Caracteres de los grupos simétricos

macultad de Ciencias
Universidad Zaragoza

«2s  Universidad
10l Zaragoza

1542

Juan Carlos Graus Laporta
Trabajo de fin de grado de Matematicas
Universidad de Zaragoza

Dirigido por: Concepcion Maria Martinez Pérez

Junio de 2024






Resumen

La teoria de representaciones es una herramienta muy 1til que nos ayuda a entender de manera muy
intuitiva como puede actuar un grupo sobre un espacio vectorial. Se trata basicamente de asignarle a cada
elemento del grupo una matriz a través de un homomorfismo al que llamamos representacion del grupo 'y
ver cOmo estas matrices actiian sobre un espacio vectorial al que llamamos mdédulo de la representacion.
En el primer capitulo, revisitamos algunos conceptos de dlgebra lineal, desde los mds sencillos hasta
otros mds abstractos. También vamos a introducir un concepto muy relevante para el resto del trabajo:
los médulos irreducibles, que son las piezas con las que mds adelante podremos construir cualquier mé-
dulo. Probaremos que cualquier médulo estd compuesto por médulos irreducibles de manera tnica (salvo
isomorfismo). Para grupos abelianos, veremos que los médulos irreducibles tienen todos dimensién 1.
Después, nos centramos en el grupo no abeliano més pequefio que hay: S3. Ademds, este ejemplo nos ser-
vird como excusa para presentar algunas de las representaciones més relevantes de los grupos simétricos,
como la representacion trivial, la alternada o la representacion por permutaciones. Después, armados
Unicamente con estos conocimientos, descomponemos un médulo de una representacion arbitraria de S3
y ponemos un ejemplo practico, la representacion regular.

Como podremos ver, necesitaremos una teoria un poco mas sofisticada para poder analizar las componen-
tes irreducibles de una representacién dada. Para ello, en el segundo capitulo, introducimos el concepto
de cardcter de una representacion; que es basicamente la traza de las matrices asociadas a la represen-
tacion. No solo porque nos interesa mucho conocer los valores propios de estas matrices, sino que, por
ejemplo, en el caso de las matrices que representan permutaciones, conocer la traza equivale a cono-
cer cudntos elementos deja fijos un elemento del grupo en cuestién. Ademds, el caricter tiene muchas
propiedades que estdn muy relacionadas con las representaciones irreducibles y que de cierta manera
nos garantizan cierta ortonormalidad. Esta propiedad nos serd muy util cuando construyamos la tabla
de caracteres, en nuestro caso de los grupos simétricos S3 y S4. En este tipo de tablas se recoge mucha
informacién de manera muy resumida sobre las representaciones irreducibles, las clases de conjugacién
del grupo y qué papel juegan los caracteres realmente. El resultado mas relevante de este capitulo es que
hay tantas representaciones irreducibles como clases de conjugacion.

En el tercer y dltimo capitulo, nos centramos en las representaciones de grupos simétricos S;. En este
caso, el nimero de clases de conjugacidén es exactamente el nimero de particiones de d. Para representar
las particiones, utilizamos lo que se conoce como ‘diagramas de Young’, que es una manera de visualizar
las particiones de manera mds clara y directa. Aunque no lo parezca, estas representaciones grificas nos
van a ayudar a definir una serie de elementos de la correspondiente dlgebra grupo mediante las cuales
podremos obtener las representaciones irreducibles directamente.

El principal objetivo de este trabajo es acercar la teoria de las representaciones a un publico general den-
tro del &mbito matematico no especializado en el tema. Por ello se ven muchos ejemplos y se demuestran
la mayor parte de férmulas y otros resultados de manera muy explicita. La estructura de este trabajo esté
ampliamente basada en los capitulos 2, 3 y 4 del libro ‘Representation Theory’, de W. Fulton y J. Harris.
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Abstract

Representation theory is a very useful tool that helps us understand how a group can act on a vector

space in a very intuitive way. It basically involves assigning to each element of the group a matrix th-
rough a homomorphism that we call a group representation and observing how these matrices act on a
vector space that we call the representation module.
In the first chapter, we revisit some linear algebra concepts, from the simplest to the more abstract ones.
We will also introduce a very relevant concept for the rest of the essay: the notion of irreducible modules,
which are the pieces with which we can later construct any module. We will prove that any module is
uniquely composed of irreducible modules (up to isomorphism). For abelian groups, we will show that
irreducible modules are 1-dimensional. Therefore, we focus on the smallest non-abelian group: the sym-
metric group S3. Additionally, this example will serve as an excuse to present some of the most relevant
representations of symmetric group, such as the trivial representation, the alternating representation, or
the permutation representation. Then, armed with nothing but this knowledge, we decompose a module
of an arbitrary representation of S3 and provide a practical example, the regular representation.

As we will see, we will need a slightly more sophisticated theory to be able to analyze the irreducible

components of a given representation. To do this, in the second chapter, we introduce the concept of the
character of a representation; which is basically the trace of the matrices associated with the representa-
tion. Not only because we are very interested in knowing the eigenvalues of these matrices, but also, for
example, in the case of matrices representing permutations, knowing the trace is equivalent to knowing
how many elements a group element fixes. Moreover, the character has many properties that are closely
related to irreducible representations and, in a way, guarantee a certain orthonormality. This property will
be very useful when we construct the character table, in our case for the symmetric groups S3 and Ss.
In this type of table, a lot of information is summarized about irreducible representations, the conjugacy
classes of the group, and what role the characters actually play. The most relevant result of this chapter
is that there are as many irreducible representations as conjugacy classes.
In the third and final chapter, we focus on the representations of symmetric groups S;, as we know
that the number of conjugacy classes is exactly the number of partitions of d. For those groups, we use
what are known as Young diagrams, which is a way to visualize the partitions more clearly and directly.
Although it may not seem so, these graphical representations will help us devise a series of construc-
tions, closely related to the concept of group algebra, from which we can directly obtain the irreducible
representations.

The main objective of this work is to bring the theory of representations closer to a general audience
within the mathematical field who are not specialized in the subject. Therefore, many examples are
shown, and most formulas and other results are proven very explicitly. The structure of this essay is
widely based on the chapters 2, 3 and 4 from the book ‘Representation Theory‘by W. Fulton and J.
Harris [3]
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Capitulo 1

Representacion de grupos finitos

1.1. Definicion y propiedades

Definicion 1.1. Sea G un grupo finito y V un espacio vectorial de dimension finita sobre C. Una repre-
sentacién de G es un homomorfismo
p:G—GL(V)

siendo GL(V) el grupo lineal general de V entendido como el conjunto de las matrices invertibles nxn
con n = dimV y con el producto habitual. Es decir, p asigna a cada elemento de G una matriz invertible.
Ademds, dada una representacién como antes, si fijamos una base de V podemos identificar cada v € V
con sus coordenadas (en columna) y entonces, dado g € G, podemos multiplicar p(g)(v) y obtenemos
de nuevo un elemento de V. Esto define una accién de G en V y decimos que V es el médulo asociado (o
G-moédulo). Se tiene, Vvy,vo € VyVA;, A4, €C,

p(g)(Avi+Ava) = Aip(g)(vi) +A2p(g)(v2)

p(gh)(v) = p(g)(p(h)v)
En este trabajo escribiremos en la mayoria de los casos
gv:=p(g)(v)

reservando el uso de p para cuando queramos hacer hincapié en la naturaleza de matriz de p(g) o, so-
bretodo en esta primera parte, para cuando haya mucha ambigiiedad y estemos trabajando con médulos
diferentes (y diferentes representaciones). De forma equivalente, si V es un G-mddulo, es decir, un espa-
cio vectorial con una accién de G tal que

g(Mvi+Aava) = digvi + Aagva

(gh)(v) = g(hv),

fijando una base de V se tiene una representacion.

Definicién 1.2. Sea G un grupo finito y p; : G — GL(V) y p2 : G — GL(W) dos representaciones de
G. Llamamos aplicacion G-lineal o simplemente G-aplicacion entre médulos V 'y W a una aplicacién
¢ :V — W que cumple que

¢(p1(g)(v)) = p2(8)(9(v)) VgeGveV

Aunque sea muy ambiguo, en ocasiones p; y p» se sobreentienden. Por tanto, podemos reescribir la
propiedad anterior como:

¢(gv) =g9(v)

1



2 Capitulo 1. Representacion de grupos finitos

Ejemplo 1.3. Para el grupo ciclico de orden n, C, =< g >, tenemos que g" = 1. Eso implica que p(g)" =
1 para cualquier representacion. Entonces si v € V es un vector propio de la matriz p(g) valor poropio
A, siendo V el mddulo de la representacion, se tiene:

p()(v)=A"-v=v

Con lo cual los valores propios de la matriz asociada por la representacién a cualquier elemento son
rafces n-ésimas de la unidad.

1. Consideramos la siguiente representacion p; con médulo el espacio vectorial C:
p1:C, — GL(C)

g—¢

donde { es una raiz n-ésima primitiva de la unidad. Entonces p;(g)(vi) = gvi = {v; para cualquier
V] € C.

2. La siguiente es una representacion p, para el grupo C4 con el espacio C? como médulo

P2 Cy — GL((CZ)

. 0 —1
71 o
. 0 -1 2
asi, p2(g)(v2) = gva = 10 vp con vy € C=.

Vamos a ver que se pueden obtener médulos a partir de otros, para eso, primero vamos a definir y ver
algunas construcciones de dlgebra lineal.

Definicion 1.4. Sean V y W espacios vectoriales sobre un cuerpo K.

1. [7] Llamamos producto tensorial V ®g W sobre K al espacio vectorial que tiene por base vectores
de la forma e; ®k fj cone; € V'y f; € W vectores de una base de V' y W respectivamente. Ademds,
Yvi,v2 €V, Vwi,wy € Wy Ve € K se cumplen las siguientes propiedades:

a) (vi+v2) @gwi = v Qg wi+Vv2 @k wi
b) vi ®k (Wi +w2) =vi Qg w1 +vi Qg wa
c) c(vi®kxwi) = cvi Qg wi = Vi @k CW]

A lo largo de este trabajo, como todos los son espacios vectoriales son complejos y de dimensién
finita, usaremos la notacién V@ W :=V ®c W y tendremos que dim(V @ W) = dimV - dimW

2. La potencia exterior n-ésima de V, denotada A"V, corresponde al cociente de V" con el subespa-
cio generado por los elementos de la forma v; ® ... ®v, con v;=v; para algiin i # j. Paran = 2, el
cuadrado exterior A%V tiene como base {e; Ae;|i < j} con {e;} base de V

3. Llamamos Hom(V,W) al espacio vectorial de las aplicaciones lineales que van de V en W, sobre
K = C en nuestro caso. Es espacio vectorial con la suma (f +g)(v) = f(v) +g(v) y producto por
escalar (cf)(v) = c¢(f(v)) para f,g € Hom(V,W),veV yceC.

4. El espacio dual de V es V* = Hom(V,C). Como en nuestro caso V es un espacio vectorial com-
plejo de dimension finita, podemos denotar los elementos v* € V* mediante matrices fila.
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Definicion 1.5. [8] El producto de Kronecker de dos matrices A ny xm; y B np xmj;se define como:

AB | AppB | ... AlmlB
nop | AnB [ AnB [ .. [Aw,B
An 1B | AnaB | . | Aum B

De hecho, si llamamos V al espacio formado por las matrices n; xm;y W al de las matrices n, x mymediante
el producto de Kronecker, podemos identificar el espacio de las matrices niny xmjmy con VR W.

Proposicion 1.6. SeanV y W espacios vectoriales complejos de dimension finita dimV = ny dimW = m.
Entonces, Hom(V,W) 2 V*@W.

Demostracion. Sea {v;} una base de V' y {v;} la base del dual de V* (es decir, v/ (v;) = 0;; con J;; la
delta de Kronecker y {w;} una base de W. Construimos el homomorfismo

D:V*'QW — Hom(V,W)

tal que para cada u € V se tiene que ®(v* @ w)(u) = w[v*(u)] [1]. Extendemos por linealidad, de forma
que para un elemento de V* ®@W de la forma }; ;¢;;(v; @ w;)

‘P(ZCU(VT @w;))(u) = (Zcijwj(vf”)'

Primero, veamos que es inyectivo. Supongamos que Y, ; ¢;;(v; @w;) € Ker® y supongamos que no todos
los c;; son 0. Tenemos que

(Y cijw;(viv)) =0 WweV = ch]w] viv)) =Y wi(Y cijviv) =
— - -

7]

Si para algin v no todos los Y, c;;v;v son 0, entonces significaria que los {w;} son linealmente depen-
dientes, que es una contradiccion por hipétesis. Entonces son cero para todo v, es decir,

Y eip)=0 Vj=1,...m
i

lo cual es una contradiccién porque los {v}} son linealmente independientes. Por lo tanto Kerd = 0.
Para la suprayectividad, cogemos un g € Hom(V,W), construimos Y ;v; ® g(v;) y vemos que

Zv ®g(vi)) ng, Viv) Zvlvv
Como v; es base de V, se tiene que para cualquier v, v =Y ,_1 04v; y ViV = ¢, luego
Zvi(v?v) = Z oV = v,
i i=1
es decir,
B(Y v; ©8()) () = 8(v).
14

Por tanto, es un isomorfismo.
]

Definicion 1.7. Un submédulo de V' es un subespacio vectorial W C V que es invariante bajo la accién
de G.

Proposicion 1.8. Sean V. y W G-mddulos con p; : G — GL(V) y p2 : G — GL(W) sus respectivas
representaciones. Entonces los siguientes espacios tienen estructura de G-moédulo:
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i) VeW conp,., (8)(v,w) = (p1(8)(v),p2(8)(w)) yy VW cony p,., (g)(vew) =pi(g)(v)®
p2(8)(w).

ii) Si U es un submédulo de V, entonces el espacio cociente V/ U es también un G-mdodulo con

Py (&) = [pi(e) (V).
iii) N>V es un G-médulo.
iv) El espacio dual V* = Hom(V,C) con p*(g) = p1(g~")T.
v) El espacio de homomorfismos de V.en W Hom(V,W) es un G-mddulo.

Demostracion. (i) Hay que probar que p,., y p,., son homomorfismos de grupos, esto se deduce
facilmente teniendo en cuenta que p; y P2 lo son. También es facil comprobar que con el producto
de Kronecker p, ., (8) = p1(g) ® p2(g). (ii) Tenemos que en V /U los elementos son de la forma [v] :=
{v+u € V|u € U}. Primero hay que comprobar que py y estd bien definido, es decir, que Vg € G si
vy € [v1], entonces py/y(g)(v2) € [P1(g)(v1)], esto es equivalente a

vi—veU = pi(g)(vi —v2) =rhoi(g)(vi) —rhoi(g)(v2) € U,

puesto que U es submédulo. Ahora solo faltarfa ver que pyy es un homomorfismo de grupos (lo cual
es trivial). (iii) Recordamos que la Definicién 1.4 dice que A2V = V&2 /U, siendo U =< v@ vy €V >.
Entonces con probar que U es submddulo podemos aplicar el anterior punto y esto es facil de ver ya que,
para cualquier g € G, p,., () (&) = i () (v) &1 () (v) € U
(iv) Primero vemos que, para v € V*y g € G, gv* € Hom(V,C) es el elemento dado por (gv*)u =
v*(g~'u). El motivo por el que introducimos g~ ! es que es necesario para que se cumpla (hg)v* = h(gv*),
ya que

h(gv*)(u) = (gv") (h™'u) = v (g~ 'h"u) = v* ((hg) ™ (u) = ((hg)v") ()
Para definir la representacion asociada, tomamos {v;} base de V y {v;} la base dual. p*(g) tiene por
columna j las coordenadas en {v;} del vector gv;. La coordenada i-ésima es (gv})(vi) = v} (g7 i) que
es igual a la columna i, fila j de p*(g~!). Esto significa que la entrada (i, j) de p*(g) es igual a la entrada
(j.i) de p(g™"), luego p*(g) = p(g~")"-
(v) Hom(V,W) es un médulo porque, como hemos visto en la proposicién anterior Hom(V,W) 2 V* ®
w. ]

Definicion 1.9. Un médulo es irreducible si no contiene submdédulos no nulos. Andlogamente, una re-
presentacion es irreducible si lo es el médulo asociado.

Ejemplo 1.10. En el Ejemplo 1.3, sean w; y w; los vectores propios de pa(g), Wi =< w; >y W, =<
ws > son submédulos de C? para G = C. Ademds son irreducibles trivialmente porque tienen dimW, =
dimW, = 1.

1.2. Existencia y unicidad de la descomposicion

Nos queremos centrar en los médulos irreducibles. Vamos a ir viendo distintos resultados para ver
que las respresentaciones se pueden descomponer en submoédulos irreducibles de manera tnica.

Proposicion 1.11 (Teorema de Maschke). Si G es un grupo finito, V un G-médulo y W un submaodulo de
V, entonces AW’ un submédulo de V complementario a W tal que V=W ®W'.

Demostracion. Sea p, : G — GL(V) la representacion de G con médulo V. Tomamos mp : V — V, tal
que Immy =W y my(w) =w Vw € W, es decir, una proyeccién sobre W. Hacemos el promedio sobre

G:
7(v) = |é, Y b, () (ml(p, ("))

geG
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Como W es submédulo, 7(v) € W para todo v € V. Ademds, sive W, p, (g ' )veW y mo(p, (g7 )v)) =

p, (g~!)v. Entonces,
n(v) py( W) v=
P L

es decir, es también una proyeccién. Ahora, tomando 4 € G (y obviando p, ):

nw(hv) = Zgﬂfo D) = Zhh Lemo((g~1)hv) =

Y hfmo((f~1v) = ha(v).

!Gl /<6

Esto implica que 7 es G-lineal y como es fécil ver (y demostraremos en la Proposicién 1.13), Kerm =W’
también es invariante por G y ademds V = W @ W’. Esta demostracion vale para cualquier cuerpo con
caracteristica que no divida a |G|, ya que eso es precisamente lo que hemos necesitado para construir
. O

Reiterando este proceso, podemos descomponer cualquier médulo en submaédulos hasta llegar a mé-
dulos irreducibles. Para ver que esta descomposicion es Unica, nos hard falta ver algunos resultados
primero.

Lema 1.12. Sea ¢ : V — V un automorfismo donde V es un espacio vectorial finito sobre C. Entonces:
i) ¢ tiene algiin valor propio, es decir, AA € C tal que Ker(¢ — AI) # 0, con I la identidad en'V .
ii) Si 3k con q)k =1, ¢ es diagonalizable, es decir, existe una base de V de vectores propios de ¢.

Demostracion. (i) Se sigue de que C es algebraicamente cerrado, es decir, todo polinomio no constante
con coeficientes en C tiene al menos una raiz en C. Entonces, el polinomio caracteristico de ¢ tiene al
menos una raiz, por lo que 34 € C tal que der(¢p — AI) = 0. Por tanto, Ker(¢ — AI) # 0.

(ii) Si A es la matriz de ¢, entonces A hace cero el polinomio p(X) = X* — 1. Entonces, el polinomio
minimo de A, u4(X) necesariamente divide a p(X). Como las raices de p(X) son las raices k-ésimas
de la unidad, podemos escribir p(X) = (X —1)(X —&)(X — €?)...(X — &~!) siendo € una raiz k-ésima
primitiva de la unidad. Como p4 (X) divide a p(X), las multiplicidades algebraicas de los valores propios
en el polinomio minimo también son 1. Consideramos la forma candnica de Jordan J de la matriz A,

Jo 0
Ji

0 Ji1

con J; el bloque de Jordan con &' en la diagonal. Como en el polinomio minimo todas las raices tienen
multiplicidad 1, cada bloque J; anula X — €’. Por tanto cada bloque de Jordan es de la forma €'l con I,
la matriz identidad de dimensién n; y Zf;l n; = n. Entonces, la matriz J es completamente diagonal. Por
tanto A es diagonalizable. ]

Lema 1.13 (Lema de Schur). Sean V' y W mddulos irreducibles de Gy ¢ : V — W una aplicacion
G-lineal, entonces:

i) Si ¢ #£0, ¢ es un isomorfismo.
ii) SiV =W, entonces  =A -1 paraun A € C con I la aplicacion identidad.

Demostracion. (i) Vemos primero que Im¢ es un subespacio de W invariante por G. Sea w = ¢(v) con
veVygeG,como ¢ es G-lineal:

gw=g0(v) = ¢(gv) € Im¢
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Entonces Im¢ es un subespacio invariante de W, pero como W es irreducible, eso implica que o bien
Im¢ =W 6 Im¢ = 0, es decir, o bien es suprayectiva o bien ¢ = 0.
En el caso de que no sea nula, vemos ahora que Ker¢ también es invariante. Sea v € Ker¢:

¢(gv) =g¢(v) =0 = gv € Ker¢

Como V es irreducible y ¢ # 0, Ker¢ = 0. Por tanto ¢ es un isomorfismo.
(ii) Porel Lema 1.13, A € C tal que Ker(¢ —AI) #0. Por (i) tenemos que § —AI=0 = ¢ =A-1. [

Proposicion 1.14. Para cualquier G-mddulo V con G un grupo finito, hay una descomposicion:

V=Vo. .oV

donde los V; son irreducibles no isomorfos dos a dos, la descomposicion es tinica salvo el orden y cada
V; tiene multiplicidad a;.

Demostracion. Primero, podemos descomponer en irreducibles iterando la Proposicion 1.11. Si W es
2 b . < 2 2
otro G-mddulo que se puede descomponer en W = @Wj@ 7y ¢ : V — W una aplicacién entre médulos;

entonces, utilizando el Lema de Schur (Lema 1.13), ¢ debe llevar cada factor Vi@‘” al factor Wj@b-’ para
el cual V; = W;. Cuando se aplica esto a la identidad de V en V, obtenemos la unicidad. O

1.3. Algunos ejemplos

Vamos a aplicar lo visto hasta ahora con unos ejemplos. Primero empezaremos con la representacion
de grupos abelianos, aunque antes necesitaremos demostrar un teorema sobre las matrices que conmutan.

Teorema 1.15. [5] Sean A, B matrices cuadradas diagonalizables de dimension n. Entonces A 'y B
conmutan si y solo si 3S invertible tal que S~'AS y S~'BS son diagonales.

Demostracion. Si Ay B conmutan, consideramos la matriz invertible Q tal que Q~'AQ es diagonal con
los valores propios ordenados por bloques, es decir, sean A, ...,A; los valores propios sin repetir y I
matrices identidad de dimensién n;, siendo n; la multiplicidad de A;:

M, 0
o,

Dy=0 'AQ=
0 Aaly,
Entendemos D4 como una matriz por bloques D4 = [D; j]ff j—1 con D;j=0sii# j;y Dj = Ail,,. Parti-
cionamos Q~'BQ = [B; j]ff j—1 conforme a la estructura de Dp

B Bia

By = 0 'BO = By

B Bia
Entonces, Dy y By conmutan, ya que
DBy =0 'AQ0 'BQ =0 'ABQ = Q"'BAQ = Q" 'BQQ 'AQ = ByDjy.

Esto ocurre si y solo si A;B;j = B;jA; para cada i,j = 1,...,d, es decir, (4; — A;)B;; = 0 para cada
i,j=1,...,s. Estas identidades se satisfacen si y solo si B;; = 0 siempre que i # j. Asi, D4 conmuta
con By siy solo si By es diagonal por bloques conforme a Dy.
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Como B y Bp son matrices semejantes, Bp es diagonalizable, y teniendo en cuanta la forma de Bgp
deducimos que existe una matriz 7' de la siguiente forma:

T 0

0 Ty

tal que TleQT es diagonal. Ademas, Tl.’lliln,.Ti = Ail,,;, entonces, T-'D,T =D, y T*IBQT son ambas
diagonales. Asf que construimos S = QT y tenemos que S~ 'AS y S~ BS son diagonales.
El reciproco es sencillo ya que viene dado por que si Dy = S~'AS'y Dg = S~'BS son diagonales, enton-
ces:

AB = SDsDpS™"' = SDpDsS™' = SDS™'SD,S™' = BA

Es decir, A y B conmutan. O

Ejemplo 1.16. Si tomamos un grupo abeliano G, para #,g € Gy v € V con una representacién p : G —
GL(V), se tiene que p(hg)(v) = p(gh)(v). Entonces sucede que, obviando p en A,

h-p(g)(v) = p(g)(hv),

es decir, p es una aplicacion G-lineal. Si V es irreducible, por el Lema de Schur todo elemento de G
actia como el producto por un escalar. Por tanto, todo subespacio de V es invariante, lo que implica que
V tiene que tener dimensién 1.
Por ejemplo, para un grupo ciclico C, =< g > con una representacién pc, : C, — V se tiene que
pc,(g)" =1, con Iy la identidad en V. Entonces los valores propios son raices n-ésimas de la unidad
y como vimos en el Lema 1.12, p,, (g) es diagonalizable, luego si k es la dimensién de V' existe una base
de vectores propios vy,..., v tal que V = @LIVi con V; =< v; >. Concluimos que como pc,(g) actia
como la multiplicacién por un escalar, todos los < v; > son mddulos irreducibles.
Ahora, de manera mds general, consideramos un grupo abeliano finito A que sea isomorfo al produc-
to directo de un numero r grupos ciclicos de orden my,...,m, tales que A = C,, x ... x G, =< g1 >
X ...x < g, > (se puede demostrar que sucede para todos los grupos abelianos [2]). Sea p : A — GL(V),
esto quiere decir que la imagen de la representacion estd generada por p(g;), ..., p(g,) entonces para un
veVyung= gl g2 . .gi’f:

P(&)(v) =p(g)"..p(gr)" (v)
Como las matrices p(g;) conmutan dos a dos, se puede reiterar el Teorema 1.15 que para deducir que
existe una base comtin de vectores propios si, ...,s, € V con valores propios A; 1, ..., A; , para cada p(g;).
Asique V=<5 >@...® <s,>yun vector cualquiera v € V puede ser descompuestoen v=v; + ...+
v, con v €< s; >. Entonces

n

P(&)(v) =p(g)"..p(g )" (Vi + .4 va) = Zldl A

Para el siguiente ejemplo, consideramos el grupo no abeliano mas pequefio, es decir, el grupo simé-
trico de grado 3, 3. Antes de adentrarnos en €1, vamos a dar unas definiciones.

Definicion 1.17. Sea G un grupo finito cualquiera y S, el grupo simétrico de grado n:

a) La representacion trivial p, : G — GL(U) corresponde a p,(g) =1 Vg € G, es decir gv =
v Vv eU. Por tanto, dimU = 1.

b) Para §,, recordemos que cada g € S, se puede representar como un producto de trasposiciones,
por ejemplo, el ciclo (1234) € Sy se puede poner como (12)(23)(34) y aunque esta expresion no
es Unica, se puede demostrar que su paridad si que lo es. Si un elemento g € S, es el producto de
k trasposiciones, la signatura de g o sgn(g) corresponde a (—1)**!. Entonces, la representacion
alternada p,, : S, — GL(U’) corresponde a p| (g) = sgn(g), es decir, gv = sgn(g)v Vg € S,.
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¢) Dado un conjunto finito X donde G actia por la izquierda, la representacion por permutaciones
asociada es una representacion cuyo médulo es un espacio vectorial con base {e,|x € X} donde

g € G actia en V como
8" Z axex = Z ax€g.x
xeX xeX

Para G = §,,, la representacion por permutaciones asociada a la accién en X = {1,2,...,n} actia
en C", con base {e;| k=1,...,n}, como

n n
8" Z Crek = Z Cx€g.x
k=1 k=1

con ¢, € C. Aqui podemos ver que el espacio U generado por };/_, ¢, es invariante por S,. Vamos
a considerar el médulo siguiente, que es un complementario de U con dimV =n —1

n n
V:{chek | ch:O}.
k=1 k=1
Es facil ver que V es un G-moddulo. A la representacién le llamamos representacion estdndar

d) Llamamos representacion regular R a la dada por la accién por permutaciones de G en si mismo,
es decir, es una representacion por permutaciones con X = G. As{, un elemento 4 € G actiia como

h- Z ageq = Z agheyg

geG gc€G
conag € C.
La representacion regular estd estrechamente relacionada con el concepto de dlgebra de grupo.

Definicion 1.18. Un dlgebra grupo, CG, es una estructura algebraica cuyos elementos son de la forma
Yecgagg conag, € Cy g € G. Un dlgebra de grupo es un espacio vectorial con suma y producto por
escalar y con una operacién producto entre los vectores, que se obtiene extendiendo por linealidad el

producto de G, es decir:
(Y ag8)- () beg) = ) (). agbn)x
geG geG xeG gh=x

Dado un G-médulo W con representacién asociada p : G — GL(W), p se puede extender de manera
natural por linealidad a una aplicacién p : CG — End(W), en este caso también diremos gie W es un
CG-modulo.

Ejemplo 1.19. Veamos explicitamente como es la representacion por permutaciones asociada a la accién
del grupo Sz en el conjunto X = {1,2,3}. Definimos una base e¢; = (1,0,0), e2 = (0,1,0), e3 = (0,0, 1).
Entonces, definimos para g € S5 p(g) como las matrices que permutan los indices, es decir, por ejemplo:

010 010
p(12)=1|(1 0 o]; p(@21)[0 0 1];
00 1 100

Ejemplo 1.20. Consideramos ahora el médulo R asociado a la representacion regular de S3. A cada
elemento g del grupo le asignamos un vector e, € C®, 6 en este caso porque es el nimero de elementos
de S3:

e = y €(123) = €321 =

cocococo~=

P

©

\
cococor~C

2

e

\
coco~oOC

Q

~

L

\
co~ococC
o~ ocococC
— o c o oo
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Habiendo definido asf los vectores, podemos definir la representacién p, fijdndonos en como actia cada
elemento del grupo en los demads. Por ejemplo, el elemento g = (1 3) actia por la izquierda sobre los
elementos de esta base de la siguiente manera:

p
€1 — €(13)

€(12) 7 €(123)
€(13) — e

(
(
€(23) 77 €(321)
(
(

€(123) V7 €(12)
| €(321) 7 €(23)
Entonces:

001000
00 0O0T1FPO0
1 0 00 0O
P13)=16 000 0 1
01 00O00O0
0001 00O

Ya definidos estos conceptos, podemos pasar ya a sacar los médulos irreducibles de S3. En el siguien-
te capitulo veremos un procedimiento mds sencillo para hacerlo, pero ahora vamos a hacerlo de manera
"manual"para poner en prictica todo lo que hemos visto hasta ahora.

Ejemplo 1.21. Para G = S3 vamos a usar como notacién S3 = {1,6,62, 71,7, 73} donde 6 = (1 2 3),
71 =(12),2=(23)y 13 =(31). Sea W un médulo de S3 con representacién p : S3 — GL(W), primero
queremos ver como C3 =< 0 >C S3 actia en W, ya que como vimos en el Ejemplo 1.16, para una
representacion de un grupo ciclico, en este caso C3, podemos considerar una base de vectores propios v;
tales que ov; = W“v; con ® = ¢*™i/3 raiz tercera de la unidad y a; = 1,2 o 3. Entonces,

W=V, dondeV,=<v;>
Tomamos la trasposicién 7. A través de la relacién 67 = 702 se tiene que
o (t(v)) = 7(6%(w)) = T(@(v)) = 0> 7(v;)
2a,~.

Es decir, 7(v;) es vector propio de ¢ con valor propio @

- Si @% # 1, entonces W% # > por tanto v; y T(v;) tienen respecto a ¢ valores propios distintos y
generan un espacio vectorial de dimensién 2. Queremos ver que V =< v;, T(v;) > es G-invariante.
Como o y 7 generan G, es suficiente ver que es invariante para estos 2 elementos.

o(Avi+ut(v)) = @%Avi+0*iut(v;) €V

Para eso, sea Av; + ut(v;) €V,
H ( ) {r(?w,-—i—,uf(v,-))—/Ir(vi)—kuvi eV

Ademas,es facil ver que V es G-isomorfo al médulo estdndar definido en la Definicién 1.17.
- Si 0% =1, es decir, c(v) =vy o(t(v)) =1(v):

- Puede suceder que 7(v) = v, si nos fijamos p(c)(v) = p(7)(v) = v, entonces v genera un
submédulo U isomorfo al trivial. Tambien puede suceder que 7(v) = —v, entonces p(g) =
sgn(g) Vg € S3lo que implica que v genera un médulo U’ isomorfo al alternado.
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- También puede suceder que 7(v) y v sean independientes, en ese caso:

= <v+1(v) >=ZU (mddulo trivial)

{c<v+r<v>> =v+1(v)
tv+t(v)) =1(v)+v

= <v—1(v) >= U’ (mdbdulo alternado)

{G(v—‘c(v)) =v—1(v)
tv—1(v) =-(—1(v)

Asi, hemos visto que todo médulo tiene un submédulo isomorfo o bien al médulo trivial, o bien al alter-
nado, o bien al estdndar. Ademds, sabemos que estos tres médulos son irreducibles, asi que de lo anterior
es facil deducir que estas tres son las tnicas representaciones irreducibles de S3 salvo isomorfismo. Para
un médulo W de S3, usando la Proposicién 1.14

W = UEBa D U/@b @ V%c
Donde a, b y c son las respectivas multiplicidades.

Ejemplo 1.22. Cojamos el ejemplo del médulo regular Rg con G = S3, es decir, Rg es el espacio vectorial
que tiene de base los elementos de S3. Recapitulando el proceso anterior:

- Los vectores propios de ¢ son: con valor propio 1, v= 1406+ 062y Vv = 73+ 7 + 71; con valor
propio @ = €*™,v; = ®*+ wo + 6%y Vi =T+ 0T+ ®°73; y con valor propio ®?%, v = w>c? +
0o +1yV, =0t +0n+1.

Finalmente,
Rc=<v>B<V>P< >V >D<nm>d <>

- v1 y vz no tienen valor propio 1 y vemos que v}, = 7(v1) y v, = 7(v2), entonces si ponemos V; =<
vi,vi > parai=1,2,V; y V, son ambos isomorfos a la representacion estandar.

- vy V' tienen valor propio 1, pero 7(v) =V # v. Entonces, < v+Vv' > U (trivial) y <v—V >= U’
(alternada).

Entonces,
Rc=UaU oV



Capitulo 2

Teoria de caracteres

2.1. Caracter de una representacion

Como hemos visto en el Ejemplo 1.21 y el Ejemplo 1.22, saber los valores propios de los elementos
0y T € S3 es crucial para describir cualquier representacion de S3. Para un grupo arbitrario G no es tan
facil saber qué subgrupos y/o elementos juegan el papel de C3, 0 y 7. Esto sugiere que saber todos los va-
lores propios{4;} de cada g € G basta para poder describir un médulo. Como para g* los valores propios
son {/ll-k}, podemos ahorrarnos muchos célculos, puesto que bastaria con saber la suma de los valores
propios de los elementos de G. Aqui es donde introducimos el concepto de cardcter de un modulo.

Definicion 2.1. Sea V un médulo de un grupo finito G con representacion asociada p : G — GL(V),
definimos su caracter ), como la funcidn:

x: G—C
g~ Tr(p(g))

Es decir, a cada elemento g le asignamos la traza de p, (g), que corresponde a la suma de sus valores
propios. Este valor estd bien definido puesto que las matrices de una aplicacién con distintas bases tienen
la misma traza. Ademds, ¥, se mantiene constante en las clases de conjugacién de G. Recordemos que la
clase de conjugacién de un elemento g € Gesel conjunto [g] = {h€ G| 3f€G talque fhf '=g}.
Sean h, g € G, utilizando que p es un homorfismo y propiedades de la traza:

%, (hgh™") =Tr(p(hgh™")) = Te(p(h)p(g)p (h) ") = Te(p(g)) = %, (8)-

Las funciones que cumplen esta propiedad se denominan funciones de clase. Una caracteristica intere-
sante de esta funcién es que ), (1) = Tr(ly) = dimV, donde Iy es la idenidad en V.

Proposicion 2.2. SeanV 'y W G-mddulos de las representaciones p, y p,,, respectivamente.
i) Xvew = Xy + X
i) Xvew = Xy Xw
iii) Xv+ = Xy, siendo este su conjugado complejo.

iv) Para g € G, xpov(8) =5 (3 (3) — 2, (8%))

Demostracion. Fijamos un g € G tal que los valores propios de p, (g) son {4;} y los de p,, (g) son {u;}
y sus respectivas bases de vectores propios son {v; € I} de V 'y {w;|j € J} de W.

(i) Consideramos p,,, (g) definido en la Proposicién 1.8, sus vectores propios son (v;,0) y (0,w;),
entonces sus valores propios son {A;} U{u;}. Asi que yvaw(g) = L{AtU{n} = X{A}+X{u} =
Xy (8) + Xy (8)-

11
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(i) Para p,, (g) como estd definido en la Definicién 1.4, {v; ®w;} es una base de vectores propios de
V @ W. Entonces tenemos que p,_,, (&) (vi®w;) = p, (&) (vi) @ p,, (&) (w;) = Aivi@ ujw; = Ailtj(vi@w;).
Por tanto, yvew(g) = X jAittj = (L A) (X 1)) = 2, (8) - 2w (8)-

(iii) Para el dual V*, vimos en la Proposicién 1.8. que el homomorfismo que definia a la represen-
tacién era p,. = p(g~")T. Como los valores propios de p(g)~"' son {1, '} y los valores de p,(g) son
raices de la unidad, se tiene que {1, '} = {A;}. Asique xy+(g) = XA '=Y =Y 4 =%y (g)

(iv) Recordemos que A’V es el cociente de V por el subespacio generado por {u @ u|lu € V'}. Esto,
entre otras cosas, implica que si la base en V ® V' de vectores propios es {v; ® v|i,k € I}, entonces la
base en el cociente se reduce a {v; @ vi|i < k} y los vectores propios son {A; - 4x|i < k} ya que

Vi @i = (Vi +vi) @ (e +vi) = vk @ vk — Vi Qv — Vi @ g,

entonces, en el cociente vy Av; = —v; Av;. Por tanto:

Ko (8) = ¥ Ak = 5 (LA - £42) = 5 (6 (8) . ()

i<k
]

Como el carécter es una funcién de clase, podemos interpretarlo con una funcién en el conjunto de
las clases de conjugacion de G. Esto nos permite resumir la informacién bdsica sobre los caracteres en
una tabla a la que llamaremos fabla de caracteres. Una tabla de caracteres tiene en la parte superior
las clases de conjugacién de G (normalmente representadas por un representante de la clase [g]), a la
izquierda tiene las representaciones irreducibles V; de G y en la celda (V;,[g]) el correspondiente valor
del carécter %, (g). También afiadimos cudntos elementos hay en cada clase de conjugacién encima de
cada [g]. Vamos a explicarlo mejor con el siguiente ejemplo.

Ejemplo 2.3 (Tabla de cardcteres de S3). Las clases de conjugacion de S5 vienen dadas por [1], 0], [7]
(utilizando la notacién del Ejemplo 1.21). Para las filas, recordamos que las representaciones irreducibles
de S3 son la trivial U, la alternada U’ y la estandar V. Como se vio en la Definicién 2.1, el caracter de
cualquier representacion en el elemento neutro corresponde a su dimensién, entonces:

xwl)=x2,0)=1y x/(1)=2

Como U tiene dimensién 1, Tr(p,(g)) = p,(g), lo mismo ocurre para U’. Entonces para [1],[t =
(12)], [0 = (123)], los caracteres de U y U’ son

xu([1]) = xu(lo]) = 2u((7]) = 1

xo (1)) =xv([o]) =1, xu(7])=-1
Para resumir esto ponemos

XU:(Llal) y Xl/]:(lv_Ll)

Esta informacién corresponderia a la primera y segunda fila de la tabla:

Clases de conjugacién de S5 | [1] [(12)] [(123)]
representacion trivial U 1 1 1
representacion alternada U’ | 1 -1 1

Ahora falta computar los valores del cardcter de V. Como vimos en la Definicién 1.12, para n = 3
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podemos utilizar la representacién por permutaciones sobre una base de C? y podemos descompo-
nerlo en un submddulo isomorfo al trivial mas el médulo estandar V que tiene dimensién 2, es decir,
C? = U@ V. Sabemos por la Proposicién 2.2 que el caricter de la suma directa de dos representa-
ciones es la suma de los caracteres, con esto vemos que ¥cs = Yu + X,. En C3, podemos utilizar la
representacion por permutaciones como hicimos en el Ejemplo 1.19. Es fécil ver, que la traza es basi-
camente el nimero de elementos fijos por la accion de cada p(g), entonces sabemos que Y3 ([1]) = 3,
xc:([o]) =0y xc3([o]) = 1. Por lo tanto, ycs = (3,1,0). Con toda esta informacion deducimos que
X =X — Xy, = (3,1,0)—(1,1,1) = (2,0,—1), y lo colocamos en la dltima fila.

Clases de conjugacién de S5 | [1] [(12)] [(123)]

representacion trivial U 1 1 1
representacion alternada U’ | 1 -1 1
representacion estandar V 2 0 -1

Para acabar de sintetizar toda la informacion y para mds adelante, colocamos el nimero de elemen-
tos de cada clase encima del representante. La tabla de caracteres de S3 completa quedaria asi:

(Niimero de elementos por clase) | 1 3 2
Clases de conjugacion de S3 [1T [(12)] [(123)]

representacion trivial U 1 1 1
representacion alternada U’ 1 -1 1
representacion estandar V 2 0 -1

Como vimos en el Ejemplo 1.21, para un médulo arbitrario W de S se tiene que W = U9 U @
V&€, entonces x,, = ay, + by,, +cx,. Como podemos ver en la tabla anterior, entendiendo los caracteres
como vectores, X, X, ¥ X, son linealmente independientes; entonces, cualquier representacion W viene
determinada por su cardcter obteniendo a,b y c.

Ejemplo 2.4. Vamos a calcular la descomposicién del médulo V3. Su caracter por la Proposicién 2.2
viene dado por xye3(g) = (%,)*(g). es decir, es (8,0,—1) y ademds yyes = ay,, +byx,, +cx, . Podemos
calcular a, b y c resolviendo el siguiente sistema de ecuaciones:

a+b+2c =8
a—>b =0
a+b—c =-1

El resultadoesa = 1,b=1,c =3, es decir, V3 =U @ U’ ¢ V3.

2.2. Ortogonalidad de los caracteres

Estos resultados nos inspiran a preguntarnos, ¢se puede seguir este razonamiento con todos los gru-
pos?; Cudntas representaciones irreducibles hay para un grupo arbitrario G? ;Las tablas de caracteres de
otros grupos se portan “igual de bien”que la de S3? Para contestar a estas preguntas tenemos que intro-
ducir primero algunos resultados.

Para S3, tenemos que los caracteres entendidos como vectores, es decir, en la tabla del Ejemplo 2.3,
x = (1,1,1), x, =(1,—-1,1) y x, = (2,0,—1) son linealmente independientes. Después de demostrar
una caracteristica de las proyecciones que necesitaremos, vamos a ver un resultado que nos lo asegura
para el caso general.
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Lema 2.5. Sea v una proyeccioén de un espacio vectorial V de dimension n a un subespacio W de
dimension m, es decir, un operador lineal Yy : V — 'V que cumple que Imy =W y yo y = y. Entonces
la traza de la matriz asociada a Y en cualquier base es igual a la dimension de W.

Demostracion. Sea A la matriz que define a ¢, tenemos que cumple la ecuacién X2 = X, es decir,
X (X —1) = 0. El polinomio minimo de A divide a este polinomio, luego tiene 1 y 0 como raices con
multiplicidad 1. Por tanto, de manera similar a como vimos en el Lema 1.12, la forma candnica de
Jordan es una matriz diagonal con ceros y unos en la diagonal. Por tanto, el rango es el nimero de com-
ponentes no nulas de la diagonal, que en este caso, coincide con la traza. Como el rango es igual a la
dimensién de la imagen, dimW = Tr(A) O

Proposicion 2.6. Sea G un grupo finito y sea C45,(G) = {funciones de clase complejas de G} definimos
un producto Hermitiano en C,5(G) de la siguiente manera:

Z(x

gEG

<a,p>cg=

donde o, B € C455(G). Entonces, en términos de este producto Hermitiano, los cardcteres de las repre-
sentaciones irreducibles de G son ortonormales.

Demostracion. Primero, es facil ver que < -,- > es un producto interno Hermitiano. Para un médulo V
consideramos el elemento,
o= 8
,G| >

geG

y el endomorfismo y : V — V dado por ¢ (v) = av. Primero queremos ver que ¢ es una proyeccién de V
sobre VO :={v€V|gv=v Vg & G}, asi que tomamos un v = ¢(w) € Im¢ y vemos que para cualquier
heG

hv = ho (w hgw gw=v = veVl

De aqui obtenemos que Im¢ C V¢. Reciprocamente, si v € VC

(v) gv= v=y = vcIm¢

Ademads, también se ve que ¢ o ¢ = ¢. Como es una proyeccién, la dimensidon de la imagen de ¢ es su
traza, como vimos en el Lema 2.5. Es decir, dimV® = Tr(¢). Como la traza es lineal,

dimV% = \G| ZT r(p, (g ]G| Z){V

geG geG

Si la representacion es la trivial, U G_-y por tanto |G| Y ecG X, (g) = 1. Para cualquier representacion
irreducible distinta de la trivial V¢ = {0}, ya que V° es un submédulo de V, entonces ﬁ Yeec X (8) =0.

La clave ahora es usar como representacion Hom(V, W), para representaciones irreducibles V' 'y W,
que es un médulo segtin la Proposicién 1.8. Consideramos Hom®(V,W) := {y € Hom(V,W)|gy(v) =
y(gv) Vv eV} Como se vio en el Lema de Schur (Lema 1.13), si V = W, entonces, cualquier apli-
cacién G-lineal es la identidad por un escalar. Por tanto, Hom(V,W)® = C con la accién trivial y en-
tonces dim[Hom®(V,W)] = 1. También por el Lema de Schur, si V % W, entonces Hom®(V,W) =0y
dim[Hom%(V,W)] = 0. Resumiendo,

0 si VZW

dim[Hom®(V,W)] = .
1 si VEW
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Como vimos en la Proposicion 1.6, Hom(V,W) = V* @ W vy aplicando la Proposicién 2.2

dim[Hom® (V. Xitomvar (8) Xy X Xow (
IG!ggc Hom(v.¥) IGlggc v \Glggc v

Es decir,

0 si VEW

<X Xw >G =
K> Tow =G {1 si VW

Con lo que concluimos que, bajo este producto hermitiano, los caracteres de las representaciones irredu-
cibles de G son ortonormales. O

Ahora vamos a ver una serie de corolarios que derivan de este resultado.

Corolario 2.7. El nimero de representaciones irreducibles es menor o igual que el nimero de clases de
conjugacion.

Demostracion. Un grupo finito G tiene un ndmero finito m de clases de conjugacidn. Si entendemos
los caracteres de las representaciones irreducibles V; como vectores %, = (%, ([g«])){,, al igual que en
el Ejemplo 2.3, al ser ortogonales por la proposicién anterior, son vectores linealmente independientes
dentro de C" y como mucho puede haber m vectores. O

Corolario 2.8. Cualquier representacion viene determinada por su caricter.

Demostracion. Por la Proposicién 1.14, un médulo arbitrario V se puede descomponer de manera tinica

en VfB”‘ D.. .EBVk@ak, con los V; las representaciones irreducibles del grupo. Entonces y,, = %Vmau o oy =
P A
Zf?: 1aiXy,- Como los caracteres son linealmente independientes y k < m sabiendo ¥, podemos obtener

los a;. Ademas, por el Corolario 2.8 se deduce que < x,,, X,. >6= di. O
Corolario 2.9. Un médulo es irreducible <= < x,,x, >¢=1.

Demostracion. Por la Proposicién 1.14, un médulo arbitrario V se puede descomponer de manera tinica
en V™ @...® V% Entonces y, (g) = Lt 1aixy. (8) Vg € G. Asi que,

k
<A Xy >6= ‘G| Y 2 (2)x(3) ,G| Y (Za,xv )Zlajxvj(g)> =
=

geG geG

k
Z < %Vi’%‘/j >G
1j=1

M»

_ )2

y como < ¥, Xy, >G= 0 cuando i # j, entonces

og
m
Q
\
L
~
[
L
T

k
< %V7%V >G= Z(ai)2 <XV,-7%V,- >G

i=1

y como los V; son irreducibles, por el Corolario 2.9, <y, , x, >¢= 1, entonces < x,,, X, >¢= YE (@)

Por tanto, si < x,,%, >c= 1, se tiene que Z;:l (a;)*> =1y como las a; son niimeros enteros, se tiene
que dg; talque a; =1y a; =0 Vil Asi que V =V, y como V] es irreducible, se tiene que V es
irreducible. O

Corolario 2.10. Cualquier médulo irreducible V de G aparece en la representacion regular R tantas
veces como su dimension.
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Demostracion. Sabemos que la representacion regular Rg es una representacion por permutaciones don-
de G actiia en si mismo. Como vimos en el Ejemplo 1.20, para un g € G, pg(g) corresponde a una matriz
que lleva e, a ey, por tanto:

0 si g#1

xk(g)ZTr(PR(g))={|G| S g=1

. , . . Da; .
Entonces, si descomponemos Rg en médulos irreducibles Rg = @F_, V", podemos ver que, fijando un
p =1Y; P q ]
V; irreducible:

k
<XV AR >6= 1 va r(8) == va 8) ). aixy,(8)
|G e =

8eG g€G
[ B
ZZﬁ xvi (&), (8 Za1<xmcv >6=a;
Jj=1 geG i=1
Entonces,
1 .
ai =< Qv Xr >6= = Y Xvi(g) = —v.(1)|G| = dimV;
|G| geG ‘G|

Ademds, como dimR¢ = |G|, obtenemos como consecuencia que

k k
G| =Y aidimV; =Y (dimV;)*
i=1 i=1

O

Nuestra misién ahora es demostrar que el nimero de clases de conjugacién y el niimero de médulos
irreducibles son, efectivamente, el mismo. Para ello necesitaremos primero ver este resultado.

Proposicion 2.11. Sea a : G — C cualquier aplicacion y dada una representacion p con médulo V de
G consideramos

q)aV—ZOC V=V
geG

Entonces Qg v es G-lineal para todo V si'y solo si & es una funcion de clase.

Demostracion. Para ver que ¢q v es G-lineal, paraun h € Gy v € V se tiene:

‘pav hV Za

¢€G
como g recorre todos los elementos de G, podemos poner
oy ()= Y a(hgh hgh™ () =h- Y. a(hgh™")gv
hgh=1€G hgh~1eG
Si o es una funcién de clase esto es igual a

he Y a(g)gy=hoay(v).

hgh='eG

Luego ¢ es G-lineal. Reciprocamente, si o no es una funcién de clase, consideramos la representacién
regular Rg, por ejemplo, en la que el médulo es V = CG. Entonces para que ¢y v sea G-lineal tendria
que suceder que, VveVyVhe G

%,v (hV) = h‘Pa,V (V)7
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en particular, ¢q v (h) = h@g v (1). Es decir,

Za Jgh = hZ(x g:ZOC(g)hg

geG geG geG

Hacemos la sustitucién en la primera parte de la igualdad como hemos hecho antes,

Y a(hgh ™ hgh'h=Y a(hgh "hg=Y a(g)hg
8eG g€eG gcG

Ahora pasamos todo a un lado de la igualdad y agrupamos los sumandos:

Y (a(hgh™") —a(g))hg =0

geG

Pero fijando 4, los elementos hg con g € G recorren todos los elementos de g que son base de V = CG, es
decir, forman una familia libre. Por tanto, tiene que ser cero todos los coeficientes de cada gh, entonces

(a(hgh™')—a(g)) =0 VgeG.

Pero eso no ocurre puesto que hemos supuesto que ¢ no es una funcién de clase.
O

Proposicion 2.12. El niimero de mddulos irreducibles de G es igual al niimero de clases de con-
jugacion de G. Equivalentemente, sus caracteres {%Vi } forman una base ortonormal de C.j455(G) =
{funciones de clase complejas de G}.

Demostracion. Supongamos que « : G — C es una funcién de clase que cumple que < o, ), >g=
0 para todos los médulos V' correspondientes a representaciones irreducibles de G. Consideramos un
endomorfismo como el de la proposicién anterior:

oy = Z o(g)-p(g): V-V
geG

Como vimos, como ¢ es una funcion de clase, ¢q v es una aplicacién G-lineal. Por el Lema de Schur,
como va de una representacion irreducible en si misma, @y = A -I,, con [, laidentidaden V y n = dimV,
entonces:

Tr(payv) =Tr(A-1,) = nA.
Asi que,

3\'—

A= 1TI"(])OtV Z(X

geG

w ko

Recordemos que < o, ), >c= |—(1;‘ YeegOlg )%, (g) y que x,. = %+ 10 que implica que ¥, =7 . Enton-
ces:

geCG geCG ’ | gcG

Por tanto,
G|
A=—-<0o,%,.>¢
n

Para ver si V* es irreducible, usamos el Corolario 2.9, que dice que es irreducible si y solo si <
X,+> Xy~ >c= 1. Entonces, como V es irreducible, tenemos que

< * 9 *> * *
Ko s Xe >G= |G|g§,~’“ )%y (8) |G|g§xv

ZXV =<Av:Xv >G6= 1=1

|G‘ geG
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Por tanto, V* es irreducible, asi que la hipétesis en o implica que A =< o, %,. >¢=0. Luego, ¢ v = 0.
Ahora, consideramos V = CG con la representacion regular. Como CG es suma directa de médulos
irreducibles, podemos deducir que también ¢oy = 0 y repitiendo el razonamiento de la proposicion
anterior, eso implica que oo = 0 Vg € G. Sea ahora « una funcién de clase arbitraria. Ponemos

k
B=Y <ax.>c%,.
Vi
Por la ortogonalidad de los xy respecto a < -,- > tenemos
<Bs Xy >6=< 0, %,. >G

luego VV irreducible
<a—PB,x. >6=<0, X, >¢ — <B,x, >c=0.

Por tanto, lo anterior implica que o — 3 = 0, es decir, @ = 8 es una combinacién lineal de los cacteres
irreducibles O

Proposicion 2.13. La ortogonalidad de las filas de la tabla de caracteres es equivalente a la ortogona-
lidad por columnas. Es decir, sean {V[}f:l los modulos de las representaciones irreducibles de un grupo
finito G y g,h elementos de G que no pertenecen a la misma clase de conjugacion, entonces

k
Y 2 (8) %y, (h) =0
i=1
y ademds
i |Gl
= ()
siendo c([g]) el niimero de elementos de [g|.

Demostracion. Sean [g;] con j = 1...k las clases de conjugacién de G y {V;}X_, los médulos irreducibles.
Como sabemos por la Proposicién 2.6:

c( 0 si i1 #i
,G|zxvll MOEDY ‘G, i (237, <[gj1>:{1 e

g€G j=1 S1 11 =1

< Xv,-l 7%vi2 >G=

Si llamamos T a la matriz de la tabla de caracteres, es decir 7;; = (%, ([g,]))i)» entonces podemos poner
lo anterior en forma de matrices:

= 0
e(lg2])
TDT* =T 6] T =1,
(e
0 iG]

donde estamos denotando T* = T . Ahora queremos ver qué nos da Y1 2vi (181 )y, ([87))- Esto es
basicamente, intercambiar las filas y las columnas de 7. Puesto en forma de matrices, equivale a averiguar
TT(TT)*. Asi que,

G|
Al 0
TT(T")* =TT = (TD)~"'TDT*T = (TD)"',T =D-'T-'T =D-! = o(fs2])
0 |G|
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Por tanto,

O]

Ejemplo 2.14 (Tabla de caracteres de S4.). Ahora vamos a emplear todo lo que hemos aprendido para
completar la tabla de caracteres de S4. En este caso hay 5 clases de conjugacién: [1], [(12)], [(123)],
[(1234)] y [(12)(34)] cada una con 1, 6, 8, 6 y 3 elementos respectivamente. Entonces, como hemos
visto en la Proposicion 2.12, hay 5 representaciones irreducibles. Ya sabemos tres de ellas, ya que al
igual que en S3, tenemos la representacién trivial U con carécter (1,1, 1,1, 1), la representacién alternada
U’ con carécter (1,—1,1,—1,1) y la estdndar, que al igual que hicimos para obtenerla en la tabla de S3
(Ejemplo 2.3), en la representacion por permutaciones en C* tenemos que C* =U @ V.

Entonces vamos a calcular los caracteres de cada una de las clases de conjugacion de la representa-
cién por permutaciones sobre C*. Ya sabemos que 2. (1)) = dimC* = 4, por otro lado, en el caso de
[(12)], corresponde a las permutaciones de dos elementos, es decir, matrices como por ejemplo

01 00
1 000
001 0}
0 0 0 1

cuya traza es claramente 2. Entonces en esta representacidn, la traza son los elementos que se quedan
fijos, por tanto x, = (4,2,1,0,0).

Asi que la representacion estdndar tiene cardcter x, = X, — Xy = (4,2,1,0,0) — (1,1,1,1,1) =
(3,1,0,—1,—1) y como vimos en el Corolario 2.9, es irreducible puesto que (¥, ,x,) = 2—14 YecG Xu Xy =
2]—4(1 ‘946-146-143-1) = 1. Asi que podemos rellenar ya las tres primeras filas.

(Niimero de elementos por clase) | 1 6 8 6 3
Clases de conjugacion de Sy [11 [(12)] [(123)] [(1234)] [(12)(34)]
representacion trivial U 1 1 1 1 1
representacion alternada U’ 1 -1 1 -1 1
representacion estandar V 3 1 0 -1 -1

Para la siguiente fila, probamos V' =V ® U’. Recordamos que Vg € G, xvaou(g) = X, (8)X,, (g). Asi
que,

1 1
geG

Por tanto es irreducible, asi que la tabla nos queda:

(Niimero de elementos por clase) | 1 6 8 6 3
Clases de conjugacion de Su [11 [(12)] [(123)] [(1234)] [(12)(34)]
representacion trivial U 1 1 1 1 1
representacion alternada U’ 1 -1 1 -1 1
representacion estdndar V 3 1 0 -1 -1
representacion V o U’ 3 -1 0 1 -1

Para calcular la ultima fila, es decir, el cardcter ,, = (X1,...,X5) del médulo desconocido irreducible
W, podemos usar la ortogonalidad por columnas descrita en el Proposicion 2.13, es decir, que si [g] # [A]

entonces Y, %([g])X([(7)]) = 0. Por ejemplo, para [¢] = [1] y [1] = [(12)]:

Y 22 ([(12)) =1=14+3 =34 1102 = x1X, =0.
X
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Usando esta férmula para todas las posibles parejas de clases de conjugacion obtenemos que:

X2X3 = X3Xa = XaXs = XoXa = X1 X4 = X2X5s =0

XiX3=X3Xs=—2; Xixs=4

De aqui es facil sacar que y» = x4 =0y como )3 # 0, ¥1 = Xs. Con esta tltima igualdad, podemos decir
que |x1| = |xs| =2y |x3] = 1. Como vimos en la Proposicién 2.10, el orden del grupo es la suma de
los cuadrados de las dimensiones de los mddulos irreducibles, que correponden al caricter en g = 1, por
tanto:

2o (1) = /24— 20 (1)2 — 200 (1)~ 20 (1)? ~ sy (1P = V2A—T-1-9-9=2
Asique 1 = x5 =2y x3 = —1. Comprobamos que efectivamente es irreducible, viendo que < x,,, X,y >c=
1 (Corolario 2.9)

1
<Xw>Xw >G:ﬂl'4+6'0+8~1—|—6-0+3-4:1

Por tanto, la tabla de caracteres de S4 nos quedarfa de la siguiente manera:

(Niimero de elementos por clase) | 1 6 8 6 3
Clases de conjugacién de Sy [11 [(12)] [(123)] [(1234)] [(12)(34)]
representacion trivial U 1 1 1 1 1
representacion alternada U’ 1 -1 1 -1 1
representacion estdndar V 3 1 0 -1 -1
representacién V ¢ U’ 3 -1 0 1 -1
representaciéon W 2 0 -1 0 2




Capitulo 3

Representaciones de grupos simétricos

Ahora, vamos a centrarnos en las representaciones irreducibles de los grupos simétricos en general,
dado que, como hemos visto, el nimero de clases de conjugacidn corresponde a el nimero de represen-
taciones irreducibles y el niimero de clases de conjugacién del grupo simétrico de orden d es ficil de
obtener, ya que corresponde al nimero de particiones de d. Vamos a aprovechar esta propiedad y ver qué
relacidn guarda con las representaciones irreducibles de S;.

Teorema 3.1. Dos elementos de S, pertenecen a la misma clase de conjugacion si y solo si tienen la
mismo tipo de ciclos.

Demostracion. Sidos g1,g2 € S; elementos tienen la misma estructura de ciclos, es decir, g1 = C1C;...Cy
y 8 = DiD,...Dy con Cj = (aj, ...a;, ) y D; ciclos de la misma longitud y tanto los C; como los D;
son disjuntos dos a dos, podemos definir o € S4 que cumple que D; = (dgj,) - - 'ac(id,)) Vji=1,...,k
Entonces, es facil de comprobar que

—1

Gj(a,'l .. 'aid,-)cj = (ao'j(il) .. 'an(idi))'
Por tanto, g = D1D>...D; = (6Ci671)...(6C,o7 ') = 06C;...Cko~! = 6g167 . Es decir, pertenecen
a la misma clase de conjugacion. El reciproco es directo con la igualdad de arriba. O

Entonces, cada clase de conjugacién estd univocamente determinada por la estructura de ciclos de sus
elementos, es decir, por la manera en la manera en la que podemos agrupar los d elementos en ciclos. Por
tanto, hay tantas clases de conjugacién como particiones de d. Para el resto del trabajo, a una particién
d=7v+...4+ % ladenominaremos ¥ = (¥,..., %) con y; > ... > ¥ > 1. Por ejemplo, S3 tiene 3 clases
de conjugacion y las particiones posibles de 3 son (1,1,1), (2,1) y (3).

Una herramienta muy util para visualizar las particiones y que usaremos son los diagramas de Young.

Definicion 3.2. Un diagrama de Young es una representacion visual de una particion y de un entero d en
laque si y=(%,..., %), colocamos ¥; casillas en la fila i de manera decreciente. Por ejemplo, el diagrama
de Young de la particién y = (3,2,2,1,1) de 9 seria:

y=(3,2,2,1,1) |

Si intercambiamos filas por columnas, obtenemos la particién conjugada ¥'. En este caso la particién
conjugada de (3,2,2,1,1,) seria

Y =(5,3,1) | ]

21
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Si numeramos las casillas con los nimeros 1, ...,d de manera consecutiva, por ejemplo, obtenemos
una tabla de Young:

y=(3,2,2,1,1) 3]

2
5
7

EEE R

A esta numeracién en particular con los nlimeros consecutivos, que suele ser la habitual, se le conoce
como numeracion estdndar.

Aunque no parezca que estén relacionados, las tablas de Young nos pueden ayudar a definir una serie
de operadores que nos ayudardn a construir las representaciones irreducibles de S;.

Definicion 3.3. Dada una tabla de Young asociada a una particién ¥ de d con la numeracion estandar,
definimos dos subgrupos

Py, = {g € S, | ¢ mantiene los nimeros en cada fila}

Qy = {g € Sq4 | g mantiene los nimeros en cada columna}.
Notemos que P,NQy =1

Ejemplo 3.4. Por ejemplo, para S3 tomamos el diagrama de Young correspondiente a v = (2,2,1) y
asignamos a las casillas los ndmeros en orden, es decir:

12
3[4
5]

En este caso, los elementos que mantienen las filas son (12), (34) y (12)(3 4), entonces P, =
{1,(12),(34),(1 2)(34)}; por el contrario, los elementos que conservan las columnas son los que
permutan 1,3y 5,y (24), por tanto @, = ((13),(135),(24)).

Definicion 3.5. Ahora introducimos dos elementos del dlgebra de grupo CS; (Definicion 1.13) de la
siguiente manera:

ay=Y e, y by=) sgn(ge,.
8EPy 8€0y

Y por dltimo, llamamos simetrizador de Young de una particién y a
cy=ay by, € CSy.
Ejemplo 3.6. Si consideramos S3 y tomamos la tabla de Young correspondiente a ¥ = (2,1) con la
numeracién habitual, P 1y = {1,(12)} y Q(2,1) = {1, (1 3)} por tanto
aon=14+eqz y bon=1—eqs).

En el ejemplo anterior de y = (2, 1), se tiene que

cony = (1+eqa)(l—ens)) =1+eq2 —eq3 —eqns):

Usando la notacion como la de la representacion regular del Ejemplo 1.20, podemos escribir los e, como
tuplas. Entonces, para y = (3), P3) = S3y Q;3) = {1}, a3 = (1,1,1,1,1,1) y b3 = (1,0,0,0,0,0), por
tanto, c(3y = (1,1,1,1,1,1).
Para y = (2,1), como en el ejemplo anterior, a( 1) = (1,1,0,0,0,0) y b 1) = (1,0,1,0,0,0), por tanto,
con=(1,1,-1,0,0,—-1).

Para}/: (1, 1, 1), P(l,l,l) = {1} y Q(]7]71> :S3,a(1_’171) = (1,0,0,0,0,0) yb(l,l,l) = (1,—1, —1,—1, 1, 1),
por tanto, ¢ 1,y = (1,—1,—1,—-1,1,1).
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Lema 3.7. Cada elemento de PyQ, se puede poner de tinica manera como p € Pyy q € Py

Demostracion. Si pg=p1q1 con p,p1 € Pyy q,q1 € Qy, pflp =qiqg ' € PyNQy. Y como vimos en la
Definicién 3.3, P,NQ, = {1}, entonces p = p1, ¢ = q. O

Lema 3.8. Sea T la tabla Young de particion 7y (con cierta numeracion) y sean Py, Qy los subgrupos
asociados. Dado un g € S,, sean g(T) la tabla de Young obtenida al aplicar la permutacion g a las
entradas de T. Entonces, los subgrupos asociados a g(T) son

gPg' Yy g0yg!

Demostracion. Las filas de g(T') son de la forma g(F) con F fila de T, luego
gPyg" - g(F) = gPy(F) = g(F).
Ademds, si H es subgrupo que cumple que Hg(F) = g(F) para toda fila F, se tiene
g 'Hg(F)=F, luego g 'Hg<P,
El resultado es andlogo para Qy es andlogo. O

Como demostraremos mds adelante, si consideramos los ¢y actuando por la derecha como una apli-
cacién de CSy, su imagen Vy corresponde a una representacion irreducible. Es decir,

A partir de ahora denotaremos los elementos de la base de CS,; igual que a los del grupo, es decir,
pondremos g en lugar de e,.

Ejemplo 3.9. Consideramos ahora S, para la particién ¥ = (d). Como solo hay una fila, como hemos
visto en el ejemplo de S3, Py) = Sq y Q(q) = {1}, por tanto, ¢(4) = Yyes, h- Para todo g € Sy

geay=8 ) h=7) gh=cy
heSy heSy

Luego Vv € V()
v=() neg) cay = Y ne8tay = Y, necia) = (Y Mg)C(a)

8ESq 8ESq 8ESy 8E€Sq
donde los n, € C. Para ver que de representacion se trata, hacemos que actiie un elemento x € Sy:

x-v:x~(z ng)c(a) = ( Z ng)XC(q) =V

g€Sy g€Sy

Puesto que xc(4) = ¢(g). Por tanto, V|4 corresponde a la representacion trivial.
Ahora nos fijamos en que, para ¥ = (1,1, 1...,1), solo hay una columna, lo que significa que Q) = Sa
y Py = {1}. De manera similar a como hemos visto para S, Cy = YLhes, sgn(h)h. Entoces, para todo
geG:
g-cy=g- Z sgn(h)h = sgn(g) Z sgn(g)sgn(h)gh = sgn(g)cy,
heSy heSy

ya que (sgn(g))* = 1y sgn(g)sgn(h) = sgn(gh). Por tanto, Vv € Vy,
v={( Z Ngg)-Cy = Z negcy = ( Z ngsgn(g)) - cy.

8ESa 8ESq 8€ESq

Luego si hacemos actuar x € S; tenemos:

xv = ( Z ngsgn(g)) - xcy = ( Z ngsgn(g))sgn(x) - cy = sgn(x)v
8E€S, gESy
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Por tanto, V), corresponde a la representacion alternada.
Ahora consideramos la particién ¥ = (d — 1,1). Su tabla de Young consiste en una fila con los nimeros
{1,...,d — 1} y otra fila Ginicamente con la casilla {d}. Por tanto, P, estd formado por los elementos
que dejan fijo d y por tanto P, =2 S;_;. Como s6lo hay una columna {1,d} con més de un elemento,
tenemos que Oy = 1 —e(; 4. Entonces, para Vyy = CS,cy, existe una base v, ..., vg con v; = (j d) - ¢y para
j=2,....d, donde se puede ver que [3][p. 518, ej. 4.4]:

vi=(jd)-cy=(jd)( Z p—eqa)=Y (Gdp— Y (jd)peqa)= Z eg Y en

p(d)=d p(d)=d h(1)=j
como la base tiene d — 1 vectores, tenemos que dimVy = d — 1. Por dltimo, nos damos cuenta que

d

jivj:g( Y ¢— ) h)zj_zd‘,1 Y ¢-Y Y n=Ys¢-Y n=0

gld)=j  h(l)=j gd)=j  J=lh()=j  8€S:  heSq
Vemos asi que V), corresponde a la representacion estandar. (Ejemplo 1.17)

Observacion: Si 7 y T’ son dos tablas de Young correspondientes a la misma particién ¥ pero con
distinta numeracién, podemos encontrar g € S; con 7’ = g(T'). Entonces P’ gPyg y QY g0y8 L

Luego cg, = gcyg*1 y de esto se deduce que

g V=V

/ /o
acy — acyg = agey

es un G-isomorfismo.

Hemos supuesto durante todo el trabajo que el médulo de la representacidn estandar de S, es irreducible,
el siguiente teorema, junto con lo que hemos visto, nos asegura que todos los médulos contruidos de esta
forma son irreducibles.

Lema 3.10. Sea G =S, y Y una particion dada. Como notacion usaremos c¢ := cy. Entonces

i) Para todos los p € Py, q € Qy, p-c-(sgn(q)q) = c, y, salvo multiplicacion por un escalar, c es el tinico
elemento de este tipo en CS, [3][p. 53].

ii) Para cualquier a € CG,cac = o para algiin o € C.

iii) Si W es un subespacio invariante de CG, y W2 =0, entonces W =0 [6].

Demostracion. (i) Veamos primero que ¢ cumple la propiedad. Como

= (Y. p)( Y sgn(q)q)

pePy q€0Qy

dado p| € Py,

pLY, p=Y pip= ) p

DEPy PEPy PEPy
luego pjc = c. Andlogamente, para cualquier g; € Qy, cq1 = ¢-sgn(q1), luego picq) = c-sgn(qy). Ade-

mds, si un elemento )., 1,8 satisface la condicion, entonces

p(Y ngg)(sgn(q))g =Y ngpga(sgn(q)) =Y nes.
8€G 8<G gcG

Luego si pgq = h, igualando coeficientes se deduce que n;, = n,8q = ngsgn(q) y en particular n,q =
ny -sgn(q). Es decir, si h € P,Q,, tenemos h = pq para p,q Ginicamente determinados por el Lema 3.7 y

np =np, =ny -sgn(q) =n; (coeficiente de c en pq)
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Veamos ahora que si g & PyQy, entonces n, = 0, esto junto con lo anterior implicard que Y ,cngg = n1 - .
Para tal g, es suficiente encontrar una transposicion t talque p =t € P,y g = g ltge Qy; ya que entonces
g = pgq, asi que ng = npeq = sgn(q)ng = —n,. Si T es la tabla de Young de Yy 7" = gT es la tabla de
Young obtenida reemplazando cada entrada i de T por g(i), afirmamos que hay dos enteros distintos que
aparecen en la misma fila de 7'y en la misma columna de 7”; ¢ es entonces la transposicion de estos dos
enteros. Esto implica € Py y t € 0/, donde Q) es el grupo de columna asociada a T’ = g(T'), ademis
por el Lema 3.8, Qg, = gQ,,g_1 luego t = gqg~' paraq € Oy, asique g = g 'tg como queriamos.
Debemos verificar que si no hubiera tal par de enteros, entonces uno podria escribir g = pg para algtin
asociado p € Py, g € Q. Para hacer esto, notemos que por el Lema 3.8, P{, = gPyg_l y Qg, = gQ,,g_1 son
los grupos asociados a T’. Suponemos que no hay 2 enteros que estdn en la misma fila de 7'y en la misma
columna de 7’. Por tanto, todos los enteros de la primera fila de T estdn en columnas distintas de 7”.
Esto significa que lo podemos permutar mediante un elemento g; € Qg, para que estén en la primera fila
de ¢;T" y también podemos encontrar un p; € P, de forma que p;T y ¢, T’ tengan la primera fila igual.
Repitiendo el proceso, podemos encontrar p € Py y g € Qg, = gQ,,g_1 con pT = ¢T’, donde ¢ = ggg "
cong=0yy
pT =g4g ' gT =gqT,

luego p=g4 = g=p§ ' conpc P,y § € Qy como queriamos.

(ii) Sea a € CG y consideramos c-a-c. Para p € Py, g € Qy cualesquiera:

p-c-a-c-q=c-a-c-sgn(q).

Por tanto, (i) implica que cac = ac para cierto o € C.
(iii) Sea U un subespacio invariante complementario, de modo que CS; = U & W es una suma directa
de representaciones. Entonces podemos escribir 1 = u 4 w para algin u € U,w € W. En particular, w =
wu+w-w. Dadoque W-W =0, w-w =0, y por lo tanto w = wu. Se deduce de la invariancia de U que
w € U. En particular, 1 = u+ w también estd contenido en U, y por invariancia, U es todo CS;. Por lo
tanto W = 0.

O

Teorema 3.11. Cada Vy es una representacion irreducible de S.

Demostracion. [6] Para simplificar la notacién llamamos A := CS,;. Sea W un subespacio invariante de
Vy = Acy. por el lema anterior, se deduce que cyAcy es el subespacio unidimensional de A que consiste
en multiplos escalares de cy, es decir, cyAcy = Ccy.
Dado que W C Acy, cyW C cyAcy. En otras palabras, ¢,W es un subespacio del subespacio unidimensio-
nal c;Acy = Ccy. Dado que Ccy es unidimensional y esto implica cyW = {0} o ¢,W = Ccy. Supongamos
que c¢yW = Ccy. Entonces

Acy=ACcy=Ac,W C W,

donde la inclusion final se debe a la invariancia de W. Se deduce en este caso que W = Acy = V.
Supongamos ahora que ¢,W = {0}. Vamos a mostrar que esto implica W = {0}. Dado que W C Ac,,
WW C AcyW. Pero como ¢,W = 0 entonces WW C (Acy)W = A(cyW) = 0. Pero, por el segundo apartado
del lema anterior, W? = 0 implica que W = 0. Hemos demostrado que si W es un subespacio invariante
de Vy = Acy, entonces W es cero o todo Acy. Por lo tanto, Acy es irreducible. ]

Lema 3.12. Si y,A son particiones distintas, entonces Vy 2 V),

Demostracion. Como Y # A, si ¥1,%,... ¥ A1, Az,... son respectivamente el nimero de elementos de las
filas de yy A, tiene que haber un indice i tal que.

N=M,...Y%1=A-1,%#A

y podemos suponer ¥; > A;. Entonces si T, y T son las correspondientes tablas de Young tiene que haber
dos enteros que estén en la misma fila de 7, y en la misma columna de 7}, si no fuera asf, los ; elementos



26 Capitulo 3. Representaciones de grupos simétricos

de la primera fila de 7 estarian en columnas distintas de A, ocupando todas las columnas, lo mismo para
la segunda, hasta llegar a la fila i. Pero en ese momento los %; elementos no vaben en las columnas de A.
Por ejemplos:

Como vemos, 8 y 10 estan

y:;é$4l )'ZISIE;LH en la misma fila de y
819110 19 y la misma columna de 1.
m s
10

Sea t la trasposicion de estos enteros. Tenemos que t € Py, luego tPy = P, y como también, ¢ € Q; asi
que
gt =qy -sgn(t) = —q;
Por tanto,
CA - Co = PadaPydy = PA9AT - IPyqy = —Paq9APyqdy = —Ca - Cy

es decir, ¢; - ¢y =0.
El argumento se puede repetir considerando en lugar de 7y el diagrama g(7,) con g € Sy arbitrario, esto
implica que Vg € S,

cy, -gcyg_1 =0 luego cygcy=0

Por tanto, Va € CS; tenemos cjacy = 0, luego ¢, Vy = CGcy = 0. Si Vy y V), fueran isomorfos, esto
implicaria que c), - V. Pero ¢y -V} = ¢, CGcey #0 O

Teorema 3.13. Las representaciones irreducibles de S; son precisamente las de la forma Vy con y
particion de d.

Demostracion. Esto es consecuencia inmediata de los dos resultados anteriores teniendo en cuenta el
hecho de que el nimero de particiones de d es el niimero de clases de conjugacién de S, O

Ejemplo 3.14. Ahora podemos describir representaciones de los grupos simétricos S; con d = 2,3,4.

— Para Sy, hay 2 particiones posibles: (1,1) y (2). Como vimos en el Ejemplo 3.9, V|, corresponde
a la representacion trivial U y V(q 1), la alternada.

v 1] U’H

— Para S3, las particiones posibles son (3), (2,1), (1,1,1). De la misma manera, V(3) = U, V{; 1 1) =
U’ y, como vimos también en el Ejemplo 3.9, V(2.1) corresponde a la estandar V. Por tanto:

v LI 1] v IV@

— Para S4, tenemos 5 particiones posibles: (4), (3,1),(2,2), (2,1,1) y (1,1,1,1). Nos fijamos en el
Ejemplo 2.14, donde obtuvimos los médulos irreducibles a través de los caracteres. Es facil ver que
Viy=U, Va1 = U'y Vi3,1) = V. Nos faltaria asignar V ® U’ y la representacién W. Tenemos
que (2,1,1) es la particién conjugada a (3, 1), entoces V(51 1) = V(31) @ U’ [3][p.47]. Por tanto,
Vi2,1,1) =V ®U y por eliminacion, Vi, 5y = W. La figura nos quedaria as:

v LIIT] v [ w Veou' | U
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