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Resumen

La teoría de representaciones es una herramienta muy útil que nos ayuda a entender de manera muy
intuitiva cómo puede actuar un grupo sobre un espacio vectorial. Se trata básicamente de asignarle a cada
elemento del grupo una matriz a través de un homomorfismo al que llamamos representación del grupo y
ver cómo estas matrices actúan sobre un espacio vectorial al que llamamos módulo de la representación.
En el primer capítulo, revisitamos algunos conceptos de álgebra lineal, desde los más sencillos hasta
otros más abstractos. También vamos a introducir un concepto muy relevante para el resto del trabajo:
los módulos irreducibles, que son las piezas con las que más adelante podremos construir cualquier mó-
dulo. Probaremos que cualquier módulo está compuesto por módulos irreducibles de manera única (salvo
isomorfismo). Para grupos abelianos, veremos que los módulos irreducibles tienen todos dimensión 1.
Después, nos centramos en el grupo no abeliano más pequeño que hay: S3. Además, este ejemplo nos ser-
virá como excusa para presentar algunas de las representaciones más relevantes de los grupos simétricos,
como la representación trivial, la alternada o la representación por permutaciones. Después, armados
únicamente con estos conocimientos, descomponemos un módulo de una representación arbitraria de S3
y ponemos un ejemplo práctico, la representación regular.
Como podremos ver, necesitaremos una teoría un poco más sofisticada para poder analizar las componen-
tes irreducibles de una representación dada. Para ello, en el segundo capítulo, introducimos el concepto
de carácter de una representación; que es básicamente la traza de las matrices asociadas a la represen-
tación. No solo porque nos interesa mucho conocer los valores propios de estas matrices, sino que, por
ejemplo, en el caso de las matrices que representan permutaciones, conocer la traza equivale a cono-
cer cuántos elementos deja fijos un elemento del grupo en cuestión. Además, el carácter tiene muchas
propiedades que están muy relacionadas con las representaciones irreducibles y que de cierta manera
nos garantizan cierta ortonormalidad. Esta propiedad nos será muy útil cuando construyamos la tabla
de caracteres, en nuestro caso de los grupos simétricos S3 y S4. En este tipo de tablas se recoge mucha
información de manera muy resumida sobre las representaciones irreducibles, las clases de conjugación
del grupo y qué papel juegan los caracteres realmente. El resultado más relevante de este capítulo es que
hay tantas representaciones irreducibles como clases de conjugación.
En el tercer y último capítulo, nos centramos en las representaciones de grupos simétricos Sd . En este
caso, el número de clases de conjugación es exactamente el número de particiones de d. Para representar
las particiones, utilizamos lo que se conoce como ‘diagramas de Young’, que es una manera de visualizar
las particiones de manera más clara y directa. Aunque no lo parezca, estas representaciones gráficas nos
van a ayudar a definir una serie de elementos de la correspondiente álgebra grupo mediante las cuales
podremos obtener las representaciones irreducibles directamente.
El principal objetivo de este trabajo es acercar la teoría de las representaciones a un público general den-
tro del ámbito matemático no especializado en el tema. Por ello se ven muchos ejemplos y se demuestran
la mayor parte de fórmulas y otros resultados de manera muy explícita. La estructura de este trabajo está
ampliamente basada en los capítulos 2, 3 y 4 del libro ‘Representation Theory’, de W. Fulton y J. Harris.
[3]
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Abstract

Representation theory is a very useful tool that helps us understand how a group can act on a vector
space in a very intuitive way. It basically involves assigning to each element of the group a matrix th-
rough a homomorphism that we call a group representation and observing how these matrices act on a
vector space that we call the representation module.
In the first chapter, we revisit some linear algebra concepts, from the simplest to the more abstract ones.
We will also introduce a very relevant concept for the rest of the essay: the notion of irreducible modules,
which are the pieces with which we can later construct any module. We will prove that any module is
uniquely composed of irreducible modules (up to isomorphism). For abelian groups, we will show that
irreducible modules are 1-dimensional. Therefore, we focus on the smallest non-abelian group: the sym-
metric group S3. Additionally, this example will serve as an excuse to present some of the most relevant
representations of symmetric group, such as the trivial representation, the alternating representation, or
the permutation representation. Then, armed with nothing but this knowledge, we decompose a module
of an arbitrary representation of S3 and provide a practical example, the regular representation.

As we will see, we will need a slightly more sophisticated theory to be able to analyze the irreducible
components of a given representation. To do this, in the second chapter, we introduce the concept of the
character of a representation; which is basically the trace of the matrices associated with the representa-
tion. Not only because we are very interested in knowing the eigenvalues of these matrices, but also, for
example, in the case of matrices representing permutations, knowing the trace is equivalent to knowing
how many elements a group element fixes. Moreover, the character has many properties that are closely
related to irreducible representations and, in a way, guarantee a certain orthonormality. This property will
be very useful when we construct the character table, in our case for the symmetric groups S3 and S4.
In this type of table, a lot of information is summarized about irreducible representations, the conjugacy
classes of the group, and what role the characters actually play. The most relevant result of this chapter
is that there are as many irreducible representations as conjugacy classes.
In the third and final chapter, we focus on the representations of symmetric groups Sd , as we know
that the number of conjugacy classes is exactly the number of partitions of d. For those groups, we use
what are known as Young diagrams, which is a way to visualize the partitions more clearly and directly.
Although it may not seem so, these graphical representations will help us devise a series of construc-
tions, closely related to the concept of group algebra, from which we can directly obtain the irreducible
representations.

The main objective of this work is to bring the theory of representations closer to a general audience
within the mathematical field who are not specialized in the subject. Therefore, many examples are
shown, and most formulas and other results are proven very explicitly. The structure of this essay is
widely based on the chapters 2, 3 and 4 from the book ‘Representation Theory‘by W. Fulton and J.
Harris [3]
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Capítulo 1

Representación de grupos finitos

1.1. Definición y propiedades

Definición 1.1. Sea G un grupo finito y V un espacio vectorial de dimensión finita sobre C. Una repre-
sentación de G es un homomorfismo

ρ : G → GL(V )

siendo GL(V ) el grupo lineal general de V entendido como el conjunto de las matrices invertibles nxn
con n = dimV y con el producto habitual. Es decir, ρ asigna a cada elemento de G una matriz invertible.
Además, dada una representación como antes, si fijamos una base de V podemos identificar cada v ∈ V
con sus coordenadas (en columna) y entonces, dado g ∈ G, podemos multiplicar ρ(g)(v) y obtenemos
de nuevo un elemento de V . Esto define una acción de G en V y decimos que V es el módulo asociado (o
G-módulo). Se tiene, ∀v1,v2 ∈V y ∀λ1,λ2 ∈ C,

ρ(g)(λ1v1 +λ2v2) = λ1ρ(g)(v1)+λ2ρ(g)(v2)

y
ρ(gh)(v) = ρ(g)(ρ(h)v)

En este trabajo escribiremos en la mayoría de los casos

gv := ρ(g)(v)

reservando el uso de ρ para cuando queramos hacer hincapié en la naturaleza de matriz de ρ(g) o, so-
bretodo en esta primera parte, para cuando haya mucha ambigüedad y estemos trabajando con módulos
diferentes (y diferentes representaciones). De forma equivalente, si V es un G-módulo, es decir, un espa-
cio vectorial con una acción de G tal que

g(λ1v1 +λ2v2) = λ1gv1 +λ2gv2

y
(gh)(v) = g(hv),

fijando una base de V se tiene una representación.

Definición 1.2. Sea G un grupo finito y ρ1 : G → GL(V ) y ρ2 : G → GL(W ) dos representaciones de
G. Llamamos aplicación G-lineal o simplemente G-aplicación entre módulos V y W a una aplicación
φ : V →W que cumple que

φ(ρ1(g)(v)) = ρ2(g)(φ(v)) ∀g ∈ G,v ∈V

Aunque sea muy ambiguo, en ocasiones ρ1 y ρ2 se sobreentienden. Por tanto, podemos reescribir la
propiedad anterior como:

φ(gv) = gφ(v)

1
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Ejemplo 1.3. Para el grupo cíclico de orden n, Cn =< g>, tenemos que gn = 1. Eso implica que ρ(g)n =
1 para cualquier representación. Entonces si v ∈ V es un vector propio de la matriz ρ(g) valor poropio
λ , siendo V el módulo de la representación, se tiene:

ρ(gn)(v) = λ
n · v = v

Con lo cual los valores propios de la matriz asociada por la representación a cualquier elemento son
raíces n-ésimas de la unidad.

1. Consideramos la siguiente representación ρ1 con módulo el espacio vectorial C:

ρ1 : Cn → GL(C)

g 7→ ζ

donde ζ es una raíz n-ésima primitiva de la unidad. Entonces ρ1(g)(v1) = gv1 = ζ v1 para cualquier
v1 ∈ C.

2. La siguiente es una representación ρ2 para el grupo C4 con el espacio C2 como módulo

ρ2 : C4 → GL(C2)

g 7→
(

0 −1
1 0

)

así, ρ2(g)(v2) = gv2 =

(
0 −1
1 0

)
v2 con v2 ∈ C2.

Vamos a ver que se pueden obtener módulos a partir de otros, para eso, primero vamos a definir y ver
algunas construcciones de álgebra lineal.

Definición 1.4. Sean V y W espacios vectoriales sobre un cuerpo K.

1. [7] Llamamos producto tensorial V ⊗K W sobre K al espacio vectorial que tiene por base vectores
de la forma ei⊗K f j con ei ∈V y f j ∈W vectores de una base de V y W respectivamente. Además,
∀v1,v2 ∈V , ∀w1,w2 ∈W y ∀c ∈ K se cumplen las siguientes propiedades:

a) (v1 + v2)⊗K w1 = v1 ⊗K w1 + v2 ⊗K w1

b) v1 ⊗K (w1 +w2) = v1 ⊗K w1 + v1 ⊗K w2

c) c(v1 ⊗K w1) = cv1 ⊗K w1 = v1 ⊗K cw1

A lo largo de este trabajo, como todos los son espacios vectoriales son complejos y de dimensión
finita, usaremos la notación V ⊗W :=V ⊗CW y tendremos que dim(V ⊗W ) = dimV ·dimW

2. La potencia exterior n-ésima de V , denotada ∧nV , corresponde al cociente de V⊗n con el subespa-
cio generado por los elementos de la forma v1 ⊗ . . .⊗ vn con vi=v j para algún i ̸= j. Para n = 2, el
cuadrado exterior ∧2V tiene como base {ei ∧ e j|i < j} con {ei} base de V

3. Llamamos Hom(V,W ) al espacio vectorial de las aplicaciones lineales que van de V en W , sobre
K = C en nuestro caso. Es espacio vectorial con la suma ( f +g)(v) = f (v)+g(v) y producto por
escalar (c f )(v) = c( f (v)) para f ,g ∈ Hom(V,W ), v ∈V y c ∈ C.

4. El espacio dual de V es V ∗ = Hom(V,C). Como en nuestro caso V es un espacio vectorial com-
plejo de dimensión finita, podemos denotar los elementos v∗ ∈V ∗ mediante matrices fila.
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Definición 1.5. [8] El producto de Kronecker de dos matrices A n1 xm1 y B n2 xm2se define como:

A⊗B =


A11B A12B . . . A1m1B
A21B A22B . . . A2m1B
. . . . . . . . . . . .

An11B An12B . . . Anm1B


De hecho, si llamamos V al espacio formado por las matrices n1 xm1y W al de las matrices n2 xm2mediante
el producto de Kronecker, podemos identificar el espacio de las matrices n1n2 xm1m2 con V ⊗W .

Proposición 1.6. Sean V y W espacios vectoriales complejos de dimensión finita dimV = n y dimW =m.
Entonces, Hom(V,W )∼=V ∗⊗W.

Demostración. Sea {vi} una base de V y {v∗i } la base del dual de V ∗ (es decir, v∗i (v j) = δi j con δi j la
delta de Kronecker y {w j} una base de W . Construimos el homomorfismo

Φ : V ∗⊗W → Hom(V,W )

tal que para cada u ∈ V se tiene que Φ(v∗⊗w)(u) = w[v∗(u)] [1]. Extendemos por linealidad, de forma
que para un elemento de V ∗⊗W de la forma ∑i, j ci j(v∗i ⊗w j)

Φ(∑
i, j

ci j(v∗i ⊗w j))(u) = (∑
i, j

ci jw j(v∗i u).

Primero, veamos que es inyectivo. Supongamos que ∑i, j ci j(v∗i ⊗w j)∈KerΦ y supongamos que no todos
los ci j son 0. Tenemos que

(∑
i, j

ci jw j(v∗i v)) = 0 ∀v ∈V =⇒ (∑
i, j

ci jw j(v∗i v)) = ∑
j

w j(∑
i

ci jv∗i v) = 0.

Si para algún v no todos los ∑i ci jv∗i v son 0, entonces significaría que los {w j} son linealmente depen-
dientes, que es una contradicción por hipótesis. Entonces son cero para todo v, es decir,

(∑
i

ci jv∗i )≡ 0 ∀ j = 1, ...,m

lo cual es una contradicción porque los {v∗i } son linealmente independientes. Por lo tanto KerΦ = 0.
Para la suprayectividad, cogemos un g ∈ Hom(V,W ), construimos ∑i v∗i ⊗g(vi) y vemos que

Φ(∑
i

v∗i ⊗g(vi))(v) = ∑
i

g(vi)(v∗i v) = g(∑
i

vi(v∗i v))

Como vi es base de V , se tiene que para cualquier v, v = ∑i=1 αivi y v∗i v = αi, luego

∑
i

vi(v∗i v) = ∑
i=1

αivi = v,

es decir,
Φ(∑

i
v∗i ⊗g(vi))(v) = g(v).

Por tanto, es un isomorfismo.

Definición 1.7. Un submódulo de V es un subespacio vectorial W ⊂ V que es invariante bajo la acción
de G.

Proposición 1.8. Sean V y W G-módulos con ρ1 : G → GL(V ) y ρ2 : G → GL(W ) sus respectivas
representaciones. Entonces los siguientes espacios tienen estructura de G-módulo:
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i) V ⊕W con ρV⊕W (g)(v,w) = (ρ1(g)(v),ρ2(g)(w)) y y V ⊗W con y ρV⊗W (g)(v⊗w) = ρ1(g)(v)⊗
ρ2(g)(w).

ii) Si U es un submódulo de V , entonces el espacio cociente V/U es también un G-módulo con
ρV/U (g)([v]) = [ρ1(g)(v)].

iii)
∧2V es un G-módulo.

iv) El espacio dual V ∗ = Hom(V,C) con ρ∗(g) = ρ1(g−1)T .

v) El espacio de homomorfismos de V en W Hom(V,W ) es un G-módulo.

Demostración. (i) Hay que probar que ρV⊕W y ρV⊗W son homomorfismos de grupos, esto se deduce
fácilmente teniendo en cuenta que ρ1 y ρ2 lo son. También es fácil comprobar que con el producto
de Kronecker ρV⊗W (g) = ρ1(g)⊗ρ2(g). (ii) Tenemos que en V/U los elementos son de la forma [v] :=
{v+ u ∈ V |u ∈ U}. Primero hay que comprobar que ρV/U está bien definido, es decir, que ∀g ∈ G si
v2 ∈ [v1], entonces ρV/U(g)(v2) ∈ [ρ1(g)(v1)], esto es equivalente a

v1 − v2 ∈U =⇒ ρ1(g)(v1 − v2) = rho1(g)(v1)− rho1(g)(v2) ∈U,

puesto que U es submódulo. Ahora solo faltaría ver que ρV/U es un homomorfismo de grupos (lo cual
es trivial). (iii) Recordamos que la Definición 1.4 dice que

∧2V =V⊗2/U , siendo U =< v⊕ v|v ∈V >.
Entonces con probar que U es submódulo podemos aplicar el anterior punto y esto es fácil de ver ya que,
para cualquier g ∈ G, ρV⊗V (g)(v⊗ v) = ρ1(g)(v)⊗ρ1(g)(v) ∈U .
(iv) Primero vemos que, para v∗ ∈ V ∗ y g ∈ G, gv∗ ∈ Hom(V,C) es el elemento dado por (gv∗)u =
v∗(g−1u). El motivo por el que introducimos g−1 es que es necesario para que se cumpla (hg)v∗ = h(gv∗),
ya que

h(gv∗)(u) = (gv∗)(h−1u) = v∗(g−1h−1u) = v∗((hg)−1(u) = ((hg)v∗)(u)

Para definir la representación asociada, tomamos {vi} base de V y {v∗i } la base dual. ρ∗(g) tiene por
columna j las coordenadas en {v∗i } del vector gv∗i . La coordenada i-ésima es (gv∗j)(vi) = v∗j(g

−1vi) que
es igual a la columna i, fila j de ρ∗(g−1). Esto significa que la entrada (i, j) de ρ∗(g) es igual a la entrada
( j, i) de ρ(g−1), luego ρ∗(g) = ρ(g−1)T .
(v) Hom(V,W ) es un módulo porque, como hemos visto en la proposición anterior Hom(V,W ) ∼= V ∗⊗
W .

Definición 1.9. Un módulo es irreducible si no contiene submódulos no nulos. Análogamente, una re-
presentación es irreducible si lo es el módulo asociado.

Ejemplo 1.10. En el Ejemplo 1.3, sean w1 y w2 los vectores propios de ρ2(g), W1 =< w1 > y W2 =<
w2 > son submódulos de C2 para G =C4. Además son irreducibles trivialmente porque tienen dimW1 =
dimW2 = 1.

1.2. Existencia y unicidad de la descomposición

Nos queremos centrar en los módulos irreducibles. Vamos a ir viendo distintos resultados para ver
que las respresentaciones se pueden descomponer en submódulos irreducibles de manera única.

Proposición 1.11 (Teorema de Maschke). Si G es un grupo finito, V un G-módulo y W un submódulo de
V , entonces ∃W ′ un submódulo de V complementario a W tal que V =W ⊕W ′.

Demostración. Sea ρV : G → GL(V ) la representación de G con módulo V . Tomamos π0 : V → V , tal
que Imπ0 = W y π0(w) = w ∀w ∈ W , es decir, una proyección sobre W . Hacemos el promedio sobre
G:

π(v) =
1
|G| ∑

g∈G
ρV (g)(π0(ρV (g

−1)v))
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Como W es submódulo, π(v) ∈W para todo v ∈V . Además, si v ∈W , ρV (g
−1)v ∈W y π0(ρV (g

−1)v)) =
ρV (g

−1)v. Entonces,

π(v) =
1
|G| ∑

g∈G
ρV (g)(ρV (g

−1)v) =
1
|G| ∑

g∈G
v = v,

es decir, es también una proyección. Ahora, tomando h ∈ G (y obviando ρV ):

π(hv) =
1
|G| ∑

g∈G
gπ0((g−1)hv) =

1
|G| ∑

g∈G
hh−1gπ0((g−1)hv) =

1
|G| ∑

f∈G
h f π0(( f−1v) = hπ(v).

Esto implica que π es G-lineal y como es fácil ver (y demostraremos en la Proposición 1.13), Kerπ =W ′

también es invariante por G y además V = W ⊕W ′. Está demostración vale para cualquier cuerpo con
característica que no divida a |G|, ya que eso es precisamente lo que hemos necesitado para construir
π .

Reiterando este proceso, podemos descomponer cualquier módulo en submódulos hasta llegar a mó-
dulos irreducibles. Para ver que esta descomposición es única, nos hará falta ver algunos resultados
primero.

Lema 1.12. Sea φ : V →V un automorfismo donde V es un espacio vectorial finito sobre C. Entonces:

i) φ tiene algún valor propio, es decir, ∃λ ∈ C tal que Ker(φ −λ I) ̸= 0, con I la identidad en V .

ii) Si ∃k con φ k = I, φ es diagonalizable, es decir, existe una base de V de vectores propios de φ .

Demostración. (i) Se sigue de que C es algebraicamente cerrado, es decir, todo polinomio no constante
con coeficientes en C tiene al menos una raíz en C. Entonces, el polinomio característico de φ tiene al
menos una raíz, por lo que ∃λ ∈ C tal que det(φ −λ I) = 0. Por tanto, Ker(φ −λ I) ̸= 0.
(ii) Si A es la matriz de φ , entonces A hace cero el polinomio p(X) = Xk − 1. Entonces, el polinomio
mínimo de A, µA(X) necesariamente divide a p(X). Como las raíces de p(X) son las raíces k-ésimas
de la unidad, podemos escribir p(X) = (X −1)(X − ε)(X − ε2) . . .(X − εk−1) siendo ε una raíz k-ésima
primitiva de la unidad. Como µA(X) divide a p(X), las multiplicidades algebraicas de los valores propios
en el polinomio mínimo también son 1. Consideramos la forma canónica de Jordan J de la matriz A,

J =


J0 0

J1
. . .

0 Jk−1


con Ji el bloque de Jordan con ε i en la diagonal. Como en el polinomio mínimo todas las raíces tienen
multiplicidad 1, cada bloque Ji anula X − ε i. Por tanto cada bloque de Jordan es de la forma ε iIni con Ini

la matriz identidad de dimensión ni y ∑
k
i=1 ni = n. Entonces, la matriz J es completamente diagonal. Por

tanto A es diagonalizable.

Lema 1.13 (Lema de Schur). Sean V y W módulos irreducibles de G y φ : V → W una aplicación
G-lineal, entonces:

i) Si φ ̸≡ 0, φ es un isomorfismo.

ii) Si V =W, entonces φ ≡ λ · I para un λ ∈ C con I la aplicación identidad.

Demostración. (i) Vemos primero que Imφ es un subespacio de W invariante por G. Sea w = φ(v) con
v ∈V y g ∈ G, como φ es G-lineal:

gw = gφ(v) = φ(gv) ∈ Imφ
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Entonces Imφ es un subespacio invariante de W , pero como W es irreducible, eso implica que o bien
Imφ =W ó Imφ = 0, es decir, o bien es suprayectiva o bien φ ≡ 0.

En el caso de que no sea nula, vemos ahora que Kerφ también es invariante. Sea v ∈ Kerφ :

φ(gv) = gφ(v) = 0 =⇒ gv ∈ Kerφ

Como V es irreducible y φ ̸≡ 0, Kerφ = 0. Por tanto φ es un isomorfismo.
(ii) Por el Lema 1.13, ∃λ ∈C tal que Ker(φ −λ I) ̸= 0. Por (i) tenemos que φ −λ I ≡ 0 =⇒ φ = λ ·I.

Proposición 1.14. Para cualquier G-módulo V con G un grupo finito, hay una descomposición:

V =V⊕a1
1 ⊕ . . .⊕V⊕ak

k

donde los Vi son irreducibles no isomorfos dos a dos, la descomposición es única salvo el orden y cada
Vi tiene multiplicidad ai.

Demostración. Primero, podemos descomponer en irreducibles iterando la Proposición 1.11. Si W es
otro G-módulo que se puede descomponer en W = ⊕W⊕b j

j y φ : V →W una aplicación entre módulos;

entonces, utilizando el Lema de Schur (Lema 1.13), φ debe llevar cada factor V⊕ai
i al factor W⊕b j

j para
el cual Vi ∼=Wj. Cuando se aplica esto a la identidad de V en V , obtenemos la unicidad.

1.3. Algunos ejemplos

Vamos a aplicar lo visto hasta ahora con unos ejemplos. Primero empezaremos con la representación
de grupos abelianos, aunque antes necesitaremos demostrar un teorema sobre las matrices que conmutan.

Teorema 1.15. [5] Sean A, B matrices cuadradas diagonalizables de dimensión n. Entonces A y B
conmutan si y solo si ∃S invertible tal que S−1AS y S−1BS son diagonales.

Demostración. Si A y B conmutan, consideramos la matriz invertible Q tal que Q−1AQ es diagonal con
los valores propios ordenados por bloques, es decir, sean λ1, ...,λd los valores propios sin repetir y Ini

matrices identidad de dimensión ni, siendo ni la multiplicidad de λi:

DA = Q−1AQ =


λ1In1 0

λ2In2

. . .
0 λdInd


Entendemos DA como una matriz por bloques DA = [Di j]

d
i, j=1 con Di j = 0 si i ̸= j; y Dii = λiIni . Parti-

cionamos Q−1BQ = [Bi j]
d
i, j=1 conforme a la estructura de DA

BQ = Q−1BQ =


B11 B1d

B22
. . .

Bd1 Bdd

 .

Entonces, DA y BQ conmutan, ya que

DABQ = Q−1AQQ−1BQ = Q−1ABQ = Q−1BAQ = Q−1BQQ−1AQ = BQDA.

Esto ocurre si y solo si λiBi j = Bi jλ j para cada i, j = 1, . . . ,d, es decir, (λi − λ j)Bi j = 0 para cada
i, j = 1, . . . ,s. Estas identidades se satisfacen si y solo si Bi j = 0 siempre que i ̸= j. Así, DA conmuta
con BQ si y solo si BQ es diagonal por bloques conforme a DA.
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Como B y BQ son matrices semejantes, BQ es diagonalizable, y teniendo en cuanta la forma de BQ

deducimos que existe una matriz T de la siguiente forma:

T =


T1 0

T2
. . .

0 Td


tal que T−1BQT es diagonal. Además, T−1

i λiIniTi = λiIni , entonces, T−1DAT = DA y T−1BQT son ambas
diagonales. Así que construimos S = QT y tenemos que S−1AS y S−1BS son diagonales.
El recíproco es sencillo ya que viene dado por que si DA = S−1AS y DB = S−1BS son diagonales, enton-
ces:

AB = SDADBS−1 = SDBDAS−1 = SDBS−1SDAS−1 = BA.

Es decir, A y B conmutan.

Ejemplo 1.16. Si tomamos un grupo abeliano G, para h,g ∈ G y v ∈V con una representación ρ : G →
GL(V ), se tiene que ρ(hg)(v) = ρ(gh)(v). Entonces sucede que, obviando ρ en h,

h ·ρ(g)(v) = ρ(g)(hv),

es decir, ρ es una aplicación G-lineal. Si V es irreducible, por el Lema de Schur todo elemento de G
actúa como el producto por un escalar. Por tanto, todo subespacio de V es invariante, lo que implica que
V tiene que tener dimensión 1.
Por ejemplo, para un grupo cíclico Cn =< g > con una representación ρCn : Cn → V se tiene que
ρCn(g)

n = Iv con IV la identidad en V . Entonces los valores propios son raíces n-ésimas de la unidad
y como vimos en el Lema 1.12, ρCn

(g) es diagonalizable, luego si k es la dimensión de V existe una base
de vectores propios v1, ...,vk tal que V = ⊕k

i=1Vi con Vi =< vi >. Concluímos que como ρCn(g) actúa
como la multiplicación por un escalar, todos los < vi > son módulos irreducibles.
Ahora, de manera más general, consideramos un grupo abeliano finito A que sea isomorfo al produc-
to directo de un numero r grupos cíclicos de orden m1, ...,mr tales que A ∼= Cm1 × . . .×Cmr =< g1 >
× . . .×< gr > (se puede demostrar que sucede para todos los grupos abelianos [2]). Sea ρ : A → GL(V ),
esto quiere decir que, la imagen de la representación está generada por ρ(g1), ...,ρ(gr) entonces para un
v ∈V y un g = gd1

1 gd2
2 . . .gdr

r :
ρ(g)(v) = ρ(g1)

d1 ...ρ(gr)
dr(v)

Como las matrices ρ(gi) conmutan dos a dos, se puede reiterar el Teorema 1.15 que para deducir que
existe una base común de vectores propios s1, ...,sn ∈V con valores propios λi,1, ...,λi,n para cada ρ(gi).
Así que V =< s1 >⊕ . . .⊕< sr > y un vector cualquiera v ∈V puede ser descompuesto en v = v1+ ...+
vn con v j ∈< s j >. Entonces

ρ(g)(v) = ρ(g1)
d1 ...ρ(gr)

dr(v1 + ...+ vn) =
n

∑
j=1

(λ d1
1, j . . .λ

dr
r, j)v j

Para el siguiente ejemplo, consideramos el grupo no abeliano más pequeño, es decir, el grupo simé-
trico de grado 3, S3. Antes de adentrarnos en él, vamos a dar unas definiciones.

Definición 1.17. Sea G un grupo finito cualquiera y Sn el grupo simétrico de grado n:

a) La representación trivial ρU : G → GL(U) corresponde a ρU (g) = 1 ∀g ∈ G, es decir gv =
v ∀v ∈U . Por tanto, dimU = 1.

b) Para Sn, recordemos que cada g ∈ Sn se puede representar como un producto de trasposiciones,
por ejemplo, el ciclo (1234) ∈ S4 se puede poner como (12)(23)(34) y aunque esta expresión no
es única, se puede demostrar que su paridad sí que lo es. Si un elemento g ∈ Sn es el producto de
k trasposiciones, la signatura de g o sgn(g) corresponde a (−1)k+1. Entonces, la representacion
alternada ρ

U ′ : Sn → GL(U ′) corresponde a ρ ′
U
(g) = sgn(g), es decir, gv = sgn(g)v ∀g ∈ Sn.
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c) Dado un conjunto finito X donde G actúa por la izquierda, la representación por permutaciones
asociada es una representación cuyo módulo es un espacio vectorial con base {ex|x ∈ X} donde
g ∈ G actúa en V como

g · ∑
x∈X

axex = ∑
x∈X

axeg·x

Para G = Sn, la representación por permutaciones asociada a la acción en X = {1,2, ...,n} actúa
en Cn, con base {ek| k = 1, ...,n}, como

g ·
n

∑
k=1

ckek =
n

∑
k=1

cxeg·x

con ck ∈ C. Aquí podemos ver que el espacio U generado por ∑
n
k=1 ek es invariante por Sn. Vamos

a considerar el módulo siguiente, que es un complementario de U con dimV = n−1

V = {
n

∑
k=1

ckek |
n

∑
k=1

ck = 0}.

Es fácil ver que V es un G-módulo. A la representación le llamamos representación estándar

d) Llamamos representación regular RG a la dada por la acción por permutaciones de G en sí mismo,
es decir, es una representación por permutaciones con X = G. Así, un elemento h ∈ G actúa como

h · ∑
g∈G

ageg = ∑
g∈G

aghehg

con ag ∈ C.

La representación regular está estrechamente relacionada con el concepto de álgebra de grupo.

Definición 1.18. Un álgebra grupo, CG, es una estructura algebraica cuyos elementos son de la forma
∑g∈G agg con ag ∈ C y g ∈ G. Un álgebra de grupo es un espacio vectorial con suma y producto por
escalar y con una operación producto entre los vectores, que se obtiene extendiendo por linealidad el
producto de G, es decir:

(∑
g∈G

agg) · (∑
g∈G

bgg) = ∑
x∈G

( ∑
gh=x

agbh)x

Dado un G-módulo W con representación asociada ρ : G → GL(W ), ρ se puede extender de manera
natural por linealidad a una aplicación ρ̃ : CG → End(W ), en este caso también diremos qie W es un
CG-módulo.

Ejemplo 1.19. Veamos explícitamente como es la representación por permutaciones asociada a la acción
del grupo S3 en el conjunto X = {1,2,3}. Definimos una base e1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1).
Entonces, definimos para g ∈ S3 ρ(g) como las matrices que permutan los índices, es decir, por ejemplo:

ρ((1 2)) =

0 1 0
1 0 0
0 0 1

 ; ρ((3 2 1))

0 1 0
0 0 1
1 0 0

 ;

Ejemplo 1.20. Consideramos ahora el módulo RG asociado a la representación regular de S3. A cada
elemento g del grupo le asignamos un vector eg ∈ C6, 6 en este caso porque es el número de elementos
de S3:

e1 =



1
0
0
0
0
0

 , e(1 2) =



0
1
0
0
0
0

 , e(1 3) =



0
0
1
0
0
0

 , e(2 3) =



0
0
0
1
0
0

 , e(1 2 3) =



0
0
0
0
1
0

 , e(3 2 1) =



0
0
0
0
0
1

 .



Caracteres de los grupos simétricos - Juan Carlos Graus Laporta 9

Habiendo definido así los vectores, podemos definir la representación ρR fijándonos en como actúa cada
elemento del grupo en los demás. Por ejemplo, el elemento g = (1 3) actúa por la izquierda sobre los
elementos de esta base de la siguiente manera:

e1 7→ e(13)

e(12) 7→ e(123)

e(13) 7→ e1

e(23) 7→ e(321)

e(123) 7→ e(12)

e(321) 7→ e(23)

Entonces:

ρR(1 3) =



0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0


Ya definidos estos conceptos, podemos pasar ya a sacar los módulos irreducibles de S3. En el siguien-

te capítulo veremos un procedimiento más sencillo para hacerlo, pero ahora vamos a hacerlo de manera
"manual"para poner en práctica todo lo que hemos visto hasta ahora.

Ejemplo 1.21. Para G = S3 vamos a usar como notación S3 = {1,σ ,σ2,τ1,τ2,τ3} donde σ = (1 2 3),
τ1 = (1 2), τ2 = (2 3) y τ3 = (3 1). Sea W un módulo de S3 con representación ρ : S3 → GL(W ), primero
queremos ver cómo C3 =< σ >⊂ S3 actúa en W , ya que como vimos en el Ejemplo 1.16, para una
representación de un grupo cíclico, en este caso C3, podemos considerar una base de vectores propios vi

tales que σvi = ωaivi con ω = e2πi/3 raíz tercera de la unidad y ai = 1,2 o 3. Entonces,

W =⊕Vi, donde Vi =< vi >

Tomamos la trasposición τ . A través de la relación στ = τσ2 se tiene que

σ(τ(vi)) = τ(σ2(vi)) = τ(ω2ai(vi)) = ω
2aiτ(vi)

Es decir, τ(vi) es vector propio de σ con valor propio ω2ai .

- Si ωai ̸= 1, entonces ωai ̸= ω2ai por tanto vi y τ(vi) tienen respecto a σ valores propios distintos y
generan un espacio vectorial de dimensión 2. Queremos ver que V =< vi,τ(vi)> es G-invariante.
Como σ y τ generan G, es suficiente ver que es invariante para estos 2 elementos.

Para eso, sea λvi +µτ(vi) ∈V ,

{
σ(λvi +µτ(vi)) = ω

aiλvi +ω
2ai µτ(vi) ∈V

τ(λvi +µτ(vi)) = λτ(vi)+µvi ∈V

Además,es fácil ver que V es G-isomorfo al módulo estándar definido en la Definición 1.17.

- Si ωai = 1, es decir, σ(v) = v y σ(τ(v)) = τ(v):

· Puede suceder que τ(v) = v, si nos fijamos ρ(σ)(v) = ρ(τ)(v) = v, entonces v genera un
submódulo U isomorfo al trivial. Tambien puede suceder que τ(v) = −v, entonces ρ(g) =
sgn(g) ∀g ∈ S3 lo que implica que v genera un módulo U ′ isomorfo al alternado.
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· También puede suceder que τ(v) y v sean independientes, en ese caso:

{
σ(v+ τ(v)) = v+ τ(v)
τ(v+ τ(v)) = τ(v)+ v

=⇒< v+ τ(v)>∼=U (módulo trivial)

{
σ(v− τ(v)) = v− τ(v)
τ(v− τ(v)) =−(v− τ(v))

=⇒< v− τ(v)>∼=U ′ (módulo alternado)

Así, hemos visto que todo módulo tiene un submódulo isomorfo o bien al módulo trivial, o bien al alter-
nado, o bien al estándar. Además, sabemos que estos tres módulos son irreducibles, así que de lo anterior
es fácil deducir que estas tres son las únicas representaciones irreducibles de S3 salvo isomorfismo. Para
un módulo W de S3, usando la Proposición 1.14

W =U⊕a ⊕U ′⊕b ⊕V⊕c

Donde a, b y c son las respectivas multiplicidades.

Ejemplo 1.22. Cojamos el ejemplo del módulo regular RG con G= S3, es decir, RG es el espacio vectorial
que tiene de base los elementos de S3. Recapitulando el proceso anterior:

- Los vectores propios de σ son: con valor propio 1, v = 1+σ +σ2 y v′ = τ3 + τ2 + τ1; con valor
propio ω = e2πi, v1 = ω2+ωσ +σ2 y v′2 = τ1+ωτ2+ω2τ3; y con valor propio ω2, v2 = ω2σ2+
ωσ +1 y v′1 = ω2τ1 +ωτ2 + τ3.
Finalmente,

RG =< v >⊕< v′ >⊕< v1 >⊕< v′1 >⊕< v2 >⊕< v′2 >

- v1 y v2 no tienen valor propio 1 y vemos que v′1 = τ(v1) y v′2 = τ(v2), entonces si ponemos Vi =<
vi,v′i > para i = 1,2, V1 y V2 son ambos isomorfos a la representación estándar.

- v y v′ tienen valor propio 1, pero τ(v) = v′ ̸= v. Entonces, < v+v′ >∼=U (trivial) y < v−v′ >∼=U ′

(alternada).

Entonces,
RG =U ⊕U ′⊕V⊕2



Capítulo 2

Teoría de caracteres

2.1. Caracter de una representación

Como hemos visto en el Ejemplo 1.21 y el Ejemplo 1.22, saber los valores propios de los elementos
σ y τ ∈ S3 es crucial para describir cualquier representación de S3. Para un grupo arbitrario G no es tan
fácil saber qué subgrupos y/o elementos juegan el papel de C3,σ y τ . Esto sugiere que saber todos los va-
lores propios{λi} de cada g ∈ G basta para poder describir un módulo. Como para gk los valores propios
son {λ k

i }, podemos ahorrarnos muchos cálculos, puesto que bastaría con saber la suma de los valores
propios de los elementos de G. Aquí es donde introducimos el concepto de carácter de un módulo.

Definición 2.1. Sea V un módulo de un grupo finito G con representación asociada ρ : G → GL(V ),
definimos su carácter χV como la función:

χV : G → C
g 7→ Tr(ρ(g))

Es decir, a cada elemento g le asignamos la traza de ρV (g), que corresponde a la suma de sus valores
propios. Este valor está bien definido puesto que las matrices de una aplicación con distintas bases tienen
la misma traza. Además, χV se mantiene constante en las clases de conjugación de G. Recordemos que la
clase de conjugación de un elemento g∈G es el conjunto [g] = {h∈G| ∃ f ∈G tal que f h f−1 = g}.
Sean h,g ∈ G, utilizando que ρ es un homorfismo y propiedades de la traza:

χV (hgh−1) = Tr(ρ(hgh−1)) = Tr(ρ(h)ρ(g)ρ(h)−1) = Tr(ρ(g)) = χV (g).

Las funciones que cumplen esta propiedad se denominan funciones de clase. Una característica intere-
sante de esta función es que χV (1) = Tr(IV ) = dimV , donde IV es la idenidad en V .

Proposición 2.2. Sean V y W G-módulos de las representaciones ρV y ρW , respectivamente.

i) χV⊕W = χV +χW

ii) χV⊗W = χV ·χW

iii) χV ∗ = χV , siendo este su conjugado complejo.

iv) Para g ∈ G, χ∧2V (g) =
1
2

(
χ2

V (g)−χV (g
2)
)

Demostración. Fijamos un g ∈ G tal que los valores propios de ρV (g) son {λi} y los de ρW (g) son {µ j}
y sus respectivas bases de vectores propios son {vi ∈ I} de V y {w j| j ∈ J} de W .

(i) Consideramos ρV⊕W (g) definido en la Proposición 1.8, sus vectores propios son (vi,0) y (0,w j),
entonces sus valores propios son {λi}∪ {µ j}. Así que χV⊕W (g) = ∑{λi}∪ {µ j} = ∑{λi}+∑{µ j} =
χV (g)+χW (g).

11
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(ii) Para ρV⊕W (g) como está definido en la Definición 1.4, {vi⊗w j} es una base de vectores propios de
V ⊗W . Entonces tenemos que ρV⊗W (g)(vi⊗w j) = ρV (g)(vi)⊗ρW (g)(w j) = λivi⊗µ jw j = λiµ j(vi⊗w j).
Por tanto, χV⊗W (g) = ∑i, j λiµ j = (∑λi)(∑ µ j) = χV (g) ·χW (g).

(iii) Para el dual V ∗, vimos en la Proposición 1.8. que el homomorfismo que definía a la represen-
tación era ρV∗ = ρ(g−1)T . Como los valores propios de ρ(g)−1 son {λ

−1
i } y los valores de ρV (g) son

raíces de la unidad, se tiene que {λ
−1
i }= {λi}. Así que χV ∗(g) = ∑λ

−1
i = ∑λi = ∑λi = χV (g).

(iv) Recordemos que ∧2V es el cociente de V por el subespacio generado por {u⊗ u|u ∈ V}. Esto,
entre otras cosas, implica que si la base en V ⊗V de vectores propios es {vi ⊗ vk|i,k ∈ I}, entonces la
base en el cociente se reduce a {vi ⊗ vk|i < k} y los vectores propios son {λi ·λk|i < k} ya que

vk ⊗ vi = (vk + vi)⊗ (vk + vi)− vk ⊗ vk − vi ⊗ vi − vi ⊗ vk,

entonces, en el cociente vk ∧ vi =−vk ∧ vi. Por tanto:

χ∧2V (g) = ∑
i<k

λiλk =
1
2
((∑λi)

2 −∑λ
2
i ) =

1
2
(χ2

V (g)−χV (g
2))

Como el carácter es una función de clase, podemos interpretarlo con una función en el conjunto de
las clases de conjugación de G. Esto nos permite resumir la información básica sobre los caracteres en
una tabla a la que llamaremos tabla de caracteres. Una tabla de caracteres tiene en la parte superior
las clases de conjugación de G (normalmente representadas por un representante de la clase [g]), a la
izquierda tiene las representaciones irreducibles Vi de G y en la celda (Vi, [g]) el correspondiente valor
del carácter χVi

(g). También añadimos cuántos elementos hay en cada clase de conjugación encima de
cada [g]. Vamos a explicarlo mejor con el siguiente ejemplo.

Ejemplo 2.3 (Tabla de carácteres de S3). Las clases de conjugación de S3 vienen dadas por [1], [σ ], [τ]
(utilizando la notación del Ejemplo 1.21). Para las filas, recordamos que las representaciones irreducibles
de S3 son la trivial U , la alternada U ′ y la estándar V . Como se vio en la Definición 2.1, el carácter de
cualquier representación en el elemento neutro corresponde a su dimensión, entonces:

χU(1) = χ
U ′ (1) = 1 y χV (1) = 2

Como U tiene dimensión 1, Tr(ρU (g)) = ρU (g), lo mismo ocurre para U ′. Entonces para [1], [τ =
(12)], [σ = (123)], los caracteres de U y U ′ son

χU([1]) = χU([σ ]) = χU([τ]) = 1

y
χU ′([1]) = χU ′([σ ]) = 1; χU ′([τ]) =−1

Para resumir esto ponemos
χU = (1,1,1) y χ

′
U = (1,−1,1)

Esta información correspondería a la primera y segunda fila de la tabla:

Clases de conjugación de S3 [1] [(1 2)] [(1 2 3)]
representación trivial U 1 1 1

representación alternada U ′ 1 -1 1

Ahora falta computar los valores del carácter de V . Como vimos en la Definición 1.12, para n = 3
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podemos utilizar la representación por permutaciones sobre una base de C3 y podemos descompo-
nerlo en un submódulo isomorfo al trivial más el módulo estándar V que tiene dimensión 2, es decir,
C3 = U ⊕V . Sabemos por la Proposición 2.2 que el carácter de la suma directa de dos representa-
ciones es la suma de los caracteres, con esto vemos que χC3 = χU + χV . En C3, podemos utilizar la
representación por permutaciones como hicimos en el Ejemplo 1.19. Es fácil ver, que la traza es bási-
camente el número de elementos fijos por la acción de cada ρ(g), entonces sabemos que χC3([1]) = 3,
χC3([σ ]) = 0 y χC3([σ ]) = 1. Por lo tanto, χC3 = (3,1,0). Con toda esta información deducimos que
χV = χC3 −χU = (3,1,0)− (1,1,1) = (2,0,−1), y lo colocamos en la última fila.

Clases de conjugación de S3 [1] [(1 2)] [(1 2 3)]
representación trivial U 1 1 1

representación alternada U ′ 1 -1 1
representación estándar V 2 0 -1

Para acabar de sintetizar toda la información y para más adelante, colocamos el número de elemen-
tos de cada clase encima del representante. La tabla de caracteres de S3 completa quedaría así:

(Número de elementos por clase) 1 3 2
Clases de conjugación de S3 [1] [(1 2)] [(1 2 3)]

representación trivial U 1 1 1
representación alternada U ′ 1 -1 1
representación estándar V 2 0 -1

Como vimos en el Ejemplo 1.21, para un módulo arbitrario W de S3 se tiene que W ∼=U⊕a ⊕U ′⊕b ⊕
V⊕c, entonces χW = aχU +bχ

U ′ +cχV . Como podemos ver en la tabla anterior, entendiendo los caracteres
como vectores, χU ,χU ′ y χV son linealmente independientes; entonces, cualquier representación W viene
determinada por su carácter obteniendo a,b y c.

Ejemplo 2.4. Vamos a calcular la descomposición del módulo V⊗3. Su caracter por la Proposición 2.2
viene dado por χV⊗3(g) = (χV )

3(g), es decir, es (8,0,−1) y además χV⊗3 = aχU +bχ
U ′ + cχV . Podemos

calcular a,b y c resolviendo el siguiente sistema de ecuaciones:
a+b+2c = 8
a−b = 0
a+b− c =−1

El resultado es a = 1,b = 1,c = 3, es decir, V⊗3 =U ⊕U ′⊕V⊕3.

2.2. Ortogonalidad de los caracteres

Estos resultados nos inspiran a preguntarnos, ¿se puede seguir este razonamiento con todos los gru-
pos?¿Cuántas representaciones irreducibles hay para un grupo arbitrario G? ¿Las tablas de caracteres de
otros grupos se portan “igual de bien”que la de S3? Para contestar a estas preguntas tenemos que intro-
ducir primero algunos resultados.

Para S3, tenemos que los caracteres entendidos como vectores, es decir, en la tabla del Ejemplo 2.3,
χU = (1,1,1), χU = (1,−1,1) y χV = (2,0,−1) son linealmente independientes. Después de demostrar
una característica de las proyecciones que necesitaremos, vamos a ver un resultado que nos lo asegura
para el caso general.



14 Capítulo 2. Teoría de caracteres

Lema 2.5. Sea ψ una proyección de un espacio vectorial V de dimensión n a un subespacio W de
dimensión m, es decir, un operador lineal ψ : V →V que cumple que Imψ =W y ψ ◦ψ = ψ . Entonces
la traza de la matriz asociada a ψ en cualquier base es igual a la dimensión de W.

Demostración. Sea A la matriz que define a φ , tenemos que cumple la ecuación X2 = X , es decir,
X(X − 1) = 0. El polinomio mínimo de A divide a este polinomio, luego tiene 1 y 0 como raíces con
multiplicidad 1. Por tanto, de manera similar a como vimos en el Lema 1.12, la forma canónica de
Jordan es una matriz diagonal con ceros y unos en la diagonal. Por tanto, el rango es el número de com-
ponentes no nulas de la diagonal, que en este caso, coincide con la traza. Como el rango es igual a la
dimensión de la imagen, dimW = Tr(A)

Proposición 2.6. Sea G un grupo finito y sea Cclass(G)= {funciones de clase complejas de G} definimos
un producto Hermitiano en Cclass(G) de la siguiente manera:

< α,β >G=
1
|G| ∑

g∈G
α(g)β (g)

donde α,β ∈Cclass(G). Entonces, en términos de este producto Hermitiano, los carácteres de las repre-
sentaciones irreducibles de G son ortonormales.

Demostración. Primero, es fácil ver que < ·, ·>G es un producto interno Hermitiano. Para un módulo V
consideramos el elemento,

α =
1
|G| ∑

g∈G
g

y el endomorfismo ψ : V →V dado por φ(v) = αv. Primero queremos ver que φ es una proyección de V
sobre V G := {v ∈V |gv = v ∀g ∈ G}, así que tomamos un v = φ(w) ∈ Imφ y vemos que para cualquier
h ∈ G

hv = hφ(w) =
1
|G| ∑

g∈G
hgw =

1
|G| ∑

g∈G
gw = v =⇒ v ∈V G

De aquí obtenemos que Imφ ⊂V G. Recíprocamente, si v ∈V G

φ(v) =
1
|G| ∑

g∈G
gv =

1
|G| ∑

g∈G
v = v =⇒ v ∈ Imφ

Además, también se ve que φ ◦φ = φ . Como es una proyección, la dimensión de la imagen de φ es su
traza, como vimos en el Lema 2.5. Es decir, dimV G = Tr(φ). Como la traza es lineal,

dimV G =
1
|G| ∑

g∈G
Tr(ρV (g)) =

1
|G| ∑

g∈G
χV (g)

Si la representación es la trivial, UG = U por tanto 1
|G| ∑g∈G χU (g) = 1. Para cualquier representación

irreducible distinta de la trivial V G = {0}, ya que V G es un submódulo de V , entonces 1
|G| ∑g∈G χV (g) = 0.

La clave ahora es usar como representación Hom(V,W ), para representaciones irreducibles V y W ,
que es un módulo según la Proposición 1.8. Consideramos HomG(V,W ) := {ψ ∈ Hom(V,W )|gψ(v) =
ψ(gv) ∀v ∈ V}. Como se vio en el Lema de Schur (Lema 1.13), si V ∼= W , entonces, cualquier apli-
cación G-lineal es la identidad por un escalar. Por tanto, Hom(V,W )G = C con la acción trivial y en-
tonces dim[HomG(V,W )] = 1. También por el Lema de Schur, si V ̸∼= W , entonces HomG(V,W ) = 0 y
dim[HomG(V,W )] = 0. Resumiendo,

dim[HomG(V,W )] =

{
0 si V ̸∼=W
1 si V ∼=W
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Como vimos en la Proposición 1.6, Hom(V,W )∼=V ∗⊗W y aplicando la Proposición 2.2

dim[HomG(V,W )] =
1
|G| ∑

g∈G
χHom(V,W )

(g) =
1
|G| ∑

g∈G
χV∗⊗W (g) =

1
|G| ∑

g∈G
χV χW (g)

Es decir,

< χV ,χW >G =

{
0 si V ̸∼=W
1 si V ∼=W

Con lo que concluimos que, bajo este producto hermitiano, los caracteres de las representaciones irredu-
cibles de G son ortonormales.

Ahora vamos a ver una serie de corolarios que derivan de este resultado.

Corolario 2.7. El número de representaciones irreducibles es menor o igual que el número de clases de
conjugación.

Demostración. Un grupo finito G tiene un número finito m de clases de conjugación. Si entendemos
los caracteres de las representaciones irreducibles Vi como vectores χVi

= (χVi
([gk]))

m
k=1, al igual que en

el Ejemplo 2.3, al ser ortogonales por la proposición anterior, son vectores linealmente independientes
dentro de Cm y como mucho puede haber m vectores.

Corolario 2.8. Cualquier representación viene determinada por su carácter.

Demostración. Por la Proposición 1.14, un módulo arbitrario V se puede descomponer de manera única
en V⊕a1

1 ⊕ . . .⊕V⊕ak
k , con los Vi las representaciones irreducibles del grupo. Entonces χV = χ

V
⊕a1
1 ⊕...⊕V

⊕ak
k

=

∑
k
i=1 aiχVi

. Como los caracteres son linealmente independientes y k ≤ m sabiendo χV podemos obtener
los ai. Además, por el Corolario 2.8 se deduce que < χV ,χVi

>G= ai.

Corolario 2.9. Un módulo es irreducible ⇐⇒ < χV ,χV >G= 1.

Demostración. Por la Proposición 1.14, un módulo arbitrario V se puede descomponer de manera única
en V⊕a1

1 ⊕ . . .⊕V⊕ak
k . Entonces χV (g) = ∑

k
i=1 aiχVi

(g) ∀g ∈ G. Así que,

< χV ,χV >G=
1
|G| ∑

g∈G
χV (g)χV (g) =

1
|G| ∑

g∈G

(
k

∑
i=1

aiχVi
(g)

k

∑
j=1

a jχVj
(g)

)
=

=
1
|G| ∑

g∈G

k

∑
i=1

k

∑
j=1

(ai)
2
χVi

(g)χVj
(g) =

k

∑
i=1

k

∑
j=1

(ai)
2 < χVi

,χVj
>G

y como < χVi
,χVj

>G= 0 cuando i ̸= j, entonces

< χV ,χV >G=
k

∑
i=1

(ai)
2 < χVi

,χVi
>G

y como los Vi son irreducibles, por el Corolario 2.9, < χVi
,χVi

>G= 1, entonces < χV ,χV >G= ∑
k
i=1(ai)

2.
Por tanto, si < χV ,χV >G= 1, se tiene que ∑

k
i=1(ai)

2 = 1 y como las ai son números enteros, se tiene
que ∃al tal que al = 1 y ai = 0 ∀i ̸= l. Así que V ∼= Vl y como Vl es irreducible, se tiene que V es
irreducible.

Corolario 2.10. Cualquier módulo irreducible V de G aparece en la representación regular RG tantas
veces como su dimensión.
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Demostración. Sabemos que la representación regular RG es una representación por permutaciones don-
de G actúa en sí mismo. Como vimos en el Ejemplo 1.20, para un g ∈ G, ρR(g) corresponde a una matriz
que lleva eh a egh, por tanto:

χR(g) = Tr(ρR(g)) =

{
0 si g ̸= 1
|G| si g = 1

Entonces, si descomponemos RG en módulos irreducibles RG =⊕k
j=1V⊕a j

j , podemos ver que, fijando un
Vi irreducible:

< χVi ,χR >G=
1
|G| ∑

g∈G
χVi(g)χR(g) =

1
|G| ∑

g∈G
χVi(g)

k

∑
j=1

a jχVj
(g) =

=
k

∑
j=1

a j

|G| ∑
g∈G

χVi(g)χVj
(g) =

k

∑
j=1

a j < χVi ,χVj >G= ai

Entonces,

ai =< χVi ,χR >G=
1
|G| ∑

g∈G
χVi(g)χR(g) =

1
|G|

χVi(1)|G|= dimVi

Además, como dimRG = |G|, obtenemos como consecuencia que

|G|=
k

∑
i=1

aidimVi =
k

∑
i=1

(dimVi)
2

Nuestra misión ahora es demostrar que el número de clases de conjugación y el número de módulos
irreducibles son, efectivamente, el mismo. Para ello necesitaremos primero ver este resultado.

Proposición 2.11. Sea α : G → C cualquier aplicación y dada una representación ρ con módulo V de
G consideramos

φα,V = ∑
g∈G

α(g) ·ρ(g) : V →V.

Entonces φα,V es G-lineal para todo V si y solo si α es una función de clase.

Demostración. Para ver que φα,V es G-lineal, para un h ∈ G y v ∈V se tiene:

φα,V (hv) = ∑
g∈G

α(g)g(hv),

como g recorre todos los elementos de G, podemos poner

φα,V (hv) = ∑
hgh−1∈G

α(hgh−1)hgh−1(hv) = h · ∑
hgh−1∈G

α(hgh−1)gv

Si α es una función de clase esto es igual a

h · ∑
hgh−1∈G

α(g)gv = hφα,V (v).

Luego φ es G-lineal. Recíprocamente, si α no es una función de clase, consideramos la representación
regular RG, por ejemplo, en la que el módulo es V = CG. Entonces para que φα,V sea G-lineal tendría
que suceder que, ∀v ∈V y ∀h ∈ G

φα,V (hv) = hφα,V (v),
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en particular, φα,V (h) = hφα,V (1). Es decir,

∑
g∈G

α(g)gh = h · ∑
g∈G

α(g)g = ∑
g∈G

α(g)hg

Hacemos la sustitución en la primera parte de la igualdad como hemos hecho antes,

∑
g∈G

α(hgh−1)hgh−1h = ∑
g∈G

α(hgh−1)hg = ∑
g∈G

α(g)hg

Ahora pasamos todo a un lado de la igualdad y agrupamos los sumandos:

∑
g∈G

(α(hgh−1)−α(g))hg = 0

Pero fijando h, los elementos hg con g ∈ G recorren todos los elementos de g que son base de V =CG, es
decir, forman una familia libre. Por tanto, tiene que ser cero todos los coeficientes de cada gh, entonces

(α(hgh−1)−α(g)) = 0 ∀g ∈ G.

Pero eso no ocurre puesto que hemos supuesto que α no es una función de clase.

Proposición 2.12. El número de módulos irreducibles de G es igual al número de clases de con-
jugación de G. Equivalentemente, sus caracteres {χVi

} forman una base ortonormal de Cclass(G) =
{funciones de clase complejas de G}.

Demostración. Supongamos que α : G → C es una función de clase que cumple que < α,χV >G=
0 para todos los módulos V correspondientes a representaciones irreducibles de G. Consideramos un
endomorfismo como el de la proposición anterior:

φα,V = ∑
g∈G

α(g) ·ρ(g) : V →V.

Como vimos, como α es una función de clase, φα,V es una aplicación G-lineal. Por el Lema de Schur,
como va de una representación irreducible en sí misma, φα,V = λ ·In, con In la identidad en V y n= dimV ,
entonces:

Tr(φα,V ) = Tr(λ · In) = nλ̇ .

Así que,

λ =
1
n
·Tr(φα,V ) =

1
n
· ∑

g∈G
α(g)Tr(ρ(g)) =

1
n
· ∑

g∈G
α(g)χV

Recordemos que < α,χV >G=
1
|G| ∑g∈G α(g)χV (g) y que χV∗ = χ

V
, lo que implica que χV = χ ∗

V
. Enton-

ces:

∑
g∈G

α(g)χV = ∑
g∈G

α(g)χ
V∗ = |G|( 1

|G| ∑
g∈G

α(g)χV∗ (g)) = |G|< α,χV∗ >G .

Por tanto,

λ =
|G|
n
·< α,χV∗ >G

Para ver si V ∗ es irreducible, usamos el Corolario 2.9, que dice que es irreducible si y solo si <
χV∗ ,χV∗ >G= 1. Entonces, como V es irreducible, tenemos que

< χV∗ ,χV∗ >G=
1
|G| ∑

g∈G
χV∗ (g)χV∗ (g) =

1
|G| ∑

g∈G
χV (g)χV (g) =

1
|G| ∑

g∈G
χV (g)χV (g) =< χV ,χV >G = 1 = 1
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Por tanto, V ∗ es irreducible, así que la hipótesis en α implica que λ =< α,χV∗ >G= 0. Luego, φα,V = 0.
Ahora, consideramos V = CG con la representación regular. Como CG es suma directa de módulos
irreducibles, podemos deducir que también φα,V = 0 y repitiendo el razonamiento de la proposición
anterior, eso implica que α = 0 ∀g ∈ G. Sea ahora α una función de clase arbitraria. Ponemos

β =
k

∑
Vi

< α,χV∗ >G χVi
.

Por la ortogonalidad de los χV respecto a < ·, ·>G tenemos

< β ,χV∗ >G=< α,χV∗ >G,

luego ∀V irreducible
< α −β ,χV∗ >G=< α,χV∗ >G −< β ,χV∗ >G= 0.

Por tanto, lo anterior implica que α −β = 0, es decir, α = β es una combinación lineal de los cacteres
irreducibles

Proposición 2.13. La ortogonalidad de las filas de la tabla de caracteres es equivalente a la ortogona-
lidad por columnas. Es decir, sean {Vi}k

i=1 los módulos de las representaciones irreducibles de un grupo
finito G y g,h elementos de G que no pertenecen a la misma clase de conjugación, entonces

k

∑
i=1

χVi(g)χVi
(h) = 0

y además
k

∑
i=1

χVi(g)χVi(g) =
|G|

c([g])

siendo c([g]) el número de elementos de [g].

Demostración. Sean [g j] con j = 1...k las clases de conjugación de G y {Vi}k
i=1 los módulos irreducibles.

Como sabemos por la Proposición 2.6:

< χVi1
,χVi2

>G=
1
|G| ∑

g∈G
χVi1

(g)χ
Vi2
(g) =

k

∑
j=1

c([g j])

|G|
χVi1

([g j])χVi2
([g j]) =

{
0 si i1 ̸= i2
1 si i1 = i2

Si llamamos T a la matriz de la tabla de caracteres, es decir Ti j = (χVi
([g j]))i j, entonces podemos poner

lo anterior en forma de matrices:

T DT ∗ = T


c([g1])
|G| 0

c([g2])
|G|

. . .

0 c([gk])
|G|

T ∗ = Ik,

donde estamos denotando T ∗ = T T . Ahora queremos ver qué nos da ∑
k
i=1 χVi([g j1 ])χVi

([g j2 ]). Esto es
básicamente, intercambiar las filas y las columnas de T . Puesto en forma de matrices, equivale a averiguar
T T (T T )∗. Así que,

T T (T T )∗ = T ∗T = (T D)−1T DT ∗T = (T D)−1IkT = D−1T−1T = D−1 =


|G|

c([g1])
0

|G|
c([g2])

. . .

0 |G|
c([gk])


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Por tanto,
k

∑
i=1

χVi(g)χVi(h) =

{ |G|
c([g]) si [g] = [h]

0 si [g] ̸= [h]

Ejemplo 2.14 (Tabla de caracteres de S4.). Ahora vamos a emplear todo lo que hemos aprendido para
completar la tabla de caracteres de S4. En este caso hay 5 clases de conjugación: [1], [(12)], [(123)],
[(1234)] y [(12)(34)] cada una con 1, 6, 8, 6 y 3 elementos respectivamente. Entonces, como hemos
visto en la Proposición 2.12, hay 5 representaciones irreducibles. Ya sabemos tres de ellas, ya que al
igual que en S3, tenemos la representación trivial U con carácter (1,1,1,1,1), la representación alternada
U ′ con carácter (1,−1,1,−1,1) y la estándar, que al igual que hicimos para obtenerla en la tabla de S3
(Ejemplo 2.3), en la representación por permutaciones en C4 tenemos que C4 =U ⊕V .

Entonces vamos a calcular los caracteres de cada una de las clases de conjugación de la representa-
ción por permutaciones sobre C4. Ya sabemos que χ

C4 ([1]) = dimC4 = 4, por otro lado, en el caso de
[(12)], corresponde a las permutaciones de dos elementos, es decir, matrices como por ejemplo

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,

cuya traza es claramente 2. Entonces en esta representación, la traza son los elementos que se quedan
fijos, por tanto χ

C4 = (4,2,1,0,0).
Así que la representación estándar tiene carácter χV = χ

C4 − χU = (4,2,1,0,0)− (1,1,1,1,1) =
(3,1,0,−1,−1) y como vimos en el Corolario 2.9, es irreducible puesto que ⟨χV ,χV ⟩= 1

24 ∑g∈G χV χV =
1
24(1 ·9+6 ·1+6 ·1+3 ·1) = 1. Así que podemos rellenar ya las tres primeras filas.

(Número de elementos por clase) 1 6 8 6 3
Clases de conjugación de S4 [1] [(1 2)] [(1 2 3)] [(1234)] [(12)(34)]

representación trivial U 1 1 1 1 1
representación alternada U ′ 1 -1 1 -1 1
representación estándar V 3 1 0 -1 -1

Para la siguiente fila, probamos V ′ = V ⊗U ′. Recordamos que ∀g ∈ G, χV⊕U ′(g) = χV (g)χU ′ (g). Así
que,

⟨χV⊕U ′ ,χV⊕U ′⟩= 1
24 ∑

g∈G
χV⊕U ′χV⊕U ′ =

1
24

(1 ·9+6 ·1+6 ·1+3 ·1) = 1.

Por tanto es irreducible, así que la tabla nos queda:

(Número de elementos por clase) 1 6 8 6 3
Clases de conjugación de S4 [1] [(1 2)] [(1 2 3)] [(1234)] [(12)(34)]

representación trivial U 1 1 1 1 1
representación alternada U ′ 1 -1 1 -1 1
representación estándar V 3 1 0 -1 -1

representación V ⊕U ′ 3 -1 0 1 -1

Para calcular la última fila, es decir, el carácter χW = (χ1, ...,χ5) del módulo desconocido irreducible
W , podemos usar la ortogonalidad por columnas descrita en el Proposición 2.13, es decir, que si [g] ̸= [h]
entonces ∑χ χ([g])χ([(h)]) = 0. Por ejemplo, para [g] = [1] y [h] = [(12)]:

∑
χ

χ([1])χ([(12)]) = 1−1+3−3+χ1χ2 = χ1χ2 = 0.
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Usando esta fórmula para todas las posibles parejas de clases de conjugación obtenemos que:

χ2χ3 = χ3χ4 = χ4χ5 = χ2χ4 = χ1χ4 = χ2χ5 = 0

y
χ1χ3 = χ3χ5 =−2; χ1χ5 = 4

De aquí es fácil sacar que χ2 = χ4 = 0 y como χ3 ̸= 0, χ1 = χ5. Con esta última igualdad, podemos decir
que |χ1| = |χ5| = 2 y |χ3| = 1. Como vimos en la Proposición 2.10, el orden del grupo es la suma de
los cuadrados de las dimensiones de los módulos irreducibles, que correponden al carácter en g = 1, por
tanto:

χW (1) =
√

24−χU(1)2 −χU ′(1)2 −χV (1)2 −χV⊗U ′(1)2 =
√

24−1−1−9−9 = 2

Así que χ1 = χ5 = 2 y χ3 =−1. Comprobamos que efectivamente es irreducible, viendo que < χW ,χW >G=
1 (Corolario 2.9)

< χW ,χW >G=
1
24

1 ·4+6 ·0+8 ·1+6 ·0+3 ·4 = 1

Por tanto, la tabla de caracteres de S4 nos quedaría de la siguiente manera:

(Número de elementos por clase) 1 6 8 6 3
Clases de conjugación de S4 [1] [(1 2)] [(1 2 3)] [(1234)] [(12)(34)]

representación trivial U 1 1 1 1 1
representación alternada U ′ 1 -1 1 -1 1
representación estándar V 3 1 0 -1 -1

representación V ⊕U ′ 3 -1 0 1 -1
representación W 2 0 -1 0 2



Capítulo 3

Representaciones de grupos simétricos

Ahora, vamos a centrarnos en las representaciones irreducibles de los grupos simétricos en general,
dado que, como hemos visto, el número de clases de conjugación corresponde a el número de represen-
taciones irreducibles y el número de clases de conjugación del grupo simétrico de orden d es fácil de
obtener, ya que corresponde al número de particiones de d. Vamos a aprovechar esta propiedad y ver qué
relación guarda con las representaciones irreducibles de Sd .

Teorema 3.1. Dos elementos de Sd pertenecen a la misma clase de conjugación si y solo si tienen la
mismo tipo de ciclos.

Demostración. Si dos g1,g2 ∈ Sd elementos tienen la misma estructura de ciclos, es decir, g1 =C1C2...Ck
y g2 = D1D2...Dk con C j = (ai1 . . .aidi

) y D j ciclos de la misma longitud y tanto los C j como los D j

son disjuntos dos a dos, podemos definir σ ∈ Sd que cumple que D j = (aσ(i1) . . .aσ(idi )
) ∀ j = 1, ...,k.

Entonces, es fácil de comprobar que

σ j(ai1 . . .aidi
)σ−1

j = (aσ j(i1) . . .aσ j(idi )
).

Por tanto, g2 = D1D2...Dk = (σC1σ−1) . . .(σCkσ−1) = σC1 . . .Ckσ−1 = σg1σ−1. Es decir, pertenecen
a la misma clase de conjugación. El recíproco es directo con la igualdad de arriba.

Entonces, cada clase de conjugación está unívocamente determinada por la estructura de ciclos de sus
elementos, es decir, por la manera en la manera en la que podemos agrupar los d elementos en ciclos. Por
tanto, hay tantas clases de conjugación como particiones de d. Para el resto del trabajo, a una partición
d = γ1 + . . .+ γk la denominaremos γ = (γ1, ...,γk) con γ1 ≥ . . .≥ γk ≥ 1. Por ejemplo, S3 tiene 3 clases
de conjugación y las particiones posibles de 3 son (1,1,1), (2,1) y (3).
Una herramienta muy útil para visualizar las particiones y que usaremos son los diagramas de Young.

Definición 3.2. Un diagrama de Young es una representación visual de una partición γ de un entero d en
la que si γ = (γ1, ...,γk), colocamos γi casillas en la fila i de manera decreciente. Por ejemplo, el diagrama
de Young de la partición γ = (3,2,2,1,1) de 9 sería:

γ = (3,2,2,1,1)

Si intercambiamos filas por columnas, obtenemos la partición conjugada γ ′. En este caso la partición
conjugada de (3,2,2,1,1,) sería

γ
′ = (5,3,1)

21
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Si numeramos las casillas con los números 1, ...,d de manera consecutiva, por ejemplo, obtenemos
una tabla de Young:

γ = (3,2,2,1,1) 1 2 3
4 5
6 7
8
9

A esta numeración en particular con los números consecutivos, que suele ser la habitual, se le conoce
como numeración estándar.

Aunque no parezca que estén relacionados, las tablas de Young nos pueden ayudar a definir una serie
de operadores que nos ayudarán a construir las representaciones irreducibles de Sd .

Definición 3.3. Dada una tabla de Young asociada a una partición γ de d con la numeración estándar,
definimos dos subgrupos

Pγ = {g ∈ Sd | g mantiene los números en cada fila}

y
Qγ = {g ∈ Sd | g mantiene los números en cada columna}.

Notemos que Pγ ∩Qγ = 1

Ejemplo 3.4. Por ejemplo, para S3 tomamos el diagrama de Young correspondiente a γ = (2,2,1) y
asignamos a las casillas los números en orden, es decir:

1 2
3 4
5

En este caso, los elementos que mantienen las filas son (1 2), (3 4) y (1 2)(3 4), entonces Pγ =
{1,(1 2),(3 4),(1 2)(3 4)}; por el contrario, los elementos que conservan las columnas son los que
permutan 1,3 y 5, y (2 4), por tanto Qγ = ⟨(1 3),(1 3 5),(2 4)⟩.

Definición 3.5. Ahora introducimos dos elementos del álgebra de grupo CSd (Definición 1.13) de la
siguiente manera:

aγ = ∑
g∈Pγ

eg y bγ = ∑
g∈Qγ

sgn(g)eg.

Y por último, llamamos simetrizador de Young de una partición γ a

cγ = aγ ·bγ ∈ CSd .

Ejemplo 3.6. Si consideramos S3 y tomamos la tabla de Young correspondiente a γ = (2,1) con la
numeración habitual, P(2,1) = {1,(1 2)} y Q(2,1) = {1,(1 3)} por tanto

a(2,1) = 1+ e(1 2) y b(2,1) = 1− e(1 3).

En el ejemplo anterior de γ = (2,1), se tiene que

c(2,1) = (1+ e(1 2))(1− e(1 3)) = 1+ e(1 2)− e(1 3)− e(1 2)(1 3).

Usando la notación como la de la representación regular del Ejemplo 1.20, podemos escribir los eg como
tuplas. Entonces, para γ = (3), P(3) = S3 y Q(3) = {1}, a(3) = (1,1,1,1,1,1) y b(3) = (1,0,0,0,0,0), por
tanto, c(3) = (1,1,1,1,1,1).
Para γ = (2,1), como en el ejemplo anterior, a(2,1) = (1,1,0,0,0,0) y b(2,1) = (1,0,1,0,0,0), por tanto,
c(2,1) = (1,1,−1,0,0,−1).

Para γ =(1,1,1), P(1,1,1)= {1} y Q(1,1,1)= S3, a(1,1,1)=(1,0,0,0,0,0) y b(1,1,1)=(1,−1,−1,−1,1,1),
por tanto, c(1,1,1) = (1,−1,−1,−1,1,1).
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Lema 3.7. Cada elemento de PγQγ se puede poner de única manera como p ∈ Pγ y q ∈ Pγ

Demostración. Si pq=p1q1 con p, p1 ∈ Pγ y q,q1 ∈ Qγ , p−1
1 p = q1q−1 ∈ Pγ ∩Qγ . Y como vimos en la

Definición 3.3, Pγ ∩Qγ = {1}, entonces p = p1, q = q1.

Lema 3.8. Sea T la tabla Young de partición γ (con cierta numeración) y sean Pγ , Qγ los subgrupos
asociados. Dado un g ∈ Sd , sean g(T ) la tabla de Young obtenida al aplicar la permutación g a las
entradas de T . Entonces, los subgrupos asociados a g(T ) son

gPγg−1 y gQγg−1

Demostración. Las filas de g(T ) son de la forma g(F) con F fila de T , luego

gPγg−1 ·g(F) = gPγ(F) = g(F).

Además, si H es subgrupo que cumple que Hg(F) = g(F) para toda fila F , se tiene

g−1Hg(F) = F, luego g−1Hg ≤ Pγ .

El resultado es análogo para Qγ es análogo.

Como demostraremos más adelante, si consideramos los cγ actuando por la derecha como una apli-
cación de CSd , su imagen Vγ corresponde a una representación irreducible. Es decir,

Vγ = CSd · cγ .

A partir de ahora denotaremos los elementos de la base de CSd igual que a los del grupo, es decir,
pondremos g en lugar de eg.

Ejemplo 3.9. Consideramos ahora Sd para la partición γ = (d). Como solo hay una fila, como hemos
visto en el ejemplo de S3, P(d) = Sd y Q(d) = {1}, por tanto, c(d) = ∑h∈Sd

h. Para todo g ∈ Sd

gc(d) = g ∑
h∈Sd

h = ∑
h∈Sd

gh = c(d)

Luego ∀v ∈V(d)

v = ( ∑
g∈Sd

ngg) · c(d) = ∑
g∈Sd

nggc(d) = ∑
g∈Sd

ngc(d) = ( ∑
g∈Sd

ng)c(d)

donde los ng ∈ C. Para ver que de representación se trata, hacemos que actúe un elemento x ∈ Sd :

x · v = x · ( ∑
g∈Sd

ng)c(d) = ( ∑
g∈Sd

ng)xc(d) = v

Puesto que xc(d) = c(d). Por tanto, V(d) corresponde a la representación trivial.
Ahora nos fijamos en que, para γ ′ = (1,1,1...,1), solo hay una columna, lo que significa que Q(d) = Sd
y P(d) = {1}. De manera similar a como hemos visto para S3, cγ ′ = ∑h∈Sd

sgn(h)h. Entoces, para todo
g ∈ G:

g · cγ ′ = g · ∑
h∈Sd

sgn(h)h = sgn(g) ∑
h∈Sd

sgn(g)sgn(h)gh = sgn(g)cγ ′ ,

ya que (sgn(g))2 = 1 y sgn(g)sgn(h) = sgn(gh). Por tanto, ∀v ∈Vγ ′ ,

v = ( ∑
g∈Sd

ngg) · cγ ′ = ∑
g∈Sd

nggcγ ′ = ( ∑
g∈Sd

ngsgn(g)) · cγ ′ .

Luego si hacemos actuar x ∈ Sd tenemos:

xv = ( ∑
g∈Sd

ngsgn(g)) · xcγ ′ = ( ∑
g∈Sd

ngsgn(g))sgn(x) · cγ ′ = sgn(x)v
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Por tanto, Vγ ′ corresponde a la representación alternada.
Ahora consideramos la partición γ = (d −1,1). Su tabla de Young consiste en una fila con los números
{1, . . . ,d − 1} y otra fila únicamente con la casilla {d}. Por tanto, Pγ está formado por los elementos
que dejan fijo d y por tanto Pγ

∼= Sd−1. Como sólo hay una columna {1,d} con más de un elemento,
tenemos que Qγ = 1−e(1 d). Entonces, para Vγ ′ =CSdcγ , existe una base v2, ...,vd con v j = ( j d) ·cγ para
j = 2, ...,d, donde se puede ver que [3][p. 518, ej. 4.4]:

v j = ( j d) · cγ = ( j d)( ∑
p(d)=d

p)(1− e(1 d)) = ∑
p(d)=d

( j d)p− ∑
p(d)=d

( j d)pe(1 d)) = ∑
g(d)= j

eg − ∑
h(1)= j

eh,

como la base tiene d −1 vectores, tenemos que dimVγ = d −1. Por último, nos damos cuenta que

d

∑
j=1

v j =
d

∑
j=1

( ∑
g(d)= j

g− ∑
h(1)= j

h) =
d

∑
j=1

∑
g(d)= j

g−
d

∑
j=1

∑
h(1)= j

h = ∑
g∈Sd

g− ∑
h∈Sd

h = 0

Vemos así que Vγ corresponde a la representación estándar. (Ejemplo 1.17)

Observación: Si T y T ′ son dos tablas de Young correspondientes a la misma partición γ pero con
distinta numeración, podemos encontrar g ∈ Sd con T ′ = g(T ). Entonces P′

γ = gPγg−1 y Q′
γ = gQγg−1.

Luego c′γ = gcγg−1 y de esto se deduce que

g : V ′
γ →Vγ

ac′γ 7→ ac′γg = agcγ

es un G-isomorfismo.
Hemos supuesto durante todo el trabajo que el módulo de la representación estándar de Sd es irreducible,
el siguiente teorema, junto con lo que hemos visto, nos asegura que todos los módulos contruidos de esta
forma son irreducibles.

Lema 3.10. Sea G = Sd y γ una partición dada. Como notación usaremos c := cγ . Entonces

i) Para todos los p ∈ Pγ , q ∈ Qγ , p · c · (sgn(q)q) = c, y, salvo multiplicación por un escalar, c es el único
elemento de este tipo en CSd [3][p. 53].

ii) Para cualquier a ∈ CG,cac = αc para algún α ∈ C.

iii) Si W es un subespacio invariante de CG, y W 2 = 0, entonces W = 0 [6].

Demostración. (i) Veamos primero que c cumple la propiedad. Como

c = ( ∑
p∈Pγ

p)( ∑
q∈Qγ

sgn(q)q),

dado p1 ∈ Pγ ,
p1 ∑

p∈Pγ

p = ∑
p∈Pγ

p1 p = ∑
p∈Pγ

p,

luego p1c = c. Análogamente, para cualquier q1 ∈ Qγ , cq1 = c · sgn(q1), luego p1cq1 = c · sgn(q1). Ade-
más, si un elemento ∑g∈Sd

ngg satisface la condición, entonces

p(∑
g∈G

ngg)(sgn(q))q = ∑
g∈G

ng pgq(sgn(q)) = ∑
g∈G

ngg.

Luego si pgq = h, igualando coeficientes se deduce que nh = npgq = ngsgn(q) y en particular npq =
n1 · sgn(q). Es decir, si h ∈ PγQγ , tenemos h = pq para p,q únicamente determinados por el Lema 3.7 y

nh = npq = n1 · sgn(q) = n1 (coeficiente de c en pq)
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Veamos ahora que si g ̸∈PγQγ , entonces ng = 0, esto junto con lo anterior implicará que ∑g∈G ngg= n1 ·c.
Para tal g, es suficiente encontrar una transposición t tal que p= t ∈ Pγ y q= g−1tg∈Qγ ; ya que entonces
g = pgq, así que ng = npgq = sgn(q)ng = −ng. Si T es la tabla de Young de γ y T ′ = gT es la tabla de
Young obtenida reemplazando cada entrada i de T por g(i), afirmamos que hay dos enteros distintos que
aparecen en la misma fila de T y en la misma columna de T ′; t es entonces la transposición de estos dos
enteros. Esto implica t ∈ Pγ y t ∈ Q′

γ , donde Q′
γ es el grupo de columna asociada a T ′ = g(T ), además

por el Lema 3.8, Q′
γ = gQγg−1 luego t = gqg−1 para q ∈ Qγ , así que q = g−1tg como queríamos.

Debemos verificar que si no hubiera tal par de enteros, entonces uno podría escribir g = pq para algún
asociado p ∈ Pγ , q ∈ Qγ . Para hacer esto, notemos que por el Lema 3.8, P′

γ = gPγg−1 y Q′
γ = gQγg−1 son

los grupos asociados a T ′. Suponemos que no hay 2 enteros que están en la misma fila de T y en la misma
columna de T ′. Por tanto, todos los enteros de la primera fila de T están en columnas distintas de T ′.
Esto significa que lo podemos permutar mediante un elemento q1 ∈ Q′

γ para que estén en la primera fila
de q1T ′ y también podemos encontrar un p1 ∈ Pγ de forma que p1T y q1T ′ tengan la primera fila igual.
Repitiendo el proceso, podemos encontrar p ∈ Pγ y q ∈ Q′

γ = gQγg−1 con pT = qT ′, donde q = gq̂g−1

con q̂ = Qγ y
pT = gq̂g−1gT = gq̂T,

luego p = gq̂ =⇒ g = pq̂−1 con p ∈ Pγ y q̂ ∈ Qγ como queríamos.
(ii) Sea a ∈ CG y consideramos c ·a · c. Para p ∈ Pγ , q ∈ Qγ cualesquiera:

p · c ·a · c ·q = c ·a · c · sgn(q).

Por tanto, (i) implica que cac = αc para cierto α ∈ C.
(iii) Sea U un subespacio invariante complementario, de modo que CSd = U ⊕W es una suma directa
de representaciones. Entonces podemos escribir 1 = u+w para algún u ∈U,w ∈W . En particular, w =
wu+w ·w. Dado que W ·W = 0, w ·w = 0, y por lo tanto w = wu. Se deduce de la invariancia de U que
w ∈ U . En particular, 1 = u+w también está contenido en U , y por invariancia, U es todo CSd . Por lo
tanto W = 0.

Teorema 3.11. Cada Vγ es una representación irreducible de Sd .

Demostración. [6] Para simplificar la notación llamamos A := CSd . Sea W un subespacio invariante de
Vγ = Acγ . por el lema anterior, se deduce que cγAcγ es el subespacio unidimensional de A que consiste
en múltiplos escalares de cγ , es decir, cγAcγ = Ccγ .
Dado que W ⊂ Acγ , cγW ⊂ cγAcγ . En otras palabras, cγW es un subespacio del subespacio unidimensio-
nal cγAcγ =Ccγ . Dado que Ccγ es unidimensional y esto implica cγW = {0} o cγW =Ccγ . Supongamos
que cγW = Ccγ . Entonces

Acγ = ACcγ = AcγW ⊆W,

donde la inclusión final se debe a la invariancia de W . Se deduce en este caso que W = Acγ = Vγ .
Supongamos ahora que cγW = {0}. Vamos a mostrar que esto implica W = {0}. Dado que W ⊂ Acγ ,
WW ⊂AcγW . Pero como cγW = 0 entonces WW ⊂ (Acγ)W =A(cγW )= 0. Pero, por el segundo apartado
del lema anterior, W 2 = 0 implica que W = 0. Hemos demostrado que si W es un subespacio invariante
de Vγ = Acγ , entonces W es cero o todo Acγ . Por lo tanto, Acγ es irreducible.

Lema 3.12. Si γ,λ son particiones distintas, entonces Vγ ̸∼=Vλ

Demostración. Como γ ̸= λ , si γ1,γ2, ... y λ1,λ2, ... son respectivamente el número de elementos de las
filas de γ y λ , tiene que haber un índice i tal que.

γ1 = λ1, . . . ,γi−1 = λi−1,γi ̸= λi

y podemos suponer γi > λi. Entonces si Tγ y Tλ son las correspondientes tablas de Young tiene que haber
dos enteros que estén en la misma fila de Tγ y en la misma columna de Tλ , si no fuera así, los γ1 elementos
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de la primera fila de γ estarían en columnas distintas de λ , ocupando todas las columnas, lo mismo para
la segunda, hasta llegar a la fila i. Pero en ese momento los γi elementos no vaben en las columnas de λ .
Por ejemplos:

γ = 1 2 3 4
5 6 7
8 9 10
11

λ = 8 2 7 4
11 6 3
1 9
5

10

Como vemos, 8 y 10 están
en la misma fila de γ

y la misma columna de λ .

Sea t la trasposición de estos enteros. Tenemos que t ∈ Pγ , luego tPγ = Pγ y como también, t ∈ Qλ así
que

qλ · t = qλ · sgn(t) =−qλ

Por tanto,
cλ · cλ = pλ qλ pγqγ = pλ qλ t · t pγqγ =−pλ qλ pγqγ =−cλ · cγ

es decir, cλ · cγ = 0.
El argumento se puede repetir considerando en lugar de Tγ el diagrama g(Tγ) con g ∈ Sd arbitrario, esto
implica que ∀g ∈ Sd

cλ ·gcγg−1 = 0 luego cλ gcγ = 0

Por tanto, ∀a ∈ CSd tenemos cλ acγ = 0, luego cλVγ = CGcγ = 0. Si Vγ y Vλ fueran isomorfos, esto
implicaría que cλ ·Vλ . Pero cλ ·Vλ = cλCGcλ ̸= 0

Teorema 3.13. Las representaciones irreducibles de Sd son precisamente las de la forma Vγ con γ

partición de d.

Demostración. Esto es consecuencia inmediata de los dos resultados anteriores teniendo en cuenta el
hecho de que el número de particiones de d es el número de clases de conjugación de Sd

Ejemplo 3.14. Ahora podemos describir representaciones de los grupos simétricos Sd con d = 2,3,4.

— Para S2, hay 2 particiones posibles: (1,1) y (2). Como vimos en el Ejemplo 3.9, V(2) corresponde
a la representación trivial U y V(1,1), la alternada.

U U ′

— Para S3, las particiones posibles son (3), (2,1), (1,1,1). De la misma manera, V(3) =U , V(1,1,1) =
U ′ y, como vimos también en el Ejemplo 3.9, V(2,1) corresponde a la estándar V . Por tanto:

U U ′ V

— Para S4, tenemos 5 particiones posibles: (4), (3,1),(2,2), (2,1,1) y (1,1,1,1). Nos fijamos en el
Ejemplo 2.14, donde obtuvimos los módulos irreducibles a través de los caracteres. Es fácil ver que
V(d) =U , V(1,1,1,1) =U ′ y V(3,1) =V . Nos faltaría asignar V ⊗U ′ y la representación W . Tenemos
que (2,1,1) es la partición conjugada a (3,1), entoces V(2,1,1) = V(3,1)⊗U ′ [3][p.47]. Por tanto,
V(2,1,1) =V ⊗U y por eliminación, V(2,2) =W . La figura nos quedaría así:

U V W V ⊗U ′ U ′
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