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1. Introduccién y objetivos

El escape de particulas desde un minimo de energia (metaestable) sobre una barrera
de potencial es un problema que ha sido estudiado por investigadores de multiples areas
del conocimiento [1]. Muchos procesos se pueden modelizar mediante particulas que deben
superar una barrera de potencial y, conociendo la tasa (o probabilidad o ratio) de escape, se
puede obtener informacién relevante sobre el proceso estudiado asi como de las caracteristicas
del potencial.

El desarrollo de la teoria que describe este problema, “Transition State Theory” (TST) [2],
comenzo gracias a la deduccién empirica de la ecuacion de Arrhenius (1) en 1889. En esta se
engloba la, en aquel entonces, observada dependencia de la tasa de una reacciéon quimica con

la temperatura
k = velalksT (1)

donde v es una constante y a E, se le denominé “energia de activacién”, aunque en un inicio
no se conocia el significado de estos pardmetros. Este es un problema que sélo puede ser
tratado con rigor dentro del marco de la mecédnica estadistica fuera del equilibrio.

La teoria de este fenémeno fue desarrollada por varios investigadores. H. Eyring,
estudiando la descomposicién de moléculas, consiguié en 1935 empleando la mecédnica
estadistica expresar, a través de las funciones de particién del sistema, la tasa en funcién
de pardametros relacionados con el potencial subyacente [3], pero no fue hasta 1978 cuando
Chandler demostro al fin que la energia de activacién correspondia a la diferencia de energia
libre entre los dos estados de la reaccién [2], es decir, a una barrera de potencial. Mientras se
estaba desarrollando la TST, Kramers (en 1940) dedujo una expresién para la constante v
resolviendo la ecuacion maestra que describe el movimiento de una distribucién de particulas
en un medio disipativo sometida a la influencia de un potencial y fluctuaciones térmicas. En
1980 Pollak demostré la conexién entre la teoria de Kramers y la TST, cerrando el circulo [3].

En la teoria de Kramers, se considera habitualmente una interaccién con el medio
(codificada a través del coeficiente de viscosidad de este, de ahora en adelante llamado
“damping”) espacial y temporalmente homogénea. Sin embargo, dadas las escalas de tamanos
y tiempos tipicos en los sistemas bioldgicos, uno de los posibles objetos de estudio de esta
teoria, estos tienden a ser altamente inhomogéneos. De particular interés es la introduccion de
un damping dependiente de una coordenada de reaccién espacial, habitualmente la posicién,
ya que distintas moléculas cambian sus propiedades en la proximidad de otros elementos.
Un ejemplo de esto es el retraso de la dindmica de las moléculas de agua (verificado tanto
numérica como experimentalmente) al encontrarse en las proximidades de macromoléculas
como proteinas [4], o el cambio en las interacciones entre los residuos de una proteina al estar
en su estado nativo o desdoblado, altamente dependientes de su interaccién con el medio.

Una de las aplicaciones biolégicas de interés de la teoria de Kramers es el estudio
de la denaturalizacién térmica del ADN, la molécula polimérica formada por dos hebras
complementadas unidas y encargada de almacenar la informacién genética de las células.
La importancia de este fenémeno tiene dos razones: por una parte, el estudio de la
desnaturalizaciéon térmica proporciona informacién relevante sobre las interacciones y
dindmica que gobiernan el comportamiento del polimero. Por otra, la desnaturalizacién
térmica es muy similar al proceso de transcripcién, que es el primer paso en la formacion de

proteinas. En este una proteasa, la llamada DNA polimerasa, despliega las dos hebras de ADN



en una zona determinada (formando una “burbuja”) y la recorre, generando a su paso una
hebra de RNA mensajero complementaria a la cadena que luego se empleard en el ensamblaje
de la proteina codificada en dicho segmento. La formacién de estas burbujas también se
produce en la desnaturalizacion térmica, por lo que entender la primera es fundamental para
poder comprender la transcripcién [5]. Ademads, estos dos procesos no son solo interesantes
desde el punto de vista biolégico, sino que su estudio ha permitido el desarrollo de diferentes
aplicaciones tecnolégicas de interés médico, cientifico e industrial, tales como los anélisis PCR
para deteccién de genomas.

En este trabajo introduciremos la teoria de Kramers y derivaremos sus principales
resultados, complementando las expresiones analiticas junto a simulaciones numéricas en
un sistema sencillo en la Secciéon 2. En la Seccién 3, introduciremos la posibilidad de
tener un damping dependiente de la posicién, discutiendo posibles cambios en la teoria
inicialmente planteada y el efecto de estos en nuestras simulaciones, asi cémo haciendo
nuevos calculos numeéricos y comparandolos con el caso homogéneo. La Seccién 4 introducira
el ADN, el modelo que usaremos para describir su comportamiento y los observables
a monitorizar, estudiando este sistema tanto con damping homogéneo como variable.
Finalmente, recapitularemos todo lo observado y extraeremos las conclusiones pertinentes

en la Seccion 5.

2. Teoria de Kramers

La teoria de Kramers resuelve el problema de la transicién a través de una barrera
de potencial utilizando la fisica estadistica fuera del equilibrio. En el trabajo original de
Kramers [6], se resuelve el célculo de la tasa de salto por encima de una de estas barreras
en condiciones de sobreamortiguamiento, es decir, situaciones en que el damping es muy
elevado. De esta forma, los términos disipativos (proporcionales al damping y la velocidad de
la particula) de las ecuaciones del movimiento son muy superiores respecto a los inerciales
(dados por la masa y la aceleracién de la particula), permitiendo ignorar estos tltimos y
asi lograr una descripcién del problema maés sencilla. La dependencia de la tasa de saltos
con el damping no es trivial, y la curva completa tiene diversos regimenes dependiendo
de la magnitud de este. A lo largo de esta seccién seguiremos los célculos de la teoria
de Kramers, introduciendo las expresiones analiticas para distintos valores del damping y
empleando simulaciones para verificar y complementar dichos resultados.

2.1. Deducciéon analitica de la tasa de salto en el limite sobreamortiguado

Dado un potencial V(x) que presenta una barrera de potencial AU, la tasa de escape r
se define como el flujo total de particulas que escapan del pozo J dividido por el nimero de
particulas que se encuentran en él p.

(2)

T =

J
p



Figura 1: Esquema del escape de una particula sobre una barrera de potencial. La particula se
coloca inicialmente en la posicién del minimo A y se contabiliza el tiempo que pasa hasta que es
capaz de superar la barrera de potencial AU y alcanzar la posicién B.

La corriente de particulas tendra dos contribuciones: la corriente de difusién (causada por
el impulso cedido a las particulas a través de la temperatura del sistema) y la corriente de
deriva (con el potencial V' (z) como origen).

1dV(x)
rift = — — P at
JDrift ~ dx (z,1) (3)
OP(x,t
JDifusion = _Da(x> (4)

Reagrupando términos, la corriente total se puede escribir como:

V@ g [ v@
J(.Z',t) = JDrift + JDifusion =—De *sBT % |:ekBTP<m7t):| (5)

donde D corresponde a la constante de difusion, que se puede relacionar con la disipacion del
medio (damping) mediante la relacién de Einstein, a través de la temperatura: D = kgT'/~.

Asumiendo condiciones de quasi-equilibrio, es decir, que el sistema tiene una rapida
termalizacién y que el flujo de particulas que atraviesa la barrera es constante en el tiempo
pero extremadamente bajo, la corriente se puede considerar constante J(z,t) = J. Puede
entonces integrarse la expresion anterior entre el minimo de potencial A (origen de las
particulas) hasta un punto cualquiera B suficientemente alejado de la barrera. Esto iltimo
permite también aproximar que P(B) = 0, ya que el flujo de particulas aunque constante es

practicamente nulo, y asi
DP AeVA/ kT

J= (6)

[P V@ /knT gy

Ademsds, en condiciones de quasi-equilibrio y asumiendo una barrera suficientemente alta
AU /kpT se puede aproximar la distribucién de particulas en torno al minimo del pozo de
potencial como la distribucién de equilibrio, que corresponde a la distribuciéon de Boltzman.



Esta condicion se cumple con bastante precision, e integrando en torno al minimo se obtiene

el nimero de particulas p mencionado en la ecuacién (2).

A+A A+A
p= / P(z)dx = PA/ e~ (V(@)=Va)/ksT g (7)
A—A A—A

En la integracién en torno al minimo, se pueden tomar como limites de integracién dos puntos
x1y w2 donde si x < x1 0 & > 9 la probabilidad decae a cero P(x) — 0.
Uniendo ambos resultados se llega a la expresién para calcular la tasa de salto.

-1

B V(z)/kgT 9
TKHD = / S x/ e V@)/ksT gy (8)
A D 1

donde el subindice KHD corresponde con Kramers High Damping. Esta integral no se puede
calcular de manera analitica para un potencial arbitrario, sin embargo es posible llegar a una
expresién analitica compacta si se consideran los desarrollos de Taylor del potencial en el
entorno del minimo A y del maximo C del potencial.

Via) % Va+ 5V (wa) (o )’ o
Viz) = Vo + %V”(xc)(a: — 1'0)2

Realizando esta aproximacién e integrando (se obtienen integrales Gaussianas) se llega
finalmente a la famosa expresién de Kramers para la tasa de salto en el limite

sobreamortiguado.
(JJAUJC efAU/kBT (10)

TKHD = 2777

donde w4 y we estan relacionadas con la curvatura del potencial en el minimo y el maximo
respectivamente. ws = /V"(z4) y we = /|[V"(zc)|.

Se puede interprertar fisicamente la ecuacién (8) observando que es el producto de
3 contribuciones: el nimero de intentos de alcanzar la barrera por unidad de tiempo
(dependiente de wy), la probabilidad de alcanzar la barrera (dependiente de la altura de
la barrera AU) y la probabilidad de superar la barrera una vez alcanzada (dependiente de
we /7).

Sin embargo, como veremos en el resto de la seccién, el limite sobreamortiguado (que
aparece para 7 >> 1) no cubre el amplio rango de valores de damping que queremos explorar.
Es 1til para regiones donde las particula (par de bases, aminoédcido o lo que represente) esté
muy expuesta al solvente pero no en aquellas regiones donde la interacciéon con el bano sea
débil.

Por ello, para completar el escenario proporcionamos las expresiones para los otros dos
rangos de interés. La obtencién de estas expresiones es mas complicada y esta fuera del
alcance de este trabajo. Las expresiones de la tasa de salto para otros intervalos de damping

se muestran a continuacién:

» Limite de moderado a alto damping;:

waA
"kMHD = kxmuD X ﬁe AU/ksT (11)
donde:
2
v v
k =4/1 — 12
KMHD + <2w0) e (12)



= Limite de moderado a bajo damping:

TKMLD = 5 kT

donde:

S = f VIV (zo) = V(a)de (14)

donde S se calcula en una oscilacién hasta la barrera.

Es importante notar céomo, en el limite de alto damping, la tasa de escape tiene una
dependencia inversamente proporcional al valor del damping mientras que, en el limite de
damping bajo, la dependencia es directamente proporcional.

Finalmente, la tasa de salto se puede obtener también a partir del llamado “primer tiempo
de paso medio” (t). El “primer tiempo de paso” se define como el tiempo que utiliza cada
particula en alcanzar un punto determinado maés alla de la barrera. El valor medio de la
distribucién de estos tiempos es inversamente proporcional a la tasa de salto [7]:

r=— (15)

Se utilizard esta expresion, calculando el tiempo de paso medio de las particulas a través del

potencial para calcular las tasas con las simulaciones descritas en la siguiente subseccion.

2.2. Simulacion

En esta seccion utilizaremos un método de simulacién numérica para calcular la tasa de
escape. Para realizar las simulaciones se va a resolver numéricamente la ecuacion de Langevin
(16) ya que esta ecuacién describe el movimiento de una particula en un bano térmico a
temperatura constante y sometida a un potencial V' (z) (Ver Apéndice 7.1)

d*x dz dV (z)

MEr - e
dt Tt d

donde M es la masa de la particula (tomada como M = 1), v es el damping del sistema y

+ &(x,t) (16)

&(x,t) representa el ruido térmico. Representaremos este ultimo como un ruido gaussiano
blanco, de media 0 y correlacién temporal dada por una delta de Dirac: ({(z,t)) =
0y &z, t)¢(z,t")) = cod(t — '), donde ¢y = 2vkpT.

Para integrar numéricamente la ecuacién (16) debe primero escogerse un algoritmo
adecuado para ello, dependiente de los parametros y condiciones que describen nuestro
sistema. Puede observarse que el término estocastico (ruido) de la ecuacién de Langevin
depende del damping a través de su coeficiente de correlacién. Si el damping es constante
(uniforme), este ¢y es independiente del tiempo, y tenemos el denominado ruido aditivo. Si,
como serd nuestro caso en apartados posteriores, el ruido puede depender de la posicién
de la particula se le denomina ruido multiplicativo y requiere de algoritmos especificos para
integrarlo correctamente. A lo largo de este trabajo utilizaremos el llamado algoritmo de
Heun [8], sencillo de implementar y de segundo orden en el paso de tiempo. En el Anexo 7.2
se puede encontrar mas informacién sobre el mismo. Ademas, el uso de ecuaciones con ruido
multiplicativo provoca la necesidad de tratar con la interpretacion de la integracion estocéstica
que, al ser un asunto tanto técnico, se desarrolla en el Anexo 7.4.



El primer paso sera definir el potencial a través del cudl se va a medir la tasa de salto. La
Unica condicién es que este potencial presente al menos un minimo y un méaximo, pudiendo

definir una barrera de potencial. Lo mas sencillo, por tanto, es elegir un potencial cibico:
V(z) = az® + ba? (17)

En segundo lugar hay que definir las condiciones de medida, segin [7] se debe de cumplir
AU/kgT > 5 para minimizar los efectos de barrera finita. Si se toma AU/kpT demasiado bajo
las particulas seran capaces de saltar la barrera con facilidad por las fluctuaciones térmicas,
casi sin sentir el efecto del potencial, sin embargo, tomar AU/kpT extremadamente alto
provocaria que las simulaciones se alargaran demasiado. Los parametros escogidos han sido
a=22yb=—1,1y se ha fijado la temperatura a kT = 0,2 asi se ha conseguido que la
tasa quede AU/kpT ~ 6,5.

Ahora se tomara una muestra representativa de particulas que se introducen en el sistema,
en el minimo de potencial, x4 = 0, con una velocidad que siga la distribuciéon de Boltzmann
(18); la raz6n de esto se encuentra en el siguiente apartado. Posteriormente se deja evolucionar
el sistema hasta que las particulas alcanzan una posicién xp posterior a la del maximo z¢, y
se guarda el tiempo que ha tardado en llegar cada una de las particulas a esa posicién xp.

Normalmente en las simulaciones con un bafio térmico se ha de termalizar el sistema;
dejar que este evolucione un tiempo determinado hasta alcanzar una situacion de equilibrio
antes de comenzar a medir. Esto implica no tener en cuenta los primeros pasos de tiempo para
que las particulas lleguen a tener el comportamiento esperado a la temperatura del sistema.
Sin embargo, como queremos saber el tiempo que tarda la particula en alcanzar una posicién
xp si se termalizase se estaria introduciendo un error sistematico en el tiempo de todas las
particulas. En torno al minimo se puede aproximar que el potencial cibico es parabdlico,
y es conocido que en un potencial de este tipo la distribucién de velocidades corresponde
a una distribucién Gaussianna de varianza kg7 /m cuando el sistema esta ya termalizado.
Asignando velocidades iniciales a las particulas del sistema acorde a esta distribucién podemos
obviar este paso, comenzando con un sistema ya en equilibrio.

[ kT
m

donde Z; es un nimero aleatorio gaussiano obtenido empleando el algoritmo de Box-Muller,
que puede encontrarse en el Anexo 6.3.

De esta primera parte sélo falta definir como se va a realizar la medida de la tasa de paso
o el tiempo medio de salto. El salto sobre la barrera es un proceso estocdstico de Poisson y
por ello los tiempos de estancia siguen una distribucién exponencial. La primera posibilidad
entonces es tomar el tiempo caracteristico 7 a partir de la definicién de la distribucién de

tiempos, extrayéndolo mediante un ajuste, como en la Figura 2.
P(t) oce”t/7 (19)

Otra posibilidad para realizar este cdlculo es obtener el valor medio de los tiempos de salto,
ya que la media de una distribucién exponencial es la constante de dicha distribucién. Con

suficiente muestreo ambas medidas deberian coincidir.
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Figura 2: Distribucién de tiempos para v = 0,5, esta sigue una dependencia
exponencial. b) Representacién en escala logaritmica junto a un ajuste a una funcién

exponencial.

Ambas medidas se estudiaron para distintos valores de damping del sistema, como se ve
en la Figura 3. Los resultados reflejan que ambas magnitudes siguen la misma tendencia y que
sus valores son compatibles dentro del error. Por tanto se concluye que ambas son adecuadas
para describir el comportamiento. Para el resto de simulaciones se escoge emplear el valor
medio, mas sencillo de calcular.

Otro efecto importante a tener en cuenta que afectara a los resultados es la eleccion del
punto xp en el que consideramos que una particula ha escapado del potencial y no podra
volver. Debido a la estocasticidad del sistema, la definicién de un punto de no retorno en
los fenémenos de salto de barrera es potencialmente problematico. Si se escoge un punto
demasiado préximo no sera realista, ya que un nimero significativo de particulas podrian
experimentar una fuerza estocastica en direccién contraria y volver a posiciones r < zp
después de pasar por ese punto. Por otra parte, un valor demasiado elevado puede llevar
a sobreestimaciones del tiempo de paso. Ademds, como la amplitud (coeficiente ¢y) de la
fuerza estocastica depende del damping, los valores adecuados de xg cambiaran con ~y. En la
Figura 3, se puede ver como en los valores de menor damping v = 0,05 y v = 0,1 no se observa
un cambio al alejar el punto zp de la posicién del maximo?, pero al aumentar el damping
a v =1 el valor del tiempo aumenta hasta llegar a un valor de saturacién. Finamente, para
v =5 el efecto es méas notable.

En la Figura 4a se observa la representacién de la tendencia general de los tiempos con
el damping para diferentes valores de zp, pudiéndose comprobar que las curvas coinciden
hasta llegar al régimen de alto damping. También se representan funciones de ajuste para los
limites de bajo y alto damping, comprobandose las dependencias previamente establecidas
en (10) y (13). Podemos observar que en el limite de alto damping la dependencia con v es
lineal, tal y como se esperaba segin la ecuacién (10); cambiar el valor de zp solo afecta a
la pendiente. La Figura 4b contiene la misma tendencia en escala logaritmica, apreciandose
mejor el ajuste a bajo damping.

2La posicién del maximo con los pardmetros escogidos cae en z¢ = 1,3.
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Figura 3: Comparacién entre el valor medio (azul) o el ajuste a la distribucién (rojo)
para el célculo del tiempo de salto en funcién de distintos valores del punto de corte
xp. Cada grafica corresponde a un valor de damping v diferente.

Teniendo en cuenta que el tiempo de paso es inversamente proporcional a la tasa, las

funciones empleadas para los ajustes son:

Limite overdamped: f(z) =ax+b Vy >5 -
Limite moderado a bajo damping: g(x) = ¢/z +d Vv < 0,1 (20)
Los valores obtenidos para los parametros de estas curvas se recogen en la Tabla 1.
Centréandonos primero en el ajuste a g(z), puede observarse que los distintos pardmetros
para los valores de zp escogidos son compatibles entre si. Este hecho era algo esperable a
partir de la Figura 3: los efectos de cambiar xp a bajo damping son practicamente nulos.
En el limite de alto a moderado damping la situacién es la contraria; la pendiente de
f(x) cambia significativamente con x . Una explicacién para este fenémeno tiene origen en la
creciente importancia del término estocédstico con el valor de -y, permitiendo a particulas en
posiciones mas alld del maximo volver a entrar en el interior del pozo y cambiando por tanto
los valores del tiempo de escape segin el xp escogido, tal y como se veia en la parte de alto
damping de la Fig. 3.
Vistos estos resultados, se escoge un valor de xp = 1,6 para el resto de simulaciones a
partir de este punto.
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Figura 4: Tiempo de primer paso en funcién de « para varios xg, con KgT = 0,2. Las
lineas se corresponden a ajustes realizados en los limites de alto y bajo damping.

Para finalizar esta seccidn, se prueba a realizar un ajuste a todo el rango de =
conjuntamente. No existe una expresion especifica, pero se puede realizar la interpolacién
entre las funciones para ambos limites, construyendo una nueva funcién h(x) como el producto
de f(z) y g(x):

h(z) = f(z) X g(x) = qz +p/x + s (21)

El ajuste realizado a la ecuacién (21) se muestra en la Figura 5 y en la Tabla 1 se
recogen los parametros empleados. El resultado muestra que la interpolacién logra reproducir
el comportamiento general de la tendencia, con pequenas diferencias encontradas en la zona
de damping intermedio.

Distribucién Uniforme, zp
Funciones 1,4 1,5 1,6 1,7
£(x) a 636.8 + 1.7 781.8 + 14 866 + 3 908.6 + 1.5
b 1708 £+ 10 1600 £ 8 1450 £+ 18 1336 £ 8
c 224.6 £ 0.9 2245 +£ 1.3 223.6 + 1.3 225.1+1.9
&%) d 1438 + 13 1460 + 22 1460 + 17 1445 + 22
q 637.7 = 0.9 775.7 £ 0.9 8359 + 14 883.0 £ 1.0
h(x) p 205.5 + 04 214.3 £ 04 211.7+ 04 218.9 +£ 0.6
S 1673 + 4 1601 4+ 4 1587 £ 3 1454 £+ 4

Tabla 1: Resultados de los pardmetros de ajuste de las figuras 4 y 5. Las funciones son: f(z) = az+b,

g(x) =c/z+dy hz) =qv+p/z+s.
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Figura 5: Ajuste a la tendencia completa del tiempo de primer paso medio en funcién del damping.
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2.3. Correccion a damping moderado

Realmente, aunque hayamos visto en la Figura 4 que los limites se comporta como la
teoria predice, no se han comparado los tiempos de primer salto con las expresiones (10) y
(13).

Si comparamos las simulaciones con las expresiones tedricas extraidas en apartados
anteriores, contenido en la Figura 6, pueden verse ciertas discrepancias. En particular,
las simulaciones con altos valores de damping se alejan de la expresion para el limite
sobreamortiguado (10) (negro en Fig. 6), siendo bastante mejor ajustados por la ecuacién
(11), méas apropiada para valores entre moderados y altos de damping (en color rojo).

La razén detrds de este desacuerdo radica en la forma en que se han realizado las
aproximaciones tedricas y simulaciones. Para el cdlculo de la expresion (10) se ha despreciado
el término inercial de la ecuacién de Langevin, algo razonable en esos valores de damping
pero que no hemos aplicado en nuestras simulaciones. Es por esto que en las simulaciones
podemos no estar todavia en el limite sobreamortiguado, y la expresiéon més correcta sea la
de moderado a alto damping. Esta observacion es ademds compatible con el hecho de que
la diferencia con la curva del limite overdamped se va reduciendo conforme aumentamos el

damping.
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Figura 6: Comparacién de los resultados por simulacién (puntos azules) junto con los valores
obtenidos aplicando las expresiones deducidas para el limite de alto damping (linea negros) y el
limite de damping moderado a alto (linea rojos). Se observa una mayor coincidencia de las
simulaciones con el limite moderado a alto.

3. Introduccién del damping variable

Una vez presentada la teoria de Kramers y establecido las pautas a seguir al realizar
las simulaciones, se procede a introducir la modificacién al modelo. Se define un damping
dependiente de la posicién para obtener asi un sistema inhomogéneo.

El damping variable se define a partir de una funcién sigmoide, que codifica el efecto de
la posicién. Tenemos entonces dos parametros principales: g, correspondiente con el valor
umbral del damping, y 1, que regula la altura de la sigmoide. Aparte de estos dos, hay
otras variables a tener en cuenta: xg, correspondiente al centro de la funcién y «, que es
inversamente proporcional a la anchura de esta.

Ademsds, existen dos casos a considerar, dependiendo de si el damping aumenta o
disminuye con z. Estos dos casos estdn recogidos en las ecuaciones (22) y (23) respectivamente.

A lo largo de este apartado cambiaremos los valores de ~;. De esta forma, cuando
cambiemos la ecuacién (22) diremos que cambiamos el damping del interior del pozo, pues
afecta a valores de z < zp. Cuando cambiemos la ecuacién (23), diremos que cambiamos el
damping exterior, con = > xg.

’ylin

Vint(x) = Y0,n; T —1 I e—oc(t:c—xo) (22)
,ylez

Yext (T) = Y0opy — 1 _'_ea(;,IO) (23)

Primero se analizard cémo cambian los resultados obtenidos en (4) al variar el pardmetro ;.
Después, veremos como afectan a los resultados la eleccién del centro de la sigmoide xg y de

su anchura o.
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3.1. Cambio de tendencia respecto al caso uniforme.

Se realiza el mismo procedimiento descrito en el apartado anterior introduciendo la
variacién del damping mediante las expresiones (22) y (23) por separado. Se fija un valor
de a =10y de zg = 1.

En una de las simulaciones, se fija el damping interior a 7p,,, = 0,05 y se emplea la
expresion (22); en el otro caso, se fija el damping exterior a 7yp,,, = 5 y se emplea la expresién
(23). El pardmetro que varia de punto a punto es el valor de 71, y la representacién se hard
en funcién del damping efectivo (24) ya que es necesario realizar una traslacién de los puntos
para poder recuperar los valores del paso de tiempo para el caso uniforme cuando v;=0.

76& = fyoint + ’ylint o fyeﬁ‘ = fyoewt - fylewt (24)

Asi, si se representa en funcién de 7eg, al considerar que 7 = 0 los puntos en la grafica
coincidiran con el resultado para el caso uniforme con damping .

Los resultados se muestran en la Figura 7, se ha representado en color rojo la curva
obtenida al mantener el damping interior fijo y en color morado la curva del caso con damping
exterior fijo. Ambas curvas se han comparado en 7b con la obtenida en el caso uniforme (curva
azul), se tomo para todas las curvas zp = 1,6.

Puede observarse que, al introducir el damping variable, la dindmica del sistema se retrasa
sustancialmente, aumentando todos los tiempos de paso. El unico punto en que las curvas
coinciden con el caso uniforme es con v.g = 5 para el damping interior, coincidente con v =5
en la uniforme, y v = 0,1 en la exterior, coincidente con v = 0,1 en la uniforme.

Esto tiene sentido, dado que en dichos puntos las sigmoides son completamente planas,

confirmando el buen funcionamiento del sistema.

7500

- T 8000 ‘ :
Damping Interior Fijo —— .
A Damping Exterior Fijo —— 4/.\ . T
V 7000 V 7000 - . 1
o 2 i *
(%] © . -
3 26000 ff . .
&5 6500 o % "‘,.....M"
E Eso00f $ ]
o o o
@ 6000 o .
2 S 4000 s . i
o o .
=3 a ) .
& 5500 £ 3000 - t Damping Uniforme —=— |
= Q . . Damping Exterior Fijo —=—
= 2000 * ‘ ‘ ‘ quping ‘Interio‘r Fijo —
2000 0 0 1 2 3 4 5 6 7 8
y Efectivo y Efectivo
(a) Resultados de variacién de damping. (b) Comparacién con el caso uniforme.

Figura 7: Cambio en la tendencia al incluir un damping variable.

Por dltimo notar que la tendencia general se mantiene ain habiendo introducido la
dependencia con la posicién: a alto damping se sigue observando una dependencia lineal
y en 7b se puede apreciar que para bajo damping el paso de tiempo comienza a aumentar de
nuevo.

De forma similar al caso uniforme, podemos tratar de ajustar las dependencias de los
tiempos de paso con gamma. Las expresiones tedricas (10) y (11) no nos servirdn en este
caso, ya que fueron desarrolladas asumiendo damping uniforme.
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Distribucién Variable
~ Interior Fija v Exterior Fija

f(x) a 736 £ 3 114.9 £ 1.7

b 3250 £+ 21 5160 + 7
?é q 829 £ 3 121.3 £ 0.9
é b (x) p 6770 £ 150 103.6 £ 0.9

s 1790 £+ 40 5107 £ 3

Toff -1.60 £ 0.02 0.0

Tabla 2: Resultados pardmetros de ajuste de las figuras 7 y 8.

Sin embargo, y tal y como podemos observar en la Figura 7, las dependencias generales
con gamma a bajo y alto damping si parecen mantenerse. Es por eso que procedemos al
ajuste con las mismas funciones planteadas en el apartado anterior.

La zona de alto damping se ajusta con f(x), contenida en la ecuacién (20). Los resultados
de este ajuste pueden observarse en la Figura 7, mostrando que la tendencia es efectivamente
lineal. Los valores de los parametros de ajuste se encuentran en la Tabla 2.

Por otra parte, para ajustar la tendencia completa podemos volver a usar h(z) pero con
una pequena modificacién: dado que g introduce en el caso interior un damping minimo en
el sistema, debe emplearse un parametro de offset y desplazar la curva hacia la derecha. Este

pardmetro zog serd 0 para el caso exterior. Asi, la nueva funcién h'(x) queda:
B (z) = gz +p/(x — zot) + s (25)

Los ajustes, mostrados por separado en la Fig. 8, prueban ser muy satisfactorios. Los
parametros empleados se muestran en la Tabla 2.

6200 11000
5 5
V 6000 \/ 10000 7 v
2 2 -

9000 |- :
& 5800 < ;
g T 8000 <
S £ #
= 5600 = #
Q 2 7000 |- # :
(] (] 5
'g 5400 'g s
2 2 6000 ;\‘\_/ - |
& 5200 1 8 soo) > 1
|_ . . . I_ . . .
Damping Exterior Fijo —®— Damping Interior Fijo +—*—
5000 Il Il Il Il Il Il Il Il 4000 Il Il Il Il Il Il Il Il Il
0 05 1 15 2 25 3 35 4 45 5 1 2 3 4 5 6 7 8 9 10
y Efectivo y Efectivo
(a) Resultados de variacién de damping. (b) Comparacién con el caso uniforme.

Figura 8: Cambio en la tendencia al incluir un damping variable. Las escalas de las
graficas se han reescalado para observar la tendencia de cada caso. La tendencia se
representa junto a un ajuste a h’(x,t).
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3.2. Efecto de los parametros del damping variable

A continuacién, se va a analizar como afecta la eleccién de los otros pardmetros de (22)
y (23). Para ello fijamos un valor de 1, mantenemos los valores de 7y y vemos cémo cambia
el valor del tiempo de paso en funcién de xgp y de «.

Comencemos estudiando el efecto del pardmetro xg. El comportamiento puede intuirse
a priori sin necesidad de hacer simulaciones: tomando los limites z > zg y * < x¢ las

exponenciales se aproximaran a 0 o infinito segin el caso, de forma que

Yint(T) = Y0ine
’Veact(l') = Vext — Vewt

'Yint(x) = Vint T Vine

Si x> x,
Vext(m) = Y0ext

Sir < x,

Es decir, en los limites tendemos a alcanzar tiempos caracteristicos de un sistema uniforme
con g O con 7y * 71, segun sea el caso interior o exterior. En las zonas intermedias
tendremos un comportamiento acorde al valor del damping, de forma que los tiempos deberian
describir una sigmoide. Todos estos resultados puede observarse en la Fig. 9, donde quedan
representados los resultados de las simulaciones junto a los limites en el damping y el ajuste

a una funcién sigmoide, confirmando el comportamiento del tiempo con xq predicho.

T 5800 T T T
A [ e e A ——— B S-S e— A AN S S S € o
-+ -+
v V 5600 8 .
Q5500 o i ) *
3 . S "
. #  Simulacién —&— + 5400 - Puntos Simulacion —e— @ J
& 5000 - damping=0.05 —--—-- . 2 damping=5 —--—--
£ amping=0.05 £ amping=5 .
5 #  damping=0.1 5 damping=4
- 4500 - Ajuste . g 5200 Ajuste Y 1
8. 9 8_ [\
& 4000 - 1 & 5000 ]
= s o2 = $ szee
3500 : : : : 4800 : : : :
-2 -1 0 1 2 -2 -1 0 1 2 3
Xo Xo

(a) Damping Interior Fijo.

(b) Damping Exterior Fijo.

Figura 9: Variacién del tiempo de salto en funcién del pardmetro xo de la funcién de
damping variable. La figura a) corresponde a fijar un damping interior p;,: = 0,05 e
introducir un 71,5+ = 0,05. La figura b) corresponde a fijar un damping exterior

Yoezt = D € introducir un vyieze = 1.

El pardmetro o es inversamente proporcional a la anchura de la sigmoide. De esta
forma, un valor de o = 0 devuelve una curva completamente uniforme, y los resultados
se corresponden con un . = Yo £ 71/2 segin el caso (no confundir con el damping efectivo
definido en la subseccién anterior). En el otro extremo, un valor de a — oo nos devuelve una
funcién escalén, y resulta complicada la definicién de un +/; para el sistema.

Los resultados de la variaciéon de o se muestran en la Figura 10. El resultado de estas
simulaciones vuelve a coincidir con lo esperado de las expresiones tedricas; no se alcanza el
limite de 7. = Y0£71/2 porque el valor minimo simulado es a = 0,05, explicando las posibles
discrepancias.
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Figura 10: Variacién del tiempo de salto en funcién del pardmetro o de la funcién de
damping variable. La figura a) corresponde a fijar un damping interior p;,: = 0,05 e
introducir un ~1;,; = 0,05. La figura b) corresponde a fijar un damping exterior

Yoezt = D € introducir un vie,; = 1.

En la Tabla 3 estd recogido un resumen de los valores relevantes que se han empleado al
realizar las comparaciones con el caso uniforme en las figuras (9) y (10).

Damping uniforme (t) Damping uniforme (t)
Yoint = 0,05 5950 + 17 Yoewt = 5741 £ 16
Vet (int) = 0,1 3705 £ 10 Vet (ext) = 4 4889 + 14
~Noint + Y1int/2 = 0,075 | 4420 £ 12 | | Yieot + Y1eat/2 = 4,5 | 5315 £ 15

Tabla 3: Valor medio primer tiempo de paso para damping uniforme, estos valores han sido los
empleados para las lineas rectas de las figuras 9 y 10.

4. Aplicacion a la desnaturalizaciéon térmica del ADN

El ADN es la molécula que trasmite la informacién genética en las células. Esta
informacién estd codificada en su estructura pero la lectura de la misma (transcripcién)
y su transmisién a las células hijas (duplicacién) estd determinada por complejos procesos
donde la dindmica de la molécula es crucial. En este apartado estudiaremos la dindmica de la
molécula del ADN cerca de la temperatura donde se produce su desnaturalizaciéon térmica.
Esta se produce por el desarrollo de excitaciones no lineales (que denominaremos burbujas)
que eventualmente disparan la separaciéon de las cadenas. En primer lugar haremos un breve
repaso de la estructura del ADN, y de las energias involucradas en su estabilidad. Luego
introducimos un modelo fisico estadistico y dindmico (PBD de Peyrard-Bishop-Daxois) que

nos permitira estudiar la dinamica de estas excitaciones.
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4.1. Estructura del ADN

El ADN es un biopolimero, es decir, una molécula larga de componentes més sencillos. El
componente basico del ADN son los nucleétidos que estan constituidos por tres componentes:
Una molécula de azticar, un grupo fosfato y una base nitrogenada. Los nucledtidos se unen
entre si mediante un enlace covalente entre el grupo fosfato de uno y la molécula de azticar

del siguiente, de esta manera se forma una hebra de nucleétidos.

La molécula de ADN estd compuesta por dos hebras entrelazadas formando una doble
hélice. La unién entre las hebras se produce a través de enlaces de hidrégeno entre las bases
nitrogenadas. Hay 4 tipos: Adenina (A), Citosina (C), Timina (T) y Guanina (G). Los posibles
enlaces entre ellos son: A-T con 2 puentes de hidrégeno o G-C con 3 puentes de hidréogeno.
Esto hace que el enlace del par de bases GC sea mads estable que el de AT, siendo maés dificil
de romper, ver Figura 11.

También hay que tener en cuenta que el enlace de hidrégeno es un enlace débil comparado
con los enlaces covalentes que forman las hebras y esto permite que los enlaces de hidrégeno
puedan romperse debido a las fluctuaciones térmicas y por tanto, permita la desnaturalizacion
térmica del ADN.

Ademas, cuando la doble hélice estd unida, las bases quedan alineadas y esto permite que
se produzca una interaccién entre los electrones m de los anillos que forman las bases debido
al solapamiento de sus orbitales. Esto da lugar a una interaccién entre pares de bases vecinas
que se denomina de apilamiento (o stacking) que estabiliza la molécula. Cuando la unién
entre las bases complementarias se rompe, se puede producir una rotacién de las mismas que
hace que ya no estén alineadas y por tanto se pierda esa aportacién a la estabilidad de la
molécula.

H \
R N—H O R
/N:C< \\C—N\/ N=C” \\caw\/
R R \
SN-C N H—N C—H "Sy-C N C—
h \\CAC// \CTC/ naGg G \Cy
Cx~y N\ yan c B
)-( =N /N 4 EHB }—( =V \\0 H h/ Y

C
3'en d
o" i
Ny —0 S \\\\
07 NN
NN,
s , 0

Figura 11: Estructura del ADN. En A se pueden ver las diferentes bases presenten en el ADN. En
B se muestra como las bases estdn unidas para formar la doble hélice del ADN representada en C.
Imagen obtenida de [9]
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4.2. Modelo PBD

El modelo PDB es un modelo unidimensional minimalista que solo tiene en consideracién
las variables y parametros que influyen en el proceso de desnaturalizaciéon. El modelo PBD
tiene como variables la distancia entre pares de bases y;. Solo considera dos interacciones
posibles que corresponden a las descritas en el apartado anterior. La primera representa la
energia de los enlaces de hidrégeno mediante un potencial V' (y,, ). La segunda corresponde a la
interaccion entre nucledtidos vecinos de la misma hebra y por tanto depende de dos variables
W (Yn, Yn—1)- Un esquema de este modelo se presenta en la Figura 12.

El Hamiltoniano del sistema se puede escribir entonces como:

2
Pn
H = § o+ W (yn,Yn—1) + V(yn) (26)

Para el potencial V(y,) se toma un potencial de Morse. Este potencial es cominmente
utilizado para describir enlaces quimicos y su forma se puede ver en la Figura 12. Tiene
un minimo en la posicién y = 0 y este valor corresponde al estado en el que el par de
bases estd cerrado. Ademads, permite que haya valores negativos de y que corresponden a
una compresiéon del enlace respecto a su posicién de equilibrio, aunque esta situacién esté
muy penalizada debido a la repulsién entre las bases si se aproximan demasiado (obstaculo
estérico). Finalmente, el potencial se vuelve casi plano para y grandes y por tanto describe
una interaccién que tiende a desvanecerse permitiendo la disociacion completa de las bases.

V(y) = Dyyle™ ™" — 1)? (27)

donde Dy, es la energia de disociacién del par y ay, es un pardmetro inverso a la distancia
que fija la escala espacial del potencial. Ambos pardmetros dependen del par de bases en el
que nos encontremos (bp=GC o bp=AT).

Por otro lado, para el potencial de “stacking” W (yn,yn—1) utilizaremos un potencial
armoénico modificado (no lineal) que tenga en cuenta la diferencia de acoplo entre pares
de bases vecinas en los estados abiertos y cerrados. La forma del potencial provoca que la
constante de acoplo se reduzca desde K(p + 1) a K cuando una de las bases se abre. Esta
modificacion fue introducida para tener en cuenta la interaccién entre orbitales m mencionada
antes. Cuando las bases dejan de estar alineadas y por tanto se reduce la estabilidad de la
molécula, se produce la disminucién del acoplo. La expresién de la energia de stacking (28)
refleja adecuadamente este comportamiento.

1 _
W(ynaynfl) = QK(l + pe 5(yn+yn71))(yn - yn71)2 (28)

La eleccién de los pardmetros que definen el hamiltoniano (Dyyp, app, K, p, ) se determina
mediante el ajuste de la temperatura de transicién del modelo, kpT. ~ (K Dyy)'/?/ay, [5]
y de su anchura (fuertemente condicionada por ¢ y p). En este trabajo utilizaremos los
siguientes parametros descritos en la literatura [5, 10, 11]: para el potencial V' (y,,) tomaremos
Dar =0,03eV yaar =4,5 A y para el potencial W (yy,, yn—1) usaremos K = 0,06 eVA_Q,

= 0,35 A y p = 3. La masa promedio de un par de bases es de m = 300 uma.

Por dltimo es conveniente trabajar en variable y parametros adimensionales y para ello

definimos las variables distancia, momento y tiempo normalizados (29).
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Figura 12: Esquema del modelo PBD. A la izquierda se puede ver la simplificacién de la estructura
del ADN, la variable del modelo son la distancia entre bases y. Se tienen en consideracién las dos
interacciones consideradas V(yn) v W (Yn,¥Yn—1)- A la derecha se muestra la forma del potencial de
Morse correspondiente a V (y,,). La imagen ha sido obtenida de [5].

Asf mismo, las energfas y temperaturas se miden en unidades de D,y,.

A N R (29)
El modelo PBD permite estudiar tanto propiedades de equilibrio como dindmicas, logrando
reproducir comportamientos observados experimentalmente, siendo este uno de los puntos de
su éxito. Se han propuesto a lo largo de los anos varias versiones modificadas de este modelo.
Por ejemplo en [10] se incluyen en el modelo una barrera de potencial para asi tener en cuenta
los efectos del solvente en la energia de ruptura del enlace (ecuacién 27). Este término refleja
la dificultad de replegamiento de las bases una vez se han separado debido al necesidad de

expulsar el agua en este proceso. La expresion para este potencial queda por tanto:

V(y) = Dyple¥ — 1)° + Ge= "3 (30)
la eleccion de los parametros en 27 que se han incluido son: G = 3Dy, b =1/ 2agp, Yo = 2/apy.
En la Figura 13 se representa el potencial V(y,) en unidades normalizadas, ahi se puede
observar como se modifica el potencial al incluir la barrera de potencial.

La mecénica estadistica del modelo PDB se puede resolver de forma exacta (aunque
numérica) usando métodos basados en la matriz de transferencia (u operador de transferencia
para sistemas continuos). Sin embargo, el estudio de las propiedades dindmicas requiere el
uso de la simulacién numérica.

Las simulaciones se realizardn con una cadena homogénea de 100 pares de bases AT, a la

que se imponen condiciones periddicas de contorno.

4.3. Desnaturalizacién térmica: Formacion de burbujas

Cuando el ADN es calentado por encima de una temperatura critica, la doble hélice se
separa por completo quedando dos hebras simples de ADN [12]. Este proceso se denomina
desnaturalizacion térmica del ADN y corresponde a una transicién de fase de primer orden
ya que pasamos de tener un estado donde las dos hebras que componen el ADN estan unidas
a otro estado donde estas estdn completamente separadas. Este es un proceso mediado por
la entropia ya que, a altas temperaturas, el aumento de entropia al separarse las hebras
compensa la energia necesaria para romper los enlaces de hidrégeno. La temperatura de
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Figura 13: La interaccién entre las bases de un pareja estd definido por el potencial V(y), representado
en unidades normalizadas en linea punteada, este corresponde a un potencial de Morse, pero se le puede
anadir una barrera para tener en cuenta efectos del solvente (linea sélida). Se considerard que una
base se encuentra abierta si su apertura y es mayor que la posicién del maximo.

transicién depende de la cadena de ADN, recordemos que los enlaces GC se producen por
tres enlaces de hidrégeno y los enlaces AT por dos enlaces de hidrégeno, por tanto, una
secuencia mas rica en GC tendrd una temperatura de transicién mayor por el simple hecho
de tener que romper una mayor cantidad de puentes de hidrégeno para separar las hebras de
ADN.

La transicién de fase no se produce de manera abrupta sino que comienza localmente para
temperaturas por debajo de la transicién. Se producen simultdaneamente en diferentes regiones
de la secuencia de ADN aperturas, a nivel local, de bases vecinas rodeadas de bases que se
encuentran cerradas, las estructuras que se generan se denominan burbujas de transicién.
Cuando la temperatura aumenta, las burbujas van aumentando de tamano hasta que, al
llegar a la temperatura de transicién, se produce la transicién de fase global donde se separan
completamente las hebras [13]. Una representaciéon esquemética de la transicién de fase puede
verse en la Figura 14.

s = B \
= > =

g \ |
= \ / ’
g &

s s | /|

g = /
s = |

s /\ / /
g V) ) '
=2 g =

s § s |

Figura 14: Esquematizacién de la transicién de fase de la desnaturalizacién térmica del ADN. Al
aumentar la temperatura, las bases se van abriendo formando burbujas que van creciendo de tamano
hasta que las dos hebras se separan por completo. Imagen obtenida de [13].
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Para caracterizar la transicion debemos definir cuando consideramos que una base se
encuentra abierta. Para ello se define una longitud umbral g, a partir de la cudl se considera
que el enlace del par de bases se ha roto. Se ha tomado 3, = 2, es decir, si se observa en la
Figura 13, se ha tomado justo en la posicién del médximo de la barrera, y asi se separan los
dos estados posibles (abierto o cerrado).

En la simulacién seguimos la evolucién de las variables v, v al igual que en el apartado
anterior usamos las ecuaciones de Langevin (16) de cada sitio de la cadena introduciendo en
este caso los potenciales (27) y (28). Cada 50 pasos de tiempo se comprueban si las bases
estan abiertas y se recoge en un fichero un “1” si esta abierta o un “0” si estd cerrada. Las
curvas describiendo la transicién del sistema, en la que se observan el incremento medio de
las bases en funcién de la temperatura, se pueden encontrar en el Anexo 7.5.

Empleando estos archivos se pueden obtener imagenes similares a la Figura 15, donde
el valor “1” se ha representado en blanco y el valor “0” en negro, obteniendo asi una

representacion visual de la evolucién en el tiempo de la generacion de burbujas.

0 0 ' . ‘ 1.5 | 2. | ‘b 3.0
Tiempo (x10°)

Figura 15: Representacién de la transicién de fase de desnaturalizacién. La transicién comienza
localmente generandose burbujas. Se representan 300000 pasos de tiempo para tres temperaturas, de
més baja (imagen superior) a més alta (imagen inferior). El color blanco representa que la base estd
abierta.

Una vez definida la apertura y cerrado de una base, podemos proceder al estudio de la
formacién de burbujas. Sin embargo, existen una serie de problemas a la hora de caracterizar
estas estructuras, fundamentalmente ligados a la combinacién o escisién de una abertura
mayor en dos o mas burbujas de menor tamano; podria considerarse que la burbuja mayor
ha “desaparecido”, y otras burbujas han surgido en ese instante, o que el tiempo de vida
de esa burbuja se mantiene, considerando que la burbuja se cierra cuando todas las bases
de esas subdivisiones se han cerrado. En la literatura existen diversos acercamientos a este
problema [14], mas o menos estrictos en su definicién de burbuja. Se podrian considerar los
distintos pros y contras de las posibilidades planteadas, o buscar otras opciones, pero tras
analizar este problema se ha optado por una solucién maés sencilla.

Escogeremos estudiar las burbujas a partir de su ingrediente principal, las bases. Por

un lado, se contabilizara el tiempo que las bases permanecen abiertas, siendo este valor
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representativo del tiempo de vida de las burbujas. Por otro lado, se mediran cuantos grupos
de bases contiguas se encuentran abiertas en un tiempo dado, y asi tener una medida del
tamafio que pueden adquirir las burbujas. Naturalmente, tanto la distribucién de tiempos
y/o tamano de las burbujas son funcién de los pardmetros del modelo, pero también de la
interaccién con el solvente que introduciremos (ademds de una posible barrera de potencial)
como un parametro de damping dependiente de la separacién de las bases ¥,. En su estado
cerrado las bases no estan expuestas al solvente y por tanto el damping sera bajo, mientras
que en su estado abierto la interaccién con el solvente llevard a un damping alto. Este cambio
lo representaremos como en la seccién anterior como una funcién sigmoide.

El objetivo serda ver cémo la introduccién de un damping variable afecta a la creacion
de burbujas. Para mostrar los resultados se representaran los histogramas generados de las
distribuciones tanto de tiempos de apertura como de tamanos de burbujas superponiendo los
diferentes casos. En color azul se representan los resultados de haber introducido en el sistema
un damping igual a vg 0 Yeg uniforme. Luego, en colores calidos se representan diferentes
resultados obtenidos aplicando el damping variable (22) modificando el centro de la sigmoide
xg. El valor de « se fija en 10 y el de «g en 0,1 en todos los casos. La temperatura escogida
para el estudio de la formacién de estas burbujas es kT = 0,67 ya que esta temperatura se
encuentra cercana a la transicién.

Considerar el caso de un damping uniforme bajo no tiene sentido bioldgico ya que,
a las escalas en las que se desarrollan los procesos biolégicos, predomina el efecto de
sobreamortiguamiento. Analizar los resultados que se obtiene en ese caso solo tiene como
objetivo poder observar el efecto que estd provocando incluir un damping variable en el
sistema.

En primer lugar, en la Figura 16 se muestran los resultados obtenidos para la distribucion
de tiempo. Se ha fijado un damping 3 = 1 y se representan los resultados para damping

variable con xg = gy, = 2 y 29 = 2.

1e+00 T T T T T T 1e+00 F— T T T
Uniforme y=1 0 | Variable xo=3.5
le-01 ; — 4 te-01t| | L Uniforme y=0.1 ]
| V_arlab|e Xo=2 - Variable Xo=2
1e-02 | 1, Variable xo=3.5 E1 | 1e-02 - Variable xo=1 y
b Uniforme y=0.1 = Uniforme y=5 0
~1e-03 1e-03 ¢ = ]
N = -
[a 1e-04 o le-04 ¢ _ 1
le05F ]
1e-05 —H
1e-06 ¢ N 5
1e-06
1e07 F ]
le-07 H
0 50 100 150 200 250 300 350 400 450 500 1e-08
. 0 5 10 15 20 25 30 35
Tiempo Tamafio (bp)
(a) Distribicién tiempo. (b) Distribucién de tamafio

Figura 16: Distribucién del tiempo y tamafio de las burbujas formadas a lo largo de la
simulacién sin barrera. Se representan en colores azules los casos de damping uniforme,
en claro v = 0,1 y en oscuro 7 = 1,0 para la distribucién de tiempos y v = 5,0 para la
de tamanos. Por otro lado, en rojo y naranja los casos de damping variable para
diferentes valores del centro de la sigmoide xy y tomando v9 = 0,1 y 713 = 1 para
distribucién de tiempos y 71 = 5 para la de tamanos.
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Los resultados muestran como el tiempo en el que las bases permanecen abiertas aumenta
al introducir el damping variable respecto al caso con damping uniforme con v = 0,1. Por
otro lado, si el centro de la sigmoide se coloca justo en la posicion donde se ha definido el
umbral zg = g, = 2, las distribuciones coinciden con la del damping uniforme alto, v = 1,0.
Esto significa que el tiempo de vida estd determinado por el valor del damping al otro lado
del umbral. Este hecho tiene sentido, ya que se estd midiendo el tiempo que tarda la base en
pasar del estado abierto al cerrado y entonces, tomando xg = %5, los valores del damping en
el estado abierto coinciden. Por ultimo, si se comparan los resultados de damping variable
para diferentes valores de xg, se observa que si el centro de la sigmoide se coloca después de
la posicion del umbral, los tiempos se reducen respecto al caso xg = %, pero siguen siendo
mayores que para el caso uniforme con v = 0,1. Puede entenderse entonces que el damping
efectivo experimentado por el sistema es un punto intermedio entre el 0.1 y el 1.0 uniformes.

En caso contrario, si se elige un valor de zg anterior al umbral, de nuevo la distribucion
coincide con la obtenida para xoy = ¢, Siguiendo el argumento anterior, en el estado abierto,
las bases solo se ven afectadas por el damping méas alld del umbral. Por tanto, adelantar el
centro de la sigmoide al umbral de estado abierto no tiene ningun efecto en el tiempo de vida;
solo cuando la variacién de damping cae en una zona posterior al umbral se ve afectada la
distribucién. Cabe esperar que escoger g antes del umbral afecte al tiempo que le cueste a las
bases abrirse, pero este es un observable que no se ha medido. Este comportamiento recuerda
al resultado obtenido en 9 donde el valor de tiempo de primer salto al mover el centro de la
sigmoide se encontraba limitado entre dos valores correspondientes al caso uniforme.

Si ahora se analizan los resultados que se obtienen para la distribucién de tamafios de
burbujas, Figura 17, se observa que se forman burbujas de menor tamano al incluir el damping
variable respecto al caso uniforme de bajo damping.

Sin embargo, a diferencia de la distribucién de tiempos, no coincide la distribucién de
damping variable con xg = ¢, con la distribucion del caso uniforme con el damping alto. Es
mds, observamos un cambio en la distribucién de tamatios al mover el centro de la sigmoide
en ambos sentidos.

Si se aleja del umbral el tamano de las burbujas aumenta y si se aproxima, se hacen més
pequenas. Esto da indicios de que el tamano de las burbujas estd mediado por el damping
interior, ya que ahora seria necesario que xy > ¢y, para recuperar la distribucién del caso
uniforme. Una posible razén es que cuando las bases se acercan al umbral si comienzan a
notar la variaciéon del damping antes de llegar a abrirse. Por iltimo, debemos resaltar que para
poder observar estos cambios ha sido necesario aumentar el valor del damping variable alto a
v, = 5. Es decir, al menos en este caso estudiado, el damping variable afecta de manera mas
notable antes a la distribucién de tiempos que a la distribucién de tamanos, siendo necesario
aumentar el valor de ~y; para poder percibir un efecto en los tamanos de las burbujas.

4.4. Introduccién de la barrera de potencial.

Introducimos la barrera en nuestro sistema, tal y como se ha descrito en la ecuacién (30),
y repetimos las simulaciones hechas en el apartado anterior. La temperatura escogida para el
estudio en este caso, acorde a las curvas de desnaturalizacién del Anexo 7.5, es de kT = 0,67.
Es importante mencionar que la dindmica que se observa al introducir la barrera es

mucho mas lenta y se necesitan simulaciones més largas para producir nimeros de burbujas
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comparables al caso anterior. De esta forma, los resultados obtenidos son todavia preliminares
y sujetos a fluctuaciones estadisticas. Ademaés, aunque los resultados no son inmediatamente
comparables con el caso sin barrera, dado el cambio que la introducciéon de esta impone en
las temperaturas de transicion, si pueden analizarse las tendencias generales del sistema.

En relacion a los tiempos de supervivencia de las burbujas, en la Figura 17 se observa una
tendencia muy similar al caso anterior: el tiempo de supervivencia de las burbujas depende
fundamentalmente del damping al otro lado del umbral y > 7. Es por esto que las curvas
con damping variable y x¢ < 2,0 coinciden con la curva uniforme con damping alto v = 1,0,
y por qué estas a su vez muestran tiempos mayores que el caso variable de zg = 1,0, y esta
ultima también es mayor que la uniforme con « = 0,1. La cola del final de las distribuciones
es muy ruidosa, causado principalmente por falta de estadistica en las simulaciones.

Respecto al tamano de las burbujas, este parece seguir estando determinado por el
damping en la zona interior de la barrera. En la Fig. 17, observamos tamanos més grandes
en aquellos sistemas con menor damping, teniendo dos agrupaciones: una formada por las
curvas con valores de v menores, como la de damping uniforme bajo v = 0,1 y la curva con
sigmoide centrada en posiciones posteriores a la barrera xg = 3,5, y otra constituida por la
curva con damping alto constante, y las de posiciones zg < 2,0.

Es complicado decir dentro de cada grupo cudl es la tendencia; cabe asumir que los
resultados estan afectados por dos factores: la presencia de la barrera, que al retrasar la
dindamica significativamente da lugar a menor nimero de burbujas, y la propia estadistica de
las simulaciones, que no son suficientemente largas. El tamaifio finito del sistema (N = 100)
contribuye a estos factores, y un mayor valor de /N permitiria aumentar el niimero de burbujas

observadas.
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Figura 17: Distribucién del tiempo y tamafio de las burbujas formadas a lo largo de la
simulacién con barrera. Se representan en colores azules los casos de damping uniforme,
en claro v = 0,1 y en oscuro 7 = 1,0 para la distribucién de tiempos y v = 5,0 para la
de tamanos. Por otro lado, en rojo y naranja los casos de damping variable para
diferentes valores del centro de la sigmoide xy y tomando v9 = 0,1 y 773 = 1 para
distribucién de tiempos y v; = 5 para la de tamanos.
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5. Conclusiones

A lo largo de este trabajo se ha comprobado la validez de los resultados de la teoria de
Kramers, mostrando la concordancia entre las expresiones analiticas y simulaciones para el
calculo de la tasa de escape en un amplio rango de valores del damping uniforme ~.

Hemos observado como, ante la introduccion de un damping dependiente de la posicién, las
expresiones analiticas dejan de funcionar. Sin embargo, puede definirse un damping efectivo
dependiendo de cada caso que verifica la tendencia general delineada por la teoria, con
resultados satisfactorios, mostrando ajustes precisos a las simulaciones realizadas.

Hay que resaltar que aiin no existe un teoria completa (en todos los regimenes de damping)
en el caso de damping variable. Los avances producidos ([4] entre otros) se limitan al régimen
sobreamortiguado, que facilita enormemente el desarrollo de calculos analiticos. De esta
forma, las simulaciones numéricas han probado ser una buena guia para el desarrollo y
verificaciéon de nuevas propuestas tedricas.

Finalmente, se han aplicado los conocimientos desarrollados en estas secciones al estudio
de la desnaturalizacién térmica del ADN a través del modelo PBD, observando la formacién
de burbujas en el sistema. Se ha podido observar como el factor determinante en el tiempo
de vida de las burbujas es el damping que experimentan los pares de bases una vez abiertos,
mientras que el tamafio maximo de estas es dominado por el damping en la zona antes del
umbral de apertura. La introduccién de un damping mas realista, dependiente de la posicién,
permite ajustar cada uno de estos pardmetros de forma independiente, dando lugar a una
dindmica posiblemente mas realista; uno de los problemas conocidos del modelo PBD es el
corto tiempo de vida de las burbujas, que podria ser solucionado de esta forma.

Al introducir una barrera de potencial entre los estados abiertos y cerrados, la dindmica
general del sistema se vuelve mucho mas lenta, provocando que se generen un menor nimero
de burbujas. Las distribuciones de tiempo y tamano obtenidas presentan significativamente
mas ruido que en el caso sin barrera, aunque aun se llega a atisbar un comportamiento
analogo.

En el caso de la distribuciéon de tiempo, la dependencia con el damping exterior se sigue
observando, siendo las diferencias bastante menos destacables, aunque presentes. La cola de
la distribucién es también bastante ruidosa, indicando falta de estadistica en las simulaciones.

Respecto a la distribucién de tamanos, se sigue observando una dependencia con el
damping en el interior de la barrera, aunque es dificil establecer una ordenacién de las curvas
debido al ruido estadistico, requiriendo tiempos de simulacién significativamente mas largos,
o temperaturas méas elevadas.

Otro efecto que cabe mencionar es que nuestros resultados pueden estar afectados por el
tamano finito de nuestras cadenas, compuestas de N = 100 bases. Este fenémeno podria ser el
origen de los gaps los histogramas del tamano de las Figs. 16 y 17, y parte de la incertidumbre
de nuestros sistemas en el caso con barrera. Aumentar el tamano de estas cadenas aumentaria
tanto el nimero de burbujas como el tamafio maximo de estas.

Posibles opciones de trabajo futuro en esta linea incluyen la introduccién en el modelo de
parametros de damping basados en datos experimentales. Estos permitiria ajustar los valores
del damping en el interior y exterior de la barrera, asi como el reescalado de parametros entre
los casos con y sin barrera de potencial del modelo PBD para poder comparar los valores

numéricos obtenidos de las simulaciones.
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7. Anexos

7.1. Ecuacién de Langevin 1D

La ecuaciéon de Langevin es una ecuacion diferencial estocastica introducida en 1908
por Paul Langevin para explicar las propiedades del movimiento browniano de una forma
alternativa a la contribucién de Einstein. La forma general de la ecuacién describe el
movimiento de una particula en equilibrio con un bafno térmico a temperatura 1" y sometido
a fuerzas externas. ,

Md—x _ ,ydﬁ B dV (z)
dt dt dz

El término de inercia se iguala a las fuerzas que actian sobre la particula. En orden de

+ &(z,t) (31)

apariciéon las fuerzas son: el rozamiento viscoso con el medio, la fuerza externa derivada de
un potencial y una fuerza estocastica que representa las colisiones con las particulas del bano
y que tiene las siguientes propiedades estadisticas:

i) <&(z,t)>=0 it) < &(z,t)E(x,t') > = c,0(t —t)

Por tanto, una posible eleccion para representarla serd emplear numeros aleatorios con
distribuciéon gaussiana, debido a que esta distribucién tiene las mismas propiedades
estadisticas que el término estocastico.

Ademss, a la ecuacién de Langevin se le debe imponer que cumpla las siguientes relaciones:

Relacién fluctuacién-disipacién 1D: mv? = kgT — c¢q = 2vkgT

kgT
Relacién Einstein: < 22 > =2Dt — D = 2B7
v

donde D es la constante de difusién.

7.2. Ruido Multiplicativo: Algoritmo de Heun

Dada la ecuacién diferencial estocasticas:
y = Fy) + G(y)) (32)
la evolucién temporal de la variable y se calcula en dos pasos:

s Predictor:

y = v + Fy)At +G(y)Aw (33)
= Corrector:
W+ h) =y +5[F) + F@IAL + S[G) + G@ldw (30
donde
aw = [T (3)

es un numero aleatorio con distribucién gaussiana de media 0 y anchura 1.
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7.3.
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7
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Generadores de nimeros aleatorios.

Algoritmo de Box Muller

El algoritmo de Box Muller nos permite obtener niimeros aleatorios con distribucién
gaussiana a partir de 2 nimeros aleatorios con distribucién uniforme d; y ds. Hay dos
posibilidades para generar los niimeros aleatorios, pero se obtiene la misma distribucién

con ambas, se pueden escoger indistintamente.
g1 =/ —2In(dy)cos(2md2) g2 = /—2In(dy)sin(2mdsy) (36)

que tienen las propiedades (g;) = 0y (g:g;) = dij-
Algoritmo ran2

Este algoritmo permite generar ntimeros aleatorios entre 0 y 1 con una distribucién
uniforme. El fragmento de cédigo se obtuvo de “Numerical Recipes in C?” y se muestra
a continuacion:

#define IM1 2147483563

#define IM2 2147483399
#define AM (1.0/IM1)

4 #define IMM1 (IM1-1)

#define TA1 40014

#define TA2 40692

#define IQ1 53668

#define 1Q2 52774

#define TIR1 12211

#define IR2 3791

#define NTAB 32

#define NDIV (1+IMM1/NTAB)
#define EPS 1.2e—7
#define RNMX (1.0—EPS)

float ran2(long =idum)

/*Long period ($>3% 2 1018) random number generator of L Ecuyer
with Bays—Durham shuffle and added safeguards. Returns a uniform
random deviate between 0.0 and 1.0 (exclusive of the endpoint
values). Call with idum a negative integer to initialize; thereafter ,
do not alteridum between successive deviates in a sequence. RNMX
should approximate the largest floating value that is less than 1.x/
{

int j;

long k;

; static long idum2=123456789;

static long iy=0;

s static long iv [NTAB];

float temp;

if (xidum $<=$ 0) { //Initialize.

if (—(*idum) $<$ 1) *idum=1;// Be sure to prevent idum = 0.
else *idum = —(xidum) ;

idum2=(*idum) ;\ \

for (j=NTAB+7;j$>=%$0;j—) { //Load the shuffle table

3Press, W. H.; Teukolsky, S. A.; Vetterling, W. T. & Flannery, B. P. (1992), Numerical Recipes in C ,
Cambridge University Press , Cambridge .
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35 k=(*idum) /IQ1; //(after 8 warm—ups).

36 *idum=IA1*(*idum—k*IQ1)—k*IR1;

37 if (*idum $<$ 0) *idum += IM1;

38 if (j $<$ NTAB) iv[j] = *idum;

30 }

0 iy=iv [0];

41}

12 k=(xidum) /IQ1; //Start here when not initializing .
43 xidum=IA1* (*xidum—k=+IQ1)—k*IR1; //Compute idum=(IA1xidum)

14 //% IM1 without

15 1f (*idum $<$ 0) *idum += IM1; //overflows by Schrages method.
16 k=idum2/1Q2;

17 idum2=IA2*(idum2—k*I1Q2)—k*IR2; // Compute idum2=(IA2xidum)
18 //% IM2 likewise .

9 if (idum2 $<8 0) idum2 4= IM2;

50 j=iy /NDIV; // Will be in the range 0..NTAB—I.

51 iy=iv[j]—idum?2; //Here idum is shuffled , idum and idum2 are
52 iv[j] = #idum; // combined to generate output.

53 if (iy $<$ 1) iy += IMMI1;

54 if ((temp=AMxiy) $>$ RNMX) return RNMX; //Because users do not
55 //expect endpoint values.
56 else return temp;

57}

7.4. Dilema de “Ito-Stratonovich” “.

A la hora de estudiar un sistema inhomogéneo, hay que tener en cuenta que surge
un problema asociado a la existencia de dos posibles interpretaciones relacionadas con
la integracion de funciones estocasticas, el llamado dilema de “ito—Stratonovich”; ambas
acercamientos nos proporcionan resultados diferentes y, por tanto, es necesario fijar desde
un principio que interpretacién se estd usando. Afortunadamente, como veremos en nuestro
caso, ambas interpretaciones dan lugar a las mismas ecuaciones para las distribuciones de
probabilidad.

Para verlo comencemos considerando un sistema lo mas general posible con una unica

variable

dr _
dt

El primer término a(x,t) corresponde al conjunto de fuerzas que afecten al sistema y

a(xz,t) + b(x,t)E(t) (37)

el segundo término corresponde a un ruido general, separando la dependencia espacial y
temporal de este en la funcién b(x,t). Hay que destacar que esta ecuacion es la generalizacién
de 16 despreciando el término de inercia.

A partir de la ecuacién de Langevin se puede deducir la llamada ecuacién de
Fokker-Planck. Esta rige la evolucién de la densidad de probabilidad P(z,t) de encontrar

una particula de nuestro sistema en la posicén x a tiempo ¢, y consta de dos términos
dP(z,t)
dt

4Gardiner, C. W. Stochastic Methods: A Handbook for the Natural and Social Sciences. 4th ed., Springer,
2009

= JDrift + JDifusion (38)

28



Estos dos términos, denominados corrientes de drift y difusién respectivamente, tienen su
origen en las dos partes de la ecuacién de Langevin (37). Por una parte, el termino de drift
es la corriente causada por los potenciales que describen el comportamiento del sistema,

Tori = 5 - a1 Pz, )] (39)

Por otra, el termino de difusién viene asociado al bano térmico formado por el medio. Este
ultimo es el objeto de discusion del dilema de Ito y Stratonovich, ya que existen dos formas
distintas de escribirlo, llevando a resultados diferentes:

= Stratonovich:

10 0
JDifusion = +§87x b(ﬂ?, t)% (b([L‘, t)P(ﬂS‘, t)) (40)
« Ito
102 9
JDifusion = +§@ [b(.%',t) P(J},t)] (41)

En el caso uniforme overdamped b(x,t) = vV2D es independiente de la posicién, saliendo

de la expresién y haciendo ambas interpretaciones equivalentes. Sin embargo, en nuestro caso

particular, b(z,t) = 1/ M \/ﬁ ) vy las interpretaciones de Ito y Stratonovich no
coincidirian.

Esto lleva a una serie de problemas en el limite sobreamortiguado, ya que dependiendo
de la interpretacion escogida los resultados de las simulaciones podrian variar. Nuestras
simulaciones sin embargo, tal y como hemos mencionado anteriormente se han hecho sin
despreciar el término inercial y en el régimen de damping moderado o alto. Si no se desprecia
este término de inercia, podemos partir de (16) y empleando la definicién de momento

reescribirla.

dz
dt
dp

T —y(x)p — V' (z) + /2kpTv(2)&(t)

En el caso general la distribucién de probabilidad depende de 3 variables P(x,p,t): posicién

=p
(42)

x, el momento p y el tiempo t. De esta forma, ahora a(x,t) se convierte en un vector y b(x,t)

d |z| _ ay(z,p,t) bi1(z,p,t) bia(x,p,t)| [&1(z,p,t)
dt [p] - [a2($7pvt)] - [b21(l‘ap7t) b22(x7pvt)] [52('%‘7]3775)] (43)

A partir de 42, se identifican los correspondientes términos a; y b;; para las variables x y p

en una matriz.

obteniendo asi, de forma andloga al caso sobreamortiguado, las expresiones para la evolucién
de la distribucion de probabilidad para ambas interpretaciones:

= Stratonovich:

(375 (l‘ pat) = —gp(l‘,p,t)p— 86]? [—’}/(.%')p - V/] P(x,p,t)

+;3ap —/2 kBT \/27 VkgT P(z,p,t
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%P(‘rvpvt) = = %P(w,p,t)p - 88]9 [—’}’(Qf)p - V/] P(.%',p, t) (45)
2
¥ 3o -V (@kBT) P, p, 1)

20p?
Como el damping no depende del momento, ambas ecuaciones coinciden. Por tanto, esta

justificado haber empleado la ecuacién (16) para la integracién de la evolucién del sistema,
v los resultados de las simulaciones pueden considerarse correctos.

7.5. Curvas de transicién del DNA: modelo PBD.

Presentamos en esta seccion las curvas de desnaturalizcién obtenidas con el modelo PBD
en los casos sin barrera y con barrera. La transicion se determina a partir del cambio en la

energia del sistema, calculada con el Hamiltoniano (26), en funcién de la temperatura.

1.6 ‘
Sin Barrera —@—

Con Barrera —®—

1.4

Energia u
- o

o
©

o
o)

0.4

0.2 ‘ ‘
0.6 0.65 0.7 0.75 0.8

Temperatura (KT)

Figura 18: Curvas de desnaturalizacién del ADN. En rojo esté representada la curva para el caso con
barrera y en azul para el caso sin barrera.

Las temperaturas de transicion se corresponden con (.74 para el caso sin barrera, y 0.69
para el caso con barrera.
La eleccion de nuestras temperaturas de simulacién para medir la formacion de burbujas,

0.67 en ambos casos, las consideramos suficientemente cercanas a la transicion.
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