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1. Introduccion

Nuestro interés por la estructura de la materia y el origen del universo surge desde
hace ya mucho tiempo.

Conocemos distintas teorias de los antiguos fildsofos. Hace mds de dos mil afios,
Empédocles sugirié que toda la materia estaba formada por cuatro elementos: agua,
tierra, aire y fuego. Posteriormente, Demdcrito postuld que estos elementos estaban
hechos de atomos.

Desde entonces, la Fisica de Particulas es la rama de la fisica que estudia los
componentes elementales de la materia y las interacciones entre ellos.

La principal diferencia entre la Fisica de Particulas y la antigua filosofia es que la Fisica
de Particulas, como una ciencia, verifica sus modelos y predicciones tedricas con
medidas y hechos experimentales.

El Modelo Estandar de la Fisica de Particulas es uno de los logros mas grandes de la
ciencia del siglo XX y la mejor teoria que los fisicos tienen actualmente para describir
los bloques fundamentales del edificio del universo. [1] [2] [3]

Esta teoria ha sido contrastada por numerosos, variados y muy complejos
experimentos y sus predicciones han sido confirmadas en un grado extraordinario de
precision. Un ejemplo de estos experimentos es el Gran Colisionador de Hadrones
(LHC-del inglés, Large Hadron Collider) en el CERN (del francés, Conseil Européen por la
Recherche Nucléaire), Ginebra, Suiza.

El 4 de julio de 2012 fue anunciado en el CERN el descubrimiento del bosén de Higgs,
una particula cuya existencia es predicha por el Modelo Estandar y que esta
relacionada con el mecanismo de generacién de masa de las particulas elementales [4]

[5].

El presente trabajo de fin de grado tiene como finalidad estudiar los conceptos basicos
de la fisica de Higgs y los métodos de calculo utilizados para explorar esta fisica. Para
ello, en primer lugar se dedica una seccién al estudio de los conceptos, ideas y
fendmenos del Modelo Estandar necesarios para la comprension de la fenomenologia
del sector de Higgs. Asi, en esta primera parte, se repasa el contenido de particulas, se
explica brevemente los términos del lagrangiano del Modelo Estandar y se desarrolla
en detalle la ruptura espontanea de la simetria y el mecanismo de Higgs, responsables
de la generacién de masas. Finalmente, se estudia la fisica de la particula de Higgs a
través de sus desintegraciones. Se calcula la anchura de la desintegracidn de un bosén
de Higgs a dos fermiones y la anchura de desintegracidn de un bosdén de Higgs a dos



bosones gauge y se realiza un analisis numérico que permita entender el
comportamiento de la razén de desintegracion.



2. El Modelo Estandar

El Modelo Estandar de la fisica de particulas describe la estructura de la materia, qué
particulas existen y como interactian entre ellas. Hay dos tipos de particulas:
particulas de materia y mediadores de la interaccién. Ademas, existe una particula
especial denominada bosdn de Higgs que es un ingrediente fundamental de este
modelo.

Las particulas de materia son seis quarks y seis leptones agrupados en tres familias o
generaciones. Para cada particula de materia hay una antiparticula correspondiente
con las mismas propiedades que las particulas normales excepto que tienen la carga
opuesta. Los quarks tienen masa y carga. Diferentes combinaciones de quarks forman
los hadrones (por ejemplo, protones y neutrones). Los leptones (por ejemplo, el
electrdén) son particulas elementales, es decir, son particulas indivisibles que no estan
constituidas por otras particulas mds pequefias ni se conoce que tengan estructura
interna.

Los mediadores de las interacciones o transportadores de las fuerzas son particulas
gue se intercambian entre las particulas de materia que experimentan una interaccién
(fuerza). Hay tres tipos diferentes: fotones, gluones y bosones vectoriales. El fotén es
una particula elemental neutra y sin masa, mediador de las interacciones
electromagnéticas; interaccion que actua entre particulas eléctricamente cargadas.
Hay ocho gluones que median la interaccion fuerte que actua entre los quarks y
mantiene los hadrones unidos. Finalmente, conocemos tres bosones vectoriales:

W+ y Z, que median la interaccién débil; fuerza responsable de fenémenos tales como
la desintegracién radioactiva.

El boson de Higgs o particula de Higgs es una particula elemental propuesta en el
Modelo Estandar que desempeiia un papel fundamental en explicar los origenes de la
masa de otras particulas elementales de este modelo a través del denominado
mecanismo de Higgs. Las particulas interactuando con el campo de Higgs adquieren
masa, mientras que las que no interacttan con él, no la tienen. El bosén de Higgs es
una particula de espin cero y no posee carga eléctrica, es muy inestable y se desintegra
rapidamente. Por tanto, sélo se puede encontrar en base a sus productos de
desintegracion. Todas las particulas del Modelo Estandar han sido contrastadas
experimentalmente. El ultimo hallazgo de este modelo ha sido el de una nueva
particula consistente con el bosdn de Higgs del Modelo Estandar en el CERN, por los
experimentos ATLAS y CMS, en julio de 2012. Actualmente muchos cientificos se
.centran en el estudio de sus propiedades e interacciones.



2.1. Contenido de particulas. Lagrangiano de la teoria
electrodébil.

El Modelo Estandar es una teoria gauge basada en un grupo de simetrias SU(3)¢ X
SU(2)y, X U(1)y. Este modelo describe las interacciones fuertes, débiles y
electromagnéticas mediante el intercambio de los correspondientes campos de spin 1
(bosones de gauge): 8 gluones sin masa para la interaccién fuerte, 1 fotdn sin masa y
sin carga para la interaccién electromagnética y 3 bosones masivos (W y Z) y
autointeractuantes para la interaccidén débil. Estas particulas constituyen el sector
gauge del modelo.

El sector fermidnico describe el contenido de la materia y consiste en 3 familias de
qguarks y 3 familias de leptones. Cada familia esta formada por dos particulas de spin
1/2, fy f, con cargas eléctricas Qf = Qs + 1 enunidades de la carga del proton, y sus
correspondientes antiparticulas. Los quarks aparecen en tres posibles estados de color
(rojo, verde y azul).

El sector escalar del modelo ha sido durante afos un enigma, sin confirmacion
experimental. El hecho de que los bosones de gauge, W* y Z, sean masivos indica que
SU(2), X U(1)y no es una simetria del vacio. Por el contrario, un fotén sin masa nos
dice que U(1).y, €s una buena simetria del vacio. Por tanto, la simetria gauge esta rota
espontaneamente (SU(3)¢ X SU(2), X U(1)y = SU(3)¢c X U(1)ep) Y Se introduce un
campo escalar, el campo de Higgs, que tiene asociada la particula de Higgs. Esta
particula se confirmd experimentalmente el 4 de julio de 2012 en el CERN. Este campo
escalar permite que los bosones débiles y los fermiones sean masivos, tal y como
observamos en la naturaleza.

El contenido de particulas del Modelo Estandar y las interacciones se resumen en la
tabla 2.1.1, donde Q es la carga eléctrica.

Fermiones I I | II Q
Quarks f|uuu|ccc| ttt | 2/3
L1 f' | ddd | sss | bbb | -1/3
Spin =
2 flve || v 0
Leptones —;
ffl e U T -1
Bosones
8 gluones Interaccion fuerte
Spin 1 y Interaccidn electromagnética
wt, z Interaccion débil




Escalar

Spin 0 | Higgs | Origen de las masas

Tabla 2.1.1. Las particulas e interacciones del Modelo Estandar.

Aunque no daremos detalles en este trabajo, podemos escribir el lagrangiano del
Modelo Estandar de la teoria electrodébil como [6]:

LSM = Lf+ [’G + [’SBS + LYW

El lagrangiano fermidnico L describe la cinematica, las interacciones fermidnicas y
contiene interacciones entre fermiones y bosones de gauge. Para que la teoria sea
completa se tiene que afadir el lagrangiano para los campos de gauge L que describe
los términos cinéticos de los bosones de gauge y sus autointeracciones.

Los dos ultimos términos corresponderian con el lagrangiano de la ruptura espontanea
de la simetria gauge Lggs y el lagrangiano de Yukawa Lyyy. Estos términos son
necesarios para dar masa a los bosones de gauge (W* y Z) y a los fermiones.

La ruptura espontanea de la simetria (SSB) y el mecanismo de Higgs son los
responsables de la generacién de masas. Este es el tema que voy a desarrollar en
detalle en la préxima seccion. [7]



2.2. Ruptura espontanea de la simetria (SSB).

La teoria electrodébil tiene serios defectos. La simetria SU(2);, X U(1)y, que
determina cdémo son las interacciones, prohibe términos de masa para los bosones de
gauge y tampoco son posibles términos de masa para los fermiones. Ademas, se viola
unitariedad.

Una opcién para resolver estos problemas podria ser omitir la condicion de invariancia
gauge local SU(2);, X U(1)y. Sin embargo, necesitamos este tipo de simetria para
mantener la teoria renormalizable. Por tanto, no es una decision sabia.
Afortunadamente, existe otra solucion: introducir un campo con un potencial
especifico que preserve la invariancia del lagrangiano bajo SU(2);, X U(1)yy rompa la
simetria del vacio del sistema (uno de los estados de minima energia).

2.2.1. Ejemplo sencillo de ruptura de simetria

Para describir la idea principal de ruptura de simetria empezamos con un modelo
sencillo, afiadiendo un campo escalar ¢, con un potencial especifico:

1 1 1 1
L =2 @) V(@) = 7 (8,0)" — Zu2¢? — 7 Ad*

El lagrangiano es simétrico bajo ¢ — —¢ y para que el potencial V(¢) esté acotado
inferiormente (es decir, exista un estado de minima energia, el vacio) el parametro
A> 0.

Investiguemos las dos posibilidades para el signo de p?.

a) p? > 0: Particula libre con interacciones adicionales

Para investigar el espectro de particulas, nos fijamos en el lagrangiano para
pequeiias perturbaciones sobre el minimo (vacio). El potencial tiene sélo un
minimo en ¢ = 0. Por tanto, Se trata de un campo escalar de masa py
acoplamiento cuartico A.

1 2 Lo s

|{ > ((')ucl)) — término cinético
1 5,9 P
SH ¢* = término de masa

G Ad* — interaccion de orden 4




b) p? < 0: Particula con masa imaginaria

Esta situacion puede parecer extrafia pues a primera vista pareceria describir
una particula con masa imaginaria. Sin embargo, si miramos el potencial,
vemos que no tiene sentido interpretar el espectro de particulas usando el
campo ¢ dado que el sistema no converge, existen dos de
estados de minima energia:

Eligiendo uno de ellos como el estado fundamental del sistema

(el vacio fisico), la simetria de los estados fisicos se rompe
espontaneamente, aunque se preserva la del lagrangiano.

Como antes, investigamos el espectro de particulas mediante perturbaciones
sobre el minimo. Para ello, utilizamos un nuevo campo 1 centrado en el vacio:
N = ¢ — v. Reescribimos el lagrangiano en términos de n:

1 1
término cinético = Leinetico = > (au(n +v)o*(n + U)) =3 (@.m)(@"n)
donde hemos usado d,,v = 0,
1 1
término potencial » V() = 2 w2(m+v)? + ZMT] +v)*

1 1
=A% + A + Z?ﬂ]‘* — Z)LU4

donde hemos usado p? = —Av2.

Aunque el lagrangiano permanece simétrico en @, las perturbaciones alrededor
del minimo no son simétricas en 1, ya que V(—n) # V(1)).

. (o 1 I .
Despreciando el término constante Z}\U4 y los términos de orden superior a 2,

tenemos:
1 1 1
L) =7 (@,m(@*n) =A™ n® +tn® + 20" + 2 hv’
1 28 2,2
=5 (0,m)(9"n) — W

Este lagrangiano describe la cinematica de una particula masiva escalar:
1

=my* = ? > m, =222 =/-2p?; m, >0

2

Resumiendo, para p? < 0, a primera vista, afiadir el término potencial V(¢) al
lagrangiano implica anadir una particula con masa imaginaria y término de
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acoplamiento cuartico. Sin embargo, cuando estudiamos el espectro de
particulas usando la teoria de perturbaciones alrededor del vacio, vemos que
describe una particula masiva escalar con interacciones de tercer y cuarto
orden. Aunque el lagrangiano preserva su simetria en ¢, el vacio no es
simétrico en n: ruptura de simetria espontanea.

2.2.2. Ruptura de una simetria global

Introducimos ahora un campo escalar complejo ¢ = % (¢4 + id,) (dos grados de
libertad):

1
L=5(0,0)"(0"9) —V($),  conV(d) = n* " +A(d"P)*

Este lagrangiano es invariante bajo transformaciones globales de fase U(1), es decir

bajo ¢ > €'y ya que ¢ ¢’ — " e %t = ¢

El lagrangiano en términos de ¢, y ¢, es:

1 21 21,0, 2y 1o 242
L((I)pd)z):i(auqh) +§(6u¢2) —oH (b1" + b, )_Z)\(qh + d2°)

De nuevo, A > 0y existen dos posibilidades para el signo de p2.

a)

b)

n? >0

El potencial tiene sélo un minimo. El lagrangiano describe dos particulas
escalares masivas, cada una con masa Ly con interacciones adicionales:

1 2 1 1 2 1
L(Py, dy) = > (% c|)1) ~3 112c|)12+§(6u cl)z) - Euzq)zz + interacciones

1 21, .
> (au (|)1) —5 u?¢,° — particula ¢;, masa p

2
2 (94 62)" — 2120,  particula g, masa

n? <o

El minimo corresponde a las configuraciones del campo que satisfacen

/ 2 2N _ ”2_
(¢ + d%) = _T—U



Existen por tanto un nimero infinito de estados de minima

V@)

energia.
Elegimos como el estado fundamental del sistema ¢; = vy

/ ¢, = 0.

%

. L Estudiamos el comportamiento del lagrangiano bajo
pequenas excitaciones del campo alrededor del vacio.

Para ello, definimos los camposn = ¢, — vy & = 5, lo que significa que el
vacio viene dado por:

1
¢o=ﬁ(n+v+ii)

Escribimos el lagrangiano en funcién de ny &:

1
término cinético = Linetico(M, &) = =0, (m+v —i&) a*(n + v + if)
2 H

1 2 1 2
=5 (aun) + 2 (auz)
usando Lorentz gauge auu =0

término potencial » V(1,&) = p2¢*Pp + A(d*d)? = p?dp? + Adp*

= —%KUZ[(U +M)? + 8] + %?\[(u +1)? + §2]?

1 1 1 1
= ——2* + 222 4+ 2nd + = An* + A8 + AunE? + = An2E?

4 4 4 2
usando p? = —Av?y ¢p? = p*Pp = %[(U +1)? + &]

Despreciando el término constante y los términos de orden superior a n? y &2,
tenemos:

1 1
L(n,§) = E(aun)z — wn? + E(auz)z +0-2 4 -

Podemos identificar entonces una particula masiva escalar n y una particula sin
masa &:

m, =+/2A0% = /=2p* > 0ym; =0

10



A diferencia del campo 1, que describe excitaciones radiales, no hay fuerza
actuando sobre oscilaciones en la direccién de €. Esta es una consecuencia
directa de la invariancia del lagrangiano bajo U(1) y la particula sin masa es el
llamado bosén de Goldstone.

Teorema de Goldstone: Por cada generador que conecta los vacios
degenerados, aparecerd una particula sin masa de espin 0.

La ruptura espontdnea de una simetria global da lugar a un bosén de
Goldstone. La ruptura espontanea de una simetria local hard que el bosén de
Goldstone desparezca.

2.2.3. Ruptura de una simetria local: mecanismo de Higgs

Si lagrangiano es invariante bajo una transformacion local U(1) significa que es

invariante bajo ¢’ — e!“® ¢. Para ello, es necesario introducir la derivada covariante y
una transformacién especial para el potencial vector:

au -D, = Bu —ieA, Derivada covariante
! 1 e
Ay A+ gaua Transformacion Ay

El lagrangiano invariante bajo una transformacién local para un campo escalar
complejo viene dado por:

1
L= (Duq))T(qu)) - ZFuUFHV - V((I))
De nuevo, A > 0y existen dos posibilidades para el signo de p2.

a) i>>0

El potencial tiene sélo un minimo. El lagrangiano describe dos particulas
escalares masivas ¢,y ¢, y un fotdén sin masa.

b) u> <0

El minimo corresponde a las configuraciones del campo que satisfacen

/ 2 2N _ ”2_
(P + d%) = _T—U

Existen por tanto un nimero infinito de estados de minima energia.
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Elegimos como el estado fundamental del sistema ¢; =vy ¢, =0y
estudiamos el comportamiento del lagrangiano bajo pequefias excitaciones del
campo alrededor del vacio. Para ello, definimos los campos 1 = ¢; —vy

¢ = ¢,, lo que significa que el vacio viene dado por:

1
¢o=ﬁ(n+v+ii)

Escribimos el lagrangiano en funcién de 1y €. Para el término cinético tenemos:

L inético (TL E) = (Duq))T(Duq)) = (0" + ieAu)(b*(au - ieAu )b
= (0"$)"(0,P) — (0"d)"ieA, b + ieA D™ (9, d) + e* AL d?
= %(aun)z + %(auz)z + %eZUZAE1 — evA, (0"F)

Y para el potencial,

V(LD = 124" + A D) = 122 + A"

= 2P0+ P 4 B4 AL + ) + BT
1
i

1
2

1 1
—=2?* + 2% + 2 + -t + ZAE‘* + Aun€? + —An2e?

4

Despreciando el término constante y los términos de orden superioran? y &2,

tenemos:

1 2 1 2 1 1
L0,) =5(0,n)" — Wn? +2(8,8)" +0-8 — 2 F W + S e?u?A

— evA,(0%%) + términos de interaccion

Por tanto, podemos identificar:

1 2 2.2 ) .

> (aun) — Av“n“ — particula masiva escalar n
1 2 2 ] .
> (OHE) + 0 & — particula sin masa &

1 1 20,2 A2 4
ZF””FW + Ee v-Aj, — foton con masa

—eVvA (0%8) -7

El lagrangiano contiene un término extrafio que no podemos interpretar
facilmente: —evA, (0%%). Para ello, escribimos el lagrangiano en un gauge
unitario. En una teoria invariante gauge local, A, esta fijado por d,a . Por ello,
elegimos el gauge unitario a = —&/v. Con esta eleccién gauge, el campo se
transforma bajo:

12



§ > e = e S = (v +iE) = e o= (v + et = —(v+h)
—> e v =e v—(v 1 =e v—( v e v=—(v
NoA vz o NG

Por tanto, hemos introducido un campo escalar h y el lagrangiano resultante
es:

L= D"$)T(D,d) — V(d)
1

= (6“+ieA”)%(U+h)(6u—ieAu)ﬁ(U+h)—V(q))

1 1 1 1
=2 (9,h)" +5e2A% (v + W)? — W?h? — Awh? — 2 Ah* + vt
_E(u) — AL +EEU u+eu m +§e h* — v _Z

donde hemos desarrollado (v + h)? y hemos despreciado el término constante
para obtener la Ultima expresion.

Podemos identificar entonces:

1 2 21.2 7 .
5 (auh) — Av“h® - particula masiva escalar h
> e?v?A% - fotén con masa

2A2h+1 2A2h? - int i6n Higgs — fotd
e“v m Ze m 1nteraccion lggS oton

1
—Avh3 — Z?xh‘* — autointeracciones del Higgs.

La ruptura espontanea de una simetria local da lugar a un fotédn con masay
una particula escalar masiva h.

13



2.3 El mecanismo de Higgs en el modelo estandar

Una vez explicada la idea de la ruptura espontanea de simetria, vamos a aplicarla al
modelo electrodébil. De esta forma especifica, obtendremos bosones W2 y Z masivos,
pero manteniendo el fotén sin masa.

2.3.1 Ruptura de una simetria local: SU(2); X U(1)y

Para romper la simetria SU(2);, X U(1)y, seguimos el mecanismo de Higgs estudiado:

1) Introducimos un doblete de isospin, es decir, un campo complejo por cada
= <¢+> _ i(¢1 + i¢2)
¢° V2 \ds3 +id,

2) Consideramos un potencial que rompa la simetria

simetria:

V() = 2 dTd + A(dTh)*; u? <0
y la parte correspondiente del lagrangiano escalar
L= (D*$p)F(Dud) — V()

con la derivada covariante asociada a SU(2);, X U(1)y

1

-

. e . /1
D, = 6u+1g§T-Wu+1g > YB,

2

3) Elegimos unvacio, ¢; = ¢, =P, =0y P3 =v:

o :%(U-(I)-h>

y veremos que esta eleccion del vacio rompe la simetria SU(2);, X U(1)y y deja
invariante U(1)gy, dejando el fotdn sin masa.

2.3.2 Simetrias asociadas a los bosones gauge

Invariancia implica que e'*2¢, = ¢, con Z la rotacién asociada. Bajo rotaciones
infinitesimales tenemos (1 + iaZ)dy = by = Zpy =0

Vamos a ver qué ocurre con los generadores de SU(2), U(1)yy U(1)gm:

14



SU(2)y;:

= Dl 1) =30 s
‘[2¢0=(? _Oi)%<u_?_h)=—%(v )¢O—>Rota
T3(1)0_((1) —01)%<U-(|)-h)=_%(v h)¢0—>Rota

U(1)y:

1 0 1 0
Yoo =Yy — =+— R
$o o /> (U N h) + > (U + h) # 0 — Rota

Vemos que se rompen las simetrias SU(2); y U(1)y y por tanto, los cuatro bosones de
gauge , W;, W,, W y B adquieren masa a través del mecanismo de Higgs. Los campos
W, y W, se mezclan para formar los bosones cargados W+ y W, y B para fomar el
bosén neutro Z y el fotén .

Wi=1(w + W,)
2 1= VYvV2

ly) = cosBw|B) + sinby |W5)
|Z) = —sinBy |B) + cosBy, |W;)

Cuando calculemos las masas de estos estados, veremos que una de las
combinaciones, el fotén, no tiene masa.

Para ello, el vacio debe dejar invariante la simetria U(1)gy. De hecho:

1 1 0
U(Dem: Qdy = E(TS + )b, = ((1) 8)5(1) + h) = 0 - No se rompe

Este resultado es esperado porque el vacio es neutro y tenemos:
1 i —
by = €Uy = B,

Asi, tras la ruptura espontanea de la simetria Wt y Z se convierten en campos masivos
mientras que el fotén permanece sin masa. Todo ello preservandose la simetria gauge
del lagrangiano. El precio que hemos de pagar es la introduccidn del campo de Higgs.
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2.3.3 Parte escalar del lagrangiano: términos de masa de los
bosones gauge

Sélo necesitamos estudiar la parte escalar del lagrangiano para obtener las masas de
los bosones gauge:

L= D"$)T(D,d) — V()

El término de potencial dard lugar a la masa del Higgs y a las interacciones Higgs-Higgs.
El término cinético dard lugar a las masas de los bosones gauge y a las interacciones
bosones gauge-Higgs.

Nos centramos en las masas de los bosones gauge. Para ello, calculamos:
17 1, — 1 0
(Du(l)) = ﬁ [lgET ' Wu + 1g EYBH] (U)

i , 0
= ﬁ [g(lel + T2W2 + T3W3) + g YB”] (U)

i 0w, 0 —iW,\ (W; 0
=ﬁlg<(w1 o) *(w, o)+ (o —W3)>
ry (Yq)E)Bu . 0B )l (0)

Go v
L(gW3+g’Y¢OBlJl g(W; —iW,) >(0)
g(W; +iW,)  —gW; +g'Yy, B,/ \v

V8

v ( g(W; —iW,) >
V8 \—8Ws + g'Yy, By

Analogamente: (D*¢p)T = —% (g(W1 +iW,), (—gWs + g'Yq,oBu))

Asi, el término cinético del lagrangiano viene dado por la siguiente expresion:

1
(D4 (Dy) = 52 [ (WF + W3) + (—gWs + &Yy, B,) |

Ahora vamos a reescribir (D”d))T(Ducl)) en términos de los bosones gauge fisicos

W*,W~,Zyy.Para el término con W, y W,, tenemos:
1
W = > (Wy + W) - g2(W7 +WZ) = g2((W*)? + (W)?)

El término con W5 y B, puede escribirse en forma matricial:

2

B , 2 g —88' Yo, \ (W5
( gW3 +8 Y¢0Bu) - (W3' BH) (—gg’Y¢0 glz > <Bll
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De este modo, nos damos cuenta de que Yy, # 0. En nuestra eleccion del vacio,
2

g

_eg’ _g‘c,”zg)son M =0y =(g*+g?)

Los autovalores de la matriz (

Los autovectores correspondientes a estos autovalores son:

1 1Z —
7\1=O—)Vl=W(gW3‘|'gBu)=Au
2 2 1 ! —
}\2=(g +g)_)V2= (gWS_gBu)=Zu

V(@g®+g?)
Reescribimos el término con W5 y B ;:
! 2 !
(—gW; +g Y¢0Bu) =(g*+g*)Zi+0-A%

Finalmente, el término cinético en funcion de los bosones gauge fisicos viene dado
por:

(D) (D) = =v2[g2(W*)? + g2(WT)2 + (g2 + g")ZZ + 0 - AZ]

A . , , 1
En general, el término de masa de un bosén masivo V tiene la forma EM\Z,Vﬁ. Del

término cinético del lagrangiano obtenemos:

1
Mw+ = Myw- = Evg

1
Mz =Zvy(g® +g"?)

2.3.5 Masa del bosdn de Higgs

Podemos obtener la masa del bosén de Higgs del término de masa en el potencial del
lagrangiano, £ = (D”d))T(Ducl)) — V(¢), donde hemos identificado % (0,h)? — A?h?
con una nueva particula masiva escalar h. Por tanto, la masa del bosdn de Higgs esta
dada por

my, = +/2Av?

Sabemos que v = 246 GeV, pero A es un parametro libre. Por tanto, podemos decir
gue la masa del bosén de Higgs no esta predeterminada en el Modelo Estandar.

17



2.3.6 Lagrangiano de Yukawa: términos de masa de los
fermiones

En general, el lagrangiano de Yukawa es el término que dota de masa a los fermiones.
De forma explicita, Lyyy esta dado, para la primera familia, por

[’YW = KeTLd)eR + Ku(]La)uR + Ad(_]L(bdR + h.c.
donde h.c. significa complejo conjugado.

Tenemos:

Por tanto, el resultado final es:

U

L\ — L\ — —
"CYW = (}\e ﬁ) e’Le’R + (?\u ﬁ) u’Lu’R + (}\d ﬁ) dILdIR + .-

De este modo, podemos obtener las masas de los fermiones:

Resultados similares podria derivarse para la segunda y tercera familias, pero no
entraremos en detalles. Nos limitamos a escribir las masas correspondientes:

v v v
my = }‘uﬁi Mme :Acﬁi mg :)\sﬁ
v v v
My :}\Tﬁ; my :}\tﬁ; my, :}\bﬁ
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3. Fenomenologia del sector de Higgs.

3.1. Desintegraciones del bosén Higgs.

El bosdn de Higgs es una particula de espin cero y no posee carga eléctrica, es muy
inestable y se desintegra rdpidamente. Por tanto, sélo se puede encontrar en base a
sus productos de desintegracién.

El bosdn de Higgs tiene varios canales de desintegracion. Se puede desintegrar, por
ejemplo, en dos quarks bottom, dos gluones, dos particulas tau, dos fotones, dos
bosones Z,, que finalmente producen dos pares de leptones cargados, y dos bosones
W, que producen finalmente dos leptones cargados y dos neutrinos.

Nos centraremos en estudiar las desintegraciones del bosén de Higgs en dos fermiones
y dos bosones de gauge (W y Z). En este trabajo, he calculado la anchura de
desintegracién de un boson de Higgs a dos fermiones F(h - ff) siendo f el quark

bottom, el leptdn tau y el quark charm y la anchura de desintegracion de un bosoén de
Higgs a dos bosones gauge I'(h —» ZZ) yI'(h > WtW™).

3.1.1. Desintegracion de un boson de Higgs a dos fermiones:
h - ff

La anchura de desintegracion de una particula a otras particulas es proporcional al
cuadrado de la amplitud de scattering o de dispersiéon M, siendo M un elemento de
matriz.

Calculamos la amplitud de scattering mediante el cdlculo de diagramas de Feynman.

- |

La regla de Feynman para el correspondiente vértice, de forma genérica, es:
[SFF]:ie(gs — gpys) = ie(cLPL + cgrPr)

dondec,r =8stgpYPr = %(1 + ¥s).

Estos acoplamientos genéricos toman los siguientes valores en el Modelo Estandar [8]:
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SFF HEf;
1 IT'lfi 5
C _—_ )
k 2sw My !
1 IT'lfi
C — — ')
R 2syw My !
Por tanto, tenemos:
(e, P, + cuPy) .1 mfiS . mfi6 .mfi8
ie(c o = —le——0;; = —le——0;; = —1—0j;
LTL RIR ZSW MW ij Swve ij v ij

donde hemos usado que P g = %(1 + vs), My = %vgyg =—

Sw

La amplitud de scattering viene dada por la siguiente expresion:
. _, img
—iM = u(pJTV(—pz)

iMT = v(—p,)

—imf
v u(py)

siendo p; y p2 los momentos de los fermiones correspondientes.

Calculamos ahora el cuadrado de la amplitud:

M2 = (20" @) (P2, (pr) @, i)V, ()
= (B e, (o) @y ) Y P P2V, ()

mg 2 mg\ 2
=(=f) Tr(py + m)Tr(—p, —mp) = (=) [~Tr(p.p,) — mTr(D)]
\4 \4
myg 2
=(57) [=4p1-pp —4mi]
donde hemos usado la notacion @= y,a" y las siguientes propiedades de la traza:
Tr(l) = D = n%dimensiones
Tr{yu "'YB} = 0; n®impar dey's
Tr{y v} = 48y

Tenemos que s = (p; — p2)? = p7 + p3 — 2p; * p, Y por conservacién, s = m{. Dado
que p? = p% = m#, obtenemos la siguiente expresién: mg = 2mf — 2p; * p,

Usando lo anterior, el cuadrado de la amplitud tiene la siguiente forma:
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M? = (?)2 [2m? — 8m?] = (%)2 2mip% B = |1 4%?

Incluyendo el nimero de color, el resultado final para la matriz de dispersion es:
myg 2
M? = (=) 2mZpN,
\4

Finalmente la anchura de desintegracién se puede escribir como [7]:

dr |M|2 Ncmh (E)Z 3

- = S =
a0 = 3225 PIS =302

] . 1 ,
donde |p¢|es el momento de las particulas producidasy S = — paran particulas

e 1z 4 . . s 1
idénticas. En una desintegracion a dos cuerpos tenemos vs = my, y |p¢| = > B/s

Integrando, la desintegracion de un boson de Higgs a dos fermiones viene dada por la
siguiente expresion:

N 4m?
r'(h - ff) = 81“32 m?m, B3, conB= [1-— mﬁf

Claramente, la anchura de desintegracion de un bosén de Higgs a dos fermiones
depende de la masa del Higgs y la masa del fermidén correspondiente.

3.1.2. Desintegracion de un boson de Higgs a dos bosones:
h - VV

~ V=W/Z

vV=W/Z

La regla de Feynman para el correspondiente vértice de forma genérica es:
[SVV]:ieKg,,

Los acoplamientos genéricos toman los siguientes valores en el Modelo Estandar [8]:

svv HZZ HW*W~™
K MW/SWCI%I My, /sw
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Vamos a centrarnos en la desintegracidén a dos bosones Z y después generalizaremos.

Por tanto, el vértice viene dado por:

. . Mw
lnguv =le—— 8uv

La amplitud de dispersidn viene dada por la siguiente expresion:

Mw
—iM = (S;\l) (p)le S C 2 guvé S(q)

iMT = ex(p)ie Vl\: > gag(€5) (@)

donde p y g son los momentos asociados a los bosones de gauge,

Calculamos ahora el cuadrado de la amplitud:
gM
M? = < W) Z 2. ()) (P)(ED* (@) gapesd (PeL(Q)

M *
= (g—w> Buv Y (£1) D) gap Y () (@) ()
A )

Cw

Utilizando la siguiente propiedad:

* il
D &) Pese) = —g +27

A

2
gMy, p*p* qQ'qP
1\/12 == < CIZ/V ) gp_v <—g”°‘ + Mzz>ga[3 <—8VB + MZZ
2
gMy « o Pvb® q'qq
= — + —agV + —
<C5V> < 8v M22>< 8a Mz*

2
_ (8Mw) (, _P«P” 9"« PvP"q'da
Ciy Mz®  Mz? M;"

M2 = <g1\;IW>2 lz + (p- (i)zl
Cw MZ

donde hemos usado: p? = M;*y g% = Mj*

[0d

Finalmente obtenemos:
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Escribamos el producto p - q de la siguiente forma:

1 1
pra=5[p+d?-p’—q’] =3 [mf-2M;"

Sustituyendo en la expresidon de M?2:

2 2 4 2

M 1 M m m
M2 = (g 2”’) Iz +——(mf + 4M;"* — 4m§MZZ)l =5 - ls +—2n hl
Cw 4My4 Cw

2
g
=2 [12M;* — 4mZM;* + mi]
wlz

donde hemos usado: My, = ¢,y M,

Generalizando, podemos escribir el cuadrado de la amplitud de la desintegracién del
bosdén de Higgs a dos bosones de gauge de la siguiente forma:
2 3

M2=—4l\i 2mﬁ(1—x+zxz);x=
w

4M2

2
my,

Finalmente, la desintegracion de un bosdn de Higgs a dos bosones viene dada por la
siguiente expresion:

2
'(h->VV)=——m;S 1—-x+-x 1—x
( ) 641TMW2 hovv )

_4AMy _
conx=—YySwwzz = 1,
mp

N |-

Claramente, la dependencia con la masa del bosén de gauge, My, y la masa del bosén
de Higgs es manifiesta.

Cada una de estas desintegraciones del bosdn de Higgs es un posible canal, con
diferentes probabilidades.

Con estos resultados para la anchura de desintegracion del bosdn de Higgs, podemos
calcular la probabilidad de desintegracion de esta particula de Higgs por cada uno de
los canales con respecto al total.

A continuaciodn, discutimos el calculo de lo que denominamos “Branching Ratio”.
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3.2. Branching ratio

Una particula inestable puede desintegrarse de diversas formas. Cada una de estas
formas se denomina canal de desintegracién. La probabilidad de desintegracion a
través de un canal particular es lo que llamamos “branching ratio”. Por ejemplo, el
branching ratio para que un bosdn Z, particula descubierta en el CERN en 1983 y de Ia
gue se ha estudiado con mucho detalle sus propiedades, se desintegre en dos muones
urp~ es BR(Z - utp™) es 3.4%. La anchura de la resonancia en el proceso

ete” »Z - putyp

es la “anchura parcial”, I'(Z - p*p™) y en este caso es 0.084 GeV. La anchura total
[total €S la suma de todas las anchuras parciales. El branching ratio es el cociente entre
la anchura parcial para un determinado canal y la anchura total

L
BRy = —

Ftotal

El bosdn de Higgs es una particula muy inestable y se desintegra rapidamente. Por tanto, sélo
se puede encontrar en base a sus productos de desintegracion. Existen resultados publicados
gue muestran las probabilidades de desintegracidn del Higgs (branching ratio o razén de
desintegracidn) en funcién de la masa del bosdn de Higgs [7]:

2 ~

- B SASORA
=

2 Ww
s

a

= s
= 22

2

[-3

8

@

1 3

1

60 80 100 120 140 186 180 200 22
Higgs mass (GeV!c‘")

Figura 1. Razdén de desintegracién como funcién de la masa del Higgs. Resultados en [7].

Esta grafica es la que voy a intentar reproducir en el presente trabajo. Segun los resultados

mostrados aqui, el canal de desintegracién a bb es el mas favorecido para pequenos valores
de la masa del Higgs, my, < 140 GeV. Por el contrario, si my, > 140 GeV, el canal mas
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probable seria el de los dos bosones W, seguido del canal de dos bosones Z. En la caso de
valores pequefios de la masa del Higgs, apareceran también los canales de
desintegracion a T+ 1~ y T, que son menos competitivos que el canal a bb, al menos
dos érdenes de magnitud menores.
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3.3. Analisis numérico

Para intentar reproducir los resultados publicados, voy a evaluar los branching ratios
tomando los siguientes valores del Modelo Estandar [9]:

Valores de todos los parametros del Modelo Estandar
my 91.1876 GeV

My+ = My~ 80.385 GeV

me 1.275 GeV

my, (MS) 4.18 GeV

M+ = M- 1.77682 GeV

Nétese que he hecho el calculo de la anchura de desintegracién por sdélo algunos
canales de todos los posibles, por lo que el resultado no es completo. Sin embargo, nos
permite entender el comportamiento de la razén de desintegracion.

El calculo de la amplitud de scattering de la desintegracion del Higgs en dos fotones, en
dos gluones o en un fotdn y un bosén Z es complejo, por ejemplo, precisa calculos a
ordenes superiores en teoria de perturbaciones. Por ello, en una primera aproximacién
he definido la anchura total [;y¢; como:

Teotal = ['(h = bb) + T'th > c©) + I'(h > t*t7) + I'(h > ZZ) + ['(h > W*W")

sabiendo que en realidad es la suma de todas las anchuras parciales y por tanto,
deberia incluir todos los productos finales de desintegracion del Higgs. De esta forma
la razon de desintegracion la calculo como:

I'(h - x)

BRy =
X l-‘total

Para realizar el andlisis voy a considerar la masa del Higgs en el intervalo [60,250] GeV.

Con todo ello, los resultados obtenidos son:

= r'(h—bb
1) BR(h - bb) = “&:=bb)
Ttotal
8() L 1 e —— L] L
2 &
é’ 4ok
-xi 0k
|
{
Oks . e ]
50 100 150 200 250

Higgs mass (GeV/ch2)
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Branching ratio{%)- h—>WW

Branching ratio{%)— h—>tau tau

_ I(h-ttt™ _ I'(h—co)
2)BR(h - tt1t7) = I(horte) BR(h - ¢c¢) = ——=
Ttotal Ttotal
[ —— T T T T] . =TT T T T L
14F ] ]
] 1 sk ]
12f ]
[ ] 3 sk 3
10f i I
i ] &4 :
8F 4 = F ]
s b E 3
4F ] : 2t E
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A r(h-wtw~) I'(h—ZZ)
3)BRlh->WtW™) = ———= BR(h » ZZ) = ———=
T'total T'total
100 pr—r—t—t—t—T—r—r—T—r—T——T——T—T—r—T—7—T—7 0pr v T v — —r—
e ( s — ]
' 'n\ o / A
sof , i ] - .
N
e N /
] L wf / 4
sof 1 2 r'l
Z 15} ( 3
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,_4 3
d L
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20 sk 1
(] F— i i i M [} —— s PP 2
S0 100 S0 200 250 50 100 150 200 250

Higgs mass (GeV/c*2)

Higgs mass (GeV/ch2)

Nos damos cuenta de que no obtenemos el comportamiento deseado. Investigando

sobre ello, nos damos cuenta que la discrepancia se debe a que la masa de los

fermiones varia con la escala (masa running). En este trabajo, sélo consideraremos la

masa running del quark b. En el analisis anterior hemos tomado como parametro

m;, (MS) = 4.18 GeV [9]. De hecho, la masa running del quark bottom que se extrae de los

datos experimentales corresponde con la masa del bottom calculada en un esquema de

renormalizacion que se denomina MS a la escala de la masa del bottom.
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Asi, para obtener el comportamiento esperado para las razone de desintegracién del
bosdn de Higgs necesitamos afiadir el término de masa running m(Q). En primera
aproximacion, este término es el siguiente [10]:

4/50 4
0 =mied (55) " ~rieo =7 )

donde m(Q,) es la denominada masa del polo, Q, es el valor de la escala de energia y 3, se
evalla a través de la férmula:

11N, — 2Ny
o~ 3
donde N, = 3 (nimero de color) y Nf es el nimero total de fermiones excepto el que estamos
evaluando, por tanto, Ny = 5.

En nuestro caso, tomamos Q, = 4.18 GeV y m(Q,) = 4.18 GeV como primera aproximacion.
De esta forma obtenemos como varia m(Q,) con la escala Q, siendo Q = my, y sustituimos la
expresion en la amplitud de desintegracion y por tanto, en el resultado final de la razén de
desintegracidon. Asumimos Q a la escala de la masa del Higgs.

Presentamos los nuevos resultados:

= r'(h-bb
1) BR(h - bb) = “&:=bb)
l—‘total
sof A 0 &
Z wh I
|
% o} |
__.4‘ d L
2 1 :
2 n} 1
! |
[ L |
0 1 2 2 " 2 L 2 2 2 2 1 2 2 n-. \"- —— e b —
50 100 150 200 250

Higgs mass (GeV/c*2)
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Con estos resultados, representamos la distribucidn total, agrupando los resultados anteriores
en una sola figura:

s . ——— .
g Plrmmussssenns S PN
i 60f ;
2 o
el &
g 0f v /1 b
R et e it ISR
0k : L
50 100 150 200 250
Higgs mass {GeV/er2)

Figura 2. Razén de desintegracién como funcién de la masa del Higgs.

La figura 2 resume los resultados obtenidos al incluir en nuestro célculo la masa running del
bottom. Logramos resultados similares a los que se muestran en Figura 1. La discusién de estos
resultados se presenta en las conclusiones del trabajo.
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4. Conclusiones

En este trabajo hemos calculado la anchura de desintegracién del bosén de Higgs a fermiones
y a bosones de gauge. Posteriormente, estimamos la razén de desintegracion del bosén de
Higgs y tenemos en cuenta la masa “running” de los fermiones.

Discutamos los resultados obtenidos en Figura 2 comparandolos con los resultados publicados
en Figura 1.

El bosdn de Higgs decae preferiblemente en las particulas mds pesadas que sean posibles
dependiendo de cudl sea la masa del Higgs. Asi, si la masa del Higgs toma valores pequefios,

menor que 160 GeV, entonces puede decaer en bb, TH17y cC. Se observa que el canal a bb
es el dominante y sigue un comportamiento similar al de la Figura 1, con un
probabilidad de desintegracién del 80%, seguido de los canales a Tt~ y cC, con
probabilidades mucho menores, 14% y 7% respectivamente. Las razones de
desintegracién de estos canales son ligeramente inferiores a las de la Figura 1 por
razones que al final comentaremos.

Si la masa del Higgs es mayor que 160 GeV entonces puede desintegrarse en dos
bosones Wy si la masa del Higgs es mayor que 182 GeV, aparece el canal de dos
bosones W. Notemos que en el caso de valores grandes de la masa del Higgs, la
desintegracion en dos bosones Z no es dominante. Esto se debe al hecho de que el
canal a dos bosones W tiene dos grados de libertad: WtW~ y W™W™. Es interesante
darse cuenta de que para los bosones, observamos la aparicidn de picos de resonancias
indicando que se requiere una energia inicial suficiente para producir las particulas finales.

Como sabemos, la masa del Higgs es 125.9 GeV, por tanto, podemos afirmar que el proceso
dominante es la desintegracion a bb, a pesar de que el descubrimiento del Higgs en el LHC fue
inicialmente en los canales h = yy y h — 4 leptones.

Las diferencias entre las dos gréficas, Figura 1y Figura 2, podrian resolverse incluyendo, por
ejemplo, la masa running de todos los quarks y también las contribuciones de otros canales
gue son relevantes a rdenes mayores en teoria de perturbaciones.
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