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1. Íntroduccio n 

Nuestro interés por la estructura de la materia y el origen del universo surge desde 

hace ya mucho tiempo. 

Conocemos distintas teorías de los antiguos filósofos. Hace más de dos mil años, 

Empédocles sugirió que toda la materia estaba formada por cuatro elementos: agua, 

tierra, aire y fuego. Posteriormente, Demócrito postuló que estos elementos estaban 

hechos de átomos. 

Desde entonces, la Física de Partículas es la rama de la física que estudia los 

componentes elementales de la materia y las interacciones entre ellos. 

La principal diferencia entre la Física de Partículas y la antigua filosofía es que la Física 

de Partículas, como una ciencia, verifica sus modelos y predicciones teóricas con 

medidas y hechos experimentales. 

El Modelo Estándar de la Física de Partículas es uno de los logros más grandes de la 

ciencia del siglo XX y la mejor teoría que los físicos tienen actualmente para describir 

los bloques fundamentales del edificio del universo. [1] [2] [3] 

Esta teoría ha sido contrastada por numerosos, variados y muy complejos 

experimentos y sus predicciones han sido confirmadas en un grado extraordinario de 

precisión. Un ejemplo de estos experimentos es el Gran Colisionador de Hadrones 

(LHC-del inglés, Large Hadron Collider) en el CERN (del francés, Conseil Européen por la 

Recherche Nucléaire), Ginebra, Suiza. 

El 4 de julio de 2012 fue anunciado en el CERN el descubrimiento del bosón de Higgs, 

una partícula cuya existencia es predicha por el Modelo Estándar y que está 

relacionada con el mecanismo de generación de masa de las partículas elementales [4] 

[5]. 

El presente trabajo de fin de grado tiene como finalidad estudiar los conceptos básicos 

de la física de Higgs y los métodos de cálculo utilizados para explorar esta física. Para 

ello, en primer lugar se dedica una sección al estudio de los conceptos, ideas y 

fenómenos del Modelo Estándar necesarios para la comprensión de la fenomenología 

del sector de Higgs. Así, en esta primera parte, se repasa el contenido de partículas, se 

explica brevemente los términos del lagrangiano del Modelo Estándar y se desarrolla 

en detalle la ruptura espontánea de la simetría y el mecanismo de Higgs, responsables 

de la generación de masas. Finalmente, se estudia la física de la partícula de Higgs a 

través de sus desintegraciones. Se calcula la anchura  de la desintegración de un bosón 

de Higgs a dos fermiones y la anchura de desintegración de un bosón de Higgs a dos 
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bosones gauge y se realiza un análisis numérico que permita entender el 

comportamiento de la razón de desintegración. 
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2. El Modelo Está ndár 

El Modelo Estándar de la física de partículas describe la estructura de la materia, qué 

partículas existen y cómo interactúan entre ellas. Hay dos tipos de partículas: 

partículas de materia y mediadores de la interacción. Además, existe una partícula 

especial denominada bosón de Higgs que es un ingrediente fundamental de este 

modelo. 

Las partículas de materia son seis quarks y seis leptones agrupados en tres familias o 

generaciones. Para cada partícula de materia hay una antipartícula correspondiente 

con las mismas propiedades que las partículas normales excepto que tienen la carga 

opuesta. Los quarks tienen masa y carga. Diferentes combinaciones de quarks forman 

los hadrones (por ejemplo, protones y neutrones). Los leptones (por ejemplo, el 

electrón) son partículas elementales, es decir, son partículas indivisibles que no están 

constituidas por otras partículas más pequeñas ni se conoce que tengan estructura 

interna. 

Los mediadores de las interacciones o transportadores de las fuerzas son partículas 

que se intercambian entre las partículas de materia que experimentan una interacción 

(fuerza). Hay tres tipos diferentes: fotones, gluones y bosones vectoriales. El fotón es 

una partícula elemental neutra y sin masa, mediador de las interacciones 

electromagnéticas; interacción que actúa entre partículas eléctricamente cargadas. 

Hay ocho gluones que median la interacción fuerte que actúa entre los quarks y 

mantiene los hadrones unidos. Finalmente, conocemos tres bosones vectoriales: 

      , que median la interacción débil; fuerza responsable de fenómenos tales como 

la desintegración radioactiva. 

El bosón de Higgs o partícula de Higgs es una partícula elemental propuesta en el 

Modelo Estándar que desempeña un papel fundamental en explicar los orígenes de la 

masa de otras partículas elementales de este modelo a través del denominado 

mecanismo de Higgs. Las partículas interactuando con el campo de Higgs adquieren 

masa, mientras que las que no interactúan con él, no la tienen. El bosón de Higgs es 

una partícula de espín cero y no posee carga eléctrica, es muy inestable y se desintegra 

rápidamente. Por tanto, sólo se puede encontrar en base a sus productos de 

desintegración. Todas las partículas del Modelo Estándar han sido contrastadas 

experimentalmente. El último hallazgo de este modelo ha sido el de una nueva 

partícula consistente con el bosón de Higgs del Modelo Estándar en el CERN, por los 

experimentos ATLAS y CMS, en julio de 2012. Actualmente muchos científicos se 

.centran en el estudio de sus propiedades e interacciones. 
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2.1. Contenido de partículas. Lagrangiano de la teoría 

electrodébil. 

El Modelo Estándar es una teoría gauge basada en un grupo de simetrías         

            . Este modelo describe las interacciones fuertes, débiles y 

electromagnéticas mediante el intercambio de los correspondientes campos de spin 1 

(bosones de gauge): 8 gluones sin masa para la interacción fuerte, 1 fotón sin masa y 

sin carga para la interacción electromagnética y 3 bosones masivos (        y 

autointeractuantes para la interacción débil. Estas partículas constituyen el sector 

gauge del modelo. 

El sector fermiónico describe el contenido de la materia y consiste en 3 familias de 

quarks y 3 familias de leptones. Cada familia está formada por dos partículas de spin 

1/2, f y f’, con cargas eléctricas          en unidades de la carga del protón, y sus 

correspondientes antipartículas. Los quarks aparecen en tres posibles estados de color 

(rojo, verde y azul). 

El sector escalar del modelo ha sido durante años un enigma, sin confirmación 

experimental. El hecho de que los bosones de gauge,       , sean masivos indica que 

             no es una simetría del vacío. Por el contrario, un fotón sin masa nos 

dice que        es una buena simetría del vacío. Por tanto, la simetría gauge está rota 

espontáneamente (                                   y se introduce un 

campo escalar, el campo de Higgs, que tiene asociada la partícula de Higgs. Esta 

partícula se confirmó experimentalmente el 4 de julio de 2012 en el CERN. Este campo 

escalar permite que los bosones débiles y los fermiones sean masivos, tal y como 

observamos en la naturaleza. 

El contenido de partículas del Modelo Estándar y las interacciones se resumen en la 

tabla 2.1.1, donde Q es la carga eléctrica. 

 

Fermiones          Q 

Spin 
 

 
 

Quarks 
f uuu ccc ttt 2/3 

f’ ddd sss bbb -1/3 

Leptones 
f          0 

f' e     -1 

 

Bosones  

Spin 1 

8 gluones Interacción fuerte 

  Interacción electromagnética 

     Interacción débil 
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Escalar  

Spin 0 Higgs Origen de las masas 

 

Tabla 2.1.1. Las partículas e interacciones del Modelo Estándar. 

Aunque no daremos detalles en este trabajo, podemos escribir el lagrangiano del 

Modelo Estándar de la teoría electrodébil como [6]: 

                   

El lagrangiano fermiónico    describe la cinemática, las interacciones fermiónicas y 

contiene interacciones entre fermiones y bosones de gauge. Para que la teoría sea 

completa se tiene que añadir el lagrangiano para los campos de gauge    que describe 

los términos cinéticos de los bosones de gauge y sus autointeracciones. 

Los dos últimos términos corresponderían con el lagrangiano de la ruptura espontánea 

de la simetría gauge      y el lagrangiano de Yukawa    . Estos términos son 

necesarios para dar masa a los bosones de gauge (        y a los fermiones.  

La ruptura espontánea de la simetría (SSB) y el mecanismo de Higgs son los 

responsables de la generación de masas. Este es el tema que voy a desarrollar en 

detalle en la próxima sección. [7] 
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2.2. Ruptura espontánea de la simetría (SSB). 

La teoría electrodébil tiene serios defectos. La simetría              , que 

determina cómo son las interacciones, prohíbe términos de masa para los bosones de 

gauge y tampoco son posibles términos de masa para los fermiones. Además, se viola 

unitariedad. 

Una opción para resolver estos problemas podría ser omitir la condición de invariancia 

gauge local             . Sin embargo, necesitamos este tipo de simetría para 

mantener la teoría renormalizable. Por tanto, no es una decisión sabia. 

Afortunadamente, existe otra solución: introducir un campo con un potencial 

específico que preserve la invariancia del lagrangiano bajo              y rompa la 

simetría del vacío del sistema (uno de los estados de mínima energía).  

2.2.1. Ejemplo sencillo de ruptura de simetría 

Para describir la idea principal de ruptura de simetría empezamos con un modelo 

sencillo, añadiendo un campo escalar  , con un potencial específico: 

  
 

 
            

 

 
(   )

 
 

 

 
     

 

 
    

El lagrangiano es simétrico bajo      y para que el potencial      esté acotado 

inferiormente (es decir, exista un estado de mínima energía, el vacío) el parámetro 

   . 

Investiguemos las dos posibilidades para el signo de   . 

a)     : Partícula libre con interacciones adicionales 

 

Para investigar el espectro de partículas, nos fijamos en el lagrangiano para 

pequeñas perturbaciones sobre el mínimo (vacío). El potencial tiene sólo un 

mínimo en     . Por tanto, Se trata de un campo escalar de masa   y 

acoplamiento cuártico   . 

{
 
 

 
 

 

 
(   )

 
                 

 

 
                    

 

 
                          

 

 

 

 

 

 

 



8 
 

b)     : Partícula con masa imaginaria 

 

Esta situación puede parecer extraña pues a primera vista parecería describir 

una partícula con masa imaginaria. Sin embargo, si miramos el potencial, 

vemos que no tiene sentido interpretar el espectro de partículas usando el 

campo   dado que el sistema no converge, existen dos de 

estados de mínima energía: 

   √ 
  

 
                 

 

Eligiendo uno de ellos como el estado fundamental del sistema 

(el vacío físico), la simetría de los estados físicos se rompe 

espontáneamente, aunque se preserva la del lagrangiano. 

 

Como antes, investigamos el espectro de partículas mediante perturbaciones 

sobre el mínimo. Para ello, utilizamos un nuevo campo   centrado en el vacío: 

     . Reescribimos el lagrangiano en términos de  : 

                           
 

 
(              )  

 

 
       

    

donde hemos usado      , 

                       
 

 
         

 

 
       

            
 

 
    

 

 
    

donde hemos usado        . 

 

Aunque el lagrangiano permanece simétrico en  , las perturbaciones alrededor 

del mínimo no son simétricas en  , ya que           . 

 

Despreciando el término constante 
 

 
    y los términos de orden superior a   , 

tenemos: 

     
 

 
       

               
 

 
    

 

 
   

 
 

 
       

          

 

Este lagrangiano describe la cinemática de una partícula masiva escalar: 

 

 
  

         √     √              

 

Resumiendo, para     , a primera vista, añadir el término potencial      al 

lagrangiano implica añadir una partícula con masa imaginaria y término de 
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acoplamiento cuártico. Sin embargo, cuando estudiamos el espectro de 

partículas usando la teoría de perturbaciones alrededor del vacío, vemos que 

describe una partícula masiva escalar con interacciones de tercer y cuarto 

orden. Aunque el lagrangiano preserva su simetría en  , el vacío no es 

simétrico en  : ruptura de simetría espontánea. 

2.2.2. Ruptura de una simetría global 

Introducimos ahora un campo escalar complejo   
 

√ 
         (dos grados de 

libertad): 

  
 

 
                                         

Este lagrangiano es invariante bajo transformaciones globales de fase     , es decir 

bajo         ya que                        

El lagrangiano en términos de    y   es: 

         
 

 
(     )

 

 
 

 
(     )

 

 
 

 
     

    
   

 

 
    

    
    

De nuevo,     y existen dos posibilidades para el signo de   . 

a)      

 

El potencial tiene sólo un mínimo. El lagrangiano describe dos partículas 

escalares masivas, cada una con masa   y con interacciones adicionales: 

 

         
 

 
(     )

 

 
 

 
    

  
 

 
(     )

 

 
 

 
    

                

 

 

 
(     )

 

 
 

 
    

                      

 

 
(     )

 
 

 

 
    

                      

 

 

b)      

 

El mínimo corresponde a las configuraciones del campo que satisfacen  

 

√   
    

   √ 
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Existen por tanto un número infinito de estados de mínima 

energía. 

Elegimos como el estado fundamental del sistema      y 

    . 

 

Estudiamos el comportamiento del lagrangiano bajo 

pequeñas excitaciones del campo alrededor del vacío. 

 

Para ello, definimos los campos        y     , lo que significa que el 

vacío viene dado por: 

 

   
 

√ 
          

 

 

Escribimos el lagrangiano en función de   y  : 

                                
 

 
                    

 
 

 
(   )

 
 

 

 
(   )

 
 

 

usando Lorentz gauge       

 

                                               

  
 

 
   [         ]  

 

 
 [         ] 

  
 

 
               

 

 
    

 

 
          

 

 
      

 

usando         y        
 

 
[         ] 

 

Despreciando el término constante  y los términos de orden superior a    y   , 

tenemos: 

 

       
 

 
(   )

 
        

 

 
(   )

 
        

 

Podemos identificar entonces una partícula masiva escalar   y una partícula sin 

masa  : 

 

   √     √              
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A diferencia del campo  , que describe excitaciones radiales, no hay fuerza 

actuando sobre oscilaciones en la dirección de  . Esta es una consecuencia 

directa de la invariancia del lagrangiano bajo      y la partícula sin masa es el 

llamado bosón de Goldstone. 

 

Teorema de Goldstone: Por cada generador que conecta los vacíos 

degenerados, aparecerá una partícula sin masa de espín 0. 

 

La ruptura espontánea de una simetría global da lugar a un bosón de 

Goldstone. La ruptura espontánea de una simetría local hará que el bosón de 

Goldstone desparezca. 

2.2.3. Ruptura de una simetría local: mecanismo de Higgs 

Si lagrangiano es invariante bajo una transformación local      significa que es 

invariante bajo           . Para ello, es necesario introducir la derivada covariante y 

una transformación especial para el potencial vector: 

                                      

       
 

 
                         

El lagrangiano invariante bajo una transformación local para un campo escalar 

complejo viene dado por: 

        (   )  
 

 
    

        

De nuevo,     y existen dos posibilidades para el signo de   . 

a)      

 

El potencial tiene sólo un mínimo. El lagrangiano describe dos partículas 

escalares masivas   y    y un fotón sin masa. 

 

b)      

 

El mínimo corresponde a las configuraciones del campo que satisfacen  

 

√   
    

   √ 
  

 
    

Existen por tanto un número infinito de estados de mínima energía. 



12 
 

Elegimos como el estado fundamental del sistema      y      y 

estudiamos el comportamiento del lagrangiano bajo pequeñas excitaciones del 

campo alrededor del vacío. Para ello, definimos los campos        y 

    , lo que significa que el vacío viene dado por: 

 

   
 

√ 
          

 

Escribimos el lagrangiano en función de   y  . Para el término cinético tenemos: 

 

                     (   )                        

                                          
   

 
 

 
(   )

 
 

 

 
(   )

 
 

 

 
      

        
    

Y para el potencial,  

 

                             

  
 

 
   [         ]  

 

 
 [         ] 

  
 

 
               

 

 
    

 

 
          

 

 
      

 

Despreciando el término constante  y los términos de orden superior a    y   , 

tenemos: 

       
 

 
(   )

 
        

 

 
(   )

 
      

 

 
    

   
 

 
      

 

       
                             

 

Por tanto, podemos identificar: 

 

 
(   )

 
                                    

 

 
(   )

 
                           

 

 
    

   
 

 
      

                 

       
      

El lagrangiano contiene un término extraño que no podemos interpretar 

fácilmente:        
   . Para ello, escribimos el lagrangiano en un gauge 

unitario. En una teoría invariante gauge local,    está fijado por     . Por ello, 

elegimos el gauge unitario       . Con esta elección gauge, el campo se 

transforma bajo: 
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√ 
            

  
 

 

√ 
        

  
  

 

√ 
       

Por tanto, hemos introducido un campo escalar h y  el lagrangiano resultante 

es: 

                                (   )      

          
 

√ 
                

 

√ 
           

 
 

 
(   )

 
 

 

 
    

                   
 

 
    

 

 
   

 
 

 
(   )

 
       

 

 
      

       
   

 

 
    

         
 

 
    

donde hemos desarrollado        y hemos despreciado el término constante 

para obtener la última expresión. 

Podemos identificar entonces: 

 

 
(   )

 
                                    

 

 
      

                  

     
   

 

 
    

                            

      
 

 
                                 

 

La ruptura espontánea de una simetría local da lugar a un fotón con masa y  

una partícula escalar masiva h. 
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2.3 El mecanismo de Higgs en el modelo estándar 

Una vez explicada la idea de la ruptura espontánea de simetría, vamos a aplicarla al 

modelo electrodébil. De esta forma específica, obtendremos bosones        masivos, 

pero manteniendo el fotón sin masa. 

2.3.1 Ruptura de una simetría local:               

Para romper la simetría             , seguimos el mecanismo de Higgs estudiado: 

1) Introducimos un doblete de isospín, es decir, un campo complejo por cada 

simetría: 

  (
  

  
)  

 

√ 
(
      

      
) 

 

2) Consideramos un potencial que rompa la simetría 

                         

 y la parte correspondiente del lagrangiano escalar  

        (   )       

con la derivada covariante asociada a              

        
 

 
 ⃗   ⃗⃗⃗      

 

 
    

3) Elegimos un vacío,            y     : 

 

   
 

√ 
(

 

   
) 

 

y veremos que esta elección del vacío rompe la simetría              y deja 

invariante       , dejando el fotón sin masa. 

2.3.2 Simetrías asociadas a los bosones gauge 

Invariancia implica que          , con Z la rotación asociada. Bajo rotaciones 

infinitesimales tenemos                    

Vamos a ver qué ocurre con los generadores de       ,       y       : 
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      : 

     (
  
  

)
 

√ 
(

 

   
)   

 

 
(
   

 
)         

     (
   
  

)
 

√ 
(

 

   
)   

 

√ 
(
   

 
)         

     (
  
   

)
 

√ 
(

 

   
)   

 

√ 
(

 

   
)         

     : 

       

 

√ 
(

 

   
)   

 

√ 
(

 

   
)         

Vemos que se rompen las simetrías        y       y por tanto, los cuatro bosones de 

gauge ,   ,   ,    y   adquieren masa a través del mecanismo de Higgs. Los campos 

   y    se mezclan para formar los bosones cargados    y    y   para fomar el 

bosón neutro   y el fotón    

   
 

 
        

| ⟩       | ⟩       |  ⟩ 

| ⟩        | ⟩       |  ⟩ 

Cuando calculemos las masas de estos estados, veremos que una de las 

combinaciones, el fotón, no tiene masa. 

Para ello, el vacío debe dejar invariante la simetría       . De hecho: 

           
 

 
         (

  
  

)
 

√ 
(

 

   
)                

Este resultado es esperado porque el vacío es neutro y tenemos: 

  
            

Así, tras la ruptura espontánea de la simetría    y   se convierten en campos masivos 

mientras que el fotón permanece sin masa. Todo ello preservándose la simetría gauge 

del lagrangiano. El precio que hemos de pagar es la introducción del campo de Higgs. 
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2.3.3 Parte escalar del lagrangiano: términos de masa de los 

bosones gauge 

Sólo necesitamos estudiar la parte escalar del lagrangiano para obtener las masas de 

los bosones gauge: 

        (   )       

El término de potencial dará lugar a la masa del Higgs y a las interacciones Higgs-Higgs. 

El término cinético dará lugar a las masas de los bosones gauge y a las interacciones 

bosones gauge-Higgs. 

Nos centramos en las masas de los bosones gauge. Para ello, calculamos: 

(   )  
 

√ 
[  

 

 
 ⃗   ⃗⃗⃗      

 

 
   ] (

 

 
)

 
 

√ 
[                       ] (

 

 
)

 
 

√ 
[ ((

   

   
)  (

     

    
)  (

   
    

))

   (
   

   

    
  

)] (
 

 
)

 
 

√ 
(
         

           

                   
  

) (
 

 
)

 
  

√ 
(

         

          
  

) 

Análogamente:         
  

√ 
(          (          

  )) 

Así, el término cinético del lagrangiano viene dado por la siguiente expresión: 

      (   )  
 

 
  [     

    
   (          

  )
 
] 

Ahora vamos a reescribir       (   ) en términos de los bosones gauge físicos 

           . Para el término con    y   , tenemos: 

   
 

 
             

    
                   

El término con    y    puede escribirse en forma matricial: 

(          
  )

 
 (     ) (

         

       
   

)(
  

  
) 
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De este modo, nos damos cuenta de que    
  . En nuestra elección del vacío,  

   
   . 

Los autovalores de la matriz (
      

       
) son      y             

Los autovectores correspondientes a estos autovalores son: 

        
 

√        
(        )      

               
 

√        
(        )     

Reescribimos el término con    y   : 

(          
  )

 
           

      
  

Finalmente, el término cinético en función de los bosones gauge físicos viene dado 

por: 

       (   )  
 

 
  [                          

      
 ] 

En general, el término de masa de un bosón masivo V tiene la forma 
 

 
  

   
 . Del 

término cinético del lagrangiano obtenemos: 

        
 

 
   

   
 

 
 √         

     

 

2.3.5 Masa del bosón de Higgs 

Podemos obtener la masa del bosón de Higgs del término de masa en el potencial del 

lagrangiano,         (   )      , donde hemos identificado 
 

 
     

        

con una nueva partícula masiva escalar h. Por tanto, la masa del bosón de Higgs está 

dada por 

   √     

Sabemos que           , pero   es un parámetro libre. Por tanto, podemos decir 

que la masa del bosón de Higgs no está predeterminada en el Modelo Estándar. 
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2.3.6 Lagrangiano de Yukawa: términos de masa de los 

fermiones 

En general, el lagrangiano de Yukawa es el término que dota de masa a los fermiones. 

De forma explícita,     está dado, para la primera familia, por 

        ̅       ̅  ̃      ̅          

donde h.c. significa complejo conjugado. 

Tenemos: 

   (
  

  
)      (

  

  
)  

  (
  

  
)    ̃      

  (
  

 

   
) 

Por tanto, el resultado final es: 

    (  

 

√ 
)   ̅     (  

 

√ 
)   ̅     (  

 

√ 
)  ̅       

De este modo, podemos obtener las masas de los fermiones: 

     

 

√ 
       

 

√ 
       

 

√ 
 

Resultados similares podría derivarse para la segunda y tercera familias, pero no 

entraremos en detalles. Nos limitamos a escribir las masas correspondientes: 

     

 

√ 
       

 

√ 
       

 

√ 
 

     

 

√ 
       

 

√ 
       

 

√ 
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3. Fenomenologí á del sector de Higgs. 

3.1. Desintegraciones del bosón Higgs. 

El bosón de Higgs es una partícula de espín cero y no posee carga eléctrica, es muy 

inestable y se desintegra rápidamente. Por tanto, sólo se puede encontrar en base a 

sus productos de desintegración. 

El bosón de Higgs tiene varios canales de desintegración. Se puede desintegrar, por 

ejemplo, en dos quarks bottom, dos gluones, dos partículas tau, dos fotones, dos 

bosones   , que finalmente producen dos pares de leptones cargados, y dos bosones 

W, que producen finalmente dos leptones cargados y dos neutrinos.  

Nos centraremos en estudiar las desintegraciones del bosón de Higgs en dos fermiones 

y dos bosones de gauge (       . En este trabajo, he calculado la anchura de 

desintegración de un bosón de Higgs a dos fermiones  (    )̅ siendo f el quark 

bottom, el leptón tau y el quark charm y la anchura de desintegración de un bosón de 

Higgs a dos bosones gauge                    . 

3.1.1. Desintegración de un bosón de Higgs a dos fermiones: 

     ̅

La anchura de desintegración de una partícula a otras partículas es proporcional al 

cuadrado de la amplitud de scattering o de dispersión M, siendo M un elemento de 

matriz. 

Calculamos la amplitud de scattering mediante el cálculo de diagramas de Feynman.  

 

 

 

 

La regla de Feynman para el correspondiente vértice, de forma genérica, es: 

[   ]                           

donde            y      
 

 
      . 

Estos acoplamientos genéricos toman los siguientes valores en el Modelo Estándar [8]: 
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SFF    ̅   

    
 

   

   

  
    

    
 

   

   

  
    

Por tanto, tenemos: 

                 
 

   

   

  
       

   

    
      

   

 
    

donde hemos usado que      
 

 
          

 

 
       

 

  
 

La amplitud de scattering viene dada por la siguiente expresión: 

     ̅    
   

 
       

     ̅     
    

 
      

siendo    y    los momentos de los fermiones correspondientes. 

Calculamos ahora el cuadrado de la amplitud: 

   (
  

 
)
 

∑  ̅           
    

     

  ̅          
     

 (
  

 
)
 

∑   
    

  

  ̅       ∑  ̅           
     

  

 (
  

 
)
 

                    (
  

 
)
 

[            
      ]

 (
  

 
)
 

[           
 ] 

donde hemos usado la notación ⱥ    
  y las siguientes propiedades de la traza: 

                      

  {     }                     

  {    }       

Tenemos que          
    

    
         y por conservación,     

 . Dado 

que   
    

    
 , obtenemos la siguiente expresión:   

     
         

Usando lo anterior, el cuadrado de la amplitud tiene la siguiente forma: 
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   (
  

 
)
 

[   
     

 ]  (
  

 
)
 

   
       √  

   
 

  
  

Incluyendo el número de color, el resultado final para la matriz de dispersión es: 

   (
  

 
)
 

   
      

Finalmente la anchura de desintegración se puede escribir como [7]: 

  

  
 

| | 

     
|  |  

    

    
(
  

 
)
 

   

donde |  |es el momento de las partículas producidas y   
 

  
  para n partículas 

idénticas. En una desintegración a dos cuerpos tenemos √     y |  |  
 

 
 √  

Integrando, la desintegración de un bosón de Higgs a dos fermiones viene dada por la 

siguiente expresión: 

 (    )̅  
  

    
  

    
        √  

   
 

  
   

Claramente, la anchura de desintegración de un bosón de Higgs a dos fermiones 

depende de la masa del Higgs y la masa del fermión correspondiente. 

3.1.2. Desintegración de un bosón de Higgs a dos bosones: 

     

 

 

 

 

 

La regla de Feynman para el correspondiente vértice de forma genérica es: 

[   ]        

Los acoplamientos genéricos toman los siguientes valores en el Modelo Estándar [8]: 

SVV           

K        
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Vamos a  centrarnos en la desintegración a dos bosones Z y después generalizaremos. 

Por tanto, el vértice viene dado por: 

         
  

    
     

La amplitud de dispersión viene dada por la siguiente expresión: 

    (  
 )

 
     

  

    
      

     

      
      

  

    
       

       

donde p y q son los momentos asociados a los bosones de gauge, 

Calculamos ahora el cuadrado de la amplitud: 

   (
   

  
 )

 

∑   (  
 )

 
      

      

   

     
      

    

 (
   

  
 )

 

   ∑(  
 )

 
     

        

 

∑   
      

 

  
     

Utilizando la siguiente propiedad: 

∑(  
 )

 
     

          
    

  

 

 

 

   (
   

  
 )

 

   (     
    

  
 )    (     

    

  
 )

 (
   

  
 )

 

(   
  

   
 

  
 )(   

  
    

  
 )

 (
   

  
 )

 

(  
   

 

  
  

    

  
  

   
     

  
 ) 

Finalmente obtenemos: 

   (
   

  
 )

 

[  
      

  
 ] 

donde hemos usado:      
          

  



23 
 

Escribamos el producto     de la siguiente forma: 

    
 

 
[            ]  

 

 
[  

     
  ] 

Sustituyendo en la expresión de   : 

   (
   

  
 )

 

[  
 

   
 (  

     
     

   
 )]  

    
 

  
 [  

  
 

   
  

  
 

  
 ]

 
  

   
   

 [    
     

   
    

 ] 

donde hemos usado:         

Generalizando, podemos escribir el cuadrado de la amplitud de la desintegración del 

bosón de Higgs a dos bosones de gauge de la siguiente forma: 

   
  

   
   

 (    
 

 
  )    

   
 

  
  

Finalmente, la desintegración de un bosón de Higgs a dos bosones viene dada por la 

siguiente expresión: 

        
  

     
   

    (    
 

 
  )√    

con   
   

 

  
  y          

 

 
 

Claramente, la dependencia con la masa del bosón de gauge,   , y la masa del bosón 

de Higgs es manifiesta. 

Cada una de estas desintegraciones del bosón de Higgs es un posible canal, con 

diferentes probabilidades.  

Con estos resultados para la anchura de desintegración del bosón de Higgs, podemos 

calcular la probabilidad de desintegración de esta partícula de Higgs por cada uno de 

los canales con respecto al total. 

A continuación, discutimos el cálculo de lo que denominamos “Branching Ratio”. 
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3.2. Branching ratio 

Una partícula inestable puede desintegrarse de diversas formas. Cada una de estas 

formas se denomina canal de desintegración. La probabilidad de desintegración a 

través de un canal particular es lo que llamamos “branching ratio”. Por ejemplo, el 

branching ratio para que  un bosón Z, partícula descubierta en el CERN en 1983 y de la 

que se ha estudiado con mucho detalle sus propiedades, se desintegre en dos muones 

     es            es 3.4%. La anchura de la resonancia  en el proceso 

            

es la “anchura parcial”,           y en este caso es 0.084 GeV. La anchura total 

       es la suma de todas las anchuras parciales. El branching ratio es el cociente entre 

la anchura parcial para un determinado canal y la anchura total 

    
  

      
 

El bosón de Higgs es una partícula muy inestable y se desintegra rápidamente. Por tanto, sólo 

se puede encontrar en base a sus productos de desintegración. Existen resultados publicados 

que muestran las probabilidades de desintegración del Higgs (branching ratio o razón de 

desintegración) en función de la masa del bosón de Higgs [7]: 

 

 

 

 

 

 

 

 

 

 

 

Figura 1. Razón de desintegración como función de la masa del Higgs. Resultados en [7]. 

Esta gráfica es la que voy a intentar reproducir en el presente trabajo. Según los resultados 

mostrados aquí, el canal de desintegración a   ̅ es el más favorecido para pequeños valores 

de la masa del Higgs,           .  Por el contrario, si           , el canal más 
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probable sería el de los dos bosones W, seguido del canal de dos bosones  Z. En la caso de 

valores pequeños de la masa del Higgs, aparecerán también los canales de 

desintegración a      y   ̅, que son menos competitivos que el canal a   ̅, al menos 

dos órdenes de magnitud menores. 
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3.3. Análisis numérico 

Para intentar reproducir los resultados publicados, voy a evaluar los branching ratios 

tomando los siguientes valores del Modelo Estándar [9]: 

Valores de todos los parámetros del Modelo Estándar 

   91.1876 GeV 

        80.385 GeV 

   1.275 GeV 

     ̅̅ ̅̅   4.18 GeV 

        1.77682 GeV 
 

Nótese que he hecho el cálculo de la anchura de desintegración por sólo algunos 

canales de todos los posibles, por lo que el resultado no es completo. Sin embargo, nos 

permite entender el comportamiento de la razón de desintegración. 

El cálculo de la amplitud de scattering de la desintegración del Higgs en dos fotones, en 

dos gluones  o en un fotón y un bosón Z es complejo, por ejemplo, precisa cálculos a 

órdenes superiores en teoría de perturbaciones. Por ello, en una primera aproximación 

he definido la anchura total        como: 

        (    ̅)        ̅                              

sabiendo que en realidad es la suma de todas las anchuras parciales y por tanto, 

debería incluir todos los productos finales de desintegración del Higgs. De esta forma 

la razón de desintegración la calculo como:  

    
      

      
 

Para realizar el análisis voy a considerar la masa del Higgs en el intervalo [60,250] GeV. 

Con todo ello, los resultados obtenidos son: 

1)   (    ̅)  
 (    ̅)
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2)            
 (      )

      
              ̅  

      ̅ 

      
 

 

 

3)            
 (      )

      
              

       

      
 

 

Nos damos cuenta de que no obtenemos el comportamiento deseado. Investigando 

sobre ello, nos damos cuenta que la discrepancia se debe a que la masa de los 

fermiones varía con la escala (masa running). En este trabajo, sólo consideraremos la 

masa running del quark b. En el análisis anterior hemos tomado como parámetro 

     ̅̅ ̅̅            [9]. De hecho, la masa running  del quark bottom que se extrae de los 

datos experimentales corresponde con la masa del bottom calculada en un esquema de 

renormalización que se denomina   ̅̅ ̅̅  a la escala de la masa del bottom. 
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Así, para obtener el comportamiento esperado para las razone de desintegración del 

bosón de Higgs necesitamos añadir el término de masa running     . En primera 

aproximación, este término es el siguiente [10]: 

          (
     

      
)

 
  

⁄

      (  
 

  

     

    
   (

 

  
)) 

donde       es la denominada masa del polo,    es el valor de la escala de energía y    se 

evalúa a través de la fórmula: 

   
        

 
 

donde      (número de color) y    es el número total de fermiones excepto el que estamos 

evaluando, por tanto,     . 

En nuestro caso, tomamos             y                como primera aproximación. 

De esta forma obtenemos como varía       con la escala  , siendo      y sustituimos la 

expresión en la amplitud de desintegración y por tanto, en el resultado final de la razón de 

desintegración. Asumimos   a la escala de la masa del Higgs. 

Presentamos los nuevos resultados:  

1)   (    ̅)  
 (    ̅)
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2)            
 (      )

      
              ̅  

      ̅ 

      
 

 

3)            
 (      )
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Con estos resultados, representamos la distribución total, agrupando los resultados anteriores 

en una sola figura: 

 

Figura 2. Razón de desintegración como función de la masa del Higgs. 

La figura 2 resume los resultados obtenidos al incluir en nuestro cálculo la masa running del 

bottom. Logramos resultados similares a los que se muestran en Figura 1. La discusión de estos 

resultados  se presenta en las conclusiones del trabajo. 
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4. Conclusiones 

En este trabajo hemos calculado la anchura de desintegración del bosón de Higgs a fermiones 

y a bosones de gauge. Posteriormente, estimamos la razón de desintegración del bosón de 

Higgs y tenemos en cuenta la masa “running” de los fermiones. 

Discutamos los resultados obtenidos en Figura 2 comparándolos con los resultados publicados 

en Figura 1. 

El bosón de Higgs decae preferiblemente en las partículas más pesadas que sean posibles 

dependiendo de cuál sea la masa del Higgs. Así, si la masa del Higgs toma valores pequeños, 

menor que 160 GeV, entonces puede decaer en   ̅,     y   ̅ . Se observa que el canal a   ̅ 

es el dominante y sigue un comportamiento similar al de la Figura 1, con un 

probabilidad de desintegración del 80%, seguido  de los canales a      y   ̅, con 

probabilidades mucho menores, 14% y 7% respectivamente. Las razones de 

desintegración de estos canales son ligeramente inferiores a las de la Figura 1 por 

razones que al final comentaremos.  

Si la masa del Higgs es mayor que 160 GeV entonces puede desintegrarse en dos 

bosones  y si la masa del Higgs es mayor que 182 GeV, aparece el canal de dos 

bosones W. Notemos que en el caso de valores grandes de la masa del Higgs, la 

desintegración en dos bosones Z no es dominante. Esto se debe al hecho de que el 

canal a dos bosones W tiene dos grados de libertad:      y     . Es interesante 

darse cuenta de que para los bosones, observamos la aparición de picos de resonancias 

indicando que se requiere una energía inicial suficiente para producir las partículas finales. 

Como sabemos,  la masa del Higgs es 125.9 GeV, por tanto,  podemos afirmar que  el proceso 

dominante es la desintegración a   ̅ , a pesar de que el descubrimiento del Higgs en el LHC fue 

inicialmente en los canales      y             . 

Las diferencias entre las dos gráficas, Figura 1 y Figura 2, podrían resolverse incluyendo, por 

ejemplo, la masa running de todos los quarks y también las contribuciones de otros canales 

que son relevantes a órdenes mayores en teoría de perturbaciones. 
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