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Teoŕıa de Kramers con “damping” no-uniforme:
aplicación a la desnaturalización térmica del DNA.
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1. Introducción y objetivos

El escape de part́ıculas desde un mı́nimo de enerǵıa (metaestable) sobre una barrera

de potencial es un problema que ha sido estudiado por investigadores de múltiples áreas

del conocimiento [1]. Muchos procesos se pueden modelizar mediante part́ıculas que deben

superar una barrera de potencial y, conociendo la tasa (o probabilidad o ratio) de escape, se

puede obtener información relevante sobre el proceso estudiado aśı como de las caracteŕısticas

del potencial.

El desarrollo de la teoŕıa que describe este problema, “Transition State Theory” (TST) [2],

comenzó gracias a la deducción emṕırica de la ecuación de Arrhenius (1) en 1889. En esta se

engloba la, en aquel entonces, observada dependencia de la tasa de una reacción qúımica con

la temperatura

k = νeEa/kBT (1)

donde ν es una constante y a Ea se le denominó “enerǵıa de activación”, aunque en un inicio

no se conoćıa el significado de estos parámetros. Este es un problema que sólo puede ser

tratado con rigor dentro del marco de la mecánica estad́ıstica fuera del equilibrio.

La teoŕıa de este fenómeno fue desarrollada por varios investigadores. H. Eyring,

estudiando la descomposición de moléculas, consiguió en 1935 empleando la mecánica

estad́ıstica expresar, a través de las funciones de partición del sistema, la tasa en función

de parámetros relacionados con el potencial subyacente [3], pero no fue hasta 1978 cuando

Chandler demostró al fin que la enerǵıa de activación correspond́ıa a la diferencia de enerǵıa

libre entre los dos estados de la reacción [2], es decir, a una barrera de potencial. Mientras se

estaba desarrollando la TST, Kramers (en 1940) dedujo una expresión para la constante ν

resolviendo la ecuación maestra que describe el movimiento de una distribución de part́ıculas

en un medio disipativo sometida a la influencia de un potencial y fluctuaciones térmicas. En

1980 Pollak demostró la conexión entre la teoŕıa de Kramers y la TST, cerrando el ćırculo [3].

En la teoŕıa de Kramers, se considera habitualmente una interacción con el medio

(codificada a través del coeficiente de viscosidad de este, de ahora en adelante llamado

“damping”) espacial y temporalmente homogénea. Sin embargo, dadas las escalas de tamaños

y tiempos t́ıpicos en los sistemas biológicos, uno de los posibles objetos de estudio de esta

teoŕıa, estos tienden a ser altamente inhomogéneos. De particular interés es la introducción de

un damping dependiente de una coordenada de reacción espacial, habitualmente la posición,

ya que distintas moléculas cambian sus propiedades en la proximidad de otros elementos.

Un ejemplo de esto es el retraso de la dinámica de las moléculas de agua (verificado tanto

numérica como experimentalmente) al encontrarse en las proximidades de macromoléculas

como protéınas [4], o el cambio en las interacciones entre los residuos de una protéına al estar

en su estado nativo o desdoblado, altamente dependientes de su interacción con el medio.

Una de las aplicaciones biológicas de interés de la teoŕıa de Kramers es el estudio

de la denaturalización térmica del ADN, la molécula polimérica formada por dos hebras

complementadas unidas y encargada de almacenar la información genética de las células.

La importancia de este fenómeno tiene dos razones: por una parte, el estudio de la

desnaturalización térmica proporciona información relevante sobre las interacciones y

dinámica que gobiernan el comportamiento del poĺımero. Por otra, la desnaturalización

térmica es muy similar al proceso de transcripción, que es el primer paso en la formación de

protéınas. En este una proteasa, la llamada DNA polimerasa, despliega las dos hebras de ADN
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en una zona determinada (formando una “burbuja”) y la recorre, generando a su paso una

hebra de RNA mensajero complementaria a la cadena que luego se empleará en el ensamblaje

de la protéına codificada en dicho segmento. La formación de estas burbujas también se

produce en la desnaturalización térmica, por lo que entender la primera es fundamental para

poder comprender la transcripción [5]. Además, estos dos procesos no son solo interesantes

desde el punto de vista biológico, sino que su estudio ha permitido el desarrollo de diferentes

aplicaciones tecnológicas de interés médico, cient́ıfico e industrial, tales como los análisis PCR

para detección de genomas.

En este trabajo introduciremos la teoŕıa de Kramers y derivaremos sus principales

resultados, complementando las expresiones anaĺıticas junto a simulaciones numéricas en

un sistema sencillo en la Sección 2. En la Sección 3, introduciremos la posibilidad de

tener un damping dependiente de la posición, discutiendo posibles cambios en la teoŕıa

inicialmente planteada y el efecto de estos en nuestras simulaciones, aśı cómo haciendo

nuevos cálculos numéricos y comparándolos con el caso homogéneo. La Sección 4 introducirá

el ADN, el modelo que usaremos para describir su comportamiento y los observables

a monitorizar, estudiando este sistema tanto con damping homogéneo como variable.

Finalmente, recapitularemos todo lo observado y extraeremos las conclusiones pertinentes

en la Sección 5.

2. Teoŕıa de Kramers

La teoŕıa de Kramers resuelve el problema de la transición a través de una barrera

de potencial utilizando la f́ısica estad́ıstica fuera del equilibrio. En el trabajo original de

Kramers [6], se resuelve el cálculo de la tasa de salto por encima de una de estas barreras

en condiciones de sobreamortiguamiento, es decir, situaciones en que el damping es muy

elevado. De esta forma, los términos disipativos (proporcionales al damping y la velocidad de

la part́ıcula) de las ecuaciones del movimiento son muy superiores respecto a los inerciales

(dados por la masa y la aceleración de la part́ıcula), permitiendo ignorar estos últimos y

aśı lograr una descripción del problema más sencilla. La dependencia de la tasa de saltos

con el damping no es trivial, y la curva completa tiene diversos reǵımenes dependiendo

de la magnitud de este. A lo largo de esta sección seguiremos los cálculos de la teoŕıa

de Kramers, introduciendo las expresiones anaĺıticas para distintos valores del damping y

empleando simulaciones para verificar y complementar dichos resultados.

2.1. Deducción anaĺıtica de la tasa de salto en el ĺımite sobreamortiguado

Dado un potencial V(x) que presenta una barrera de potencial ∆U , la tasa de escape r

se define como el flujo total de part́ıculas que escapan del pozo J dividido por el número de

part́ıculas que se encuentran en él p.

r =
J

p
(2)
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Figura 1: Esquema del escape de una part́ıcula sobre una barrera de potencial. La part́ıcula se

coloca inicialmente en la posición del mı́nimo A y se contabiliza el tiempo que pasa hasta que es

capaz de superar la barrera de potencial ∆U y alcanzar la posición B.

La corriente de part́ıculas tendrá dos contribuciones: la corriente de difusión (causada por

el impulso cedido a las part́ıculas a través de la temperatura del sistema) y la corriente de

deriva (con el potencial V (x) como origen).

JDrift = −1

γ

dV (x)

dx
P (x, t) (3)

JDifusion = −D
∂P (x, t)

∂x
(4)

Reagrupando términos, la corriente total se puede escribir como:

J(x, t) = JDrift + JDifusion = −D e
−V (x)

kBT
∂

∂x

[
e

V (x)
kBT P (x, t)

]
(5)

donde D corresponde a la constante de difusión, que se puede relacionar con la disipación del

medio (damping) mediante la relación de Einstein, a través de la temperatura: D = kBT/γ.

Asumiendo condiciones de quasi-equilibrio, es decir, que el sistema tiene una rápida

termalización y que el flujo de part́ıculas que atraviesa la barrera es constante en el tiempo

pero extremadamente bajo, la corriente se puede considerar constante J(x, t) = J . Puede

entonces integrarse la expresión anterior entre el mı́nimo de potencial A (origen de las

part́ıculas) hasta un punto cualquiera B suficientemente alejado de la barrera. Esto último

permite también aproximar que P (B) ≈ 0, ya que el flujo de part́ıculas aunque constante es

prácticamente nulo, y aśı

J =
DPAe

VA/kBT∫ B
A eV (x)/kBTdx

(6)

Además, en condiciones de quasi-equilibrio y asumiendo una barrera suficientemente alta

∆U/kBT se puede aproximar la distribución de part́ıculas en torno al mı́nimo del pozo de

potencial como la distribución de equilibrio, que corresponde a la distribución de Boltzman.

3



Esta condición se cumple con bastante precisión, e integrando en torno al mı́nimo se obtiene

el número de part́ıculas p mencionado en la ecuación (2).

p =

∫ A+∆

A−∆
P (x)dx = PA

∫ A+∆

A−∆
e−(V (x)−VA)/kBTdx (7)

En la integración en torno al mı́nimo, se pueden tomar como ĺımites de integración dos puntos

x1 y x2 donde si x < x1 o x > x2 la probabilidad decae a cero P (x) → 0.

Uniendo ambos resultados se llega a la expresión para calcular la tasa de salto.

rKHD =

[∫ B

A

eV (x)/kBT

D
dx×

∫ x2

x1

e−V (x)/kBTdx

]−1

(8)

donde el sub́ındice KHD corresponde con Kramers High Damping. Esta integral no se puede

calcular de manera anaĺıtica para un potencial arbitrario, sin embargo es posible llegar a una

expresión anaĺıtica compacta si se consideran los desarrollos de Taylor del potencial en el

entorno del mı́nimo A y del máximo C del potencial.

V (x) ≈ VA +
1

2
V ′′(xA)(x− xA)

2

V (x) ≈ VC +
1

2
V ′′(xC)(x− xC)

2
(9)

Realizando esta aproximación e integrando (se obtienen integrales Gaussianas) se llega

finalmente a la famosa expresión de Kramers para la tasa de salto en el ĺımite

sobreamortiguado.

rKHD =
ωAωC

2πγ
e−∆U/kBT (10)

donde ωA y ωC están relacionadas con la curvatura del potencial en el mı́nimo y el máximo

respectivamente. ωA =
√

V ′′(xA) y ωC =
√

|V ′′(xC)|.
Se puede interprertar f́ısicamente la ecuación (8) observando que es el producto de

3 contribuciones: el número de intentos de alcanzar la barrera por unidad de tiempo

(dependiente de ωA), la probabilidad de alcanzar la barrera (dependiente de la altura de

la barrera ∆U) y la probabilidad de superar la barrera una vez alcanzada (dependiente de

ωC/γ).

Sin embargo, como veremos en el resto de la sección, el ĺımite sobreamortiguado (que

aparece para γ ≫ 1) no cubre el amplio rango de valores de damping que queremos explorar.

Es útil para regiones donde las part́ıcula (par de bases, aminoácido o lo que represente) esté

muy expuesta al solvente pero no en aquellas regiones donde la interacción con el baño sea

débil.

Por ello, para completar el escenario proporcionamos las expresiones para los otros dos

rangos de interés. La obtención de estas expresiones es más complicada y esta fuera del

alcance de este trabajo. Las expresiones de la tasa de salto para otros intervalos de damping

se muestran a continuación:

Ĺımite de moderado a alto damping:

rKMHD = kKMHD × ωA

2π
e−∆U/kBT (11)

donde:

kKMHD =

√
1 +

(
γ

2ωC

)2

− γ

2ωC
(12)
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Ĺımite de moderado a bajo damping:

rKMLD =
ωA

2π

γS

kBT
e−∆U/kBT (13)

donde:

S =

∮ √
2m [V (xC)− V (x)]dx (14)

donde S se calcula en una oscilación hasta la barrera.

Es importante notar cómo, en el ĺımite de alto damping, la tasa de escape tiene una

dependencia inversamente proporcional al valor del damping mientras que, en el ĺımite de

damping bajo, la dependencia es directamente proporcional.

Finalmente, la tasa de salto se puede obtener también a partir del llamado “primer tiempo

de paso medio” ⟨t⟩. El “primer tiempo de paso” se define como el tiempo que utiliza cada

part́ıcula en alcanzar un punto determinado más allá de la barrera. El valor medio de la

distribución de estos tiempos es inversamente proporcional a la tasa de salto [7]:

r =
1

⟨t⟩
(15)

Se utilizará esta expresión, calculando el tiempo de paso medio de las part́ıculas a través del

potencial para calcular las tasas con las simulaciones descritas en la siguiente subsección.

2.2. Simulación

En esta sección utilizaremos un método de simulación numérica para calcular la tasa de

escape. Para realizar las simulaciones se va a resolver numéricamente la ecuación de Langevin

(16) ya que esta ecuación describe el movimiento de una part́ıcula en un baño térmico a

temperatura constante y sometida a un potencial V (x) (Ver Apéndice 7.1)

M
d2x

dt
= − γ

dx

dt
− dV (x)

dx
+ ξ(x, t) (16)

donde M es la masa de la part́ıcula (tomada como M = 1), γ es el damping del sistema y

ξ(x, t) representa el ruido térmico. Representaremos este último como un ruido gaussiano

blanco, de media 0 y correlación temporal dada por una delta de Dirac: ⟨ξ(x, t)⟩ =

0 y ⟨ξ(x, t)ξ(x, t′)⟩ = c0δ(t− t′), donde c0 = 2γkBT .

Para integrar numéricamente la ecuación (16) debe primero escogerse un algoritmo

adecuado para ello, dependiente de los parámetros y condiciones que describen nuestro

sistema. Puede observarse que el término estocástico (ruido) de la ecuación de Langevin

depende del damping a través de su coeficiente de correlación. Si el damping es constante

(uniforme), este c0 es independiente del tiempo, y tenemos el denominado ruido aditivo. Si,

como será nuestro caso en apartados posteriores, el ruido puede depender de la posición

de la part́ıcula se le denomina ruido multiplicativo y requiere de algoritmos espećıficos para

integrarlo correctamente. A lo largo de este trabajo utilizaremos el llamado algoritmo de

Heun [8], sencillo de implementar y de segundo orden en el paso de tiempo. En el Anexo 7.2

se puede encontrar más información sobre el mismo. Además, el uso de ecuaciones con ruido

multiplicativo provoca la necesidad de tratar con la interpretación de la integración estocástica

que, al ser un asunto tanto técnico, se desarrolla en el Anexo 7.4.
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El primer paso será definir el potencial a través del cuál se va a medir la tasa de salto. La

única condición es que este potencial presente al menos un mı́nimo y un máximo, pudiendo

definir una barrera de potencial. Lo más sencillo, por tanto, es elegir un potencial cúbico:

V (x) = ax2 + bx3 (17)

En segundo lugar hay que definir las condiciones de medida, según [7] se debe de cumplir

∆U/kBT > 5 para minimizar los efectos de barrera finita. Si se toma ∆U/kBT demasiado bajo

las part́ıculas serán capaces de saltar la barrera con facilidad por las fluctuaciones térmicas,

casi sin sentir el efecto del potencial, sin embargo, tomar ∆U/kBT extremadamente alto

provocaŕıa que las simulaciones se alargaran demasiado. Los parámetros escogidos han sido

a = 2,2 y b = −1,1 y se ha fijado la temperatura a kBT = 0,2 aśı se ha conseguido que la

tasa quede ∆U/kBT ≈ 6,5.

Ahora se tomará una muestra representativa de part́ıculas que se introducen en el sistema

en el mı́nimo de potencial, xA = 0, con una velocidad que siga la distribución de Boltzmann

(18); la razón de esto se encuentra en el siguiente apartado. Posteriormente se deja evolucionar

el sistema hasta que las part́ıculas alcanzan una posición xB posterior a la del máximo xC , y

se guarda el tiempo que ha tardado en llegar cada una de las part́ıculas a esa posición xB.

Normalmente en las simulaciones con un baño térmico se ha de termalizar el sistema;

dejar que este evolucione un tiempo determinado hasta alcanzar una situación de equilibrio

antes de comenzar a medir. Esto implica no tener en cuenta los primeros pasos de tiempo para

que las part́ıculas lleguen a tener el comportamiento esperado a la temperatura del sistema.

Sin embargo, como queremos saber el tiempo que tarda la part́ıcula en alcanzar una posición

xB si se termalizase se estaŕıa introduciendo un error sistemático en el tiempo de todas las

part́ıculas. En torno al mı́nimo se puede aproximar que el potencial cúbico es parabólico,

y es conocido que en un potencial de este tipo la distribución de velocidades corresponde

a una distribución Gaussianna de varianza kBT/m cuando el sistema está ya termalizado.

Asignando velocidades iniciales a las part́ıculas del sistema acorde a esta distribución podemos

obviar este paso, comenzando con un sistema ya en equilibrio.

vi =

√
kBT

m
× Zi (18)

donde Zi es un número aleatorio gaussiano obtenido empleando el algoritmo de Box-Muller,

que puede encontrarse en el Anexo 6.3.

De esta primera parte sólo falta definir cómo se va a realizar la medida de la tasa de paso

o el tiempo medio de salto. El salto sobre la barrera es un proceso estocástico de Poisson y

por ello los tiempos de estancia siguen una distribución exponencial. La primera posibilidad

entonces es tomar el tiempo caracteŕıstico τ a partir de la definición de la distribución de

tiempos, extrayéndolo mediante un ajuste, como en la Figura 2.

P (t) ∝ e−t/τ (19)

Otra posibilidad para realizar este cálculo es obtener el valor medio de los tiempos de salto,

ya que la media de una distribución exponencial es la constante de dicha distribución. Con

suficiente muestreo ambas medidas debeŕıan coincidir.
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Figura 2: Distribución de tiempos para γ = 0,5, esta sigue una dependencia

exponencial. b) Representación en escala logaŕıtmica junto a un ajuste a una función

exponencial.

Ambas medidas se estudiaron para distintos valores de damping del sistema, como se ve

en la Figura 3. Los resultados reflejan que ambas magnitudes siguen la misma tendencia y que

sus valores son compatibles dentro del error. Por tanto se concluye que ambas son adecuadas

para describir el comportamiento. Para el resto de simulaciones se escoge emplear el valor

medio, más sencillo de calcular.

Otro efecto importante a tener en cuenta que afectará a los resultados es la elección del

punto xB en el que consideramos que una part́ıcula ha escapado del potencial y no podrá

volver. Debido a la estocasticidad del sistema, la definición de un punto de no retorno en

los fenómenos de salto de barrera es potencialmente problemático. Si se escoge un punto

demasiado próximo no será realista, ya que un número significativo de part́ıculas podŕıan

experimentar una fuerza estocástica en dirección contraria y volver a posiciones x < xB

después de pasar por ese punto. Por otra parte, un valor demasiado elevado puede llevar

a sobreestimaciones del tiempo de paso. Además, como la amplitud (coeficiente c0) de la

fuerza estocástica depende del damping, los valores adecuados de xB cambiarán con γ. En la

Figura 3, se puede ver como en los valores de menor damping γ = 0,05 y γ = 0,1 no se observa

un cambio al alejar el punto xB de la posición del máximo2, pero al aumentar el damping

a γ = 1 el valor del tiempo aumenta hasta llegar a un valor de saturación. Finamente, para

γ = 5 el efecto es más notable.

En la Figura 4a se observa la representación de la tendencia general de los tiempos con

el damping para diferentes valores de xB, pudiéndose comprobar que las curvas coinciden

hasta llegar al régimen de alto damping. También se representan funciones de ajuste para los

ĺımites de bajo y alto damping, comprobándose las dependencias previamente establecidas

en (10) y (13). Podemos observar que en el ĺımite de alto damping la dependencia con γ es

lineal, tal y como se esperaba según la ecuación (10); cambiar el valor de xB solo afecta a

la pendiente. La Figura 4b contiene la misma tendencia en escala logaŕıtmica, apreciándose

mejor el ajuste a bajo damping.

2La posición del máximo con los parámetros escogidos cae en xC = 1,3.
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Figura 3: Comparación entre el valor medio (azul) o el ajuste a la distribución (rojo)

para el cálculo del tiempo de salto en función de distintos valores del punto de corte

xB . Cada gráfica corresponde a un valor de damping γ diferente.

Teniendo en cuenta que el tiempo de paso es inversamente proporcional a la tasa, las

funciones empleadas para los ajustes son:

Ĺımite overdamped: f(x) = ax+ b ∀γ > 5

Ĺımite moderado a bajo damping: g(x) = c/x+ d ∀γ < 0,1
(20)

Los valores obtenidos para los parámetros de estas curvas se recogen en la Tabla 1.

Centrándonos primero en el ajuste a g(x), puede observarse que los distintos parámetros

para los valores de xB escogidos son compatibles entre śı. Este hecho era algo esperable a

partir de la Figura 3: los efectos de cambiar xB a bajo damping son prácticamente nulos.

En el ĺımite de alto a moderado damping la situación es la contraria; la pendiente de

f(x) cambia significativamente con xB. Una explicación para este fenómeno tiene origen en la

creciente importancia del término estocástico con el valor de γ, permitiendo a part́ıculas en

posiciones más allá del máximo volver a entrar en el interior del pozo y cambiando por tanto

los valores del tiempo de escape según el xB escogido, tal y como se véıa en la parte de alto

damping de la Fig. 3.

Vistos estos resultados, se escoge un valor de xB = 1,6 para el resto de simulaciones a

partir de este punto.
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Figura 4: Tiempo de primer paso en función de γ para varios xB , con KBT = 0,2. Las

ĺıneas se corresponden a ajustes realizados en los ĺımites de alto y bajo damping.

Para finalizar esta sección, se prueba a realizar un ajuste a todo el rango de γ

conjuntamente. No existe una expresión espećıfica, pero se puede realizar la interpolación

entre las funciones para ambos ĺımites, construyendo una nueva función h(x) como el producto

de f(x) y g(x):

h(x) = f(x)× g(x) ≡ qx+ p/x+ s (21)

El ajuste realizado a la ecuación (21) se muestra en la Figura 5 y en la Tabla 1 se

recogen los parámetros empleados. El resultado muestra que la interpolación logra reproducir

el comportamiento general de la tendencia, con pequeñas diferencias encontradas en la zona

de damping intermedio.

a

b

c

d

q

p

s

Distribución Uniforme, xB

Funciones 1,4 1,5 1,6 1,7

f(x)
636.8 ± 1.7 781.8 ± 1.4 866 ± 3 908.6 ± 1.5

1708 ± 10 1600 ± 8 1450 ± 18 1336 ± 8

g(x)
224.6 ± 0.9 224.5 ± 1.3 223.6 ± 1.3 225.1 ± 1.9

1438 ± 13 1460 ± 22 1460 ± 17 1445 ± 22

h(x)

637.7 ± 0.9 775.7 ± 0.9 835.9 ± 1.4 883.0 ± 1.0

205.5 ± 0.4 214.3 ± 0.4 211.7 ± 0.4 218.9 ± 0.6

1673 ± 4 1601 ± 4 1587 ± 3 1454 ± 4

Tabla 1: Resultados de los parámetros de ajuste de las figuras 4 y 5. Las funciones son: f(x) = ax+b,

g(x) = c/x+ d y h(x) = qx+ p/x+ s.
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Figura 5: Ajuste a la tendencia completa del tiempo de primer paso medio en función del damping.

Ejes en escala logaŕıtmica.

2.3. Corrección a damping moderado

Realmente, aunque hayamos visto en la Figura 4 que los ĺımites se comporta como la

teoŕıa predice, no se han comparado los tiempos de primer salto con las expresiones (10) y

(13).

Si comparamos las simulaciones con las expresiones teóricas extráıdas en apartados

anteriores, contenido en la Figura 6, pueden verse ciertas discrepancias. En particular,

las simulaciones con altos valores de damping se alejan de la expresión para el ĺımite

sobreamortiguado (10) (negro en Fig. 6), siendo bastante mejor ajustados por la ecuación

(11), más apropiada para valores entre moderados y altos de damping (en color rojo).

La razón detrás de este desacuerdo radica en la forma en que se han realizado las

aproximaciones teóricas y simulaciones. Para el cálculo de la expresión (10) se ha despreciado

el término inercial de la ecuación de Langevin, algo razonable en esos valores de damping

pero que no hemos aplicado en nuestras simulaciones. Es por esto que en las simulaciones

podemos no estar todav́ıa en el ĺımite sobreamortiguado, y la expresión más correcta sea la

de moderado a alto damping. Esta observación es además compatible con el hecho de que

la diferencia con la curva del ĺımite overdamped se va reduciendo conforme aumentamos el

damping.
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Figura 6: Comparación de los resultados por simulación (puntos azules) junto con los valores

obtenidos aplicando las expresiones deducidas para el ĺımite de alto damping (ĺınea negros) y el

ĺımite de damping moderado a alto (ĺınea rojos). Se observa una mayor coincidencia de las

simulaciones con el ĺımite moderado a alto.

3. Introducción del damping variable

Una vez presentada la teoŕıa de Kramers y establecido las pautas a seguir al realizar

las simulaciones, se procede a introducir la modificación al modelo. Se define un damping

dependiente de la posición para obtener aśı un sistema inhomogéneo.

El damping variable se define a partir de una función sigmoide, que codifica el efecto de

la posición. Tenemos entonces dos parámetros principales: γ0, correspondiente con el valor

umbral del damping, y γ1, que regula la altura de la sigmoide. Aparte de estos dos, hay

otras variables a tener en cuenta: x0, correspondiente al centro de la función y α, que es

inversamente proporcional a la anchura de esta.

Además, existen dos casos a considerar, dependiendo de si el damping aumenta o

disminuye con x. Estos dos casos están recogidos en las ecuaciones (22) y (23) respectivamente.

A lo largo de este apartado cambiaremos los valores de γ1. De esta forma, cuando

cambiemos la ecuación (22) diremos que cambiamos el damping del interior del pozo, pues

afecta a valores de x < x0. Cuando cambiemos la ecuación (23), diremos que cambiamos el

damping exterior, con x > x0.

γint(x) = γ0int +
γ1int

1 + e−α(x−xo)
(22)

γext(x) = γ0ext − γ1ext
1 + eα(x−xo)

(23)

Primero se analizará cómo cambian los resultados obtenidos en (4) al variar el parámetro γ1.

Después, veremos cómo afectan a los resultados la elección del centro de la sigmoide x0 y de

su anchura α.
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3.1. Cambio de tendencia respecto al caso uniforme.

Se realiza el mismo procedimiento descrito en el apartado anterior introduciendo la

variación del damping mediante las expresiones (22) y (23) por separado. Se fija un valor

de α = 10 y de x0 = 1.

En una de las simulaciones, se fija el damping interior a γ0int = 0,05 y se emplea la

expresión (22); en el otro caso, se fija el damping exterior a γ0ext = 5 y se emplea la expresión

(23). El parámetro que vaŕıa de punto a punto es el valor de γ1, y la representación se hará

en función del damping efectivo (24) ya que es necesario realizar una traslación de los puntos

para poder recuperar los valores del paso de tiempo para el caso uniforme cuando γ1=0.

γeff = γ0int + γ1int o γeff = γ0ext − γ1ext (24)

Aśı, si se representa en función de γeff , al considerar que γ1 = 0 los puntos en la gráfica

coincidirán con el resultado para el caso uniforme con damping γ0.

Los resultados se muestran en la Figura 7, se ha representado en color rojo la curva

obtenida al mantener el damping interior fijo y en color morado la curva del caso con damping

exterior fijo. Ambas curvas se han comparado en 7b con la obtenida en el caso uniforme (curva

azul), se tomó para todas las curvas xB = 1,6.

Puede observarse que, al introducir el damping variable, la dinámica del sistema se retrasa

sustancialmente, aumentando todos los tiempos de paso. El único punto en que las curvas

coinciden con el caso uniforme es con γeff = 5 para el damping interior, coincidente con γ = 5

en la uniforme, y γeff = 0,1 en la exterior, coincidente con γ = 0,1 en la uniforme.

Esto tiene sentido, dado que en dichos puntos las sigmoides son completamente planas,

confirmando el buen funcionamiento del sistema.
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Figura 7: Cambio en la tendencia al incluir un damping variable.

Por último notar que la tendencia general se mantiene aún habiendo introducido la

dependencia con la posición: a alto damping se sigue observando una dependencia lineal

y en 7b se puede apreciar que para bajo damping el paso de tiempo comienza a aumentar de

nuevo.

De forma similar al caso uniforme, podemos tratar de ajustar las dependencias de los

tiempos de paso con gamma. Las expresiones teóricas (10) y (11) no nos servirán en este

caso, ya que fueron desarrolladas asumiendo damping uniforme.
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a

b

q

p

s

xoff

Distribución Variable

γ Interior Fija γ Exterior Fija

F
u
n
ci
ó
n

f(x)
736 ± 3 114.9 ± 1.7

3250 ± 21 5160 ± 7

h’(x)

829 ± 3 121.3 ± 0.9

6770 ± 150 103.6 ± 0.9

1790 ± 40 5107 ± 3

-1.60 ± 0.02 0.0

Tabla 2: Resultados parámetros de ajuste de las figuras 7 y 8.

Sin embargo, y tal y como podemos observar en la Figura 7, las dependencias generales

con gamma a bajo y alto damping śı parecen mantenerse. Es por eso que procedemos al

ajuste con las mismas funciones planteadas en el apartado anterior.

La zona de alto damping se ajusta con f(x), contenida en la ecuación (20). Los resultados

de este ajuste pueden observarse en la Figura 7, mostrando que la tendencia es efectivamente

lineal. Los valores de los parámetros de ajuste se encuentran en la Tabla 2.

Por otra parte, para ajustar la tendencia completa podemos volver a usar h(x) pero con

una pequeña modificación: dado que γ0 introduce en el caso interior un damping mı́nimo en

el sistema, debe emplearse un parámetro de offset y desplazar la curva hacia la derecha. Este

parámetro xoff será 0 para el caso exterior. Aśı, la nueva función h′(x) queda:

h′(x) = qx+ p/(x− xoff) + s (25)

Los ajustes, mostrados por separado en la Fig. 8, prueban ser muy satisfactorios. Los

parámetros empleados se muestran en la Tabla 2.
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Figura 8: Cambio en la tendencia al incluir un damping variable. Las escalas de las

gráficas se han reescalado para observar la tendencia de cada caso. La tendencia se

representa junto a un ajuste a h’(x,t).
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3.2. Efecto de los parámetros del damping variable

A continuación, se va a analizar cómo afecta la elección de los otros parámetros de (22)

y (23). Para ello fijamos un valor de γ1, mantenemos los valores de γ0 y vemos cómo cambia

el valor del tiempo de paso en función de x0 y de α.

Comencemos estudiando el efecto del parámetro x0. El comportamiento puede intuirse

a priori sin necesidad de hacer simulaciones: tomando los ĺımites x ≫ x0 y x ≪ x0 las

exponenciales se aproximarán a 0 o infinito según el caso, de forma que

Si x ≫ xo

{
γint(x) = γ0int + γ1int

γext(x) = γ0ext
Si x ≪ xo

{
γint(x) = γ0int

γext(x) = γ0ext − γ1ext

Es decir, en los ĺımites tendemos a alcanzar tiempos caracteŕısticos de un sistema uniforme

con γ0 o con γ0 ± γ1, según sea el caso interior o exterior. En las zonas intermedias

tendremos un comportamiento acorde al valor del damping, de forma que los tiempos debeŕıan

describir una sigmoide. Todos estos resultados puede observarse en la Fig. 9, donde quedan

representados los resultados de las simulaciones junto a los ĺımites en el damping y el ajuste

a una función sigmoide, confirmando el comportamiento del tiempo con x0 predicho.
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Figura 9: Variación del tiempo de salto en función del parámetro xo de la función de

damping variable. La figura a) corresponde a fijar un damping interior γ0int = 0,05 e

introducir un γ1int = 0,05. La figura b) corresponde a fijar un damping exterior

γ0ext = 5 e introducir un γ1ext = 1.

El parámetro α es inversamente proporcional a la anchura de la sigmoide. De esta

forma, un valor de α = 0 devuelve una curva completamente uniforme, y los resultados

se corresponden con un γ′eff = γ0 ± γ1/2 según el caso (no confundir con el damping efectivo

definido en la subsección anterior). En el otro extremo, un valor de α → ∞ nos devuelve una

función escalón, y resulta complicada la definición de un γ′eff para el sistema.

Los resultados de la variación de α se muestran en la Figura 10. El resultado de estas

simulaciones vuelve a coincidir con lo esperado de las expresiones teóricas; no se alcanza el

ĺımite de γ′eff = γ0±γ1/2 porque el valor mı́nimo simulado es α = 0,05, explicando las posibles

discrepancias.
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Figura 10: Variación del tiempo de salto en función del parámetro α de la función de

damping variable. La figura a) corresponde a fijar un damping interior γ0int = 0,05 e

introducir un γ1int = 0,05. La figura b) corresponde a fijar un damping exterior

γ0ext = 5 e introducir un γ1ext = 1.

En la Tabla 3 está recogido un resumen de los valores relevantes que se han empleado al

realizar las comparaciones con el caso uniforme en las figuras (9) y (10).

Damping uniforme ⟨t⟩ Damping uniforme ⟨t⟩
γ0int = 0,05 5950 ± 17 γ0ext = 5 5741 ± 16

γeff(int) = 0,1 3705 ± 10 γeff(ext) = 4 4889 ± 14

γ0int + γ1int/2 = 0,075 4420 ± 12 γ1ext + γ1ext/2 = 4,5 5315 ± 15

Tabla 3: Valor medio primer tiempo de paso para damping uniforme, estos valores han sido los

empleados para las ĺıneas rectas de las figuras 9 y 10.

4. Aplicación a la desnaturalización térmica del ADN

El ADN es la molécula que trasmite la información genética en las células. Esta

información está codificada en su estructura pero la lectura de la misma (transcripción)

y su transmisión a las células hijas (duplicación) está determinada por complejos procesos

donde la dinámica de la molécula es crucial. En este apartado estudiaremos la dinámica de la

molécula del ADN cerca de la temperatura donde se produce su desnaturalización térmica.

Esta se produce por el desarrollo de excitaciones no lineales (que denominaremos burbujas)

que eventualmente disparan la separación de las cadenas. En primer lugar haremos un breve

repaso de la estructura del ADN, y de las enerǵıas involucradas en su estabilidad. Luego

introducimos un modelo fisico estad́ıstico y dinámico (PBD de Peyrard-Bishop-Daxois) que

nos permitirá estudiar la dinámica de estas excitaciones.

15



4.1. Estructura del ADN

El ADN es un biopoĺımero, es decir, una molécula larga de componentes más sencillos. El

componente básico del ADN son los nucleótidos que están constituidos por tres componentes:

Una molécula de azúcar, un grupo fosfato y una base nitrogenada. Los nucleótidos se unen

entre śı mediante un enlace covalente entre el grupo fosfato de uno y la molécula de azúcar

del siguiente, de esta manera se forma una hebra de nucleótidos.

La molécula de ADN está compuesta por dos hebras entrelazadas formando una doble

hélice. La unión entre las hebras se produce a través de enlaces de hidrógeno entre las bases

nitrogenadas. Hay 4 tipos: Adenina (A), Citosina (C), Timina (T) y Guanina (G). Los posibles

enlaces entre ellos son: A-T con 2 puentes de hidrógeno o G-C con 3 puentes de hidrógeno.

Esto hace que el enlace del par de bases GC sea más estable que el de AT, siendo más dif́ıcil

de romper, ver Figura 11.

También hay que tener en cuenta que el enlace de hidrógeno es un enlace débil comparado

con los enlaces covalentes que forman las hebras y esto permite que los enlaces de hidrógeno

puedan romperse debido a las fluctuaciones térmicas y por tanto, permita la desnaturalización

térmica del ADN.

Además, cuando la doble hélice está unida, las bases quedan alineadas y esto permite que

se produzca una interacción entre los electrones π de los anillos que forman las bases debido

al solapamiento de sus orbitales. Esto da lugar a una interacción entre pares de bases vecinas

que se denomina de apilamiento (o stacking) que estabiliza la molécula. Cuando la unión

entre las bases complementarias se rompe, se puede producir una rotación de las mismas que

hace que ya no estén alineadas y por tanto se pierda esa aportación a la estabilidad de la

molécula.

Figura 11: Estructura del ADN. En A se pueden ver las diferentes bases presenten en el ADN. En

B se muestra como las bases están unidas para formar la doble hélice del ADN representada en C.

Imagen obtenida de [9]
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4.2. Modelo PBD

El modelo PDB es un modelo unidimensional minimalista que solo tiene en consideración

las variables y parámetros que influyen en el proceso de desnaturalización. El modelo PBD

tiene como variables la distancia entre pares de bases yi. Solo considera dos interacciones

posibles que corresponden a las descritas en el apartado anterior. La primera representa la

enerǵıa de los enlaces de hidrógeno mediante un potencial V (yn). La segunda corresponde a la

interacción entre nucleótidos vecinos de la misma hebra y por tanto depende de dos variables

W (yn, yn−1). Un esquema de este modelo se presenta en la Figura 12.

El Hamiltoniano del sistema se puede escribir entonces como:

H =
∑
n

p2n
2m

+ W (yn, yn−1) + V (yn) (26)

Para el potencial V (yn) se toma un potencial de Morse. Este potencial es comúnmente

utilizado para describir enlaces qúımicos y su forma se puede ver en la Figura 12. Tiene

un mı́nimo en la posición y = 0 y este valor corresponde al estado en el que el par de

bases está cerrado. Además, permite que haya valores negativos de y que corresponden a

una compresión del enlace respecto a su posición de equilibrio, aunque esta situación está

muy penalizada debido a la repulsión entre las bases si se aproximan demasiado (obstáculo

estérico). Finalmente, el potencial se vuelve casi plano para y grandes y por tanto describe

una interacción que tiende a desvanecerse permitiendo la disociación completa de las bases.

V (y) = Dbp(e
−abpy − 1)2 (27)

donde Dbp es la enerǵıa de disociación del par y abp es un parámetro inverso a la distancia

que fija la escala espacial del potencial. Ambos parámetros dependen del par de bases en el

que nos encontremos (bp=GC o bp=AT).

Por otro lado, para el potencial de “stacking” W (yn, yn−1) utilizaremos un potencial

armónico modificado (no lineal) que tenga en cuenta la diferencia de acoplo entre pares

de bases vecinas en los estados abiertos y cerrados. La forma del potencial provoca que la

constante de acoplo se reduzca desde K(ρ + 1) a K cuando una de las bases se abre. Esta

modificación fue introducida para tener en cuenta la interacción entre orbitales π mencionada

antes. Cuando las bases dejan de estar alineadas y por tanto se reduce la estabilidad de la

molécula, se produce la disminución del acoplo. La expresión de la enerǵıa de stacking (28)

refleja adecuadamente este comportamiento.

W (yn, yn−1) =
1

2
K(1 + ρe−δ(yn+yn−1))(yn − yn−1)

2 (28)

La elección de los parámetros que definen el hamiltoniano (Dbp, abp,K, ρ, δ) se determina

mediante el ajuste de la temperatura de transición del modelo, kBTc ∼ (KDbp)
1/2/abp [5]

y de su anchura (fuertemente condicionada por δ y ρ). En este trabajo utilizaremos los

siguientes parámetros descritos en la literatura [5, 10, 11]: para el potencial V (yn) tomaremos

DAT = 0,03 eV y aAT = 4, 5 Å
−1

y para el potencial W (yn, yn−1) usaremos K = 0,06 eV Å
−2

,

δ = 0,35 Å
−1

y ρ = 3. La masa promedio de un par de bases es de m = 300 uma.

Por último es conveniente trabajar en variable y parámetros adimensionales y para ello

definimos las variables distancia, momento y tiempo normalizados (29).
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Figura 12: Esquema del modelo PBD. A la izquierda se puede ver la simplificación de la estructura

del ADN, la variable del modelo son la distancia entre bases y. Se tienen en consideración las dos

interacciones consideradas V (yn) y W (yn, yn−1). A la derecha se muestra la forma del potencial de

Morse correspondiente a V (yn). La imagen ha sido obtenida de [5].

Aśı mismo, las enerǵıas y temperaturas se miden en unidades de Dpb.

ỹ = ay ; p̃ =
p√
mD

; t̃ =
t√
m

Da2
(29)

El modelo PBD permite estudiar tanto propiedades de equilibrio como dinámicas, logrando

reproducir comportamientos observados experimentalmente, siendo este uno de los puntos de

su éxito. Se han propuesto a lo largo de los años varias versiones modificadas de este modelo.

Por ejemplo en [10] se incluyen en el modelo una barrera de potencial para aśı tener en cuenta

los efectos del solvente en la enerǵıa de ruptura del enlace (ecuación 27). Este término refleja

la dificultad de replegamiento de las bases una vez se han separado debido al necesidad de

expulsar el agua en este proceso. La expresión para este potencial queda por tanto:

V (y) = Dbp(e
−abpy − 1)2 + Ge−

(y−y0)
2

b (30)

la elección de los parámetros en 27 que se han incluido son: G = 3Dbp, b = 1/2a2bp, y0 = 2/abp.

En la Figura 13 se representa el potencial V (yn) en unidades normalizadas, ah́ı se puede

observar cómo se modifica el potencial al incluir la barrera de potencial.

La mecánica estad́ıstica del modelo PDB se puede resolver de forma exacta (aunque

numérica) usando métodos basados en la matriz de transferencia (u operador de transferencia

para sistemas continuos). Sin embargo, el estudio de las propiedades dinámicas requiere el

uso de la simulación numérica.

Las simulaciones se realizarán con una cadena homogénea de 100 pares de bases AT, a la

que se imponen condiciones periódicas de contorno.

4.3. Desnaturalización térmica: Formación de burbujas

Cuando el ADN es calentado por encima de una temperatura cŕıtica, la doble hélice se

separa por completo quedando dos hebras simples de ADN [12]. Este proceso se denomina

desnaturalización térmica del ADN y corresponde a una transición de fase de primer orden

ya que pasamos de tener un estado donde las dos hebras que componen el ADN están unidas

a otro estado donde estas están completamente separadas. Este es un proceso mediado por

la entroṕıa ya que, a altas temperaturas, el aumento de entroṕıa al separarse las hebras

compensa la enerǵıa necesaria para romper los enlaces de hidrógeno. La temperatura de
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Figura 13: La interacción entre las bases de un pareja está definido por el potencial V(y), representado

en unidades normalizadas en ĺınea punteada, este corresponde a un potencial de Morse, pero se le puede

añadir una barrera para tener en cuenta efectos del solvente (ĺınea sólida). Se considerará que una

base se encuentra abierta si su apertura y es mayor que la posición del máximo.

transición depende de la cadena de ADN, recordemos que los enlaces GC se producen por

tres enlaces de hidrógeno y los enlaces AT por dos enlaces de hidrógeno, por tanto, una

secuencia más rica en GC tendrá una temperatura de transición mayor por el simple hecho

de tener que romper una mayor cantidad de puentes de hidrógeno para separar las hebras de

ADN.

La transición de fase no se produce de manera abrupta sino que comienza localmente para

temperaturas por debajo de la transición. Se producen simultáneamente en diferentes regiones

de la secuencia de ADN aperturas, a nivel local, de bases vecinas rodeadas de bases que se

encuentran cerradas, las estructuras que se generan se denominan burbujas de transición.

Cuando la temperatura aumenta, las burbujas van aumentando de tamaño hasta que, al

llegar a la temperatura de transición, se produce la transición de fase global donde se separan

completamente las hebras [13]. Una representación esquemática de la transición de fase puede

verse en la Figura 14.

Figura 14: Esquematización de la transición de fase de la desnaturalización térmica del ADN. Al

aumentar la temperatura, las bases se van abriendo formando burbujas que van creciendo de tamaño

hasta que las dos hebras se separan por completo. Imagen obtenida de [13].
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Para caracterizar la transición debemos definir cuando consideramos que una base se

encuentra abierta. Para ello se define una longitud umbral ỹth a partir de la cuál se considera

que el enlace del par de bases se ha roto. Se ha tomado ỹth = 2, es decir, si se observa en la

Figura 13, se ha tomado justo en la posición del máximo de la barrera, y aśı se separan los

dos estados posibles (abierto o cerrado).

En la simulación seguimos la evolución de las variables yn, y al igual que en el apartado

anterior usamos las ecuaciones de Langevin (16) de cada sitio de la cadena introduciendo en

este caso los potenciales (27) y (28). Cada 50 pasos de tiempo se comprueban si las bases

están abiertas y se recoge en un fichero un “1” si está abierta o un “0” si está cerrada. Las

curvas describiendo la transición del sistema, en la que se observan el incremento medio de

las bases en función de la temperatura, se pueden encontrar en el Anexo 7.5.

Empleando estos archivos se pueden obtener imágenes similares a la Figura 15, donde

el valor “1” se ha representado en blanco y el valor “0” en negro, obteniendo aśı una

representación visual de la evolución en el tiempo de la generación de burbujas.

Figura 15: Representación de la transición de fase de desnaturalización. La transición comienza

localmente generándose burbujas. Se representan 300000 pasos de tiempo para tres temperaturas, de

más baja (imagen superior) a más alta (imagen inferior). El color blanco representa que la base está

abierta.

Una vez definida la apertura y cerrado de una base, podemos proceder al estudio de la

formación de burbujas. Sin embargo, existen una serie de problemas a la hora de caracterizar

estas estructuras, fundamentalmente ligados a la combinación o escisión de una abertura

mayor en dos o más burbujas de menor tamaño; podŕıa considerarse que la burbuja mayor

ha “desaparecido”, y otras burbujas han surgido en ese instante, o que el tiempo de vida

de esa burbuja se mantiene, considerando que la burbuja se cierra cuando todas las bases

de esas subdivisiones se han cerrado. En la literatura existen diversos acercamientos a este

problema [14], más o menos estrictos en su definición de burbuja. Se podŕıan considerar los

distintos pros y contras de las posibilidades planteadas, o buscar otras opciones, pero tras

analizar este problema se ha optado por una solución más sencilla.

Escogeremos estudiar las burbujas a partir de su ingrediente principal, las bases. Por

un lado, se contabilizará el tiempo que las bases permanecen abiertas, siendo este valor
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representativo del tiempo de vida de las burbujas. Por otro lado, se medirán cuantos grupos

de bases contiguas se encuentran abiertas en un tiempo dado, y aśı tener una medida del

tamaño que pueden adquirir las burbujas. Naturalmente, tanto la distribución de tiempos

y/o tamaño de las burbujas son función de los parámetros del modelo, pero también de la

interacción con el solvente que introduciremos (además de una posible barrera de potencial)

como un parámetro de damping dependiente de la separación de las bases ỹn. En su estado

cerrado las bases no están expuestas al solvente y por tanto el damping será bajo, mientras

que en su estado abierto la interacción con el solvente llevará a un damping alto. Este cambio

lo representaremos como en la sección anterior como una función sigmoide.

El objetivo será ver cómo la introducción de un damping variable afecta a la creación

de burbujas. Para mostrar los resultados se representarán los histogramas generados de las

distribuciones tanto de tiempos de apertura como de tamaños de burbujas superponiendo los

diferentes casos. En color azul se representan los resultados de haber introducido en el sistema

un damping igual a γ0 o γeff uniforme. Luego, en colores cálidos se representan diferentes

resultados obtenidos aplicando el damping variable (22) modificando el centro de la sigmoide

x0. El valor de α se fija en 10 y el de γ0 en 0,1 en todos los casos. La temperatura escogida

para el estudio de la formación de estas burbujas es kBT = 0,67 ya que esta temperatura se

encuentra cercana a la transición.

Considerar el caso de un damping uniforme bajo no tiene sentido biológico ya que,

a las escalas en las que se desarrollan los procesos biológicos, predomina el efecto de

sobreamortiguamiento. Analizar los resultados que se obtiene en ese caso solo tiene como

objetivo poder observar el efecto que está provocando incluir un damping variable en el

sistema.

En primer lugar, en la Figura 16 se muestran los resultados obtenidos para la distribución

de tiempo. Se ha fijado un damping γ1 = 1 y se representan los resultados para damping

variable con x0 = ỹth = 2 y x0 = 2.
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Figura 16: Distribución del tiempo y tamaño de las burbujas formadas a lo largo de la

simulación sin barrera. Se representan en colores azules los casos de damping uniforme,

en claro γ = 0,1 y en oscuro γ = 1,0 para la distribución de tiempos y γ = 5,0 para la

de tamaños. Por otro lado, en rojo y naranja los casos de damping variable para

diferentes valores del centro de la sigmoide x0 y tomando γ0 = 0,1 y γ1 = 1 para

distribución de tiempos y γ1 = 5 para la de tamaños.
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Los resultados muestran cómo el tiempo en el que las bases permanecen abiertas aumenta

al introducir el damping variable respecto al caso con damping uniforme con γ = 0,1. Por

otro lado, si el centro de la sigmoide se coloca justo en la posición donde se ha definido el

umbral x0 = ỹth = 2, las distribuciones coinciden con la del damping uniforme alto, γ = 1,0.

Esto significa que el tiempo de vida está determinado por el valor del damping al otro lado

del umbral. Este hecho tiene sentido, ya que se está midiendo el tiempo que tarda la base en

pasar del estado abierto al cerrado y entonces, tomando x0 = ỹth, los valores del damping en

el estado abierto coinciden. Por último, si se comparan los resultados de damping variable

para diferentes valores de x0, se observa que si el centro de la sigmoide se coloca después de

la posición del umbral, los tiempos se reducen respecto al caso x0 = ỹth, pero siguen siendo

mayores que para el caso uniforme con γ = 0,1. Puede entenderse entonces que el damping

efectivo experimentado por el sistema es un punto intermedio entre el 0.1 y el 1.0 uniformes.

En caso contrario, si se elige un valor de x0 anterior al umbral, de nuevo la distribución

coincide con la obtenida para x0 = ỹth. Siguiendo el argumento anterior, en el estado abierto,

las bases solo se ven afectadas por el damping más allá del umbral. Por tanto, adelantar el

centro de la sigmoide al umbral de estado abierto no tiene ningún efecto en el tiempo de vida;

solo cuando la variación de damping cae en una zona posterior al umbral se ve afectada la

distribución. Cabe esperar que escoger x0 antes del umbral afecte al tiempo que le cueste a las

bases abrirse, pero este es un observable que no se ha medido. Este comportamiento recuerda

al resultado obtenido en 9 donde el valor de tiempo de primer salto al mover el centro de la

sigmoide se encontraba limitado entre dos valores correspondientes al caso uniforme.

Si ahora se analizan los resultados que se obtienen para la distribución de tamaños de

burbujas, Figura 17, se observa que se forman burbujas de menor tamaño al incluir el damping

variable respecto al caso uniforme de bajo damping.

Sin embargo, a diferencia de la distribución de tiempos, no coincide la distribución de

damping variable con x0 = ỹth con la distribución del caso uniforme con el damping alto. Es

más, observamos un cambio en la distribución de tamaños al mover el centro de la sigmoide

en ambos sentidos.

Si se aleja del umbral el tamaño de las burbujas aumenta y si se aproxima, se hacen más

pequeñas. Esto da indicios de que el tamaño de las burbujas está mediado por el damping

interior, ya que ahora seŕıa necesario que x0 ≫ ỹth para recuperar la distribución del caso

uniforme. Una posible razón es que cuando las bases se acercan al umbral śı comienzan a

notar la variación del damping antes de llegar a abrirse. Por último, debemos resaltar que para

poder observar estos cambios ha sido necesario aumentar el valor del damping variable alto a

γ1 = 5. Es decir, al menos en este caso estudiado, el damping variable afecta de manera más

notable antes a la distribución de tiempos que a la distribución de tamaños, siendo necesario

aumentar el valor de γ1 para poder percibir un efecto en los tamaños de las burbujas.

4.4. Introducción de la barrera de potencial.

Introducimos la barrera en nuestro sistema, tal y como se ha descrito en la ecuación (30),

y repetimos las simulaciones hechas en el apartado anterior. La temperatura escogida para el

estudio en este caso, acorde a las curvas de desnaturalización del Anexo 7.5, es de kBT = 0,67.

Es importante mencionar que la dinámica que se observa al introducir la barrera es

mucho más lenta y se necesitan simulaciones más largas para producir números de burbujas

22



comparables al caso anterior. De esta forma, los resultados obtenidos son todav́ıa preliminares

y sujetos a fluctuaciones estad́ısticas. Además, aunque los resultados no son inmediatamente

comparables con el caso sin barrera, dado el cambio que la introducción de esta impone en

las temperaturas de transición, śı pueden analizarse las tendencias generales del sistema.

En relación a los tiempos de supervivencia de las burbujas, en la Figura 17 se observa una

tendencia muy similar al caso anterior: el tiempo de supervivencia de las burbujas depende

fundamentalmente del damping al otro lado del umbral y > ỹth. Es por esto que las curvas

con damping variable y x0 ≤ 2,0 coinciden con la curva uniforme con damping alto γ = 1,0,

y por qué estas a su vez muestran tiempos mayores que el caso variable de x0 = 1,0, y esta

última también es mayor que la uniforme con γ = 0,1. La cola del final de las distribuciones

es muy ruidosa, causado principalmente por falta de estad́ıstica en las simulaciones.

Respecto al tamaño de las burbujas, este parece seguir estando determinado por el

damping en la zona interior de la barrera. En la Fig. 17, observamos tamaños más grandes

en aquellos sistemas con menor damping, teniendo dos agrupaciones: una formada por las

curvas con valores de γ menores, como la de damping uniforme bajo γ = 0,1 y la curva con

sigmoide centrada en posiciones posteriores a la barrera x0 = 3,5, y otra constituida por la

curva con damping alto constante, y las de posiciones x0 ≤ 2,0.

Es complicado decir dentro de cada grupo cuál es la tendencia; cabe asumir que los

resultados están afectados por dos factores: la presencia de la barrera, que al retrasar la

dinámica significativamente da lugar a menor número de burbujas, y la propia estad́ıstica de

las simulaciones, que no son suficientemente largas. El tamaño finito del sistema (N = 100)

contribuye a estos factores, y un mayor valor de N permitiŕıa aumentar el número de burbujas

observadas.
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Figura 17: Distribución del tiempo y tamaño de las burbujas formadas a lo largo de la

simulación con barrera. Se representan en colores azules los casos de damping uniforme,

en claro γ = 0,1 y en oscuro γ = 1,0 para la distribución de tiempos y γ = 5,0 para la

de tamaños. Por otro lado, en rojo y naranja los casos de damping variable para

diferentes valores del centro de la sigmoide x0 y tomando γ0 = 0,1 y γ1 = 1 para

distribución de tiempos y γ1 = 5 para la de tamaños.
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5. Conclusiones

A lo largo de este trabajo se ha comprobado la validez de los resultados de la teoŕıa de

Kramers, mostrando la concordancia entre las expresiones anaĺıticas y simulaciones para el

cálculo de la tasa de escape en un amplio rango de valores del damping uniforme γ.

Hemos observado como, ante la introducción de un damping dependiente de la posición, las

expresiones anaĺıticas dejan de funcionar. Sin embargo, puede definirse un damping efectivo

dependiendo de cada caso que verifica la tendencia general delineada por la teoŕıa, con

resultados satisfactorios, mostrando ajustes precisos a las simulaciones realizadas.

Hay que resaltar que aún no existe un teoŕıa completa (en todos los reǵımenes de damping)

en el caso de damping variable. Los avances producidos ([4] entre otros) se limitan al régimen

sobreamortiguado, que facilita enormemente el desarrollo de cálculos anaĺıticos. De esta

forma, las simulaciones numéricas han probado ser una buena gúıa para el desarrollo y

verificación de nuevas propuestas teóricas.

Finalmente, se han aplicado los conocimientos desarrollados en estas secciones al estudio

de la desnaturalización térmica del ADN a través del modelo PBD, observando la formación

de burbujas en el sistema. Se ha podido observar como el factor determinante en el tiempo

de vida de las burbujas es el damping que experimentan los pares de bases una vez abiertos,

mientras que el tamaño máximo de estas es dominado por el damping en la zona antes del

umbral de apertura. La introducción de un damping más realista, dependiente de la posición,

permite ajustar cada uno de estos parámetros de forma independiente, dando lugar a una

dinámica posiblemente más realista; uno de los problemas conocidos del modelo PBD es el

corto tiempo de vida de las burbujas, que podŕıa ser solucionado de esta forma.

Al introducir una barrera de potencial entre los estados abiertos y cerrados, la dinámica

general del sistema se vuelve mucho más lenta, provocando que se generen un menor número

de burbujas. Las distribuciones de tiempo y tamaño obtenidas presentan significativamente

más ruido que en el caso sin barrera, aunque aún se llega a atisbar un comportamiento

análogo.

En el caso de la distribución de tiempo, la dependencia con el damping exterior se sigue

observando, siendo las diferencias bastante menos destacables, aunque presentes. La cola de

la distribución es también bastante ruidosa, indicando falta de estad́ıstica en las simulaciones.

Respecto a la distribución de tamaños, se sigue observando una dependencia con el

damping en el interior de la barrera, aunque es dif́ıcil establecer una ordenación de las curvas

debido al ruido estad́ıstico, requiriendo tiempos de simulación significativamente más largos,

o temperaturas más elevadas.

Otro efecto que cabe mencionar es que nuestros resultados pueden estar afectados por el

tamaño finito de nuestras cadenas, compuestas de N = 100 bases. Este fenómeno podŕıa ser el

origen de los gaps los histogramas del tamaño de las Figs. 16 y 17, y parte de la incertidumbre

de nuestros sistemas en el caso con barrera. Aumentar el tamaño de estas cadenas aumentaŕıa

tanto el número de burbujas como el tamaño máximo de estas.

Posibles opciones de trabajo futuro en esta ĺınea incluyen la introducción en el modelo de

parámetros de damping basados en datos experimentales. Estos permitiŕıa ajustar los valores

del damping en el interior y exterior de la barrera, aśı como el reescalado de parámetros entre

los casos con y sin barrera de potencial del modelo PBD para poder comparar los valores

numéricos obtenidos de las simulaciones.
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7. Anexos

7.1. Ecuación de Langevin 1D

La ecuación de Langevin es una ecuación diferencial estocástica introducida en 1908

por Paul Langevin para explicar las propiedades del movimiento browniano de una forma

alternativa a la contribución de Einstein. La forma general de la ecuación describe el

movimiento de una part́ıcula en equilibrio con un baño térmico a temperatura T y sometido

a fuerzas externas.

M
d2x

dt
= − γ

dx

dt
− dV (x)

dx
+ ξ(x, t) (31)

El término de inercia se iguala a las fuerzas que actúan sobre la part́ıcula. En orden de

aparición las fuerzas son: el rozamiento viscoso con el medio, la fuerza externa derivada de

un potencial y una fuerza estocástica que representa las colisiones con las part́ıculas del baño

y que tiene las siguientes propiedades estad́ısticas:

i) < ξ(x, t) > = 0 ii) < ξ(x, t)ξ(x, t′) > = coδ(t− t′)

Por tanto, una posible elección para representarla será emplear números aleatorios con

distribución gaussiana, debido a que esta distribución tiene las mismas propiedades

estad́ısticas que el término estocástico.

Además, a la ecuación de Langevin se le debe imponer que cumpla las siguientes relaciones:

Relación fluctuación-disipación 1D: mv2 = kBT −→ c0 = 2γkBT

Relación Einstein: < x2 > = 2Dt → D =
kBT

γ

donde D es la constante de difusión.

7.2. Ruido Multiplicativo: Algoritmo de Heun

Dada la ecuación diferencial estocástica:

ẏ = F (y) + G(y)ξ(t) (32)

la evolución temporal de la variable y se calcula en dos pasos:

Predictor:

ȳ = y0 + F (y)∆t +G(y)∆w (33)

Corrector:

y(t+ h) = y0 +
1

2
[F (y) + F (ȳ)]∆t +

1

2
[G(y) + G(ȳ)]∆w (34)

donde

∆w =

∫ t+h

t
ds ξ(s) (35)

es un número aleatorio con distribución gaussiana de media 0 y anchura 1.
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7.3. Generadores de números aleatorios.

Algoritmo de Box Muller

El algoritmo de Box Muller nos permite obtener números aleatorios con distribución

gaussiana a partir de 2 números aleatorios con distribución uniforme d1 y d2. Hay dos

posibilidades para generar los números aleatorios, pero se obtiene la misma distribución

con ambas, se pueden escoger indistintamente.

g1 =
√

−2ln(d1)cos(2πd2) g2 =
√
−2ln(d1)sin(2πd2) (36)

que tienen las propiedades ⟨gi⟩ = 0 y ⟨gigj⟩ = δij .

Algoritmo ran2

Este algoritmo permite generar números aleatorios entre 0 y 1 con una distribución

uniforme. El fragmento de código se obtuvo de “Numerical Recipes in C3” y se muestra

a continuación:

1 #de f i n e IM1 2147483563

2 #de f i n e IM2 2147483399

3 #de f i n e AM (1 . 0/ IM1)

4 #de f i n e IMM1 (IM1−1)

5 #de f i n e IA1 40014

6 #de f i n e IA2 40692

7 #de f i n e IQ1 53668

8 #de f i n e IQ2 52774

9 #de f i n e IR1 12211

10 #de f i n e IR2 3791

11 #de f i n e NTAB 32

12 #de f i n e NDIV (1+IMM1/NTAB)

13 #de f i n e EPS 1 .2 e−7

14 #de f i n e RNMX (1.0−EPS)

15

16 f l o a t ran2 ( long ∗ idum)

17 /∗Long per iod ($>$ 2 1018) random number genera tor o f L Ecuyer

18 with Bays−Durham s h u f f l e and added sa f eguards . Returns a uniform

19 random dev ia t e between 0 .0 and 1 .0 ( e x c l u s i v e o f the endpoint

20 va lue s ) . Ca l l with idum a negat ive i n t e g e r to i n i t i a l i z e ; t h e r e a f t e r ,

21 do not a l ter idum between su c c e s s i v e dev i a t e s in a sequence . RNMX

22 should approximate the l a r g e s t f l o a t i n g value that i s l e s s than 1 . ∗/
23 {
24 i n t j ;

25 long k ;

26 s t a t i c long idum2=123456789;

27 s t a t i c long iy =0;

28 s t a t i c long iv [NTAB] ;

29 f l o a t temp ;

30 i f (∗ idum $<=$ 0) { // I n i t i a l i z e .

31 i f (−(∗ idum) $<$ 1) ∗ idum=1;// Be sure to prevent idum = 0 .

32 e l s e ∗ idum = −(∗idum) ;

33 idum2=(∗idum) ;\\
34 f o r ( j=NTAB+7; j$>=$0 ; j−−) { //Load the s h u f f l e t ab l e

3Press, W. H.; Teukolsky, S. A.; Vetterling, W. T. & Flannery, B. P. (1992), Numerical Recipes in C ,

Cambridge University Press , Cambridge .
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35 k=(∗idum) /IQ1 ; // ( a f t e r 8 warm−ups ) .

36 ∗ idum=IA1 ∗(∗ idum−k∗IQ1 )−k∗IR1 ;

37 i f (∗ idum $<$ 0) ∗ idum += IM1 ;

38 i f ( j $<$ NTAB) iv [ j ] = ∗ idum ;

39 }
40 i y=iv [ 0 ] ;

41 }
42 k=(∗idum) /IQ1 ; // Star t here when not i n i t i a l i z i n g .

43 ∗ idum=IA1 ∗(∗ idum−k∗IQ1 )−k∗IR1 ; //Compute idum=(IA1∗ idum)

44 //% IM1 without

45 i f (∗ idum $<$ 0) ∗ idum += IM1 ; // ove r f l ows by S c h r a g e s method .

46 k=idum2/IQ2 ;

47 idum2=IA2 ∗( idum2−k∗IQ2 )−k∗IR2 ; // Compute idum2=(IA2∗ idum)

48 //% IM2 l i k ew i s e .

49 i f ( idum2 $<$ 0) idum2 += IM2 ;

50 j=iy /NDIV; // Wil l be in the range 0 . .NTAB−1.

51 i y=iv [ j ]−idum2 ; //Here idum i s shu f f l ed , idum and idum2 are

52 i v [ j ] = ∗ idum ; // combined to generate output .

53 i f ( i y $<$ 1) iy += IMM1;

54 i f ( ( temp=AM∗ i y ) $>$ RNMX) return RNMX; //Because u s e r s do not

55 // expect endpoint va lue s .

56 e l s e re turn temp ;

57 }

7.4. Dilema de “Îto-Stratonovich” 4.

A la hora de estudiar un sistema inhomogéneo, hay que tener en cuenta que surge

un problema asociado a la existencia de dos posibles interpretaciones relacionadas con

la integración de funciones estocásticas, el llamado dilema de “Îto-Stratonovich”; ambas

acercamientos nos proporcionan resultados diferentes y, por tanto, es necesario fijar desde

un principio que interpretación se está usando. Afortunadamente, como veremos en nuestro

caso, ambas interpretaciones dan lugar a las mismas ecuaciones para las distribuciones de

probabilidad.

Para verlo comencemos considerando un sistema lo más general posible con una única

variable

dx

dt
= a(x, t) + b(x, t)ξ(t) (37)

El primer término a(x, t) corresponde al conjunto de fuerzas que afecten al sistema y

el segundo término corresponde a un ruido general, separando la dependencia espacial y

temporal de este en la función b(x, t). Hay que destacar que esta ecuación es la generalización

de 16 despreciando el término de inercia.

A partir de la ecuación de Langevin se puede deducir la llamada ecuación de

Fokker-Planck. Esta rige la evolución de la densidad de probabilidad P (x, t) de encontrar

una part́ıcula de nuestro sistema en la posicón x a tiempo t, y consta de dos términos

dP (x, t)

dt
= JDrift + JDifusion (38)

4Gardiner, C. W. Stochastic Methods: A Handbook for the Natural and Social Sciences. 4th ed., Springer,

2009
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Estos dos términos, denominados corrientes de drift y difusión respectivamente, tienen su

origen en las dos partes de la ecuación de Langevin (37). Por una parte, el termino de drift

es la corriente causada por los potenciales que describen el comportamiento del sistema,

JDrift = − ∂

∂x
[a(x, t)P (x, t)] (39)

Por otra, el termino de difusión viene asociado al baño térmico formado por el medio. Este

último es el objeto de discusión del dilema de Îto y Stratonovich, ya que existen dos formas

distintas de escribirlo, llevando a resultados diferentes:

Stratonovich:

JDifusion = +
1

2

∂

∂x

[
b(x, t)

∂

∂x
(b(x, t)P (x, t))

]
(40)

Îto

JDifusion = +
1

2

∂2

∂x2
[
b(x, t)2P (x, t)

]
(41)

En el caso uniforme overdamped b(x, t) =
√
2D es independiente de la posición, saliendo

de la expresión y haciendo ambas interpretaciones equivalentes. Sin embargo, en nuestro caso

particular, b(x, t) =

√
2kBTγ(x)

m =
√
2D(x) y las interpretaciones de Îto y Stratonovich no

coincidiŕıan.

Esto lleva a una serie de problemas en el ĺımite sobreamortiguado, ya que dependiendo

de la interpretación escogida los resultados de las simulaciones podŕıan variar. Nuestras

simulaciones sin embargo, tal y como hemos mencionado anteriormente se han hecho sin

despreciar el término inercial y en el régimen de damping moderado o alto. Si no se desprecia

este término de inercia, podemos partir de (16) y empleando la definición de momento

reescribirla.

dx

dt
= p

dp

dt
= −γ(x)p− V ′(x) +

√
2kBTγ(x)ξ(t)

(42)

En el caso general la distribución de probabilidad depende de 3 variables P (x, p, t): posición

x, el momento p y el tiempo t. De esta forma, ahora a(x, t) se convierte en un vector y b(x, t)

en una matriz.

d

dt

[
x

p

]
=

[
a1(x, p, t)

a2(x, p, t)

]
+

[
b11(x, p, t) b12(x, p, t)

b21(x, p, t) b22(x, p, t)

][
ξ1(x, p, t)

ξ2(x, p, t)

]
(43)

A partir de 42, se identifican los correspondientes términos ai y bij para las variables x y p

obteniendo aśı, de forma análoga al caso sobreamortiguado, las expresiones para la evolución

de la distribución de probabilidad para ambas interpretaciones:

Stratonovich:

∂

∂t
P (x, p, t) = − ∂

∂x
P (x, p, t)p− ∂

∂p

[
−γ(x)p− V ′]P (x, p, t)

+
1

2

∂

∂p

[
−
√

2γ(x)kBT
∂

∂p
(
√
2γ(x)kBTP (x, p, t))

] (44)
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Îto

∂

∂t
P (x, p, t) = − ∂

∂x
P (x, p, t)p− ∂

∂p

[
−γ(x)p− V ′]P (x, p, t)

+
1

2

∂2

∂p2
[−(2γ(x)kBT )P (x, p, t)]

(45)

Como el damping no depende del momento, ambas ecuaciones coinciden. Por tanto, está

justificado haber empleado la ecuación (16) para la integración de la evolución del sistema,

y los resultados de las simulaciones pueden considerarse correctos.

7.5. Curvas de transición del DNA: modelo PBD.

Presentamos en esta sección las curvas de desnaturalizción obtenidas con el modelo PBD

en los casos sin barrera y con barrera. La transición se determina a partir del cambio en la

enerǵıa del sistema, calculada con el Hamiltoniano (26), en función de la temperatura.
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Figura 18: Curvas de desnaturalización del ADN. En rojo está representada la curva para el caso con

barrera y en azul para el caso sin barrera.

Las temperaturas de transición se corresponden con 0.74 para el caso sin barrera, y 0.69

para el caso con barrera.

La elección de nuestras temperaturas de simulación para medir la formación de burbujas,

0.67 en ambos casos, las consideramos suficientemente cercanas a la transición.
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