i2s Universidad
100 Zaragoza

1542

Trabajo Fin de Grado

Integracion de librerias CCSV para optimizacion y seguridad
documental en proyectos de AMD Aragon en empresa

Integration of CCSV libraries for document optimization and
security management in AMD projects Aragon in an enterprise

Autor

Clara Cerdan Torrubias

Director

Jesus Brosed Escario

Hiberus Tecnologias de la Informacién, S.L.

Ponente

Carlos Bobed Lisbona

Departamento de Informética e Ingenieria de Sistemas

Universidad de Zaragoza

ESCUELA DE INGENIERIA Y ARQUITECTURA
ENERO - 2025

AGRADECIMIENTOS

Quiero expresar mi profunda gratitud a mi ponente, por su apoyo constante, su
orientacion llena de amabilidad y su dedicacién como un docente ejemplar.

A mis mentores en la empresa, por su paciencia infinita y por invertir su tiempo en
transmitirme con generosidad sus conocimientos y experiencia sobre el proyecto.

A mis padres y a mi hermana, porque sin ellos nunca habria tenido la oportunidad
de estudiar aquello que amo ni de convertirme en la persona que soy hoy.

Al resto de mi familia, por su apoyo incondicional y por estar a mi lado en cada
paso de este viaje, ddandome fuerzas incluso cuando no crefa en mi.

A mi pareja, por brindarme esperanza, por ser mi mayor fuente de animo y por
apoyarme siempre a lo largo de este camino.

Y a mis amigos, por ser mi refugio de cordura y por estar a mi lado siempre que

los he necesitado.

RESUMEN

En el contexto empresarial actual, donde la agilidad, eficiencia y capacidad de
adaptacion son esenciales, las empresas privadas deben tener una infraestructura
tecnologica robusta que permita mejorar continuamente sus operaciones. En este
proyecto, el objetivo ha sido integrar las librerias CCSV (Servicio de almacenamiento
y verificacion de documentos electrénicos) proporcionadas por el Sistema de
Administracién Electrénica (SAE) del Gobierno de Aragén en los procesos existentes
de la empresa, lo que ha permitido mejorar las interacciones con la administracién
publica y optimizar la gestion de documentacion electrénica.

El desarrollo de este proyecto ha requerido superar varios desafios importantes que
dificultaban el funcionamiento adecuado de los sistemas anteriores. Entre los principales
obstaculos, destaca la falta de centralizacién en la gestion de documentos, lo que
obligaba a realizar multiples pasos y ralentizaba las operaciones y la obsolescencia
de funciones clave, cuyas actualizaciones requerian una reingenieria compleja. Ademas,
la ausencia de documentacion completa complicaba tanto el mantenimiento del sistema
como la incorporaciéon de nuevos desarrolladores, lo que generaba dependencia de
personas con experiencia previa en el sistema.

A lo largo de este documento, se detallan los pasos seguidos para realizar un analisis
exhaustivo del sistema actual, adaptar las librerias CCSV al entorno tecnoldgico de
la empresa e implementar una solucién que optimice la gestién de la documentacién
electrénica. Se explica coémo se abordaron los problemas técnicos encontrados durante
la integracion, como la necesidad de unificar métodos de gestion de documentos y
actualizar funciones obsoletas. El documento también incluye una revision detallada
de las herramientas y la arquitectura adoptada, un modelo de datos ajustado a las
necesidades de integracién y las pruebas realizadas para asegurar la fiabilidad del
sistema. Finalmente, se incluyen las conclusiones finales y reflexiones personales sobre

el proyecto.

Indice

Lista de Figuras

1. Introducciéon y objetivos
1.1, Contexto e
1.1.1. Colaboracién con Hiberus
1.1.2. ;Qué es el Codigo Seguro de Verificacion?
1.2. Motivacién del proyectoo
1.3. Alcance y objetivos
1.4. Herramientas y tecnologia de trabajo

1.5. Contenido del documento

2. Analisis de requisitos
2.1. Identificacién de problemas en los proyectos actuales
2.2. Definicién de requisitos funcionaleso

2.3. Definicién de requisitos no funcionales

3. Diseno
3.1. Infraestructura del entorno
3.2. Arquitectura del proyectoo
3.2.1. Patron Facadeo

4. Implementacion
4.1. Implementacién de la arquitecturao
4.1.1. Clases internas
4.1.2. Clases externas
4.2. Flujo deintegraciéno
4.3. Modelodedatos.
4.4. Uso dela biblioteca
4.4.1. Proyectos desarrollados con Spring Boot
4.4.2. Proyectos no desarrollados Spring Boot

T = W W N = = -

4.5. Pruebas y validacion
4.5.1. Pruebas unitarias L
4.5.2. Pruebas de integracion basadas en casos deuso

4.5.3. Pruebas basadas en casosdeuso.

. Conclusiones y trabajo futuro

5.1. Conclusiones acerca del proyecto
5.1.1. Comparativa de uso antiguo y nuevo
5.2. Ewvaluacion personal Lo

5.3. Propuestas de mejora y lineas de investigacion futura

Bibliografia

Anexos

A.

B.

Diccionario de datos

Planificacion

. Arquitectura de un proyecto para el Gobierno de Aragon

C.1. Componentes del frontend

C.2. Componentes del backend,

. Detalles de implementacion

D.1. Infraestructura
D.1.1. ClientCCSV
D.1.2. Documento
D.1.3. Expediente o
D.1.4. PeticionesSae
D.1.5. CCSVExternal

D.2. Flujo de integracion

D.3. Paquetes auxiliares

. Pruebas y validaciones

E.1. Pruebas unitarias
E.1.1. Moédulo de documentos
E.1.2. Modulo de expedientes

E.2. Pruebas basadas en casosdeuso

E.3. Validacion de endpointso

27
27
28
28
29

31

34

37

39

41
42
43

45
45
45
A7
48
20
20
o2
58

Lista de Figuras

1.1. Oficinas de Hiberus en Zaragoza 2
2.1. Diagrama de casosde usoo 9
3.1. Diagrama de despliegueo 12
3.2. Infraestructura de médulos para integradores 13
3.3. Patrén Facade el caso de la integracion de CCSV 15
4.1. Diagrama de paquetes / clases del médulo CSV-INT 18
B.1. Diagrama de Gantt Lo 39
C.1. Patrén MVC 0 .o 41
C.2. Diseno de los programas del Gobierno de Aragén 42
D.1. Diagrama de secuencia de la operacién Crear operacion 53
D.2. Diagrama de secuencia de la operacion Obtener documento 53
D.3. Diagrama de secuencia de la operaciéon Obtener documento XML 54
D.4. Diagrama de secuencia de la operacion Actualizar documento 54
D.5. Diagrama de secuencia de la operacion Crear expediente 55
D.6. Diagrama de secuencia de la operacion Anadir documentos al expediente 55
D.7. Diagrama de secuencia de la operacion Eliminar documentos del expediente 56
D.8. Diagrama de secuencia de la operacion Regenerar indice del expediente 56
D.9. Diagrama de secuencia de la operacion Crear carpeta en expediente . . 57
D.10.Diagrama de secuencia de la operacion Asociar un expediente a otro
expediente L 57
D.11.Diagrama de secuencia de la operacion Obtener expediente 58
E.1. Pruebas basadas en casos de uso del médulo de documentos 74
E.2. Pruebas basadas en casos de uso del médulo de expedientes 75
E.3. Definicién del endpoint para la creacién de documentos en Swagger . . 76
E.4. Definicién del endpoint para obtener un documento en Swagger 76

E.5. Definicién del endpoint para actualizar un documento en Swagger
E.6. Definicién del endpoint para obtener un documento XML en Swagger .
E.7. Definicién del endpoint para crear un expediente en Swagger
E.8. Definicién del endpoint para anadir documentos a un expediente en
SWagEeTr
E.9. Definicion del endpoint para eliminar documentos de un expediente en
SWagEer
E.10.Definicién del endpoint para regenerar el indice de un expediente en
S e 3
E.11.Definicién del endpoint para crear una carpeta en un expediente en
SWagEer
E.12.Definicion del endpoint para asociar un expediente a un expediente en
SWagEer

E.13.Definicion del endpoint para obtener un expediente en Swagger

7
7

Listados

4.1. Constructor de la clase DemoApplication
4.2. Endpoint de operacion Obtener documento
4.3. Configuracién de ejemplo del cliente
D.1. Constructor de la clase ClientCCSVProviderImpl
D.2. Constructor de la clase DocumentCCSVProviderImpl
D.3. Constructor de la clase ExpedientCCSVProviderlmpl
D.4. Constructor de la clase PeticionesSaeCCSVProviderImpl
D.5. Constructor de la clase CCSVExternalProvider
E.1. Prueba unitaria de la operacion Crear documento
E.2. Prueba unitaria de la operacion Obtener documento
E.3. Prueba unitaria de la operacién Actualizar documento
E.4. Prueba unitaria de la operaciéon Obtener documento XML
E.5. Prueba unitaria de la operacion Crear expediente
E.6. Prueba unitaria de la operacién Anadir documentos a un expediente . .
E.7. Prueba unitaria de la operacion Eliminar documentos de un expediente
E.8. Prueba unitaria de la operacion Regenerar indice de un expediente . . .
E.9. Prueba unitaria de la operacién Crear carpeta en un expediente
E.10.Prueba unitaria de la operacion Asociar expediente a un expediente

E.11.Prueba unitaria de la operaciéon Obtener expediente

Capitulo 1

Introduccién y objetivos

Este Trabajo Fin de Grado (TFG) aborda los retos de la integracién del Sistema
de Verificacién Documental dentro de la administracion publica, particularmente en el
Gobierno de Aragdén, y se centra en la gestion del Cédigo Seguro de Verificacién (CSV).
El objetivo es crear una Interfaz de Programacién de Aplicaciones (API) unificada
que pueda estandarizar y simplificar el proceso de integracion de sistemas, lo que dara
como resultado una interoperabilidad mejorada y un proceso de desarrollo mas sencillo.
Este proyecto no solo busca resolver problemaéticas técnicas, sino también aumentar la

consistencia en los sistemas relacionados con el CSV.

1.1. Contexto

En el desarrollo de soluciones tecnoldgicas es fundamental comprender el contexto
en el que se encuentran los sistemas y procesos existentes, asi como los desafios y
necesidades de integracién que deben ser abordados. Este apartado presenta un marco
de referencia que contextualiza el trabajo realizado, destacando la colaboracién con la
empresa Hiberus y la explicacién del Cddigo Seguro de Verificacién (CSV), sobre el

cual se centra el desarrollo de este Trabajo de Fin de Grado (TFG).

1.1.1. Colaboracién con Hiberus

El proyecto se ha realizado en colaboracién con Hiberus, una empresa tecnologica
lider en Espana con la que he tenido la oportunidad de trabajar durante el desarrollo
del proyecto. Debido a la relevancia de la empresa en el ambito tecnoldgico y su papel
clave en el enfoque de este TFG, resulta pertinente contextualizar quiénes son y cuéles
son sus principales areas de actuacion.

Hiberus es una empresa de servicios tecnologicos y consultoria, especializada en
soluciones innovadoras en areas como transformaciéon digital, desarrollo de software,
integracion de sistemas y gestion de datos. Fundada en Zaragoza, cuenta con presencia

1

nacional e internacional y trabaja con sectores variados como la administracion publica,
retail, turismo y banca, entre otros. Su enfoque esta centrado en proporcionar soluciones
personalizadas y escalables a empresas y organismos para mejorar su eficiencia,
seguridad y competitividad.

La colaboracion de Hiberus con administraciones piublicas, como el Gobierno de
Aragon, es especialmente destacable en proyectos relacionados con la optimizacién de
sistemas de documentacion y la implementacion de soluciones basadas en el Cédigos
Seguro de Verificacion. Esto refleja su compromiso por fortalecer la seguridad y la

eficiencia en los procesos administrativos mediante el uso de tecnologias innovadoras.

Figura 1.1: Oficinas de Hiberus en Zaragoza

1.1.2. ;Qué es el Codigo Seguro de Verificacion?

El Cédigo Seguro de Verificacion (CSV) es un cdédigo unico que acompana
a cada documento o expediente generado por el Gobierno de Aragdn, el cual
permite la verificaciéon de su autenticidad y contenido. Este cédigo es esencial para
garantizar la integridad y autenticidad de los documentos electronicos emitidos por las
administraciones publicas. Normalmente, este codigo aparece impreso en los margenes

de los documentos.

El uso de este codigo permite a los usuarios verificar la validez de documentos
electrénicos administrativos, comprobar sus firmas electrénicas, y descargar o consultar
los documentos a través del servicio de verificacién. De esta manera, se asegura que

los documentos no hayan sido alterados y que las firmas asociadas sean legitimas.

1.2. Motivacion del proyecto

La integracién de la libreria CCSV en los proyectos de Hiberus que colaboran con
el Gobierno de Aragén ha demostrado ser un proceso dificil de estandarizar y lleno
de obstaculos. Aunque esta herramienta es clave para desarrollar funcionalidades de
verificacion documental, la realidad es que su implementacion varia ampliamente entre
proyectos, lo que genera problemas tanto a nivel técnico como organizativo.

El principal reto es la escasez de documentacién clara y detallada. Aunque
el Gobierno de Aragén proporciona especificaciones y guias técnicas, estas son
insuficientes para abordar todas las situaciones que surgen durante la integracién.
Los errores reportados suelen carecer de informacion suficiente para identificar sus
causas, y la restriccion en el acceso al cédigo interno de las funciones impide que los
desarrolladores puedan entender su funcionamiento en profundidad.

Por otro lado, la falta de un enfoque unificado entre proyectos agrava la situacion.
Cada equipo aborda la implementacion de forma independiente, desarrollando
soluciones a medida que no comparten un estandar comun. Esta heterogeneidad resulta
en disparidades significativas en la forma en que se manejan errores, validaciones y
mejoras. En lugar de centralizar los esfuerzos, cada nuevo cambio o actualizacion debe
repetirse en todos los proyectos afectados, duplicando el trabajo y encareciendo el
mantenimiento.

Otro aspecto importante es el impacto que esta fragmentacion tiene en los tiempos
de desarrollo. Al no contar con una guia confiable ni con procesos definidos, los
desarrolladores invierten un tiempo considerable en encontrar soluciones a través de
ensayo y error. Esto no solo ralentiza los proyectos, sino que también incrementa la
probabilidad de errores en produccion, afectando la calidad general de las entregas.

En definitiva, los desafios asociados con la integracion del CCSV no solo ralentizan
el desarrollo, sino que también encarecen los proyectos a largo plazo. Resolver estas
dificultades es clave para garantizar una implementacién mas eficiente, reducir los costes
de mantenimiento y ofrecer soluciones coherentes en todos los proyectos de Hiberus que

desarrollan para el Gobierno de Aragon.

1.3. Alcance y objetivos

Como objetivo general, se plantea disenar e implementar una API para facilitar
la integracion de sistemas de verificaciéon documental basados en el Codigo Seguro
de Verificacion en administraciones publicas, con el propédsito de simplificar procesos,
aumentar la eficiencia y garantizar la consistencia en su adopcion. La solucién

3

propuesta estara disenada para ser utilizada en el entorno de produccion de la
empresa, abarcando la mayoria de los proyectos que necesiten integrar la libreria
CCSV.

Como objetivos especificos se acaba planteando la siguiente lista:

— Optimizacién de procesos: identificar y resolver las ineficiencias actuales en
la integracion de librerias CCSV, enfocandose en simplificar su implementacion

y reducir los tiempos de desarrollo.

— Mejora de la documentacion: crear y estandarizar una guia técnica completa
que facilite a los desarrolladores la integracion del CSV en diferentes proyectos,

eliminando ambigiiedades y reduciendo la curva de aprendizaje.

— Homogeneizaciéon de librerias: proporcionar una soluciéon centralizada que
unifique los servicios utilizados en proyectos relacionados con el CSV, permitiendo

una implementacion coherente en todos los entornos.

— Estandarizacién en el manejo de errores: definir y aplicar un enfoque
uniforme para la gestion de errores y validaciones dentro de la API, evitando

disparidades entre los proyectos y mejorando la experiencia del usuario final.

— Evaluacién comparativa: realizar un andlisis exhaustivo que contraste el
sistema actual con el nuevo, evaluando métricas de eficiencia, usabilidad y coste

para demostrar los beneficios de la solucién propuesta.

1.4. Herramientas y tecnologia de trabajo

Es importante destacar que el entorno y las herramientas utilizadas en este proyecto
no han sido seleccionadas de manera personal, sino que han sido impuestas por las
directrices y estandares de la empresa, Hiberus, y las necesidades del Gobierno de
Aragoén. El ecosistema tecnolégico ya estaba definido, lo que ha requerido adaptar la
configuracion y desarrollo del proyecto a las bibliotecas y herramientas existentes.

Para el backend (todo el proyecto estd desarrollado aqui), se ha utilizado Eclipse
IDE [1] como entorno de desarrollo integrado (IDE), con Java [2] como lenguaje
principal, ya que ambas herramientas son estandar en la empresa. Se utiliza Java
para aprovechar sus caracteristicas avanzadas y su amplio soporte en la industria
de desarrollo de software. Spring Boot [3] ha sido el framework seleccionado para
facilitar la creacién de servicios backend empresariales robustos y escalables, mientras
que Project Lombok [4] se emplea para reducir el cddigo repetitivo, mejorando la

4

productividad al generar automaticamente constructores, getters y setters. Spring
Tools [5] también se ha integrado en el IDE para facilitar el desarrollo con Spring,
junto con Spring Initializr [6], que permite configurar rapidamente los proyectos
Spring.

En cuanto a la gestién de dependencias y automatizacion de la construccion, se
han utilizado Apache Maven [7] y Apache Ant [8], herramientas que permiten
gestionar dependencias y automatizar tareas de compilacién y despliegue. Ademads, se
ha integrado JUnit [9] para pruebas unitarias, lo que automatiza el proceso de prueba,
permitiendo identificar y corregir problemas durante el desarrollo.

Para la documentacién y prueba de servicios API, se ha empleado Swagger UI
(OpenAPI) [10], lo que facilita la validacién y prueba de los servicios creados de manera
eficiente.

En cuanto a la gestién de control de versiones, SourceTree [11] ha sido la
herramienta principal utilizada, la cual simplifica la gestién de repositorios Git a través
de una interfaz gréfica intuitiva, facilitando la colaboracién entre equipos de desarrollo.
Los repositorios se gestionan en GitLab [12], plataforma donde se almacena el c6digo
fuente de las aplicaciones y se gestionan las versiones.

En cuanto a las herramientas de productividad y colaboracién, se han utilizado
varias del ecosistema de Microsoft, como Microsoft Word [13] para la edicién de la
documentacion, Outlook [14] como servicio de correo electrénico, Teams [15] para
la mensajerfa instantanea, y PowerPoint [16] para la creacién de presentaciones.
Ademas, se ha empleado Overleaf [17], una plataforma en linea para la creacién y
edicién de documentos en LaTeX, utilizando como referencia la guia “Learn I¥TEX in
30 minutes” [18].

Adicionalmente, se ha utilizado Diagrams.net (draw.io) [19] para la creacién de
diagramas de flujo, UML, organigramas y otros esquemas, y Notepad++ [20] como
editor de texto avanzado para tareas puntuales. Para la seguridad, se ha usado Palo
Alto Global Protect [21], una solucién de acceso remoto que asegura la conexion a

la red corporativa mediante encriptacion y autenticacién multifactorial.

1.5. Contenido del documento

A lo largo del documento, se presenta el desarrollo del proyecto desde el analisis
de los requisitos hasta su implementacién y validacién. En primer lugar, se lleva a
cabo un analisis detallado de los problemas identificados en sistemas existentes, que
permite establecer los requisitos funcionales y no funcionales necesarios para disenar
una solucién efectiva. Posteriormente, se aborda el diseno de la solucién planteada,

bt

destacando la estructura de la arquitectura utilizada y su alineacién con principios de
diseno reconocidos, lo que garantiza una integracion eficiente y escalable.

En las siguientes secciones se describe la implementacion técnica del proyecto,
explicando cada componente desarrollado, desde la infraestructura hasta la logica del
sistema y el modelo de datos. También se detalla como se gestionaron aspectos clave
como los errores y la interoperabilidad con diferentes entornos tecnologicos. Esta parte
del trabajo incluye ejemplos practicos de integracién tanto en proyectos basados en
Spring Boot como en aquellos que emplean otras tecnologias.

Finalmente, el documento examina las pruebas realizadas para asegurar la
funcionalidad y robustez del sistema. Los resultados reflejan los beneficios obtenidos,
mientras que las conclusiones recogen las principales lecciones aprendidas y abren
la puerta a futuras mejoras y nuevas areas de investigacién. Ademads, en los anexos
se proporciona informacion técnica complementaria que enriquece y completa la

comprension del proyecto.

Capitulo 2

Analisis de requisitos

El anélisis de requisitos es una etapa clave en cualquier proyecto de desarrollo, ya
que permite comprender a fondo qué se necesita solucionar y cémo hacerlo. En esta
seccion, se identifican los principales problemas que enfrentan los sistemas actuales,
asi como las expectativas que debe cumplir la solucién planteada. Este proceso busca
garantizar que el nuevo desarrollo no solo sea funcional, sino que también responda a

las necesidades reales del entorno en el que se implementara.

2.1. Identificacion de problemas en los proyectos
actuales

En esta seccion se analizan los principales problemas identificados en los proyectos
actuales. Estos inconvenientes han sido determinantes en la ralentizacion de los
procesos. A continuacion, se describen las principales dificultades que afectan tanto
a los desarrolladores como a los usuarios finales y que justifican la necesidad de la

solucion propuesta:

— Falta de centralizacién para gestionar documentos: los integradores se
ven obligados a realizar multiples pasos para llevar a cabo tareas como subir,
descargar, modificar o eliminar documentos y expedientes debido a la falta de un

servicio unificado, lo que dificulta y ralentiza considerablemente las operaciones.

— Ausencia de estandares en los planes de pruebas: los proyectos anteriores
no cuentan con esquemas para validar las funcionalidades creadas, lo que dificulta

la deteccion temprana de errores y compromete la calidad antes del despliegue.

— Obsolescencia de funciones esenciales: varias funciones que eran
ampliamente utilizadas hasta hace poco han sido deprecadas sin una explicacion
detallada de los cambios. Esto ha obligado a los desarrolladores a realizar

7

actualizaciones a las nuevas alternativas, lo cual no siempre es un proceso directo.
Esto ha obligado a los equipos de desarrollo a adaptarse a nuevas soluciones, lo

que en ocasiones no resulta sencillo ni inmediato.

— Documentacién incompleta: la falta de documentaciéon detallada y consistente
representa un gran obstaculo para la incorporacion de nuevos desarrolladores y

dificulta el mantenimiento y mejora del sistema.

— Dependencia de desarrolladores con experiencia previa: ante la ausencia
de documentacion e informacién adecuada, muchas veces la tinica solucion viable
es organizar reuniones con desarrolladores que ya hayan trabajado con estas
integraciones. Sin embargo, estas reuniones a menudo resultan infructuosas,

aumentando los tiempos y los recursos necesarios para resolver los problemas.

— Errores no especificos por parte del SAE: muchos errores reportados por
el sistema no proporcionan informacién clara ni especifica sobre el problema, lo
que complica su resolucion. Si bien algunos estan documentados, otros carecen
de detalles, lo que retrasa la identificacion de la causa raiz y la implementacion

de una solucién.

Estos inconvenientes hacen evidente la necesidad de implementar una solucién que
sea robusta, sostenible y bien estructurada. Detectar estas deficiencias es fundamental
para poder establecer los requisitos funcionales, no funcionales y técnicos que guiaran

el desarrollo del proyecto.

2.2. Definicion de requisitos funcionales

En esta seccién se especifican los requisitos funcionales de la solucién, es decir,
las capacidades y servicios que el sistema debe ofrecer a los usuarios. Estos requisitos
establecen las operaciones y procesos que el sistema debe llevar a cabo y detallan las
acciones especificas que se implementaran.

La captura de estos requisitos ha sido un proceso largo que ha requerido multiples
reuniones y consultas con el equipo de Hiberus. Durante este trabajo, se analizaron
las operaciones mas utilizadas, aquellas que estaban en desuso o préximas a quedar
obsoletas, y las que resultaban irrelevantes en el contexto actual. Ademas, todas
las observaciones y decisiones fueron coordinadas con mi director de proyecto para
garantizar que los requisitos estuvieran en linea con los objetivos principales del

desarrollo.

Las operaciones mas utilizadas, y las que se decidieron desarrollar pueden verse

reflejadas en el diagrama de casos de uso de la Figura 2.1

Sistema

Obtener documento

Crear expediente Afadir documento & liminar documento’ Regenerar indice dé
un expediente de un expediente un expediente

rear una c:a_rpeta -] Obfener expedients Asociar e:-:pe_dlente 3
un expediente un expediente

Figura 2.1: Diagrama de casos de uso

Actualizar documentg) (CCtener documento
en XML

Desarrollador

Los requisitos funcionales que se derivan de este analisis se muestran en la Tabla 2.1

Tabla 2.1: Requisitos funcionales

Ne Descripcién
RF-1 | La aplicacién deberd actualizar las bibliotecas ccsv_client y csv para
garantizar la compatibilidad con la integracion del cliente CCSV
RF-2 | Se requerira el desarrollo de una aplicacién de pruebas que permita realizar
peticiones al cliente CCSV para verificar la integracién
RF-3 | Se debera desarrollar una funcién para inicializar los metadatos del
documento antes de su creacién
RF-4 | Se debera desarrollar una funcién para crear un documento
RF-5 | Se deberd desarrollar una funcién para obtener un documento
RF-6 | Se debera desarrollar una funcién para obtener un documento en XML
RF-7 | Se debera desarrollar una funcién para actualizar un documento
RF-8 | Se deberé desarrollar una funcién para crear un expediente
RF-9 | Se deberé desarrollar una funcién para anadir documentos a un expediente
RF-10| Se deberda desarrollar una funcién para eliminar documentos de un
expediente
RF-11| Se debera desarrollar una funcién para regenerar el indice de un expediente
RF-12| Se debera desarrollar una funcién crear una carpeta en un expediente
RF-13| Se debera desarrollar una funcién para obtener un expediente
RF-14| Se debera elaborar un plan de pruebas detallado que incluya casos de prueba
para diversos escenarios

2.3.

Definicién de requisitos no funcionales

En esta seccién se detallan los requisitos no funcionales, los cuales definen

caracteristicas esenciales que influyen en el desempenio global del sistema, pero no

estdn directamente vinculadas a funcionalidades concretas. Estos requisitos abarcan

criterios como calidad, seguridad, rendimiento y usabilidad, que son fundamentales

para asegurar un sistema estable y una experiencia satisfactoria para los usuarios. Los

requisitos no funcionales recogidos se presentan en la Tabla 2.2.

Tabla 2.2: Requisitos no funcionales

N©@ Descripciéon

RNF-1 | La versiéon del JDK utilizada serd la 1.8.0.291, garantizando
compatibilidad y estabilidad en el desarrollo

RNF-2 El entorno de desarrollo empleado serd Eclipse IDE for Enterprise Java
and Web Developers, en su version 2023-06 (4.28.0), optimizado para el
desarrollo de aplicaciones empresariales en Java y tecnologias web

RNF-3 | El proyecto debera configurarse como un proyecto Maven, facilitando la
gestion de dependencias y la construcciéon del sistema

RNF-4 | La aplicacion serd desarrollada en Java utilizando el framework Spring
Boot para aprovechar su configuracion simplificada y su soporte para
aplicaciones empresariales

RNF-5 Se mantendrd la estructura interna del proyecto segin las convenciones
establecidas, asegurando una organizacion coherente y de facil
mantenimiento

RNF-6 | Debera elaborarse un plan de pruebas de casos de uso detallado que cubra
los aspectos funcionales y de integracion

En resumen, este analisis de requisitos sienta las bases para el desarrollo de una

solucion integral que permita optimizar la gestiéon de documentos y expedientes,

abordando los problemas identificados en los sistemas actuales. Con un enfoque en la

funcionalidad, la eficiencia y la adaptabilidad, los requisitos definidos en este capitulo

aseguran que el proyecto no solo cumpla con las expectativas funcionales, sino que

también establezca estandares altos en términos de calidad y sostenibilidad a largo

plazo. Esto garantiza que el sistema pueda evolucionar de forma robusta y escalable,

adaptandose a las necesidades cambiantes de los usuarios y del entorno operativo.

10

Capitulo 3
Diseno

En este apartado se detallara exclusivamente la arquitectura del proyecto para
la integracién de CCSV, asi como la del contexto en el que se encuentra, describiendo
la infraestructura del entorno en el que se desarrolla esta integracion.

La infraestructura de los proyectos que utilizaran esta integracion esta detallada en
el anexo C. Aunque leer este anexo proporciona una comprensién mas completa del
proyecto en su totalidad, no es esencial para el propdsito de este capitulo, por lo que
no se ampliard aqui.

Para facilitar la comprensién de lo que se explicara en los siguientes apartados, la

Figura 3.1 muestra las dos secciones que seran desarrolladas y detalladas mas adelante.

3.1. Infraestructura del entorno

Para comprender cémo se organiza la implementacién de la libreria que se estd
desarrollando, es importante situarla en el contexto general del proyecto. En esta
empresa existen diversas librerias que estan siendo desarrolladas, entre ellas la que
corresponde al moédulo de CCSV que es la que se detalla en este proyecto. Esta
libreria forma parte de un sistema més amplio, compuesto por miltiples modulos que
proporcionan funcionalidades diferentes.

En la Figura 3.2 se puede ver como estd disenada la infraestructura para
desarrollar todas estas integraciones. Estd organizado en varios médulos que trabajan

conjuntamente para ofrecer funcionalidades especificas.
A continuacion, se detalla el propésito y la jerarquia de cada mdodulo:

— AMD SAE Internal: este médulo agrupa una variedad de submoédulos, cada
uno disenado para implementar diversas integraciones con los multiples servicios
que proporciona SAE, el servicio de CCSV entre ellos. Existen dos tipos de
submodulos:

11

ENTORNO

depends

Yy

Hepends AMD SAE

T

implements

Proyectos
desarrollados con— — - — — = P csv
Spring Boot

implements
1

INTEGRACION
1
Prayectos no
desarrollados con » CSW - INT
Spring Boot
:
L]
SAE

Figura 3.1: Diagrama de despliegue

e Submdédulos externos (como CCSV): funcionan principalmente como
interfaces que pueden ser implementadas por proyectos externos que utilicen
Spring Boot. Permiten extender la funcionalidad y facilitar la integracién

con otros sistemas.

e Submdédulos internos (como CCSV-INT): los submédulos internos alojan
toda la légica empresarial y los servicios de la API. Aqui reside la mayor

parte de la funcionalidad critica del sistema.

Ademas de CCSV y CCSV-INT, este modulo contiene otros submodulos
encargados de diversas integraciones, como el médulo encargado del Sistema de
Gestion de Avisos (SGA-INT y SGA), o el encargado del Servicio de Identificacién
de Usuarios (SIU-INT y SIU), entre muchos otros. Cada uno de estos submédulos
gestiona integraciones especificas, cumpliendo con los requerimientos de diferentes
areas del sistema y ampliando las capacidades de interacciéon con plataformas

externas, lo que permite mantener un flujo de trabajo modular, escalable y
flexible.

La separacién entre moédulos internos y externos asegura un diseno modular y

12

AMD SAE + Core

AMD SAE INTERNAL Commaon

Core
ccsv e e

T i { Utils

CCSV - INT

Figura 3.2: Infraestructura de médulos para integradores

flexible, donde la logica interna se protege mientras se proporciona un acceso

controlado a servicios esenciales.

El uso de este médulo se detalla con mayor profundidad en la Seccién 4.4, donde
se analiza cémo cada componente interactia y se integra en el contexto general

del sistema.

Core: es el nicleo del sistema y cumple un rol critico en la arquitectura. Este se

encarga de:

e Manejo de la autenticacion: es responsable de gestionar las credenciales, la

verificacién de identidades y las autorizaciones.

e Proteccion de datos y recursos: ofrece una capa robusta de seguridad para
asegurar que solo los usuarios y sistemas autorizados puedan acceder a los

recursos sensibles.

Al centralizar estos aspectos, el modulo Core actia como una base solida sobre

la cual se construyen otros modulos del sistema.

Common: actia como un conjunto de utilidades y funcionalidades compartidas

que respaldan los demas médulos.

e Funcionalidades transversales: proporciona herramientas reutilizables, como

validadores, formatos de datos, y abstracciones para tareas comunes.

e Logica de negocio auxiliar: simplifica el desarrollo y reduce la duplicacién de
cédigo al ofrecer soluciones genéricas para problemas frecuentes. Gracias a
este médulo, los desarrolladores pueden enfocarse en implementar la logica
especifica de cada modulo sin preocuparse por reinventar funciones basicas.

13

3.2. Arquitectura del proyecto

La integracion de la libreria CCSV tiene como objetivo encapsular la légica interna
de una aplicacién legada para que el resto de sistemas o aplicaciones puedan interactuar
con ella de manera sencilla y estandarizada. Esta integracién se basa en la creacion de
una API que sirve como puente entre el sistema antiguo y los clientes o consumidores

modernos. Los principales pasos y componentes del diseno son los siguientes:

1. Encapsulacion del sistema antiguo: se ha aislado toda la légica de negocio
y complejidad de la aplicacién legada en una nueva capa de abstraccion. Esto

asegura que los clientes no interactien directamente con el sistema antiguo.

2. Creaciéon de una API moderna: a través de esta API, los usuarios solo
necesitan conocer las operaciones actuales que pueden realizar, sin preocuparse
por como estan implementadas o por la complejidad de los datos internos. La

APT actiia como la tnica entrada/salida del sistema.

3. Estandares actuales: se ha disenado la API para cumplir con estdndares
modernos de disenno REST, asegurando su compatibilidad y extensibilidad a largo

plazo.

4. Transformacion de datos: en los casos donde el formato de los datos
del sistema antiguo no es adecuado para las necesidades actuales, la API se
encarga de transformar los datos, haciéndolos comprensibles y utilizables para

los consumidores.

5. Aislamiento para futuras modificaciones: la légica de la API permite
implementar cambios en los servicios modernos sin tocar el codigo del sistema

antiguo, promoviendo un bajo acoplamiento.

Como resultado de los objetivos planteados, se optd por desarrollar la integracion

utilizando el patrén facade.

3.2.1. Patrén Facade

El diseno planteado sigue los principios del patrén Facgade o fachada en espanol,
lo que significa que se ha construido un punto unico y claro de acceso al sistema para
los usuarios. Sin embargo, este disenio no solo se limita a simplificar, sino que también
transforma la manera en la que se consume el sistema antiguo, adaptandolo a un

entorno mas moderno. El patron se puede observar en la Figura 3.3.

Los puntos clave de la relacién entre el diseno del proyecto y el patrén Fagade son:

14

ClientCCSVProvider

o« ~

DocumentoProvider ExpedienteProvider

~ o«

ExpedienteProvider

Figura 3.3: Patrén Facade el caso de la integracion de CCSV

1. Principios compartidos: el patron Facade oculta la complejidad de un sistema
subyacente, proporcionando una interfaz sencilla y clara. Mi integracion hace

exactamente eso, encapsulando toda la légica antigua en una API moderna.

2. Separacién de responsabilidades: igual que en Facade, en este disenio se
separa la légica interna del sistema antiguo de los consumidores modernos. Esto
permite que los usuarios interactien uinicamente con las operaciones expuestas,

sin necesidad de conocer los detalles de como funciona el legado.

3. Extensibilidad: mientras el patrén Facade permite anadir nuevas
funcionalidades a través de su interfaz simplificada, en mi integracion se
da un paso mé&s al proporcionar herramientas para la transformacion y

validacion de datos en la API.

4. Simplificacién de uso: para los clientes (aplicaciones que consumen la API),
solo existen los puntos de acceso que necesitan, reduciendo la carga cognitiva de

tener que comprender o adaptar la complejidad del legado.

5. Modernizacién: aunque el patréon Facade en si mismo no busca modernizar, mi
diseno aprovecha la interfaz simplificada para hacer que el sistema sea compatible

con tecnologias actuales, lo cual lo diferencia y lo mejora en este aspecto.

Se decidié seguir un enfoque basado en el patron Facade porque encajaba perfectamente
con los objetivos del proyecto. Este patréon permite encapsular sistemas complejos
detras de una fachada facil de usar, y mi integracién necesitaba ofrecer simplicidad a
la hora de interactuar con la aplicaciéon antigua. Ademads, esta estrategia ha permitido
evitar problemas derivados de exponer directamente una arquitectura desactualizada,

mientras se establece una base solida para futuras ampliaciones y mantenimiento.

15

16

Capitulo 4

Implementacion

En este capitulo se describe el proceso de desarrollo e implementacién del sistema
propuesto, incluyendo las decisiones técnicas, la configuracion del modelo de datos,
y la integracion de las diferentes partes de la aplicacién. Se detallan las tecnologias
empleadas, la estructura del cédigo y los desafios enfrentados, explicando cémo
se aseguraron tanto la funcionalidad como la compatibilidad del sistema con las
especificaciones definidas previamente. Ademas, se aborda la creacién de tipos de
datos personalizados disenados para optimizar la interaccion con SAE y simplificar
estructuras complejas, junto con ejemplos practicos implementados en proyectos

basados en Spring Boot y en entornos que no emplean este framework.

4.1. Implementacién de la arquitectura

La infraestructura del sistema se basa en varias clases que interactian con servicios
web externos, utilizando SOAP! como protocolo de comunicacién y el framework
Apache CXF para gestionar dicha interaccién. En este apartado se describen los
detalles especificos de la implementacion de los servicios relacionados con la gestién
de documentos y expedientes.

El nicleo de esta interaccion lo constituye una clase denominada
ClienteCCSVProviderImpl, que actia como un catdlogo de servicios vy
centraliza las operaciones. Esta clase distribuye la légica de sus funciones entre
DocumentProviderImpl y FExzpedienteProviderImpl dependiendo de la
operaciéon que se deba realizar. A su vez, ambas clases (DocumentProviderlmpl y
EzpedienteProviderImpl) gestionan las llamadas a los servicios de SAE mediante la
clase PeticionesSaeProviderImpl.

Ademas, existe también la clase CCSVExternalProviderImpl, disenada

1 SOAP (Simple Object Access Protocol) es un protocolo de comunicacién estandar basado en XML
que permite el intercambio de informacién estructurada en redes distribuidas. Es ampliamente
utilizado para integrar aplicaciones en entornos heterogéneos.

17

especificamente para permitir que los proyectos desarrollados con Spring Boot integren
de forma eficiente la funcionalidad CCSV. Cabe destacar que, a diferencia de las demas
clases que residen en el médulo CCSV-INT, CCSVExternalProviderImpl se encuentra
en el médulo superior de CCSV, fuera del médulo CCSV-INT donde se aloja la légica
central del proyecto. Debido a su ubicacién, esta clase no aparece en el diagrama

de paquetes, ya que dicho diagrama solo representa la estructura interna del moédulo

CCSV-INT.

Para proporcionar una mejor comprension de la estructura general del proyecto,
se incluye el diagrama de paquetes que se muestra en la Figura 4.1. Este diagrama

refleja coémo se organizan y relacionan los distintos componentes dentro del moédulo
CCSV-INT.

Config
expedient request
ccsveonfig
AnadirDocumentosExpedienteRequest
dociment request Providers uses AsociarDocumentosExpedienteRequest
ActualizarDocumentoRequest
CCSVClentProvider
CrearDocumentoRequest
T
uses ™
ObtenerD toRequest — = uses
enerRocmentoReques s BT i ObtenerExpedienteRequest
ObtenerDocumentoXMLRequest
e T P
uses
document response
i uses document params
/ uses expedient response
ResultActualizarDocumento
\ oo | | o | [_ _
ResultAnaditDocumentosExpediente
BesCremMiocumen, ‘ ParamCrearDocumento "PavamDD\enevDucumenluxML
ResultAsociarDocumentosExpediente
ResultObtenerDocumenta
ResullCrearCampetaExpediente
ResultOBlenerXMLDoCuMmento
ResullEliminarDocumentoExpediente
uses ool
ResultOBtenerExpediente
= = [remmogmoranacocioonms |

‘Expementel | Agente ‘ ‘ Carpeta | |Dncumer\m| |CcSVConstams| I ResuRErTor | | Mensajes I

‘ Metadato | ‘ Firma ‘ ‘ Firmante | |vamamunDucnmemu I IvalmacmnExpememeI iccsvunlsl

Figura 4.1: Diagrama de paquetes / clases del médulo CSV-INT

Tomando como referencia la Figura 4.1, se llevara a cabo una descripcién detallada
de las clases mas relevantes y su configuracion, siendo estos elementos fundamentales

para el adecuado funcionamiento de la integracion propuesta.

Para facilitar la comprension, las clases a describir se han organizado en dos
grupos: clases internas (médulo CSV-INT) y clases externas (médulo CSV). Las clases
auxiliares ubicadas en los paquetes Dtos y Utils se detallaran en el Anexo D.3,
mientras que las clases en los paquetes request, params y response se describirdn
mas adelante en la Seccion 4.3.

18

4.1.1. Clases internas

A continuacién, se describen las clases destacadas del médulo interno, que incluyen

ClientCCSVProviderImpl, DocumentProviderImpl y ExpedientProviderImpl.

ClientCCS V ProviderImpl

La clase ClientCCSVProviderImpl es el punto de entrada. Esta clase recibe un
objeto de configuracién CCSVProviderConfig, el cual contiene parametros esenciales
como las URLs de los servicios, credenciales y otras configuraciones necesarias. Dentro

de su constructor, se realiza la configuracién de los clientes para ambos servicios:

— Cliente de documentos

Se utiliza el ClientProzyFactoryBean de Apache CXF, especificando
la interfaz IDocumentMetadataSignatureService para interactuar
con el servicio de documentos, llamado casi de la misma manera
DocumentMetadataSignatureService. Se configura el WSDL? y la URL? del
servicio, asegurando al mismo tiempo un mapeo automatico entre los objetos
Java y los datos XML mediante el uso de AegisDatabinding*. Ademas, se habilita
el mecanismo MTOM?, lo cual optimiza el intercambio de datos binarios, como

archivos, siendo crucial para los servicios que gestionan documentos e imagenes.

— Cliente de expedientes

De manera similar a la configuraciéon del cliente de documentos, se utiliza
la interfaz IAdministrativeFileService para interactuar con el servicio de
expedientes, que se también se llama parecido, AdmanistrativeFileService.

Se lleva a cabo la configuracién de la URL base, el WSDL y se habilita MTOM

para optimizar la transferencia de datos.

Al final de la configuracién de cada cliente, se crean los proxies correspondientes
que permiten que otras clases interactien con los servicios a través de estas interfaces.

Para mas detalle, se puede acceder al Anexo D.1.1

DocumentoProviderImpl

Web Services Description Language, es un formato estandar en XML para describir los servicios
web.

3 Uniform Resource Locator, que se utiliza para especificar la direccién de los recursos en la web.

4 Herramienta para mapeo automético entre objetos Java y datos XML en Apache CXF.

Message Transmission Optimization Mechanism, mecanismo para optimizar el intercambio de datos
binarios a través de servicios web.

19

Una vez que el cliente de documentos ha sido configurado en la clase
ClientCCSV ProviderImpl, se pasa a la clase DocumentProviderImpl, que se encarga
de gestionar la interaccion con el servicio de documentos de forma mas detallada.
Su constructor toma el servicio DocumentMetadataSignatureService y el objeto
CCSVProviderConfig y comienza a propagarlos a lo largo de las clases de la aplicacion.

Dentro de esta clase, se configura un proveedor de peticiones
PeticionesSaeProviderImpl, encargado de las operaciones relacionadas con la
solicitud y gestién de los documentos dentro del servicio. Para maés detalle, consultar
el Anexo D.1.2.

ExpedientProviderImpl

De manera analoga a la clase DocumentProviderImpl, la clase
FExpedientProviderImpl gestiona el servicio de expedientes, pero aqui también se
incorpora la funcionalidad del servicio de documentos. En esta clase, se configura
igualmente el proveedor de peticiones PeticionesSaeProviderImpl, que se ocupa de las
operaciones de ambos servicios, documentales y de expedientes, centralizando asi el
manejo de las funciones requeridas por el sistema. Para mas detalle, se puede acceder
al Anexo D.1.3.

Finalmente, la clase PetictonesSaeProviderImpl ya ha sido nombrada en varios
apartados de este documento, y su funcionamiento ha sido descrito de manera general.
Para una descripciéon més detallada de su implementacién, se recomienda consultar el
Anexo D.1.4.

4.1.2. Clases externas

En cuanto a las clases externas, solo se describira la siguiente ya que es la tnica

relevante para el entendimiento del proyecto.

CCSVExternalProvider

La clase CCSVExternalProvider es clave para integrar los servicios de CCSV en
aplicaciones Spring Boot. Configurada con la anotacion @Configuration, centraliza la
creacién de un cliente preparado para gestionar documentos y expedientes, utilizando
los parametros definidos en la clase AmmSaeCCSVConfig. Esta configuracion, basada
en @ConfigurationProperties, extrae automdticamente los valores del archivo de
propiedades de la aplicacion, como URLs y cédigos de procedimiento, asignandolos a

20

los campos correspondientes.
El cliente ClientCCSVProviderImpl permite gestionar los servicios de CCSV de
manera sencilla y uniforme en todo el sistema. Mas detalles sobre esta implementacion

pueden consultarse en el Anexo D.1.5.

4.2. Flujo de integracién

El proceso de integracion con CCSV se estructura en varias fases disenadas para
garantizar la correcta ejecucién de las operaciones, desde la invocacion inicial del
catalogo de métodos hasta la comunicacién final con SAE. Estas etapas aseguran la
validacion, la construccién adecuada de las solicitudes, y la interaccion eficiente con
los servicios proporcionados. Ademas, en el anexo D.2 se incluyen los diagramas de
secuencia que ilustran el flujo detallado de la integracion.

Las fases del flujo son las siguientes:

1. Uso del catalogo de operaciones

ClientCCSVProvider actiia como el punto de entrada, ofreciendo métodos como
crearDocumento, obtenerDocumento y actualizarDocumento, entre otros. Cada
uno de estos métodos se implementa invocando las correspondientes clases
proveedoras (DocumentProvider y ExpedientProvider), que contienen la légica

especifica de cada operacion.

2. Légica de las operaciones

En esta fase se validan los parametros de entrada, se construyen las
solicitudes necesarias con los objetos correspondientes y se maneja cualquier
preprocesamiento previo a la comunicacion con SAE. Asegura que las operaciones
estén correctamente configuradas y las entradas sean validas antes de realizar las

llamadas externas.

3. Comunicacién con SAE

Una vez que las operaciones han sido validadas y configuradas, la interaccion
con el sistema CCSV subyacente se realiza mediante la clase PeticionesSae. Este
componente maneja la comunicacién directa con los servicios externos, enviando

solicitudes y recibiendo las respuestas correspondientes.

4.3. Modelo de datos

En el contexto de integracién con SAE, cada operacion del sistema requiere y
devuelve tipos de datos que encapsulan toda la informacion necesaria para su ejecucién.

21

Estos tipos, generalmente definidos en inglés por SAE, son empleados en el intercambio
de datos entre los servicios de SAE y el sistema integrado. Para adaptarse mejor a los
requisitos especificos del proyecto, se han disenado tipos de datos personalizados, cuya
nomenclatura se encuentra en espanol y que simplifican las estructuras proporcionadas
por SAE.

La distincion entre estos tipos de datos es importante:

— Nombres en inglés: representan modelos nativos proporcionados por SAE.

— Nombres en espatiol: tipos creados internamente en el proyecto.

SAE, como plataforma de administracién electrénica, ofrece servicios que abarcan
multiples areas funcionales. Sin embargo, este proyecto se centra exclusivamente
en su moédulo de CSV, especificamente en operaciones vinculadas con la creacién,
actualizacién y manejo de documentos y expedientes.

Para cada operacién en SAE, se establecen parametros de entrada (Params), que
contienen los datos requeridos para llevar a cabo la operacion, y resultados de salida
(Results), que encapsulan la informacién proporcionada tras su ejecucion.

A modo de ejemplo, la operacion encargada de crear un documento es
createDocument. Esta operacion requiere como entrada un objeto del tipo
ParamCreateDocument, el cual incluye informacion como el documento a
almacenar y el identificador de la carpeta destino. Como resultado, la operacién
devuelve un objeto del tipo ResultCreateDocument, que contiene, entre otros, el
identificador tinico del documento creado en el sistema.

Debido a la complejidad de los modelos proporcionados por SAE y la falta de
documentacién exhaustiva, en este proyecto se han disenado nuevos tipos de datos
simplificados. Estos nuevos modelos mejoran la claridad, hacen méds manejables las
estructuras de datos y se adaptan mejor a los requerimientos especificos del sistema.

Estos nuevos tipos de datos se crearon a partir de la adaptacion de los modelos
originales proporcionados por SAE. Durante este proceso, se analizaron las estructuras
iniciales para identificar los elementos esenciales que debian mantenerse, descartando
atributos innecesarios, obsoletos o mal documentados. El objetivo principal de estas
adaptaciones fue optimizar la flexibilidad y simplificar la gestion de los datos, sin
comprometer la funcionalidad ni la integridad de las operaciones implementadas.

Para cada operacién del médulo de documentos se definieron tres tipos de datos:
Parametros (Params), con la informacién necesaria para ejecutar la operacion;
Resultados (Result), con la informacién devuelta tras su ejecucién; y Peticién
(Request), que es una encapsulacién de Params, conteniendo tinicamente los atributos
esenciales necesarios para realizar las operaciones. Asi, lo que el usuario debe enviar

22

se limita a los elementos mas basicos, evitando la complejidad de estructuras mas
detalladas.

En el médulo de expedientes, con operaciones de naturaleza maéas sencilla, se
crearon unicamente dos tipos de datos: Peticién (Request), que incluye los atributos
necesarios para la solicitud, y Respuesta (Result), que contiene la informacién
devuelta al completar la operacion. En este caso, no se definieron parametros debido a

la simplicidad de los atributos requeridos.

4.4. Uso de la biblioteca

Para demostrar la flexibilidad de la libreria y su facilidad de integracién, se han
desarrollado dos proyectos de ejemplo: uno utilizando Spring Boot y otro sin dicho
framework. Estos ejemplos tienen como objetivo verificar el funcionamiento de la

libreria en diferentes contextos y servir como referencia para futuras implementaciones.

4.4.1. Proyectos desarrollados con Spring Boot

La integracién con proyectos basados en Spring Boot sigue una estructura clara
y estandarizada. El proyecto define una configuracién inicial que incluye los paquetes
necesarios para que la libreria sea detectada y utilizada de manera adecuada por el
contenedor de Spring. Un ejemplo tipico de clase principal en un proyecto Spring Boot
es el del Listado 4.1.

Listado 4.1: Constructor de la clase DemoApplication

@SpringBootApplication(scanBasePackages = { "es.aragon.core.sae.ccsv",
"com.example.demo" })

public class DemoApplication {
public static void main(String[] args) {
SpringApplication.run(DemoApplication.class, args);

¥

Esta configuraciéon inicial permite que Spring detecte las configuraciones de la
libreria ubicadas en los paquetes de es.aragon.core.sae.ccsv, asegurando que todos los
beans necesarios para interactuar con la misma se encuentren disponibles en el contexto
de la aplicacién.

Para interactuar con la libreria, los proyectos Spring Boot definen controladores que
encapsulan las llamadas a las funcionalidades de la misma. Estos controladores utilizan
la inyecciéon de dependencias a través de la anotacién @QAutowired, lo que permite
acceder directamente a instancias del cliente Client CCSVProvider, proporcionadas por

23

la clase CCSVExternalProvider descrita anteriormente.

Estos controladores implementan endpoints que reciben peticiones desde el exterior
y utilizan un cliente proporcionado por la libreria para invocar las funciones
correspondientes. Gracias al uso de la inyeccién de dependencias de Spring, el
cliente de la libreria, configurado previamente, se encuentra listo para ser utilizado
en los controladores sin necesidad de configuraciones adicionales. Cada método de
los controladores valida las entradas proporcionadas por el usuario, construye las
solicitudes necesarias utilizando los DTOs definidos por la libreria y, posteriormente,

obtiene y retorna los resultados de manera estructurada.

Listado 4.2: Endpoint de operacion Obtener documento

ORequestMapping("/document")
ORestController
public class ControllerDocument {

QAutowired
private ClientCCSVProvider clientCCSV;

Q@GetMapping("/obtenerDocumento")
public ResponseEntity<CCSVResponseDTO<ResultObtenerDocumentoDT0>>
obtenerDocumento (
O@RequestParam(required
ORequestParam(required

false) String csv,
false) String id) throws CCSVException {

/7 [...]

ObtenerDocumentoRequestDto request =
ObtenerDocumentoRequestDto.builder() .id(id) .csv(csv) .build();

return ResponseEntity.ok(clientCCSV.obtenerDocumento(request));

En el Listado 4.2, el controlador define un endpoint llamado /obtenerDocumento
que recibe solicitudes HT'TP GET. Este endpoint valida los parametros de entrada y
construye una solicitud utilizando los DTO® de la libreria, que posteriormente se envia
al cliente ClientCCSVProvider. La respuesta del cliente se devuelve al solicitante de
manera estructurada.

La implementacién de este ejemplo destaca la sencillez y la modularidad del diseno
de la libreria, al ofrecer una solucién eficaz que puede ser facilmente integrada en un

ecosistema basado en Spring Boot, permitiendo un manejo eficiente de documentos y

6 DTO (Data Transfer Object): un objeto que se utiliza para transferir datos entre procesos, capas
de una aplicacién o aplicaciones diferentes. Los DTOs simplifican y agrupan datos, mejorando el
rendimiento y desacoplando la 1égica de negocio de la comunicacion.

24

expedientes.

4.4.2. Proyectos no desarrollados Spring Boot

Ademas de la integracién en aplicaciones basadas en Spring Boot, la libreria estd
disenada para su uso en proyectos sin dependencia de este framework, lo que demuestra
su flexibilidad y capacidad de adaptarse a diferentes entornos.

La configuracién en este tipo de proyectos se lleva a cabo manualmente, creando
una instancia de configuracién (CCSVProviderConfig) en la que se especifican los
parametros clave necesarios para interactuar con los servicios de la libreria. Esto
incluye detalles como URLs para los servicios de documentos y expedientes, codigos de
organismos, nombres de procedimientos y otros valores relevantes segiin el caso de uso.

Una vez configurada esta instancia, se inicializa el cliente principal de la libreria
(ClientCCSVProvider), que actia como punto de acceso a las funcionalidades.
Este cliente permite invocar las distintas operaciones ofrecidas, desde la gestién de
documentos hasta la interaccion con expedientes, de manera directa y sin necesidad de
configuraciones adicionales.

Un ejemplo representativo (Listado 4.3) de cémo se lleva a cabo esta integracién
incluye la construccién del objeto CCSVProviderConfig utilizando un patréon builder,
donde se asignan todos los parametros especificos del entorno en cuestién. A
continuacion, se crea una instancia de ClientCCSVProvider, que queda lista para

ejecutar las operaciones necesarias de forma inmediata.

Listado 4.3: Configuracion de ejemplo del cliente

public static void main() {

CCSVProviderConfig config = CCSVProviderConfig.builder()
.appCode (Constantes.APP_CODE)
.appName (Constantes.APP_NAME)
// Demas variables...
.buildQ);

ClientCCSVProvider clientCCSV = new ClientCCSVProviderImpl(config);

// Codigo continua

Este diseno resalta la capacidad de la libreria para operar de manera desacoplada
de un framework especifico, permitiendo que desarrolladores trabajen en contextos
diversos sin mayores complicaciones. Gracias a esta implementacion, proyectos
independientes y aquellos con restricciones especificas pueden aprovechar las ventajas

25

que brinda la libreria, manteniendo un equilibrio entre simplicidad y funcionalidad

avanzada.

4.5. Pruebas y validacién

En esta seccion se detallan las distintas metodologias de prueba implementadas
para asegurar el correcto funcionamiento del sistema. Se emplearon pruebas unitarias,
basadas en casos de uso y de validaciéon de endpoints para verificar la fiabilidad y
robustez del sistema en diversas situaciones. A continuacion se describe cada tipo de

prueba y se presentan los resultados obtenidos.

4.5.1. Pruebas unitarias

Las pruebas unitarias validan de manera aislada el funcionamiento de componentes
como funciones o clases. Para esto, se desarrollaron pruebas con JUnit, cubriendo todas
las operaciones del catdlogo de la clase ClientCCSVProviderImpl sin distincién de
relevancia. Se utilizaron dependencias simuladas para simular escenarios y verificar
las interacciones, incluyendo casos como la creacion, obtencién y actualizacién de
documentos. Todas las pruebas fueron exitosas, confirmando que las operaciones
funcionan correctamente bajo diversas condiciones. Los detalles de las pruebas estan

en el Anexo E.1.

4.5.2. Pruebas de integraciéon basadas en casos de uso

Las pruebas basadas en casos de uso validan la correcta ejecucion del sistema desde
una perspectiva de negocio. Cada caso se descompone en pasos detallados que incluyen
la creacion de objetos, ejecucién de acciones y validacion de los resultados obtenidos.
Estas pruebas garantizan la coherencia y la integridad del sistema en su conjunto. Los

resultados y detalles de las pruebas estan disponibles en el Anexo E.2.

4.5.3. Pruebas basadas en casos de uso

La validacién de endpoints garantiza que las APIs respondan correctamente a
entradas validas e invalidas. Se realizé utilizando un proyecto con Spring Boot, y se
exploraron los endpoints mediante Swagger. Se verificaron operaciones principales como
la creacion y actualizacion de recursos, ademés de manejar errores excepcionales. Los

detalles de las pruebas estan en el Anexo E.3.

26

Capitulo 5

Conclusiones y trabajo futuro

El desarrollo de este proyecto ha sido un viaje enriquecedor que no solo ha implicado
un importante desafio técnico, sino también un gran aprendizaje en diversos aspectos
de la ingenieria y la vida profesional. En este capitulo, realizaré una reflexion sobre el
alcance alcanzado durante el desarrollo, junto con una evaluacion de lo aprendido, las
conclusiones derivadas del trabajo realizado, y algunas propuestas para futuras lineas de
mejora que podrian seguir enriqueciendo el sistema desarrollado. Este proyecto no solo
cierra un ciclo de desarrollo, sino que también abre las puertas a futuras oportunidades
de expansién que mejoraran atin mas los procesos de la empresa.

En el Anexo B, se presenta un analisis detallado del tiempo invertido en el desarrollo
del proyecto. Se incluyen el diagrama de Gantt que muestra la planificacién temporal
de las actividades y una tabla con las horas dedicadas a cada tarea especifica. Este
apartado proporciona una visién clara de la dedicacion de recursos y tiempo en las

distintas fases del proyecto.

5.1. Conclusiones acerca del proyecto

El proyecto desarrollado representa un gran esfuerzo para modernizar los procesos
relacionados con el entorno SAE. Durante su desarrollo, me enfoqué en implementar las
operaciones mas comunes y demandadas por los integradores, asegurando que fueran
funcionales, fiables y adaptadas a los casos de uso habituales. Ademas, se disend un
marco modular que no solo cumple con los requisitos actuales, sino que también deja
abierto un amplio margen para futuras mejoras y ampliaciones.

Uno de los principales logros de este proyecto es la simplificacién de los procesos,
al reducir la complejidad de las operaciones anteriores. Ademads, la mantenibilidad del
sistema se ha incrementado, ya que las modificaciones y actualizaciones futuras podran
realizarse de forma centralizada, evitando la necesidad de realizar ajustes repetidos en
multiples proyectos.

27

Ademas del desarrollo funcional, se llevaron a cabo diversas pruebas para garantizar
la robustez y el correcto funcionamiento del sistema. Se realizaron pruebas unitarias
para validar cada componente por separado, asegurando que cumplieran con los
requisitos esperados. También se desarrollaron pruebas basadas en casos de uso
reales para simular el comportamiento del sistema en escenarios cotidianos, lo que
permitio identificar posibles mejoras y afinar la experiencia del usuario. Finalmente, se
ejecutaron pruebas de validacién de los endpoints, comprobando que las comunicaciones
entre el sistema y sus dependencias externas fueran seguras, confiables y cumplieran
con los estandares de calidad definidos.

Entonces, para resumir, este proyecto ha sido un hito importante en la
modernizacion de los procesos en el entorno SAE. La simplificacién de operaciones,
la mejora en la mantenibilidad del sistema y la implementacién de pruebas exhaustivas
aseguran que el sistema esté bien preparado para su uso y expansion. Gracias a su
arquitectura modular, el proyecto no solo satisface las necesidades actuales, sino que
también facilita futuras adaptaciones, mejorando la eficiencia operativa y la experiencia
de usuario. El resultado es una soluciéon robusta que simplifica el trabajo para los

integradores y proporciona una base sélida para seguir avanzando.

5.1.1. Comparativa de uso antiguo y nuevo

El uso del sistema anterior, caracterizado por su complejidad y limitada
adaptabilidad, contrastaba significativamente con el enfoque del nuevo proyecto. El
sistema desarrollado ofrece una interfaz mas clara y operativa, facilitando tareas
cotidianas que antes requerian un mayor esfuerzo manual o técnico. Ademas, la base
modular proporciona una estructura mas comprensible para los futuros desarrolladores,
permitiendo una curva de aprendizaje menos pronunciada.

Un aspecto clave del nuevo sistema es su mejor mantenibilidad. Gracias a su
arquitectura centralizada, cualquier cambio o mejora se puede realizar directamente
en este proyecto sin necesidad de modificar cada integracion de forma individual. Esto
elimina la necesidad de realizar ajustes proyecto por proyecto, optimizando el tiempo
y los recursos necesarios para actualizaciones o correcciones. Estas mejoras no solo
aumentan la eficiencia del equipo, sino que también aseguran una mayor adaptabilidad

para atender necesidades especificas del entorno empresarial.

5.2. Evaluacion personal

Trabajar en este proyecto ha sido tanto un desafio técnico como una experiencia de
crecimiento personal y profesional. Desde el inicio, enfrenté la dificultad de integrarme

28

en un entorno empresarial completamente nuevo mientras lidiaba con un sistema
legado, cuya arquitectura y funcionamiento no solo eran desconocidos, sino también,
en muchos casos, obsoletos y poco documentados. Adaptarme a esta realidad fue
un proceso tedioso que requirié paciencia, investigacién constante y la capacidad de
encontrar soluciones creativas frente a problemas inesperados.

En el aspecto técnico, este proyecto me ha permitido desarrollar habilidades
cruciales como ingeniera informatica. He profundizado en la comprensién de
sistemas heredados y aprendido a adaptar mi enfoque para optimizar y modernizar
funcionalidades dentro de las limitaciones existentes. También he ganado experiencia
en la implementacién de soluciones mas eficientes y sostenibles que abren la puerta a
mejoras futuras.

Sin embargo, ademds de estar desarrollando el TFG, he estado trabajando en
proyectos de la empresa, lo que ha hecho que esta experiencia en un entorno profesional
haya sido transformadora a nivel personal. Aprendi a gestionar el estrés que implica
enfrentar tareas complejas con plazos ajustados, a colaborar efectivamente dentro de un
equipo y a asumir responsabilidad en decisiones clave del proyecto. Ademas, trabajar
en un entorno real me permitié entender cémo el trabajo técnico afecta directamente las
operaciones empresariales, ddndome una vision més amplia de mi rol como profesional.

Uno de los aspectos mas gratificantes de este proyecto es saber que lo desarrollado no
solo tiene valor técnico, sino que también sera utilizado activamente, y no de manera
ocasional. Esto aporta un gran sentido de satisfaccién, ya que me da la seguridad
de que mis esfuerzos tienen un impacto real y positivo en la operaciéon del sistema,
contribuyendo a la mejora continua de los procesos empresariales.

En conclusién, aunque el proceso ha tenido momentos de frustracién, el aprendizaje
obtenido supera con creces las dificultades encontradas. No solo he crecido como
ingeniera, mejorando mi capacidad de andlisis, adaptacién y resolucién de problemas,
sino también como persona, adquiriendo habilidades que me seran valiosas en mi

desarrollo profesional y personal a largo plazo.

5.3. Propuestas de mejora y lineas de investigacion
futura

El proyecto que he desarrollado proporciona una base sélida para futuras mejoras
y expansiones. Las funciones implementadas cubren las operaciones mas utilizadas en
el entorno SAE, enfocandose en la funcionalidad mas comin que los integradores de la
empresa necesitan. Aunque estas operaciones son eficaces en la mayoria de los casos,
podrian beneficiarse de mayor sofisticacion o de opciones adicionales para adaptarse a

29

situaciones mas especificas. Ademaés de perfeccionar las funciones ya creadas, se pueden
incorporar muchas mas operaciones que SAE ofrece, ya que he desarrollado solo una
fraccion de las disponibles. Existen aun muchas mas operaciones por explorar que
enriquecerian el sistema.

Es importante mencionar que, aunque me he centrado en la integracion con archivos
CSV, SAE no se limita a esta opcién. Existen multiples integraciones con otras librerias
y sistemas que no he implementado, pero que pueden ser facilmente incorporadas sobre
la base creada. Estas integraciones adicionales permitirian ampliar la versatilidad del
sistema, ofreciendo nuevas formas de interaccién con otras fuentes de datos.

En conclusion, el proyecto no solo proporciona una herramienta funcional, sino
también un punto de partida estratégico. Permite mejorar las funciones actuales,
desarrollar nuevas operaciones dentro de la integracién de CSV y servir como
inspiracién para implementar otras integraciones mas complejas. El marco establecido
ofrece una base sélida y adaptable para seguir ampliando y mejorando este sistema

segun las necesidades futuras.

30

Bibliografia

[10]

[11]

[12]

Eclipse Foundation. Eclipse ide: Entorno de desarrollo integrado para multiples

lenguajes. https://www.eclipse.org/ide/.

Oracle. Java: Lenguaje de programacién multiplataforma. https://www.oracle.

com/java/.

Spring Boot: Framework para desarrollo de aplicaciones en Java. https://

spring.io/projects/spring-boot.

Project Lombok: Biblioteca para reducir codigo repetitivo en Java. https://

projectlombok.org/.

Spring. Spring tools: Conjunto de herramientas para desarrollo con Spring. https:

//spring.io/tools.

Spring Initializr: Generador de proyectos para el ecosistema spring. https://

start.spring.io/.

Apache maven: Herramienta para la gestion de dependencias y construccién de

proyectos. https://maven.apache.org/.

Apache ant: Herramienta de automatizacion de compilacién. https://ant.

apache.org/.

JUnit Team. Junit: Framework para pruebas unitarias en java. https://junit.

org/.

Swagger Ul (OpenAPI): Herramienta de documentacién y prueba de api. https:
//swagger.io/tools/swagger-ui/.

Atlassian. Sourcetree: Cliente git con interfaz gréfica intuitiva. https://www.

sourcetreeapp.com/.

GitLab Inc. Gitlab: Plataforma de control de versiones y devops. https://about.
gitlab.com/.
31

https://www.eclipse.org/ide/
https://www.oracle.com/java/
https://www.oracle.com/java/
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://projectlombok.org/
https://projectlombok.org/
https://spring.io/tools
https://spring.io/tools
https://start.spring.io/
https://start.spring.io/
https://maven.apache.org/
https://ant.apache.org/
https://ant.apache.org/
https://junit.org/
https://junit.org/
https://swagger.io/tools/swagger-ui/
https://swagger.io/tools/swagger-ui/
https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/
https://about.gitlab.com/
https://about.gitlab.com/

[13]

[14]

[15]

[16]

[19]

[20]

23]

[24]

[25]

Microsoft. Microsoft word: Herramienta para edicién de documentos. https:

//www.microsoft.com/word/.

Microsoft. Microsoft outlook: Servicio de correo electrénico. https://www.

microsoft.com/outlook/.

Microsoft. Microsoft teams: Plataforma de mensajeria instantanea y colaboracion.

https://www.microsoft.com/teams/.

Microsoft. Microsoft powerpoint: Herramienta para creacién de presentaciones.

https://www.microsoft.com/powerpoint/.

Overleaf: Plataforma en linea para creacién y edicién de documentos en latex.

https://www.overleaf.com/.

Overleaf. Learn in 30 minutes. https://es.overleaf.com/learn/latex/Learn_
LaTeX_in_30_minutes, 2025. Disponible en https://es.overleaf.com/learn/

latex/Learn_LaTeX_in_30_minutes.

Diagrams.net (draw.io): Herramienta para creacién de diagramas. https://www.

diagrams.net/.

Notepad++: Editor de texto avanzado para multiples lenguajes. https://
notepad-plus-plus.org/.

Palo Alto Networks. Global protect: Solucién de acceso remoto seguro. https:

//www.paloaltonetworks.com/globalprotect.

Servicios para la gestion de documentos - sae. https://paega2.atlassian.net/
wiki/spaces/AreaUsuariosIntegradores/pages/3379397180/Servicios+

para+latgesti+n+de+documentos.

Servicios para la gestién de expedientes - sae. https://paega2.atlassian.net/
wiki/spaces/AreaUsuariosIntegradores/pages/3379364261/Servicios+

parat+latgestit+n+de+expedientes.

Miguel Angel Latre, José Merseguer, and Javier Nogueras Iso. Apuntes de la
asignatura ingenieria del software. https://moodle.unizar.es/. Accedido desde
Moodle.

Francisco Javier Fabra Caro. Apuntes de la asignatura sistemas y tecnologias web.
https://moodle.unizar.es/. Accedido desde Moodle.
32

https://www.microsoft.com/word/
https://www.microsoft.com/word/
https://www.microsoft.com/outlook/
https://www.microsoft.com/outlook/
https://www.microsoft.com/teams/
https://www.microsoft.com/powerpoint/
https://www.overleaf.com/
https://es.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://es.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://es.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://es.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://www.diagrams.net/
https://www.diagrams.net/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://www.paloaltonetworks.com/globalprotect
https://www.paloaltonetworks.com/globalprotect
https://paega2.atlassian.net/wiki/spaces/AreaUsuariosIntegradores/pages/3379397180/Servicios+para+la+gesti+n+de+documentos
https://paega2.atlassian.net/wiki/spaces/AreaUsuariosIntegradores/pages/3379397180/Servicios+para+la+gesti+n+de+documentos
https://paega2.atlassian.net/wiki/spaces/AreaUsuariosIntegradores/pages/3379397180/Servicios+para+la+gesti+n+de+documentos
https://paega2.atlassian.net/wiki/spaces/AreaUsuariosIntegradores/pages/3379364261/Servicios+para+la+gesti+n+de+expedientes
https://paega2.atlassian.net/wiki/spaces/AreaUsuariosIntegradores/pages/3379364261/Servicios+para+la+gesti+n+de+expedientes
https://paega2.atlassian.net/wiki/spaces/AreaUsuariosIntegradores/pages/3379364261/Servicios+para+la+gesti+n+de+expedientes
https://moodle.unizar.es/
https://moodle.unizar.es/

[26] Sergio Ilarri Artigas. Apuntes de la asignatura bases de datos 2. https://moodle.

unizar.es/. Accedido desde Moodle.

[27] Taquel Trillo Lado and Carlos Telleria Orriols. Apuntes de la asignatura sistemas

de informacién. https://moodle.unizar.es/. Accedido desde Moodle.

[28] F. Javier Zarazaga Soria and Rubén Béjar. Apuntes de la asignatura proyecto

software. https://moodle.unizar.es/. Accedido desde Moodle.

uardo Mena Nieto. puntes de la asignatura sistemas legados. https:
29| Eduardo M Ni A de 1 i i legad
//webdiis.unizar.es/asignaturas/SL/. Accedido desde WebDIIS de la

Universidad de Zaragoza.

33

https://moodle.unizar.es/
https://moodle.unizar.es/
https://moodle.unizar.es/
https://moodle.unizar.es/
https://webdiis.unizar.es/asignaturas/SL/
https://webdiis.unizar.es/asignaturas/SL/

34

Anexos

35

Anexos A

Diccionario de datos

Este Anexo proporciona definiciones y explicaciones de los términos clave utilizados

a lo largo del documento. Este es de gran ayuda para comprender el contexto y los

conceptos relacionados con el Trabajo de Fin de Grado.

1.

SAE: Sistema de Atencion Electronica utilizado en el Gobierno de Aragdn para la
gestion y tramitacion de documentos y expedientes electronicos relacionados con
procedimientos administrativos. Su propdsito es proporcionar una infraestructura
digital que facilite la gestién de la documentacién y los tramites administrativos

de forma eficiente y accesible.

CSV: Cédigo Seguro de Verificacion. Es un codigo tnico que identifica a cada
documento o expediente generado por el Gobierno de Aragén. Permite verificar
el contenido, autenticidad de las firmas y la integridad de los documentos
almacenados en el gestor documental, generalmente visible en los margenes del

documento.

CCSV: Servicio de almacenamiento y verificacion de Documentos electrénicos.
Es un sistema de consulta de documentos mediante CSV es una aplicacion que
permite a los ciudadanos y empleados publicos la consulta de los documentos

pertenecientes a tramites o expedientes en los que estan involucrados.

. Documento: unidad de informacion en formato digital que contiene datos

estructurados, como archivos de texto, imagenes, audios, entre otros. En el
contexto del SAE, es la informacién que se gestiona, visualiza y procesa en el
sistema. En este caso, almacena la informacion de los documentos electrénicos,
tales como identificadores (entre ellos el CSV), tipos, nombres, formatos, y

contenido en el sistema.

. Expediente: conjunto de documentos y otros materiales asociados a un tramite

administrativo o proceso especifico. En el SAE, el expediente integra todos

37

los archivos que forman parte de un caso o procedimiento. En el sistema,
almacena la informacion relacionada con el expediente, incluyendo identificadores
(como el CSV), el tipo, el estado, la fecha de apertura y cierre, entre otros
datos relacionados. El expediente tiene documentos asignados, asi como carpetas

opcionales que agrupan dichos documentos.

. AMD Aragén: Administracién Electrénica de Aragdn, plataforma institucional
encargada de gestionar digitalmente los procedimientos administrativos. Agrupa
diversos servicios como el SAE, para optimizar los tramites y la interaccién entre

los ciudadanos y la administraciéon publica.

. Sistema legado: sistema informatico que ha quedado obsoleto pero que sigue
siendo utilizado por el usuario y no se quiere o no se puede reemplazar o actualizar

de forma sencilla.

38

Anexos B

Planificacion

Se disené un Diagrama de Gantt, como se observa en la Figura B.1, para mostrar
de forma clara el cronograma del proyecto en relacién con sus etapas principales y
los meses de trabajo. Este diagrama permite visualizar las fases clave y las tareas
organizadas en el tiempo, teniendo en cuenta las fechas establecidas para el inicio y fin

del proyecto, asi como la estimacion del tiempo requerido para cada actividad.

Septiembre Octubre Noviembre Diciembre Enero Febrero

Planificacion
Objetivos y alcance
Andlisis del sistema legado
Estudio del sistema actual
Identificacion de mejoras
Configuracion del entorno
Preparacion y configuracion del entorno
Disefio
Captura de requisitos
Catélogo de operaciones
Implementacion
Modulo de documentos

Médulo de expedientes

Pruebas
Validacién
Pruebas funcionales
Mejoras necesarias
Entrega
Documentacion

Presentacion

Figura B.1: Diagrama de Gantt

A diferencia del diagrama de Gantt mostrado en la Figura B.1, que presenta una
estimacion del tiempo necesario para el desarrollo del proyecto, la tabla de la Figura
B.1 proporciona un detalle de las horas reales dedicadas a cada tarea y subtarea.
Aunque las tareas y subtareas de esta tabla coinciden con las del diagrama de Gantt,
hay diferencias notables entre ambas representaciones.

Realizar la estimacién de horas fue un desafio, ya que era una de las primeras

39

veces que se abordaba este tipo de proyecto, lo que hizo complicado calcular con
exactitud las horas. Ademas, debido a la naturaleza de las primeras estimaciones y
la falta de experiencia, la precision de estas fue limitada, como se puede evidenciar en
la comparacion entre lo previsto y lo realmente invertido en cada actividad.

La principal diferencia que se observa entre la estimacion y la realidad es que se
subestimé el tiempo necesario para la documentacion, mientras que, en la practica, este
proceso resulté ser mas extenso de lo previsto. Un desafio importante del proyecto fue la
falta de documentacién adecuada sobre la libreria que se deseaba integrar. Para mitigar
este problema, decidi dedicarme mas a la documentacion, con el objetivo de facilitar
el trabajo del siguiente desarrollador que se encargue de este proyecto, para que no se
enfrente a la misma incertidumbre con la que me encontré. Aunque la documentacion
final no es excesivamente detallada, tuve que ir adaptandola a medida que avanzaba,
realizando modificaciones en ella conforme introducia cambios en el cédigo.

Otro aspecto notable es que se destind mas tiempo de lo estimado para la
planificacién y el andlisis de requisitos, aunque el proyecto ya estaba bastante definido
cuando me proporcionaron el tema. Esto quiere decir que, a pesar de haber estimado
mas tiempo para estas fases, realmente no necesité tanto, ya que gran parte de las
decisiones y detalles ya estaban establecidos. El tiempo ahorrado en estas fases lo
aproveché para concentrarme mas en la documentacién, dando prioridad a este aspecto

del proyecto dado los desafios encontrados.

Tabla B.1: Horas reales dedicadas a cada tarea del proyecto

Tarea Subtarea Horas reales | Total por tarea
Planificacién Objetivos y alcance 19 19
P . _ Estudio del sistema actual 15
Analisis del sistema legado Tdentificacion de mejoras 6 21
Configuracién del entorno Preparacion y configuracién del entorno 9 9
- Captura de requisitos 10
Diseiio Catalogo de operaciones 11 21
Moédulo de documentos 70
Implementacion Moédulo de expedientes 49 148
Pruebas 10
Validacion Plfu'ebas func1on‘c}les 7 17
Mejoras necesarias 10
_ Documentacion 76
Entrega Presentacion 15 ol
Total de horas 326

40

Anexos C

Arquitectura de un proyecto para el
Gobierno de Aragon

Los proyectos desarrollados para el Gobierno de Aragén emplean diversas
tecnologias para desarrollar tanto el backend como el frontend. El backend esta
construido con Java y Servlets, utilizados para implementar la légica de negocio y
gestionar la conexién con la base de datos. Por otra parte, el frontend se desarrolla
en Angular, siguiendo una estructura basada en moédulos, componentes y servicios. Sin
embargo, esta ultima parte no esta directamente relacionada con el desarrollo de este
proyecto.

En los proyectos desarrollados para el Gobierno de Aragén, se emplea el patron
Modelo-Vista-Controlador (MVC) como arquitectura base (reflejado en la Figura
C.1). Este patrén separa claramente las responsabilidades de la aplicacién en tres

componentes principales:

Usuario
¥ A
B
o
N
bl B
m
0
&
Modelo il Vista
N— T
. ~ o
a;). Qlaf,; p
2 : r 2
;‘c}._-,ss " c_c{‘“
By F s
Controlador

Figura C.1: Patrén MVC

— Modelo: maneja los datos y la logica de negocio de la aplicacién. Representa la
estructura de los datos y es responsable de la interaccion con la base de datos.

41

— Vista: controla la presentacion de los datos al usuario. Es el encargado de mostrar

interfaces amigables y dinamicas para facilitar la interaccion con la aplicacion.

— Controlador: actiia como intermediario entre el modelo y la vista. Recibe las
entradas del usuario, las procesa, y determina qué se debe mostrar en la vista o

cémo actualizar el modelo.

Para profundizar més, se puede observar el funcionamiento de un proyecto diseniado

para el Gobierno de Aragon en la figura C.2.

FRONTEND NgModule i SERVLET
- :> : <:> o <:> <:>
A4 => !
BOOTSTRAP LIBRERIES { ‘
=2 N N\
] ot =3 Services Directives !
1 Metadata N 0
=2
. | HTTP
7 CLIENT
MODULE % MODULE !
> ——> | controll i i
=) | > ontroller Service Repository Base de
[datos
Child Child Child Child N H
Component || Template ! | component || Template = !
% = | N
1 b pTO DAO
' Grand Child | | Grand Child Grand Child | | Grand Child = H Mapper
| | Component Template Component Template % 3 L |
rrr => |

Figura C.2: Diseno de los programas del Gobierno de Aragén

C.1. Componentes del frontend

En la parte frontal, se utiliza Angular, un framework de desarrollo web altamente
eficiente que organiza las aplicaciones en modulos, componentes y servicios. Cada
elemento cumple funciones especificas para mantener la estructura y la claridad del

cédigo. A continuacion, se explican los principales componentes del proyecto Angular:

1. Ng Module: es el nitcleo organizativo de Angular. Agrupa componentes,
servicios, directivas y otros recursos relacionados. Ademds, proporciona el
contexto necesario para la inyeccion de dependencias y facilita la configuracion

de las rutas en la aplicacion.

2. Bootstrap: un marco de diseno basado en CSS y JavaScript que ayuda a crear
interfaces de usuario responsivas y visualmente atractivas. Su integracién asegura
que la aplicacion funcione y se vea correctamente en dispositivos de distintos
tamanos.

42

3. Librerias: estas incluyen bibliotecas de terceros o personalizadas, utilizadas para
funciones especificas como la representacion de graficos, autenticacion de usuarios
o manipulacion avanzada de datos. Aportan flexibilidad y reducen la complejidad

del desarrollo.

4. Root Component: es el componente principal que actia como punto de entrada
de la interfaz de usuario. Este componente se carga en el DOM y contiene

referencias a otros componentes secundarios.

5. Metadata: Angular utiliza metadatos, como decoradores, para definir
configuraciones adicionales en componentes, modulos y servicios. Por ejemplo,
rutas para la navegacion entre vistas o informacion para facilitar la carga de

dependencias.

6. Root Module: este es el modulo principal de la aplicacion que define
configuraciones globales y las dependencias esenciales. Sirve como un mapa para

conectar y gestionar los diferentes médulos que forman parte del sistema.

7. Services: los servicios son componentes reutilizables que manejan la légica de
negocio, la comunicaciéon con el servidor y otras tareas criticas. Normalmente, los

métodos que contienen las peticiones HT'TP se definen aqui.

8. Directives: directivas que permiten modificar el comportamiento o el estilo
de elementos HTML dentro de las plantillas. Pueden ser estructurales
(anadir/eliminar elementos del DOM) o de atributo (modificar propiedades del
DOM).

C.2. Componentes del backend

En la parte trasera, los proyectos hacen uso de Servlets para procesar las peticiones
HTTP y garantizar el correcto flujo de datos entre la aplicacién y los usuarios. Estos
componentes son esenciales para orquestar la loégica de negocio y la persistencia de

datos:

1. Controlador (Controller): Se encarga de recibir las peticiones HTTP entrantes
desde el cliente, validar la informacion proporcionada y delegar las operaciones

al servicio correspondiente.

2. Servicio (Service): Implementa la légica de negocio de la aplicacién. Aqui se
procesan datos, se aplican reglas de negocio y se coordinan las operaciones en la
base de datos o con otros sistemas externos.

43

. Repositorio (Repository): Define las operaciones necesarias para interactuar
con la base de datos. Implementa métodos para consultar, actualizar o eliminar

informacion almacenada.

. DAO (Data Access Object): Este patrén de disenio proporciona una capa de
abstraccion adicional para la interaccién con la base de datos. Ofrece métodos
genéricos para realizar operaciones CRUD (crear, leer, actualizar, eliminar) y

otras consultas especificas.

. DTO (Data Transfer Object): Los DTO se utilizan para transportar datos
entre las distintas capas de la aplicacién. Facilitan el traslado de informacion

estructurada de forma eficiente y segura.

. Mapper: Traduce entre objetos de las capas de negocio (DTO) y las entidades de
la base de datos. Esta conversién permite mantener separada la légica de negocio

de la logica de acceso a datos.

. Base de Datos (Database): Es el sistema donde se almacenan todos los datos
persistentes. En estos proyectos suele utilizarse una base de datos relacional,
que organiza los datos de manera estructurada para facilitar su consulta y

manipulacion.

. Dependencias (Dependencies): Incluyen bibliotecas, frameworks y otros
recursos que el backend necesita para cumplir con sus funcionalidades. Por
ejemplo, bibliotecas para manejar el protocolo HTTP, validacién de datos o

integracién con otras APIs.

44

Anexos D

Detalles de implementacion

Este anexo se adentra en los detalles del codigo implementado, centrandose en
destacar aquellas partes que sobresalen por su relevancia y complejidad, ofreciendo

una visién profunda de los aspectos mas significativos del desarrollo.

D.1. Infraestructura

A continuaciéon se presenta el cédigo implementado relacionado con la

infraestructura y su configuracion.

D.1.1. ClientCCSV

La configuracion de la clase ClientCCSVProviderImpl permite conectar con dos
servicios externos, el de documentos y el de expedientes, a través de proxies que utilizan
SOAP (Simple Object Access Protocol). Esto se lleva a cabo mediante el uso de Apache
CXF, un framework que facilita la interacciéon con servicios web.

Esta clase recibe un objeto de configuracion CCSVProviderConfig como parametro
en su constructor. Este contiene las URLs base de los servicios de documentos y
expedientes, junto con otros posibles parametros.

Para configurar el cliente del servicio de documentos, se utiliza una
instancia de ClientProzyFactoryBean, que actia como una fabrica para crear
clientes que interactian con servicios web. En primer lugar, se define la
interfaz que implementard la clase cliente, estableciendo que esta utilizara
la interfaz IDocumentMetadataSignatureService, la cual contiene los métodos
disponibles para el servicio de documentos. A continuacién, se especifican las
URLs necesarias, configurando tanto la direccién base del servicio mediante
documentEzxpedient ProviderConfig.getUrlDocument() como la ubicacién del archivo
WSDL anadiendo Zwsdl, el cual proporciona la descripcion detallada de las operaciones
soportadas por el servicio. Posteriormente, se configura el mapeo de objetos Java a

45

XML mediante la clase AegisDatabinding, lo que permite una conversion automatica y
eficiente entre estos formatos, adaptada a las necesidades de las operaciones SOAP.
También se habilita el mecanismo MTOM (Message Transmission Optimization
Mechanism) para optimizar la transferencia de datos binarios, especialmente 1til en el
manejo de archivos grandes como imagenes y documentos. Por tltimo, se procede a la
creaciéon del cliente proxy, denominado iDocumentMetadataSignatureService, el cual se
utiliza como punto de acceso para interactuar directamente con el servicio y realizar

las operaciones requeridas. Tal como se ve en el codigo del apartado ?7.

Para la configuracién del cliente del servicio de expedientes, el proceso es
bastante similar al de los documentos. Se sigue el mismo procedimiento de
creacion del ClientProxyFactoryBean, definicion de la interfaz a implementar, y
configuracion de las URLs correspondientes, que en este caso se obtienen de
documentEzxpedient ProviderConfig.getUrlExpedient(). La principal diferencia radica
en la interfaz utilizada para el servicio de expedientes, que en este caso es
TAdministrativeFileService, en lugar de la interfaz de documentos. Al igual que en el
caso anterior, se configura el mapeo de objetos Java a XML mediante AegisDatabinding
y se habilita MTOM para optimizar la transferencia de datos binarios. Una vez
configurado todo, se crea un cliente proxy denominado iAdministrativeFileService, que
permite interactuar con el servicio de expedientes de la misma manera que se hace con

el servicio de documentos.

Listado D.1: Constructor de la clase ClientCCSVProviderImpl

public ClientCCSVProviderImpl (CCSVProviderConfig documentExpedientProviderConfig) {
/** Cliente CCSV Documentos x**/
ClientProxyFactoryBean proxyFactoryDoc = new ClientProxyFactoryBean();

// Establece la interfaz que define los metodos del servicio
proxyFactoryDoc.setServiceClass(IDocumentMetadataSignatureService.class);

// Configura la URL base del servicio para documentos
proxyFactoryDoc.setAddress (documentExpedientProviderConfig.getUrlDocument ()) ;
// Configura la URL del archivo WSDL para describir el servicio
proxyFactoryDoc.setWsd1URL (documentExpedientProviderConfig.getUrlDocument () + "7wsd]
// Configura el metodo de binding (mapeo entre objetos Java y XML)
proxyFactoryDoc.getServiceFactory() .setDataBinding(new AegisDatabinding());
// Activa MTOM para optimizar la transferencia de datos binarios
HashMap<String, Object> properties = new HashMap<String, Object>();
properties.put("mtom-enabled", "true");
proxyFactoryDoc.setProperties(properties);

// Crea el cliente proxy para interactuar con el servicio de documentos
IDocumentMetadataSignatureService iDocumentMetadataSignatureService = (IDocumentMete
.create();

/*x Cliente CCSV Expedientes *x*/
46

ClientProxyFactoryBean proxyFactoryExp = new ClientProxyFactoryBean();

// Establece la interfaz que define los metodos del servicio
proxyFactoryExp.setServiceClass(IAdministrativeFileService.class);

// Configura la URL base del servicio para documentos
proxyFactoryExp.setAddress(documentExpedientProviderConfig.getUrlExpedient ()) ;
// Configura la URL del archivo WSDL para describir el servicio
proxyFactoryExp.setWsd1URL (documentExpedientProviderConfig.getUrlExpedient () + "7wsc
// Configura el metodo de binding (mapeo entre objetos Java y XML)
proxyFactoryExp.getServiceFactory() .setDataBinding(new AegisDatabinding());

// Activa MTOM para optimizar la transferencia de datos binarios
HashMap<String, Object> properties2 = new HashMap<String, Object>();
properties2.put("mtom-enabled", "true");
proxyFactoryExp.setProperties(properties?2) ;

// Crea el cliente proxy para interactuar con el servicio de expedientes
TAdministrativeFileService iAdministrativeFileService = (IAdministrativeFileService)

// this.peticionesSaeProvider = new

// PeticionesSaeProviderImpl(documentProviderConfig, clienteCcsv);

this.documentProvider = new DocumentProviderImpl (documentExpedientProviderConfig,
iDocumentMetadataSignatureService) ;

this.expedientProvider = new ExpedientProviderImpl(documentExpedientProviderConfig,
iDocumentMetadataSignatureService) ;

Luego se definieron las funciones, organizandolas en dos grupos segun su tipo: una
parte para los documentos y otra para los expedientes. Para facilitar la gestion de estas
funciones, se crearon dos proveedores especificos: uno para manejar los documentos
y otro para los expedientes, de modo que cada uno se encargara de las operaciones

correspondientes a su tipo de entidad.

D.1.2. Documento

La clase DocumentProviderImpl estd disenada para integrarse con el servicio
de gestién de documentos, y su configuracién comienza desde el constructor. Este
constructor requiere un objeto del tipo CCSVProviderConfig, el cual contiene
informacion crucial sobre la entidad que esta utilizando la libreria, ademaés de las
credenciales necesarias para acceder a SAFE, entre otros datos importantes. Toda esta
informacion se transmite a través del ClientCCSVProvider, que actia como el tnico
punto de conexion con el usuario de la libreria. Al ser el punto inicial de la integracion,
esta informacién se va propagando entre clases, llegando hasta su uso en la ultima parte
del flujo.

Un elemento central en la integracion es el servicio
1DocumentMetadataSignatureService, que es responsable de ejecutar las funciones

47

puras de SAFE. Este servicio también es configurado en ClientCCSVProvider y se
pasa entre clases hasta llegar a PeticionesSae, que es donde realmente se emplea.
Esta decision de configurar el servicio en la clase cliente y luego transferirlo entre
clases permite evitar la transmision directa de todos los detalles de configuraciéon del
servicio. De este modo, se logra encapsular el servicio para que sea accesible cuando
sea necesario, sin necesidad de pasar todos los parametros de configuracién en cada
paso del flujo, simplificando el proceso.

Finalmente, se crea un objeto de PeticionesSae, en el cual se encuentran las
funciones que llaman directamente al servicio SAE. Este objeto también recibe la
configuracion necesaria y el servicio de documentos, completando el ciclo de integracion.
Por d1ltimo, se capturan y asignan los valores pertinentes de la configuracién,
permitiendo a la clase DocumentProviderImpl estar completamente preparada para

funcionar dentro del contexto de la integracion.

Listado D.2: Constructor de la clase DocumentCCSVProviderImpl

public ClientCCSVProviderImpl (CCSVProviderConfig documentExpedientProviderConfig) {

public DocumentProviderImpl(CCSVProviderConfig documentProviderConfig,
IDocumentMetadataSignatureService iDocumentMetadataSignatureService) {
log.info("DocumentProviderImpl() - Hi");

this.iDocumentMetadataSignatureService = iDocumentMetadataSignatureService;

this.peticionesSaeProvider = new PeticionesSaeProviderImpl(documentProviderConfig, i

this.codigoOrganismo = documentProviderConfig.getOrganismCode();

this.nombreAportadorInteresado = documentProviderConfig.getInterestedContributorName
this.nifAportadorInteresado = documentProviderConfig.getNifInterestedContributor();
this.organismoProductorNombre = documentProviderConfig.getOrganismProducerName();

this.procedimientoNombre = documentProviderConfig.getProcedureName() ;
this.procedimientoNumero = documentProviderConfig.getProcedureCode() ;
this.appCode = documentProviderConfig.getAppCode() ;

this.appName = documentProviderConfig.getAppName() ;
this.suffixAppCCSV = documentProviderConfig.getSuffixAppCCSV();

Una vez realizada la configuracién, se procede a implementar la logica

correspondiente a las funciones necesarias.

D.1.3. Expediente

En el caso del proveedor de expedientes, la configuracion sigue una
légica muy similar a la del proveedor de documentos. La diferencia radica
en que la clase FzxpedientProviderImpl no solo utiliza su propio servicio, el

48

iAdministrativeFileService, sino que también hace uso del servicio de documentos,
1DocumentMetadataSignatureService. Al igual que en el caso anterior, el constructor
de esta clase recibe un objeto de tipo CCSVProviderConfig que contiene los datos
de configuraciéon necesarios, como el cédigo del organismo, el nombre del aportador

interesado, y otros parametros fundamentales para la conexién con el sistema.

En este caso, también se configura un objeto de PeticionesSaeProviderImpl,
el cual se pasa la configuracion y los dos servicios necesarios:
1DocumentMetadataSignatureService 'y i1AdministrativeFileService. FEste objeto es
el que maneja las funciones que interactian directamente con el servicio SAFE, de
manera que se centralizan en un tunico lugar las operaciones que requieren ambos

servicios, el de expedientes y el de documentos.

Al igual que en el DocumentProviderImpl, los detalles de la configuracién del
servicio se propagan entre las clases sin necesidad de pasar todos los parametros
repetidamente. Ademas, la clase FxpedientProviderImpl captura los valores necesarios
de la configuracion proporcionada por el objeto CCSVProviderConfig, 1o cual permite

una integracién ordenada y eficiente.

Listado D.3: Constructor de la clase ExpedientCCSVProviderImpl

public ExpedientProviderImpl (CCSVProviderConfig expedientProviderConfig,
IAdministrativeFileService iAdministrativeFileService,
IDocumentMetadataSignatureService iDocumentMetadataSignatureService) {
log.info("ExpedientProviderImpl() - Hi");

this.iAdministrativeFileService = iAdministrativeFileService;

this.iDocumentMetadataSignatureService = iDocumentMetadataSignatureService;

this.peticionesSaeProvider = new PeticionesSaeProviderImpl(expedientProviderConfig,

iDocumentMetadataSignatureService, iAdministrativeFileService);

this.codigoOrganismo = expedientProviderConfig.getOrganismCode() ;

this.nombreAportadorInteresado = expedientProviderConfig.getInterestedContributorNan
this.nifAportadorInteresado = expedientProviderConfig.getNifInterestedContributor();
this.organismoProductorNombre = expedientProviderConfig.getOrganismProducerName();

this.procedimientoNombre = expedientProviderConfig.getProcedureName() ;
this.procedimientoNumero = expedientProviderConfig.getProcedureCode();
this.appCode = expedientProviderConfig.getAppCode();

this.appName = expedientProviderConfig.getAppName();
this.suffixAppCCSV = expedientProviderConfig.getSuffixAppCCSV();

49

D.1.4. PeticionesSae

La configuracion de la clase PeticionesSaeProviderImpl es bastante simple. En
su constructor se reciben tres pardmetros: un objeto del tipo CCSVProviderConfig,
que contiene la configuracion necesaria para el acceso a los servicios; el
servicio IDocumentMetadataSignatureService, utilizado para interactuar con los
documentos; y el servicio ITAdministrativeFileService, utilizado para interactuar con
los expedientes. Dentro del constructor, se asignan estos parametros a las variables
de instancia correspondientes: documentProviderConfig, clienteDocumentoCCSV vy
clienteExpedienteCCSV. Esto permite que la clase PetictonesSaeProviderImpl tenga
acceso a toda la informacién necesaria y a los servicios que seran utilizados en sus
funciones. La configuracién es bésica, pero crucial, ya que permite que los diferentes
componentes interactien entre si de manera adecuada para el funcionamiento de la

libreria.

Listado D.4: Constructor de la clase PeticionesSaeCCSVProviderImpl

protected PeticionesSaeProviderImpl (CCSVProviderConfig documentProviderConfig,
IDocumentMetadataSignatureService clienteDocumentoCCSV, IAdministrativeFileServic
log.info("PeticionesSae() - Hi");
this.documentProviderConfig = documentProviderConfig;
this.clienteDocumentoCCSV = clienteDocumentoCCSV;
this.clienteExpedienteCCSV = clienteExpedienteCCSV;

D.1.5. CCSVExternal

La clase CCSVExternalProvider actiia como un puente entre los proyectos
desarrollados con Spring Boot y los servicios proporcionados por SAE. Configurada
con la anotaciéon @Configuration, esta clase crea e inyecta automaticamente un
cliente (ClientCCSVProvider) que proporciona un punto de acceso centralizado y
eficiente para interactuar con los servicios de documentos y expedientes. Gracias a esta
configuracion, los proyectos que utilicen Spring Boot pueden conectarse de manera
sencilla y coherente con los servicios de SAE, sin necesidad de gestionar manualmente
los parametros de conexion.

Para obtener la configuracién necesaria, CCSVExternalProvider se basa en la
clase AmmSaeCCSVConfig, que contiene todos los parametros esenciales como las
URLs de los servicios de documentos y expedientes, los coédigos de procedimiento, y
otros detalles relevantes. Esta configuracion se obtiene autométicamente del archivo
de propiedades (como application.properties o application.yml) mediante la
anotacion @ConfigurationProperties(prefix = ’’ccsv’’), lo que permite a Spring

20

asignar de forma automatica los valores del archivo de configuracién a las propiedades
de AmmSaeCCSVConfig.

La clase AmmSaeCCSVConfig mapea los valores como las URLs y los
cbdigos de procedimiento desde el archivo de configuracién a los campos
correspondientes. Por ejemplo, cuando se define en el archivo de propiedades
una linea como ccsv.urlDocument=http://url-documento.com, Spring asigna
el wvalor http://url-documento.com al campo wrlDocument de la clase
AmmSaeCCSVConfig. Una vez que AmmSaeCCSVConfig tiene los parametros
configurados, CCSVExternalProvider utiliza esta configuracion para crear una
instancia de ClientCCSV ProviderImpl, un cliente que permite gestionar los documentos

y expedientes de manera adecuada.

Este enfoque centraliza la configuracion y facilita la reutilizacion del cliente en
diferentes partes del sistema sin necesidad de gestionar manualmente los parametros de
configuracion en cada clase que los requiere. Con esta solucién, CCSVEzternal Provider
asegura una integracién coherente y eficiente con los servicios de CCSV, al mismo
tiempo que minimiza la complejidad de configurar repetidamente los mismos
parametros a lo largo del sistema. El cddigo correspondiente a lo explicado en este

apartado se puede consultar en el Anexo D.1.5.

Listado D.5: Constructor de la clase CCSVExternalProvider

@Configuration

@ComponentScan(basePackageClasses = {CCSVProviderConfig.class,
AmmSaeCCSVConfig.class})

@S1£f4j

public class CCSVExternalProvider {

©Bean
public ClientCCSVProvider getClientCCSVProvider
(AmmSaeCCSVConfig ammSaeCCSVConfig) {
log.debug("[{}] es.aragon.core.sae.ccsv.providers.CCSVExternalProvider =>
Inicio getClientCCSVProvider", LocalDateTime.now());

// Configuracion del CCSVProviderConfig con constantes especificas
CCSVProviderConfig config = CCSVProviderConfig.builder()
.appCode (ammSaeCCSVConfig.getAppCode())
.appName (ammSaeCCSVConfig.getAppName ())
.urlDocument (ammSaeCCSVConfig.getUrlDocument ())
.urlExpedient (ammSaeCCSVConfig.getUrlExpedient ())
.suffixAppCCSV(ammSaeCCSVConfig.getSuffixAppCCSV())
.getDocumentAdv (ammSaeCCSVConfig. isGetDocumentAdv())
.organismCode (ammSaeCCSVConfig.getOrganismCode())
.interestedContributorName (ammSaeCCSVConfig
.getInterestedContributorName())
.nifInterestedContributor (ammSaeCCSVConfig

o1

.getNifInterestedContributor())
.organismProducerName (ammSaeCCSVConfig
.getOrganismProducerName ())
.procedureName (ammSaeCCSVConfig.getProcedureName ())
.procedureCode (ammSaeCCSVConfig.getProcedureCode())
.build();

// Crear instancia de ClientCCSVProvider utilizando el
// config
return new ClientCCSVProviderImpl(config);

D.2. Flujo de integracion

En esta seccién se presentan los diagramas de secuencia correspondientes a todas las
operaciones desarrolladas durante el proyecto. Estos diagramas son una herramienta
clave para visualizar y comprender cémo interactian los diferentes componentes del
sistema en cada caso de uso.

Cada diagrama ilustra el flujo de mensajes entre las entidades del sistema,
destacando las acciones que se llevan a cabo desde la invocacién inicial hasta la

finalizacion de la operacion.

52

Crear documento

El diagrama de la Figura E.2 representa el flujo de la operacion Crear documento,

responsable de gestionar la creacion de un nuevo documento en el sistema.

:DocumentProvider :PeticionesSaeProvider

jt\ Desarroliador :CCSVClient

‘ : IDocumentMetadataSignatureService

1 crearDocumento :
M (crearDocumentoRequest) 2l crearDocumento
(crearDocumentoRequest)

- i
Documento [| i

generarMetadatos | H

{Documento) H

crearDocumentoCCSV(Documento) |

crearDocumento

(Documento) '
[initializeDocumentMetadata(Documento)
initializeDocumentMetadata(Documento)
Document
createDocument(Document) '
ResuliCrearD: ResultCreateDocument
ResultCrearDocumento

alt [ResultCrearDocumento.getError == null]

CCSVResponseDTO(success=true)

[else]

CCSVResponseDTO(success=false)

Figura D.1: Diagrama de secuencia de la operacion Crear operacion

Obtener documento

El diagrama de la Figura D.2 muestra el flujo de la operacién Obtener documento,

encargada de recuperar un documento especifico del sistema.

:DocumentProvider :PeticionesSaeProvider

‘ :IDecumentMetadataSignatureService

/’i :Desarrollador “CCSVClient

! obtenerDocumento !
L, (obtenerDocumentoRequest L

T
H
H
obtenerDocumento !
H obtenerDocumento

(obtenerDocumentoRequest)

¥
[

(ParamObtenerDocumento) getDocument
(ParamGetDocument)
COSVR CCSVResponse
eapanse <ResultObtenerDocumentoXML=
CCSVResponse <ResultObtenerDocumentoXML> | e - T T T Tt
CCSVResponse <ResultObtenerDocumentoXML> T
=ResultObtenerDocumentoXML> L :

Figura D.2: Diagrama de secuencia de la operacion Obtener documento

23

Obtener documento XML

El diagrama de la Figura D.3 describe el flujo de la operacion Obtener documento

XML, utilizada para extraer documentos en formato XML.

i.DesarroHador “CCSVClient ‘ :DocumentProvider

1 obtenerDocumentoXML

‘ :PeticionesSaeProvider

‘ :IDocumentMetadataSignatureService

i i T
; ; '
1 1 '
obtenerDocumentoXMLRequest) N obtenerDocumentoXML ! ! 3
(obtenerDocumentoXMLRequest) | obtenerDocumentXML ! getDocumentXmi 1
A : '
(ParamObtenerDocXmi) M {ParamGetDocumentXml) !
St CCSVResponse
e3panse <ResultObtenerDocumento=
CCSVResponse
CCSVResponse <Resurl0mener[?ncumemn> SRestONEnerloc ey
=ResuliObtenerDocumento=
.]
L T !
L ;
7 !
;
!

B

Figura D.3: Diagrama de secuencia de la operacion Obtener documento XML

Actualizar documento

La Figura D.4 ilustra el flujo de la operacién Actualizar documento, que actualiza

los datos de un documento existente.

Desarrollador -CCSVClient

: actualzarDocumento ' '
= (actualizarDocumentoRequest) i actualizarDocumento :

(actualizarDocumentoRequest)

DocumentProvider PeticionesSaeProvider

‘ :IDecumentMetadataSignatureService

T T
| |
i actualizarDocumento i H
L (ParamActualizarDecumento) i i
H H
| |

actualizarDocumentoAdv

updateDocumentAdv
(ParamAcualizarDocumento)

(ParamUpdateDocument) i

ResultUpdateDocument

ResultActualizarDocumento

alt [ResultActualizarDocumento.getError == null] '

CCSVResponseDTO(success=true)

[else]

CC3VResponseDTO(success=false)

Figura D.4: Diagrama de secuencia de la operacion Actualizar documento

o4

Crear expediente

La operacion Crear expediente, representada en la Figura D.5, genera un nuevo

expediente en el sistema.

:CCSVClient -ExpedientProvider ‘ -PeticionesSaeProvider ‘ ‘ iAdministrativeFileService ‘
: i i
i crearExpediente i V
(CrearExpedienteRequest) N initializeExpediente E
(CrearExpedienteRequest) 1. inicializarMetad ataExpediente
(itial inistrafi = i s
> P)
R 2 :|
AdmintiofveRle: | lesiiociiaiiiniEeilc I 7
verifyMetadatosExpediente i N
(AdminisirativeFile) ok verificarMetadatosExpediente % _
(AdministrativeFile) i verifyDocumenthetadata
(ParamVerifyDocumentMetadata)
ResulivenfyDocumentMetadata
R y
openExpediente T _
(AdministrativeFile) = abriExpedients : i
{ParamOpenAdministrativeFile) r openAdministrativeFile o
> (ParamOpenAdministrativeFile)
ResultOpenAdministrativeFile
ResultCrearExpediente
ResultCrearExpediente
L
i H
alt)[Rasu\tcrearExpedlenle.getErml::ml\l] |
!
CCSVResponseDTO(success=true) E
|
[else]
CCSVResponseDTO(success=false)
= S S S A

Figura D.5: Diagrama de secuencia de la operacion Crear expediente

Anadir documentos al expediente

El diagrama en la Figura D.6 muestra el flujo de la operacion Anadir documentos

al expediente, que incorpora documentos a un expediente existente.

/’i Desarrollador :CCSVClient ‘ ExpedientProvider

‘ :PeficionesSaeProvider ‘ ‘ -iAdministrativeFileService ‘

it anadirDocumentosExpedients H

{AnadiDocumentosExpedienicRequest) anadirDocumentoFicheroAdmin

(AnadirDocumentosExpedienisRequest) e s i)
(ParamAddDocumenisToAdminFile) - addDocumentsToAdminFile
3] P ddDs ToAdminFile) o
ResultAnadirDocumentosExpediente
ediente
ResultAnadirDocumentosExpediente | | . _________________ L

alt L L iente gefEmor == null]

CCSVResponseDTO (success=true)

[else]

CCSVResponseDTO (success=false)

Figura D.6: Diagrama de secuencia de la operacion Anadir documentos al expediente

25

Eliminar documentos del expediente

El flujo de la operacién Eliminar documentos del expediente se presenta en la Figura

D.7, mostrando como se eliminan documentos de un expediente.

% Desarrollador :CCSVClient ‘ :ExpedientProvider

‘ ‘PeticionesSaeProvider ‘ ‘ iAdministrativeFileService ‘

T
L eliminarDocumentosExpediente

T
i
(EliminarDocumentosExpedienteRequest) o sfiminarDocumentoFicheroAdmin E
(EliminarD: ienteRequest) e '
ParamDeleteD inFile dminFile
—I 5[] e inFile !
" ResultDeleteDocumentFromAdminFile
R pediente
ResultEiminarDocumentosExpediente | le- oo o oo oo i oo L
at) imii iente getError == null

CCSVResponseDTO (success=true)

[else]

CCSVResponseDTO (success=false)

Figura D.7: Diagrama de secuencia de la operacién Eliminar documentos del expediente

Regenerar indice del expediente

En la Figura D.8, se detalla el flujo de la operacién Regenerar indice del expediente,

que actualiza los indices de un expediente.

% Desarrollador :CCSVClient ‘ :ExpedientProvider

‘ ‘PeticionesSaeProvider ‘ ‘ iAdministrativeFileService ‘

T
regenerarindiceExpediente E H
(RegenerarindiceExpedienteRequest) . regenerarindiceFicheroAdmin :

RegenerarindiceExpedienteRequest i

regenerateindexExpedient

(ParamR flelndex) | regener S
> (P; D ToAdminFile)
ResultR: ediente g ativeFileindex }
ResuREgENerarndiceEpedionte | |ienceeoommeoeoe e emeo o]

@

) [ResultRegenerarindiceExpediente getError == null]

CCSVResponseDTO (success=true)

[else]

CCSVResponseDTO (success=false)

Figura D.8: Diagrama de secuencia de la operacion Regenerar indice del expediente

26

Crear carpeta en expediente

El diagrama de la Figura D.9 representa el flujo de la operacion Crear carpeta en

expediente, que permite crear una nueva carpeta dentro de un expediente.

% Desarrollador -CCSVClient ‘ -ExpedientProvider ‘ ‘PeticionesSaeProvider ‘ ‘ iAdministrativeFileService ‘
: i !
i crearCarpetaExpediente i i
(CrearCarpetaExpedienteRequest) o crearCarpetaxpediente :
(CrearCarpetaExpedienteRequest) i crearFolderExpediente]
(ParamCreal inistrativeFileFolder) ativeFileFolder

3] | (ParamCreaterdministrativeFileFolder) o

ResuliCrearCarpetal ente ResuliCreateAdministrative FileFolder }

ResuliCrearCarpetaExpediente | le. oo oo ... L

alt) [ResuliCrearCarpetaExpediente getEmor == null

CCSVResponseDTO (success=true)

[else]

CCSVResponseDTO (success=false)

Figura D.9: Diagrama de secuencia de la operacion Crear carpeta en expediente

Asociar un expediente a otro expediente

La operacién Asociar un expediente a otro expediente estd ilustrada en la Figura

D.10, donde se visualiza como un expediente se relaciona con otro.

%Desarro\ladur -CCSVClient ‘:ExpedientF‘ruwder ‘ ‘PeticionesSaeProvider ‘ ‘ iAdministrativeFileService ‘
: ! !
A asociarExpedienteExpediente H H
(i i ienteRequest o |
i asociarExpedienteExpediente H
(AsociarExpedi fienteReq H anadirExpedientt H
P dd alvchilidiaae, | addAdministrativeFileToAdminFile
> ParamAdd iiveFie ToAdminFile

Result i iveFileToAdminFile

pedient

ResultAsociarExpedienteExpediente | le. oo ... L

alt). i i etError == null]

CCSVResponseDTO (success=true)

[else]

CCSVResponseDTO (success=false)

Figura D.10: Diagrama de secuencia de la operacién Asociar un expediente a otro
expediente

57

Obtener expediente

La Figura D.11 detalla el flujo de la operacion Obtener expediente, encargada de

recuperar la informacién de un expediente especifico.

%‘Desarml\adar -CCSVClient ‘ExpedientProvider ‘ ‘PeficionesSaeProvider ‘ ‘ ‘iAdministrativeFileService ‘
| | i
| obtenerExpediente i i
(ObtenerExpedienteRequest) f’ oblenerExpediente |
ObienerExpedienteRequest d obtenerExpediente)
ParamGetadministrativeFile & i gelAdministrativerile
ativeFils)
ResultObtenerExpedisnte ResultGetAdministrativeFile }
ResultObtenerExpediente | e ____.__________________ L
CCSVR DTO<ResuilObte:

Figura D.11: Diagrama de secuencia de la operacién Obtener expediente

D.3. Paquetes auxiliares

Con el fin de mantener limpio y organizado el flujo principal de la aplicacién, se
han creado dos paquetes auxiliares: utils y dtos. Cada uno de estos paquetes tiene
un propésito especifico y contribuye al correcto funcionamiento y escalabilidad del

proyecto.

Paquete utils:
Este paquete se ha disenado para almacenar todas las clases auxiliares que son
necesarias a lo largo del flujo principal de la aplicacion. Entre las clases més destacadas

en este paquete se encuentran:

— Constantes: en esta clase se declaran valores constantes que permanecen
inmutables, tales como metadatos, cédigos de error, y otros pardmetros que no

cambian a lo largo del proyecto.

— Utils: Este conjunto de funciones auxiliares incluye métodos genéricos
que facilitan tareas comunes, como conversiones de formato, cdlculos y
manipulaciones de datos. Estas funciones buscan reducir la repeticién de cédigo
y hacer que el flujo sea mas sencillo. Ademas, se integra con otros médulos
del sistema, como el médulo Utils que proporciona herramientas adicionales de
procesamiento y gestion de datos, favoreciendo la reutilizacion del codigo y la

eficiencia en el proceso de integracion.

— Validaciones: en esta clase se agrupan las validaciones necesarias para la
ejecucion de funciones clave dentro de la aplicacion, garantizando que los

o8

parametros de entrada sean correctos y que el proceso se ejecute de manera

adecuada.

Paquete dtos:

El paquete dtos alberga las declaraciones de los tipos de objetos que se utilizan a
lo largo del proyecto. Estos objetos son esenciales para transportar datos de manera
coherente y estructurada entre las distintas partes de la aplicaciéon. Algunos de los

DTOs importantes en este paquete son:

— Documento: representa un documento especifico dentro del sistema de

integracion.

— Expediente: se utiliza para encapsular la informacion relacionada con un

expediente administrativo o procesal.

— Carpeta: agrupa y organiza elementos o expedientes dentro de una estructura

jerarquica.

— Metadato: representa informacién adicional o descriptiva asociada a los

documentos o expedientes.

— Agente: se utiliza para encapsular informacion sobre los agentes involucrados en

el proceso.

— Error: un objeto preparado para almacenar los detalles de cualquier error que se
produzca durante las operaciones. Este DTO es utilizado especialmente cuando
una funciéon devuelve un error, permitiendo que se registre y gestione toda la

informacion devuelta por SAE u otros sistemas externos.

El uso de estos paquetes auxiliares ayuda a mantener la modularidad, claridad y
organizacion del codigo, lo que facilita tanto la comprensién como el mantenimiento

del sistema en el largo plazo.

29

60

Anexos E

Pruebas y validaciones

En este capitulo se describen detalladamente las pruebas y validaciones realizadas
durante el desarrollo del proyecto. Estas actividades han sido esenciales para garantizar
la funcionalidad, estabilidad y fiabilidad de las operaciones implementadas. A través de
diferentes tipos de pruebas, se ha evaluado el correcto comportamiento de las funciones
desarrolladas y su integracién en el sistema.

Las secciones siguientes cubren tres dreas clave: las pruebas unitarias disenadas
para evaluar cada operacion de forma aislada, las pruebas de integracion orientadas a
casos de uso, y la validacion de los endpoints mediante un entorno de pruebas creado

especificamente para verificar su funcionamiento desde herramientas como Swagger.

E.1. Pruebas unitarias

Las pruebas unitarias son un tipo de prueba de software cuyo objetivo es validar
de forma aislada y detallada el correcto funcionamiento de unidades individuales de
codigo, como funciones, métodos o clases. Estas pruebas permiten identificar errores
en etapas tempranas del desarrollo y aseguran que cada componente cumple con su
propdsito especifico bajo diferentes escenarios.

Para validar la correcta implementacién de las funcionalidades, se desarrollaron
pruebas unitarias utilizando JUnit. Estas pruebas abarcan todas las operaciones del
catalogo de la clase ClientCCSVProviderImpl, sin que exista una distincién en la
relevancia de las mismas, ya que todas fueron consideradas igual de importantes para
el sistema.

Durante el proceso, se simularon escenarios variados mediante el uso de
dependencias simuladas, verificando que todas las interacciones y resultados de
las operaciones fueran correctos. Los casos probados incluyen, entre otros, la
creacién, obtencién y actualizacion de documentos, siempre asegurando que el sistema
mantuviera su funcionalidad bajo diferentes condiciones.

61

E.1.1. Mobdulo de documentos

El médulo de documentos se encarga de realizar operaciones relacionadas con la

creacion, actualizacion, y obtencién de documentos almacenados en el sistema.

Crear documento

La prueba unitaria del método Crear documento del Listado E.1 evalia el proceso
de creacion y almacenamiento de un documento en el sistema. Verifica la correcta
asignacion de datos, la interaccion con los servicios externos simulados mediante mocks,

y la validacién de la respuesta final.

Listado E.1: Prueba unitaria de la operacion Crear documento

QTest
public void testCrearDocumento() throws CCSVException {
// Simulacion: Creacion del DTO de prueba con los datos necesarios
CrearDocumentoRequestDto documentoSubir = new CrearDocumentoRequestDto();
documentoSubir.setNombre ("NombreEjemplo.pdf") ;

// Simulacion: Leer archivo simulado y asignarlo al DTO
File pdfFile =
new File("C:\\Users\\ClaraCerdanTorrubias\\Downloads\\prueba 2.pdf");
try (FileInputStream fis = new FileInputStream(pdfFile)) {
byte[] pdfBytes = new byte[(int) pdfFile.length()];
fis.read(pdfBytes);
documentoSubir.setDocument (pdfBytes) ;
} catch (Exception e) {
fail("Error al leer el archivo PDF: " + e.getMessage());

}

// Simulacion: Crear el resultado esperado y el DTO a retornar por el mock
DocumentDto documentDto = new DocumentDto();
documentDto.setNombre ("HOLA") ;

documentDto.setContenido (documentoSubir.getDocument ()) ;

ResultCrearDocumentoDTO result = new ResultCrearDocumentoDTO();
result.setReturnCodigo("0K");

// Configuracion de los mocks: Se simula la respuesta para los metodos

llamados

when (documentProvider
.crearDocumentoDto (any(CrearDocumentoRequestDto.class)))
.thenReturn(documentDto) ;

when (documentProvider.crearDocumentoCCSV (any (DocumentDto.class)))
.thenReturn(result);

// Llamada: Se llama al matodo que estamos probando
CCSVResponseDTO<String> responseCrear = clientCCSVProviderImpl

62

.crearDocumento (documentoSubir) ;

// Validaciones: Se verifican los resultados de la llamada
assertNotNull(responseCrear) ;
assertTrue(responseCrear.isSuccess());

assertNull (responseCrear.getMessage());

// Verificacion: Comprobamos que las interacciones con los mocks se

// ejecutaron correctamente

verify(documentProvider, times(1))
.crearDocumentoDto (any (CrearDocumentoRequestDto.class));

verify(documentProvider, times(1))
.crearDocumentoCCSV (any (DocumentDto.class)) ;

Obtener documento

El método Obtener documento permite recuperar un documento almacenado en
el sistema a partir de un identificador tinico, como un CSV. Esta operaciéon asegura
que los datos se devuelvan de manera correcta, incluyendo su contenido y metadatos
asociados. Las pruebas (del Listado E.2) verifican la interaccién adecuada con los

servicios simulados y la consistencia de la respuesta entregada al usuario final.

Listado E.2: Prueba unitaria de la operacién Obtener documento

Q@Test
public void testObtenerDocumento() throws CCSVException {
// Simulacion: Crear el DTO de peticion con un CSV de prueba
ObtenerDocumentoRequestDto requestCsv =
new ObtenerDocumentoRequestDto() ;
requestCsv.setCsv("CSVRDOT44VOHU1MOGISS") ;

// Simulacion: Crear el DTO de documento con el CSV
// obtenido desde la peticion

DocumentDto documentoDTO = new DocumentDto();
documentoDTO0. setNombre ("DocumentoEjemplo.pdf") ;
documentoDTO. setCsv(requestCsv.getCsv()) ;
documentoDTO.setContenido(new byte[]1{1, 2, 3, 4});

// Simulacion: Crear el resultado esperado con el DTO
ResultObtenerDocumentoDTO result = new ResultObtenerDocumentoDTO() ;
result.setDocumento(documentoDTO) ;

// Simulacion: Crear la respuesta CCSVResponseDTO con exito y el
// mensaje con el documento
CCSVResponseDTO<ResultObtenerDocumentoDTO0> responseGet =

new CCSVResponseDT0<>();
responseGet.setSuccess(true);

63

responseGet.setMessage (result);

// Configuracion de los mocks: Se simula la respuesta para la
// llamada al metodo obtenerDocumento
when (documentProvider
.obtenerDocumentoDto (any (ObtenerDocumentoRequestDto.class)))
.thenReturn(responseGet) ;

// Llamada: Se llama al metodo bajo prueba
CCSVResponseDTO<ResultObtenerDocumentoDTO> response =
clientCCSVProviderImpl.obtenerDocumento(requestCsv) ;

// Validaciones: Verificar los resultados de la llamada

assertNotNull (response) ;

assertTrue (response.isSuccess());

assertNotNull(response.getMessage());

assertEquals ("CSVRDOT44VOHU1MOGISS",
response.getMessage () .getDocumento() .getCsv()) ;

// Verificacion de interaccion con los mocks
verify(documentProvider, times(1)).
obtenerDocumentoDto (any (ObtenerDocumentoRequestDto.class));

Actualizar documento

El método Actualizar documento se encarga de modificar los datos de un documento

almacenado en el sistema, como su contenido, nombre o metadatos. Esta operacién

asegura que los cambios realizados son consistentes y cumplen con los requisitos del

usuario. Las pruebas (del Listado E.3) validan que el sistema maneje correctamente la

actualizacion y se integre de manera adecuada con las dependencias simuladas.

Listado E.3: Prueba unitaria de la operacién Actualizar documento

public void testActualizarDocumento() throws CCSVException {

// Simulacion: Crear el documento a actualizar con los datos necesarios
DocumentDto documentoToUpdate = new DocumentDto();
documentoToUpdate.setCsv("CSVRDOT44VOHU1MOGISS") ;
documentoToUpdate.setNombre ("ACTUALIZADO") ;

// Simulacion: Leer archivo PDF y asignarlo al documento
File pdfFile =

new File("C:\\Users\\ClaraCerdanTorrubias\\Desktop\\updatePrueba.pdf");
try (FileInputStream fis = new FileInputStream(pdfFile)) {

byte[] pdfBytes = new byte[(int) pdfFile.length()];

fis.read(pdfBytes);

documentoToUpdate.setContenido (pdfBytes) ;

64

} catch (Exception e) {
fail("Error al leer el archivo PDF: " + e.getMessage());

}

// Simulacion: Agregar metadatos

HashMap<String, Object> metadatos = new HashMap<>();
metadatos.put("dea_desc_idioma", "en");
documentoToUpdate.setMetadatos (metadatos) ;

// Simulacion: Crear la peticion de actualizacion con el
// documento y traceData
ActualizarDocumentoRequestDto documentoActualizar =

new ActualizarDocumentoRequestDto() ;
documentoActualizar.setDocumento(documentoToUpdate) ;

TraceData traceData = new TraceData();
traceData.setReason("Motivo de actualizacion: prueba");
documentoActualizar.setTraceData(traceData);

// Simulacion: Crear la respuesta esperada para la actualizacion
ResultActualizarDocumentoDTO responseActualizar =

new ResultActualizarDocumentoDTO() ;
responseActualizar.setCsv("CSVRDOT44VOHU1MOGISS") ;

// Configuracion de los mocks: Se simula la respuesta para la llamada
// al metodo actualizarDocumentoDto
when (documentProvider.
actualizarDocumentoDto (any (ActualizarDocumentoRequestDto.class)))
.thenReturn(responseActualizar);

// Llamada: Se llama al metodo bajo prueba en clientCCSVProviderImpl
CCSVResponseDTO<String> response =
clientCCSVProviderImpl.actualizarDocumento(documentoActualizar) ;

// Validaciones: Se verifica el resultado de la llamada
assertNotNull (response) ;

assertTrue (response.isSuccess());
assertEquals(documentoToUpdate.getCsv(), response.getMessage());

// Verificacion: Comprobamos que las interacciones con los

// mocks se ejecutaron correctamente

verify(documentProvider, times(1)).
actualizarDocumentoDto (any (ActualizarDocumentoRequestDto.class)) ;

Obtener documento XML

El método Obtener documento XML permite recuperar un documento almacenado
en formato XML a partir de un identificador tnico. Este método asegura que el

65

contenido y los metadatos del documento XML se devuelvan correctamente. Las
pruebas (del Listado E.4) verifican que la operacién cumple con los requisitos

establecidos y garantiza la correcta interaccion con los servicios simulados.

Listado E.4: Prueba unitaria de la operacion Obtener documento XML

QTest
public void testObtenerDocumentoXML() throws CCSVException {
// Simulacion: Crear el DTO de peticion con el CSV de prueba
ObtenerDocumentoXMLRequestDto requestCsv =
new ObtenerDocumentoXMLRequestDto() ;
requestCsv.setCsv("CSVRDOT44VOHU1MOGISS"); // CSV de prueba

// Simulacion: Crear el DTO de respuesta esperada con el resultado obtenido
ResultObtenerDocumentoXMLDto resultObtenerDocumentoXMLDto =

new ResultObtenerDocumentoXMLDto() ;
resultObtenerDocumentoXMLDto.setId("12345"); // ID del documento

// Crear una respuesta simulada con el resultado esperado

CCSVResponseDTO<ResultObtenerDocumentoXMLDto> responseGetXML =
new CCSVResponseDT0<>();

responseGetXML.setSuccess (true) ;

responseGetXML. setMessage (resultObtenerDocumentoXMLDto) ;

// Configuracion de los mocks: Se simula la respuesta de
// la llamada al metodo obtenerDocumentoXMLDto
when (documentProvider
.obtenerDocumentoXMLDto (any (ObtenerDocumentoXMLRequestDto.class)))
.thenReturn(responseGetXML) ;

// Llamada al metodo bajo prueba en clientCCSVProviderImpl
CCSVResponseDTO<ResultObtenerDocumentoXMLDto> response =
clientCCSVProviderImpl.obtenerDocumentoXML (requestCsv) ;

// Validaciones: Verificamos que la respuesta es correcta
assertNotNull(response) ;
assertTrue(response.isSuccess());
assertNotNull(response.getMessage());
assertEquals("12345", response.getMessage().getId());

// Verificacion: Comprobamos que el metodo
obtenerDocumentoXMLDto se llamo una vez

verify(documentProvider, times(1)).
obtenerDocumentoXMLDto (any (ObtenerDocumentoXMLRequestDto.class));

66

E.1.2. Moddulo de expedientes

En esta seccién, se detallan las pruebas unitarias relacionadas con la gestion
de expedientes. Este mdédulo permite crear, actualizar y gestionar los expedientes
administrativos, asegurando la correcta interaccion entre las distintas capas de la

aplicacién.

Crear expediente

El método Crear expediente permite inicializar un expediente administrativo a
partir de un documento inicial, asociado a un identificador tnico. Este proceso asegura
que los metadatos del expediente estén correctos y que el expediente se abra y almacene
en el sistema con los datos indicados. Las pruebas (que se muestran en el Listado E.5)

verifican que todas las operaciones se ejecutan correctamente.

Listado E.5: Prueba unitaria de la operacion Crear expediente

QTest
public void testCrearExpediente() {
try {
// Simulacion: Crear el DTO de peticion con los datos de prueba
CrearExpedienteRequestDto crearExpedienteRequestDTO =
new CrearExpedienteRequestDto();
crearExpedienteRequestDTO.
setCsvDocumentoInicial ("CSV5E65BHH6GY1FYGELP") ;
crearExpedienteRequestDTO. setNombreExpediente ("Prueba') ;
crearExpedienteRequestDT0.setNif ("17456123G") ;
crearExpedienteRequestDT0. setNumExpediente("1111111");

// Simulacion: Crear los objetos AdministrativeFile para simular
// los datos de respuesta

AdministrativeFile initExpediente = new AdministrativeFile();
initExpediente.setCsv("INIT123");

AdministrativeFile datosApertura = new AdministrativeFile();
datosApertura.setCsv("CSV5E65BHH6GY1FYGELP") ;

// Simulacion: Configuracion de los mocks de los metodos del provider
when (expedientProvider.
initializeExpediente(crearExpedienteRequestDT0))
.thenReturn(initExpediente) ;
doNothing() .when(expedientProvider) .
verifyMetadatosExpediente (initExpediente,
crearExpedienteRequestDT0.getNif());
when (expedientProvider.openExpediente (initExpediente,
crearExpedienteRequestDT0. getCsvDocumentoInicial(),
crearExpedienteRequestDT0.getNif ()))
.thenReturn(datosApertura) ;

67

// Ejecucion: Llamada al metodo bajo prueba en clientCCSVProviderImpl
CCSVResponseDTO<String> response =
clientCCSVProviderImpl.crearExpediente (crearExpedienteRequestDTO) ;

// Validacion: Verificamos que la respuesta es correcta
assertNotNull (response) ;
assertTrue (response.isSuccess());
assertEquals("CSV5E65BHH6GY1FYGELP", response.getMessage());

} catch (Exception e) {
fail("El test lanzo una excepcion inesperada: " + e.getMessage());

}

Anadir documentos a un expediente

La operacién Anadir documentos a un expediente permite asociar multiples
documentos a un expediente administrativo existente. Para ello, es fundamental
contar con un identificador tnico del expediente, asi como con los identificadores
unicos de cada documento que se desea anadir. Esta funcionalidad asegura que los
documentos queden correctamente vinculados al expediente en cuestion. Las pruebas
(que se muestran en el Listado E.6) verifican que todas las operaciones se ejecutan

correctamente.

Listado E.6: Prueba unitaria de la operacién Anadir documentos a un
expediente

QTest
public void testAnadirDocumentosExpedienteExitoso() throws Exception {
// Simulacion: Configuracion del DTO de peticion con los datos de prueba
AnadirDocumentosExpedienteRequestDto anadirDocumentosExpedienteRequestDT0 =
new AnadirDocumentosExpedienteRequestDto() ;
String[] listaCsv = {"CSVL3601YC2FW12YGELP", "CSVCV5LMV46FU1I0GELP"};
anadirDocumentosExpedienteRequestDTO
.setCcsvExpediente ("CSVO330KFM5GK1BOGELP") ;
anadirDocumentosExpedienteRequestDT0.setListaCsv(listaCsv);

// Simulacion: Crear el objeto de respuesta para el caso de exito
ResultAnadirDocumentosExpedienteDTO resultadoExito =

new ResultAnadirDocumentosExpedienteDT0();
resultadoExito.setCsv("CSV_SUCCESS_RESPONSE") ;
resultadoExito.setError(null);

// Simulacion: Configuracion de los mocks del proveedor
when (expedientProvider.
anadirDocumentoFicheroAdmin(anadirDocumentosExpedienteRequestDTO))
.thenReturn(resultadoExito);

68

// Ejecucion: Llamada al metodo bajo prueba en clientCCSVProviderImpl
CCSVResponseDTO<String> responseExito = clientCCSVProviderImpl
.anadirDocumentosExpediente (anadirDocumentosExpedienteRequestDT0) ;

// Validacion: Verificamos que la respuesta es correcta
assertNotNull (responseExito);

assertTrue (responseExito.isSuccess());
assertEquals("CSV_SUCCESS_RESPONSE", responseExito.getMessage());

Eliminar documentos de un expediente

La operacion Eliminar documentos de un expediente permite desvincular uno o méas
documentos previamente asociados a un expediente administrativo. Para llevar a cabo
esta operacion, se requiere identificar tanto el expediente como los documentos que se
desean eliminar mediante sus identificadores tinicos. Las pruebas (que se muestran en

el Listado E.7) verifican que todas las operaciones se ejecutan correctamente.

Listado E.7: Prueba unitaria de la operacién Eliminar documentos de un
expediente

QTest
public void testEliminarDocumentosExpedienteExitoso() throws Exception {
// Simulacion: Configuracion del DTO de peticion con los datos de prueba
EliminarDocumentosExpedienteRequestDto eliminarDocumentosExpedienteRequestDT0 =
new EliminarDocumentosExpedienteRequestDto();
String[] listaEliminarCsv = {"CSVL3601YC2FW12YGELP", "CSVCV5LMV46FU1IOGELP"};
eliminarDocumentosExpedienteRequestDT0
.setCcsvExpediente ("CSVO330KFM5GK1BOGELP") ;
eliminarDocumentosExpedienteRequestDT0.setListaCsv(listaEliminarCsv) ;

// Simulacion: Crear el objeto de respuesta para el caso de exito
ResultEliminarDocumentosExpedienteDTO0 resultadoExito =

new ResultEliminarDocumentosExpedienteDTOQ) ;
resultadoExito.setCsv("CSV_DELETE_SUCCESS_RESPONSE") ;
resultadoExito.setError(null); // No hay error

// Simulacion: Configuracion de los mocks del proveedor
when (expedientProvider.
eliminarDocumentoFicheroAdmin(eliminarDocumentosExpedienteRequestDTO))
.thenReturn(resultadoExito) ;

// Ejecucion: Llamada al metodo bajo prueba en clientCCSVProviderImpl
CCSVResponseDTO<String> responseExito = clientCCSVProviderImpl
.eliminarDocumentosExpediente(eliminarDocumentosExpedienteRequestDTO0) ;

// Validacion: Verificamos que la respuesta es correcta

69

assertNotNull (responseExito);
assertTrue (responseExito.isSuccess());
assertEquals ("CSV_DELETE_SUCCESS_RESPONSE", responseExito.getMessage());

Regenerar indice de un expediente

La funcionalidad Regenerar indice de un expediente permite recalcular y actualizar
el indice que organiza la documentacién de un expediente especifico. Este proceso
es esencial cuando ocurren cambios significativos en los documentos asociados al
expediente, ya que asegura que el indice refleje el estado actual de los documentos.
La operacion requiere identificar el expediente por su cédigo unico. Las pruebas
(que se muestran en el Listado E.8) verifican que todas las operaciones se ejecutan

correctamente.

Listado E.8: Prueba unitaria de la operacién Regenerar indice de un
expediente

QTest
public void testRegenerarIndiceExpedienteExitoso() throws Exception {
// Simulacion: Configuracion del DTO de peticion con los datos de prueba
RegenerarIndiceExpedienteRequestDto regenerarIndiceExpedienteRequestDTO =
new RegenerarIndiceExpedienteRequestDto();
String csv = "CSVO330KFM5GK1BOGELP";
regenerarIndiceExpedienteRequestDT0.setCcsvExpediente (csv) ;

// Simulacion: Crear el objeto de respuesta con el resultado exitoso
ResultRegenerarIndiceExpedienteDTO resultadoExito =

new ResultRegenerarIndiceExpedienteDT0();
resultadoExito.setIndex("INDEX_GENERATION_SUCCESSFUL");
resultadoExito.setError(null);

// Simulacion: Configuracion de los mocks del proveedor
when (expedientProvider
.regenerarIndiceFicheroAdmin(regenerarIndiceExpedienteRequestDT0))
.thenReturn(resultadoExito) ;

// Ejecucion: Llamada al metodo bajo prueba en clientCCSVProviderImpl
CCSVResponseDTO<String> responseExito = clientCCSVProviderImpl
.regenerarIndiceExpediente(regenerarIndiceExpedienteRequestDTO0) ;

// Validacion: Verificamos que la respuesta es correcta

assertNotNull (responseExito);

assertTrue (responseExito.isSuccess());

assertEquals ("INDEX_GENERATION_SUCCESSFUL", responseExito.getMessage());

70

Crear carpeta en un expediente

La operacién Crear carpeta en un expediente permite crear una nueva carpeta dentro
de un expediente administrativo, asociandole un cédigo y un nombre especificos. Esta
funcionalidad es 1til para organizar y gestionar los documentos dentro del expediente.
Para llevar a cabo esta operacién, se debe proporcionar la informacion necesaria,
como el cédigo de expediente y los detalles de la nueva carpeta a crear. Las pruebas
(que se muestran en el Listado E.9) verifican que todas las operaciones se ejecutan

correctamente.

Listado E.9: Prueba unitaria de la operacién Crear carpeta en un expediente

Q@Test

public void testCrearCarpetaExpediente() throws Exception {
// Simulacion: Configuracion del DTO de solicitud con los datos
// de prueba
CrearCarpetaExpedienteRequestDto crearCarpetaExpedienteRequestDT0 =

new CrearCarpetaExpedienteRequestDto();

String csv = "CSVO330KFM5GK1BOGELP";
String folderIdEsperado = "FOLDER123";
crearCarpetaExpedienteRequestDT0.setCsvExpediente(csv) ;
crearCarpetaExpedienteRequestDTO.setFolderCode("2");
crearCarpetaExpedienteRequestDTO.setFolderName ("PRUEBA 2");

// Simulacion: Crear el objeto de respuesta con el resultado exitoso
ResultCrearCarpetaExpedienteDT0 resultadoExito =

new ResultCrearCarpetaExpedienteDTO();
resultadoExito.setFolderId(folderIdEsperado);
resultadoExito.setError(null);

// Simulacion: Configuracion de los mocks del proveedor
when (expedientProvider
.crearCarpetaExpediente (crearCarpetaExpedienteRequestDT0))
.thenReturn(resultadoExito) ;

// Ejecucion: Llamada al metodo bajo prueba en clientCCSVProviderImpl
CCSVResponseDTO<String> responseExito = clientCCSVProviderImpl
.crearCarpetaExpediente (crearCarpetaExpedienteRequestDT0) ;

// Validacion: Verificamos que la respuesta es correcta
assertNotNull (responseExito);
assertTrue(responseExito.isSuccess());
assertEquals(folderIdEsperado, responseExito.getMessage());

Asociar expediente a un expediente
71

La operacién Asociar expediente a un expediente permite vincular un expediente
existente a otro, formando una relacién entre ambos. Esta operacién es ttil cuando es
necesario agrupar o relacionar expedientes, facilitando su gestién y acceso. Para realizar
la asociacion, es necesario proporcionar el codigo del expediente principal y el de los
expedientes que se van a asociar. Las pruebas (que se muestran en el Listado E.10)

verifican que todas las operaciones se ejecutan correctamente.

Listado E.10: Prueba unitaria de la operacion Asociar expediente a un
expediente

QTest
public void testAsociarExpedienteExpediente() throws Exception {
// Simulacion: Configuracion del DTO de solicitud con los datos
// de prueba
AsociarDocumentoExpedienteRequestDTO asociarDocumentoExpedienteRequestDT0 =
new AsociarDocumentoExpedienteRequestDTOQ) ;
String csv = "CSVO330KFM5GK1BOGELP";
List<String> listaAsociar = Arrays.asList("CSVTJSD3XUSF717YGELP");
String csvAsociadoEsperado = "CSVO330KFM5GK1BOGELP";

asociarDocumentoExpedienteRequestDT0.setCsvExpediente(csv) ;
asociarDocumentoExpedienteRequestDT0.setlListaCsv(listaAsociar);

// Simulacion: Crear el objeto de respuesta con el resultado exitoso
ResultAsociarDocumentoExpedienteDTO resultadoExito =

new ResultAsociarDocumentoExpedienteDTOQ) ;
resultadoExito.setCsv(csvAsociadoEsperado) ;
resultadoExito.setError(null); // No hay errores

// Simulacion: Configuracion de los mocks del proveedor
when (expedientProvider
.asociarExpedienteExpediente (asociarDocumentoExpedienteRequestDT0))
.thenReturn(resultadoExito) ;

// Ejecucion: Llamada al metodo bajo prueba en clientCCSVProviderImpl
CCSVResponseDTO<String> responseExito = clientCCSVProviderImpl
.asociarExpedienteExpediente (asociarDocumentoExpedienteRequestDT0) ;

// Validacion: Verificamos que la respuesta es correcta
assertNotNull(responseExito);
assertTrue(responseExito.isSuccess());
assertEquals(csvAsociadoEsperado, responseExito.getMessage());

Obtener expediente

La operacién Obtener expediente permite recuperar los detalles de un expediente

72

a partir de su identificador unico, representado por el cédigo CSV. Esta operacion es
fundamental cuando se necesita acceder a la informacion completa de un expediente,
como sus documentos, estado y otros detalles asociados. El proceso requiere enviar una

solicitud con el cédigo CSV del expediente que se desea obtener.

Listado E.11: Prueba unitaria de la operacion Obtener expediente

QTest
public void testObtenerExpediente() throws Exception {
// Simulacion: Configuracion del DTO de entrada con el valor
// del expediente CSV
ObtenerExpedienteRequestDto obtenerExpedienteRequestDTO =
new ObtenerExpedienteRequestDto();
String csvExpediente = "CSVO330KFM5GK1BOGELP";
obtenerExpedienteRequestDTO.setCsvExpediente (csvExpediente) ;

// Simulacion: Configuracion del DTO del expediente con el
// valor ’csv’

ExpedienteDTO expedienteDTO = new ExpedienteDTO();
expedienteDTO.setCsv(csvExpediente) ;

// Simulacion: Configuracion del resultado esperado con el expediente
// completo en el DTO
ResultObtenerExpedienteDto resultadoExito =
new ResultObtenerExpedienteDto();
resultadoExito.setExpediente (expedienteDT0);

// Mock del comportamiento del proveedor cuando se invoca obtenerExpediente
when (expedientProvider.
obtenerExpediente (obtenerExpedienteRequestDT0))
.thenReturn(resultadoExito) ;

// Ejecucion: Llamada al metodo bajo prueba en clientCCSVProviderImpl
CCSVResponseDTO<ResultObtenerExpedienteDto> responseExito =
clientCCSVProviderImpl.obtenerExpediente (obtenerExpedienteRequestDTO) ;

// Validacion: Comprobamos que la respuesta obtenida es correcta

assertNotNull (responseExito);

assertTrue(responseExito.isSuccess());

assertNotNull(responseExito.getMessage());

assertNotNull (responseExito.getMessage () .getExpediente());

assertEquals(csvExpediente,
responseExito.getMessage () .getExpediente() .getCsv());

73

E.2. Pruebas basadas en casos de uso

En las pruebas basadas en casos de uso, el objetivo es verificar que el sistema
funcione correctamente segun las especificaciones y necesidades del usuario. Para ello,
se describe en una tabla cada operacion del sistema que se va a probar, detallando
las acciones y el comportamiento esperado en cada paso. Luego, se compara el
resultado real obtenido tras ejecutar la operacién con el resultado esperado. Si todas
las condiciones del caso de uso se cumplen correctamente, la prueba es exitosa; de
lo contrario, se identifica y se corrige cualquier desviacion o error en el sistema. Este
enfoque asegura que el sistema cumpla con los requisitos funcionales especificados desde
la perspectiva del usuario. Estas pruebas son especialmente populares en Hiberus, la
empresa en la que ha sido desarrollado el proyecto.

En la Figura E.1 se prueban las operaciones correspondientes al médulo de
documentos, mientras que en la Figura E.2 se realizan las pruebas de las operaciones
del médulo de expedientes. Cada figura representa un conjunto de operaciones a través
de las cuales se valida el comportamiento del sistema, asegurando que cumpla con los

requisitos funcionales especificos de cada modulo.

Resultad
REQ Caso de uso Pasos Pasos detallados del caso de uso Resultado esperado s '_] o
obtenido
54 i ia del ti
1 @ crea una Instancia cettipa Se ha creado una instancia del objeto oK
CrearDocumentoRequestDto
S ifi [E instancia el b L
RF-4 Crear documento 2 © especiiica enla nueva ins ar;lcla © nrom reye Se ha actualizado la instancia del objeto (6] 4
documento que se quiere subir
3 Se llama a la funcidn crearDocumento de la clase Se recibe una respuesta del tipo CC8VResponse conel oK
CCSVClientProvider atributo "success" con el valor a "true"
S0 i ia del ti
1 © Grea Lina Instancta cettipo Se ha creado una instancia del objeto 0] 4
ObtenerDocumentoRequestDio
S0 ifi ; instancia el csv del
RF-5 Obtener documento 2 © Especiiica ena nueva nstancia e csv de Se ha actualizado la instancia del objeto oK
documento que estamos buscando
3 Se llama a la funcién obtenerDocumento de la clase Se recibe una respuesta del tipo CC8VResponse conel ok
CCSVClientProvider atributo "success" con el valor a "true"
51 i ia del ti
1 ¢ cr?a una Instancla celtipo Se ha creado una instancia del objeto [0]4
ActualizarDocumentoRequestDto
S ifi 1; instancia el
RF-7 Actualizar documento 2 © eSpecilica enta nueva mstancia e, nueve Se ha actualizado la instancia del objeto (6] 4
documento que se desea actualizar
3 Se llama a la funcion actualizarDocumento de la clase| Serecibe una respuesta del tipo CCSVResponse con el ok
CCSVClientProvider atributo "success" con el valor a "true"
Se crea una instancia del tipo
1 Seh d instancia del objet OK
ObtenerDocumentoXMLRequestDto ©ha creado una instancia det objeto
S ifi ¢ instancia el csv del
RF-6 Obtener documento XML 2 © Especilica ena nueva nstancia e csv de Se ha actualizado la instancia del objeto oK
documento que estamos buscando
3 Sellama a la funcion obtenerDocumentXML de la Se recibe una respuesta del tipo CCSVResponse conel ok
clase CCSVClientProvider atributo "success" con el valor a "true"

Figura E.1: Pruebas basadas en casos de uso del médulo de documentos

74

Resultado
0] Caso de uso Pasos Pasos detallados del caso de uso Resultado esperado -
obtenido

Se creauna instancia del tipo
1 " Se ha creado una instancia del objeto oK
ObtenerDocumentoXMLRequestDto

Se especifica en la nueva instancia el csvdel documento

RF-8 GCrear expediente 2 inicial del expediente, el nombre del expediente, elnify el Se ha actualizado la instancia del objeto oK
numero de expediente
Se llama a la funcidn crearExpediente de la clase Se recibe una respuesta del tipo CCSVResponse con elatributo
3 CCSVClientProvider "SUCCESS” Con elvalor a "true” ok

S tancia del ti
1 . & ereaunains JI'IC.:IJ =Ltipe Se ha creado una instancia del objeto oK
AnadirDocumentosExpedienteRequestDio

Se especifica en la nueva instancia el csv del expediente y

RF-9 Anadirdocumentes a un expediente 2 una lista con los csvde losdocumentos que se quieren Se ha actualizado la instancia del ohjeto oK
anadir
Se llama a la funcién anadirDocumentosExpediente de la | Se recibe una respuesta del tipo CCSVRespense con elatributo
3 clase CCSVClientProvider "success” con elvalora "true” ok

Se creauna instancia del tipo
1 - . P Se ha creado una instancia del objeto 0K
EliminarDocumentosExpedienteRequestDto
Se especifica en la nueva instancia elcsv delexpediente y
Desasociar documentos de un 2 una lista con los csv de Los documentos que se quieren Se ha actualizado la instancia del objeto oK

expediente desasociar del expediente

RF-10

Sellama a la funcidn eliminarDocumentosExpediente de | Se recibe una respuesta del tipo GCSVResponse con elatributo
clase CCSVClientProvider "success” con elvalora "true”

Se crea una instancia del tipo
1 P Se ha creado una instancia del objeto oK
CrearCarpetaExpedienteRequestDto

. Se especifica en la nueva instancia elcsv del expediente y . .)
RF-12 Crear una carpeta en un expediente 2 L Se ha actualizado la instancia del ocbjeto oK
elnombre y el cddigo de la carpeta que sequiere crear

3 Se llama a la funcién crearCarpetaExpediente de la clase | Se recibe una respuesta del tipo CCSVRespense con el atributo oK
CCEVClientProvider “success” con elvalora “true”

S tancia del ti
1 £ ereaunains ..ancla =Ltipe Se ha creado unainstancia del objeto oK
CrearCarpetaExpedienteRequestDto

. Se especifica en la nueva instancia el csv del expediente y . . .
RF-13 Obtener un expediente 2 - Se ha actualizade la instancia del objeto oK
elnombre y el cadige de la carpeta que se quiere crear

3 Se llama a la funcidn crearCarpetaExpediente de la clase | Se recibe una respuesta del tipo CCSVResponse con elatributo ok
CCEVClientProvider "success” con elvalora "true”

Se crea una instancia del tipo
1 X X " Se ha creado una instancia del objeto oK
RegenerarindiceExpedienteRequestDto

Se especifica en la nueva instancia el csv del expediente

RF-11 Regenerar indice de un expediente 2 Se ha actualizado la instancia del objeto oK

delgue se guiere regenerar elindice
Se llama a la funcidn regenerarindiceExpediente de la Se recibe una respuesta del tipo CCSVResponse con el atributo
clase CCSVClientProvider "success” con elvalora "true”

Figura E.2: Pruebas basadas en casos de uso del médulo de expedientes

E.3. Validacién de endpoints

La validacién de endpoints es una parte importante en el desarrollo de servicios
web, ya que asegura que cada funcién dentro de la API se ejecute correctamente y que

las respuestas cumplan con los estandares establecidos.

En este caso, la validacion de los endpoints se llevo a cabo utilizando un proyecto
implementado con Spring Boot. Durante el proceso, se exploraron y documentaron
las APIs mediante la herramienta Swagger, lo que permitié una interaccién eficiente
con cada endpoint y la realizacién de pruebas exhaustivas para todas las operaciones

disponibles.

Las pruebas incluyeron la verificacion de operaciones principales, como la creacion,
actualizacién, consulta de recursos. Cada respuesta fue analizada cuidadosamente,
comparando los resultados obtenidos con los esperados para confirmar que el

comportamiento de los endpoints era el deseado en todos los casos.

Crear documento
75

La validacion del endpoint crearDocumento que se puede ver en la Figura E.3
asegura que el archivo recibido sea valido y obligatorio, verificando que no esté vacio.
También valida que el campo nombre sea obligatorio y que el tipo de documento sea

opcional.

[POST /document/crearDocumento Crea un nuevo documento /\]

Parameters Try it out |

Name Description

nombre * reaired
S nombre

(query)
tipo

string
cquery)

tipo

Request body multipart/form-data v

file * reaired
string($binary)

Figura E.3: Definicién del endpoint para la creacion de documentos en Swagger

Obtener documento

El endpoint obtenerDocumento (reflejado en la Figura E.4) permite recuperar un
documento a partir de su identificador (id) o un cédigo CSV asociado. Valida que al

menos uno de estos parametros sea proporcionado.

[GET /s t/ob D to Obtiene un /\]

Parameters Try it out |
Name Description
csv

csv

string -
(query)

id
string
(query)

Figura E.4: Definicién del endpoint para obtener un documento en Swagger

Actualizar documento

El endpoint actualizarDocumento permite modificar un documento existente.
Para ello, se requiere el envio de un archivo (file) como pardmetro obligatorio,
mientras que otros parametros como el cédigo csv, el nombre, el tipo, y la razén
son opcionales. El contenido del archivo se valida y se procesa antes de ser enviado
para su actualizacion. La definicién completa del endpoint se muestra en la Figura E.5.

76

7/ t/actualizar Actualiza un documento existente ~

Parameters Try it out

Name Description

esy * required

string &7

(query)

nombre

ST nombre
(query)

tipo

string tipo
(query)

razon

string
(query)

Request body multipart/form-data ~

file * reauired
string($binary)

Figura E.5: Definicién del endpoint para actualizar un documento en Swagger

Obtener documento XML

El endpoint obtenerDocumentoXML permite recuperar un documento en formato
XML a partir de su identificador tnico (id) o su cédigo CSV. Es necesario que se
proporcione al menos uno de estos parametros para que la solicitud sea valida. La

definicién detallada de este endpoint se presenta en la Figura E.6.

GE /document/obtener toXML Obtiene un en formato XML ~

Parameters Try it out
Name Description

id

string Identificador Unico del documento

(query)

id

csv
string Cadigo CSV del documento
(query)

csv

Figura E.6: Definicién del endpoint para obtener un documento XML en Swagger

Crear expediente

El endpoint crearExpediente permite la creacién de un nuevo expediente en
el sistema. Para ello, se requiere proporcionar un csvDocumentolInicial, el nif, el
numExpediente, y el nombreExpediente. Estos datos se procesan y se envian a la
légica de negocio para registrar el expediente. La definicién detallada del endpoint se
puede observar en la Figura E.7.

7

/expedient/crearExpediente Crea un expediente nuevo en el sistema /\]

Crea un i [i los datos. i incluido el CS8V inicial, el nombre y el nimero de expediente.
Parameters Try it out
Name Description

csvDocumentolnicial * =
string csvDocumentolnicial

(query)

if = resuired
string
(query)

numExpediente * ==
ST umExpediente

(query)

nombreExpediente * 1=
string
(query)

nombreExpediente

Figura E.7: Definicion del endpoint para crear un expediente en Swagger

Anadir documentos a un expediente

El endpoint anadirDocumentosExpediente permite anadir uno o varios
documentos a un expediente existente. Para ello, es necesario proporcionar el
ccsvExpediente correspondiente al expediente, asi como una lista de ccsvDocumento
con los documentos a anadir. Opcionalmente, también se puede especificar el idCarpeta
donde se anadiran los documentos. Este endpoint gestiona la validacion de los datos y
realiza la llamada al servicio correspondiente para actualizar el expediente.

La Figura E.8 muestra la definicion completa del endpoint en Swagger.

[POST /expedient/anadirDo iente Afiade aun existente ,\]

Permite afiadir uno o mas documentos a un expediente, especificando el CSV del expediente, una lista de CSV de documentos, y opcionalmente, el ID de una carpeta

Parameters Try it out

Name Deseription

ccsvExpediente = =94
string ccsvExpediente

(query)
cesvDocumento * ==

string
(query)

cesvDocumento

idCarpeta
string
(query)

idCarpeta

Figura E.8: Definicién del endpoint para anadir documentos a un expediente en Swagger

Eliminar documentos de un expediente

El endpoint documentosExpediente permite eliminar documentos especificos
asociados a un expediente existente. Para realizar esta operacién, es necesario
proporcionar el ccsvExpediente, que identifica al expediente, y una lista de

78

ccsvDocumento, que contiene los documentos a eliminar. Adicionalmente, se puede
indicar el idCarpeta como parametro opcional para especificar una carpeta concreta
donde se encuentran los documentos. El endpoint valida los datos y realiza la operacion
llamando al servicio correspondiente.

La Figura E.9 muestra la definicién detallada de este endpoint en Swagger.

LR3I /expedient/d Expediente Elimina de un expediente ~

Permite eliminar documentos especificos de un expedients existents. Especifica el CSV del expediente, los CSV de los documentos, y opcionalmente el ID de una carpeta

Parameters Try it out

Name Deseription

ccsvExpediente = =aui=d
string
(query)

ccsvExpediente

cesvDocumento = aui=d
string
(query)

ccsvDocumento

idCarpeta .
i idCarpeta

(query)

Figura E.9: Definicién del endpoint para eliminar documentos de un expediente en
Swagger

Regenerar indice de un expediente

El endpoint /regenerarIndiceExpediente proporciona la funcionalidad para
regenerar el indice de un expediente, identificado de manera tnica mediante su
ccsvExpediente. Este proceso se utiliza para actualizar o reorganizar la estructura
de indices del expediente en el sistema, garantizando que refleje correctamente los
documentos y carpetas asociadas.

La Figura E.10 muestra la definicién del endpoint en Swagger, con los detalles de
los parametros requeridos, el formato de respuesta, y los posibles cédigos de estado

devueltos por la operacion.

/expedient/regenerarIndiceExpediente Regenera el indice de un expediente ~

Permite regenerar el indice de un expediente especificado mediante el CSV del expediente
Parameters Try it out

Name Description

ccsvExpediente * auied
string
(query)

ccsvExpediente

Figura E.10: Definiciéon del endpoint para regenerar el indice de un expediente en
Swagger

79

Crear una carpeta en un expediente

El endpoint /crearCarpetaExpediente permite anadir una nueva carpeta en un
expediente especificado, utilizando el CSV del expediente, el nombre de la carpeta y
su codigo. Esta operacion es fundamental para mantener una estructura organizada de

documentos dentro del sistema.

[T55] /expedient/crearcarpetakxpediente Crea una nueva carpela deniro de un expedents ~

Este método permite crear una carpeta dentro de un expediente existente. El CSV del expediente, el nombre de la carpeta y el cédigo de la carpeta son necesarios para realizar la operacion.
Parameters Try it out

Name Description

csvExpediente * reaure

string csvExpediente
(query)

folderName * r=auir=d

string folderName
(query)

folderCode = reaured -

string folderCode
(query)

Figura E.11: Definicién del endpoint para crear una carpeta en un expediente en
Swagger

Asociar un expediente a un expediente

El endpoint /asociarExpedienteExpediente permite asociar un expediente
principal a un subexpediente mediante los CSVs de ambos. La relacién se establece
de manera que uno de los expedientes queda como el expediente principal y el otro

como subexpediente, con el objetivo de organizar y relacionar los expedientes entre si.

/expedient/asociarExpedienteExpediente Asocia un expediente a otro expediente ~
Este método permite aseciar un expediente a otro especificando el CSV de ambos expedi . La relacidn se establece entre el expediente principal y el subexpediente.
Parameters Try it out
Name Description

csvExpediente * re1vired
string
(query)

csvExpediente

cev * required
string
(query)

Figura E.12: Definicion del endpoint para asociar un expediente a un expediente en
Swagger

Obtener un expediente

El endpoint /obtenerExpediente permite obtener los detalles completos de

80

un expediente especifico mediante su CSV. Esta operacién se usa para consultar
informacion sobre un expediente en el sistema y se responde con los detalles relevantes

del mismo.

GET fexpedient/ok E diente Obiiene un i A

Permite obtener los detalles de un expediente especificande su CSV.

Parameters Try it out

Name Deseription

csvExpediente * reavird
string
(query)

csvExpediente

Figura E.13: Definicién del endpoint para obtener un expediente en Swagger

81

	Lista de Figuras
	Introducción y objetivos
	Contexto
	Colaboración con Hiberus
	¿Qué es el Código Seguro de Verificación?

	Motivación del proyecto
	Alcance y objetivos
	Herramientas y tecnología de trabajo
	Contenido del documento

	Análisis de requisitos
	Identificación de problemas en los proyectos actuales
	Definición de requisitos funcionales
	Definición de requisitos no funcionales

	Diseño
	Infraestructura del entorno
	Arquitectura del proyecto
	Patrón Façade

	Implementación
	Implementación de la arquitectura
	Clases internas
	Clases externas

	Flujo de integración
	Modelo de datos
	Uso de la biblioteca
	Proyectos desarrollados con Spring Boot
	Proyectos no desarrollados Spring Boot

	Pruebas y validación
	Pruebas unitarias
	Pruebas de integración basadas en casos de uso
	Pruebas basadas en casos de uso

	Conclusiones y trabajo futuro
	Conclusiones acerca del proyecto
	Comparativa de uso antiguo y nuevo

	Evaluación personal
	Propuestas de mejora y líneas de investigación futura

	Bibliografía
	Anexos
	Diccionario de datos
	Planificación
	Arquitectura de un proyecto para el Gobierno de Aragón
	Componentes del frontend
	Componentes del backend

	Detalles de implementación
	Infraestructura
	ClientCCSV
	Documento
	Expediente
	PeticionesSae
	CCSVExternal

	Flujo de integración
	Paquetes auxiliares

	Pruebas y validaciones
	Pruebas unitarias
	Módulo de documentos
	Módulo de expedientes

	Pruebas basadas en casos de uso
	Validación de endpoints

