
Trabajo Fin de Grado

Integración de libreŕıas CCSV para optimización y seguridad
documental en proyectos de AMD Aragón en empresa

Integration of CCSV libraries for document optimization and
security management in AMD projects Aragón in an enterprise

Autor

Clara Cerdán Torrubias

Director

Jesús Brosed Escario
Hiberus Tecnoloǵıas de la Información, S.L.

Ponente

Carlos Bobed Lisbona
Departamento de Informática e Ingenieŕıa de Sistemas

Universidad de Zaragoza

ESCUELA DE INGENIERÍA Y ARQUITECTURA
ENERO - 2025

AGRADECIMIENTOS

Quiero expresar mi profunda gratitud a mi ponente, por su apoyo constante, su

orientación llena de amabilidad y su dedicación como un docente ejemplar.

A mis mentores en la empresa, por su paciencia infinita y por invertir su tiempo en

transmitirme con generosidad sus conocimientos y experiencia sobre el proyecto.

A mis padres y a mi hermana, porque sin ellos nunca habŕıa tenido la oportunidad

de estudiar aquello que amo ni de convertirme en la persona que soy hoy.

Al resto de mi familia, por su apoyo incondicional y por estar a mi lado en cada

paso de este viaje, dándome fuerzas incluso cuando no créıa en mı́.

A mi pareja, por brindarme esperanza, por ser mi mayor fuente de ánimo y por

apoyarme siempre a lo largo de este camino.

Y a mis amigos, por ser mi refugio de cordura y por estar a mi lado siempre que

los he necesitado.

RESUMEN

En el contexto empresarial actual, donde la agilidad, eficiencia y capacidad de

adaptación son esenciales, las empresas privadas deben tener una infraestructura

tecnológica robusta que permita mejorar continuamente sus operaciones. En este

proyecto, el objetivo ha sido integrar las libreŕıas CCSV (Servicio de almacenamiento

y verificación de documentos electrónicos) proporcionadas por el Sistema de

Administración Electrónica (SAE) del Gobierno de Aragón en los procesos existentes

de la empresa, lo que ha permitido mejorar las interacciones con la administración

pública y optimizar la gestión de documentación electrónica.

El desarrollo de este proyecto ha requerido superar varios desaf́ıos importantes que

dificultaban el funcionamiento adecuado de los sistemas anteriores. Entre los principales

obstáculos, destaca la falta de centralización en la gestión de documentos, lo que

obligaba a realizar múltiples pasos y ralentizaba las operaciones y la obsolescencia

de funciones clave, cuyas actualizaciones requeŕıan una reingenieŕıa compleja. Además,

la ausencia de documentación completa complicaba tanto el mantenimiento del sistema

como la incorporación de nuevos desarrolladores, lo que generaba dependencia de

personas con experiencia previa en el sistema.

A lo largo de este documento, se detallan los pasos seguidos para realizar un análisis

exhaustivo del sistema actual, adaptar las libreŕıas CCSV al entorno tecnológico de

la empresa e implementar una solución que optimice la gestión de la documentación

electrónica. Se explica cómo se abordaron los problemas técnicos encontrados durante

la integración, como la necesidad de unificar métodos de gestión de documentos y

actualizar funciones obsoletas. El documento también incluye una revisión detallada

de las herramientas y la arquitectura adoptada, un modelo de datos ajustado a las

necesidades de integración y las pruebas realizadas para asegurar la fiabilidad del

sistema. Finalmente, se incluyen las conclusiones finales y reflexiones personales sobre

el proyecto.

Índice

Lista de Figuras

1. Introducción y objetivos 1

1.1. Contexto . 1

1.1.1. Colaboración con Hiberus . 1

1.1.2. ¿Qué es el Código Seguro de Verificación? 2

1.2. Motivación del proyecto . 3

1.3. Alcance y objetivos . 3

1.4. Herramientas y tecnoloǵıa de trabajo 4

1.5. Contenido del documento . 5

2. Análisis de requisitos 7

2.1. Identificación de problemas en los proyectos actuales 7

2.2. Definición de requisitos funcionales . 8

2.3. Definición de requisitos no funcionales 10

3. Diseño 11

3.1. Infraestructura del entorno . 11

3.2. Arquitectura del proyecto . 14

3.2.1. Patrón Façade . 14

4. Implementación 17

4.1. Implementación de la arquitectura . 17

4.1.1. Clases internas . 19

4.1.2. Clases externas . 20

4.2. Flujo de integración . 21

4.3. Modelo de datos . 21

4.4. Uso de la biblioteca . 23

4.4.1. Proyectos desarrollados con Spring Boot 23

4.4.2. Proyectos no desarrollados Spring Boot 25

4.5. Pruebas y validación . 26

4.5.1. Pruebas unitarias . 26

4.5.2. Pruebas de integración basadas en casos de uso 26

4.5.3. Pruebas basadas en casos de uso 26

5. Conclusiones y trabajo futuro 27

5.1. Conclusiones acerca del proyecto . 27

5.1.1. Comparativa de uso antiguo y nuevo 28

5.2. Evaluación personal . 28

5.3. Propuestas de mejora y ĺıneas de investigación futura 29

Bibliograf́ıa 31

Anexos 34

A. Diccionario de datos 37

B. Planificación 39

C. Arquitectura de un proyecto para el Gobierno de Aragón 41

C.1. Componentes del frontend . 42

C.2. Componentes del backend . 43

D. Detalles de implementación 45

D.1. Infraestructura . 45

D.1.1. ClientCCSV . 45

D.1.2. Documento . 47

D.1.3. Expediente . 48

D.1.4. PeticionesSae . 50

D.1.5. CCSVExternal . 50

D.2. Flujo de integración . 52

D.3. Paquetes auxiliares . 58

E. Pruebas y validaciones 61

E.1. Pruebas unitarias . 61

E.1.1. Módulo de documentos . 62

E.1.2. Módulo de expedientes . 67

E.2. Pruebas basadas en casos de uso . 74

E.3. Validación de endpoints . 75

Lista de Figuras

1.1. Oficinas de Hiberus en Zaragoza . 2

2.1. Diagrama de casos de uso . 9

3.1. Diagrama de despliegue . 12

3.2. Infraestructura de módulos para integradores 13

3.3. Patrón Façade el caso de la integración de CCSV 15

4.1. Diagrama de paquetes / clases del módulo CSV-INT 18

B.1. Diagrama de Gantt . 39

C.1. Patrón MVC . 41

C.2. Diseño de los programas del Gobierno de Aragón 42

D.1. Diagrama de secuencia de la operación Crear operación 53

D.2. Diagrama de secuencia de la operación Obtener documento 53

D.3. Diagrama de secuencia de la operación Obtener documento XML 54

D.4. Diagrama de secuencia de la operación Actualizar documento 54

D.5. Diagrama de secuencia de la operación Crear expediente 55

D.6. Diagrama de secuencia de la operación Añadir documentos al expediente 55

D.7. Diagrama de secuencia de la operación Eliminar documentos del expediente 56

D.8. Diagrama de secuencia de la operación Regenerar ı́ndice del expediente 56

D.9. Diagrama de secuencia de la operación Crear carpeta en expediente . . 57

D.10.Diagrama de secuencia de la operación Asociar un expediente a otro

expediente . 57

D.11.Diagrama de secuencia de la operación Obtener expediente 58

E.1. Pruebas basadas en casos de uso del módulo de documentos 74

E.2. Pruebas basadas en casos de uso del módulo de expedientes 75

E.3. Definición del endpoint para la creación de documentos en Swagger . . 76

E.4. Definición del endpoint para obtener un documento en Swagger 76

E.5. Definición del endpoint para actualizar un documento en Swagger . . . 77

E.6. Definición del endpoint para obtener un documento XML en Swagger . 77

E.7. Definición del endpoint para crear un expediente en Swagger 78

E.8. Definición del endpoint para añadir documentos a un expediente en

Swagger . 78

E.9. Definición del endpoint para eliminar documentos de un expediente en

Swagger . 79

E.10.Definición del endpoint para regenerar el ı́ndice de un expediente en

Swagger . 79

E.11.Definición del endpoint para crear una carpeta en un expediente en

Swagger . 80

E.12.Definición del endpoint para asociar un expediente a un expediente en

Swagger . 80

E.13.Definición del endpoint para obtener un expediente en Swagger 81

Listados

4.1. Constructor de la clase DemoApplication 23

4.2. Endpoint de operación Obtener documento 24

4.3. Configuración de ejemplo del cliente . 25

D.1. Constructor de la clase ClientCCSVProviderImpl 46

D.2. Constructor de la clase DocumentCCSVProviderImpl 48

D.3. Constructor de la clase ExpedientCCSVProviderImpl 49

D.4. Constructor de la clase PeticionesSaeCCSVProviderImpl 50

D.5. Constructor de la clase CCSVExternalProvider 51

E.1. Prueba unitaria de la operación Crear documento 62

E.2. Prueba unitaria de la operación Obtener documento 63

E.3. Prueba unitaria de la operación Actualizar documento 64

E.4. Prueba unitaria de la operación Obtener documento XML 66

E.5. Prueba unitaria de la operación Crear expediente 67

E.6. Prueba unitaria de la operación Añadir documentos a un expediente . . 68

E.7. Prueba unitaria de la operación Eliminar documentos de un expediente 69

E.8. Prueba unitaria de la operación Regenerar ı́ndice de un expediente . . . 70

E.9. Prueba unitaria de la operación Crear carpeta en un expediente 71

E.10.Prueba unitaria de la operación Asociar expediente a un expediente . . 72

E.11.Prueba unitaria de la operación Obtener expediente 73

Caṕıtulo 1

Introducción y objetivos

Este Trabajo Fin de Grado (TFG) aborda los retos de la integración del Sistema

de Verificación Documental dentro de la administracion pública, particularmente en el

Gobierno de Aragón, y se centra en la gestión del Código Seguro de Verificación (CSV).

El objetivo es crear una Interfaz de Programación de Aplicaciones (API) unificada

que pueda estandarizar y simplificar el proceso de integración de sistemas, lo que dará

como resultado una interoperabilidad mejorada y un proceso de desarrollo más sencillo.

Este proyecto no solo busca resolver problemáticas técnicas, sino también aumentar la

consistencia en los sistemas relacionados con el CSV.

1.1. Contexto

En el desarrollo de soluciones tecnológicas es fundamental comprender el contexto

en el que se encuentran los sistemas y procesos existentes, aśı como los desaf́ıos y

necesidades de integración que deben ser abordados. Este apartado presenta un marco

de referencia que contextualiza el trabajo realizado, destacando la colaboración con la

empresa Hiberus y la explicación del Código Seguro de Verificación (CSV), sobre el

cual se centra el desarrollo de este Trabajo de Fin de Grado (TFG).

1.1.1. Colaboración con Hiberus

El proyecto se ha realizado en colaboración con Hiberus, una empresa tecnológica

ĺıder en España con la que he tenido la oportunidad de trabajar durante el desarrollo

del proyecto. Debido a la relevancia de la empresa en el ámbito tecnológico y su papel

clave en el enfoque de este TFG, resulta pertinente contextualizar quiénes son y cuáles

son sus principales áreas de actuación.

Hiberus es una empresa de servicios tecnológicos y consultoŕıa, especializada en

soluciones innovadoras en áreas como transformación digital, desarrollo de software,

integración de sistemas y gestión de datos. Fundada en Zaragoza, cuenta con presencia

1

nacional e internacional y trabaja con sectores variados como la administración pública,

retail, turismo y banca, entre otros. Su enfoque está centrado en proporcionar soluciones

personalizadas y escalables a empresas y organismos para mejorar su eficiencia,

seguridad y competitividad.

La colaboración de Hiberus con administraciones públicas, como el Gobierno de

Aragón, es especialmente destacable en proyectos relacionados con la optimización de

sistemas de documentación y la implementación de soluciones basadas en el Códigos

Seguro de Verificación. Esto refleja su compromiso por fortalecer la seguridad y la

eficiencia en los procesos administrativos mediante el uso de tecnoloǵıas innovadoras.

Figura 1.1: Oficinas de Hiberus en Zaragoza

1.1.2. ¿Qué es el Código Seguro de Verificación?

El Código Seguro de Verificación (CSV) es un código único que acompaña

a cada documento o expediente generado por el Gobierno de Aragón, el cual

permite la verificación de su autenticidad y contenido. Este código es esencial para

garantizar la integridad y autenticidad de los documentos electrónicos emitidos por las

administraciones públicas. Normalmente, este código aparece impreso en los márgenes

de los documentos.

El uso de este código permite a los usuarios verificar la validez de documentos

electrónicos administrativos, comprobar sus firmas electrónicas, y descargar o consultar

los documentos a través del servicio de verificación. De esta manera, se asegura que

los documentos no hayan sido alterados y que las firmas asociadas sean leǵıtimas.

2

1.2. Motivación del proyecto

La integración de la libreŕıa CCSV en los proyectos de Hiberus que colaboran con

el Gobierno de Aragón ha demostrado ser un proceso dif́ıcil de estandarizar y lleno

de obstáculos. Aunque esta herramienta es clave para desarrollar funcionalidades de

verificación documental, la realidad es que su implementación vaŕıa ampliamente entre

proyectos, lo que genera problemas tanto a nivel técnico como organizativo.

El principal reto es la escasez de documentación clara y detallada. Aunque

el Gobierno de Aragón proporciona especificaciones y gúıas técnicas, estas son

insuficientes para abordar todas las situaciones que surgen durante la integración.

Los errores reportados suelen carecer de información suficiente para identificar sus

causas, y la restricción en el acceso al código interno de las funciones impide que los

desarrolladores puedan entender su funcionamiento en profundidad.

Por otro lado, la falta de un enfoque unificado entre proyectos agrava la situación.

Cada equipo aborda la implementación de forma independiente, desarrollando

soluciones a medida que no comparten un estándar común. Esta heterogeneidad resulta

en disparidades significativas en la forma en que se manejan errores, validaciones y

mejoras. En lugar de centralizar los esfuerzos, cada nuevo cambio o actualización debe

repetirse en todos los proyectos afectados, duplicando el trabajo y encareciendo el

mantenimiento.

Otro aspecto importante es el impacto que esta fragmentación tiene en los tiempos

de desarrollo. Al no contar con una gúıa confiable ni con procesos definidos, los

desarrolladores invierten un tiempo considerable en encontrar soluciones a través de

ensayo y error. Esto no solo ralentiza los proyectos, sino que también incrementa la

probabilidad de errores en producción, afectando la calidad general de las entregas.

En definitiva, los desaf́ıos asociados con la integración del CCSV no solo ralentizan

el desarrollo, sino que también encarecen los proyectos a largo plazo. Resolver estas

dificultades es clave para garantizar una implementación más eficiente, reducir los costes

de mantenimiento y ofrecer soluciones coherentes en todos los proyectos de Hiberus que

desarrollan para el Gobierno de Aragón.

1.3. Alcance y objetivos

Como objetivo general, se plantea diseñar e implementar una API para facilitar

la integración de sistemas de verificación documental basados en el Código Seguro

de Verificación en administraciones públicas, con el propósito de simplificar procesos,

aumentar la eficiencia y garantizar la consistencia en su adopción. La solución

3

propuesta estará diseñada para ser utilizada en el entorno de producción de la

empresa, abarcando la mayoŕıa de los proyectos que necesiten integrar la libreŕıa

CCSV.

Como objetivos espećıficos se acaba planteando la siguiente lista:

− Optimización de procesos: identificar y resolver las ineficiencias actuales en

la integración de libreŕıas CCSV, enfocándose en simplificar su implementación

y reducir los tiempos de desarrollo.

− Mejora de la documentación: crear y estandarizar una gúıa técnica completa

que facilite a los desarrolladores la integración del CSV en diferentes proyectos,

eliminando ambigüedades y reduciendo la curva de aprendizaje.

− Homogeneización de libreŕıas: proporcionar una solución centralizada que

unifique los servicios utilizados en proyectos relacionados con el CSV, permitiendo

una implementación coherente en todos los entornos.

− Estandarización en el manejo de errores: definir y aplicar un enfoque

uniforme para la gestión de errores y validaciones dentro de la API, evitando

disparidades entre los proyectos y mejorando la experiencia del usuario final.

− Evaluación comparativa: realizar un análisis exhaustivo que contraste el

sistema actual con el nuevo, evaluando métricas de eficiencia, usabilidad y coste

para demostrar los beneficios de la solución propuesta.

1.4. Herramientas y tecnoloǵıa de trabajo

Es importante destacar que el entorno y las herramientas utilizadas en este proyecto

no han sido seleccionadas de manera personal, sino que han sido impuestas por las

directrices y estándares de la empresa, Hiberus, y las necesidades del Gobierno de

Aragón. El ecosistema tecnológico ya estaba definido, lo que ha requerido adaptar la

configuración y desarrollo del proyecto a las bibliotecas y herramientas existentes.

Para el backend (todo el proyecto está desarrollado aqúı), se ha utilizado Eclipse

IDE [1] como entorno de desarrollo integrado (IDE), con Java [2] como lenguaje

principal, ya que ambas herramientas son estándar en la empresa. Se utiliza Java

para aprovechar sus caracteŕısticas avanzadas y su amplio soporte en la industria

de desarrollo de software. Spring Boot [3] ha sido el framework seleccionado para

facilitar la creación de servicios backend empresariales robustos y escalables, mientras

que Project Lombok [4] se emplea para reducir el código repetitivo, mejorando la

4

productividad al generar automáticamente constructores, getters y setters. Spring

Tools [5] también se ha integrado en el IDE para facilitar el desarrollo con Spring,

junto con Spring Initializr [6], que permite configurar rápidamente los proyectos

Spring.

En cuanto a la gestión de dependencias y automatización de la construcción, se

han utilizado Apache Maven [7] y Apache Ant [8], herramientas que permiten

gestionar dependencias y automatizar tareas de compilación y despliegue. Además, se

ha integrado JUnit [9] para pruebas unitarias, lo que automatiza el proceso de prueba,

permitiendo identificar y corregir problemas durante el desarrollo.

Para la documentación y prueba de servicios API, se ha empleado Swagger UI

(OpenAPI) [10], lo que facilita la validación y prueba de los servicios creados de manera

eficiente.

En cuanto a la gestión de control de versiones, SourceTree [11] ha sido la

herramienta principal utilizada, la cual simplifica la gestión de repositorios Git a través

de una interfaz gráfica intuitiva, facilitando la colaboración entre equipos de desarrollo.

Los repositorios se gestionan en GitLab [12], plataforma donde se almacena el código

fuente de las aplicaciones y se gestionan las versiones.

En cuanto a las herramientas de productividad y colaboración, se han utilizado

varias del ecosistema de Microsoft, como Microsoft Word [13] para la edición de la

documentación, Outlook [14] como servicio de correo electrónico, Teams [15] para

la mensajeŕıa instantánea, y PowerPoint [16] para la creación de presentaciones.

Además, se ha empleado Overleaf [17], una plataforma en ĺınea para la creación y

edición de documentos en LaTeX, utilizando como referencia la gúıa “Learn LATEX in

30 minutes” [18].

Adicionalmente, se ha utilizado Diagrams.net (draw.io) [19] para la creación de

diagramas de flujo, UML, organigramas y otros esquemas, y Notepad++ [20] como

editor de texto avanzado para tareas puntuales. Para la seguridad, se ha usado Palo

Alto Global Protect [21], una solución de acceso remoto que asegura la conexión a

la red corporativa mediante encriptación y autenticación multifactorial.

1.5. Contenido del documento

A lo largo del documento, se presenta el desarrollo del proyecto desde el análisis

de los requisitos hasta su implementación y validación. En primer lugar, se lleva a

cabo un análisis detallado de los problemas identificados en sistemas existentes, que

permite establecer los requisitos funcionales y no funcionales necesarios para diseñar

una solución efectiva. Posteriormente, se aborda el diseño de la solución planteada,

5

destacando la estructura de la arquitectura utilizada y su alineación con principios de

diseño reconocidos, lo que garantiza una integración eficiente y escalable.

En las siguientes secciones se describe la implementación técnica del proyecto,

explicando cada componente desarrollado, desde la infraestructura hasta la lógica del

sistema y el modelo de datos. También se detalla cómo se gestionaron aspectos clave

como los errores y la interoperabilidad con diferentes entornos tecnológicos. Esta parte

del trabajo incluye ejemplos prácticos de integración tanto en proyectos basados en

Spring Boot como en aquellos que emplean otras tecnoloǵıas.

Finalmente, el documento examina las pruebas realizadas para asegurar la

funcionalidad y robustez del sistema. Los resultados reflejan los beneficios obtenidos,

mientras que las conclusiones recogen las principales lecciones aprendidas y abren

la puerta a futuras mejoras y nuevas áreas de investigación. Además, en los anexos

se proporciona información técnica complementaria que enriquece y completa la

comprensión del proyecto.

6

Caṕıtulo 2

Análisis de requisitos

El análisis de requisitos es una etapa clave en cualquier proyecto de desarrollo, ya

que permite comprender a fondo qué se necesita solucionar y cómo hacerlo. En esta

sección, se identifican los principales problemas que enfrentan los sistemas actuales,

aśı como las expectativas que debe cumplir la solución planteada. Este proceso busca

garantizar que el nuevo desarrollo no solo sea funcional, sino que también responda a

las necesidades reales del entorno en el que se implementará.

2.1. Identificación de problemas en los proyectos

actuales

En esta sección se analizan los principales problemas identificados en los proyectos

actuales. Estos inconvenientes han sido determinantes en la ralentización de los

procesos. A continuación, se describen las principales dificultades que afectan tanto

a los desarrolladores como a los usuarios finales y que justifican la necesidad de la

solución propuesta:

− Falta de centralización para gestionar documentos: los integradores se

ven obligados a realizar múltiples pasos para llevar a cabo tareas como subir,

descargar, modificar o eliminar documentos y expedientes debido a la falta de un

servicio unificado, lo que dificulta y ralentiza considerablemente las operaciones.

− Ausencia de estándares en los planes de pruebas: los proyectos anteriores

no cuentan con esquemas para validar las funcionalidades creadas, lo que dificulta

la detección temprana de errores y compromete la calidad antes del despliegue.

− Obsolescencia de funciones esenciales: varias funciones que eran

ampliamente utilizadas hasta hace poco han sido deprecadas sin una explicación

detallada de los cambios. Esto ha obligado a los desarrolladores a realizar

7

actualizaciones a las nuevas alternativas, lo cual no siempre es un proceso directo.

Esto ha obligado a los equipos de desarrollo a adaptarse a nuevas soluciones, lo

que en ocasiones no resulta sencillo ni inmediato.

− Documentación incompleta: la falta de documentación detallada y consistente

representa un gran obstáculo para la incorporación de nuevos desarrolladores y

dificulta el mantenimiento y mejora del sistema.

− Dependencia de desarrolladores con experiencia previa: ante la ausencia

de documentación e información adecuada, muchas veces la única solución viable

es organizar reuniones con desarrolladores que ya hayan trabajado con estas

integraciones. Sin embargo, estas reuniones a menudo resultan infructuosas,

aumentando los tiempos y los recursos necesarios para resolver los problemas.

− Errores no espećıficos por parte del SAE: muchos errores reportados por

el sistema no proporcionan información clara ni espećıfica sobre el problema, lo

que complica su resolución. Si bien algunos están documentados, otros carecen

de detalles, lo que retrasa la identificación de la causa ráız y la implementación

de una solución.

Estos inconvenientes hacen evidente la necesidad de implementar una solución que

sea robusta, sostenible y bien estructurada. Detectar estas deficiencias es fundamental

para poder establecer los requisitos funcionales, no funcionales y técnicos que guiarán

el desarrollo del proyecto.

2.2. Definición de requisitos funcionales

En esta sección se especifican los requisitos funcionales de la solución, es decir,

las capacidades y servicios que el sistema debe ofrecer a los usuarios. Estos requisitos

establecen las operaciones y procesos que el sistema debe llevar a cabo y detallan las

acciones espećıficas que se implementarán.

La captura de estos requisitos ha sido un proceso largo que ha requerido múltiples

reuniones y consultas con el equipo de Hiberus. Durante este trabajo, se analizaron

las operaciones más utilizadas, aquellas que estaban en desuso o próximas a quedar

obsoletas, y las que resultaban irrelevantes en el contexto actual. Además, todas

las observaciones y decisiones fueron coordinadas con mi director de proyecto para

garantizar que los requisitos estuvieran en ĺınea con los objetivos principales del

desarrollo.

8

Las operaciones más utilizadas, y las que se decidieron desarrollar pueden verse

reflejadas en el diagrama de casos de uso de la Figura 2.1

Figura 2.1: Diagrama de casos de uso

Los requisitos funcionales que se derivan de este análisis se muestran en la Tabla 2.1

Tabla 2.1: Requisitos funcionales

Nº Descripción
RF-1 La aplicación deberá actualizar las bibliotecas ccsv client y csv para

garantizar la compatibilidad con la integración del cliente CCSV
RF-2 Se requerirá el desarrollo de una aplicación de pruebas que permita realizar

peticiones al cliente CCSV para verificar la integración
RF-3 Se deberá desarrollar una función para inicializar los metadatos del

documento antes de su creación
RF-4 Se deberá desarrollar una función para crear un documento
RF-5 Se deberá desarrollar una función para obtener un documento
RF-6 Se deberá desarrollar una función para obtener un documento en XML
RF-7 Se deberá desarrollar una función para actualizar un documento
RF-8 Se deberá desarrollar una función para crear un expediente
RF-9 Se deberá desarrollar una función para añadir documentos a un expediente
RF-10 Se deberá desarrollar una función para eliminar documentos de un

expediente
RF-11 Se deberá desarrollar una función para regenerar el ı́ndice de un expediente
RF-12 Se deberá desarrollar una función crear una carpeta en un expediente
RF-13 Se deberá desarrollar una función para obtener un expediente
RF-14 Se deberá elaborar un plan de pruebas detallado que incluya casos de prueba

para diversos escenarios

9

2.3. Definición de requisitos no funcionales

En esta sección se detallan los requisitos no funcionales, los cuales definen

caracteŕısticas esenciales que influyen en el desempeño global del sistema, pero no

están directamente vinculadas a funcionalidades concretas. Estos requisitos abarcan

criterios como calidad, seguridad, rendimiento y usabilidad, que son fundamentales

para asegurar un sistema estable y una experiencia satisfactoria para los usuarios. Los

requisitos no funcionales recogidos se presentan en la Tabla 2.2.

Tabla 2.2: Requisitos no funcionales

Nº Descripción
RNF-1 La versión del JDK utilizada será la 1.8.0 291, garantizando

compatibilidad y estabilidad en el desarrollo
RNF-2 El entorno de desarrollo empleado será Eclipse IDE for Enterprise Java

and Web Developers, en su versión 2023-06 (4.28.0), optimizado para el
desarrollo de aplicaciones empresariales en Java y tecnoloǵıas web

RNF-3 El proyecto deberá configurarse como un proyecto Maven, facilitando la
gestión de dependencias y la construcción del sistema

RNF-4 La aplicación será desarrollada en Java utilizando el framework Spring
Boot para aprovechar su configuración simplificada y su soporte para
aplicaciones empresariales

RNF-5 Se mantendrá la estructura interna del proyecto según las convenciones
establecidas, asegurando una organización coherente y de fácil
mantenimiento

RNF-6 Deberá elaborarse un plan de pruebas de casos de uso detallado que cubra
los aspectos funcionales y de integración

En resumen, este análisis de requisitos sienta las bases para el desarrollo de una

solución integral que permita optimizar la gestión de documentos y expedientes,

abordando los problemas identificados en los sistemas actuales. Con un enfoque en la

funcionalidad, la eficiencia y la adaptabilidad, los requisitos definidos en este caṕıtulo

aseguran que el proyecto no solo cumpla con las expectativas funcionales, sino que

también establezca estándares altos en términos de calidad y sostenibilidad a largo

plazo. Esto garantiza que el sistema pueda evolucionar de forma robusta y escalable,

adaptándose a las necesidades cambiantes de los usuarios y del entorno operativo.

10

Caṕıtulo 3

Diseño

En este apartado se detallará exclusivamente la arquitectura del proyecto para

la integración de CCSV, aśı como la del contexto en el que se encuentra, describiendo

la infraestructura del entorno en el que se desarrolla esta integración.

La infraestructura de los proyectos que utilizarán esta integración está detallada en

el anexo C. Aunque leer este anexo proporciona una comprensión más completa del

proyecto en su totalidad, no es esencial para el propósito de este caṕıtulo, por lo que

no se ampliará aqúı.

Para facilitar la comprensión de lo que se explicará en los siguientes apartados, la

Figura 3.1 muestra las dos secciones que serán desarrolladas y detalladas más adelante.

3.1. Infraestructura del entorno

Para comprender cómo se organiza la implementación de la libreŕıa que se está

desarrollando, es importante situarla en el contexto general del proyecto. En esta

empresa existen diversas libreŕıas que están siendo desarrolladas, entre ellas la que

corresponde al módulo de CCSV que es la que se detalla en este proyecto. Esta

libreŕıa forma parte de un sistema más amplio, compuesto por múltiples módulos que

proporcionan funcionalidades diferentes.

En la Figura 3.2 se puede ver cómo está diseñada la infraestructura para

desarrollar todas estas integraciones. Está organizado en varios módulos que trabajan

conjuntamente para ofrecer funcionalidades espećıficas.

A continuación, se detalla el propósito y la jerarqúıa de cada módulo:

− AMD SAE Internal: este módulo agrupa una variedad de submódulos, cada

uno diseñado para implementar diversas integraciones con los múltiples servicios

que proporciona SAE, el servicio de CCSV entre ellos. Existen dos tipos de

submódulos:

11

Figura 3.1: Diagrama de despliegue

• Submódulos externos (como CCSV): funcionan principalmente como

interfaces que pueden ser implementadas por proyectos externos que utilicen

Spring Boot. Permiten extender la funcionalidad y facilitar la integración

con otros sistemas.

• Submódulos internos (como CCSV-INT): los submódulos internos alojan

toda la lógica empresarial y los servicios de la API. Aqúı reside la mayor

parte de la funcionalidad cŕıtica del sistema.

Además de CCSV y CCSV-INT, este módulo contiene otros submódulos

encargados de diversas integraciones, como el módulo encargado del Sistema de

Gestión de Avisos (SGA-INT y SGA), o el encargado del Servicio de Identificación

de Usuarios (SIU-INT y SIU), entre muchos otros. Cada uno de estos submódulos

gestiona integraciones espećıficas, cumpliendo con los requerimientos de diferentes

áreas del sistema y ampliando las capacidades de interacción con plataformas

externas, lo que permite mantener un flujo de trabajo modular, escalable y

flexible.

La separación entre módulos internos y externos asegura un diseño modular y

12

Figura 3.2: Infraestructura de módulos para integradores

flexible, donde la lógica interna se protege mientras se proporciona un acceso

controlado a servicios esenciales.

El uso de este módulo se detalla con mayor profundidad en la Sección 4.4, donde

se analiza cómo cada componente interactúa y se integra en el contexto general

del sistema.

− Core: es el núcleo del sistema y cumple un rol cŕıtico en la arquitectura. Este se

encarga de:

• Manejo de la autenticación: es responsable de gestionar las credenciales, la

verificación de identidades y las autorizaciones.

• Protección de datos y recursos: ofrece una capa robusta de seguridad para

asegurar que solo los usuarios y sistemas autorizados puedan acceder a los

recursos sensibles.

Al centralizar estos aspectos, el módulo Core actúa como una base sólida sobre

la cual se construyen otros módulos del sistema.

− Common: actúa como un conjunto de utilidades y funcionalidades compartidas

que respaldan los demás módulos.

• Funcionalidades transversales: proporciona herramientas reutilizables, como

validadores, formatos de datos, y abstracciones para tareas comunes.

• Lógica de negocio auxiliar: simplifica el desarrollo y reduce la duplicación de

código al ofrecer soluciones genéricas para problemas frecuentes. Gracias a

este módulo, los desarrolladores pueden enfocarse en implementar la lógica

espećıfica de cada módulo sin preocuparse por reinventar funciones básicas.

13

3.2. Arquitectura del proyecto

La integración de la libreŕıa CCSV tiene como objetivo encapsular la lógica interna

de una aplicación legada para que el resto de sistemas o aplicaciones puedan interactuar

con ella de manera sencilla y estandarizada. Esta integración se basa en la creación de

una API que sirve como puente entre el sistema antiguo y los clientes o consumidores

modernos. Los principales pasos y componentes del diseño son los siguientes:

1. Encapsulación del sistema antiguo: se ha aislado toda la lógica de negocio

y complejidad de la aplicación legada en una nueva capa de abstracción. Esto

asegura que los clientes no interactúen directamente con el sistema antiguo.

2. Creación de una API moderna: a través de esta API, los usuarios solo

necesitan conocer las operaciones actuales que pueden realizar, sin preocuparse

por cómo están implementadas o por la complejidad de los datos internos. La

API actúa como la única entrada/salida del sistema.

3. Estándares actuales: se ha diseñado la API para cumplir con estándares

modernos de diseño REST, asegurando su compatibilidad y extensibilidad a largo

plazo.

4. Transformación de datos: en los casos donde el formato de los datos

del sistema antiguo no es adecuado para las necesidades actuales, la API se

encarga de transformar los datos, haciéndolos comprensibles y utilizables para

los consumidores.

5. Aislamiento para futuras modificaciones: la lógica de la API permite

implementar cambios en los servicios modernos sin tocar el código del sistema

antiguo, promoviendo un bajo acoplamiento.

Como resultado de los objetivos planteados, se optó por desarrollar la integración

utilizando el patrón façade.

3.2.1. Patrón Façade

El diseño planteado sigue los principios del patrón Façade o fachada en español,

lo que significa que se ha construido un punto único y claro de acceso al sistema para

los usuarios. Sin embargo, este diseño no solo se limita a simplificar, sino que también

transforma la manera en la que se consume el sistema antiguo, adaptándolo a un

entorno más moderno. El patrón se puede observar en la Figura 3.3.

Los puntos clave de la relación entre el diseño del proyecto y el patrón Façade son:

14

Figura 3.3: Patrón Façade el caso de la integración de CCSV

1. Principios compartidos: el patrón Facade oculta la complejidad de un sistema

subyacente, proporcionando una interfaz sencilla y clara. Mi integración hace

exactamente eso, encapsulando toda la lógica antigua en una API moderna.

2. Separación de responsabilidades: igual que en Facade, en este diseño se

separa la lógica interna del sistema antiguo de los consumidores modernos. Esto

permite que los usuarios interactúen únicamente con las operaciones expuestas,

sin necesidad de conocer los detalles de cómo funciona el legado.

3. Extensibilidad: mientras el patrón Facade permite añadir nuevas

funcionalidades a través de su interfaz simplificada, en mi integración se

da un paso más al proporcionar herramientas para la transformación y

validación de datos en la API.

4. Simplificación de uso: para los clientes (aplicaciones que consumen la API),

solo existen los puntos de acceso que necesitan, reduciendo la carga cognitiva de

tener que comprender o adaptar la complejidad del legado.

5. Modernización: aunque el patrón Facade en śı mismo no busca modernizar, mi

diseño aprovecha la interfaz simplificada para hacer que el sistema sea compatible

con tecnoloǵıas actuales, lo cual lo diferencia y lo mejora en este aspecto.

Se decidió seguir un enfoque basado en el patrón Facade porque encajaba perfectamente

con los objetivos del proyecto. Este patrón permite encapsular sistemas complejos

detrás de una fachada fácil de usar, y mi integración necesitaba ofrecer simplicidad a

la hora de interactuar con la aplicación antigua. Además, esta estrategia ha permitido

evitar problemas derivados de exponer directamente una arquitectura desactualizada,

mientras se establece una base sólida para futuras ampliaciones y mantenimiento.

15

16

Caṕıtulo 4

Implementación

En este caṕıtulo se describe el proceso de desarrollo e implementación del sistema

propuesto, incluyendo las decisiones técnicas, la configuración del modelo de datos,

y la integración de las diferentes partes de la aplicación. Se detallan las tecnoloǵıas

empleadas, la estructura del código y los desaf́ıos enfrentados, explicando cómo

se aseguraron tanto la funcionalidad como la compatibilidad del sistema con las

especificaciones definidas previamente. Además, se aborda la creación de tipos de

datos personalizados diseñados para optimizar la interacción con SAE y simplificar

estructuras complejas, junto con ejemplos prácticos implementados en proyectos

basados en Spring Boot y en entornos que no emplean este framework.

4.1. Implementación de la arquitectura

La infraestructura del sistema se basa en varias clases que interactúan con servicios

web externos, utilizando SOAP1 como protocolo de comunicación y el framework

Apache CXF para gestionar dicha interacción. En este apartado se describen los

detalles espećıficos de la implementación de los servicios relacionados con la gestión

de documentos y expedientes.

El núcleo de esta interacción lo constituye una clase denominada

ClienteCCSVProviderImpl, que actúa como un catálogo de servicios y

centraliza las operaciones. Esta clase distribuye la lógica de sus funciones entre

DocumentProviderImpl y ExpedienteProviderImpl, dependiendo de la

operación que se deba realizar. A su vez, ambas clases (DocumentProviderImpl y

ExpedienteProviderImpl) gestionan las llamadas a los servicios de SAE mediante la

clase PeticionesSaeProviderImpl.

Además, existe también la clase CCSVExternalProviderImpl, diseñada

1 SOAP (Simple Object Access Protocol) es un protocolo de comunicación estándar basado en XML
que permite el intercambio de información estructurada en redes distribuidas. Es ampliamente
utilizado para integrar aplicaciones en entornos heterogéneos.

17

espećıficamente para permitir que los proyectos desarrollados con Spring Boot integren

de forma eficiente la funcionalidad CCSV. Cabe destacar que, a diferencia de las demás

clases que residen en el módulo CCSV-INT, CCSVExternalProviderImpl se encuentra

en el módulo superior de CCSV, fuera del módulo CCSV-INT donde se aloja la lógica

central del proyecto. Debido a su ubicación, esta clase no aparece en el diagrama

de paquetes, ya que dicho diagrama solo representa la estructura interna del módulo

CCSV-INT.

Para proporcionar una mejor comprensión de la estructura general del proyecto,

se incluye el diagrama de paquetes que se muestra en la Figura 4.1. Este diagrama

refleja cómo se organizan y relacionan los distintos componentes dentro del módulo

CCSV-INT.

Figura 4.1: Diagrama de paquetes / clases del módulo CSV-INT

Tomando como referencia la Figura 4.1, se llevará a cabo una descripción detallada

de las clases más relevantes y su configuración, siendo estos elementos fundamentales

para el adecuado funcionamiento de la integración propuesta.

Para facilitar la comprensión, las clases a describir se han organizado en dos

grupos: clases internas (módulo CSV-INT) y clases externas (módulo CSV). Las clases

auxiliares ubicadas en los paquetes Dtos y Utils se detallarán en el Anexo D.3,

mientras que las clases en los paquetes request, params y response se describirán

más adelante en la Sección 4.3.

18

4.1.1. Clases internas

A continuación, se describen las clases destacadas del módulo interno, que incluyen

ClientCCSVProviderImpl, DocumentProviderImpl y ExpedientProviderImpl.

ClientCCSVProviderImpl

La clase ClientCCSVProviderImpl es el punto de entrada. Esta clase recibe un

objeto de configuración CCSVProviderConfig, el cual contiene parámetros esenciales

como las URLs de los servicios, credenciales y otras configuraciones necesarias. Dentro

de su constructor, se realiza la configuración de los clientes para ambos servicios:

− Cliente de documentos

Se utiliza el ClientProxyFactoryBean de Apache CXF, especificando

la interfaz IDocumentMetadataSignatureService para interactuar

con el servicio de documentos, llamado casi de la misma manera

DocumentMetadataSignatureService. Se configura el WSDL2 y la URL3 del

servicio, asegurando al mismo tiempo un mapeo automático entre los objetos

Java y los datos XML mediante el uso de AegisDatabinding4. Además, se habilita

el mecanismo MTOM 5, lo cual optimiza el intercambio de datos binarios, como

archivos, siendo crucial para los servicios que gestionan documentos e imágenes.

− Cliente de expedientes

De manera similar a la configuración del cliente de documentos, se utiliza

la interfaz IAdministrativeFileService para interactuar con el servicio de

expedientes, que se también se llama parecido, AdministrativeFileService.

Se lleva a cabo la configuración de la URL base, el WSDL y se habilita MTOM

para optimizar la transferencia de datos.

Al final de la configuración de cada cliente, se crean los proxies correspondientes

que permiten que otras clases interactúen con los servicios a través de estas interfaces.

Para más detalle, se puede acceder al Anexo D.1.1

DocumentoProviderImpl

2 Web Services Description Language, es un formato estándar en XML para describir los servicios
web.

3 Uniform Resource Locator, que se utiliza para especificar la dirección de los recursos en la web.
4 Herramienta para mapeo automático entre objetos Java y datos XML en Apache CXF.
5 Message Transmission Optimization Mechanism, mecanismo para optimizar el intercambio de datos
binarios a través de servicios web.

19

Una vez que el cliente de documentos ha sido configurado en la clase

ClientCCSVProviderImpl, se pasa a la clase DocumentProviderImpl, que se encarga

de gestionar la interacción con el servicio de documentos de forma más detallada.

Su constructor toma el servicio iDocumentMetadataSignatureService y el objeto

CCSVProviderConfig y comienza a propagarlos a lo largo de las clases de la aplicación.

Dentro de esta clase, se configura un proveedor de peticiones

PeticionesSaeProviderImpl, encargado de las operaciones relacionadas con la

solicitud y gestión de los documentos dentro del servicio. Para más detalle, consultar

el Anexo D.1.2.

ExpedientProviderImpl

De manera análoga a la clase DocumentProviderImpl, la clase

ExpedientProviderImpl gestiona el servicio de expedientes, pero aqúı también se

incorpora la funcionalidad del servicio de documentos. En esta clase, se configura

igualmente el proveedor de peticiones PeticionesSaeProviderImpl, que se ocupa de las

operaciones de ambos servicios, documentales y de expedientes, centralizando aśı el

manejo de las funciones requeridas por el sistema. Para más detalle, se puede acceder

al Anexo D.1.3.

Finalmente, la clase PeticionesSaeProviderImpl ya ha sido nombrada en varios

apartados de este documento, y su funcionamiento ha sido descrito de manera general.

Para una descripción más detallada de su implementación, se recomienda consultar el

Anexo D.1.4.

4.1.2. Clases externas

En cuanto a las clases externas, solo se describirá la siguiente ya que es la única

relevante para el entendimiento del proyecto.

CCSVExternalProvider

La clase CCSVExternalProvider es clave para integrar los servicios de CCSV en

aplicaciones Spring Boot. Configurada con la anotación @Configuration, centraliza la

creación de un cliente preparado para gestionar documentos y expedientes, utilizando

los parámetros definidos en la clase AmmSaeCCSVConfig. Esta configuración, basada

en @ConfigurationProperties, extrae automáticamente los valores del archivo de

propiedades de la aplicación, como URLs y códigos de procedimiento, asignándolos a

20

los campos correspondientes.

El cliente ClientCCSVProviderImpl permite gestionar los servicios de CCSV de

manera sencilla y uniforme en todo el sistema. Más detalles sobre esta implementación

pueden consultarse en el Anexo D.1.5.

4.2. Flujo de integración

El proceso de integración con CCSV se estructura en varias fases diseñadas para

garantizar la correcta ejecución de las operaciones, desde la invocación inicial del

catálogo de métodos hasta la comunicación final con SAE. Estas etapas aseguran la

validación, la construcción adecuada de las solicitudes, y la interacción eficiente con

los servicios proporcionados. Además, en el anexo D.2 se incluyen los diagramas de

secuencia que ilustran el flujo detallado de la integración.

Las fases del flujo son las siguientes:

1. Uso del catálogo de operaciones

ClientCCSVProvider actúa como el punto de entrada, ofreciendo métodos como

crearDocumento, obtenerDocumento y actualizarDocumento, entre otros. Cada

uno de estos métodos se implementa invocando las correspondientes clases

proveedoras (DocumentProvider y ExpedientProvider), que contienen la lógica

espećıfica de cada operación.

2. Lógica de las operaciones

En esta fase se validan los parámetros de entrada, se construyen las

solicitudes necesarias con los objetos correspondientes y se maneja cualquier

preprocesamiento previo a la comunicación con SAE. Asegura que las operaciones

estén correctamente configuradas y las entradas sean válidas antes de realizar las

llamadas externas.

3. Comunicación con SAE

Una vez que las operaciones han sido validadas y configuradas, la interacción

con el sistema CCSV subyacente se realiza mediante la clase PeticionesSae. Este

componente maneja la comunicación directa con los servicios externos, enviando

solicitudes y recibiendo las respuestas correspondientes.

4.3. Modelo de datos

En el contexto de integración con SAE, cada operación del sistema requiere y

devuelve tipos de datos que encapsulan toda la información necesaria para su ejecución.

21

Estos tipos, generalmente definidos en inglés por SAE, son empleados en el intercambio

de datos entre los servicios de SAE y el sistema integrado. Para adaptarse mejor a los

requisitos espećıficos del proyecto, se han diseñado tipos de datos personalizados, cuya

nomenclatura se encuentra en español y que simplifican las estructuras proporcionadas

por SAE.

La distinción entre estos tipos de datos es importante:

− Nombres en inglés: representan modelos nativos proporcionados por SAE.

− Nombres en español: tipos creados internamente en el proyecto.

SAE, como plataforma de administración electrónica, ofrece servicios que abarcan

múltiples áreas funcionales. Sin embargo, este proyecto se centra exclusivamente

en su módulo de CSV, espećıficamente en operaciones vinculadas con la creación,

actualización y manejo de documentos y expedientes.

Para cada operación en SAE, se establecen parámetros de entrada (Params), que

contienen los datos requeridos para llevar a cabo la operación, y resultados de salida

(Results), que encapsulan la información proporcionada tras su ejecución.

A modo de ejemplo, la operación encargada de crear un documento es

createDocument. Esta operación requiere como entrada un objeto del tipo

ParamCreateDocument , el cual incluye información como el documento a

almacenar y el identificador de la carpeta destino. Como resultado, la operación

devuelve un objeto del tipo ResultCreateDocument , que contiene, entre otros, el

identificador único del documento creado en el sistema.

Debido a la complejidad de los modelos proporcionados por SAE y la falta de

documentación exhaustiva, en este proyecto se han diseñado nuevos tipos de datos

simplificados. Estos nuevos modelos mejoran la claridad, hacen más manejables las

estructuras de datos y se adaptan mejor a los requerimientos espećıficos del sistema.

Estos nuevos tipos de datos se crearon a partir de la adaptación de los modelos

originales proporcionados por SAE. Durante este proceso, se analizaron las estructuras

iniciales para identificar los elementos esenciales que deb́ıan mantenerse, descartando

atributos innecesarios, obsoletos o mal documentados. El objetivo principal de estas

adaptaciones fue optimizar la flexibilidad y simplificar la gestión de los datos, sin

comprometer la funcionalidad ni la integridad de las operaciones implementadas.

Para cada operación del módulo de documentos se definieron tres tipos de datos:

Parámetros (Params), con la información necesaria para ejecutar la operación;

Resultados (Result), con la información devuelta tras su ejecución; y Petición

(Request), que es una encapsulación de Params, conteniendo únicamente los atributos

esenciales necesarios para realizar las operaciones. Aśı, lo que el usuario debe enviar

22

se limita a los elementos más básicos, evitando la complejidad de estructuras más

detalladas.

En el módulo de expedientes, con operaciones de naturaleza más sencilla, se

crearon únicamente dos tipos de datos: Petición (Request), que incluye los atributos

necesarios para la solicitud, y Respuesta (Result), que contiene la información

devuelta al completar la operación. En este caso, no se definieron parámetros debido a

la simplicidad de los atributos requeridos.

4.4. Uso de la biblioteca

Para demostrar la flexibilidad de la libreŕıa y su facilidad de integración, se han

desarrollado dos proyectos de ejemplo: uno utilizando Spring Boot y otro sin dicho

framework. Estos ejemplos tienen como objetivo verificar el funcionamiento de la

libreŕıa en diferentes contextos y servir como referencia para futuras implementaciones.

4.4.1. Proyectos desarrollados con Spring Boot

La integración con proyectos basados en Spring Boot sigue una estructura clara

y estandarizada. El proyecto define una configuración inicial que incluye los paquetes

necesarios para que la libreŕıa sea detectada y utilizada de manera adecuada por el

contenedor de Spring. Un ejemplo t́ıpico de clase principal en un proyecto Spring Boot

es el del Listado 4.1.

Listado 4.1: Constructor de la clase DemoApplication

@SpringBootApplication(scanBasePackages = { "es.aragon.core.sae.ccsv",

"com.example.demo" })

public class DemoApplication {

public static void main(String[] args) {

SpringApplication.run(DemoApplication.class, args);

}

}

Esta configuración inicial permite que Spring detecte las configuraciones de la

libreŕıa ubicadas en los paquetes de es.aragon.core.sae.ccsv, asegurando que todos los

beans necesarios para interactuar con la misma se encuentren disponibles en el contexto

de la aplicación.

Para interactuar con la libreŕıa, los proyectos Spring Boot definen controladores que

encapsulan las llamadas a las funcionalidades de la misma. Estos controladores utilizan

la inyección de dependencias a través de la anotación @Autowired, lo que permite

acceder directamente a instancias del cliente ClientCCSVProvider, proporcionadas por

23

la clase CCSVExternalProvider descrita anteriormente.

Estos controladores implementan endpoints que reciben peticiones desde el exterior

y utilizan un cliente proporcionado por la libreŕıa para invocar las funciones

correspondientes. Gracias al uso de la inyección de dependencias de Spring, el

cliente de la libreŕıa, configurado previamente, se encuentra listo para ser utilizado

en los controladores sin necesidad de configuraciones adicionales. Cada método de

los controladores valida las entradas proporcionadas por el usuario, construye las

solicitudes necesarias utilizando los DTOs definidos por la libreŕıa y, posteriormente,

obtiene y retorna los resultados de manera estructurada.

Listado 4.2: Endpoint de operación Obtener documento

@RequestMapping("/document")

@RestController

public class ControllerDocument {

@Autowired

private ClientCCSVProvider clientCCSV;

@GetMapping("/obtenerDocumento")

public ResponseEntity<CCSVResponseDTO<ResultObtenerDocumentoDTO>>

obtenerDocumento(

@RequestParam(required = false) String csv,

@RequestParam(required = false) String id) throws CCSVException {

// [...]

ObtenerDocumentoRequestDto request =

ObtenerDocumentoRequestDto.builder().id(id).csv(csv).build();

return ResponseEntity.ok(clientCCSV.obtenerDocumento(request));

}

}

En el Listado 4.2, el controlador define un endpoint llamado /obtenerDocumento

que recibe solicitudes HTTP GET. Este endpoint valida los parámetros de entrada y

construye una solicitud utilizando los DTO6 de la libreŕıa, que posteriormente se env́ıa

al cliente ClientCCSVProvider. La respuesta del cliente se devuelve al solicitante de

manera estructurada.

La implementación de este ejemplo destaca la sencillez y la modularidad del diseño

de la libreŕıa, al ofrecer una solución eficaz que puede ser fácilmente integrada en un

ecosistema basado en Spring Boot, permitiendo un manejo eficiente de documentos y

6 DTO (Data Transfer Object): un objeto que se utiliza para transferir datos entre procesos, capas
de una aplicación o aplicaciones diferentes. Los DTOs simplifican y agrupan datos, mejorando el
rendimiento y desacoplando la lógica de negocio de la comunicación.

24

expedientes.

4.4.2. Proyectos no desarrollados Spring Boot

Además de la integración en aplicaciones basadas en Spring Boot, la libreŕıa está

diseñada para su uso en proyectos sin dependencia de este framework, lo que demuestra

su flexibilidad y capacidad de adaptarse a diferentes entornos.

La configuración en este tipo de proyectos se lleva a cabo manualmente, creando

una instancia de configuración (CCSVProviderConfig) en la que se especifican los

parámetros clave necesarios para interactuar con los servicios de la libreŕıa. Esto

incluye detalles como URLs para los servicios de documentos y expedientes, códigos de

organismos, nombres de procedimientos y otros valores relevantes según el caso de uso.

Una vez configurada esta instancia, se inicializa el cliente principal de la libreŕıa

(ClientCCSVProvider), que actúa como punto de acceso a las funcionalidades.

Este cliente permite invocar las distintas operaciones ofrecidas, desde la gestión de

documentos hasta la interacción con expedientes, de manera directa y sin necesidad de

configuraciones adicionales.

Un ejemplo representativo (Listado 4.3) de cómo se lleva a cabo esta integración

incluye la construcción del objeto CCSVProviderConfig utilizando un patrón builder,

donde se asignan todos los parámetros espećıficos del entorno en cuestión. A

continuación, se crea una instancia de ClientCCSVProvider, que queda lista para

ejecutar las operaciones necesarias de forma inmediata.

Listado 4.3: Configuración de ejemplo del cliente

public static void main() {

CCSVProviderConfig config = CCSVProviderConfig.builder()

.appCode(Constantes.APP_CODE)

.appName(Constantes.APP_NAME)

// Demas variables...

.build();

ClientCCSVProvider clientCCSV = new ClientCCSVProviderImpl(config);

// Codigo continua

}

Este diseño resalta la capacidad de la libreŕıa para operar de manera desacoplada

de un framework espećıfico, permitiendo que desarrolladores trabajen en contextos

diversos sin mayores complicaciones. Gracias a esta implementación, proyectos

independientes y aquellos con restricciones espećıficas pueden aprovechar las ventajas

25

que brinda la libreŕıa, manteniendo un equilibrio entre simplicidad y funcionalidad

avanzada.

4.5. Pruebas y validación

En esta sección se detallan las distintas metodoloǵıas de prueba implementadas

para asegurar el correcto funcionamiento del sistema. Se emplearon pruebas unitarias,

basadas en casos de uso y de validación de endpoints para verificar la fiabilidad y

robustez del sistema en diversas situaciones. A continuación se describe cada tipo de

prueba y se presentan los resultados obtenidos.

4.5.1. Pruebas unitarias

Las pruebas unitarias validan de manera aislada el funcionamiento de componentes

como funciones o clases. Para esto, se desarrollaron pruebas con JUnit, cubriendo todas

las operaciones del catálogo de la clase ClientCCSVProviderImpl sin distinción de

relevancia. Se utilizaron dependencias simuladas para simular escenarios y verificar

las interacciones, incluyendo casos como la creación, obtención y actualización de

documentos. Todas las pruebas fueron exitosas, confirmando que las operaciones

funcionan correctamente bajo diversas condiciones. Los detalles de las pruebas están

en el Anexo E.1.

4.5.2. Pruebas de integración basadas en casos de uso

Las pruebas basadas en casos de uso validan la correcta ejecución del sistema desde

una perspectiva de negocio. Cada caso se descompone en pasos detallados que incluyen

la creación de objetos, ejecución de acciones y validación de los resultados obtenidos.

Estas pruebas garantizan la coherencia y la integridad del sistema en su conjunto. Los

resultados y detalles de las pruebas están disponibles en el Anexo E.2.

4.5.3. Pruebas basadas en casos de uso

La validación de endpoints garantiza que las APIs respondan correctamente a

entradas válidas e inválidas. Se realizó utilizando un proyecto con Spring Boot, y se

exploraron los endpoints mediante Swagger. Se verificaron operaciones principales como

la creación y actualización de recursos, además de manejar errores excepcionales. Los

detalles de las pruebas están en el Anexo E.3.

26

Caṕıtulo 5

Conclusiones y trabajo futuro

El desarrollo de este proyecto ha sido un viaje enriquecedor que no solo ha implicado

un importante desaf́ıo técnico, sino también un gran aprendizaje en diversos aspectos

de la ingenieŕıa y la vida profesional. En este caṕıtulo, realizaré una reflexión sobre el

alcance alcanzado durante el desarrollo, junto con una evaluación de lo aprendido, las

conclusiones derivadas del trabajo realizado, y algunas propuestas para futuras ĺıneas de

mejora que podŕıan seguir enriqueciendo el sistema desarrollado. Este proyecto no solo

cierra un ciclo de desarrollo, sino que también abre las puertas a futuras oportunidades

de expansión que mejorarán aún más los procesos de la empresa.

En el Anexo B, se presenta un análisis detallado del tiempo invertido en el desarrollo

del proyecto. Se incluyen el diagrama de Gantt que muestra la planificación temporal

de las actividades y una tabla con las horas dedicadas a cada tarea espećıfica. Este

apartado proporciona una visión clara de la dedicación de recursos y tiempo en las

distintas fases del proyecto.

5.1. Conclusiones acerca del proyecto

El proyecto desarrollado representa un gran esfuerzo para modernizar los procesos

relacionados con el entorno SAE. Durante su desarrollo, me enfoqué en implementar las

operaciones más comunes y demandadas por los integradores, asegurando que fueran

funcionales, fiables y adaptadas a los casos de uso habituales. Además, se diseñó un

marco modular que no solo cumple con los requisitos actuales, sino que también deja

abierto un amplio margen para futuras mejoras y ampliaciones.

Uno de los principales logros de este proyecto es la simplificación de los procesos,

al reducir la complejidad de las operaciones anteriores. Además, la mantenibilidad del

sistema se ha incrementado, ya que las modificaciones y actualizaciones futuras podrán

realizarse de forma centralizada, evitando la necesidad de realizar ajustes repetidos en

múltiples proyectos.

27

Además del desarrollo funcional, se llevaron a cabo diversas pruebas para garantizar

la robustez y el correcto funcionamiento del sistema. Se realizaron pruebas unitarias

para validar cada componente por separado, asegurando que cumplieran con los

requisitos esperados. También se desarrollaron pruebas basadas en casos de uso

reales para simular el comportamiento del sistema en escenarios cotidianos, lo que

permitió identificar posibles mejoras y afinar la experiencia del usuario. Finalmente, se

ejecutaron pruebas de validación de los endpoints, comprobando que las comunicaciones

entre el sistema y sus dependencias externas fueran seguras, confiables y cumplieran

con los estándares de calidad definidos.

Entonces, para resumir, este proyecto ha sido un hito importante en la

modernización de los procesos en el entorno SAE. La simplificación de operaciones,

la mejora en la mantenibilidad del sistema y la implementación de pruebas exhaustivas

aseguran que el sistema esté bien preparado para su uso y expansión. Gracias a su

arquitectura modular, el proyecto no solo satisface las necesidades actuales, sino que

también facilita futuras adaptaciones, mejorando la eficiencia operativa y la experiencia

de usuario. El resultado es una solución robusta que simplifica el trabajo para los

integradores y proporciona una base sólida para seguir avanzando.

5.1.1. Comparativa de uso antiguo y nuevo

El uso del sistema anterior, caracterizado por su complejidad y limitada

adaptabilidad, contrastaba significativamente con el enfoque del nuevo proyecto. El

sistema desarrollado ofrece una interfaz más clara y operativa, facilitando tareas

cotidianas que antes requeŕıan un mayor esfuerzo manual o técnico. Además, la base

modular proporciona una estructura más comprensible para los futuros desarrolladores,

permitiendo una curva de aprendizaje menos pronunciada.

Un aspecto clave del nuevo sistema es su mejor mantenibilidad. Gracias a su

arquitectura centralizada, cualquier cambio o mejora se puede realizar directamente

en este proyecto sin necesidad de modificar cada integración de forma individual. Esto

elimina la necesidad de realizar ajustes proyecto por proyecto, optimizando el tiempo

y los recursos necesarios para actualizaciones o correcciones. Estas mejoras no solo

aumentan la eficiencia del equipo, sino que también aseguran una mayor adaptabilidad

para atender necesidades espećıficas del entorno empresarial.

5.2. Evaluación personal

Trabajar en este proyecto ha sido tanto un desaf́ıo técnico como una experiencia de

crecimiento personal y profesional. Desde el inicio, enfrenté la dificultad de integrarme

28

en un entorno empresarial completamente nuevo mientras lidiaba con un sistema

legado, cuya arquitectura y funcionamiento no solo eran desconocidos, sino también,

en muchos casos, obsoletos y poco documentados. Adaptarme a esta realidad fue

un proceso tedioso que requirió paciencia, investigación constante y la capacidad de

encontrar soluciones creativas frente a problemas inesperados.

En el aspecto técnico, este proyecto me ha permitido desarrollar habilidades

cruciales como ingeniera informática. He profundizado en la comprensión de

sistemas heredados y aprendido a adaptar mi enfoque para optimizar y modernizar

funcionalidades dentro de las limitaciones existentes. También he ganado experiencia

en la implementación de soluciones más eficientes y sostenibles que abren la puerta a

mejoras futuras.

Sin embargo, además de estar desarrollando el TFG, he estado trabajando en

proyectos de la empresa, lo que ha hecho que esta experiencia en un entorno profesional

haya sido transformadora a nivel personal. Aprend́ı a gestionar el estrés que implica

enfrentar tareas complejas con plazos ajustados, a colaborar efectivamente dentro de un

equipo y a asumir responsabilidad en decisiones clave del proyecto. Además, trabajar

en un entorno real me permitió entender cómo el trabajo técnico afecta directamente las

operaciones empresariales, dándome una visión más amplia de mi rol como profesional.

Uno de los aspectos más gratificantes de este proyecto es saber que lo desarrollado no

solo tiene valor técnico, sino que también será utilizado activamente, y no de manera

ocasional. Esto aporta un gran sentido de satisfacción, ya que me da la seguridad

de que mis esfuerzos tienen un impacto real y positivo en la operación del sistema,

contribuyendo a la mejora continua de los procesos empresariales.

En conclusión, aunque el proceso ha tenido momentos de frustración, el aprendizaje

obtenido supera con creces las dificultades encontradas. No solo he crecido como

ingeniera, mejorando mi capacidad de análisis, adaptación y resolución de problemas,

sino también como persona, adquiriendo habilidades que me serán valiosas en mi

desarrollo profesional y personal a largo plazo.

5.3. Propuestas de mejora y ĺıneas de investigación

futura

El proyecto que he desarrollado proporciona una base sólida para futuras mejoras

y expansiones. Las funciones implementadas cubren las operaciones más utilizadas en

el entorno SAE, enfocándose en la funcionalidad más común que los integradores de la

empresa necesitan. Aunque estas operaciones son eficaces en la mayoŕıa de los casos,

podŕıan beneficiarse de mayor sofisticación o de opciones adicionales para adaptarse a

29

situaciones más espećıficas. Además de perfeccionar las funciones ya creadas, se pueden

incorporar muchas más operaciones que SAE ofrece, ya que he desarrollado solo una

fracción de las disponibles. Existen aún muchas más operaciones por explorar que

enriqueceŕıan el sistema.

Es importante mencionar que, aunque me he centrado en la integración con archivos

CSV, SAE no se limita a esta opción. Existen múltiples integraciones con otras libreŕıas

y sistemas que no he implementado, pero que pueden ser fácilmente incorporadas sobre

la base creada. Estas integraciones adicionales permitiŕıan ampliar la versatilidad del

sistema, ofreciendo nuevas formas de interacción con otras fuentes de datos.

En conclusión, el proyecto no solo proporciona una herramienta funcional, sino

también un punto de partida estratégico. Permite mejorar las funciones actuales,

desarrollar nuevas operaciones dentro de la integración de CSV y servir como

inspiración para implementar otras integraciones más complejas. El marco establecido

ofrece una base sólida y adaptable para seguir ampliando y mejorando este sistema

según las necesidades futuras.

30

Bibliograf́ıa

[1] Eclipse Foundation. Eclipse ide: Entorno de desarrollo integrado para múltiples

lenguajes. https://www.eclipse.org/ide/.

[2] Oracle. Java: Lenguaje de programación multiplataforma. https://www.oracle.

com/java/.

[3] Spring Boot: Framework para desarrollo de aplicaciones en Java. https://

spring.io/projects/spring-boot.

[4] Project Lombok: Biblioteca para reducir código repetitivo en Java. https://

projectlombok.org/.

[5] Spring. Spring tools: Conjunto de herramientas para desarrollo con Spring. https:

//spring.io/tools.

[6] Spring Initializr: Generador de proyectos para el ecosistema spring. https://

start.spring.io/.

[7] Apache maven: Herramienta para la gestión de dependencias y construcción de

proyectos. https://maven.apache.org/.

[8] Apache ant: Herramienta de automatización de compilación. https://ant.

apache.org/.

[9] JUnit Team. Junit: Framework para pruebas unitarias en java. https://junit.

org/.

[10] Swagger UI (OpenAPI): Herramienta de documentación y prueba de api. https:

//swagger.io/tools/swagger-ui/.

[11] Atlassian. Sourcetree: Cliente git con interfaz gráfica intuitiva. https://www.

sourcetreeapp.com/.

[12] GitLab Inc. Gitlab: Plataforma de control de versiones y devops. https://about.

gitlab.com/.

31

https://www.eclipse.org/ide/
https://www.oracle.com/java/
https://www.oracle.com/java/
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://projectlombok.org/
https://projectlombok.org/
https://spring.io/tools
https://spring.io/tools
https://start.spring.io/
https://start.spring.io/
https://maven.apache.org/
https://ant.apache.org/
https://ant.apache.org/
https://junit.org/
https://junit.org/
https://swagger.io/tools/swagger-ui/
https://swagger.io/tools/swagger-ui/
https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/
https://about.gitlab.com/
https://about.gitlab.com/

[13] Microsoft. Microsoft word: Herramienta para edición de documentos. https:

//www.microsoft.com/word/.

[14] Microsoft. Microsoft outlook: Servicio de correo electrónico. https://www.

microsoft.com/outlook/.

[15] Microsoft. Microsoft teams: Plataforma de mensajeŕıa instantánea y colaboración.

https://www.microsoft.com/teams/.

[16] Microsoft. Microsoft powerpoint: Herramienta para creación de presentaciones.

https://www.microsoft.com/powerpoint/.

[17] Overleaf: Plataforma en ĺınea para creación y edición de documentos en latex.

https://www.overleaf.com/.

[18] Overleaf. Learn in 30 minutes. https://es.overleaf.com/learn/latex/Learn_

LaTeX_in_30_minutes, 2025. Disponible en https://es.overleaf.com/learn/

latex/Learn_LaTeX_in_30_minutes.

[19] Diagrams.net (draw.io): Herramienta para creación de diagramas. https://www.

diagrams.net/.

[20] Notepad++: Editor de texto avanzado para múltiples lenguajes. https://

notepad-plus-plus.org/.

[21] Palo Alto Networks. Global protect: Solución de acceso remoto seguro. https:

//www.paloaltonetworks.com/globalprotect.

[22] Servicios para la gestión de documentos - sae. https://paega2.atlassian.net/

wiki/spaces/AreaUsuariosIntegradores/pages/3379397180/Servicios+

para+la+gesti+n+de+documentos.

[23] Servicios para la gestión de expedientes - sae. https://paega2.atlassian.net/

wiki/spaces/AreaUsuariosIntegradores/pages/3379364261/Servicios+

para+la+gesti+n+de+expedientes.

[24] Miguel Ángel Latre, José Merseguer, and Javier Nogueras Iso. Apuntes de la

asignatura ingenieŕıa del software. https://moodle.unizar.es/. Accedido desde

Moodle.

[25] Francisco Javier Fabra Caro. Apuntes de la asignatura sistemas y tecnoloǵıas web.

https://moodle.unizar.es/. Accedido desde Moodle.

32

https://www.microsoft.com/word/
https://www.microsoft.com/word/
https://www.microsoft.com/outlook/
https://www.microsoft.com/outlook/
https://www.microsoft.com/teams/
https://www.microsoft.com/powerpoint/
https://www.overleaf.com/
https://es.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://es.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://es.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://es.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://www.diagrams.net/
https://www.diagrams.net/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://www.paloaltonetworks.com/globalprotect
https://www.paloaltonetworks.com/globalprotect
https://paega2.atlassian.net/wiki/spaces/AreaUsuariosIntegradores/pages/3379397180/Servicios+para+la+gesti+n+de+documentos
https://paega2.atlassian.net/wiki/spaces/AreaUsuariosIntegradores/pages/3379397180/Servicios+para+la+gesti+n+de+documentos
https://paega2.atlassian.net/wiki/spaces/AreaUsuariosIntegradores/pages/3379397180/Servicios+para+la+gesti+n+de+documentos
https://paega2.atlassian.net/wiki/spaces/AreaUsuariosIntegradores/pages/3379364261/Servicios+para+la+gesti+n+de+expedientes
https://paega2.atlassian.net/wiki/spaces/AreaUsuariosIntegradores/pages/3379364261/Servicios+para+la+gesti+n+de+expedientes
https://paega2.atlassian.net/wiki/spaces/AreaUsuariosIntegradores/pages/3379364261/Servicios+para+la+gesti+n+de+expedientes
https://moodle.unizar.es/
https://moodle.unizar.es/

[26] Sergio Ilarri Artigas. Apuntes de la asignatura bases de datos 2. https://moodle.

unizar.es/. Accedido desde Moodle.

[27] Taquel Trillo Lado and Carlos Telleŕıa Orriols. Apuntes de la asignatura sistemas

de información. https://moodle.unizar.es/. Accedido desde Moodle.

[28] F. Javier Zarazaga Soria and Rubén Béjar. Apuntes de la asignatura proyecto

software. https://moodle.unizar.es/. Accedido desde Moodle.

[29] Eduardo Mena Nieto. Apuntes de la asignatura sistemas legados. https:

//webdiis.unizar.es/asignaturas/SL/. Accedido desde WebDIIS de la

Universidad de Zaragoza.

33

https://moodle.unizar.es/
https://moodle.unizar.es/
https://moodle.unizar.es/
https://moodle.unizar.es/
https://webdiis.unizar.es/asignaturas/SL/
https://webdiis.unizar.es/asignaturas/SL/

34

Anexos

35

Anexos A

Diccionario de datos

Este Anexo proporciona definiciones y explicaciones de los términos clave utilizados

a lo largo del documento. Este es de gran ayuda para comprender el contexto y los

conceptos relacionados con el Trabajo de Fin de Grado.

1. SAE: Sistema de Atención Electrónica utilizado en el Gobierno de Aragón para la

gestión y tramitación de documentos y expedientes electrónicos relacionados con

procedimientos administrativos. Su propósito es proporcionar una infraestructura

digital que facilite la gestión de la documentación y los trámites administrativos

de forma eficiente y accesible.

2. CSV: Código Seguro de Verificación. Es un código único que identifica a cada

documento o expediente generado por el Gobierno de Aragón. Permite verificar

el contenido, autenticidad de las firmas y la integridad de los documentos

almacenados en el gestor documental, generalmente visible en los márgenes del

documento.

3. CCSV: Servicio de almacenamiento y verificación de Documentos electrónicos.

Es un sistema de consulta de documentos mediante CSV es una aplicación que

permite a los ciudadanos y empleados públicos la consulta de los documentos

pertenecientes a trámites o expedientes en los que están involucrados.

4. Documento: unidad de información en formato digital que contiene datos

estructurados, como archivos de texto, imágenes, audios, entre otros. En el

contexto del SAE, es la información que se gestiona, visualiza y procesa en el

sistema. En este caso, almacena la información de los documentos electrónicos,

tales como identificadores (entre ellos el CSV), tipos, nombres, formatos, y

contenido en el sistema.

5. Expediente: conjunto de documentos y otros materiales asociados a un trámite

administrativo o proceso espećıfico. En el SAE, el expediente integra todos

37

los archivos que forman parte de un caso o procedimiento. En el sistema,

almacena la información relacionada con el expediente, incluyendo identificadores

(como el CSV), el tipo, el estado, la fecha de apertura y cierre, entre otros

datos relacionados. El expediente tiene documentos asignados, aśı como carpetas

opcionales que agrupan dichos documentos.

6. AMD Aragón: Administración Electrónica de Aragón, plataforma institucional

encargada de gestionar digitalmente los procedimientos administrativos. Agrupa

diversos servicios como el SAE, para optimizar los trámites y la interacción entre

los ciudadanos y la administración pública.

7. Sistema legado: sistema informático que ha quedado obsoleto pero que sigue

siendo utilizado por el usuario y no se quiere o no se puede reemplazar o actualizar

de forma sencilla.

38

Anexos B

Planificación

Se diseñó un Diagrama de Gantt, como se observa en la Figura B.1, para mostrar

de forma clara el cronograma del proyecto en relación con sus etapas principales y

los meses de trabajo. Este diagrama permite visualizar las fases clave y las tareas

organizadas en el tiempo, teniendo en cuenta las fechas establecidas para el inicio y fin

del proyecto, aśı como la estimación del tiempo requerido para cada actividad.

Figura B.1: Diagrama de Gantt

A diferencia del diagrama de Gantt mostrado en la Figura B.1, que presenta una

estimación del tiempo necesario para el desarrollo del proyecto, la tabla de la Figura

B.1 proporciona un detalle de las horas reales dedicadas a cada tarea y subtarea.

Aunque las tareas y subtareas de esta tabla coinciden con las del diagrama de Gantt,

hay diferencias notables entre ambas representaciones.

Realizar la estimación de horas fue un desaf́ıo, ya que era una de las primeras

39

veces que se abordaba este tipo de proyecto, lo que hizo complicado calcular con

exactitud las horas. Además, debido a la naturaleza de las primeras estimaciones y

la falta de experiencia, la precisión de estas fue limitada, como se puede evidenciar en

la comparación entre lo previsto y lo realmente invertido en cada actividad.

La principal diferencia que se observa entre la estimación y la realidad es que se

subestimó el tiempo necesario para la documentación, mientras que, en la práctica, este

proceso resultó ser más extenso de lo previsto. Un desaf́ıo importante del proyecto fue la

falta de documentación adecuada sobre la libreŕıa que se deseaba integrar. Para mitigar

este problema, decid́ı dedicarme más a la documentación, con el objetivo de facilitar

el trabajo del siguiente desarrollador que se encargue de este proyecto, para que no se

enfrente a la misma incertidumbre con la que me encontré. Aunque la documentación

final no es excesivamente detallada, tuve que ir adaptándola a medida que avanzaba,

realizando modificaciones en ella conforme introdućıa cambios en el código.

Otro aspecto notable es que se destinó más tiempo de lo estimado para la

planificación y el análisis de requisitos, aunque el proyecto ya estaba bastante definido

cuando me proporcionaron el tema. Esto quiere decir que, a pesar de haber estimado

más tiempo para estas fases, realmente no necesité tanto, ya que gran parte de las

decisiones y detalles ya estaban establecidos. El tiempo ahorrado en estas fases lo

aproveché para concentrarme más en la documentación, dando prioridad a este aspecto

del proyecto dado los desaf́ıos encontrados.

Tabla B.1: Horas reales dedicadas a cada tarea del proyecto

Tarea Subtarea Horas reales Total por tarea
Planificación Objetivos y alcance 19 19

Análisis del sistema legado
Estudio del sistema actual 15

21
Identificación de mejoras 6

Configuración del entorno Preparación y configuración del entorno 9 9

Diseño
Captura de requisitos 10

21
Catálogo de operaciones 11

Implementación
Módulo de documentos 70

148Módulo de expedientes 49
Pruebas 10

Validación
Pruebas funcionales 7

17
Mejoras necesarias 10

Entrega
Documentación 76

91
Presentación 15

Total de horas 326

40

Anexos C

Arquitectura de un proyecto para el
Gobierno de Aragón

Los proyectos desarrollados para el Gobierno de Aragón emplean diversas

tecnoloǵıas para desarrollar tanto el backend como el frontend. El backend está

construido con Java y Servlets, utilizados para implementar la lógica de negocio y

gestionar la conexión con la base de datos. Por otra parte, el frontend se desarrolla

en Angular, siguiendo una estructura basada en módulos, componentes y servicios. Sin

embargo, esta última parte no está directamente relacionada con el desarrollo de este

proyecto.

En los proyectos desarrollados para el Gobierno de Aragón, se emplea el patrón

Modelo-Vista-Controlador (MVC) como arquitectura base (reflejado en la Figura

C.1). Este patrón separa claramente las responsabilidades de la aplicación en tres

componentes principales:

Figura C.1: Patrón MVC

− Modelo: maneja los datos y la lógica de negocio de la aplicación. Representa la

estructura de los datos y es responsable de la interacción con la base de datos.

41

− Vista: controla la presentación de los datos al usuario. Es el encargado de mostrar

interfaces amigables y dinámicas para facilitar la interacción con la aplicación.

− Controlador: actúa como intermediario entre el modelo y la vista. Recibe las

entradas del usuario, las procesa, y determina qué se debe mostrar en la vista o

cómo actualizar el modelo.

Para profundizar más, se puede observar el funcionamiento de un proyecto diseñado

para el Gobierno de Aragón en la figura C.2.

Figura C.2: Diseño de los programas del Gobierno de Aragón

C.1. Componentes del frontend

En la parte frontal, se utiliza Angular, un framework de desarrollo web altamente

eficiente que organiza las aplicaciones en módulos, componentes y servicios. Cada

elemento cumple funciones espećıficas para mantener la estructura y la claridad del

código. A continuación, se explican los principales componentes del proyecto Angular:

1. Ng Module: es el núcleo organizativo de Angular. Agrupa componentes,

servicios, directivas y otros recursos relacionados. Además, proporciona el

contexto necesario para la inyección de dependencias y facilita la configuración

de las rutas en la aplicación.

2. Bootstrap: un marco de diseño basado en CSS y JavaScript que ayuda a crear

interfaces de usuario responsivas y visualmente atractivas. Su integración asegura

que la aplicación funcione y se vea correctamente en dispositivos de distintos

tamaños.

42

3. Libreŕıas: estas incluyen bibliotecas de terceros o personalizadas, utilizadas para

funciones espećıficas como la representación de gráficos, autenticación de usuarios

o manipulación avanzada de datos. Aportan flexibilidad y reducen la complejidad

del desarrollo.

4. Root Component: es el componente principal que actúa como punto de entrada

de la interfaz de usuario. Este componente se carga en el DOM y contiene

referencias a otros componentes secundarios.

5. Metadata: Angular utiliza metadatos, como decoradores, para definir

configuraciones adicionales en componentes, módulos y servicios. Por ejemplo,

rutas para la navegación entre vistas o información para facilitar la carga de

dependencias.

6. Root Module: este es el módulo principal de la aplicación que define

configuraciones globales y las dependencias esenciales. Sirve como un mapa para

conectar y gestionar los diferentes módulos que forman parte del sistema.

7. Services: los servicios son componentes reutilizables que manejan la lógica de

negocio, la comunicación con el servidor y otras tareas cŕıticas. Normalmente, los

métodos que contienen las peticiones HTTP se definen aqúı.

8. Directives: directivas que permiten modificar el comportamiento o el estilo

de elementos HTML dentro de las plantillas. Pueden ser estructurales

(añadir/eliminar elementos del DOM) o de atributo (modificar propiedades del

DOM).

C.2. Componentes del backend

En la parte trasera, los proyectos hacen uso de Servlets para procesar las peticiones

HTTP y garantizar el correcto flujo de datos entre la aplicación y los usuarios. Estos

componentes son esenciales para orquestar la lógica de negocio y la persistencia de

datos:

1. Controlador (Controller): Se encarga de recibir las peticiones HTTP entrantes

desde el cliente, validar la información proporcionada y delegar las operaciones

al servicio correspondiente.

2. Servicio (Service): Implementa la lógica de negocio de la aplicación. Aqúı se

procesan datos, se aplican reglas de negocio y se coordinan las operaciones en la

base de datos o con otros sistemas externos.

43

3. Repositorio (Repository): Define las operaciones necesarias para interactuar

con la base de datos. Implementa métodos para consultar, actualizar o eliminar

información almacenada.

4. DAO (Data Access Object): Este patrón de diseño proporciona una capa de

abstracción adicional para la interacción con la base de datos. Ofrece métodos

genéricos para realizar operaciones CRUD (crear, leer, actualizar, eliminar) y

otras consultas espećıficas.

5. DTO (Data Transfer Object): Los DTO se utilizan para transportar datos

entre las distintas capas de la aplicación. Facilitan el traslado de información

estructurada de forma eficiente y segura.

6. Mapper: Traduce entre objetos de las capas de negocio (DTO) y las entidades de

la base de datos. Esta conversión permite mantener separada la lógica de negocio

de la lógica de acceso a datos.

7. Base de Datos (Database): Es el sistema donde se almacenan todos los datos

persistentes. En estos proyectos suele utilizarse una base de datos relacional,

que organiza los datos de manera estructurada para facilitar su consulta y

manipulación.

8. Dependencias (Dependencies): Incluyen bibliotecas, frameworks y otros

recursos que el backend necesita para cumplir con sus funcionalidades. Por

ejemplo, bibliotecas para manejar el protocolo HTTP, validación de datos o

integración con otras APIs.

44

Anexos D

Detalles de implementación

Este anexo se adentra en los detalles del código implementado, centrándose en

destacar aquellas partes que sobresalen por su relevancia y complejidad, ofreciendo

una visión profunda de los aspectos más significativos del desarrollo.

D.1. Infraestructura

A continuación se presenta el código implementado relacionado con la

infraestructura y su configuración.

D.1.1. ClientCCSV

La configuración de la clase ClientCCSVProviderImpl permite conectar con dos

servicios externos, el de documentos y el de expedientes, a través de proxies que utilizan

SOAP (Simple Object Access Protocol). Esto se lleva a cabo mediante el uso de Apache

CXF, un framework que facilita la interacción con servicios web.

Esta clase recibe un objeto de configuración CCSVProviderConfig como parámetro

en su constructor. Este contiene las URLs base de los servicios de documentos y

expedientes, junto con otros posibles parámetros.

Para configurar el cliente del servicio de documentos, se utiliza una

instancia de ClientProxyFactoryBean, que actúa como una fábrica para crear

clientes que interactúan con servicios web. En primer lugar, se define la

interfaz que implementará la clase cliente, estableciendo que esta utilizará

la interfaz IDocumentMetadataSignatureService, la cual contiene los métodos

disponibles para el servicio de documentos. A continuación, se especifican las

URLs necesarias, configurando tanto la dirección base del servicio mediante

documentExpedientProviderConfig.getUrlDocument() como la ubicación del archivo

WSDL añadiendo ?wsdl, el cual proporciona la descripción detallada de las operaciones

soportadas por el servicio. Posteriormente, se configura el mapeo de objetos Java a

45

XML mediante la clase AegisDatabinding, lo que permite una conversión automática y

eficiente entre estos formatos, adaptada a las necesidades de las operaciones SOAP.

También se habilita el mecanismo MTOM (Message Transmission Optimization

Mechanism) para optimizar la transferencia de datos binarios, especialmente útil en el

manejo de archivos grandes como imágenes y documentos. Por último, se procede a la

creación del cliente proxy, denominado iDocumentMetadataSignatureService, el cual se

utiliza como punto de acceso para interactuar directamente con el servicio y realizar

las operaciones requeridas. Tal como se ve en el código del apartado ??.

Para la configuración del cliente del servicio de expedientes, el proceso es

bastante similar al de los documentos. Se sigue el mismo procedimiento de

creación del ClientProxyFactoryBean, definición de la interfaz a implementar, y

configuración de las URLs correspondientes, que en este caso se obtienen de

documentExpedientProviderConfig.getUrlExpedient(). La principal diferencia radica

en la interfaz utilizada para el servicio de expedientes, que en este caso es

IAdministrativeFileService, en lugar de la interfaz de documentos. Al igual que en el

caso anterior, se configura el mapeo de objetos Java a XML mediante AegisDatabinding

y se habilita MTOM para optimizar la transferencia de datos binarios. Una vez

configurado todo, se crea un cliente proxy denominado iAdministrativeFileService, que

permite interactuar con el servicio de expedientes de la misma manera que se hace con

el servicio de documentos.

Listado D.1: Constructor de la clase ClientCCSVProviderImpl

public ClientCCSVProviderImpl(CCSVProviderConfig documentExpedientProviderConfig) {

/** Cliente CCSV Documentos **/

ClientProxyFactoryBean proxyFactoryDoc = new ClientProxyFactoryBean();

// Establece la interfaz que define los metodos del servicio

proxyFactoryDoc.setServiceClass(IDocumentMetadataSignatureService.class);

// Configura la URL base del servicio para documentos

proxyFactoryDoc.setAddress(documentExpedientProviderConfig.getUrlDocument());

// Configura la URL del archivo WSDL para describir el servicio

proxyFactoryDoc.setWsdlURL(documentExpedientProviderConfig.getUrlDocument() + "?wsdl");

// Configura el metodo de binding (mapeo entre objetos Java y XML)

proxyFactoryDoc.getServiceFactory().setDataBinding(new AegisDatabinding());

// Activa MTOM para optimizar la transferencia de datos binarios

HashMap<String, Object> properties = new HashMap<String, Object>();

properties.put("mtom-enabled", "true");

proxyFactoryDoc.setProperties(properties);

// Crea el cliente proxy para interactuar con el servicio de documentos

IDocumentMetadataSignatureService iDocumentMetadataSignatureService = (IDocumentMetadataSignatureService) proxyFactoryDoc

.create();

/** Cliente CCSV Expedientes **/

46

ClientProxyFactoryBean proxyFactoryExp = new ClientProxyFactoryBean();

// Establece la interfaz que define los metodos del servicio

proxyFactoryExp.setServiceClass(IAdministrativeFileService.class);

// Configura la URL base del servicio para documentos

proxyFactoryExp.setAddress(documentExpedientProviderConfig.getUrlExpedient());

// Configura la URL del archivo WSDL para describir el servicio

proxyFactoryExp.setWsdlURL(documentExpedientProviderConfig.getUrlExpedient() + "?wsdl");

// Configura el metodo de binding (mapeo entre objetos Java y XML)

proxyFactoryExp.getServiceFactory().setDataBinding(new AegisDatabinding());

// Activa MTOM para optimizar la transferencia de datos binarios

HashMap<String, Object> properties2 = new HashMap<String, Object>();

properties2.put("mtom-enabled", "true");

proxyFactoryExp.setProperties(properties2);

// Crea el cliente proxy para interactuar con el servicio de expedientes

IAdministrativeFileService iAdministrativeFileService = (IAdministrativeFileService) proxyFactoryExp.create();

// this.peticionesSaeProvider = new

// PeticionesSaeProviderImpl(documentProviderConfig, clienteCcsv);

this.documentProvider = new DocumentProviderImpl(documentExpedientProviderConfig,

iDocumentMetadataSignatureService);

this.expedientProvider = new ExpedientProviderImpl(documentExpedientProviderConfig, iAdministrativeFileService,

iDocumentMetadataSignatureService);

}

Luego se definieron las funciones, organizándolas en dos grupos según su tipo: una

parte para los documentos y otra para los expedientes. Para facilitar la gestión de estas

funciones, se crearon dos proveedores espećıficos: uno para manejar los documentos

y otro para los expedientes, de modo que cada uno se encargara de las operaciones

correspondientes a su tipo de entidad.

D.1.2. Documento

La clase DocumentProviderImpl está diseñada para integrarse con el servicio

de gestión de documentos, y su configuración comienza desde el constructor. Este

constructor requiere un objeto del tipo CCSVProviderConfig, el cual contiene

información crucial sobre la entidad que está utilizando la libreŕıa, además de las

credenciales necesarias para acceder a SAE, entre otros datos importantes. Toda esta

información se transmite a través del ClientCCSVProvider, que actúa como el único

punto de conexión con el usuario de la libreŕıa. Al ser el punto inicial de la integración,

esta información se va propagando entre clases, llegando hasta su uso en la última parte

del flujo.

Un elemento central en la integración es el servicio

iDocumentMetadataSignatureService, que es responsable de ejecutar las funciones

47

puras de SAE. Este servicio también es configurado en ClientCCSVProvider y se

pasa entre clases hasta llegar a PeticionesSae, que es donde realmente se emplea.

Esta decisión de configurar el servicio en la clase cliente y luego transferirlo entre

clases permite evitar la transmisión directa de todos los detalles de configuración del

servicio. De este modo, se logra encapsular el servicio para que sea accesible cuando

sea necesario, sin necesidad de pasar todos los parámetros de configuración en cada

paso del flujo, simplificando el proceso.

Finalmente, se crea un objeto de PeticionesSae, en el cual se encuentran las

funciones que llaman directamente al servicio SAE. Este objeto también recibe la

configuración necesaria y el servicio de documentos, completando el ciclo de integración.

Por último, se capturan y asignan los valores pertinentes de la configuración,

permitiendo a la clase DocumentProviderImpl estar completamente preparada para

funcionar dentro del contexto de la integración.

Listado D.2: Constructor de la clase DocumentCCSVProviderImpl

public ClientCCSVProviderImpl(CCSVProviderConfig documentExpedientProviderConfig) {

public DocumentProviderImpl(CCSVProviderConfig documentProviderConfig,

IDocumentMetadataSignatureService iDocumentMetadataSignatureService) {

log.info("DocumentProviderImpl() - Hi");

this.iDocumentMetadataSignatureService = iDocumentMetadataSignatureService;

this.peticionesSaeProvider = new PeticionesSaeProviderImpl(documentProviderConfig, iDocumentMetadataSignatureService, null);

this.codigoOrganismo = documentProviderConfig.getOrganismCode();

this.nombreAportadorInteresado = documentProviderConfig.getInterestedContributorName();

this.nifAportadorInteresado = documentProviderConfig.getNifInterestedContributor();

this.organismoProductorNombre = documentProviderConfig.getOrganismProducerName();

this.procedimientoNombre = documentProviderConfig.getProcedureName();

this.procedimientoNumero = documentProviderConfig.getProcedureCode();

this.appCode = documentProviderConfig.getAppCode();

this.appName = documentProviderConfig.getAppName();

this.suffixAppCCSV = documentProviderConfig.getSuffixAppCCSV();

}

Una vez realizada la configuración, se procede a implementar la lógica

correspondiente a las funciones necesarias.

D.1.3. Expediente

En el caso del proveedor de expedientes, la configuración sigue una

lógica muy similar a la del proveedor de documentos. La diferencia radica

en que la clase ExpedientProviderImpl no solo utiliza su propio servicio, el

48

iAdministrativeFileService, sino que también hace uso del servicio de documentos,

iDocumentMetadataSignatureService. Al igual que en el caso anterior, el constructor

de esta clase recibe un objeto de tipo CCSVProviderConfig que contiene los datos

de configuración necesarios, como el código del organismo, el nombre del aportador

interesado, y otros parámetros fundamentales para la conexión con el sistema.

En este caso, también se configura un objeto de PeticionesSaeProviderImpl,

el cual se pasa la configuración y los dos servicios necesarios:

iDocumentMetadataSignatureService y iAdministrativeFileService. Este objeto es

el que maneja las funciones que interactúan directamente con el servicio SAE, de

manera que se centralizan en un único lugar las operaciones que requieren ambos

servicios, el de expedientes y el de documentos.

Al igual que en el DocumentProviderImpl, los detalles de la configuración del

servicio se propagan entre las clases sin necesidad de pasar todos los parámetros

repetidamente. Además, la clase ExpedientProviderImpl captura los valores necesarios

de la configuración proporcionada por el objeto CCSVProviderConfig, lo cual permite

una integración ordenada y eficiente.

Listado D.3: Constructor de la clase ExpedientCCSVProviderImpl

public ExpedientProviderImpl(CCSVProviderConfig expedientProviderConfig,

IAdministrativeFileService iAdministrativeFileService,

IDocumentMetadataSignatureService iDocumentMetadataSignatureService) {

log.info("ExpedientProviderImpl() - Hi");

this.iAdministrativeFileService = iAdministrativeFileService;

this.iDocumentMetadataSignatureService = iDocumentMetadataSignatureService;

this.peticionesSaeProvider = new PeticionesSaeProviderImpl(expedientProviderConfig,

iDocumentMetadataSignatureService, iAdministrativeFileService);

this.codigoOrganismo = expedientProviderConfig.getOrganismCode();

this.nombreAportadorInteresado = expedientProviderConfig.getInterestedContributorName();

this.nifAportadorInteresado = expedientProviderConfig.getNifInterestedContributor();

this.organismoProductorNombre = expedientProviderConfig.getOrganismProducerName();

this.procedimientoNombre = expedientProviderConfig.getProcedureName();

this.procedimientoNumero = expedientProviderConfig.getProcedureCode();

this.appCode = expedientProviderConfig.getAppCode();

this.appName = expedientProviderConfig.getAppName();

this.suffixAppCCSV = expedientProviderConfig.getSuffixAppCCSV();

}

49

D.1.4. PeticionesSae

La configuración de la clase PeticionesSaeProviderImpl es bastante simple. En

su constructor se reciben tres parámetros: un objeto del tipo CCSVProviderConfig,

que contiene la configuración necesaria para el acceso a los servicios; el

servicio IDocumentMetadataSignatureService, utilizado para interactuar con los

documentos; y el servicio IAdministrativeFileService, utilizado para interactuar con

los expedientes. Dentro del constructor, se asignan estos parámetros a las variables

de instancia correspondientes: documentProviderConfig, clienteDocumentoCCSV y

clienteExpedienteCCSV. Esto permite que la clase PeticionesSaeProviderImpl tenga

acceso a toda la información necesaria y a los servicios que serán utilizados en sus

funciones. La configuración es básica, pero crucial, ya que permite que los diferentes

componentes interactúen entre śı de manera adecuada para el funcionamiento de la

libreŕıa.

Listado D.4: Constructor de la clase PeticionesSaeCCSVProviderImpl

protected PeticionesSaeProviderImpl(CCSVProviderConfig documentProviderConfig,

IDocumentMetadataSignatureService clienteDocumentoCCSV, IAdministrativeFileService clienteExpedienteCCSV) {

log.info("PeticionesSae() - Hi");

this.documentProviderConfig = documentProviderConfig;

this.clienteDocumentoCCSV = clienteDocumentoCCSV;

this.clienteExpedienteCCSV = clienteExpedienteCCSV;

}

D.1.5. CCSVExternal

La clase CCSVExternalProvider actúa como un puente entre los proyectos

desarrollados con Spring Boot y los servicios proporcionados por SAE. Configurada

con la anotación @Configuration, esta clase crea e inyecta automáticamente un

cliente (ClientCCSVProvider) que proporciona un punto de acceso centralizado y

eficiente para interactuar con los servicios de documentos y expedientes. Gracias a esta

configuración, los proyectos que utilicen Spring Boot pueden conectarse de manera

sencilla y coherente con los servicios de SAE, sin necesidad de gestionar manualmente

los parámetros de conexión.

Para obtener la configuración necesaria, CCSVExternalProvider se basa en la

clase AmmSaeCCSVConfig, que contiene todos los parámetros esenciales como las

URLs de los servicios de documentos y expedientes, los códigos de procedimiento, y

otros detalles relevantes. Esta configuración se obtiene automáticamente del archivo

de propiedades (como application.properties o application.yml) mediante la

anotación @ConfigurationProperties(prefix = ’’ccsv’’), lo que permite a Spring

50

asignar de forma automática los valores del archivo de configuración a las propiedades

de AmmSaeCCSVConfig.

La clase AmmSaeCCSVConfig mapea los valores como las URLs y los

códigos de procedimiento desde el archivo de configuración a los campos

correspondientes. Por ejemplo, cuando se define en el archivo de propiedades

una ĺınea como ccsv.urlDocument=http://url-documento.com, Spring asigna

el valor http://url-documento.com al campo urlDocument de la clase

AmmSaeCCSVConfig. Una vez que AmmSaeCCSVConfig tiene los parámetros

configurados, CCSVExternalProvider utiliza esta configuración para crear una

instancia de ClientCCSVProviderImpl, un cliente que permite gestionar los documentos

y expedientes de manera adecuada.

Este enfoque centraliza la configuración y facilita la reutilización del cliente en

diferentes partes del sistema sin necesidad de gestionar manualmente los parámetros de

configuración en cada clase que los requiere. Con esta solución, CCSVExternalProvider

asegura una integración coherente y eficiente con los servicios de CCSV, al mismo

tiempo que minimiza la complejidad de configurar repetidamente los mismos

parámetros a lo largo del sistema. El código correspondiente a lo explicado en este

apartado se puede consultar en el Anexo D.1.5.

Listado D.5: Constructor de la clase CCSVExternalProvider

@Configuration

@ComponentScan(basePackageClasses = {CCSVProviderConfig.class,

AmmSaeCCSVConfig.class})

@Slf4j

public class CCSVExternalProvider {

@Bean

public ClientCCSVProvider getClientCCSVProvider

(AmmSaeCCSVConfig ammSaeCCSVConfig) {

log.debug("[{}] es.aragon.core.sae.ccsv.providers.CCSVExternalProvider =>

Inicio getClientCCSVProvider", LocalDateTime.now());

// Configuracion del CCSVProviderConfig con constantes especificas

CCSVProviderConfig config = CCSVProviderConfig.builder()

.appCode(ammSaeCCSVConfig.getAppCode())

.appName(ammSaeCCSVConfig.getAppName())

.urlDocument(ammSaeCCSVConfig.getUrlDocument())

.urlExpedient(ammSaeCCSVConfig.getUrlExpedient())

.suffixAppCCSV(ammSaeCCSVConfig.getSuffixAppCCSV())

.getDocumentAdv(ammSaeCCSVConfig.isGetDocumentAdv())

.organismCode(ammSaeCCSVConfig.getOrganismCode())

.interestedContributorName(ammSaeCCSVConfig

.getInterestedContributorName())

.nifInterestedContributor(ammSaeCCSVConfig

51

.getNifInterestedContributor())

.organismProducerName(ammSaeCCSVConfig

.getOrganismProducerName())

.procedureName(ammSaeCCSVConfig.getProcedureName())

.procedureCode(ammSaeCCSVConfig.getProcedureCode())

.build();

// Crear instancia de ClientCCSVProvider utilizando el

// config

return new ClientCCSVProviderImpl(config);

}

}

D.2. Flujo de integración

En esta sección se presentan los diagramas de secuencia correspondientes a todas las

operaciones desarrolladas durante el proyecto. Estos diagramas son una herramienta

clave para visualizar y comprender cómo interactúan los diferentes componentes del

sistema en cada caso de uso.

Cada diagrama ilustra el flujo de mensajes entre las entidades del sistema,

destacando las acciones que se llevan a cabo desde la invocación inicial hasta la

finalización de la operación.

52

Crear documento

El diagrama de la Figura E.2 representa el flujo de la operación Crear documento,

responsable de gestionar la creación de un nuevo documento en el sistema.

Figura D.1: Diagrama de secuencia de la operación Crear operación

Obtener documento

El diagrama de la Figura D.2 muestra el flujo de la operación Obtener documento,

encargada de recuperar un documento espećıfico del sistema.

Figura D.2: Diagrama de secuencia de la operación Obtener documento

53

Obtener documento XML

El diagrama de la Figura D.3 describe el flujo de la operación Obtener documento

XML, utilizada para extraer documentos en formato XML.

Figura D.3: Diagrama de secuencia de la operación Obtener documento XML

Actualizar documento

La Figura D.4 ilustra el flujo de la operación Actualizar documento, que actualiza

los datos de un documento existente.

Figura D.4: Diagrama de secuencia de la operación Actualizar documento

54

Crear expediente

La operación Crear expediente, representada en la Figura D.5, genera un nuevo

expediente en el sistema.

Figura D.5: Diagrama de secuencia de la operación Crear expediente

Añadir documentos al expediente

El diagrama en la Figura D.6 muestra el flujo de la operación Añadir documentos

al expediente, que incorpora documentos a un expediente existente.

Figura D.6: Diagrama de secuencia de la operación Añadir documentos al expediente

55

Eliminar documentos del expediente

El flujo de la operación Eliminar documentos del expediente se presenta en la Figura

D.7, mostrando cómo se eliminan documentos de un expediente.

Figura D.7: Diagrama de secuencia de la operación Eliminar documentos del expediente

Regenerar ı́ndice del expediente

En la Figura D.8, se detalla el flujo de la operación Regenerar ı́ndice del expediente,

que actualiza los ı́ndices de un expediente.

Figura D.8: Diagrama de secuencia de la operación Regenerar ı́ndice del expediente

56

Crear carpeta en expediente

El diagrama de la Figura D.9 representa el flujo de la operación Crear carpeta en

expediente, que permite crear una nueva carpeta dentro de un expediente.

Figura D.9: Diagrama de secuencia de la operación Crear carpeta en expediente

Asociar un expediente a otro expediente

La operación Asociar un expediente a otro expediente está ilustrada en la Figura

D.10, donde se visualiza cómo un expediente se relaciona con otro.

Figura D.10: Diagrama de secuencia de la operación Asociar un expediente a otro
expediente

57

Obtener expediente

La Figura D.11 detalla el flujo de la operación Obtener expediente, encargada de

recuperar la información de un expediente espećıfico.

Figura D.11: Diagrama de secuencia de la operación Obtener expediente

D.3. Paquetes auxiliares

Con el fin de mantener limpio y organizado el flujo principal de la aplicación, se

han creado dos paquetes auxiliares: utils y dtos. Cada uno de estos paquetes tiene

un propósito espećıfico y contribuye al correcto funcionamiento y escalabilidad del

proyecto.

Paquete utils:

Este paquete se ha diseñado para almacenar todas las clases auxiliares que son

necesarias a lo largo del flujo principal de la aplicación. Entre las clases más destacadas

en este paquete se encuentran:

− Constantes: en esta clase se declaran valores constantes que permanecen

inmutables, tales como metadatos, códigos de error, y otros parámetros que no

cambian a lo largo del proyecto.

− Utils: Este conjunto de funciones auxiliares incluye métodos genéricos

que facilitan tareas comunes, como conversiones de formato, cálculos y

manipulaciones de datos. Estas funciones buscan reducir la repetición de código

y hacer que el flujo sea más sencillo. Además, se integra con otros módulos

del sistema, como el módulo Utils que proporciona herramientas adicionales de

procesamiento y gestión de datos, favoreciendo la reutilización del código y la

eficiencia en el proceso de integración.

− Validaciones: en esta clase se agrupan las validaciones necesarias para la

ejecución de funciones clave dentro de la aplicación, garantizando que los

58

parámetros de entrada sean correctos y que el proceso se ejecute de manera

adecuada.

Paquete dtos:

El paquete dtos alberga las declaraciones de los tipos de objetos que se utilizan a

lo largo del proyecto. Estos objetos son esenciales para transportar datos de manera

coherente y estructurada entre las distintas partes de la aplicación. Algunos de los

DTOs importantes en este paquete son:

− Documento: representa un documento espećıfico dentro del sistema de

integración.

− Expediente: se utiliza para encapsular la información relacionada con un

expediente administrativo o procesal.

− Carpeta: agrupa y organiza elementos o expedientes dentro de una estructura

jerárquica.

− Metadato: representa información adicional o descriptiva asociada a los

documentos o expedientes.

− Agente: se utiliza para encapsular información sobre los agentes involucrados en

el proceso.

− Error: un objeto preparado para almacenar los detalles de cualquier error que se

produzca durante las operaciones. Este DTO es utilizado especialmente cuando

una función devuelve un error, permitiendo que se registre y gestione toda la

información devuelta por SAE u otros sistemas externos.

El uso de estos paquetes auxiliares ayuda a mantener la modularidad, claridad y

organización del código, lo que facilita tanto la comprensión como el mantenimiento

del sistema en el largo plazo.

59

60

Anexos E

Pruebas y validaciones

En este caṕıtulo se describen detalladamente las pruebas y validaciones realizadas

durante el desarrollo del proyecto. Estas actividades han sido esenciales para garantizar

la funcionalidad, estabilidad y fiabilidad de las operaciones implementadas. A través de

diferentes tipos de pruebas, se ha evaluado el correcto comportamiento de las funciones

desarrolladas y su integración en el sistema.

Las secciones siguientes cubren tres áreas clave: las pruebas unitarias diseñadas

para evaluar cada operación de forma aislada, las pruebas de integración orientadas a

casos de uso, y la validación de los endpoints mediante un entorno de pruebas creado

espećıficamente para verificar su funcionamiento desde herramientas como Swagger.

E.1. Pruebas unitarias

Las pruebas unitarias son un tipo de prueba de software cuyo objetivo es validar

de forma aislada y detallada el correcto funcionamiento de unidades individuales de

código, como funciones, métodos o clases. Estas pruebas permiten identificar errores

en etapas tempranas del desarrollo y aseguran que cada componente cumple con su

propósito espećıfico bajo diferentes escenarios.

Para validar la correcta implementación de las funcionalidades, se desarrollaron

pruebas unitarias utilizando JUnit. Estas pruebas abarcan todas las operaciones del

catálogo de la clase ClientCCSVProviderImpl, sin que exista una distinción en la

relevancia de las mismas, ya que todas fueron consideradas igual de importantes para

el sistema.

Durante el proceso, se simularon escenarios variados mediante el uso de

dependencias simuladas, verificando que todas las interacciones y resultados de

las operaciones fueran correctos. Los casos probados incluyen, entre otros, la

creación, obtención y actualización de documentos, siempre asegurando que el sistema

mantuviera su funcionalidad bajo diferentes condiciones.

61

E.1.1. Módulo de documentos

El módulo de documentos se encarga de realizar operaciones relacionadas con la

creación, actualización, y obtención de documentos almacenados en el sistema.

Crear documento

La prueba unitaria del método Crear documento del Listado E.1 evalúa el proceso

de creación y almacenamiento de un documento en el sistema. Verifica la correcta

asignación de datos, la interacción con los servicios externos simulados mediante mocks,

y la validación de la respuesta final.

Listado E.1: Prueba unitaria de la operación Crear documento

@Test

public void testCrearDocumento() throws CCSVException {

// Simulacion: Creacion del DTO de prueba con los datos necesarios

CrearDocumentoRequestDto documentoSubir = new CrearDocumentoRequestDto();

documentoSubir.setNombre("NombreEjemplo.pdf");

// Simulacion: Leer archivo simulado y asignarlo al DTO

File pdfFile =

new File("C:\\Users\\ClaraCerdanTorrubias\\Downloads\\prueba 2.pdf");

try (FileInputStream fis = new FileInputStream(pdfFile)) {

byte[] pdfBytes = new byte[(int) pdfFile.length()];

fis.read(pdfBytes);

documentoSubir.setDocument(pdfBytes);

} catch (Exception e) {

fail("Error al leer el archivo PDF: " + e.getMessage());

}

// Simulacion: Crear el resultado esperado y el DTO a retornar por el mock

DocumentDto documentDto = new DocumentDto();

documentDto.setNombre("HOLA");

documentDto.setContenido(documentoSubir.getDocument());

ResultCrearDocumentoDTO result = new ResultCrearDocumentoDTO();

result.setReturnCodigo("OK");

// Configuracion de los mocks: Se simula la respuesta para los metodos

llamados

when(documentProvider

.crearDocumentoDto(any(CrearDocumentoRequestDto.class)))

.thenReturn(documentDto);

when(documentProvider.crearDocumentoCCSV(any(DocumentDto.class)))

.thenReturn(result);

// Llamada: Se llama al matodo que estamos probando

CCSVResponseDTO<String> responseCrear = clientCCSVProviderImpl

62

.crearDocumento(documentoSubir);

// Validaciones: Se verifican los resultados de la llamada

assertNotNull(responseCrear);

assertTrue(responseCrear.isSuccess());

assertNull(responseCrear.getMessage());

// Verificacion: Comprobamos que las interacciones con los mocks se

// ejecutaron correctamente

verify(documentProvider, times(1))

.crearDocumentoDto(any(CrearDocumentoRequestDto.class));

verify(documentProvider, times(1))

.crearDocumentoCCSV(any(DocumentDto.class));

}

Obtener documento

El método Obtener documento permite recuperar un documento almacenado en

el sistema a partir de un identificador único, como un CSV. Esta operación asegura

que los datos se devuelvan de manera correcta, incluyendo su contenido y metadatos

asociados. Las pruebas (del Listado E.2) verifican la interacción adecuada con los

servicios simulados y la consistencia de la respuesta entregada al usuario final.

Listado E.2: Prueba unitaria de la operación Obtener documento

@Test

public void testObtenerDocumento() throws CCSVException {

// Simulacion: Crear el DTO de peticion con un CSV de prueba

ObtenerDocumentoRequestDto requestCsv =

new ObtenerDocumentoRequestDto();

requestCsv.setCsv("CSVRD0T44V0HU1M0GISS");

// Simulacion: Crear el DTO de documento con el CSV

// obtenido desde la peticion

DocumentDto documentoDTO = new DocumentDto();

documentoDTO.setNombre("DocumentoEjemplo.pdf");

documentoDTO.setCsv(requestCsv.getCsv());

documentoDTO.setContenido(new byte[]{1, 2, 3, 4});

// Simulacion: Crear el resultado esperado con el DTO

ResultObtenerDocumentoDTO result = new ResultObtenerDocumentoDTO();

result.setDocumento(documentoDTO);

// Simulacion: Crear la respuesta CCSVResponseDTO con exito y el

// mensaje con el documento

CCSVResponseDTO<ResultObtenerDocumentoDTO> responseGet =

new CCSVResponseDTO<>();

responseGet.setSuccess(true);

63

responseGet.setMessage(result);

// Configuracion de los mocks: Se simula la respuesta para la

// llamada al metodo obtenerDocumento

when(documentProvider

.obtenerDocumentoDto(any(ObtenerDocumentoRequestDto.class)))

.thenReturn(responseGet);

// Llamada: Se llama al metodo bajo prueba

CCSVResponseDTO<ResultObtenerDocumentoDTO> response =

clientCCSVProviderImpl.obtenerDocumento(requestCsv);

// Validaciones: Verificar los resultados de la llamada

assertNotNull(response);

assertTrue(response.isSuccess());

assertNotNull(response.getMessage());

assertEquals("CSVRD0T44V0HU1M0GISS",

response.getMessage().getDocumento().getCsv());

// Verificacion de interaccion con los mocks

verify(documentProvider, times(1)).

obtenerDocumentoDto(any(ObtenerDocumentoRequestDto.class));

}

Actualizar documento

El método Actualizar documento se encarga de modificar los datos de un documento

almacenado en el sistema, como su contenido, nombre o metadatos. Esta operación

asegura que los cambios realizados son consistentes y cumplen con los requisitos del

usuario. Las pruebas (del Listado E.3) validan que el sistema maneje correctamente la

actualización y se integre de manera adecuada con las dependencias simuladas.

Listado E.3: Prueba unitaria de la operación Actualizar documento

@Test

public void testActualizarDocumento() throws CCSVException {

// Simulacion: Crear el documento a actualizar con los datos necesarios

DocumentDto documentoToUpdate = new DocumentDto();

documentoToUpdate.setCsv("CSVRD0T44V0HU1M0GISS");

documentoToUpdate.setNombre("ACTUALIZADO");

// Simulacion: Leer archivo PDF y asignarlo al documento

File pdfFile =

new File("C:\\Users\\ClaraCerdanTorrubias\\Desktop\\updatePrueba.pdf");

try (FileInputStream fis = new FileInputStream(pdfFile)) {

byte[] pdfBytes = new byte[(int) pdfFile.length()];

fis.read(pdfBytes);

documentoToUpdate.setContenido(pdfBytes);

64

} catch (Exception e) {

fail("Error al leer el archivo PDF: " + e.getMessage());

}

// Simulacion: Agregar metadatos

HashMap<String, Object> metadatos = new HashMap<>();

metadatos.put("dea_desc_idioma", "en");

documentoToUpdate.setMetadatos(metadatos);

// Simulacion: Crear la peticion de actualizacion con el

// documento y traceData

ActualizarDocumentoRequestDto documentoActualizar =

new ActualizarDocumentoRequestDto();

documentoActualizar.setDocumento(documentoToUpdate);

TraceData traceData = new TraceData();

traceData.setReason("Motivo de actualizacion: prueba");

documentoActualizar.setTraceData(traceData);

// Simulacion: Crear la respuesta esperada para la actualizacion

ResultActualizarDocumentoDTO responseActualizar =

new ResultActualizarDocumentoDTO();

responseActualizar.setCsv("CSVRD0T44V0HU1M0GISS");

// Configuracion de los mocks: Se simula la respuesta para la llamada

// al metodo actualizarDocumentoDto

when(documentProvider.

actualizarDocumentoDto(any(ActualizarDocumentoRequestDto.class)))

.thenReturn(responseActualizar);

// Llamada: Se llama al metodo bajo prueba en clientCCSVProviderImpl

CCSVResponseDTO<String> response =

clientCCSVProviderImpl.actualizarDocumento(documentoActualizar);

// Validaciones: Se verifica el resultado de la llamada

assertNotNull(response);

assertTrue(response.isSuccess());

assertEquals(documentoToUpdate.getCsv(), response.getMessage());

// Verificacion: Comprobamos que las interacciones con los

// mocks se ejecutaron correctamente

verify(documentProvider, times(1)).

actualizarDocumentoDto(any(ActualizarDocumentoRequestDto.class));

}

Obtener documento XML

El método Obtener documento XML permite recuperar un documento almacenado

en formato XML a partir de un identificador único. Este método asegura que el

65

contenido y los metadatos del documento XML se devuelvan correctamente. Las

pruebas (del Listado E.4) verifican que la operación cumple con los requisitos

establecidos y garantiza la correcta interacción con los servicios simulados.

Listado E.4: Prueba unitaria de la operación Obtener documento XML

@Test

public void testObtenerDocumentoXML() throws CCSVException {

// Simulacion: Crear el DTO de peticion con el CSV de prueba

ObtenerDocumentoXMLRequestDto requestCsv =

new ObtenerDocumentoXMLRequestDto();

requestCsv.setCsv("CSVRD0T44V0HU1M0GISS"); // CSV de prueba

// Simulacion: Crear el DTO de respuesta esperada con el resultado obtenido

ResultObtenerDocumentoXMLDto resultObtenerDocumentoXMLDto =

new ResultObtenerDocumentoXMLDto();

resultObtenerDocumentoXMLDto.setId("12345"); // ID del documento

// Crear una respuesta simulada con el resultado esperado

CCSVResponseDTO<ResultObtenerDocumentoXMLDto> responseGetXML =

new CCSVResponseDTO<>();

responseGetXML.setSuccess(true);

responseGetXML.setMessage(resultObtenerDocumentoXMLDto);

// Configuracion de los mocks: Se simula la respuesta de

// la llamada al metodo obtenerDocumentoXMLDto

when(documentProvider

.obtenerDocumentoXMLDto(any(ObtenerDocumentoXMLRequestDto.class)))

.thenReturn(responseGetXML);

// Llamada al metodo bajo prueba en clientCCSVProviderImpl

CCSVResponseDTO<ResultObtenerDocumentoXMLDto> response =

clientCCSVProviderImpl.obtenerDocumentoXML(requestCsv);

// Validaciones: Verificamos que la respuesta es correcta

assertNotNull(response);

assertTrue(response.isSuccess());

assertNotNull(response.getMessage());

assertEquals("12345", response.getMessage().getId());

// Verificacion: Comprobamos que el metodo

obtenerDocumentoXMLDto se llamo una vez

verify(documentProvider, times(1)).

obtenerDocumentoXMLDto(any(ObtenerDocumentoXMLRequestDto.class));

}

66

E.1.2. Módulo de expedientes

En esta sección, se detallan las pruebas unitarias relacionadas con la gestión

de expedientes. Este módulo permite crear, actualizar y gestionar los expedientes

administrativos, asegurando la correcta interacción entre las distintas capas de la

aplicación.

Crear expediente

El método Crear expediente permite inicializar un expediente administrativo a

partir de un documento inicial, asociado a un identificador único. Este proceso asegura

que los metadatos del expediente estén correctos y que el expediente se abra y almacene

en el sistema con los datos indicados. Las pruebas (que se muestran en el Listado E.5)

verifican que todas las operaciones se ejecutan correctamente.

Listado E.5: Prueba unitaria de la operación Crear expediente

@Test

public void testCrearExpediente() {

try {

// Simulacion: Crear el DTO de peticion con los datos de prueba

CrearExpedienteRequestDto crearExpedienteRequestDTO =

new CrearExpedienteRequestDto();

crearExpedienteRequestDTO.

setCsvDocumentoInicial("CSV5E65BHH6GY1FYGELP");

crearExpedienteRequestDTO.setNombreExpediente("Prueba");

crearExpedienteRequestDTO.setNif("17456123G");

crearExpedienteRequestDTO.setNumExpediente("1111111");

// Simulacion: Crear los objetos AdministrativeFile para simular

// los datos de respuesta

AdministrativeFile initExpediente = new AdministrativeFile();

initExpediente.setCsv("INIT123");

AdministrativeFile datosApertura = new AdministrativeFile();

datosApertura.setCsv("CSV5E65BHH6GY1FYGELP");

// Simulacion: Configuracion de los mocks de los metodos del provider

when(expedientProvider.

initializeExpediente(crearExpedienteRequestDTO))

.thenReturn(initExpediente);

doNothing().when(expedientProvider).

verifyMetadatosExpediente(initExpediente,

crearExpedienteRequestDTO.getNif());

when(expedientProvider.openExpediente(initExpediente,

crearExpedienteRequestDTO.getCsvDocumentoInicial(),

crearExpedienteRequestDTO.getNif()))

.thenReturn(datosApertura);

67

// Ejecucion: Llamada al metodo bajo prueba en clientCCSVProviderImpl

CCSVResponseDTO<String> response =

clientCCSVProviderImpl.crearExpediente(crearExpedienteRequestDTO);

// Validacion: Verificamos que la respuesta es correcta

assertNotNull(response);

assertTrue(response.isSuccess());

assertEquals("CSV5E65BHH6GY1FYGELP", response.getMessage());

} catch (Exception e) {

fail("El test lanzo una excepcion inesperada: " + e.getMessage());

}

}

Añadir documentos a un expediente

La operación Añadir documentos a un expediente permite asociar múltiples

documentos a un expediente administrativo existente. Para ello, es fundamental

contar con un identificador único del expediente, aśı como con los identificadores

únicos de cada documento que se desea añadir. Esta funcionalidad asegura que los

documentos queden correctamente vinculados al expediente en cuestión. Las pruebas

(que se muestran en el Listado E.6) verifican que todas las operaciones se ejecutan

correctamente.

Listado E.6: Prueba unitaria de la operación Añadir documentos a un
expediente

@Test

public void testAnadirDocumentosExpedienteExitoso() throws Exception {

// Simulacion: Configuracion del DTO de peticion con los datos de prueba

AnadirDocumentosExpedienteRequestDto anadirDocumentosExpedienteRequestDTO =

new AnadirDocumentosExpedienteRequestDto();

String[] listaCsv = {"CSVL36O1YC2FW12YGELP", "CSVCV5LMV46FU1I0GELP"};

anadirDocumentosExpedienteRequestDTO

.setCcsvExpediente("CSV033OKFM5GK1B0GELP");

anadirDocumentosExpedienteRequestDTO.setListaCsv(listaCsv);

// Simulacion: Crear el objeto de respuesta para el caso de exito

ResultAnadirDocumentosExpedienteDTO resultadoExito =

new ResultAnadirDocumentosExpedienteDTO();

resultadoExito.setCsv("CSV_SUCCESS_RESPONSE");

resultadoExito.setError(null);

// Simulacion: Configuracion de los mocks del proveedor

when(expedientProvider.

anadirDocumentoFicheroAdmin(anadirDocumentosExpedienteRequestDTO))

.thenReturn(resultadoExito);

68

// Ejecucion: Llamada al metodo bajo prueba en clientCCSVProviderImpl

CCSVResponseDTO<String> responseExito = clientCCSVProviderImpl

.anadirDocumentosExpediente(anadirDocumentosExpedienteRequestDTO);

// Validacion: Verificamos que la respuesta es correcta

assertNotNull(responseExito);

assertTrue(responseExito.isSuccess());

assertEquals("CSV_SUCCESS_RESPONSE", responseExito.getMessage());

}

Eliminar documentos de un expediente

La operación Eliminar documentos de un expediente permite desvincular uno o más

documentos previamente asociados a un expediente administrativo. Para llevar a cabo

esta operación, se requiere identificar tanto el expediente como los documentos que se

desean eliminar mediante sus identificadores únicos. Las pruebas (que se muestran en

el Listado E.7) verifican que todas las operaciones se ejecutan correctamente.

Listado E.7: Prueba unitaria de la operación Eliminar documentos de un
expediente

@Test

public void testEliminarDocumentosExpedienteExitoso() throws Exception {

// Simulacion: Configuracion del DTO de peticion con los datos de prueba

EliminarDocumentosExpedienteRequestDto eliminarDocumentosExpedienteRequestDTO =

new EliminarDocumentosExpedienteRequestDto();

String[] listaEliminarCsv = {"CSVL36O1YC2FW12YGELP", "CSVCV5LMV46FU1I0GELP"};

eliminarDocumentosExpedienteRequestDTO

.setCcsvExpediente("CSV033OKFM5GK1B0GELP");

eliminarDocumentosExpedienteRequestDTO.setListaCsv(listaEliminarCsv);

// Simulacion: Crear el objeto de respuesta para el caso de exito

ResultEliminarDocumentosExpedienteDTO resultadoExito =

new ResultEliminarDocumentosExpedienteDTO();

resultadoExito.setCsv("CSV_DELETE_SUCCESS_RESPONSE");

resultadoExito.setError(null); // No hay error

// Simulacion: Configuracion de los mocks del proveedor

when(expedientProvider.

eliminarDocumentoFicheroAdmin(eliminarDocumentosExpedienteRequestDTO))

.thenReturn(resultadoExito);

// Ejecucion: Llamada al metodo bajo prueba en clientCCSVProviderImpl

CCSVResponseDTO<String> responseExito = clientCCSVProviderImpl

.eliminarDocumentosExpediente(eliminarDocumentosExpedienteRequestDTO);

// Validacion: Verificamos que la respuesta es correcta

69

assertNotNull(responseExito);

assertTrue(responseExito.isSuccess());

assertEquals("CSV_DELETE_SUCCESS_RESPONSE", responseExito.getMessage());

}

Regenerar ı́ndice de un expediente

La funcionalidad Regenerar ı́ndice de un expediente permite recalcular y actualizar

el ı́ndice que organiza la documentación de un expediente espećıfico. Este proceso

es esencial cuando ocurren cambios significativos en los documentos asociados al

expediente, ya que asegura que el ı́ndice refleje el estado actual de los documentos.

La operación requiere identificar el expediente por su código único. Las pruebas

(que se muestran en el Listado E.8) verifican que todas las operaciones se ejecutan

correctamente.

Listado E.8: Prueba unitaria de la operación Regenerar ı́ndice de un
expediente

@Test

public void testRegenerarIndiceExpedienteExitoso() throws Exception {

// Simulacion: Configuracion del DTO de peticion con los datos de prueba

RegenerarIndiceExpedienteRequestDto regenerarIndiceExpedienteRequestDTO =

new RegenerarIndiceExpedienteRequestDto();

String csv = "CSV033OKFM5GK1B0GELP";

regenerarIndiceExpedienteRequestDTO.setCcsvExpediente(csv);

// Simulacion: Crear el objeto de respuesta con el resultado exitoso

ResultRegenerarIndiceExpedienteDTO resultadoExito =

new ResultRegenerarIndiceExpedienteDTO();

resultadoExito.setIndex("INDEX_GENERATION_SUCCESSFUL");

resultadoExito.setError(null);

// Simulacion: Configuracion de los mocks del proveedor

when(expedientProvider

.regenerarIndiceFicheroAdmin(regenerarIndiceExpedienteRequestDTO))

.thenReturn(resultadoExito);

// Ejecucion: Llamada al metodo bajo prueba en clientCCSVProviderImpl

CCSVResponseDTO<String> responseExito = clientCCSVProviderImpl

.regenerarIndiceExpediente(regenerarIndiceExpedienteRequestDTO);

// Validacion: Verificamos que la respuesta es correcta

assertNotNull(responseExito);

assertTrue(responseExito.isSuccess());

assertEquals("INDEX_GENERATION_SUCCESSFUL", responseExito.getMessage());

}

70

Crear carpeta en un expediente

La operación Crear carpeta en un expediente permite crear una nueva carpeta dentro

de un expediente administrativo, asociándole un código y un nombre espećıficos. Esta

funcionalidad es útil para organizar y gestionar los documentos dentro del expediente.

Para llevar a cabo esta operación, se debe proporcionar la información necesaria,

como el código de expediente y los detalles de la nueva carpeta a crear. Las pruebas

(que se muestran en el Listado E.9) verifican que todas las operaciones se ejecutan

correctamente.

Listado E.9: Prueba unitaria de la operación Crear carpeta en un expediente

@Test

public void testCrearCarpetaExpediente() throws Exception {

// Simulacion: Configuracion del DTO de solicitud con los datos

// de prueba

CrearCarpetaExpedienteRequestDto crearCarpetaExpedienteRequestDTO =

new CrearCarpetaExpedienteRequestDto();

String csv = "CSV033OKFM5GK1B0GELP";

String folderIdEsperado = "FOLDER123";

crearCarpetaExpedienteRequestDTO.setCsvExpediente(csv);

crearCarpetaExpedienteRequestDTO.setFolderCode("2");

crearCarpetaExpedienteRequestDTO.setFolderName("PRUEBA 2");

// Simulacion: Crear el objeto de respuesta con el resultado exitoso

ResultCrearCarpetaExpedienteDTO resultadoExito =

new ResultCrearCarpetaExpedienteDTO();

resultadoExito.setFolderId(folderIdEsperado);

resultadoExito.setError(null);

// Simulacion: Configuracion de los mocks del proveedor

when(expedientProvider

.crearCarpetaExpediente(crearCarpetaExpedienteRequestDTO))

.thenReturn(resultadoExito);

// Ejecucion: Llamada al metodo bajo prueba en clientCCSVProviderImpl

CCSVResponseDTO<String> responseExito = clientCCSVProviderImpl

.crearCarpetaExpediente(crearCarpetaExpedienteRequestDTO);

// Validacion: Verificamos que la respuesta es correcta

assertNotNull(responseExito);

assertTrue(responseExito.isSuccess());

assertEquals(folderIdEsperado, responseExito.getMessage());

}

Asociar expediente a un expediente

71

La operación Asociar expediente a un expediente permite vincular un expediente

existente a otro, formando una relación entre ambos. Esta operación es útil cuando es

necesario agrupar o relacionar expedientes, facilitando su gestión y acceso. Para realizar

la asociación, es necesario proporcionar el código del expediente principal y el de los

expedientes que se van a asociar. Las pruebas (que se muestran en el Listado E.10)

verifican que todas las operaciones se ejecutan correctamente.

Listado E.10: Prueba unitaria de la operación Asociar expediente a un
expediente

@Test

public void testAsociarExpedienteExpediente() throws Exception {

// Simulacion: Configuracion del DTO de solicitud con los datos

// de prueba

AsociarDocumentoExpedienteRequestDTO asociarDocumentoExpedienteRequestDTO =

new AsociarDocumentoExpedienteRequestDTO();

String csv = "CSV033OKFM5GK1B0GELP";

List<String> listaAsociar = Arrays.asList("CSVTJ5D3XU8F717YGELP");

String csvAsociadoEsperado = "CSV033OKFM5GK1B0GELP";

asociarDocumentoExpedienteRequestDTO.setCsvExpediente(csv);

asociarDocumentoExpedienteRequestDTO.setListaCsv(listaAsociar);

// Simulacion: Crear el objeto de respuesta con el resultado exitoso

ResultAsociarDocumentoExpedienteDTO resultadoExito =

new ResultAsociarDocumentoExpedienteDTO();

resultadoExito.setCsv(csvAsociadoEsperado);

resultadoExito.setError(null); // No hay errores

// Simulacion: Configuracion de los mocks del proveedor

when(expedientProvider

.asociarExpedienteExpediente(asociarDocumentoExpedienteRequestDTO))

.thenReturn(resultadoExito);

// Ejecucion: Llamada al metodo bajo prueba en clientCCSVProviderImpl

CCSVResponseDTO<String> responseExito = clientCCSVProviderImpl

.asociarExpedienteExpediente(asociarDocumentoExpedienteRequestDTO);

// Validacion: Verificamos que la respuesta es correcta

assertNotNull(responseExito);

assertTrue(responseExito.isSuccess());

assertEquals(csvAsociadoEsperado, responseExito.getMessage());

}

Obtener expediente

La operación Obtener expediente permite recuperar los detalles de un expediente

72

a partir de su identificador único, representado por el código CSV. Esta operación es

fundamental cuando se necesita acceder a la información completa de un expediente,

como sus documentos, estado y otros detalles asociados. El proceso requiere enviar una

solicitud con el código CSV del expediente que se desea obtener.

Listado E.11: Prueba unitaria de la operación Obtener expediente

@Test

public void testObtenerExpediente() throws Exception {

// Simulacion: Configuracion del DTO de entrada con el valor

// del expediente CSV

ObtenerExpedienteRequestDto obtenerExpedienteRequestDTO =

new ObtenerExpedienteRequestDto();

String csvExpediente = "CSV033OKFM5GK1B0GELP";

obtenerExpedienteRequestDTO.setCsvExpediente(csvExpediente);

// Simulacion: Configuracion del DTO del expediente con el

// valor ’csv’

ExpedienteDTO expedienteDTO = new ExpedienteDTO();

expedienteDTO.setCsv(csvExpediente);

// Simulacion: Configuracion del resultado esperado con el expediente

// completo en el DTO

ResultObtenerExpedienteDto resultadoExito =

new ResultObtenerExpedienteDto();

resultadoExito.setExpediente(expedienteDTO);

// Mock del comportamiento del proveedor cuando se invoca obtenerExpediente

when(expedientProvider.

obtenerExpediente(obtenerExpedienteRequestDTO))

.thenReturn(resultadoExito);

// Ejecucion: Llamada al metodo bajo prueba en clientCCSVProviderImpl

CCSVResponseDTO<ResultObtenerExpedienteDto> responseExito =

clientCCSVProviderImpl.obtenerExpediente(obtenerExpedienteRequestDTO);

// Validacion: Comprobamos que la respuesta obtenida es correcta

assertNotNull(responseExito);

assertTrue(responseExito.isSuccess());

assertNotNull(responseExito.getMessage());

assertNotNull(responseExito.getMessage().getExpediente());

assertEquals(csvExpediente,

responseExito.getMessage().getExpediente().getCsv());

}

73

E.2. Pruebas basadas en casos de uso

En las pruebas basadas en casos de uso, el objetivo es verificar que el sistema

funcione correctamente según las especificaciones y necesidades del usuario. Para ello,

se describe en una tabla cada operación del sistema que se va a probar, detallando

las acciones y el comportamiento esperado en cada paso. Luego, se compara el

resultado real obtenido tras ejecutar la operación con el resultado esperado. Si todas

las condiciones del caso de uso se cumplen correctamente, la prueba es exitosa; de

lo contrario, se identifica y se corrige cualquier desviación o error en el sistema. Este

enfoque asegura que el sistema cumpla con los requisitos funcionales especificados desde

la perspectiva del usuario. Estas pruebas son especialmente populares en Hiberus, la

empresa en la que ha sido desarrollado el proyecto.

En la Figura E.1 se prueban las operaciones correspondientes al módulo de

documentos, mientras que en la Figura E.2 se realizan las pruebas de las operaciones

del módulo de expedientes. Cada figura representa un conjunto de operaciones a través

de las cuales se valida el comportamiento del sistema, asegurando que cumpla con los

requisitos funcionales espećıficos de cada módulo.

Figura E.1: Pruebas basadas en casos de uso del módulo de documentos

74

Figura E.2: Pruebas basadas en casos de uso del módulo de expedientes

E.3. Validación de endpoints

La validación de endpoints es una parte importante en el desarrollo de servicios

web, ya que asegura que cada función dentro de la API se ejecute correctamente y que

las respuestas cumplan con los estándares establecidos.

En este caso, la validación de los endpoints se llevó a cabo utilizando un proyecto

implementado con Spring Boot. Durante el proceso, se exploraron y documentaron

las APIs mediante la herramienta Swagger, lo que permitió una interacción eficiente

con cada endpoint y la realización de pruebas exhaustivas para todas las operaciones

disponibles.

Las pruebas incluyeron la verificación de operaciones principales, como la creación,

actualización, consulta de recursos. Cada respuesta fue analizada cuidadosamente,

comparando los resultados obtenidos con los esperados para confirmar que el

comportamiento de los endpoints era el deseado en todos los casos.

Crear documento

75

La validación del endpoint crearDocumento que se puede ver en la Figura E.3

asegura que el archivo recibido sea válido y obligatorio, verificando que no esté vaćıo.

También valida que el campo nombre sea obligatorio y que el tipo de documento sea

opcional.

Figura E.3: Definición del endpoint para la creación de documentos en Swagger

Obtener documento

El endpoint obtenerDocumento (reflejado en la Figura E.4) permite recuperar un

documento a partir de su identificador (id) o un código CSV asociado. Valida que al

menos uno de estos parámetros sea proporcionado.

Figura E.4: Definición del endpoint para obtener un documento en Swagger

Actualizar documento

El endpoint actualizarDocumento permite modificar un documento existente.

Para ello, se requiere el env́ıo de un archivo (file) como parámetro obligatorio,

mientras que otros parámetros como el código csv, el nombre, el tipo, y la razón

son opcionales. El contenido del archivo se valida y se procesa antes de ser enviado

para su actualización. La definición completa del endpoint se muestra en la Figura E.5.

76

Figura E.5: Definición del endpoint para actualizar un documento en Swagger

Obtener documento XML

El endpoint obtenerDocumentoXML permite recuperar un documento en formato

XML a partir de su identificador único (id) o su código CSV. Es necesario que se

proporcione al menos uno de estos parámetros para que la solicitud sea válida. La

definición detallada de este endpoint se presenta en la Figura E.6.

Figura E.6: Definición del endpoint para obtener un documento XML en Swagger

Crear expediente

El endpoint crearExpediente permite la creación de un nuevo expediente en

el sistema. Para ello, se requiere proporcionar un csvDocumentoInicial, el nif, el

numExpediente, y el nombreExpediente. Estos datos se procesan y se env́ıan a la

lógica de negocio para registrar el expediente. La definición detallada del endpoint se

puede observar en la Figura E.7.

77

Figura E.7: Definición del endpoint para crear un expediente en Swagger

Añadir documentos a un expediente

El endpoint anadirDocumentosExpediente permite añadir uno o varios

documentos a un expediente existente. Para ello, es necesario proporcionar el

ccsvExpediente correspondiente al expediente, aśı como una lista de ccsvDocumento

con los documentos a añadir. Opcionalmente, también se puede especificar el idCarpeta

donde se añadirán los documentos. Este endpoint gestiona la validación de los datos y

realiza la llamada al servicio correspondiente para actualizar el expediente.

La Figura E.8 muestra la definición completa del endpoint en Swagger.

Figura E.8: Definición del endpoint para añadir documentos a un expediente en Swagger

Eliminar documentos de un expediente

El endpoint documentosExpediente permite eliminar documentos espećıficos

asociados a un expediente existente. Para realizar esta operación, es necesario

proporcionar el ccsvExpediente, que identifica al expediente, y una lista de

78

ccsvDocumento, que contiene los documentos a eliminar. Adicionalmente, se puede

indicar el idCarpeta como parámetro opcional para especificar una carpeta concreta

donde se encuentran los documentos. El endpoint valida los datos y realiza la operación

llamando al servicio correspondiente.

La Figura E.9 muestra la definición detallada de este endpoint en Swagger.

Figura E.9: Definición del endpoint para eliminar documentos de un expediente en
Swagger

Regenerar ı́ndice de un expediente

El endpoint /regenerarIndiceExpediente proporciona la funcionalidad para

regenerar el ı́ndice de un expediente, identificado de manera única mediante su

ccsvExpediente. Este proceso se utiliza para actualizar o reorganizar la estructura

de ı́ndices del expediente en el sistema, garantizando que refleje correctamente los

documentos y carpetas asociadas.

La Figura E.10 muestra la definición del endpoint en Swagger, con los detalles de

los parámetros requeridos, el formato de respuesta, y los posibles códigos de estado

devueltos por la operación.

Figura E.10: Definición del endpoint para regenerar el ı́ndice de un expediente en
Swagger

79

Crear una carpeta en un expediente

El endpoint /crearCarpetaExpediente permite añadir una nueva carpeta en un

expediente especificado, utilizando el CSV del expediente, el nombre de la carpeta y

su código. Esta operación es fundamental para mantener una estructura organizada de

documentos dentro del sistema.

Figura E.11: Definición del endpoint para crear una carpeta en un expediente en
Swagger

Asociar un expediente a un expediente

El endpoint /asociarExpedienteExpediente permite asociar un expediente

principal a un subexpediente mediante los CSVs de ambos. La relación se establece

de manera que uno de los expedientes queda como el expediente principal y el otro

como subexpediente, con el objetivo de organizar y relacionar los expedientes entre śı.

Figura E.12: Definición del endpoint para asociar un expediente a un expediente en
Swagger

Obtener un expediente

El endpoint /obtenerExpediente permite obtener los detalles completos de

80

un expediente espećıfico mediante su CSV. Esta operación se usa para consultar

información sobre un expediente en el sistema y se responde con los detalles relevantes

del mismo.

Figura E.13: Definición del endpoint para obtener un expediente en Swagger

81

	Lista de Figuras
	Introducción y objetivos
	Contexto
	Colaboración con Hiberus
	¿Qué es el Código Seguro de Verificación?

	Motivación del proyecto
	Alcance y objetivos
	Herramientas y tecnología de trabajo
	Contenido del documento

	Análisis de requisitos
	Identificación de problemas en los proyectos actuales
	Definición de requisitos funcionales
	Definición de requisitos no funcionales

	Diseño
	Infraestructura del entorno
	Arquitectura del proyecto
	Patrón Façade

	Implementación
	Implementación de la arquitectura
	Clases internas
	Clases externas

	Flujo de integración
	Modelo de datos
	Uso de la biblioteca
	Proyectos desarrollados con Spring Boot
	Proyectos no desarrollados Spring Boot

	Pruebas y validación
	Pruebas unitarias
	Pruebas de integración basadas en casos de uso
	Pruebas basadas en casos de uso

	Conclusiones y trabajo futuro
	Conclusiones acerca del proyecto
	Comparativa de uso antiguo y nuevo

	Evaluación personal
	Propuestas de mejora y líneas de investigación futura

	Bibliografía
	Anexos
	Diccionario de datos
	Planificación
	Arquitectura de un proyecto para el Gobierno de Aragón
	Componentes del frontend
	Componentes del backend

	Detalles de implementación
	Infraestructura
	ClientCCSV
	Documento
	Expediente
	PeticionesSae
	CCSVExternal

	Flujo de integración
	Paquetes auxiliares

	Pruebas y validaciones
	Pruebas unitarias
	Módulo de documentos
	Módulo de expedientes

	Pruebas basadas en casos de uso
	Validación de endpoints

