniano es ademds invariante bajo transla-
ciones, la matriz de correlaciones de un intervalo de la cadena es Toeplitz. Este hecho
permite llegar a una expansion de la entropia en funcion de su longitud para cualquiera
de los autoestados de la energia [17, [I8]. Desgraciadamente, las correlaciones de varios
intervalos disjuntos no forman una matriz de Toeplitz. Sin embargo, puede conjeturarse
una generalizacion de la expresion de la entropia de Rényi para ese caso que verificamos
numéricamente en [19]. Existen més aproximaciones a esta cuestién. Por ejemplo, si el
Hamiltoniano es local (contiene inicamente interacciones de corto alcance) y critico (el
conjunto de sus autoestados forma un continuo), pueden aprovecharse técnicas de la teoria
de campos conformes para hallar su expresion en el estado fundamental [IT], 20]. Estas
pueden extenderse al caso de varios intervalos [21] y a ciertos estados excitados [22].

En esta memoria aplicaremos estos métodos para evaluar la entropia de Rényi de un
intervalo en distintas cadenas de fermiones y spines que se encuentran a una cierta tem-
peratura. En este caso, su estado ya no es puro sino una mezcla estadistica por lo que a
las correlaciones cudnticas hay que anadir las de origen térmico. En [23] se analiza este
mismo problema desde otro punto de vista.

En los parrafos anteriores hemos ido introduciendo ciertos términos técnicos que es ne-
cesario definir de forma precisa. Por ello, esta primera seccién la dedicamos a introducir
los conceptos generales de Mecanica Cuantica necesarios para trabajar con la entropia de
Rényi. También veremos los resultados genéricos que la invariancia conforme permite ob-
tener e introduciremos de manera general las cadenas de fermiones y de spines, asi como la
estrecha relacién que existe entre ambas. A continuacién, calcularemos constructivamente
la entropia de Rényi en distintas cadenas; es decir, los resultados que obtengamos en el
primer modelo, cadena de fermiones homogénea y local (seccién 2), nos permitirdn calcu-
lar esta magnitud en escaleras de fermiones (seccién 3) y en el modelo de Ising cuantico
(seccion 4) .

1.1 Operador densidad

En general, el estado de un sistema cuantico puede ser puro o mezcla. El primer caso
corresponde a un vector normalizado |¢) del espacio de estados H del sistema. El segundo
consiste en una colectividad estadistica de estados puros {[¢;)}%, de manera que si {\;}%
es el conjunto de probabilidades de encontrarse en cada uno de ellos, el operador densidad

Q
p=> Xilwi) (0
=1

caracteriza dicho estado. Este operador también permite dar cuenta del estado puro |v),
para el cual la expresién anterior se reduce a p = [¢) (¢].

El operador densidad se caracteriza por ser hermitico (p" = p), de traza unidad (Trp = 1)
y semidefinido positivo (sus autovalores son no negativos). Si corresponde a un estado pu-
ro es un proyector; es decir, p?> = p y entonces Tr p? = 1. Por el contrario, para un estado
mezcla p* # p que, unido al hecho de que es semidefinido positivo, implica Tr p* < 1. Esta
propiedad permite discernir la pureza de p.
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Si O es un observable de nuestro sistema, su valor esperado (O) se obtiene a partir de p
a través de
(0) = Tr(p0).

Cuando p = |¢) (¢|, la expresién anterior puede reexpresarse como (O) = (| O 1)) .

En esta memoria divideremos los sistemas considerados en dos subsistemas X e Y de
manera que el espacio de estados total H puede escribirse como el producto tensorial
H = Hx @ Hy siendo Hx y Hy los espacios de estados de X e Y respectivamente. El
estado de X esta dado por la matriz densidad reducida

px = Try p,

donde Try es la traza parcial al subsistema Y, que implica sumar a los estados corres-
pondientes a Y. Es decir, si {|X;)} e {|Y;)} son bases de Hyx y Hy respectivamente, los
elementos de matriz de px son

(Px)um = D (Xal @ (V1) p (1Xom) @ 7)) -

J

De manera analoga, el estado de Y queda caracterizado por py = Trx p.

1.2 Entropia de Rényi

Se denomina entropia de Rényi de la matriz densidad reducida a

1 (0%
Sa(X) = 7 logTr pf,
donde a > 1. Por definicién, S,(X) > 0. Ademds, si d es la dimension de Hx entonces
el méximo valor que puede alcanzar S,(X) es logd. En el limite &« — 1 obtenemos la
entropia de von Neumann,

S1(X) = = Tr(px log px).

Para un estado puro, esta magnitud cuantifica el grado de entrelazamiento existente entre
X e Y. Decimos que ambas partes se encuentran entrelazadas si el estado total |¢) del
sistema no puede factorizarse en el producto tensorial del estado de cada subsistema; es
decir,

) # 1X) @[Y),

de manera que px y py son estados mezcla y, por tanto, S,(X) = S,(Y) > 0. En caso
contrario, el sistema es separable, px v py son estado puros (px = |X) (X|, py = |Y) (Y]),
por lo que S,(X) = S,(Y) =0.

Para un estado mezcla, la nociéon de entrelazamiento es menos clara y es necesario un
criterio més general de separabilidad (como concepto opuesto a entrelazamiento). En este
caso, la entropia de Rényi de la matriz densidad reducida no es tnica, S,(X) # S, (Y).

Como hemos dicho al inicio, aqui estamos interesados en analizar el comportamiento
de S, (X) cuando el sistema se encuentra a una cierta temperatura 1/ (en unidades de
la inversa de la constante de Boltzmann). Su estado es entonces una mezcla estadistica
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de los autoestados {|p;)} de su Hamiltoniano H cada uno con una probabilidad {e=#%}
(colectividad canénica o estado de Gibbs) siendo E; la energia de |p;). Por tanto,

o= >ie 7P i) (pil

SePE

es decir,
p=2te PH (1.1)

donde Z = Tre " es la funcién de particién. Ahora S,(X) cuantifica tanto las correla-
ciones cuanticas como térmicas existentes entre X e Y.

1.3 Entropia de Rényi y teoria de campos conforme

La funcién de particion de un sistema estadistico unidimensional es equivalente al pro-
pagador de una teorfa de campos definida sobre un espacio-tiempo bidimensional (una
dimensién espacial+una dimensién temporal). En particular, a un sistema cuyo Hamilto-
niano H es local y critico le corresponde una teoria de campos invariante bajo transfor-
maciones conformes; es decir, aquellas que preservan angulos pero no distancias y entre
las que se incluyen translaciones, rotaciones y reescalados. Aprovechando la simetria con-
forme de la teoria de campos subyacente es posible determinar la entropia de Rényi de un
subsistema. En particular, si X es un intervalo de longitud L y se toma el limite termo-
dindmico del sistema, Holzhey, Larsen y Wilczek [20] y Calabrese y Cardy [11] obtienen
que en el estado fundamental (temperatura cero)

a+1lc

SE5(X) = glog L+ C, (1.2)

donde c es la denominada carga central, un pardmetro que da el niimero de particulas sin
masa de la correspondiente teoria de campos conforme.

A partir de este resultado y utilizando también la simetria conforme, puede encontrarse
una expresion para S, (X) a una temperatura finita 1/3. La clave a la hora de emplear es-
tas técnicas es observar que existe una clara analogia entre el estado térmico p = Z~te=#H
y el operador evolucién temporal U(t) = e " si efectuamos el cambio it — 7 (rotacién
de Wick) con 7 € [0,]. El operador U(t) da el propagador de la teoria: la amplitud
de probabilidad de que el sistema evolucione de un cierto estado a otro, transcurrido
un intervalo ¢ de tiempo. En el formalismo de la integral de camino, dicha amplitud de
probabilidad puede escribirse como la suma sobre todas las posibles configuraciones del
sistema que llevan de un estado a otro. En teoria de campos, dicha suma esta defini-
da sobre el plano formado por el espacio-tiempo (minkowskiano). En base a la analogia
entre el operador evolucién temporal y el estado de Gibbs, los elementos de matriz de
este ultimo pueden también escribirse como una integral de caminos definida sobre una
banda del espacio-tiempo (euclideo) de anchura /3. De esta forma, px se obtiene al unir
los extremos de dicha banda (que corresponden con 7 = 0y 7 = f3) salvo aquellos puntos
del espacio que pertenecen a X, obteniendo el cilindro de radio 5/(27) de la figura .
A temperatura nula, 8 — oo, dicho cilindro es un plano. En [I1], Calabrese y Cardy
determinan cémo cambia la entropia al efectuar una transformacion conforme sobre
los puntos del plano. En particular, la aplicacién exp(27z/5) lleva los puntos z del plano a
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un cilindro de radio $/(27), que corresponde a un sistema a temperatura 1/3. Al efectuar
dicha transformacién sobre (|1.2)) se obtiene [11], 24],

1 L
Su(X) = O‘;‘ glog E sinh (%)1 + (1.3)
Cuando L < f recuperamos la expresién (1.2). Por el contrario, cuando L > [ tenemos
que
a+lenl a+1lc 6] ,
(X)) = -—— —1 — ) 1.4
SalX) a66+a6og<2w)+ca (L4)
T p= Z—le—ﬁH /\
3 px =Tryp
0
X
. X

T

Figura 1.1: Los elementos de matriz de p = Z 'e #H estan definidos sobre una banda de anchura
B del espacio-tiempo euclideo (z,7) de la teorfa de campos subyacente. La zona rayada verticalmente
corresponde a los puntos del intervalo X elegido. Los elementos de px se obtienen al unir los bordes de
la banda salvo aquellos puntos que pertenecen a X.

1.4 Cadenas de fermiones y de spines

En esta memoria vamos a trabajar con cadenas de fermiones y de spines. Ambos son
sistemas cudanticos constituidos por una red unidimensional de N puntos o sites cuyo
espacio de estados es C?, de manera que el total H es

H=C’g --@C2=C?.

Dividiremos estos sistemas en dos partes X, formada por L sites contiguos, e Y, que
contiene N — L sites, y analizaremos su entropia de Rényi S, (X) para L grande a una
cierta temperatura 1/3; es decir, cuando p = Z e ## donde H es el Hamiltoniano, que
caracteriza las interacciones entre los distintos sites. De acuerdo a esta division, H puede
escribirse como
H=Hx @Hy,

donde

Hy=C’® ---C2=C¥, Hy=0C>"""
Diremos que el sistema es una cadena de fermiones si sobre cada site n definimos los
operadores fermidnicos de creacién y aniquilacién a,,, al que satisfacen las reglas canénicas
de anticonmutacion

{al am} = 6pm, {an,am}={al,al } =0, n,m=1,...,N, (1.5)
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donde d,,,,, es la delta de Kronecker. Por otra parte, se tratara de una cadena de spines si
sobre cada site n definimos una variable de spin 1/2 a través de los operadores de Pauli
ol con u = x,y, 2, que siguen las reglas de conmutacion

v - vT T
[0k oV ] = 200 E ol v =1a,v, 2, (1.6)
T=X,Y,Z
siendo "7 el simbolo totalmente antisimétrico de Levi-Civita, y las relaciones de anti-
conmutacion

{ob, on} =26M. (1.7)

Existe una estrecha relacion entre las cadenas de fermiones y de spines. Los operadores
escalera sobre cada site de una cadena de spines
I N
ol = 5(‘% +icY), o, = §(an —ig?), (1.8)

n n

presentan reglas de anticonmutacion,

{U:’U;}:lv {0:707—1_}:{0;’0;}:07

andlogas a las de los operadores a,, y al, sobre el site n. No obstante, las reglas de anticon-
mutacién fermionicas involucran, en general, operadores que actian sobre distintos sites
de la cadena. Como el conmutador de los operadores de Pauli sobre dos sites distintos es

nulo, [o#, 0% ] = 0, entonces {c¥, o¥ } = 20Fol . Por tanto,

{on,00} =200, {oy.on} =200}, {o,,0,}=20,0,

n-m? n-m?

Es decir, los operadores escalera sobre distintos sites no siguen las reglas de anticonmu-
tacion de los operadores fermionicos. De hecho, sus conmutadores,

oo — (ot — [ ] —
[0n70%J‘*[an’gmi‘f[an7am]4’o‘

son semejantes a los de los operadores bosénicos de creacion y aniquilacion. En definitiva,

no podemos identificar directamente los operadores escalera con operadores fermionicos o

bosénicos. No obstante, si introducimos un cierto factor no local, podemos definir a partir

de ellos un conjunto de operadores que si satisfacen las reglas (1.5)):

n—1 n—1
ay = H(—GJZ-)U;, al = H(—J;)U:{. (1.9)
j=1 j=1
Esta relacién entre operadores de 1/2-spin y operadores fermiénicos se denomina trans-
formacion de Jordan-Wigner [25]. Ademés, teniendo en cuenta la regla [0, 0] = 207,
1
o =ala, — 3

Observamos que

ala, =o' o, (1.10)

por lo que el nimero de a-fermiones es igual al niimero de 1/2-spines cuya componente
z es +1/2. La transformacién de Jordan-Wigner establece una equivalencia entre sistemas
de fermiones y de spines que, en general, permite extender inmediatamente las propiedades
que conozcamos de uno de los dos sistemas al otro; por ejemplo, a la hora de evaluar su
espectro de energia o la entropia de Rényi de un intervalo de sites contiguos.
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Comencemos considerando una cadena de fermiones cuyas interacciones estdan dadas por
un Hamiltoniano homogéneo (es decir, invariante bajo translaciones) de la forma,

N N/2

H.. = Z Z Jial @y + hec., (2.1)

n=1 [=1

donde h.c. denota hermitico conjugado. Tomaremos que a, ny = a, y admitiremos
que las constantes de acoplo J; tomen valores complejos. Se dice ademés que este Ha-
miltoniano es libre puesto que existe una transformacion que permite reexpresarlo en
términos de otros operadores fermiénicos que se encuentran desacoplados. En dicha base
el Hamiltoniano es diagonal. En nuestro caso, debido a su invariancia translacional basta
una transformacién de Fourier discreta para diagonalizarlo. En efecto, introduciendo los
operadores fermidnicos

2 N N
mh 5L (2.2)

N
1 )
b=—— e%ay; O="21 k=——,...
FUN&S RN 2
y sus adjuntos
N
bT:—g e kgl
k /_]Vn:1 n

nuestro Hamiltoniano queda expresado explicitamente en tefminos de fermiones libres

N/2-1
errrn - Z Akb;bk

k=—N/2
En este caso, la relacién de dispersion es

N/2
A, = Z Jie 4 cc., (2.3)

=1

donde c.c. denota complejo conjugado. Los autoestados de este Hamiltoniano son los
determinantes de Slater,
(W) =[]0k 10),

kek
donde |0) representa el vacio, es decir by [0) = 0 Vk, y K C {—N/2,...,N/2 — 1} es el
subconjunto de modos k ocupados en |Ui). De esta forma,

errm

Vi) = Ex V),

siendo Ex = ), . Ax la energia del estado |Vx). El estado fundamental de H,,,, es
GS) = T vi10).

Ap<0

La entropia de Rényi de un intervalo es bien conocida para los estados |Ux). Inicial-
mente, Jin y Korepin [17] la calcularon para |GS) mediante el teorema de Fisher-Hartwig
para matrices de Toeplitz. En [I§] extendemos este resultado a cualquier autoestado de
la energia. Aqui aplicaremos dicho teorema en el estado de Gibbs.

7
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2.1 Entropia y matriz de correlaciones

En principio, si queremos calcular S, (X) necesitamos obtener el espectro de autovalores
de px, cuya dimensién es 2%, En consecuencia, para L suficientemente grandes su diago-
nalizacion es, en general, inviable; aiin empleando métodos numéricos. No obstante, si el
estado de la cadena satisface la propiedad de descomposicién de Wick es posible reducir
la complejidad del cémputo de S, (X). Esta propiedad consiste en que las funciones de
correlacién de 2.J sites pueden expresarse en términos de las correlaciones de las posibles
parejas; es decir,

Tr(pdy . ..doy) = Z H 1)1 Tr(pdy 2j-1ydo (i) (2.4)

O'GSQJJ 1
donde d; es una combinacién lineal d; = oqalT + Bay,
5, = {0 € Soslo(2j — 1) <o(2g),j=1...J}

es el conjunto de permutaciones que preserva el orden en cada par y |o| es la signatura
de la permutacion o. Lo interesante de que un estado de una cadena fermiénica cum-
pla esta propiedad es que permite construir p a partir de la matrices de correlaciones
Cpm = Tr(palan) y Fum = Tr(pa,a,,)[8, 16]. Ademds, como py y py heredan la propie-
dad de Wick, también pueden construirse a partir de la restriccion de C'y F' al subsistema
en cuestion.

El estado térmico del Hamiltoniano (2.1), prm = Z e PHrerm  verifica la descomposi-
ciéon de Wick. En ese caso, como H,,,, no posee términos del tipo a,a,, y alal , tenemos

que F,,, = 0 mientras que
1 eiQk(nfm)

Si escribimos esta expresion en forma matricial,
C = 0Dor,

donde (©)r, = €%"/v/N v (D) = (e 4+ 1) 26r. Dado que © es unitaria, los au-
tovalores u de la matriz C' son iguales a los de la matriz D, que ya es diagonal. Por
tanto,

e = (7 1), (2.6)

y, de esta forma, podemos determinar p,, a partir de la matriz de correlaciones C. La
base de esta idea es que el estado térmico cumple el teorema de Wick, propiedad que
conservan px y py que, por tanto, pueden construirse a partir de C' restringida a X e Y
respectivamente. Empleando la expresién , encontramos

(e} 1 + e_aBAk [e% o
Tr () = H m = H (1 — o)™ + ] -
k

k

De esta forma,

1
Sa(Prem) = 1—a Z log [(1 — pk)® + pz]
k
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y para a — 1 tenemos la entropia de von Neumann

S1(Preem) = = D [(1 = pa) log(1 — pux) + pux log pig] -

Si denotamos por C'y la restriccién de C' al subsistema X, su entropia de Rényi es

Sa(X) = - 1 ~Trlog (I — C)" + C§]. (2.7)

y cuando o — 1

S1(X) = —Tr[(I — Cx)log(I — Cx) + Cx log Cx] .

2.2 Cadenas locales: entropia y matrices de Toeplitz

Los elementos de matriz C,,,, unicamente dependen de la diferencia n —m. Es decir,
todos los elementos de cada subdiagonal paralela a la diagonal principal de dicha matriz
son iguales. Las matrices que satisfacen esta caracteristica se denominan matrices de Toe-
plitz. Esta propiedad es heredada por cualquier submatriz C'x obtenida de la restricciéon a
un subsistema X constituido por un unico intervalo de sites contiguos. Sin embargo, esto
no se cumple si tomamos un subsistema formado por sites no adyacentes. En la figura 2.1
representamos ambos casos.

Figura 2.1: La matriz A es una matriz de Toeplitz: todos los elementos de cada subdiagonal paralela a la
principal, representadas por las bandas rayadas, son iguales. La matriz B es una matriz por bloques en
el que cada uno de ellos es una matriz de Toeplitz.

En esta seccion consideraremos subsistemas similares a la situacién expuesta en A en
los que Cx es una matriz de Toeplitz. Aprovecharemos esta propiedad para obtener una
expansion de la entropia de X con su longitud L en el limite termodinamico N — oo
cuando el Hamiltoniano es local; es decir, sus acoplos J; decaen rapidamente con [,

lim JI7 =0, VvyeR.
l—00

En el limite termodindmico podemos efectuar el paso al continuo 6, = 27k/N — 0 €
[—m, 7] de manera que la relacién de dispersién (2.3]) para un Hamiltoniano local,

A(O) = Z Jie + c.c.,
=1
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es una funcién periddica, continua y suave. Si los acoplos son tales que A(f) nunca se
anula diremos que la cadena es no critica. Si, por el contrario, tiene un ntimero par v de
ceros en los que cambia de signo, consideraremos que es critica.

Si introducimos la matriz Vx = 2Cx — I, que también es Toeplitz,

1 BAk 10 (n—m)
VmZ—N;tanh(T)e k s

la expresion (2.7) queda de la forma

S(X) = 1iaTrlog KI+2VX)Q+ (I_ZVX)Q}. (2.8)

En el limite termodinamico, podemos reemplazar en los elementos V,,,,, la suma discreta
por una integral tal que

Vim = —i/ tanh (—BA(9)> =g,
2 J_. 2

Si aplicamos ahora el teorema de los residuos de Cauchy en (2.8]), escribimos S, (X) en
términos de la integral de contorno

Sa(X) = lim —

e—0t 271

= ol (55+ (]

y el contorno C rodea a los polos del integrando, que son los autovalores v; de Vy. El
contorno de integracion, los polos y los cortes de la funcién f, estan representados en la

figura 2.2

d), (2.9)

j{f dlog det(A — Vy)
e 7 dA

donde

-1-¢ Uy

- —aW
L
-1

Figura 2.2: Contorno de integracién C, cortes (x) y polos (e) para el célculo de S, (X). Los cortes de la
funcién f, se extienden a Foo.

El teorema de Fisher-Hartwig [26, 27] permite obtener una expansién del determinante
de la matriz de Toeplitz A\I — Vx en términos de L en el limite termodinamico N — oo.
Gracias a este resultado, podemos determinar explicitamente la dependencia de S, (X)
con la longitud del intervalo,

Sa(X) = Au(B)L + Co(B) +-- -, (2.10)
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donde los puntos suspensivos expresan los restantes términos de la expansion, que se
anulan en el limite de gran L. Puede comprobarse numéricamente que este desarrollo es
unicamente valido cuando 8 < L, como también se desprende de la comparacién con el

resultado conforme ([1.3)).

El coeficiente de la expansién correspondiente al término lineal es de la forma

A,(B) = lim

=0+ 4724

]{ £l 4N ddA / log[\ + tanh(BA(0)/2)]dA

que puede simplificarse,

1 ™
A (B) = 2—/ fall, tanh(BA(0)/2)]d6. (2.11)
™ —T
El término de la expansion independiente de L es
Ca(B) gli%iﬁff“ (14+¢e,)) dAZkSkS s (2.12)

donde s, denota al k-ésimo modo de Fourier del log[\ + tanh(SA(6)/2)],

Sk = % /_7r log[\ + tanh(BA(6)/2)]e~**dh.

En este caso, no hemos encontrado un camino para deshacernos de la integral sobre el
contorno C y llegar a una expresiéon que al menos pueda calcularse de manera numérica
para cada (3, como sucede con A,(3).

Cuando o — 1, entropia de von Neumann, encontramos

L ™
Sl(X) = _% [(1 - nFD) log (1 - nFD) + Npp lognFD] df + Cl(/@) +e

donde
1

Nep = m

es la distribucién de Fermi-Dirac. El factor que acompana a L es la densidad de entropia
termodindmica de un gas de fermiones [28]. También puede comprobarse que en la en-
tropia de toda la cadena no tenemos el término C, (). Por tanto, podemos concluir que
A, () se debe exclusivamente a las correlaciones térmicas mientras que C,(f3) refleja la
dependencia con la temperatura de las correlaciones cudnticas entre X e Y. Ademas,
éste ultimo sigue la ley del drea. Esta propiedad establece que el entrelazamiento en el
estado fundamental crece con el nimero de enlaces que se rompen cuando aislamos el
subsistema. En sistemas unidimensionales, este resultado se traduce en que la entropia es
independiente del tamano del subsistema. Por contra, el término A, (/)L sigue una ley de
volumen pues es proporcional al tamano del subsistema.

En el limite de alta temperatura, 5 — 0, tenemos que f,(1,0) = log2, y, por tanto,
An(0) =log2. Ademas, C,(0) = 0. En consecuencia, tinicamente existen correlaciones de
naturaleza térmica,

Sa(X) = Llog2, pg=0.
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Como en este caso la dimensién del espacio de estados de X es 2%, el maximo valor que
puede tomar S, (X) es justamente L log 2. Cuando  — 0, la expresion general para S, (X)
que se obtiene mediante la teoria conforme diverge. La razon es que el espacio de
estados de una teoria de campos conforme es de dimensién infinita. Por tanto, esta técnica
no es la apropiada para tratar con sistemas fermionicos o de spines a alta temperatura,
donde el comportamiento de la entropia depende de la dimensién del espacio de estados.

2.2.1 Limite f — oo

A diferencia de lo que sucede a alta temperatura, en el limite opuesto 5 — oo el compor-
tamiento de S,(X) depende de si la relacién de dispersiéon A(#) cambia o no de signo.

Cuando la cadena no es critica 'y 5 — oo,

(1-a)fm
a eﬁm<1—6—)L, a>1,

a—1 o

=
=
2

donde m es el valor minimo que toma A(#) que corresponde con el gap entre la energia
del estado fundamental y el primer excitado y es inversamente proporcional a la longitud
de correlacion del sistema. Cuando a — 1,

Si(X) = (14 Bm)e "™L.

Por tanto, para una cadena no critica la entropia de un intervalo decae exponencialmente
a cero a baja temperatura. De hecho, en el estado fundamental, |GS) = |0), se anula de
manera exacta [18].

En una cadena critica, como hemos dicho, existen una o mas parejas de modos criti-
cos o de Fermi en los que la relaciéon de dispersién A(6) cambia de signo. Supongamos
que tenemos v modos criticos 6;, i = 1,...,v, en los que A(#;) = 0. Al igual que sucede
en el estado fundamental, este hecho modifica radicalmente el comportamiento de S, (X)
cuando 3 — oo ya que existen modos 6 € (6; — 9;,0; + 9;) para los cuales A, () no decae
exponencialemente a cero con f3.

B — oo Fall, tanh(BA(6)/2)] B — oo tanh(BA(0)/2) =

pendiente~x A’(6;)

Figura 2.3: A la izquierda, representamos la aproximacién a baja temperatura, § — oo, de la funcién
fall,tanh(BA(0)/2)] en el entorno de un modo critico 6;. A la derecha, aproximacién considerada en los
célculos para la funcién tanh(SA(6)/2) en las proximidades de 8; cuando 8 — oo.
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Como se desprende de la figura (izquierda), la anchura de cada entorno es inversa-
mente proporcional a 3|A’(6;)|, donde A’(6;) denota la derivada de la relacién de dispersién
en 6;; es decir, la velocidad de Fermi de 6;. Por lo tanto, §; = 27 /(8|A’(6;)|). Para valores
de # suficientemente alejados de los modos criticos tenemos una situcién idéntica a la del
caso no critico.

De acuerdo con estas ideas, dividamos la integral del término lineal (2.11]) en v piezas,

v

Aa(B) = 5 Z/@ N ' fu L, tanh(BA(8)/2)] dO + - - -

i—0i

donde los puntos suspensivos denotan el resto de partes cuyo integrando decae exponen-
cialmente a cero a baja temperatura. Si efectuamos el cambio de variable £ = tanh(5A/2)
y consideramos la aproximacién de la figura derecha para la funcién tanh(SA(6)/2)
en cada cambio de signo de A() cuando f — oo, tenemos

' fa(1,€)
7Tﬂ|1\’ ) (1—-8%)

Aa(B) ~ A+ (2.13)

La integral de la expresion ([2.13]) puede ser resuelta analiticamente mediante el cambio

de variable £ = (t —1)/(t + 1),

1 ! 1+ &6\ 1—&\" d¢ ma+1
— 1 — = — . 2.14
—a 1°g{<2)+(2)]1—52 2 a 214)
En definitiva, si A(f) posee v cambios de signo en 6;, i = 1,... v, entonces
a+l T & 1
A, ; )
P M v R

donde los puntos suspensivos denotan términos que decaen exponencialmente a cero.

El problema a la hora de tratar con el término independiente de L, C,(f3), se encuentra
en determinar la serie >~ | ksys_g, donde, recordemos, s; representa el k-ésimo modo de
Fourier de la funcién log[A + tanh(5A(0)/2)].
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B — 00, logA+ tanh(BA(6)/2)] ~ B— 00, Llog[A+ tanh(BA(6)/2)] ~
log(A+1) — 26, log %
0;+5; 6. -6 0i—d; _ 6it0i 0.1

i+1 Titl

0.0 : +4 0; 0i+T 6i+1 9i+-l'|_6i+l

i+1 il Titl

log(A — 1)

Figura 2.4: A la izquierda, representamos la aproximacién de la funcién log[A 4+ tanh(8A(6)/2)] que
consideramos a la hora de obtener C,, () a bajas temperaturas, § — oo. Aqui hemos dibujado inicamente
dos modos criticos 6; y 6;+1 consecutivos tales que A’(6;) < 0y A’(6;41) > 0. A la derecha, representamos
la derivada en 6 de la aproximacién de la izquierda que empleamos para calcular en primera aproximacion
los modos de Fourier iks;,.

Observemos que iksy es el modo k-ésimo de £ log[A + tanh(8A(6)/2)]. En el limite
S — oo, la funcién log[A + tanh(BA(6)/2)] puede tomarse constante en 6 salvo en los
entornos de cada cero de A(6), para los cuales, en primera aproximacion la consideraremos
lineal, tal y como refleja la figura [2.4]izquierda. De esta forma, su primera derivada es nula
salvo para los modos 6 € (0; — §;,0; + 9;), en los cuales es constante. Calculando ks con
dicha aproximacién y quedandonos al sumar la serie con los términos dominantes cuando
B — oo se llega a

e 1 A+1\1%2 L o
e — |log [ &= log (= )+ .
Zk 4#2{0g(x—1>} ;Og(ﬁlA’(@)l>+  poo

Llevando este resultado a la expresién de Cy(f3), (2.12)),

R o
donde

d A+1\1
L= lim ¢ fu(l+e N |log (22| an.
Efgijif( T )dA[Og(A—1>]

Existen distintas formas de proceder con esta integral. La mas adecuada es efectuar una
integracién por partes puesto que eliminamos directamente las divergencias que de otro
modo aparecen. Si a continuacién integramos a lo largo del contorno C llegamos a una
integral idéntica a . De esta manera,

C’a(ﬁ):%Zbg(ﬁlQ—fZ”) +-0, = 0.
i—1

Agrupando los resultados anteriores, tenemos que en una cadena fermiénica local cuya
relacién de dispersion posee v cambios de signo en los modos 0;, 1 =1, ..., v, la entropia
de Rényi de un intervalo a baja temperatura, § — 0o, es en primera aproximacién
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_a+l T = 1 a+1 BIN'(6;)]
SolX)~ =, 126;|A'<1 Zl ( >+

que escala en L y § de manera similar a la prevista por la expresién conforme (|1.4))
cuando 5 < L. De hecho, salvo por la constante C’,, nuestro resultado se reduce a
cuando las velocidades de Fermi |A’(6;)| valen la unidad. La carga central ¢ es igual al
nimero de parejas de cambios de signo de A(6), de forma que cada uno de ellos puede
identificarse con una de las particulas sin masa de la teoria de campos conforme subya-
cente.

A diferencia del caso no critico, aqui S,(X) no tiende de manera continua a su expresién
para el estado fundamental de H.., local y critico, |GS) = [],, oo bl |0). En efecto, de
acuerdo con [I§], para este estado

a+1v log[2 — 2 cos(#; — 6;)]

GS _
SE(X) = T log L +vTa + > ; : (2.15)
1<i#j<v
donde
1 fhdfa(1,)) [(1/2 —iw(\)) 1 A+1
Te=sn | = 8 |Tanrwoy| P “W=grls|x=7):

es un término universal, que no varia bajo pequenas modificaciones de los acoplos, y I es
la funcién Gamma de Euler.

2.2.2 Ejemplo: Tight Binding Model
Un caso particular de Hamiltoniano local de la forma (2.1]) es el del Tight Binding Model,

N
HTBM - Z [Joalban + Jl@L(CLn_l + an—‘rl)} ) (216)
n=1

suponiendo los acoplos Jy y J; reales y J; < 0. Su relacién de dispersion es
ATBNI(0> - JO + 2J1 COS(Q).

Si |Jo| > 2|J1|, no tiene ningun cero. Por el contrario si |.Jy| < 2|.J;| hay dos valores de 6

J
6, = arccos (—2—;1) y 0y = —01,

para los cuales cambia de signo; es decir, v = 2. De acuerdo con los resultados de la
seccion anterior, en el limite a baja temperatura 8 — oo la entropia de von Neumann de
un intervalo L es

STPM(X) & [L+4 B(Jo — 2J1)]e P2 L s | Jo] > 2|4,

ya que aqui m = Jy — 2J1, y

SIP(X)

1 2J1)2 — J3
+§1og<6 (2173 0), si |Jo] < 2|4 (2.17)

J/

T
L
36/ (21)* — Jg

TV
TBM
Al CTBM
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Observemos que, salvo por el término constante aditivo C7], este resultado es el que se
obtiene de la simetria conforme cuando L > f con carga central ¢ = 1. Podemos
determinar la constante C] para este modelo mediante un estudio numérico de S;(X).
Para ello, como el estado térmico satisface la descomposicion de Wick, basta con obtener
la matriz de correlaciones C para cada tamano L de intervalo y temperatura 1/0,
diagonalizarla y aplicar la expresion . Para hallar el espectro de autovalores, hemos
empleado la rutina correspondiente a matrices complejas hermiticas incluida en GNU
Scientific Library [29] escrita para el lenguaje C.

Si tomamos J; = —1/2 el Hamiltoniano serd critico cuando |Jo| < 1. En primer
lugar, consideremos Jy = 0, fijemos el valor de la temperatura 1/ y evaluemos S(X)
modificando la longitud del intervalo entre L = 500 y L = 4500 sites en una cadena con un
total de N = 10000 sites. Los puntos de la figura representan los resultado numeéricos
para distintos valores de . La tabla recoge los coeficientes del ajuste a una funcién
lineal al. + ¢ de cada serie de puntos numéricos con [ fijo. También contiene los valores
numeéricos de las aproximaciones de A7 y CT"" cuando 5 — oo. La tltima columna
representa la diferencia entre ¢ y C7"", que es un valor practicamente idéntico al que
obtenemos para el término independiente de la entropia de von Neumann de un intervalo

en el estado fundamental de (2.16) cuando Jo =0y Ji = —1/2, |GS) = [} na b |0),

S95(X) =1/31log L + 0.726067... (2.18)

con T = 0.2475009....

100
90
80
70
60

50

S1(X)

40

30

20

10

0 T T T T T T
500 1000 1500 2000 2500 3000 3500 4000 4500

Figura 2.5: entropia de von Neumann, S;(X), de un intervalo X de un TBM conJy=0yJ; =-1/2
en funcién de su longitud L para distintas temperaturas 1/8. Los puntos representan los valores obtenidos
numéricamente mientras que las rectas corresponden a la expresion analitica para cada valor de
maés la constante aditiva C1T5M = (.726067....
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Ajuste Analitico f — oo
B a(x1073) c ATPM (x1073)  COFPM C™PM = ¢ — CT™M
50 20.9631  1.41691 20.9440 0.69138 0.72553
200  5.23624  1.87951 5.23599 1.15348 0.72603
500 2.09445  2.18497 2.09440 1.45891 0.72606
1000  1.04877  2.41110 1.04720 1.68996 0.72115

Tabla 2.1: a y ¢ son los coeficientes del ajuste a la funcién lineal aL + ¢ de los valores numéricos de Sp(X)
que obtenemos a una temperatura fija 1/ variando la longitud L de un intervalo de un TBM con
Jo =0y J; = —1/2. Las columnas AT®™ y CTBM contienen los correspondientes valores numéricos de
estos coeficientes para 8 — oo dados por . Obsérvese que la resta ¢ — CTBM es un nimero cercano
al término constante de la entropia del intervalo en el estado fundamental .

En la ﬁgura las lineas continuas representa la aproximacion mas la correccién
aditiva C7™™ = 0.726067.... En vista de estos resultados, conjeturamos que C7™" es el
término independiente de la entropia de un intervalo en el estado fundamental del
Hamiltoniano (2.16) critico, |GS) =[], oo bl |0),

1
C1™™™ = 0.4950179... + 6 log[2 — 2 cos(26,)]. (2.19)

Para comprobar esta hipdtesis, estudiamos numéricamente S;(X) para distintos valo-
res de Jy < 1 con J; = —1/2, variando L entre 500 y 4500 sites y fijando la temperatura
en § = 200. En la tabla recogemos los coeficientes a y ¢ del ajuste de los valores
numéricos de S;(X) que obtenemos para cada Jy, comparandolos con los correspondien-
tes coeficientes AT®™ y CT"M + C"™™M.

Ajuste Analitico g — oo
Jo a(x1073) c ATBM (x1073) (O™ 4 OfreM
0.1  5.26263 1.87615 5.26237 1.87620
0.3 5.48920 1.84805 5.48881 1.84811
0.5 6.04687  1.78356 6.04600 1.78365
0.7 7.33500 1.65487 7.33185 1.65510
0.9 12.0641 0.247412 12.0122 1.32597

Tabla 2.2: a y ¢ son los parametros que obtenemos al ajustar a una dependencia lineal aL + ¢ los valores
numéricos que obtenemos para S1(X) al variar el tamano L del intervalo X de un TBM a 8 = 200 para
cada acoplo Jy, con J; = —1/2. Las columnas ATBM y CTBM 4 C™M recogen los valores que da la

expresion ([2.17) para los dos primeros y (2.19) en el caso de C7"M.

Como se desprende de la tabla [2.2] los resultados numéricos corroboran la conjetura
propuesta salvo para Jy = 0.9. A medida que aumentamos este acoplo y nos aproximamos
al valor para el cual el Hamiltoniano deja de ser critico (esto es, Jy = 1), los ceros de
Argu(0) se van acercando. Hemos comprobado numericamente que la expresién (2.19)
para el término independiente de L de la entropia del estado fundamental no es valida
cuando A, y —6; estan suficientemente cerca, como sucede en el caso Jy = 0.9.
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3. Escaleras de fermiones

Los resultados que hemos obtenido para la entropia de un intervalo de una cadena ho-
mogénea y local de fermiones a una cierta temperatura van a servirnos para obtener la
entropia de partes de sistemas mas complicados. En esta seccion consideraremos una es-
calera de fermiones en forma de prisma con ¢ aristas o railes cuyas interacciones estan
descritas por el Hamiltoniano

7lCL An+pN/q+1 + h.c. (31)

N
ladder E E

q—1 N/(29)
J
n=1 p=0 [=0

Supondremos que los acoplos J,; decaen rapidamente en [. Un ejemplo de este tipo de
escaleras con ¢ =3y J,; = 0 para [ > 2 se muestra en la figura izquierda.

A

Figura 3.1: A la izquierda, representacién de una escalera de fermiones de tres railes, ¢ = 3. Los
extremos de cada rail con la misma letra estdn unidos, formando un anillo retorcido. Por simplicidad,
unicamente hemos dibujado (con lineas mds finas) las interacciones a segundos vecinos de la cara inferior
del prisma. Los sites oscuros corresponden al fragmento X elegido. A la derecha, representamos las bandas
de la relacién de dispersion de una posible escalera de fermiones con tres railes, ¢ = 3.

Este Hamiltoniano también puede interpretarse como una cadena unidimensional
con acoplos no locales. Por tanto, es diagonalizable introduciendo los operadores by
y sus autoestados son los determinantes de Slater |Wx). En este caso, la relacion de
dispersién del sistema,

Ay = Z Jp7l€2ﬂik(pN/q+l)/N + h.c.,
p,l
puede descomponerse en ¢ bandas o ramas. En efecto, si tomamos £ = s en mod ¢ tenemos
que

q—1 N/(2q)
Ay = Z eQﬂzsp/q Z J e27rzkl/N + h. c.,
p=0

y, en el limite termodindmico 27k/N — 0,

q—1 e’}
9) _ Z 6271'2817/(] Z JpJeiGl + h.c.
—0 1=0

Por tanto, hay una relacién de dispersién independiente A;(f) para cada valor de s =
0,...,q — 1. Cada banda es una funcién periddica, continua y suave que puede tener un

19
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nimero par vy de cambios de signo. En la figura derecha mostramos un caso genérico
para g = 3.

En las escaleras resulta natural elegir como subsistema X un fragmento de longitud L de
la misma; esto es, ¢ intervalos de tamano L situados cada uno de ellos en uno de los railes
y perfectamente enfrentados entre si. Desde el punto de vista de una cadena unidimen-
sional no local, esto equivale a tomar ¢ intervalos disjuntos de longitud L separados entre
si por una distancia N/q — L. Por tanto,

qg—1

X =[JXx,

p=0

donde X, = {1 +pN/q,---,L+ pN/q} es el intervalo de sites contiguos de longitud L
situado en el rail p-ésimo. Nuestro objetivo es calcular la entropia de Rényi de X en el
limite termodindmico de una escalera que se encuentra a una cierta temperatura 1/4.

En principio podemos proceder como en el caso de una cadena local, introduciendo la
matriz Vx, de dimension gL, que se obtiene de restringir

1 6Ak 10 (n—m)
Vnm = _N;tanh (T) e’k

a los indices que pertenecen a X. Sin embargo, esta matriz ya no es Toeplitz. Es una
matriz por bloques en la que cada bloque es Toeplitz (situaciéon B de la figura . Por
tanto, no podemos aplicar directamente el teorema de Fisher-Hartwig como hicimos para
un intervalo de la cadena local. No obstante, teniendo en mente la separacién en ramas
de la relacién de dispersion, descompongamos V' de la siguiente forma

donde
(‘/;)nm = —N tanh (T) ek .

k:s(modq)

Observemos que tenemos la propiedad de simetria
(Vo fqm s/ N /g = eQwis(p*p’)/Q(Vs)n,m' (3.2)
Aprovechandola, podemos escribir la matriz V; retringida a X, V; x, como

‘/;7X0 e2ms/th§7X0

—2mis
Vix =Vsx,®Ts =] € 11V x, Vs, xo R I

donde Vj x, es la restriccion de V; al intervalo Xy = {1,..., L} y T son matrices con
elementos
(Ts)pp' = 627Ti8(p7p/)/q’ papl = OJ g — 1
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De esta forma tenemos que
-1
19
Vy = 52{/;7)(0 @ Ts.
s=0

Las matrices Ty conmutan entre si por lo que existe una transformacion que las diagonaliza
simultaneamente
-1 -
(UTU™ ) pp = @05 5050

donde U es la matriz unitaria de elementos

1 -
U., — 2mipp’ /q
o’ = e :

Va

Entonces,
Voxa 0 - 0
0 Vix, - 0
0 0 qul,Xo

Las matrices V; x, si que son matrices de Toeplitz tales que, en el limite termodinamico,

L BASO) ion—m)
(Vs)nm——%/_ﬂtanh( 5 )e de.

El espectro de una matriz suma directa de matrices es la uniéon de los espectros de cada
matriz de la suma directa. Por tanto,

q—1

SOt<X) = ZSQ,S(XO)v (33)

s=0

1 I+ Vix, \" I—Vixy\”
Trlog | (—2eXe ) 4 (L= leo
oo (F) () |

que puede calcularse a partir de los resultados de la cadena local. El estado fundamental
de la escalera, [T, g bl |0), también satisface la simetria 1} En ese caso, cada S§% (Xo)

estd dado por la expresion (2.15)) aplicada a la banda A4(6).

donde

Soz,s(XO) =

3.1 Ejemplo: escalera de dos railes ¢ = 2
El caso mas sencillo de escalera de fermiones es la de dos railes, ¢ = 2, descrita por el
Hamiltoniano

N
Hladder = Z(Joailan + Jlailanﬂ + JN/QCLL(I”_,_N/Q) + h.C. (34)

n=1

Consideremos que los acoplos toman valores reales. En este caso la relacién de dispersion,

2rk
Ay = 2Jy + 2J; cos (%) + 2(—1)kJN/27
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posee dos bandas. Una correspondiente a los momentos k pares,

2mk
Abper = 2(Jo + JIny2) 4+ 2J; cos (%) 7

y la otra para los k impares,

2k
Absiupar = 2(Jo — Iny2) + 2J; cos (%) )

Para simplicar las expresiones, tomemos Jy/, = Jy. En ese caso, en el limite termodindmi-
co tenemos que

A,..(0) = 4Jy + 2.J; cos(0),

A,..(0) = 2.J; cos(0).

Por tanto, de acuerdo con los resultados obtenidos anteriormente (3.3)), la entropia de un
fragmento X de tamano L viene dada por

SCX(X) - Samar(XO) + Sa,impar<X0)'

donde Sy par(X0) ¥ Saimpar(Xo) son las entropias de un intervalo Xy de tamano L de una
cadena de fermiones local cuya relacién de dispersion es A, (0) y Ai,p.:(0) respectivamente.

Si suponemos que J; < 0y |Ji| < 2|Jo|, entonces la banda A,,, carece de ceros, v,,, = 0,
mientras que A,,.. se anula en +7/2 independientemente del valor de los acoplos. Por
tanto, V... = 2. Como en este caso la banda par no cambia de signo, su contribucién a la
entropia en el limite § — oo decae exponencialmente a cero y puede despreciarse frente a
la de la banda impar. Particularizando a esta banda los resultados obtenidos en la seccion
2.2.1 cuando  — oo, tenemos que la entropia de von Neumann del fragmento X serd

1 1 211,18
N 7 A\ - 7
Al,impar Cl,impar

En este caso, la entropia del fragmento escala de manera similar a la de un intervalo
en el TBM critico con J,*™ = 0. Estudiémosla numéricamente para comprobar
si también tenemos una constante aditiva de la que Fisher-Hartwig no da cuenta. De
nuevo, para reducir la complejidad y alcanzar tamanos mayores, calculamos la entropia
de von Neumann del fragmento X a partir de la matriz de correlaciénes C,,,, restringida
a dicho subsistema. Los puntos de la figura son los valores que obtenemos para dicha
magnitud tomando una escalera de N = 10000 sites con Jy = 1y J; = —1/2, para distintas
temperaturas 1/8 y modificando el tamano del fragmento entre L = 500 y L = 2250 sites.
La tabla recoge los coeficientes a y ¢ del ajuste a una funcion lineal al + ¢ de cada
serie de puntos a una determinada temperatura, asi como el valor de A jper ¥ Chimpar
para cada caso.
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Ajuste Analitico f — oo
6 a (X 10_3) c Al,impar (X 10_3) Cl,impar Cc— Cl,impar
50 20.9634  1.41692 20.9440 0.69138 0.72554
200  5.23629  1.87951 5.23599 1.15348 0.72603
500  2.09463  2.18460 2.09440 1.45891 0.72569
1000  1.05292  2.40585 1.04720 1.68996 0.71589

Tabla 3.1: a y ¢ son los parametros del ajuste a una funcién lineal aL + ¢ de los valores numéricos de
S1(X) que obtenemos a una temperatura fija 1/8 variando el tamafo L de un fragmento X de la escalera
con Jo=Jyp=1y J1 = —1/2. Las columnas A1 jaqder ¥ C1,1adder cOntienen los correspondientes
valores numéricos de estos coeficientes para S — oo, dados por . La diferencia ¢ — C jmpar €5 un
nimero préximo al término constante de la entropia del fragmento en el estado fundamental de esta
escalera.

60 -
50

B =200

=
Il

50

o b

Figura 3.2: entropia de von Neumann, S;(X), de un fragmento X de la escalera conJo=Jnp=1y
J1 = —1/2 en funcién de su tamafio L para diferentes valores de 8. Los puntos corresponden a los valores
obtenidos mediante la diagonalizacién numérica de las correlaciones. Cada recta representa la expresién
analitica con los coeficientes A1 impar ¥ C1 impar de la tablapara cada valor de § mas la constante
aditiva 0.726067....

La entropia de un fragmento en el estado fundamental de esta escalera, |GS) =
I J— bL |0), es similar a la de un intervalo del TBM critico con J3® = 0 en su
estado fundamental,

1
S (X) = ST (Xo) = 5 10g L + 0.726067... (3.6)

Por lo tanto, examinando la dltima columna de la tabla[3.1] parece claro que también
tenemos aqui un término constante adicional en la entropia que parece corresponder al
término independiente de L de la entropia del fragmento en el estado fundamental de la
escalera.

Comprobemos esta conjetura considerando la situacién |J;| > 2|Jy|. En ese caso, la banda
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A,.. también se anula en + arccos(—2.Jy/.J;) por lo que no puede despreciarse su contri-
bucion a la entropia del fragmento cuando  — oo. Asi tenemos que,

1
Aladder:Al,par +A1,impar

A

rl 1 1 7;
A3 <¢<2J1>2 VAR 2!J1\> B

1Og<\/ 25 - 4J0)25) +log ( \g;!ﬁ)% .

~~
Ciadder:Cl,par +Cl,impar

+

1
3

més una constante aditiva C{* que, conjeturamos, es el término independiente de la
entropfa del fragmento X en el estado fundamental de la escalera, |G'S) = [],, - bl |0).
Cuando a0 =1,

SIGS<X) - Sl par(XO) + Sl 1mpar( O) 1
3 log L+ 0.4950179... + A log[2 — 2 cos(2 arccos(—2Jy/J1))] + 0.726067...

Q

S/

~\~
Clladder
1

Comprobemos esta hipdtesis numéricamente. Fijamos N = 10000 sites, § = 200, J; =
—1/2, y calculamos S;(X) para distintos acoplos Jy < 1/4 variando la longitud de X
entre L = 500 y L = 2250 sites. Ajustamos cada serie de valores de S;(X) para un Jy fijo
a una relaciéon lineal al + c. La tabla recoge los valores de a y ¢ que obtenemos en
cada ajuste asi como los de los correspondientes At y Cjrdder 4 Cfrader,

Ajuste Analitico g — oo
JO — JN/2 a C A%ladder C:lladder + Ciladder
0 1.04726  3.75903 1.04720 3.75909

0.05 1.05806 3.74542 1.05799 3.74549
0.1 1.09498  3.70089 1.09489 3.70097

Tabla 3.2: a y ¢ son los coeficientes del ajuste a la funcién lineal aL + ¢ de los valores numéricos de
S1(X) que obtenemos a un S fijo variando la longitud L del fragmento X de la escalera para
distintos acoplos Jo = Jn/o y J1 = —1/2. AP y C14" corresponden a los valores numéricos de estos
coeficientes previstos por la aproximacién que hemos obtenido cuando 3 — oo. Por su parte, Cj2ddr 1o
calculamos a partir de la expresién del término independiente de L de la entropia de X en el estado
fundamental.

Comparando las columnas de ¢ y C}** + C7*" podemos concluir que nuestra con-
jetura es acertada. Como sucedia en el TBM, la expresion que tenemos para el término
independiente de L de la entropia en |G\S) deja de ser valida cuando los ceros de la banda
par estan lo suficientemente cerca.
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Los resultados obtenidos para la entropia de una cadena fermionica local no sélo sirven
para calcular la de un fragmento de una escalera fermiénica. Como mencionamos al princi-
pio, dicho resultado es también aplicable a la correspondiente cadena de spines con la que
se relaciona mediante la transformacion de Jordan-Wigner. Ahora veremos que también
permite conocer la de un modelo de Ising cuantico. Para ello, debemos explorar primero
el conocido modelo XY. Se trata de una cadena unidimensional de spines descrita por el
Hamiltoniano

1+ T T 1 - z
HXY o Z |: 9 ’yo-n On+1 + T’yo-gOZJrl + th ) (41)

n=1
donde v y h son dos constantes reales. Fisicamente, v es un pardmetro de anisotropia
entre los acoplos de las componentes x e y de cada spin con sus vecinos mientras que h
representa la interaccion de los spines con un campo magnético en la direcciéon z. Consi-
deramos condiciones de borde periddicas, de manera que oy ; = ol

Para v = 0 obtenemos el Hamiltoniano del modelo XX,

N
1 1 .
HXX = Z |:2 n n+1 + 2gn n+1 + ho_n ’ (42)

n=1

en el que la interaccion entre vecinos es isétropa. El valor v = 1 corresponde al Hamilto-
niano del modelo de Ising cudntico,

N
H, = Z [0t + ho?], (4.3)

en el que unicamente interaccionan las componentes x de los spines vecinos. Este Ha-
miltoniano se obtiene también al efectuar la técnica de la matriz de transferencia en el
modelo de Ising bidimensional.

4.1 Diagonalizacién del Hamiltoniano XY

La transformacion de Jordan-Wigner permite expresar el Hamiltoniano XY en términos
de los operadores fermiénicos a,,, af, (1.5)),

N-1

Hy, = —7 + [ ananJrl ApGpni1) + (aLanH — anaLJrl)]
=1

3

+e’i7rP [’Y(_Q}L\IQI -+ aNal) + ( a'i].\;axl —+ aNal ] Z ha nns

donde P es el operador

N N
P= Za:{a; = Zalan,
n=1 n=1
que aplicado sobre un estado |®) de la cadena
P|®) =p|®),

25
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indica el numero de spines p con componente z +1/2 que presenta. En virtud de la trans-
formacion de Jordan-Wigner ((1.10)), éste es igual al niimero de a-excitaciones en la cadena
fermidnica equivalente. Obsérvese que si p es par tenemos que ayy; = —ap (condiciones
de borde antiperiddicas). Por el contrario, si p es impar, entonces ax,1 = a; (condiciones
de borde periddicas). Este término introduce en los observables correcciones O(1/N) [30].
Como en el resto del trabajo, estamos interesados en el limite termodinamico N — co. En
ese caso, su contribucién puede despreciarse, de manera que podemos tomar condiciones
de borde periédicas tanto para p impar como para p par; es decir, el Hamiltoniano

Nh N

Hyy = -5 + [y(alalﬂ — Gplng) + (a] apyy — ana}:ﬂ)} + Z hala,, — (4.4)

n=1 n=1

en lugar del inicial (4.1)).

Si sobre éste efectuamos una transformacion de Fourier introduciendo los operadores

fermionicos by, bL 1}
_ t Ck Sk by,
Hoo =3 (b, 04) ( oo ) < i ) , (4.5)

k>0
donde
cr =h+2cosgg, sp=2vysiny;.

Como ahora tenemos interacciones a,a,, y al,al , no basta esta transformacién para expre-

sarlo en términos de fermiones libres. Para conseguirlo, recurrimos a una transformacién
de Bogoliubov, que consiste en definir unos nuevos operadores dy, dL a partir de by y bL,

dp, = cosﬁkbk—isiné’kbik
d; = Cosfkb,t+isin£kb,k.

Llamaremos angulo de Bogoliubov a &, definido por
cos(2&;) = %; sin(2&;) = —%, donde A = /¢ + si.
k k

Dado que la transformacién de Bogoliubov es unitaria, los operadores d, d,t son también
fermiénicos, siguiendo reglas de anticonmutacién idénticas a ((1.5)). El Hamiltoniano XY
queda, de esta manera, expresado explicitamente en términos de fermiones libres,

N/2—1
Hyy = Y Afvdidy (4.6)

k=—N/2
Los autoestados de este Hamiltoniano son los determinantes de Slater

@) =[] i 10), (4.7)

kek

donde |0) representa el vacio (es decir di |0) = 0 Vk) y K C {—N/2,...,N/2 —1} es el
subconjunto de modos ocupados en |®x). De esta manera,

HXY |(I)IC> - E])éY ’(I)IC> )

siendo EFY = >, . Ay la energia del estado [®x). Dado que AFY > 0, el estado funda-
mental de Hyy es el vacio |0).

Observemos que si en (4.4) hacemos v = 0 (modelo XX) obtenemos un Hamiltoniano
fermiénico Hyx andlogo a Hypy (2.16)).
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4.2 Matrices de correlaciones térmicas del modelo XY

El estado térmico del modelo XY, pxy = Z le PHxY también satisface el teorema de
descomposicion de Wick. Por tanto, podemos construirlo a partir de las correlaciones
fermiénicas a dos sites C,,,, v Fn.,. La principal diferencia con el caso de las cadenas
fermidnicas iniciales es que ahora el Hamiltoniano presenta acoplos a,a,, y alal
y, por tanto, los elementos F),,,, no son nulos. Efectivamente, para el estado térmico del
modelo XY tenemos

1 ' BAXY 1)
CXY = — ) 7= 65(2€,) tanh < K ) + ==, (4.8)
2N - 2 2
y
7: . /BAXY
FYy == e " gin(2¢,) tanh (—’f) : (4.9)
2N - 2
Definiendo la matriz
) 1 ) LAY
_ Xy _Ynmm Xy & —i[0k (n—m)—2&x] k
Gom = G = =5+ = Fom = =5 > el wl tanh ( 5 > , (4.10)

k

de manera que G = C*Y — [ /2 + F*Y. Efectuando el producto entre ellas, encontramos

1 XY

, A
(GGT)nm = m G_Zek(n_m) tanh2 <_ﬁ 2k ) ) (411)
k

expresién que podemos escribir en forma matricial,
GG'=eD'er, (4.12)

donde (O)g, = € /\/N y (D) = 1 tanh® (BAYY/2) §. Dado que © es unitaria, los
autovalores 7, de la matriz GGT son los de la matriz D', que ya es diagonal. Por tanto,

1 AXY
Mk = Z—ltanh2 (ﬁTk) . (4.13)

De esta forma, podemos determinar pxy, cuya dimensién es 2V, a partir de la matriz GGT,
de dimensién N. Puesto que las matrices densidad reducidas heredan esta propiedad, las
ideas anteriores también pueden aplicarse en ellas siempre que X e Y sean, cada uno, un
unico intervalo de spines contiguos. Por el contrario, cuando estan formados por varios
intervalos disjuntos, esta propiedad no se transmite debido a la no localidad de la trans-
formacion de Jordan-Wigner. Observemos que si F},,, = 0 recuperamos el caso descrito
en la seccion 2.1.

Con esta técnica podemos escribir la entropia de Rényi de pxy en términos de los au-

tovalores de GG'. Utilizando la expresién (4.13), tenemos que

w2 {)  n)

A (1 + 67&A?Y> 2

1+ e oBALY
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y, por tanto,
Sulpe) = =S tog | (2 + v ) + (2 - vim)
apXY_l_Oé k 0g 5 Tk 5 Mk .
Cuando o — 1, encontramos la expresion para la entropia de von Neumann,

Sulpwr) == | (5 + v ) 1o (5 +vin) + (5= v g (5 - v )|

k

Asi, la entropia de Rényi de X puede obtenerse a partir de la restriccion de G siempre
que dicho subsistema esté constituido por spines contiguos

1 I © (1 .
Sa(X) = 1_aTrlog[(§+\/GXG;) + <§—\/GXGTX> ]

y
Si(X)=—Tr [(% + \/@) log (é + \/?G})
+ (g—\/@)bg(é—MH.

En este caso, la matriz interesante a la hora de obtener la entropia es GG que es Toeplitz
cuando consideramos toda la cadena. Sin embargo, para un subsistema X, GG XGE( ya no
lo es, aun siendo X un unico intervalo de spines. Por lo tanto, no podemos aplicar el
teorema de Fisher-Hartwig. Sin embargo, la introduccién de estas matrices no ha sido en
vano puesto que presentan interesantes simetrias bajo ciertas condiciones que permiten
establecer relaciones entre las entropias de Rényi de los distintos modelos de spines que
acabamos de presentar.

4.3 Relaciéon entre las entropias de los modelos XY e Ising

En [31], Igloi y Juhasz demuestran que la entropia en el estado fundamental de un modelo
XY de N spines con campo magnético hyy = 0 es igual a la suma de las entropias de dos
modelos de Ising (7 = 1), llamémoslos 11 e 12, de N/2 spines cada uno y cuyos campos
hy v hy, estan relacionados con la constante de anisotropia vxy del modelo XY,

1+ 7y

L= v By = 2 . (4.14)

hy =2 .y
" 1+7XY 1_/7/XY

Esta propiedad puede generalizarse a cualquier configuracion excitada del modelo XY en
la que si un modo k estd ocupado también lo estédn los modos —k y k+ N/2. Aqui exten-
deremos esta relacion al estado térmico.

Partamos de un modelo XY de tamario total N sites a temperatura 1/fxy. Llamemos

qrx(n —m) = — tanh <BXYTA;§Y) e~ U0k (n—m)=26]

Si tomamos su campo magnético nulo, hyy = 0, tenemos que 2§, nj2 = 25 +7y AfY y o =

AZY. Entonces
—im(n—m)

Qk+N/2(n - m) = —¢€ Qk(n - m),
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y, por lo tanto,
Qein/2(n —m) = —q(n —m), si n—m Dpar,
Qetn2(n —m) = q(n —m), si n—m impar.

De esta manera, si n = 2p (pares) y m = 2q (pares) 6 n = 2p — 1 (impares) y m = 2q — 1
(impares)
G2p,2q - G2p—1,2q—1 = 0.

Sin embargo, para n = 2p (pares) y m = 2q — 1 (impares)

N/4—1

Z tanh (ﬁXYTA;“{Y> e~ 120k (p=a)+0k 28]

k=—N/4

1

G'2p,2q—1 = - m

mientras que si n = 2p — 1 (impares) y m = 2q (pares)

| VAo B XY
_ xvD T\ —il20k (—q) -0k —2¢4)
G2p71,2q = 2N/2 Z tanh ( 5 ) e RAPTQ) =0k 2Sk]
k=—N/4
Identificando
1 2 2ﬂ_k 1 2
O =0 =20, = N2 260 =0k — 28k, vy 280 = bk — 2&,

se obtienen las relaciones (4.14)) cuando 7, = v, = 1. Introduciéndolas en la relacién de
dispersién del modelo XY inicial (con hyy = 0) y tras un poco de algebra puede verse que
o_ A p
P14 /2 14 hy)/2

para I1 e I2 respectivamente.

Por lo tanto,

1 N/4—1 B Al
i _ 1143 —il01 (p— _2511
GI(E]) - G2p,2q—1 - _m Z tanh <T) e 05 (p—q) ]

k=—N/4

son los elementos de la matriz de correlaciones G de un modelo de Ising de tamano
total N/2 y campo magnético h;; a temperatura

By

o=

Por su parte,

Nj4-1

QD Gy o= L S tanh Bl i o0 —2¢2)
pa pmos 2N/2 N 2

son los elementos de la matriz G de un modelo de Ising de tamafo total N/2, campo
magnético h,, a temperatura
Bxy

/612 - 1—|—h12/2
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Si escribimos G en la base en la que separamos los sites pares de los impares

0 G®
o~ (%)

oGt — ( G Gt 0 )

tenemos que

0 ) )t

Por lo tanto, la matrix GGT, de un intervalo L, de este modelo XY sin campo magnético
se puede descomponer como la suma directa de las matrices GGT, de dos intervalos L /2,
de I; e I. En consecuencia, el espectro de autovalores de la primera sera la unién de los
espectros de las dos segundas. Transladando este resultado a la entropia,

Sa (L, Bxy) = Sq (L2, Bu) + S5 (L/2, Bra).

Cuando vxy = 0 (es decir, cuando el modelo XY se reduce al XX), ambos modelos de
Ising son iguales (h;, = hy, = 2, I; = I, = I), y se encuentran a la misma temperatura

B = Pxx/2 por lo que
SZEX(Lv BXX) - QSQ(L/Z BI) (4'15>

De acuerdo con Jordan-Wigner, el equivalente fermiénico del modelo de spines XX es
el TBM. Si nuestro subsistema es un intervalo de spines contiguos, los resultados para
la entropia de un modelo fermiénico pueden trasladarse directamente al de spines. En
consecuencia, utilizando , podemos obtener también la entropia de un intervalo de
un modelo de Ising cuantico a una cierta temperatura.



5. Conclusiones

El objetivo principal de esta memoria ha sido el estudio de la entropia de Rényi S, (X) de
un intervalo X de diferentes cadenas de fermiones y spines en el estado térmico o de Gibbs,
p = Z'ePH_ En primer lugar hemos considerado cadenas de fermiones homogéneas y
locales, demostrando que S,(X) puede obtenerse a partir de las correlaciones de X. Este
hecho resulta muy 1util a la hora de estudiarla. Numéricamente reduce la complejidad
de computarla, que crece exponencialmente con el tamano L de X, a una dependencia
polinomial con L. Analiticamente permite escribirla en términos del determinante de una
matriz que en este caso es Toeplitz. Para este tipo de matrices, el teorema de Fisher-
Hartwig da una expansion de su determinante y, en nuestro caso, un desarrollo de S, (X)
en términos de L en el limite termodindmico de la cadena. A partir de este resultado,
hemos encontrado algunas propiedades muy interesantes:

e En el estado de Gibbs S,(X) es, al igual que la entropia termodindmica, extensiva
siempre que < L. Por contra, en el estado fundamental, la entropia de X crece
con el log L si la relacién de dispersién es critica, mientras que se anula de manera
exacta si no lo es.

e Hemos visto que el coeficiente A, () del término que escala con L corresponde, para
von Neumann, a la densidad de entropia termodinamica de un gas de fermiones.
Ademas, en la entropia de Rényi de toda la cadena no tenemos el coeficiente C,,(5)
independiente de L. Asi hemos interpretado que A, (/) es debido a las correlaciones
térmicas mientras que C, () da cuenta de la dependencia con /3 del entrelazamiento
entre X e Y. Ademés, A,(f)L sigue una ley de volumen mientras que C, () cumple
la ley del area, caracteristica de las correlaciones cuanticas.

e A alta temperatura, tenemos correlaciones de naturaleza exclusivamente térmica
puesto que el inico término que no se anula es A, (), que en dicho limite depende
de la dimension del espacio de estados de X.

e A baja temperatura, S,(X) depende del nimero de cambios de signo de la relacién
de dispersién (modos de Fermi) y de su derivada en ellos (velocidades de Fermi).
En este sentido, al igual que sucede en el estado fundamental, S, (X) detecta a baja
temperatura si el sistema es critico o no.

e En el estado fundamental, el factor del término que escala con log L es univer-
sal puesto que es invariante bajo pequenios cambios en el valor de los acoplos del
Hamiltoniano, mientras que el término independiente de L contiene una parte no
universal. A bajas temperaturas, los coeficientes A,(3) y C,(53) de la expansion de
Sa(X) son no universales pues dependen directamente de los acoplos a través de las
velocidades de Fermi.

e El desarrollo a bajas temperaturas que hemos encontrado a partir de la expansiéon
de Fisher-Hartwig es similar a la expresién conforme de S, (X) cuando f < L ,
salvo por una constante aditiva C!, independiente de L y (. Las técnicas conformes
dan cuenta de la existencia de este término pero no de la forma que tiene. Aqui hemos
conjeturado que es igual al término independiente de la entropia de un intervalo en
el estado fundamental. Por tanto, es debido a la correlaciones cuanticas entre X
y el resto del sistema. Hemos verificado esta hipétesis en el Tight Binding Model.
Podemos explicar este resultado mediante la invariancia conforme. La entropia

31
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para un sistema de tamano infinito a una cierta temperatura se relaciona con la de
un sistema de tamano finito en el estado fundamental (temperatura cero) mediante
una rotacion de Wick: esencialemente cambiar la direcciéon de compactificacion, de
la temporal a la espacial, en el cilindro de la figura Esta rotacion no modifica
el término independiente del tamano del intervalo.

También hemos visto que este resultado sirve para obtener la entropia de Rényi de un
fragmento de una escalera local de fermiones. La clave esta en darse cuenta que la relacion
de dispersion de una escalera se descompone en tantas bandas como railes tiene. Cada
banda puede interpretarse como la relacién de dispersion de una cadena local. De esta
forma, la entropia de un fragmento de tamano L de la escalera es la suma de las entropias
de un intervalo de longitud L de una cadena local dada por cada banda. También hemos
extendido al estado térmico la relacién entre la entropia de Rényi de un intervalo de
un modelo de spines XY sin campo magnético y las de dos modelos de Ising cudnticos.
En particular, hemos visto que esta relaciéon permite obtener la entropia de Rényi de un
intervalo de un Ising cuantico a partir de la de un modelo XX sin campo magnético cuyo
equivalente fermidnico es, de acuerdo con la transformacién de Jordan-Wigner, el Tight
Binding Model.
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