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Abstract

Currently, network optimization has become a main field in Operational Research. This area
includes problems such as the shortest path and network flows among others. The shortest path
problem is considered one of the most significant due to its numerous applications and the
existence of efficient methods for complex problems. It consists of finding the most efficient way
to get from one point to another, considering the costs associated to each feasible route.

In this context, networks are used to describe and model real-world systems, in particular,
directed graphs, being each node an object, place, or action, while the arcs are the connections
between them, which have a cost associated. The problem is reduced to finding the minimum
distance between two given points.

Network representation is used in a wide variety of circumstances, being, logistics, commu-
nication and electrical networks among the most prevalent. It is also used in production, distri-
bution, and management, providing visual support of the relation between every component of
the system.

The shortest path problem has not a particularly not complex structure, allowing the deve-
lopment of several intuitively appealing algorithms for its resolution. One of the most remarkable
algorithms is the Dijkstra’s algorithm, published in 1959 by Edsger Dijkstra. This algorithm and
its numerous modifications have abundant applications, but the one that stands out from the
rest is the use of GPS. The Bellman-Ford algorithm is another outstanding one, published in
1958. It is more general since, unlike the previous, it does not exclude networks with negative
costs.

However, while shortest path problems may seem straightforward to solve, designing and
analyzing some of the most efficient algorithms demands significant ingenuity.

Below, the content of this work is described and organized in 5 chapters.
In Chapter 1, an introduction to the shortest path problem is given, in addition to defining the

basic graph concepts that will be used. The shortest path problem is defined in detail, employing
knowledge from Operational Research. Additionally the existing variants of the problem are
outlined, and at the end, two types of algorithms can be distinguished the label-setting and
label-correcting.

Moving on to Chapter 2, the generic algorithm is explained in detail, along with its pseudo-
code. Convergence properties are formulated and demonstrated, and an alternative initialization
is presented. Finally, the algorithm is applied to a base example.

In Chapter 3, the label-setting algorithms are explained, which do not allow the existence of
negative costs in the graph. The first to be introduced is the Dijkstra’s algorithm which is studied
along with its main properties, as well as its computational complexity. Further to this, in order
to improve its complexity, two algorithms, which are modifications of Dijkstra, are introduced.
These are the Dijkstra’s algorithm with priority queues, also known as Heap, and the Dial’s
algorithm, which uses buckets. The pertinent pseudocode is added along with an application in
a base example.

In Chapter 4, the label-correcting algorithms are studied. Note that in this case the algorithms
are not restricted to graphs with non-negative costs, making them more generic algorithms
since negative costs are allowed. First, the Bellman-Ford algorithm is explained, along with its
properties, which is is followed by the D’Esopo-Pape and SLF algorithms, being these last ones
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iv Abstract

modifications of the generic algorithm. All of them are accompanied by their pseudocodes and
applications on a base example.

Finally, in Chapter 5, a study for networks with either positive or negative costs is conducted
to contrast the performance of all the algorithms studied in the previous chapters. In order to
do this, the algorithms are implemented using the programming language Python. This study
compares the average execution time in milliseconds of each algorithm according to the number
of nodes in the network, its density, and shape.
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Capítulo 1

Introducción

Hoy en día, el problema de ruta mínima está continuamente presente en la vida cotidiana.
¿Cómo ir de un objetivo a otro distinto minimizando lo máximo posible el coste de esta actividad?
Esta, es una cuestión que si uno se para a pensar, se da cuenta que realmente se puede aplicar
a todo lo que le rodea.

¿Cómo ir de un punto de tu ciudad a otro en el recorrido más corto posible? Tanto Google
Maps como cualquier otro sistema de navegación son capaces de resolver este problema tan
habitual en el que se busca la ruta más corta entre dos puntos del mapa. Pero, para usar este
tipo de aplicaciones, o hacer cualquier otra consulta externa, es necesario una conexión a Internet,
lo que lleva a investigar como transmitir información entre una o varias redes de Internet en el
menor tiempo posible. Estos paquetes de información, buscan la ruta más óptima que hay entre
las redes que desean transmitir el mensaje, y lo hacen mediante el routing. La mayoría de las
veces se trata en efecto de su ruta mínima, que, junto con otros factores, es lo que genera la
eficiencia de las conexiones a la red y evita los tiempos de espera en su carga. Sin embargo,
no basta con eso, ya que para la carga de los aparatos electrónicos por los que se realice dicha
consulta, se tendrá que hacer uso del sistema eléctrico, buscando así distribuir la mayor cantidad
de energía posible al menor costo. Para ello se utilizan problemas de ruta mínima, encontrando
así la ruta mas corta y el menor costo de construcción de la red eléctrica.

El problema de ruta mínima es uno de los problemas con más relevancia en el ámbito de
la optimización, y esto es debido a sus numerosas aplicaciones, de las cuales solo se han dado
unos pequeños ejemplos, para ilustrar cómo pueden llegar a aplicarse todos los ámbitos. En
concreto, cobran más relevancia en la planificación logística, ya que pueden ayudar a mejorar
significativamente la eficiencia operativa, así como reducir los costos a su vez.

Para resolver toda esta variedad de problemas planteados, se harán uso de varios algoritmos,
los cuales se especificarán más adelante en el trabajo con su respectiva programación en el
lenguaje Python.

1.1. Definición del problema de ruta mínima

Para el desarrollo de las definiciones se ha hecho uso de [1], mientras que para el planteamiento
del problema se ha ha utilizado [2].

Definición 1. Un grafo es un par G = (N ,A), donde N = {1, . . . , N} finito y cuyos elementos
son denominados nodos y A = {(i, j)|i, j ∈ N} ⊆ N × N es un subconjunto de N × N cuyos
elementos se denominan arcos. Se distinguen los siguientes tipos:

Grafos dirigidos: el par (i, j) está ordenado y el arco (i, j) será distinto del arco (j, i).

Grafos no dirigidos: sus arcos son no dirigidos, es decir, se tiene que (i, j) y (j, i) representan
el mismo arco.

1



2 Capítulo 1. Introducción

Al número de sus nodos, |N | = n, se le denota como orden del grafo, mientras que el número
total de arcos, |A| = m, es el tamaño del grafo G.

Definición 2. Dado un grafo G = (N ,A) un camino dirigido P de longitud l desde el nodo i al
j es una sucesión de nodos (i0, i1, . . . , il) tal que i0 = i, il = j y (ih−1, ih) ∈ A para h = 1, . . . , l,
en donde, además, ninguno de sus arcos aparecen repetidos. En particular, se denomina camino
dirigido simple cuando en la sucesión de nodos (i0, i1, . . . , il) no aparece ninguno repetido.

Todos los ejemplos explicados previamente en la introducción, pueden ser representados a
través de grafos, o más concretamente, de grafos dirigidos, que serán los protagonistas en este
trabajo. Aunque los algoritmos de resolución de rutas mínimas que se presentarán están basados
en grafos dirigidos, pueden ser modificados para aplicarse a grafos no dirigidos. Además, existen
algoritmos específicos diseñados para grafos no dirigidos.

A partir de ahora, dado un grafo dirigido G = (N ,A), definido en los términos anteriores, se
considerará que cada uno de sus arcos (i, j) ∈ A tiene un costo asociado cij .

Sea G = (N ,A) con costos cij para todo (i, j) ∈ A. Con esto se define el problema de ruta
mínima como aquel que trata de encontrar el camino dirigido simple más corto, P, entre ciertos
nodos, que sin pérdida de generalidad, se asumirá que son el 1 y el N , respectivamente. El
problema puede formularse inicialmente como:

(P )


minimizar

∑
(i,j)∈P

cijxij

sujeto a: (1 . . . N) camino dirigido de 1 a N en A.

Aunque la forma anterior es la manera más intuitiva de definir el problema de ruta mínima,
habitualmente este se modela mediante un procedimiento distinto, tal y como se puede ver a
continuación.

El problema de ruta mínima se puede definir como el problema que busca la solución óptima
del siguiente problema de programación lineal entera (PLE) binaria1.

(P1)



minimizar
∑

(i,j)∈A
cijxij

sujeto a:
∑

{j|(i,j)∈A}
xij −

∑
{j|(j,i)∈A}

xji =


1 si i = 1,

0 si i ̸= 1, N,

−1 si i = N,

i ∈ N

xij ∈ {0, 1}, (i, j) ∈ A.

Dadas las especiales características del problema, este puede remodelarse, reformulando así las
condiciones de las variables xij , que pasan de ser xij = 0 ó 1 a xij ≥ 0 para todo (i, j) ∈ A. Esto
puede afirmarse ya que se trata de se trata de un caso particular de un problema de transporte,
por esta razón esta reformulación no añadirá ninguna solución óptima extra. De esta forma, se
trata de un problema de programación lineal (PPL) estándar.

El problema de ruta mínima que se considera en adelante viene dado por el sistema (P2).

(P2)



minimizar
∑

(i,j)∈A
cijxij

sujeto a:
∑

{j|(i,j)∈A}
xij −

∑
{j|(j,i)∈A}

xji =


1 si i = 1,

0 si i ̸= 1, N,

−1 si i = N,

i ∈ N

xij ≥ 0, (i, j) ∈ A.

(1.1)

1El modelado de este tipo de problemas se estudió en la asignatura de Investigación Operativa, correspondiente
al tercer curso del grado de Matemáticas.
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A continuación, se van a utilizar los conocimientos sobre dualidad en programación lineal
adquiridos en la asignatura Investigación Operativa cursada en el tercer curso del grado de
Matemáticas, de donde se podrán derivar las condiciones de optimalidad para el problema de
ruta mínima, de una forma alternativa a como se hace normalmente.

De acuerdo a la teoría de la dualidad para programación lineal, asociado a cada PPL, existe
otro problema de programación lineal, denominado problema dual, cuyas soluciones óptimas están
totalmente relacionadas. Dada esta teoría, el problema dual asociado a 1.1 será el siguiente.

(D)


maximizar w1 − wm

sujeto a: wi − wj ≤ cij , (i, j) ∈ A
wi ∈ R, i ∈ N .

(1.2)

Este entorno, da lugar a la siguiente definición.

Definición 3. Un ciclo dirigido es un camino dirigido cuyos nodos inicial y final coinciden
(i0 = il). Se denominará ciclo negativo si la suma de los costos de los arcos que forman el ciclo
es un número negativo.

El siguiente teorema establece las denominadas condiciones de holgura complementaria (CHC),
en el que dadas unas soluciones factibles para un problema primal y su dual, estas son óptimas
si y solo si al multiplicar el valor de la holgura de la restricción del problema primal (dual) por
el valor de la variable correspondiente del problema dual (primal) el resultado es cero.

Teorema 1.1 (Condiciones de Holgura Complementaria2). Sea x̄ y w̄ soluciones factibles de
los problemas simétricos de máximo y su dual. Entonces x̄ y w̄ son soluciones óptimas para sus
problemas respectivos si y solo si x̄j v̄j = 0 para j = 1, .., n y w̄iūi = 0 para i = 1, ..,m con ū y v̄
holguras del primal y dual respectivamente.

El teorema anterior aplicado al problema de ruta mínima toma la forma siguiente.

Teorema 1.2 (Condiciones de Holgura Complementaria para el problema de ruta mínima).
Sea x̄ e w̄ soluciones factibles de los problemas 1.1 y 1.2 respectivamente. Entonces x̄ y w̄ son
soluciones óptimas para sus problemas respectivos si y solo si se tiene x̄ij(cij − w̄i + w̄j) = 0
para (i, j) ∈ A.

El teorema 1.2 permite proporcionar las condiciones habituales de optimalidad para el pro-
blema de ruta mínima.

Proposición 1.3. Sea d = (d1, d2, ..., dN ) un vector de distancia cumpliendo

dj ≤ di + cij , para todo (i, j) ∈ A, (1.3)

y P un camino que comienza en el nodo 1 y termina en el nodo N . Entonces, si

dj = di + cij , para todo (i, j) ∈ P, (1.4)

P es el camino de ruta mínima desde 1 hasta N.

Demostración. Dado P, un camino que comienza desde el nodo 1 a N , definiendo xij = 1 para
todo (i, j) ∈ P y 0 para el resto de arcos, será una solución factible del problema primal 1.1.
Definiendo wi := −di, se cumplirá

wi ≤ wj + cij , para todo (i, j) ∈ A,
2Los elementos involucrados en dicho teorema se pueden encontrar en el Anexo A, los cuales fueron estudiadas

en la asignatura Investigación Operativa cursada en el tercer curso del grado de Matemáticas.
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siendo w una solución factible del problema dual 1.2. Observar que se verifican las CHC, ya que
cuando xij = 1, (i, j) ∈ P, por 1.4 se obtiene cij − wi + wj y para todo (i, j) /∈ P, xij = 0. Así
que aplicando el teorema 1.2 se tendrá que x es solución óptima, y por lo tanto P será el camino
de ruta mínima desde 1 hasta N .

Los algoritmos que se estudiarán en los próximos capítulos, resuelven el problema de ruta
mínima, sin embargo, este problema, que se puede tratar como un problema de transbordo,
también puede ser resuelto mediante el algoritmo de simplex. El problema con este algoritmo, es
que tiene una complejidad computacional mucho mayor que los que se analizarán, por lo que en
la práctica no es considerado óptimo para resolver este problema concreto.

En la figura 1.1 se muestra un sencillo ejemplo con 6 nodos y 9 arcos. Sobre los arcos se
muestra los costos de conectar los nodos, y en verde se aprecia el camino dirigido de costo
mínimo entre 1 y 6.

1

2

3

4

5

6

5

1

4

1
3

5

2

2

4

Figura 1.1: Ejemplo base.

1.2. Variantes del problema de ruta mínima

El problema de ruta mínima, tal y como se ha presentado, puede tener varias variantes. Las
principales son las siguientes [3]:

Ruta mínima entre dos únicos nodos.

Ruta mínima desde un nodo a todos los demás.

Ruta mínima desde todos los nodos a uno en concreto.

Ruta mínima entre todos los pares de nodos del grafo.

De todas ellas, la que se considerará en este trabajo será la segunda, ya que los algoritmos
que se estudiarán serán los de ruta mínima desde un nodo a todos los demás. Estos incluyen a
los primeros, es decir, los algoritmos de rutas mínimas entre dos únicos nodos. Por otro lado, los
algoritmos de ruta mínima desde todos los nodos a solamente uno de ellos se puede construir de
forma simétrica a los que se plantearán. Finalmente, no se profundizará en los algoritmos que
estudian las rutas entre todos los pares de nodos del grafo ya que exceden los límites del trabajo.

Para poder aplicar los algoritmos, se exigirá que el grafo del problema cumpla las siguientes
condiciones.

Es un grafo dirigido.

Existe al menos un camino dirigido entre el nodo 1 y el resto (si no, solo calculará del nodo
1 a todos los alcanzables).

Además, para algunos algoritmos se requieren condiciones adicionales como las siguientes.

El grafo no incluye costos negativos.

Los costos cij asociados a cada arco (i, j) sean enteros.
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1.3. Tipos de algoritmos

Para la resolución de los problemas de ruta mínima, se pueden hacer uso de una gran variedad
de algoritmos. Todos ellos tienen en común su iteratividad, pero se puede diferenciar en dos grupos
en función de qué método se utilice para actualizar las etiquetas de las distancias, además del
criterio que se siga para eliminar nodos de la lista de candidatos. Antes de hacer la clasificación,
se tendrá en cuenta una definición previa.

Definición 4. Se llama lista de candidatos al conjunto de nodos que pueden tenerse en conside-
ración para mejorar la ruta mínima. Este conjunto, se define como V , siendo V = {1} al inicio
de las iteraciones. El algoritmo termina cuando V = ∅.

Una vez puesto el contexto, se puede pasar a los dos grupos de algoritmos mencionados
previamente.

Algoritmos de asignación de etiquetas. En estos algoritmos, los nodos eliminados de
la lista de candidatos son los que tienen una etiqueta mínima, es decir, distancia mínima
desde el nodo inicial. A su vez, todos los costos asociados a los arcos del grafo se pedirá
que sean no negativas, evitando de este modo la presencia de ciclos negativos. Cada nodo
solo pasará por V una vez, por tanto, dado un nodo que ya ha abandonado la lista de
candidatos, su etiqueta será permanente hasta el final del algoritmo.

Algoritmos de corrección de etiquetas. La elección de la eliminación del nodo i de
la lista de candidatos es menos compleja que en el caso anterior, e intervienen menos
cálculos. Cada algoritmo se diferencia en la forma en la que cada nodo entra o sale de esta
al incorporarse o abandonar V respectivamente. Notar que los nodos podrán incorporarse
a V más de una vez, tomando de esta forma las etiquetas de los nodos como temporales
hasta la última iteración, donde todas las etiquetas tienen el valor óptimo. Estos algoritmos
funcionan en presencia de ciclos negativos, siendo capaces de detectarlos e indicar que no
existe ruta mínima.

Notar que los algoritmos de corrección de etiquetas se pueden usar para casos más generales
que los de asignación de etiquetas, ya que permiten estudiar los grafos con costos negativos.
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Capítulo 2

Algoritmo genérico

En este capítulo se presentará el método de resolución de problemas de ruta mínima deno-
minado algoritmo genérico, el cual dependiendo de como se particularice, dará lugar a distintos
algoritmos. Este algoritmo puede implementarse de diversas maneras, variando cada una de ellas,
principalmente, en la selección de los nodos para ser eliminados de la lista de candidatos V . El
desarrollo de este algoritmo y sus propiedades se basa en [4, 5, 6].

2.1. Algoritmo genérico

Como se ha mencionado anteriormente, se trata de un algoritmo que resuelve el problema de
ruta mínima de un único nodo a todos los restantes en el grafo, y en consecuencia desde un nodo
a otro específico. Se seguirá con la notación usada hasta ahora, y se tomará como nodo inicial 1,
además de un vector de etiquetas d = (d1, d2, . . . , dN ). Cada di puede ser interpretado para todo
i como la distancia del nodo 1 a i dada por un camino Pi.

Para inicializar el algoritmo, se tiene en cuenta una lista de candidatos V , que en la primera
iteración se definirá junto con d como

V = {1}, d1 = 0, di =∞ para todo i ̸= 1,

es decir, la ruta actual hasta el nodo 1 tiene costo cero y para el resto aún no existe camino, por lo
tanto sus costos serán +∞. En cada iteración, se elimina un nodo i de la lista de candidatos. Para
cada arco saliente de dicho nodo, (i, j) ∈ A con j ̸= 1, se tiene que si se cumple la desigualdad
dj > di + cij para dicho arco , entonces se fija una nueva distancia del nodo 1 a j que se define
como se puede apreciar a continuación,

dj := di + cij ,

satisfaciendo así las Condiciones de Holgura Complementaria dadas en la proposición 1.3, donde
se afirma que dj ≤ di + cij , es decir, actualmente se podía llegar a j con un costo dj , pero se ha
encontrado que se puede llegar a i y posteriormente a j mediante el arco (i, j) con un costo nuevo
dj = di + cij menos elevado. Este nodo j se añade a V , la lista de candidatos, si no lo estaba ya.
El algoritmo continua hasta que las Condiciones de Holgura Complementaria se satisfacen para
todos los arcos del grafo, es decir, terminará cuando la lista de candidatos esté vacía, es decir,
cuando V = ∅.

Por todo el procedimiento explicado, el reemplazamiento del camino Pj por un camino más
corto compuesto por Pi y el arco (i, j), puede verse como una operación de mejora de costos
primales.

Puede apreciarse el pseudocódigo de este algoritmo más en detalle en el Algoritmo 1.

7
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Algorithm 1: Algoritmo genérico.
V ← {1}
d← [0,∞, . . . ,∞]
M ← mı́n{−1, (N − 1) mı́n

(i,j)∈A
cij}

while V ̸= ∅ do
Se extrae un nodo i cualquiera de la lista
for todos los nodos j vecinos out de i do

if dj > di + cij and j ̸= 1 then
dj ← di + cij
if dj < M then

STOP /* Con M una cota para los ciclos negativos */
end
if dj /∈ V then se añade j a V

end
end

end

2.2. Propiedades del algoritmo genérico

En esta subsección se va a estudiar la corrección y convergencia del algoritmo genérico, y se
realizará su aplicación manual en un sencillo ejemplo de ruta mínima.

La siguiente proposición justifica formalmente la corrección y convergencia del algoritmo
genérico.

Proposición 2.1. Se considera el problema de ruta mínima (P) y el algoritmo general aplicado
a dicho problema. Se tendrán las siguientes propiedades:

a) Dado i ∈ N , di <∞ si y solo si i ha entrado al menos una vez a V .

b) En cada iteración se puede afirmar:

i) d1 = 0.

ii) Si dj < ∞ con j ̸= 1, entonces dj es la longitud de un camino que empieza en 1,
nunca vuelve a 1 y termina en j.

iii) Si i /∈ V , entonces di =∞ o dj ≤ di + cij, para todo (i, j) ∈ A.

c) Si el algoritmo termina, se tendrá entonces para todo j con dj < ∞, dj es la distancia
mínima del nodo 1 al nodo j dada por

dj =

 mı́n
(i,j)∈A

{di + cij} si j ̸= 1,

0 si j = 1.
(2.1)

d) Si el algoritmo no termina, existen caminos que empiezan en el nodo 1 y terminan en j,
que no vuelven al nodo inicial cuya longitud tiende a −∞.

Demostración.

a) Inicialmente, d1 = 0 y di =∞ para todo i distinto de 1 con V = {1}. En el transcurso del
algoritmo, se fijan unas nuevas di monótonamente no crecientes y el nodo i queda añadido
a su vez a V , por lo que queda así probada la propiedad.
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b) i) Inicialmente se tiene d1 = 0 y dado que por las normas del algoritmo, d1 no podrá
reetiquetarse, manteniendo así su valor constante.

ii) Se usará el método de inducción aplicado al número total de iteraciones del método. La
propiedad se puede afirmar cierta para la primera iteración por definición del vector d,
ya que d1 = 0 y di =∞ para todo i distinto de 1. Se supondrá cierta la propiedad para
un cierto número de iteraciones en el que se obtiene como resultado la eliminación del
nodo i de la lista de candidatos V .
Si i ̸= 1 se tiene que di <∞, que es cierto por (a). Aplicando la hipótesis de inducción
se obtiene que di es la longitud de un camino Pi que empieza en 1, nunca vuelve a 1 y
termina en i. Realizando la última iteración para un j ̸= 1, el nuevo valor de dj será el
dado por la expresión di + cij siendo en este caso dj la longitud de un camino Pj que
está compuesto por el camino Pi seguido del arco (i, j) que empieza en 1, termina en
j y nunca vuelve a 1 por ser j ̸= 1. Si i = 1, solo se puede dar en la primera iteración,
por lo que se tendrá dj = c1j para todos los nodos j que sean vecinos out de 1 y
dj =∞ para el resto.

iii) Para cada i, se tiene por el apartado (a) que di = ∞ si i aún no ha entrado en la
lista de candidatos. Si di < ∞, se satisface dj ≤ di + cij para todo (i, j) ∈ A. Hasta
la siguiente entrada de i en V , di se mantiene constante, mientras que dj para todo j
con (i, j) ∈ A no puede aumentar, conservando así la condición inicial dj ≤ di + cij .

c) Se definen los conjuntos al finalizar el algoritmo

I = {i|di <∞}, Ī = {i|di =∞}.

Notar que j ∈ Ī equivale a que no exista camino P desde el nodo 1 hasta el j, ya que si
i ∈ I, i /∈ V al finalizar el algoritmo y aplicando el apartado (b)(iii) se tendrá j ∈ I para
todo (i, j) ∈ A. Consecuentemente, no existe camino P desde ningún nodo en I hasta un
j ∈ Ī, en concreto desde 1 ∈ I. Y recíprocamente, si no hay trayectoria de 1 a j entonces
por el apartado (b)(ii), no puede cumplirse dj <∞ y j ∈ Ī.

Observar que al finalizar, para todo j ∈ I, dj es la distancia mínima, y cumple 2.1.

Sea i ∈ I, dj ≤ di + cij , para todo (i, j) ∈ A,

con di la longitud de un camino Pi que empieza en 1 y termina en i. Fijando un nodo
m ∈ I y aplicando la condición anterior a cada arco (i, j) de un camino cualquiera P
desde 1 a m, se obtiene que su longitud es mayor o igual que dm − d1

(b)(i)
= dm, por tanto

la trayectoria que existe por (b)(ii) de costo dm es la mínima, siendo Pm el camino más
corto de 1 a m, por lo que en todos sus arcos (i, j) se tendrá dj = di + cij , llegando así a
dj = mı́n

(i,j)∈A
{di + cij} para j ∈ I.

d) Si el algoritmo nunca termina, alguna etiqueta dj decrece estrictamente infinitas iteraciones,
generando distintos caminos Pj a su paso. Por propiedades de los grafos, estos caminos
pueden descomponerse en un camino simple finito Pj del nodo 1 al j junto con una colección
de ciclos negativos. Repitiendo este ciclo un número infinito de veces, se obtiene el resultado
buscado, que el costo del camino tienda a −∞.

Hasta ahora, no se ha impuesto ninguna condición adicional en el grafo representado por el
problema, por lo que no se puede garantizar que este algoritmo termine. Para ello, desarrollando
a partir de la proposición 2.1 (d), se tiene que el algoritmo terminará si y solo si no existe ningún
camino que empiece en el nodo 1, que no vuelva a 1 y que contenga un ciclo negativo.
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Todo esto se puede evitar detectando previamente la presencia de los ciclos negativos y
deteniendo el algoritmo en este caso. Para ello se tendrá en cuenta que cuando para algún nodo
k su respectivo dk es menor que el límite inferior de la distancia de todos los caminos simples,
se parará el algoritmo, es decir, si

dk < (N − 1) mı́n
(i,j)∈A,cij<0

cij ,

se tiene que en el camino P del nodo 1 al nodo k cuya longitud es igual a dk, debe contener
un ciclo negativo. Una vez comprobada esta propiedad, se garantiza la no existencia de ciclos
negativos.

Si existe un camino desde el nodo inicial 1 a cada nodo j y a su vez, se asegura la no existencia
de ciclos negativos, podrá afirmarse que el algoritmo termina y sus etiquetas finales serán finitas,
dadas en la proposición 2.1 (c) ecuación 2.1. Esta ecuación se denomina Ecuación de Bellman y
se trata de una formulación más general de las Condiciones de Holgura Complementaria 1.4 de
la proposición 1.3, de donde se pueden obtener la distancia mínima de 1 a j como la suma de la
distancia mínima de un nodo que precede a j y el arco que les conecta. Este mismo procedimiento
se hace para calcular cualquier ruta mínima desde 1 hasta cualquier nodo j, volviendo hacia atrás
hasta llegar al nodo inicial por los arcos correspondientes, obteniendo así un subgrafo conectado
llamado spanning tree.

2.2.1. Inicialización avanzada

A pesar de que en este trabajo no se podrá analizar con más detenimiento, cabe destacar que
este algoritmo no necesita cumplir inicialmente

V = {1}, d1 = 0, di =∞ para todo i ̸= 1,

para poder funcionar de forma adecuada. Para que el algoritmo desempeñe su cometido de
manera eficiente, bastará con que el conjunto de etiquetas (d1, . . . , dN ) satisfaga las condiciones
de la proposición 2.1 b. En particular, al algoritmo funcionará de forma adecuada si se asegura
que V y d son inicializados con las siguientes condiciones más generales.

Para cada nodo i, di tomará el valor∞ o será la longitud de un cierto camino de 1 a i, con
la excepción de d1 = 0.

La lista de candidatos V contiene todos los nodos i tal que

di + cij < dj , con (i, j) ∈ A.

Esta técnica se usa en entornos de reoptimización, cuando se busca resolver problemas simila-
res, o hacer una ligera modificación en un problema ya resuelto, ya sea en algún arco, o añadiendo
o eliminando nodos. Podrán ahorrarse muchos costos computacionales usando las distancias de
las rutas mínimas de un problema, como etiquetas iniciales de otro similar, ya que muchos no
volverán a entrar la lista de candidatos V manteniendo así su distancia mínima.

Dado el grafo representado en la figura 1.1, aplicando el Algoritmo 1, se obtendrían en cada
iteración los datos que se ven reflejados en la tabla 2.1, siendo los nodos marcados de color verde
la lista de candidatos los que son añadidos a V , y las etiquetas en azul las que han cambiado
en la iteración correspondiente. Este código de colores será el que se seguirá en las posteriores
tablas del trabajo.

Para la primera iteración, se extrae el nodo 1 de la lista de candidatos y se examinan sus
vecinos out, comprobando que la distancia a los nodos 2 y 3 son 5 y 1 respectivamente. Al ser
menor las distancias nuevas que las que había en lista de etiquetas, se actualizan y se añaden
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dichos nodos a V . Para la segunda iteración, se extrae un nodo de forma aleatoria de V = {2, 3}.
Sea 3 el nodo que se extrae, se comprueban sus vecinos out, es decir, 2 y 5, las respectivas
distancias serán 4 y 6, que se volverán a actualizar al ser menores, pero solo se añadirá el nodo 5
a la lista de candidatos ya que 2 ya se encontraba en ella. Para las siguientes iteraciones se hará
de manera análoga.

Número de Lista de Etiquetas de Nodo que
iteración candidatos (V ) los nodos (d) sale de V

1 {1} (0,∞,∞,∞,∞,∞) 1
2 {2,3} (0,5,1,∞,∞,∞) 3
3 {2,5} (0,4,1,∞,6,∞) 5
4 {2,6} (0,4,1,∞,6,10) 2
5 {6,4,5} (0,4,1,8,5,10) 4
6 {6,5} (0,4,1,8,5,10) 5
7 {6} (0,4,1,8,5,9) 6

∅ (0,4,1,8,5,9)

Tabla 2.1: Aplicación del algoritmo genérico.

Se puede apreciar que las distancias finales que calcula el algoritmo son las dadas cuando V es
un conjunto vacío. En este caso, d = (0, 4, 1, 8, 5, 9), que es el resultado que obtiene el algoritmo,
es el que vector que representa la distancia mínima desde el nodo inicial a todos los demás del
grafo. Se puede ver como a lo largo del algoritmo, las etiquetas van mejorando y puede volver a
añadirse un nodo a V incluso después de haber sido eliminado de este.
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Capítulo 3

Algoritmos de asignación de etiquetas

En este capítulo se estudiarán varias versiones de uno de los algoritmos más destacados para
la resolución del problema de ruta mínima mediante la asignación de etiquetas, que asume que
todos los costos asociados a los arcos del grafo G son no negativos, haciendo así que cada nodo
solo entre la lista de candidatos una vez. Los desarrollos de este capítulo se basan principalmente
en [5, 6].

3.1. Algoritmo de Dijkstra

Como se acaba de comentar, este algoritmo requiere obligatoriamente que cij ≥ 0, es un
caso especial del algoritmo genérico, donde los nodos son eliminados de la lista de candidatos V
siguiendo un patrón determinado.

La idea que subyace en este algoritmo es que dado que todos los costos son mayores o iguales
que cero, se van explorando todas las rutas más cortas que se inician desde el nodo 1 y llevan a
todos los nodos del grafo, deteniéndose el algoritmo cuando se haya encontrado el camino más
corto a todos sus nodos.

Parte de las mismas condiciones iniciales para la primera iteración que el algoritmo genérico,
es decir,

V = {1}, d1 = 0, di =∞ para todo i ̸= 1,

junto con la restricción del vector de costos, que tendrá que cumplir cij ≥ 0. En cada iteración
se elimina un nodo i de la lista de candidatos que sigue el siguiente criterio:

di = mı́n
j∈V
{dj}.

Para dicho nodo i, se toman sus arcos salientes (i, j) ∈ A con j ̸= 1 y se comprueba si
dj > di + cij . En caso de verificarse, se redefinirá dj como

dj := di + cij ,

y posteriormente se añadirá dicho nodo j a la lista de candidatos V en caso de que aún no
pertenezca. Al igual que el algoritmo anterior, seguirá haciendo iteraciones hasta que V sea un
conjunto vacío.

El pseudocódigo del método es el que se desarrolla en el Algoritmo 2.
Para poder hacer un análisis en profundidad de este método y dar unas propiedades más

específicas, será necesario previamente la definición del conjunto de nodos que ya han estando
en la lista de candidatos pero no lo están actualmente.

W := {i|di <∞, i /∈ V } (3.1)

Este conjunto, permite definir una serie de propiedades a cerca del algoritmo que se pueden
ver en la siguiente proposición.

13
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Algorithm 2: Algoritmo Dijkstra.
V ← {1}
d← [0,∞, . . . ,∞]

while V ̸= ∅ do
for j ∈ V do

Se toma el mínimo de los dj
Se extrae de V dicho j

end
for todos los nodos j vecinos out de i do

if dj > di + cij and j ̸= 1 then
dj ← di + cij

end
if dj /∈ V then Se añade j a V

end
end

Proposición 3.1. Considerando el problema de ruta mínima (P) descrito en 1.1 y a su vez
asumiendo cij ≥ 0 y la existencia de al menos un camino P desde el nodo 1 al resto de los nodos,
se tienen las siguientes propiedades1.

a) Para cada iteración del algoritmo, dado el conjunto W definido en 3.1, se puede afirmar:

i) Ningún nodo i ∈W vuelve a entrar a la lista de candidatos.
ii) Al final de cada iteración, se tiene

di ≤ dj, para todo i ∈W , j /∈W .

iii) Para cada nodo i, sea P un camino que empieza en 1, termina en i y tiene todos sus
nodos en W al final de la iteración. Se tendrá entonces que la etiqueta di al final de
la iteración es igual a la longitud del camino más corto de los dados. En particular,
si di =∞, dicho camino no existirá.

b) Todos los nodos serán eliminados de la lista de candidatos solamente una vez, teniendo en
cuenta que i será eliminado antes que j si di<dj.

W puede interpretarse como un conjunto de nodos con etiquetas permanentes, ya que dado un
nodo i que entra en W , i ∈W hasta el final del algoritmo, manteniendo así su etiqueta constante
al no volver a entrar a V , es decir, el algoritmo finaliza cuando se han hecho permanentes todas
las etiquetas de los nodos.

Nota 1. Se puede comprobar juntando la proposición 3.1 (a)(ii) con cij ≥ 0, que en efecto para
cada nodo i que es eliminado de V ,

dj ≤ di + cij , para todo j ∈W tal que (i, j) ∈ A,

cumple las Condiciones de Holgura Complementaria.

Se vuelve a tomar el grafo representado en la figura 1.1, sobre el que se aplicará el algoritmo
de Dijkstra, y se podrá ver representado en la tabla 3.1 los pasos que sigue, permitiendo así una
comparación con el algoritmo anterior.

Las distancias finales que calcula el algoritmo son las dadas cuando la lista de candidatos se
encuentra vacía, que vuelven a ser d = (0, 4, 1, 8, 5, 9), representando así la ruta mínima desde

1Este algoritmo y sus propiedades fueron estudiadas en la asignatura Grafos y Combinatoria, correspondiente
al primer curso del grado de Matemáticas, por lo que la demostración será omitida.
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Número de Lista de Etiquetas de Nodo que
iteración candidatos (V ) los nodos (d) sale de V

1 {1} (0,∞,∞,∞,∞,∞) 1
2 {2,3} (0,5,1,∞,∞,∞) 3
3 {2,5} (0,4,1,∞,6,∞) 2
4 {5,4} (0,4,1,8,5,∞) 5
5 {4,6} (0,4,1,8,5,9) 4
6 {6} (0,4,1,8,5,9) 6

∅ (0,4,1,8,5,9)

Tabla 3.1: Aplicación del algoritmo de Dijkstra.

el nodo inicial 1 hasta el resto de los nodos. En este caso, las nodos que abandonan la lista de
candidatos no vuelven a ser añadidos a esta, quedándose así con su etiqueta fija.

El número de iteraciones del algoritmo será igual al número de nodos del grafo (N). Cada
iteración se basará en dos operaciones. La primera será la elección del nodo a extraer de la lista
de candidatos, que a lo sumo tendrá un costo computacional de O(N), que al repetirlo en cada
iteración acabará siendo un total de O(N2) operaciones. La otra operación que se tiene en cuenta
es el ajuste de las etiquetas, que en cada iteración el número de operaciones difiere, ya que el
algoritmo tiene que comprobar todos los arcos salientes. Sin embargo, teniendo en cuenta todas
las iteraciones, el algoritmo comprobará todos los arcos del grafo, por lo que este computo se
dirá que se lleva a cabo un total de m veces, siendo el número de operaciones O(m), que se
despreciará por ser menor que O(N2), concluyendo que la complejidad del algoritmo de Dijkstra
para resolver el problema de ruta mínima es de O(N2).

En los siguientes apartados se llevan a cabo unas modificaciones en el algoritmo de Dijkstra
que se realizan con objeto de mejorar la complejidad computacional del algoritmo. Estas modi-
ficaciones actuarán en la búsqueda de la etiqueta mínima de los nodos en la lista de candidatos,
la complejidad, O(N2), se puede reducir usando unas estructuras de datos más adecuada. Sin
embargo, O(m), que es el número de operaciones para llevar a cabo el ajuste de etiquetas, no
podrá ser reducido. Estas modificaciones y las alteraciones que producen cada uno de ellos al
algoritmo, se analizarán de una manera mas exhaustiva a continuación.

3.2. Algoritmo de Dijkstra con cola de prioridad

Este algoritmo, también conocido como algoritmo de Heap, se trata de una modificación
del algoritmo de Dijkstra en el que se obtendrá como resultado un coste computacional menor
haciendo uso de pilas, que son comúnmente usadas para implementar colas de prioridad, estas
se utilizan para almacenar eficientemente la lista de candidatos por su valor de dj .

En este caso, se usará una pila binaria basándose en las etiquetas de los nodos y su pertenencia
a la lista de candidatos V . El nodo situado en lo más alto de la pila, será el nodo en V cuya
etiqueta tiene el menor valor, se le denomina la raíz. Notar también que las etiquetas de todos los
nodos pertenecientes a la lista de candidatos, nunca serán superiores que las etiquetas de todos
sus nodos descendientes que están a su vez en V . Por otra parte, los nodos que no pertenecen
a la lista de candidatos estarán en la pila, aunque puede que no tengan ningún descendiente
perteneciente a V .

En cada iteración el nodo en la lista de candidatos con menor etiqueta será distinto, ya que
el anterior habrá sido extraído de V , fijando así su etiqueta permanentemente. Si la etiqueta de
algún nodo decrece en esta iteración, entonces este deberá mover su posición en la pila a una
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más cercana a la raíz. Asimismo, si entra en la lista de candidatos un nodo nuevo, tendrá que
ser colocado en la pila en la posición adecuada.

En este caso no se incorpora el pseudocódigo, únicamente se indica que el proceso de incor-
poración y borrado de nodos en la lista de candidatos se realiza con una estructura de pila. En
la implementación se ha utilizado la librería heapq de Python. Todo lo necesario viene definido
dentro de la librería, por lo que con tan solo añadir unas listas de tuplas y modificar las funciones
asociadas a estos objetos a las correspondientes de la nueva librería, basta para tener el algoritmo
de Dijsktra con colas de prioridad.

Esta modificación en la búsqueda de la etiqueta mínima de los nodos, hace que disminuya la
complejidad computacional. Se tendrá en cuenta que cada operación de eliminación, reubicación o
incorporación de nodos a la pila supone una complejidad de O(logN). Por lo que, al eliminarse un
nodo en cada iteración, y ser N el número total de nodos eliminados, supondrá una complejidad
de O(NlogN). Siendo el número total de nodos reubicados a lo sumo m, se tendrá un coste de
O(mlogN). Si se tienen en cuenta el número de operaciones que se llevan a cabo para el ajuste
de la etiqueta, O(m), se llega a que la complejidad del algoritmo será O(mlogN).

3.3. Algoritmo de Dial

Es otra modificación del algoritmo de Dijkstra, que disminuye su coste computacional ha-
ciendo uso de buckets en la lista de candidatos, creando así una división de la lista.

La idea del algoritmo es guardar para cada posible valor de las etiquetas una lista de los nodos
con ese valor. Será necesario que todos los arcos tengan un costo entero no negativo. Notar que,
al ser todos los costos positivos, una etiqueta finita representa la longitud de un camino sin ciclos,
por lo que las posibles etiquetas estarán en el rango de 0 a (N − 1)C, siendo C el valor máximo
de todos costos asociados a los arcos. Habrá así (N − 1)C + 1 posibles valores de las etiquetas y
a su vez buckets que serán examinados en orden ascendente hasta encontrar uno no vacío.

Los buckets (Bk) pueden pensarse como contenedores en los que están las etiquetas en un
rango de [0, (N − 1)C]. Cada Bk contiene nodos cuya etiqueta tiene valor k.

Inicialmente, se pone 1 en B0 y el resto de buckets estarán vacíos. En la primera iteración, para
todo nodo j con (1, j) ∈ A se añade al bucket Bc1j con etiqueta c1j y a la lista de candidatos V .
Una vez comprobado el B0, se examinará B1. Si está vacío se continua revisando B2, y posteriores
en orden ascendente, si no, se repite el proceso tomando y eliminando de la lista de candidatos
un nodo de etiqueta 1 y moviendo los nodos cuya etiqueta haya cambiado a los correspondientes
buckets de nodos con etiquetas menores. Tener en cuenta que cada iteración se empieza desde
el bucket del que fue extraído el anterior nodo. Como resultado, una vez que se vacía un Bk no
se vuelve a examinar, ya que el nodo eliminado, al tratarse de un algoritmo Dijkstra tiene la
menor etiqueta del resto de nodos en V, y en las siguientes iteraciones no se fijaran valores más
pequeños al tratarse de costos no negativos.

Nº V Etiquetas de
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

Nodo que
iteración los nodos (d) sale de V

1 {1} (0,∞,∞,∞,∞,∞) 1 - - - - - - - - - 1
2 {2,3} (0,5,1,∞,∞,∞) - 3 - - - 2 - - - - 3
3 {2,5} (0,4,1,∞,6,∞) - - - - 2 - 5 - - - 2
4 {5,4} (0,4,1,8,5,∞) - - - - - 5 - - 4 - 5
5 {4,6} (0,4,1,8,5,9) - - - - - - - - 4 6 4
6 {6} (0,4,1,8,5,9) - - - - - - - - - 6 6

∅ (0,4,1,8,5,9)

Tabla 3.2: Aplicación del algoritmo Dial.
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En la tabla 3.2 se puede ver aplicando el algoritmo 3 sobre el grafo de la figura 1.1.
Se puede apreciar que da el mismo resultado en las mismas iteraciones que en al tabla 3.1, pero

con la diferencia de que las etiquetas de este algoritmo están organizadas por grupos de su misma
etiqueta. Sin embargo, este pequeño cambio hace que el número de operaciones sea menor que el
original, ya que se busca el menor Bk no vacío, en lugar de analizar toda la lista de candidatos
en busca del mínimo. En cada iteración, habrá que comprobar si el bucket se encuentra vacío y
si es necesario añadir o quitar nodos, suponiendo cada operación un costo de O(1). El costo de
buscar el mínimo para cada iteración, de forma global cuesta O(NC) ya que hay (N − 1)C + 1
buckets. Además, el número de operaciones para el ajuste de etiquetas tras actualizar los dj , se
ve reflejado en la colocación de cada nodo en su bucket correspondiente y la reposición de estos
en cada iteración se tendrán O(m) operaciones, que junto con las anteriores, se llega a un coste
computacional total de O(m+NC), en donde, si C no es muy grande, comparado con N o logN ,
mejora la complejidad original de los algortimos de Dijkstra y Dijkstra con colas de prioridad.

Algorithm 3: Algoritmo Dial.
V ← {1}
d← [0,∞, . . . ,∞]
B ← [[1][ ][ ] . . . [ ]]
i← 0
while V ̸= ∅ do

while B[i] = ∅ do
Se pasa al siguiente bucket

end
Se extrae un nodo j de V
for todos los elementos j vecinos out de i do

if dj > di + cij and j ̸= 1 then
if dj <∞ then

Extraer j de B[dj ]
end
dj ← di + cij
Se añade j a B[dj ]

end
if dj /∈ V then se añade j a V

end
end
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Capítulo 4

Algoritmos de corrección de etiquetas

Los algoritmos de corrección de etiquetas usan métodos menos sofisticados para realizar la
eliminación del nodo i de la lista de candidatos, que irá unido a un menor costo computacional.
Sin embargo, a diferencia de los algoritmos de asignación de etiquetas, un nodo puede entrar
varias veces en la lista de candidatos. La mayor diferencia que se encuentra en este tipo de
algoritmos es la forma de gestionar la lista de candidatos para añadir y extraer nodos. Para el
desarrollo de los algoritmos a continuación se ha hecho uso de [5, 6].

4.1. Algoritmo de Bellman-Ford

Se trata de un algoritmo que resuelve la ruta mínima desde un nodo inicial 1 a los demás
nodos. Es notable destacar que este algoritmo sí que permite la existencia de costos negativos.

Este método calcula el costo del camino óptimo desde el nodo inicial 1 hasta j para todo
j ∈ N , usando como máximo tantos arcos como número de iteración en la que se encuentra el
algoritmo. Será en la última iteración cuando se fijan los valores finales de la etiquetas, hasta
entonces son tratados como temporales.

Las condiciones iniciales del algoritmo serán las siguientes,

V = {1}, d1 = 0, di =∞ para todo i ̸= 1,

al igual que en los algoritmos previos. La lista de candidatos sigue un orden FIFO (First In First
Out), por lo que el primer nodo en entrar será el primero en abandonarla. En cada iteración, se
eliminarán de la lista de candidatos todos los nodos añadidos en el paso anterior, actualizando
así V en cada iteración, esto puede verse como si el algoritmo trabajara en ciclos de iteraciones.
Para cada nodo i que se extrae de V , se examinan todos los arcos (i, j) ∈ A, comprobando si
dj > di + cij , que en caso de verificarse, se fijará una nueva etiqueta para el nodo j,

dj := di + cij ,

y se añadirá el nodo j al final de la lista de candidatos correspondiente con el nuevo ciclo. Se
harán N iteraciones, donde la última es una comprobación de la existencia de ciclos en el grafo,
dado que si las etiquetas se actualizan en esta última iteración, habrá un ciclo negativo, de lo
contrario, las etiquetas resultantes serán la solución buscada.

En el Algoritmo 4 se muestra el pseudocódigo de este método.
Con el fin de presentar el funcionamiento del algoritmo, será necesario una definición previa

a la proposición, la cual destaca una propiedad que se distingue sobre el resto.

Definición 5. Se denominará como dki a la distancia más corta desde el nodo 1 hasta el nodo i
usando caminos con k arcos o menos. En particular, dki =∞ si no existe un camino de 1 a i con
k arcos o menos, siendo d01 = 0 y d0i =∞ para todo i ̸= 1.

19
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Algorithm 4: Algoritmo Bellman-Ford.
V ← {1}
d← [0,∞, . . . ,∞]

for i in range (N) do
it← 0
lV ← len(V )
while it<lV do

it← it+ 1
Se extrae el primer elemento de V
for todos los nodos j vecinos out de i do

if dj > di + cij then
if i == N − 1 then Existe un ciclo de costo negativo
dj ← di + cij

end
if dj /∈ V then Se añade j a V /* Si j no ha sido añadido */

/* a V en el ciclo actual */

end
end

end

Proposición 4.1. Propiedad de Bellman-Ford Para cada nodo i y k ≥ 1, k ∈ N, se tendrá que
al final del k−ésimo ciclo de iteraciones del método de Bellman-Ford, di ≤ dki .

Demostración. Notar que, dada la definición 5, dk+1
j es la distancia más corta desde el nodo 1

hasta el nodo i usando caminos con k+1 arcos o menos. Es decir, será o la longitud de un camino
desde el nodo 1 al j con k arcos o menos, es decir dkj , o en su defecto, la longitud de un camino
desde el nodo 1 a un predecesor de j, el nodo i y luego llega a j usando el arco (i, j) ∈ A. Esto
es,

dk+1
j := mı́n

{
dkj , mı́n

(i,j)∈A
{dki + cij}

}
, para todo j, k ≥ 1. (4.1)

Se probará la propiedad mediante el método de inducción. Una vez finalizado el primer ciclo de
iteraciones, se tendrá para todo nodo i,

di =


0 si i = 1,

c1i si i ̸= 1 y (1, i) ∈ A,
∞ si i ̸= 1 y (1, i) /∈ A,

d1i =

{
c1i si (1, i) ∈ A,
∞ si (1, i) /∈ A,

de donde se deduce di ≤ d1i para todo i ∈ N . Se supondrá cierto di ≤ dki para todo nodo i.
Se tomará di y V como las etiquetas de los nodos y la lista de candidatos en el k−ésimo ciclo
respectivamente, mientras que d̄i indicará las etiquetas en los nodos al final del ciclo k + 1. Se
busca probar así que d̄i ≤ dk+1

i . Por la proposición 2.1 (b)(iii) se sabe

dj ≤ di + cij , para todo (i, j) ∈ A, i /∈ V. (4.2)

Aplicando que d̄j ≤ dj , se transforma 4.2 en

d̄j ≤ di + cij , para todo (i, j) ∈ A, i /∈ V. (4.3)

Por otro lado, se tiene 4.4 ya que cuando el nodo i es eliminado de la lista de candidatos, la
etiqueta actual denominada d̃i satisface d̃i ≤ di, y la etiqueta de j es fijada a d̃i + cij si excede
d̃i + cij .
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d̄j ≤ di + cij , para todo (i, j) ∈ A, i ∈ V. (4.4)

Combinando así las ecuaciones 4.3 y 4.4,

d̄j ≤ mı́n
(i,j)∈A

{di + cij}
H.I.
≤ mı́n

(i,j)∈A
{dki + cij}, para todo j.

A su vez, se tiene d̄j ≤ dj
H.I.
≤ dkj , de donde se obtiene el paso final

d̄j ≤ mı́n

{
dkj , mı́n

(i,j)∈A
{dki + cij}

}
4.1
= dk+1

j .

Notar que el algoritmo no terminará si y solo si existe un camino que empieza en el nodo 1
y contiene ciclos negativos.

Si todos los costos del grafo son no negativos, se puede asegurar que el algoritmo calculará
el camino dirigido más corto para cada nodo en un máximo de N − 1 iteraciones, dado que
son caminos simples, pudiendo contener a lo sumo los N nodos del grafo. Por la propiedad de
Bellman-Ford 4.1 se puede concluir que si el algoritmo termina después de N − 1 iteraciones,
existe un ciclo negativo en el grafo.

Número de iteración Lista de candidatos (V ) Etiquetas de los nodos(d)

1 {1} (0,5,1,∞,∞,∞)
2 {2,3} (0,4,1,9,6,∞)
3 {4,5,2} (0,4,1,8,5,10)
4 {6,4,5} (0,4,1,8,5,9)
5 {6} (0,4,1,8,5,9)
6 ∅ (0,4,1,8,5,9)

Tabla 4.1: Aplicación del algoritmo de Bellman-Ford.

En la tabla 4.1 se puede ver la aplicación del algoritmo 4.1 sobre el grafo representado en 1.1.
Las etiquetas que aparecen en cada iteración en dicha tabla son las ya actualizadas al finalizar
cada paso. En este ejemplo se puede ver que en efecto los nodos entran varias veces la lista de
candidatos.

Por otra parte, para calcular el coste computacional, se tendrá en cuenta que en el peor de
los casos en cada ciclo de iteración el algoritmo tendrá una complejidad O(m) de actualizar
etiquetas y de O(N) de tomar los nodos de la lista, siendo el ciclo de iteración una complejidad
O(m). Teniendo en cuanta el número total de ciclos, que a lo sumo serán N , se obtiene un coste
computacional de O(mN).

4.2. Algoritmo D’Esopo-Pape

Se trata también de una modificación del algoritmo genérico, por lo que las condiciones
iniciales serán las mismas, no obstante la lista de candidatos seguirá un orden específico.

El nodo extraído será el primero de la lista, sin embargo para los nodos que se añaden a V se
distinguirá en dos casos, si ese nodo nunca ha estado en la lista de candidatos, se añadirá al final
esta, por el contrario, si ya ha estado en V , el nodo será añadido al principio de este mismo. Se
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hace de esta manera ya que cuando se elimina un nodo i de V , su etiqueta afectará a los nodos
j tal que (i, j) ∈ A pudiendo verse modificadas así sus correspondientes etiquetas. Si se vuelve a
renovar la etiqueta del nodo i, es posible que también lo hagan la de los j dados, por lo que serán
añadidos al principio de la lista, para poder así actualizar las etiquetas lo más rápido posible.

Algorithm 5: Algoritmo D’Esopo-Pape.
V ← {1}
d← [0,∞, . . . ,∞]
M ← mı́n{−1, (N − 1) mı́n

(i,j)∈A
cij}

while V ̸= ∅ do
Se extrae el primer elemento de V
for todos los nodos j vecinos out de i do

if dj > di + cij and j ̸= 1 then
if dj /∈ V then

if dj <∞ then Se añade j al comienzo de V
else Se añade j al final de V

end
dj ← di + cij
if dj < M then STOP

end
end

end

La resolución del problema habitual se muestra en la tabla 4.2. En esta tabla se ve en la lista
de candidatos los nodos que entran marcados en color, distinguiendo entre el verde para los que
entran por primera vez y se colocan al final de la fila y el rojo para los nodos que ya habían
entrado en V , colocándose así en cabeza. Al ser un algoritmo de corrección de etiquetas, se puede
apreciar como hay nodos que entran la lista de candidatos varias veces.

Número de Lista de Etiquetas de Nodo que
iteración candidatos (V ) los nodos (d) sale de V

1 {1} (0,∞,∞,∞,∞,∞) 1
2 {2,3} (0,5,1,∞,∞,∞) 2
3 {3,4,5} (0,5,1,9,6,∞) 3
4 {2,4,5} (0,4,1,9,6,∞) 2
5 {4,5} (0,4,1,8,5,∞) 4
6 {5,6} (0,4,1,8,5,10) 5
7 {6} (0,4,1,8,5,10) 6

∅ (0,4,1,8,5,9)

Tabla 4.2: Aplicación del algoritmo D’Esopo-Pape.

Este algoritmo tiene una complejidad exponencial debido que el número de entradas de
algunos nodos a la lista de candidatos puede llegar a ser no polinomial. En [7] y [8] se proponen
problemas de ruta mínima donde este hecho se pone en manifiesto. Sin embargo, existen variantes
de este algoritmo con complejidades polinómicas, estas pueden consultarse en [9] y [10].



Algoritmos para el problema de ruta mínima - Marta Sáenz Diez 23

4.3. Algoritmo Small Label First (SLF)

Este algoritmo intenta colocar los nodos con etiquetas más pequeñas al comienzo de la lista
de candidatos. Cuando todos los costos asociados a los arcos son no negativos, suele reducir el
número de veces que entra un nodo a la lista de candidatos [11].

Se trata de una modificación del algoritmo genérico, siendo así las condiciones iniciales las
mismas. En cada iteración se extrae de la lista de candidatos el primer nodo, mientras que el
nodo j que se añade a V , será comparado con el nodo inicial de la lista de candidatos mediante
sus respectivas etiquetas. Sea i el primer nodo de V , j es añadido al inicio de V si dj ≤ di, en su
defecto, j es añadido al final de la lista de candidatos.

Notar que cuanto más pequeña fuera la etiqueta del nodo j en la anterior extracción de la
lista de candidatos, será menos probable que se actualice dj . En particular, si cij ≥ 0 y además,

dj ≤ mı́n
i∈V

di,

ningún i ∈ V tal que (i, j) ∈ A cumplirá di + cij < dj .
Este método simula la política del algoritmo de Dijkstra de selección del nodo con etiqueta

mínima pero con menos operaciones, además de ser aptos para costos negativos.
Se trata de un algoritmo cuya complejidad computacional es no polinomial, aunque se puede

construir una versión del algoritmo que tendrá complejidad polinomial, O(Nm2) [12].
En la tabla 4.2 se puede ver la aplicación del Algoritmo 6 sobre el problema habitual. Los

nodos de color rojo son los que se añaden al principio de la lista de candidatos por ser su etiqueta
menor que la de su primer nodo, mientras que los de color verde son los que su etiqueta es menor.

Algorithm 6: Algoritmo SLF.
V ← {1}
d← [0,∞, . . . ,∞]
M ← mı́n{−1, (N − 1) mı́n

(i,j)∈A
cij}

while V ̸= ∅ do
Se extrae el primer elemento de V
for todos los nodos j vecinos out de i do

if dj > di + cij and j ̸= 1 then
dj ← di + cij
if dj < M then

STOP
end
if len(V ) == 0 then

Se añade j a V
else if dj /∈ V then

if dj ≤ di then Se añade j al comienzo de V
else Se añade j al final de V

end
end

end
end
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Número de Lista de Etiquetas de Nodo que
iteración candidatos (V ) los nodos (d) sale de V

1 {1} (0,∞,∞,∞,∞,∞) 1
2 {3,2} (0,5,1,∞,∞,∞) 3
3 {2,5} (0,4,1,∞,6,∞) 2
4 {5,4} (0,4,1,8,5,∞) 5
5 {4,6} (0,4,1,8,5,9) 4
6 {6} (0,4,1,8,5,9) 6

∅ (0,4,1,8,5,9)

Tabla 4.3: Aplicación del algoritmo SLF.



Capítulo 5

Estudio computacional

En este capítulo se lleva a cabo la comparación del comportamiento de los algoritmos estu-
diados a lo largo del trabajo mediante unos problemas test, creados a través de un generador de
redes de problema de ruta mínima1 proporcionado por el director del Trabajo de Fin de Grado.
Los algoritmos se han implementado utilizando el lenguaje de programación Python [13].

Este generador crea redes en forma de rejilla, que contendrán l×k+2 nodos, correspondiendo
a las filas l y columnas k, respectivamente. A dicha red se le añaden dos nodos que se unen con
la primera y última columna, siendo así el nodo inicial y final. Los arcos tienen una probabilidad
mayor de avanzar hacia delante en la red, aunque tienen la posibilidad de retroceder en las
columnas o quedarse en la misma que ya estaban. El número total de arcos se establece en
proporción a la densidad de la red, es decir, se proporciona una densidad α y se generan α·n(n−1)
arcos, una proporción α sobre el número máximo de aristas posibles, n(n−1), que son distribuidos
de forma uniforme.

Por ejemplo, para una red con 30 nodos, el número máximo de arcos es 870, y tomando una
densidad del 5% se tendrá una red con 43.5 ≈ 44 arcos, que supondrá que de cada nodo saldrán
1 o 2 arcos.

En el estudio, se va a tener en cuenta el número de nodos, densidad y forma de la red. Para
empezar se diferenciará en 3 cantidades de nodos diferentes, que serán 100, 500 y 1000. Por otro
lado, se aplicarán tres densidades diferentes, 5%, 10% y 25%, y por último se distinguirá 7
formas de redes. Con el objetivo de simplificar la notación en la representación de la forma, se
tomará a×b siendo la proporción entre l y k respectivamente, así las formas de las redes tomadas
serán 1×6, 1×4, 1×2, 1×1, 2×1, 4×1, 6×1. Para cada tipo de red, se generan 30 problemas con
costos positivos y se resuelven con cada algoritmo estudiado, guardando el tiempo de ejecución
en milisegundos para su posterior estudio con R-Commander, donde se generarán las gráficas y
tablas de las figuras 5.1 y 5.2 y del Anexo B.

En la figura 5.1 se representa el tiempo medio de ejecución de cada algoritmo, diferenciando
entre el número de nodos, densidad, y formato. A continuación se comentará el comportamiento
de los algoritmos en las distintas situaciones dadas.

Según el número de nodos, es decir, comparando la evolución de las gráficas de la figura 5.1
a través de las diferentes filas, se aprecia que el algoritmo general es el peor, sobretodo para
densidades mayores. La variación de esta variable provoca un aumento en el tiempo de ejecución
de los algoritmos significativo. El algoritmo Dial, con pocos nodos, obtiene tiempos mayores que
el resto de algoritmos, pero a medida que va aumentando el número de nodos, sus resultados
mejoran, convirtiéndose en un algoritmo muy competente. Esto podría reflejar el término lineal
en el número de nodos de su complejidad.

Por el contrario, el algoritmo Heap, se comporta adecuadamente con un número de nodos
inferior, pero a medida que aumenta, empeora drásticamente, lo que se puede deber a que la
implantación del paquete heapq no esté muy optimizada. El resto de algoritmos se comportan

1En el Anexo B se explica brevemente el funcionamiento del generador
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Figura 5.1: Gráfica de medias del tiempo en milisegundos de cada algoritmo estudiado por el
tipo de formato. Cada fila representa la cantidad de nodos, siendo 100, 500 y 1000
respectivamente, y cada columna representará la densidad, que serán 5, 10 y 25.
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de forma uniforme con el aumento de nodos, ya que los algoritmos de Dijkstra, Bellman-Ford,
D’Esopo-Pape y SLF son los que mejores tiempos obtienen, incorporándose el algoritmo Dial a
los algoritmos competitivos para redes con abundancia de nodos.

Si se contrasta el desarrollo de las gráficas a través de las columnas, es decir, teniendo en
cuenta el aumento de la densidad (aumento en el número de arcos), se percibe un sutil aumento
del tiempo de resolución, sobretodo para el algoritmo genérico y el Heap. Se puede apreciar que
el algoritmo Dial y el algoritmo de Dijkstra pasan a ser los más competitivos para redes densas.

Por último, con respecto a la forma de las redes, es decir, el desarrollo a lo largo de cada una
de las gráficas, se puede apreciar que no presenta un patrón aparente, pero para cada cantidad de
nodos, da problemas una forma distinta. Para 100, la forma 1× 6 tiene un tiempo de resolución
mucho mayor que el resto de las formas, para 500, resaltan la forma 2 × 1 y 1 × 1 cuando su
densidad aumenta, y por último, para 1000, destaca 1× 4.
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Figura 5.2: Gráfica de medias del tiempo en milisegundos de cada algoritmo estudiadas por la
diferencia de densidad: 5, 10 y 25.

Por último se ha generado una colección de problemas test en los que aparecen costos nega-
tivos, para evaluar la rapidez con la que los algoritmos detectan la existencia de ciclos negativos
dentro de las redes. Por esto, solo se ha estudiado con los algoritmos que permiten este tipo de
costos, a excepción del algoritmo genérico, ya que en el estudio previo se ha determinado que
es el que peor resultados obtiene. Se han considerado redes de 100 nodos en forma 1 × 4, con
densidades de 5%, 10% y 25%, en la figura 5.2 se puede observar el tiempo medio que tarda
cada algoritmo en detectar la existencia de los ciclos negativos, si los hay.

Se puede apreciar que a medida que la densidad aumenta, el tiempo para detectar el ciclo
lo hace también, aunque en el algoritmo de D’Esopo-Pape el crecimiento es mucho mayor. El
algoritmo de Bellman-Ford es el que obtiene mejores resultados, siendo el crecimiento del tiempo
muy sutil en el cambio de la densidad.

Tras el estudio realizado se puede concluir que para redes muy densas cuyos costos son
positivos y con muchos nodos los algoritmos más competitivos serán el Dijkstra, Dial y SLF,
mientras que para redes con pocos nodos y no densas se vuelve a recomendar el uso de los
algoritmos de Dijkstra y SLF además de D’Esopo-Pape y Bellman-Ford. Es decir, para costos
positivos en general se recomienda el algoritmo de Dijkstra y SLF o D’Esopo, siendo estos dos
últimos modificaciones del algoritmo genérico, cuyas ideas subyacentes son heurísticas. Por otro
lado para redes que contienen costos negativos, el algoritmo que mejores resultados obtendrá
será el de Bellman-Ford, ya que en caso de contener ciclos, será capaz de detener el algoritmo
mucho antes que los restantes.
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Apéndice A

Programación lineal. Dualidad

Definición 6. Un problema de programación lineal se dice que está de forma simétrica si todas
las variables están restringidas a ser no negativas, y todas las restricciones son de tipo ’≤’ en
caso de tratarse de un problema de máximo, o de tipo ’≥’ en caso de mínimo, es decir:

(Pmax)


máx Z = cx

sujeto a: Ax ≤ b

x ≥ 0

(Pmin)


mı́n Z = cx

sujeto a: Ax ≥ b

x ≥ 0.

(A.1)

Dado un problema de programación lineal en forma simétrica de máximo, (Pmax) en A.1 su
problema dual asociado será el definido a continuación.

(Dmin)


mı́n G = bTw

sujeto a: ATw ≥ cT

w ≥ 0.

Las variables de holgura de los problemas (Pmax) y (Dmin) se agregan a las restricciones de
tipo desigualdad del problema con el fin de convertirlas en una igualdad. Se denomina u a las
variables de holgura del problema primal y v a las del dual.

Teorema A.1 (Condiciones de Holgura Complementaria). Dadas x̄ y w̄ soluciones factibles de
los problemas simétricos de máximo y su dual, entonces x̄ y w̄ serán soluciones óptimas para sus
problemas respectivos si y solo si (w̄TA− c)x̄+ w̄T (B −Ax̄) = 0.

Haciendo uso de las fórmulas que hay a continuación, el teorema A.1 tomará la forma del
teorema 1.1.

Sean x̄, w̄ soluciones factibles y ū, v̄ holguras del problema primal y dual respectivamente,
entonces x̄ ≥ 0, w̄ ≥ 0, ū ≥ 0, v̄ ≥ 0.

(Pprimal)


máx Z = cx

sujeto a: Ax̄+ ū = b

x̄ ≥ 0

(Ddual)


mı́n G = bT w̄

sujeto a: AT w̄ − v̄ = cT

w̄ ≥ 0

A partir de (w̄TA− c)x̄+ w̄T (B −Ax̄) = w̄T ū+ v̄Tx, se tiene w̄T ū = 0 y v̄T x̄ = 0 que
puede expresarse de forma equivalente como:{

x̄j v̄j = 0, j = 1, . . . , n

w̄iūi = 0, i = 1, . . . ,m.

31



32 Capítulo A. Programación lineal. Dualidad

La expresión sobre la cual se ha deducido esta condición, viene dada por propiedades previas
de holgura complementaria, donde se afirma que si x̄ e w̄ son soluciones factibles a dichos
problemas entonces x̄ e w̄ son soluciones óptimas respectivamente si y solo si verifican
(w̄TA− c)x̄+ w̄T (B −Ax̄) = 0.



Apéndice B

Problemas test y resultados

A continuación se explicará con mas detalle el generador de problemas test utilizados para el
análisis del comportamiento de los algoritmos. Esta información ha sido aportada por el director
del trabajo.

Esta aplicación genera una red de tipo rejilla con, inicialmente l × k nodos distribuidos en l
filas y k columnas. A estos se añade un nodo previo a los nodos de la primera columna, nodo 0,
y un nodo posterior a los l nodos de la última columna, nodo l × k + 1.

La red genera m arcos, l desde el nodo 0 a cada uno de los nodos de la primera columna y
otros desde los nodos de la última columna hasta el nodo l×k+1. Para los restantes m−2·l arcos,
se calcula la parte entera de (m − 2 · l)/(l · k), y ese número representarán los arcos salientes
de cada uno de los nodos de la rejilla. Para que cuadre exactamente m arcos, se completará
introduciendo aleatoriamente tantos arcos como sea necesario hasta llegar a los m.

Para generar los arcos que salen de cada uno de los l × k nodos de la rejilla, se toma dicho
nodo asumiendo que se encuentra en la posición (i, j) de dicha rejilla. Primero se sortea si el
nuevo arco va a otra columna diferente de la del nodo actual, con probabilidad p, que se tomará
con un valor de 0.8; o si el arco va a un nodo dentro de la misma columna y distinta fila, con
probabilidad 1− p, es decir, de 0.2.

Si se obtiene que el nuevo arco finaliza en una columna diferente a la del nodo actual, se
genera una distribución de probabilidad que permite saltar desde la columna actual a cada una
de las otras columnas de forma que la probabilidad depende de la distancia a la columna actual,
ya sea hacia adelante o hacia atrás. En este caso se ha tomado que en una misma distancia, si
el arco va hacia el nodo final, es decir, hacia la derecha, tiene el triple de probabilidad que si
va hacia el nodo inicial. Además, al incrementar en uno la distancia, la probabilidad de salto
disminuirá a la mitad. Por el contrario, si se decide que el nodo se mantiene en la misma columna,
la nueva fila se sortea equiprobablemente entre el resto de filas de la columna.

Los arcos que se añaden para llegar a los m una vez introducidos los arcos que obligatoria-
mente salen de cada nodo de la rejilla, se generan tomando un nodo inicial aleatorio dentro de las
k − 1 columnas y el segundo nodo se genera en una fila aleatoria que será a su vez equiprobable
entre todas y una columna posterior a la del nodo seleccionado, con un salto máximo de comunas
equivalente a máx{1, int(0.1 · k)}.

Los costos asociados a cada arco se generan de una distribución de valores enteros y equipro-
bables entre dos ya marcados, ambos incluidos, que se han fijado en 1 y 100 para los problemas
con costos positivos y −5 y 95 para las redes con costos negativos que se han tomado. Esta red
es almacenada en un fichero en el formato Dicmacs.

A continuación se encuentran las tablas resúmenes de los distintos tipos de redes estudiadas,
distinguiendo en la densidad y cantidad de nodos en cada una de ellas. Destacar que para cada
tipo de red se han creado 30 problemas tests sobre los que se implementará el algoritmo. En cada
tabla se observa el tiempo medio de resolución de cada uno de los algoritmos en milisegundos
en función del formato de la red. Estas tablas representan los mismos datos que los dados en las
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figuras 5.1 y 5.2, pero permiten un análisis más preciso.
Primero se tiene en cuenta las redes con todos sus costos positivos.

Para N = 100

• Para Densidad= 5.

Forma
Algoritmo 1× 6 1× 4 1× 2 1× 1 2× 1 4× 1 6× 1
Gen 4.9433833 3.4138467 2.6828633 3.2614500 6.2289933 2.0421967 2.3872333
Dij 2.4975833 1.0076167 0.9848600 1.1361100 1.2447033 1.4181200 1.5393533
Dial 31.2120867 10.2679567 8.3245633 9.8686567 9.2561100 6.9307567 17.3926300
Heap 1.2535033 2.5850767 1.5511700 1.8510900 1.7617600 1.2421967 1.5392467
Bell 0.8908433 0.9614400 0.9212033 0.6964067 1.0394400 1.2004667 2.1544167
Esopo 0.7825833 0.9391867 1.7036733 0.9820000 2.3795367 1.5925900 1.1816000
SLF 1.0910867 0.7840067 0.7864600 2.9531867 0.9754067 0.7910133 0.9825033

Tabla B.1: Tabla estadística que representa la media del tiempo en milisegundos para N = 100
y Densidad= 5%.

• Para Densidad= 10.

Forma
Algoritmo 1× 6 1× 4 1× 2 1× 1 2× 1 4× 1 6× 1
Gen 14.121550 5.323403 4.352643 5.173990 8.637717 3.634133 4.358157
Dij 3.528117 1.195700 1.513000 1.645350 2.668463 2.603463 2.012403
Dial 36.691620 17.259853 11.463627 9.612643 8.742570 8.856943 7.690390
Heap 5.076380 5.737680 2.497570 2.757870 2.763697 2.326600 2.700243
Bell 2.694350 1.790510 1.511783 1.118033 2.891327 1.738577 3.672987
Esopo 2.685067 1.471770 2.197087 1.729927 3.670133 2.412363 1.554737
SLF 4.232260 1.439470 1.439173 1.784423 1.475430 1.417370 2.430053

Tabla B.2: Media del tiempo en milisegundos para N = 100 y Densidad= 10%.

• Para Densidad= 25.

Forma
Algoritmo 1× 6 1× 4 1× 2 1× 1 2× 1 4× 1 6× 1
Gen 39.024363 10.362870 7.415030 9.243660 13.863080 6.913957 8.831767
Dij 16.252230 1.917113 2.349630 2.398047 3.332830 2.803260 2.724463
Dial 35.802567 11.880840 9.889510 10.041813 11.204020 8.241577 13.497870
Heap 13.860167 7.836580 4.833993 5.131047 8.451633 3.453290 4.869013
Bell 7.280280 3.414790 2.786890 2.556047 5.164390 3.297217 7.276727
Esopo 6.367487 3.097807 3.603093 3.530517 6.183033 4.399310 4.184737
SLF 7.746573 2.438193 2.510293 7.787557 2.502187 2.618727 3.638220

Tabla B.3: Media del tiempo en milisegundos para N = 100 y Densidad= 25%.

Para N = 500

• Para Densidad= 5.
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Forma
Algoritmo 1× 6 1× 4 1× 2 1× 1 2× 1 4× 1 6× 1
Gen 146.87948 231.71308 187.75016 162.42901 284.36810 129.17379 122.36780
Dij 34.02096 16.20041 18.93551 37.88086 33.83091 41.55234 37.40422
Dial 65.26186 67.94711 64.56541 67.65150 96.80110 64.09599 67.33806
Heap 104.37202 99.88700 120.93618 86.36102 97.98055 81.20279 98.01178
Bell 31.41976 29.72975 30.49598 16.76068 53.73594 28.25483 36.96791
Esopo 34.05244 27.88661 23.85529 15.29160 49.90568 26.67922 40.96178
SLF 45.62452 18.66935 37.07670 22.01906 23.85098 32.43326 36.83684

Tabla B.4: Media del tiempo en milisegundos para N = 500 y Densidad= 5%.

• Para Densidad= 10.

Forma
Algoritmo 1× 6 1× 4 1× 2 1× 1 2× 1 4× 1 6× 1
Gen 283.17220 270.24234 300.75959 206.49235 378.78770 142.32770 192.42838
Dij 27.38667 20.74221 28.74934 45.66189 48.85034 46.91512 42.62307
Dial 77.27568 83.85945 66.43727 62.76419 84.14583 54.69922 82.98500
Heap 117.33630 173.31925 163.75290 114.31767 143.20863 104.29336 129.62983
Bell 46.00560 39.55882 46.10512 41.97179 83.66775 51.29028 92.24667
Esopo 42.75253 27.92060 49.94408 41.44378 74.90775 45.37160 51.71502
SLF 69.06445 42.59004 47.17327 39.16109 36.70338 41.92610 43.37764

Tabla B.5: Media del tiempo en milisegundos para N = 500 y Densidad= 10%.

• Para Densidad= 25.

Forma
Algoritmo 1× 6 1× 4 1× 2 1× 1 2× 1 4× 1 6× 1
Gen 390.60683 321.92775 330.74715 983.94711 547.51783 222.99194 301.51632
Dij 49.89059 56.27866 50.00214 139.59553 79.29547 77.98803 69.07425
Dial 100.17582 107.86998 95.48505 169.15405 167.36098 83.59601 109.67623
Heap 192.22355 225.36473 249.65763 479.00798 227.00526 154.93527 181.91381
Bell 101.23848 100.83735 84.95960 113.75162 143.69078 105.33049 139.40830
Esopo 92.37939 105.23087 85.68959 83.66933 162.56531 77.09639 112.24787
SLF 121.85680 79.81055 99.35306 139.61136 70.27395 83.72806 91.72396

Tabla B.6: Media del tiempo en milisegundos para N = 500 y Densidad= 25%.

Para N = 1000

• Para Densidad= 5.
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Forma
Algoritmo 1× 6 1× 4 1× 2 1× 1 2× 1 4× 1 6× 1
Gen 840.4164 1407.12187 999.49124 938.1866 1010.5278 775.8545 694.8643
Dij 103.2384 71.58635 95.88300 135.7490 112.4831 160.2048 186.5426
Dial 138.7218 171.40885 142.18029 160.1962 116.4923 131.8441 187.9273
Heap 470.0631 676.44435 602.64390 527.3678 434.5030 450.3304 529.6186
Bell 185.4344 140.95666 121.37230 110.3620 170.8471 154.6204 199.0977
Esopo 133.1537 84.16786 82.40359 105.1826 178.4629 149.2580 130.9520
SLF 168.5073 104.07238 127.59259 138.3905 100.1240 144.5655 165.4383

Tabla B.7: Media del tiempo en milisegundos para N = 1000 y Densidad= 5%.

• Para Densidad= 10.

Forma
Algoritmo 1× 6 1× 4 1× 2 1× 1 2× 1 4× 1 6× 1
Gen 1312.1108 1701.73187 1461.87461 1237.0762 879.4927 886.9374 895.6284
Dij 110.8332 89.87194 89.78103 163.5117 235.7451 188.9447 231.2931
Dial 211.6824 232.89590 161.62963 178.2123 202.0085 226.3554 208.2938
Heap 626.8365 793.81802 678.52003 625.9275 564.7822 621.4377 568.7393
Bell 243.1595 194.82609 250.66439 181.8565 195.3071 199.3022 222.4877
Esopo 212.1692 106.18269 117.02600 149.8923 177.9223 205.7446 196.9558
SLF 167.0752 98.15223 113.13559 157.5725 139.7641 212.0660 183.7871

Tabla B.8: Media del tiempo en milisegundos para N = 1000 y Densidad= 10%.

• Para Densidad= 25.

Forma
Algoritmo 1× 6 1× 4 1× 2 1× 1 2× 1 4× 1 6× 1
Gen 1359.3315 1468.4184 1700.3284 1465.1374 1206.1127 1323.9907 1270.3655
Dij 203.3756 223.9715 189.7181 325.3818 281.8745 347.0623 303.1404
Dial 346.6228 344.6434 261.4775 299.0959 247.4207 260.6279 366.6635
Heap 737.0820 833.8920 847.6045 940.4855 739.4373 777.5109 885.4802
Bell 365.8079 347.6245 366.5095 317.7303 295.8496 365.4115 425.3093
Esopo 361.0376 403.5775 265.6948 327.8105 389.8034 342.8026 421.7340
SLF 279.1620 284.8404 274.2223 315.6332 236.4630 318.9357 389.5721

Tabla B.9: Media del tiempo en milisegundos para N = 1000 y Densidad= 25%.

A continuación se tiene la tabla para el estudio de las redes con costos negativos, que repre-
sentan el tiempo medio que tarda cada algoritmo en detectar un ciclo en la red dada.

Densidad
Algoritmo 5 10 25
Bell 20.73292 49.93673 94.7648
Esopo 145.08446 325.24244 882.0578
SLF 67.65166 108.00250 354.8277

Tabla B.10: Media del tiempo en milisegundos para N = 100 y Forma= 1× 4.



Apéndice C

Implementación de los algoritmos

En este apéndice se pueden encontrar la implementación de los algoritmos explicados previa-
mente, y el lector de ficheros Dicmacs programados con el lenguaje Python.

C.1. Lectura ficheros Dicmacs

Función que lee los datos de un archivo en formato Dicmacs[14].

import numpy as np

def datos(nombre_archivo):
try:

#Se inicializan el contador de arcos, y la cantidad total de arcos y nodos
contador=0
marcos=0
nodos=0

#Abre y lee el archivo de texto. Lee cada línea, si está vacía o con espacio,
#continua sino guarda la primera letra.
with open (nombre_archivo,'r') as archivo:

for linea in archivo:
if not linea.strip():

continue
primera_letra = linea[0]

#Si la letra es 'p', se guarda el número total de nodos y arcos y se crean
#los vectores donde se guardarán el origen, destino y costo de los nodos.
if primera_letra == 'p':

l=linea.split()
nodos=int(l[2])
marcos=int(l[3])
start=np.zeros(marcos).astype(int) #pasa de variable a número
end=np.zeros(marcos).astype(int)
c=np.zeros(marcos).astype(int)

#Si la letra es 'a', se guarda la información de los arcos en los vectores
#especializados para ello.
if primera_letra == 'a':

l=linea.split()
start[contador]=int(l[1])
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end[contador]=int(l[2])
c[contador]=int(l[5])
contador=contador+1

else:
continue

#Se crean las listas de adyacencia y se añaden los arcos correspondientes
#de cada nodo.
IN=[]
OUT=[]
for i in range (nodos):

IN.append([])
OUT.append([])

for i in range (contador):
IN[end[i]].append(i)
OUT[start[i]].append(i)

except FileNotFoundError:
print("El archivo '{}' no se encontró.".format(nombre_archivo))

#Se devuelven las siguientes variables cuando se llame a la función.
return IN,OUT,c,marcos,nodos,start,end

C.2. Algoritmo Genérico

Programa que ejecuta el algoritmo genérico explicado en el Capítulo 2 y devuelve por pantalla
las distancia mínima que hay del nodo inicial a cada uno de los nodos pertenecientes al grafo y
el tiempo de ejecución de dicho programa.

import sys
import numpy as np
from math import inf
import random
import time

#Se carga la función 'datos', guardada en el fichero 'funciondatos', y se llama a
#dicha función, que leerá los datos del fichero de texto que se meta por pantalla.
import funciondatos
iname=input('Nombre del fichero de datos: ')
(IN,OUT,c,marcos,nodos,start,end)=funciondatos.datos(iname)

#Variable que indica cuando empieza a contar el tiempo.
inicio = time.perf_counter_ns()
#Se define V como una lista vacía, a la que se va añadiendo e eliminando elementos durante
#el programa. Se inicializa V={0}.
V=[]
V.append(0)
#Se define d como el vector de etiquetas. Se inicializa el vector, siendo todos sus valores
#igual a infinito menos el del nodo inicial, que será 0.
d=[inf]*nodos
d[0]=0
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#Se define M, constante para detectar la presencia de ciclos negativos.
M=min(-1,(nodos-1)*min(c))

#Se hacen iteraciones mientras la longitud del vector V sea mayor que 0.
while len(V)>0:

i=V.pop(random.randint(0, len(V)-1)) #elimina un nodo aleatorio de V.

#Para cada arco saliente del nodo eliminado se comprueban las CHC:
for a in OUT[i]:

if d[end[a]]>d[start[a]]+c[a] and end[a]!=0:
d[end[a]]=d[start[a]]+c[a]
#Detecta la presencia de un ciclo y para el algoritmo.
if min(d)<M:

sys.exit()
#Se añade el nodo a la lista si no estaba ya en ella.
if end[a] not in V:

V.append(end[a])

fin = time.perf_counter_ns()
print('Las distancias mínimas del nodo 1 a todos los demás son:',d,'\n',

'El tiempo de ejecución fue:', (fin - inicio)/1000000 ,'milisegundos')

C.3. Algoritmo de Dijkstra

Programa que ejecuta el algoritmo de Dijkstra descrito en el Sección 3.1 y devuelve por
pantalla las distancia que hay del nodo inicial a cada uno de los nodos pertenecientes al grafo.

En este programa y en los posteriores se explicarán solamente las partes que se han alterado,
el resto de aclaraciones han sido omitidas para evitar la repetición. Por esta razón también
se ha prescindido de medir el tiempo de ejecución, en caso de desear hacerlo, se utilizarán el
procedimiento realizado en el algoritmo genérico.

import sys
import numpy as np
from math import inf

import funciondatos
iname=input('Nombre del fichero de datos:')
(IN,OUT,c,marcos,nodos,start,end)=funciondatos.datos(iname)

#comprueba si existe algun c_ij >=0, si es así se para el algoritmo.
if c.any()<0:

sys.exit()
V=[]
V.append(0)
d=[inf]*nodos
d[0]=0

while len(V)>0:
#se inicializa el mínimo antes del bucle, se escoje el la menor etiqueta de los nodos
#de V y se elimina dicho nodo de V j de V.
minimo=inf
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for j in V:
if d[j] < minimo:

minimo=d[j]
sale=j

V.remove(sale)

for a in OUT[sale]:
if d[end[a]]>d[start[a]]+c[a] and end[a]!=0:

d[end[a]]=d[start[a]]+c[a]
if end[a] not in V:

V.append(end[a])
print ('Las distancias mínimas del nodo 1 a todos los demás son:',d)

C.4. Algoritmo de Dijkstra con cola de prioridad

Programa que ejecuta el algoritmo de Dijkstra con colas de prioridad detallado en el Sección
3.2 y devuelve por pantalla las distancia que hay del nodo inicial a cada uno de los nodos
pertenecientes al grafo.

import sys
import heapq
import numpy as np
from math import inf

import funciondatos
iname=input('Nombre del fichero de datos: ')
(IN,OUT,c,marcos,nodos,start,end)=funciondatos.datos(iname)

if c.any()<0:
sys.exit()

d=[inf]*nodos
d[0]=0
#Se inicializa y define la pila como una lista de tuplas, que tendrán como segundo elemneto
#los nodos de V, y como primero sus etiquetas.
pila=[(0,0)]

#Se hacen iteraciones mientras que la longitud de la pila sea mayor que 0 (ya que V es el
#conjunto de los segundos componentes de las tuplas de la pila).
while len(pila)>0:

#Elimina de la pila la tupla con el primer elemento más pequeño (nodo con menor etiqueta).
D,i=heapq.heappop(pila)

for a in OUT[i]:
if d[end[a]]>d[start[a]]+c[a] and end[a]!=0:

d[end[a]]=d[start[a]]+c[a]
#Se comprueba que el nodo eliminado de la pila no pertenezca a V y en ese
#caso se añade.
if all (tupla[1]!=end[a] for tupla in pila):

heapq.heappush(pila,(d[end[a]],end[a]))
print ('Las distancias mínimas del nodo 1 a todos los demás son:',d)
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C.5. Algoritmo Dial

Programa que ejecuta el algoritmo Dial explicado en la Sección 3.3 y devuelve la distancia
mínima del nodo inicial a todos los nodos de la red.

import sys
import numpy as np
from math import inf
import funciondatos
iname=input('Nombre del fichero de datos: ')
(IN,OUT,c,marcos,nodos,start,end)=funciondatos.datos(iname)
#comprueba si existe algun c_ij>=0 o no entero, si es así se para el algoritmo

if c.any()<0 or (all(isinstance(x, np.int32) for x in c))==False:
sys.exit()

V=[]
V.append(0)
d=[inf]*nodos
d[0]=0
#Se inicializan los buckets, la cota y el contador de índices de buckets.
C=(nodos-1)*max(c)
B=[[]for _ in range(C+1)]
B[0].append(0)
indice=0

while len(V)>0:
#Si el bucket contiene algún nodo, para y examina, si está vacío pasa al sigueinte.
#Si ya ha examinado todos, para el bucle.
while len(B[indice])==0:

indice+=1
if indice==C+1:

break
#se elimina un nodo del bucket (da igual cual ya que todos tienen la misma etiqueta)
#y a su vez de V.
sale=B[indice].pop(0)

V.remove(sale)
for a in OUT[sale]:

if d[end[a]]>d[start[a]]+c[a] and end[a]!=0:
#si la distancia no es infinito, está contenido en otro bucket, por lo que
#habrá que eliminarlo previamente para después poder añadirlo.
if d[end[a]]!=inf:

B[d[end[a]]].remove(end[a])
#Se actualiza la distancia y se añade el nodo al bucket.
d[end[a]]=d[start[a]]+c[a]
B[d[end[a]]].append(end[a])
if end[a] not in V:

V.append(end[a])
print ('Las distancias mínimas del nodo 1 a todos los demás son:', d)
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C.6. Algoritmo de Bellman-Ford

Se trata de un programa que ejecuta el algoritmo de Bellman-Ford, detallado en la Sección
4.1 del trabajo. Este programa devuelve la distancia mínima entre el nodo inicial tomado y el
resto de nodos pertenecientes a la red.

import sys
import numpy as np
from math import inf

import funciondatos
iname=input('Nombre del fichero de datos: ')
(IN,OUT,c,marcos,nodos,start,end)=funciondatos.datos(iname)

V=[]
V.append(0)
d=[inf]*nodos
d[0]=0

#Se hacen tantas iteraciones como nodos hay en el grafo
for i in range(nodos):

it=0
long=len(V)
#Se hacen tantas iteraciones como nodos había en V al final de la iteración anterior
while it< long:

it+=1
j=V.pop(0)

for a in OUT[j]:
if d[end[a]]>d[start[a]]+c[a]:

#Si en la iteracón N cambia, existe un ciclo negativo
if (i==nodos-1):

print('En el grafo hay al menos un ciclo negativo')
sys.exit()

d[end[a]]=d[start[a]]+c[a]
if end[a] not in V:

V.append(end[a])
print ('Las distancias mínimas del nodo 1 a todos los demás son:', d)

C.7. Algoritmo D’Esopo-Pape

Programa que desarrolla el algoritmo especificado en la Sección 4.2, es decir, el D’Esopo Pape,
devolviendo la distancia mínima entre el nodo inicial y el resto de ellos.

import sys
import numpy as np
from math import inf

import funciondatos
iname=input('Nombre del fichero de datos: ')
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(IN,OUT,c,marcos,nodos,start,end)=funciondatos.datos(iname)

V=[]
V.append(0)
d=[inf]*nodos
d[0]=0

while len(V)>0:
#coge un elemento de la lista y lo elimina en orden FIFO
i=V.pop(0)

for a in OUT[i]:
if d[end[a]]>d[start[a]]+c[a] and end[a]!=0:

if end[a] not in V:
if d[end[a]]==inf:

V.append(end[a])#lo añade al final de la lista
else:

V.insert(0,end[a])#añade en el elemnto V[0] el end[a]
d[end[a]]=d[start[a]]+c[a]

print ('Las distancias mínimas del nodo 1 a todos los demás son:', d)

C.8. Algoritmo SLF

Programa que detalla el algoritmo SLF, explicado en la Sección 4.3, y devuelve la distancia
mínima entre el nodo inicial y el resto de ellos.

import numpy as np
from math import inf
import time

import funciondatos
iname=input('Nombre del fichero de datos: ')
(IN,OUT,c,marcos,nodos,start,end)=funciondatos.datos(iname)

V=[]
V.append(0)
d=[inf]*nodos
d[0]=0

while len(V)>0:
i=V.pop(0)

for a in OUT[i]:
if d[end[a]]>d[start[a]]+c[a] and end[a]!=0:

d[end[a]]=d[start[a]]+c[a]
#Si V está vacío se añade el nodo.
if len(V)==0:

V.append(end[a])
#Si no está vacío, se mira si la etiqueta del nodo es mayor que la del primer
#nodo de V
elif end[a] not in V:
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if d[end[a]]>d[V[0]]:
V.append(end[a]) #lo añade al final de la lista

else:
V.insert(0,end[a]) #añade en el nodo V[0] el end[a]

print ('Las distancias mínimas del nodo 1 a todos los demás son:', d)


	Abstract
	Índice general
	Introducción
	Definición del problema de ruta mínima
	Variantes del problema de ruta mínima
	Tipos de algoritmos 

	Algoritmo genérico
	Algoritmo genérico
	Propiedades del algoritmo genérico
	Inicialización avanzada


	Algoritmos de asignación de etiquetas
	Algoritmo de Dijkstra
	Algoritmo de Dijkstra con cola de prioridad
	Algoritmo de Dial

	Algoritmos de corrección de etiquetas
	Algoritmo de Bellman-Ford
	Algoritmo D'Esopo-Pape
	Algoritmo Small Label First (SLF)

	Estudio computacional
	Bibliografía
	Programación lineal. Dualidad
	Problemas test y resultados
	Implementación de los algoritmos
	Lectura ficheros Dicmacs
	Algoritmo Genérico
	Algoritmo de Dijkstra
	Algoritmo de Dijkstra con cola de prioridad 
	Algoritmo Dial
	Algoritmo de Bellman-Ford
	Algoritmo D'Esopo-Pape
	Algoritmo SLF


