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Abstract

Currently, network optimization has become a main field in Operational Research. This area
includes problems such as the shortest path and network flows among others. The shortest path
problem is considered one of the most significant due to its numerous applications and the
existence of efficient methods for complex problems. It consists of finding the most efficient way
to get from one point to another, considering the costs associated to each feasible route.

In this context, networks are used to describe and model real-world systems, in particular,
directed graphs, being each node an object, place, or action, while the arcs are the connections
between them, which have a cost associated. The problem is reduced to finding the minimum
distance between two given points.

Network representation is used in a wide variety of circumstances, being, logistics, commu-
nication and electrical networks among the most prevalent. It is also used in production, distri-
bution, and management, providing visual support of the relation between every component of
the system.

The shortest path problem has not a particularly not complex structure, allowing the deve-
lopment of several intuitively appealing algorithms for its resolution. One of the most remarkable
algorithms is the Dijkstra’s algorithm, published in 1959 by Edsger Dijkstra. This algorithm and
its numerous modifications have abundant applications, but the one that stands out from the
rest is the use of GPS. The Bellman-Ford algorithm is another outstanding one, published in
1958. It is more general since, unlike the previous, it does not exclude networks with negative
costs.

However, while shortest path problems may seem straightforward to solve, designing and
analyzing some of the most efficient algorithms demands significant ingenuity.

Below, the content of this work is described and organized in 5 chapters.

In Chapter 1, an introduction to the shortest path problem is given, in addition to defining the
basic graph concepts that will be used. The shortest path problem is defined in detail, employing
knowledge from Operational Research. Additionally the existing variants of the problem are
outlined, and at the end, two types of algorithms can be distinguished the label-setting and
label-correcting.

Moving on to Chapter 2, the generic algorithm is explained in detail, along with its pseudo-
code. Convergence properties are formulated and demonstrated, and an alternative initialization
is presented. Finally, the algorithm is applied to a base example.

In Chapter 3, the label-setting algorithms are explained, which do not allow the existence of
negative costs in the graph. The first to be introduced is the Dijkstra’s algorithm which is studied
along with its main properties, as well as its computational complexity. Further to this, in order
to improve its complexity, two algorithms, which are modifications of Dijkstra, are introduced.
These are the Dijkstra’s algorithm with priority queues, also known as Heap, and the Dial’s
algorithm, which uses buckets. The pertinent pseudocode is added along with an application in
a base example.

In Chapter 4, the label-correcting algorithms are studied. Note that in this case the algorithms
are not restricted to graphs with non-negative costs, making them more generic algorithms
since negative costs are allowed. First, the Bellman-Ford algorithm is explained, along with its
properties, which is is followed by the D’Esopo-Pape and SLF algorithms, being these last ones
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v Abstract

modifications of the generic algorithm. All of them are accompanied by their pseudocodes and
applications on a base example.

Finally, in Chapter 5, a study for networks with either positive or negative costs is conducted
to contrast the performance of all the algorithms studied in the previous chapters. In order to
do this, the algorithms are implemented using the programming language Python. This study
compares the average execution time in milliseconds of each algorithm according to the number
of nodes in the network, its density, and shape.
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Capitulo 1

Introduccion

Hoy en dia, el problema de ruta minima estd continuamente presente en la vida cotidiana.
., Coémo ir de un objetivo a otro distinto minimizando lo méximo posible el coste de esta actividad?
Esta, es una cuestion que si uno se para a pensar, se da cuenta que realmente se puede aplicar
a todo lo que le rodea.

,Cémo ir de un punto de tu ciudad a otro en el recorrido mas corto posible? Tanto Google
Maps como cualquier otro sistema de navegacién son capaces de resolver este problema tan
habitual en el que se busca la ruta més corta entre dos puntos del mapa. Pero, para usar este
tipo de aplicaciones, o hacer cualquier otra consulta externa, es necesario una conexiéon a Internet,
lo que lleva a investigar como transmitir informacién entre una o varias redes de Internet en el
menor tiempo posible. Estos paquetes de informacién, buscan la ruta mas éptima que hay entre
las redes que desean transmitir el mensaje, y lo hacen mediante el routing. La mayoria de las
veces se trata en efecto de su ruta minima, que, junto con otros factores, es lo que genera la
eficiencia de las conexiones a la red y evita los tiempos de espera en su carga. Sin embargo,
no basta con eso, ya que para la carga de los aparatos electronicos por los que se realice dicha
consulta, se tendra que hacer uso del sistema eléctrico, buscando asi distribuir la mayor cantidad
de energia posible al menor costo. Para ello se utilizan problemas de ruta minima, encontrando
asi la ruta mas corta y el menor costo de construcciéon de la red eléctrica.

El problema de ruta minima es uno de los problemas con més relevancia en el ambito de
la optimizacién, y esto es debido a sus numerosas aplicaciones, de las cuales solo se han dado
unos pequenos ejemplos, para ilustrar como pueden llegar a aplicarse todos los ambitos. En
concreto, cobran mas relevancia en la planificaciéon logistica, ya que pueden ayudar a mejorar
significativamente la eficiencia operativa, asi como reducir los costos a su vez.

Para resolver toda esta variedad de problemas planteados, se haran uso de varios algoritmos,
los cuales se especificaran mas adelante en el trabajo con su respectiva programaciéon en el
lenguaje Python.

1.1. Definicién del problema de ruta minima

Para el desarrollo de las definiciones se ha hecho uso de [1], mientras que para el planteamiento
del problema se ha ha utilizado |2].

Definicion 1. Un grafo es un par G = (N, A), donde N = {1,..., N} finito y cuyos elementos
son denominados nodos y A = {(,j)]i,j € N} C N x N es un subconjunto de N’ x N cuyos
elementos se denominan arcos. Se distinguen los siguientes tipos:

» Grafos dirigidos: el par (i,7) esta ordenado y el arco (i, j) serd distinto del arco (j,1).

» Grafos no dirigidos: sus arcos son no dirigidos, es decir, se tiene que (i, j) y (4, %) representan
el mismo arco.



2 Capitulo 1. Introduccién

Al namero de sus nodos, |N| = n, se le denota como orden del grafo, mientras que el niimero
total de arcos, |A| = m, es el tamano del grafo G.

Definicion 2. Dado un grafo G = (N, A) un camino dirigido P de longitud ! desde el nodo i al

j es una sucesion de nodos (ig, i1,...,%) tal que ig =14, 4y =5y (ip—1,in) € Aparah=1,...,l,
en donde, ademés, ninguno de sus arcos aparecen repetidos. En particular, se denomina camino
dirigido simple cuando en la sucesion de nodos (ig,1,...,7;) no aparece ninguno repetido.

Todos los ejemplos explicados previamente en la introduccién, pueden ser representados a
través de grafos, o mas concretamente, de grafos dirigidos, que seran los protagonistas en este
trabajo. Aunque los algoritmos de resolucion de rutas minimas que se presentarén estan basados
en grafos dirigidos, pueden ser modificados para aplicarse a grafos no dirigidos. Ademaés, existen
algoritmos especificos diseniados para grafos no dirigidos.

A partir de ahora, dado un grafo dirigido G = (N, .A), definido en los términos anteriores, se
considerara que cada uno de sus arcos (7,7) € A tiene un costo asociado c;;.

Sea G = (N, A) con costos ¢;; para todo (i, j) € A. Con esto se define el problema de ruta
minima como aquel que trata de encontrar el camino dirigido simple mas corto, P, entre ciertos
nodos, que sin pérdida de generalidad, se asumird que son el 1 y el N, respectivamente. El
problema puede formularse inicialmente como:

minimizar Y ¢;;xi;
(i.4)€P
(P)
sujeto a:  (1...N) camino dirigido de 1 a N en A.

Aunque la forma anterior es la manera mas intuitiva de definir el problema de ruta minima,
habitualmente este se modela mediante un procedimiento distinto, tal y como se puede ver a
continuacion.

El problema de ruta minima se puede definir como el problema que busca la solucién éptima

del siguiente problema de programacion lineal entera (PLE) binarial.

minimizar ) ¢4
(i,5)eA
1 si 1=1,
(P1) sujeto a: Yoo oxii— >, xip=40 s i#1,N, ieN
{il(@.5)eA} {il(G5)eA} 1 s i=N,
Tij € {0, 1}, (2,]) e A.

Dadas las especiales caracteristicas del problema, este puede remodelarse, reformulando asi las
condiciones de las variables z;;, que pasan de ser z;; =0 6 1 a x;; > 0 para todo (7,j) € A. Esto
puede afirmarse ya que se trata de se trata de un caso particular de un problema de transporte,
por esta razon esta reformulaciéon no anadiré ninguna solucién 6ptima extra. De esta forma, se
trata de un problema de programacion lineal (PPL) estandar.

El problema de ruta minima que se considera en adelante viene dado por el sistema (P2).

minimizar ) ¢z
(i,5)€A
1 si 1=1,
(P2) sujetoa: > x5 — . ;=<0 si i#1,N, ieN (1.1)
{il(.5)eA} {ilG.eA} 1 si i=N,
Tij >0, (2,]) € A

'El modelado de este tipo de problemas se estudi6 en la asignatura de Investigacién Operativa, correspondiente
al tercer curso del grado de Mateméticas.
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A continuacién, se van a utilizar los conocimientos sobre dualidad en programacién lineal
adquiridos en la asignatura Investigacion Operativa cursada en el tercer curso del grado de
Mateméticas, de donde se podran derivar las condiciones de optimalidad para el problema de
ruta minima, de una forma alternativa a como se hace normalmente.

De acuerdo a la teorfa de la dualidad para programacion lineal, asociado a cada PPL, existe
otro problema de programacién lineal, denominado problema dual, cuyas soluciones 6ptimas estan
totalmente relacionadas. Dada esta teoria, el problema dual asociado a 1.1 sera el siguiente.

maximizar wjp — Wy,
(D) { sujeto a:  w; —w; < ¢4, (i,5) e A (1.2)
w; € R, ieN.

Este entorno, da lugar a la siguiente definicion.

Definicion 3. Un ciclo dirigido es un camino dirigido cuyos nodos inicial y final coinciden
(1o = ;). Se denominara ciclo negativo si la suma de los costos de los arcos que forman el ciclo
es un numero negativo.

El siguiente teorema establece las denominadas condiciones de holgura complementaria (CHC),
en el que dadas unas soluciones factibles para un problema primal y su dual, estas son 6ptimas
si y solo si al multiplicar el valor de la holgura de la restriccion del problema primal (dual) por
el valor de la variable correspondiente del problema dual (primal) el resultado es cero.

Teorema 1.1 (Condiciones de Holgura Complementaria?). Sea & y @ soluciones factibles de
los problemas simétricos de mdximo y su dual. Entonces & y @ son soluctones optimas para sus
problemas respectivos si y solo si T;v; =0 para j =1,..,n y w;u; =0 parat=1,..,m conu y v
holguras del primal y dual respectivamente.

El teorema anterior aplicado al problema de ruta minima toma la forma siguiente.

Teorema 1.2 (Condiciones de Holgura Complementaria para el problema de ruta minima).
Sea & e w soluciones factibles de los problemas 1.1 y 1.2 respectivamente. Entonces & y W son
soluciones dptimas para sus problemas respectivos si y solo si se tiene Z;j(cij — w; + w;) = 0
para (i,7) € A.

El teorema 1.2 permite proporcionar las condiciones habituales de optimalidad para el pro-
blema de ruta minima.

Proposicion 1.3. Sea d = (dy,ds, ...,dN) un vector de distancia cumpliendo

dj < d;+c;j, para todo (i,j) € A, (1.3)
y P un camino que comienza en el nodo 1 y termina en el nodo N. Entonces, st

dj = d; + ¢ij, para todo (i,j) € P, (1.4)
P es el camino de ruta minima desde 1 hasta N.

Demostracion. Dado P, un camino que comienza desde el nodo 1 a N, definiendo x;; = 1 para
todo (i,7) € Py 0 para el resto de arcos, serd una solucion factible del problema primal 1.1.
Definiendo w; := —d;, se cumplird

w; < wj+ ¢y, paratodo (i,7) € A,

2Los elementos involucrados en dicho teorema se pueden encontrar en el Anexo A, los cuales fueron estudiadas
en la asignatura Investigacién Operativa cursada en el tercer curso del grado de Mateméticas.
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siendo w una solucion factible del problema dual 1.2. Observar que se verifican las CHC, ya que
cuando z;; = 1, (i,j) € P, por 1.4 se obtiene ¢;; — w; + w; y para todo (i,j) ¢ P, x;; = 0. Asi
que aplicando el teorema 1.2 se tendra que x es soluciéon 6ptima, y por lo tanto P seré el camino
de ruta minima desde 1 hasta N. O

Los algoritmos que se estudiaran en los proximos capitulos, resuelven el problema de ruta
minima, sin embargo, este problema, que se puede tratar como un problema de transbordo,
también puede ser resuelto mediante el algoritmo de simplex. El problema con este algoritmo, es
que tiene una complejidad computacional mucho mayor que los que se analizaran, por lo que en
la practica no es considerado 6ptimo para resolver este problema concreto.

En la figura 1.1 se muestra un sencillo ejemplo con 6 nodos y 9 arcos. Sobre los arcos se
muestra los costos de conectar los nodos, y en verde se aprecia el camino dirigido de costo
minimo entre 1 y 6.

o~ | | e
T o——0

Figura 1.1: Ejemplo base.

1.2. Variantes del problema de ruta minima
El problema de ruta minima, tal y como se ha presentado, puede tener varias variantes. Las
principales son las siguientes [3]:

= Ruta minima entre dos tinicos nodos.
= Ruta minima desde un nodo a todos los demés.
s Ruta minima desde todos los nodos a uno en concreto.

= Ruta minima entre todos los pares de nodos del grafo.

De todas ellas, la que se considerara en este trabajo serd la segunda, ya que los algoritmos
que se estudiaran seran los de ruta minima desde un nodo a todos los demés. Estos incluyen a
los primeros, es decir, los algoritmos de rutas minimas entre dos tinicos nodos. Por otro lado, los
algoritmos de ruta minima desde todos los nodos a solamente uno de ellos se puede construir de
forma simétrica a los que se planteardn. Finalmente, no se profundizara en los algoritmos que
estudian las rutas entre todos los pares de nodos del grafo ya que exceden los limites del trabajo.

Para poder aplicar los algoritmos, se exigira que el grafo del problema cumpla las siguientes
condiciones.

= Es un grafo dirigido.

» Existe al menos un camino dirigido entre el nodo 1 y el resto (si no, solo calculara del nodo
1 a todos los alcanzables).

Ademas, para algunos algoritmos se requieren condiciones adicionales como las siguientes.

= El grafo no incluye costos negativos.

= Los costos ¢;; asociados a cada arco (i, j) sean enteros.
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1.3. Tipos de algoritmos

Para la resolucion de los problemas de ruta minima, se pueden hacer uso de una gran variedad
de algoritmos. Todos ellos tienen en comtn su iteratividad, pero se puede diferenciar en dos grupos
en funcion de qué método se utilice para actualizar las etiquetas de las distancias, ademas del
criterio que se siga para eliminar nodos de la lista de candidatos. Antes de hacer la clasificacion,
se tendré en cuenta una definicion previa.

Definicion 4. Se llama lista de candidatos al conjunto de nodos que pueden tenerse en conside-
racion para mejorar la ruta minima. Este conjunto, se define como V, siendo V' = {1} al inicio
de las iteraciones. El algoritmo termina cuando V = ().

Una vez puesto el contexto, se puede pasar a los dos grupos de algoritmos mencionados
previamente.

= Algoritmos de asignacion de etiquetas. En estos algoritmos, los nodos eliminados de
la lista de candidatos son los que tienen una etiqueta minima, es decir, distancia minima
desde el nodo inicial. A su vez, todos los costos asociados a los arcos del grafo se pedira
que sean no negativas, evitando de este modo la presencia de ciclos negativos. Cada nodo
solo pasard por V una vez, por tanto, dado un nodo que ya ha abandonado la lista de
candidatos, su etiqueta serd permanente hasta el final del algoritmo.

= Algoritmos de correccién de etiquetas. La eleccién de la eliminacién del nodo ¢ de
la lista de candidatos es menos compleja que en el caso anterior, e intervienen menos
célculos. Cada algoritmo se diferencia en la forma en la que cada nodo entra o sale de esta
al incorporarse o abandonar V' respectivamente. Notar que los nodos podran incorporarse
a V maéas de una vez, tomando de esta forma las etiquetas de los nodos como temporales
hasta la ultima iteracion, donde todas las etiquetas tienen el valor 6ptimo. Estos algoritmos
funcionan en presencia de ciclos negativos, siendo capaces de detectarlos e indicar que no
existe ruta minima.

Notar que los algoritmos de correcciéon de etiquetas se pueden usar para casos mas generales
que los de asignacion de etiquetas, ya que permiten estudiar los grafos con costos negativos.
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Capitulo 2
Algoritmo genérico

En este capitulo se presentari el método de resoluciéon de problemas de ruta minima deno-
minado algoritmo genérico, el cual dependiendo de como se particularice, daré lugar a distintos
algoritmos. Este algoritmo puede implementarse de diversas maneras, variando cada una de ellas,
principalmente, en la seleccion de los nodos para ser eliminados de la lista de candidatos V. El
desarrollo de este algoritmo y sus propiedades se basa en [4, 5, (].

2.1. Algoritmo genérico

Como se ha mencionado anteriormente, se trata de un algoritmo que resuelve el problema de
ruta minima de un dnico nodo a todos los restantes en el grafo, y en consecuencia desde un nodo
a otro especifico. Se seguiréd con la notaciéon usada hasta ahora, y se tomara como nodo inicial 1,
ademas de un vector de etiquetas d = (dy,ds, .. .,dy). Cada d; puede ser interpretado para todo
1 como la distancia del nodo 1 a ¢ dada por un camino P;.

Para inicializar el algoritmo, se tiene en cuenta una lista de candidatos V', que en la primera
iteracion se definird junto con d como

V ={1}, dy =0, d;=o0 paratodoi#1,

es decir, la ruta actual hasta el nodo 1 tiene costo cero y para el resto atin no existe camino, por lo
tanto sus costos seran +o0o. En cada iteracion, se elimina un nodo ¢ de la lista de candidatos. Para
cada arco saliente de dicho nodo, (i,7) € A con j # 1, se tiene que si se cumple la desigualdad
d; > d; + c;; para dicho arco , entonces se fija una nueva distancia del nodo 1 a j que se define
como se puede apreciar a continuacion,

dj =d; + Cij,

satisfaciendo asi las Condiciones de Holgura Complementaria dadas en la proposicion 1.3, donde
se afirma que d; < d; + ¢;5, es decir, actualmente se podia llegar a j con un costo d;, pero se ha
encontrado que se puede llegar a i y posteriormente a j mediante el arco (7, j) con un costo nuevo
d; = d; + ¢;; menos elevado. Este nodo j se anade a V, la lista de candidatos, si no lo estaba ya.
El algoritmo continua hasta que las Condiciones de Holgura Complementaria se satisfacen para
todos los arcos del grafo, es decir, terminara cuando la lista de candidatos esté vacia, es decir,
cuando V = 0.

Por todo el procedimiento explicado, el reemplazamiento del camino P; por un camino més
corto compuesto por P; y el arco (i,7), puede verse como una operacion de mejora de costos
primales.

Puede apreciarse el pseudocodigo de este algoritmo mas en detalle en el Algoritmo 1.

7



8 Capitulo 2. Algoritmo genérico

Algorithm 1: Algoritmo genérico.

V « {1}
d <+ [0,00,...,00]
M < min{—1,(N —1) min ¢;}

(i,5)eA

while V # () do
Se extrae un nodo i cualquiera de la lista

for todos los nodos j vecinos out de i do

if dj > d; + Cij5 and j # 1 then
dj —d; + Cij
if d; < M then
‘ STOP /* Con M una cota para los ciclos negativos */
end
if d; ¢ V then se afiade j a V'

end

end
end

2.2. Propiedades del algoritmo genérico

En esta subseccion se va a estudiar la correccién y convergencia del algoritmo genérico, y se
realizara su aplicacién manual en un sencillo ejemplo de ruta minima.

La siguiente proposicién justifica formalmente la correcciéon y convergencia del algoritmo
genérico.

Proposicion 2.1. Se considera el problema de ruta minima (P) y el algoritmo general aplicado
a dicho problema. Se tendrdn las siguientes propiedades:

a) Dado i € N, d; < oo si y solo sii ha entrado al menos una vez a V.

b) En cada iteracion se puede afirmar:

i) dp = 0.
ii) Si dj < oo con j # 1, entonces dj es la longitud de un camino que empieza en 1,
nunca vuelve a 1 y termina en j.
iii) Sii ¢V, entonces d; = 0o o dj < d; + ¢;j, para todo (i,7) € A.

c) Si el algoritmo termina, se tendrd entonces para todo j con d; < oo, dj es la distancia
minima del nodo 1 al nodo j dada por

min {d; + ¢} sij#1,
d; = (i,j)EA{ 2 (2.1)
0 st g = 1.

d) Si el algoritmo no termina, existen caminos que empiezan en el nodo 1 y terminan en j,
que no vuelven al nodo inicial cuya longitud tiende a —oo.

Demostracion.

a) Inicialmente, d; = 0 y d; = oo para todo 7 distinto de 1 con V' = {1}. En el transcurso del
algoritmo, se fijan unas nuevas d; mon6étonamente no crecientes y el nodo ¢ queda anadido
a suvez a V, por lo que queda asi probada la propiedad.
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b)

c)

i) Inicialmente se tiene dj = 0 y dado que por las normas del algoritmo, d; no podra
reetiquetarse, manteniendo asi su valor constante.

ii) Se usara el método de induccion aplicado al nimero total de iteraciones del método. La

propiedad se puede afirmar cierta para la primera iteraciéon por definicién del vector d,
va que d; = 0y d; = oo para todo ¢ distinto de 1. Se supondra cierta la propiedad para
un cierto niimero de iteraciones en el que se obtiene como resultado la eliminacion del
nodo 7 de la lista de candidatos V.
Sii # 1 se tiene que d; < 0o, que es cierto por (a). Aplicando la hipétesis de inducciéon
se obtiene que d; es la longitud de un camino P; que empieza en 1, nunca vuelve a 1 y
termina en 7. Realizando la dltima iteracion para un j # 1, el nuevo valor de d; sera el
dado por la expresion d; + ¢;; siendo en este caso d; la longitud de un camino P; que
esta compuesto por el camino P; seguido del arco (7, j) que empieza en 1, termina en
j y nunca vuelve a 1 por ser j # 1. Si i = 1, solo se puede dar en la primera iteracion,
por lo que se tendra d; = c1; para todos los nodos j que sean vecinos out de 1y
d; = oo para el resto.

iii) Para cada i, se tiene por el apartado (a) que d; = oo si ¢ ain no ha entrado en la
lista de candidatos. Si d; < oo, se satisface d; < d; + ¢;; para todo (i, j) € A. Hasta
la siguiente entrada de ¢ en V, d; se mantiene constante, mientras que d; para todo j
con (4,7) € A no puede aumentar, conservando asf la condicion inicial d; < d; + ¢;;.

Se definen los conjuntos al finalizar el algoritmo
I = {Z‘dz < OO}, I= {l‘d, = OO}

Notar que j € I equivale a que no exista camino P desde el nodo 1 hasta el j, ya que si
i €1,i¢V al finalizar el algoritmo y aplicando el apartado (b)(iii) se tendra j € I para
todo (i,7) € A. Consecuentemente, no existe camino P desde ningtin nodo en I hasta un
j € I, en concreto desde 1 € I. Y reciprocamente, si no hay trayectoria de 1 a j entonces
por el apartado (b)(ii), no puede cumplirse d; < ooy j € I.

Observar que al finalizar, para todo j € I,d; es la distancia minima, y cumple 2.1.
Sea i € I, dj <dj+c;j, paratodo (i,j) € A,

con d; la longitud de un camino P; que empieza en 1 y termina en ¢. Fijando un nodo

m € I y aplicando la condicion anterior a cada arco (i,j) de un camino cualquiera P

iy
desde 1 a m, se obtiene que su longitud es mayor o igual que d,, — d; (©)) dy,, por tanto

la trayectoria que existe por (b)(ii) de costo d,, es la minima, siendo P,, el camino mas
corto de 1 a m, por lo que en todos sus arcos (i, j) se tendra d; = d; + ¢;;, llegando asi a
d; = min {d; +¢;;} para j € I.
2 (m)eA{ i+ cij} para j

Si el algoritmo nunca termina, alguna etiqueta d; decrece estrictamente infinitas iteraciones,
generando distintos caminos P; a su paso. Por propiedades de los grafos, estos caminos
pueden descomponerse en un camino simple finito P; del nodo 1 al j junto con una coleccién
de ciclos negativos. Repitiendo este ciclo un niimero infinito de veces, se obtiene el resultado
buscado, que el costo del camino tienda a —oc.

O

Hasta ahora, no se ha impuesto ninguna condicién adicional en el grafo representado por el
problema, por lo que no se puede garantizar que este algoritmo termine. Para ello, desarrollando
a partir de la proposicion 2.1 (d), se tiene que el algoritmo terminara si y solo si no existe ningin
camino que empiece en el nodo 1, que no vuelva a 1 y que contenga un ciclo negativo.
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Todo esto se puede evitar detectando previamente la presencia de los ciclos negativos y
deteniendo el algoritmo en este caso. Para ello se tendré en cuenta que cuando para algin nodo
k su respectivo di es menor que el limite inferior de la distancia de todos los caminos simples,
se parara el algoritmo, es decir, si

G <IN=1) o 0%
se tiene que en el camino P del nodo 1 al nodo k£ cuya longitud es igual a dj, debe contener
un ciclo negativo. Una vez comprobada esta propiedad, se garantiza la no existencia de ciclos
negativos.

Si existe un camino desde el nodo inicial 1 a cada nodo j y a su vez, se asegura la no existencia
de ciclos negativos, podra afirmarse que el algoritmo termina y sus etiquetas finales seran finitas,
dadas en la proposicion 2.1 (c) ecuacion 2.1. Esta ecuacion se denomina Ecuacion de Bellman y
se trata de una formulacion més general de las Condiciones de Holgura Complementaria 1.4 de
la proposicién 1.3, de donde se pueden obtener la distancia minima de 1 a j como la suma de la
distancia minima de un nodo que precede a j y el arco que les conecta. Este mismo procedimiento
se hace para calcular cualquier ruta minima desde 1 hasta cualquier nodo j, volviendo hacia atrés
hasta llegar al nodo inicial por los arcos correspondientes, obteniendo asi un subgrafo conectado
llamado spanning tree.

2.2.1. Inicializacién avanzada

A pesar de que en este trabajo no se podra analizar con més detenimiento, cabe destacar que
este algoritmo no necesita cumplir inicialmente

V ={1}, di =0, d; = oo para todo i # 1,

para poder funcionar de forma adecuada. Para que el algoritmo desempene su cometido de
manera eficiente, bastara con que el conjunto de etiquetas (di, ..., dy) satisfaga las condiciones
de la proposiciéon 2.1 b. En particular, al algoritmo funcionaré de forma adecuada si se asegura
que V' y d son inicializados con las siguientes condiciones més generales.

= Para cada nodo i, d; tomara el valor co o sera la longitud de un cierto camino de 1 a ¢, con
la excepcién de d; = 0.

= La lista de candidatos V' contiene todos los nodos i tal que

d; +cij < dj, con (i,7) € A.

Esta técnica se usa en entornos de reoptimizacién, cuando se busca resolver problemas simila-
res, o hacer una ligera modificacién en un problema ya resuelto, ya sea en algtin arco, o anadiendo
o eliminando nodos. Podran ahorrarse muchos costos computacionales usando las distancias de
las rutas minimas de un problema, como etiquetas iniciales de otro similar, ya que muchos no
volverédn a entrar la lista de candidatos V' manteniendo asi su distancia minima.

Dado el grafo representado en la figura 1.1, aplicando el Algoritmo 1, se obtendrian en cada
iteracion los datos que se ven reflejados en la tabla 2.1, siendo los nodos marcados de color verde
la lista de candidatos los que son anadidos a V', y las etiquetas en azul las que han cambiado
en la iteraciéon correspondiente. Este cddigo de colores sera el que se seguird en las posteriores
tablas del trabajo.

Para la primera iteracién, se extrae el nodo 1 de la lista de candidatos y se examinan sus
vecinos out, comprobando que la distancia a los nodos 2 y 3 son 5 y 1 respectivamente. Al ser
menor las distancias nuevas que las que habia en lista de etiquetas, se actualizan y se anaden
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dichos nodos a V. Para la segunda iteracion, se extrae un nodo de forma aleatoria de V' = {2, 3}.
Sea 3 el nodo que se extrae, se comprueban sus vecinos out, es decir, 2 y 5, las respectivas
distancias serédn 4 y 6, que se volveran a actualizar al ser menores, pero solo se aniadira el nodo 5
a la lista de candidatos ya que 2 ya se encontraba en ella. Para las siguientes iteraciones se haréa
de manera analoga.

Numero de Lista de Etiquetas de Nodo que
iteracion  candidatos (V) los nodos (d) sale de V
1 {1} (0,00, 00, 00, 00, 00) 1
2 {2,3} (0,5,1,00, 00, 00) 3
3 (2,5} (0,4,1,00,6,00) 5
4 (2,61 (0,4,1,00,6,10) 2
5 {6,4,5} (0,4,1,8,5,10) 4
6 (6,5} (0,4,1,8,5,10) 5
7 (6} (0,4,1,8,5,9) 6

0 (0,4,1,8,5,9)

Tabla 2.1: Aplicacion del algoritmo genérico.

Se puede apreciar que las distancias finales que calcula el algoritmo son las dadas cuando V es
un conjunto vacio. En este caso, d = (0,4,1,8,5,9), que es el resultado que obtiene el algoritmo,
es el que vector que representa la distancia minima desde el nodo inicial a todos los demas del
grafo. Se puede ver como a lo largo del algoritmo, las etiquetas van mejorando y puede volver a
anadirse un nodo a V incluso después de haber sido eliminado de este.
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Capitulo 3

Algoritmos de asignaciéon de etiquetas

En este capitulo se estudiaran varias versiones de uno de los algoritmos mas destacados para
la resolucién del problema de ruta minima mediante la asignacién de etiquetas, que asume que
todos los costos asociados a los arcos del grafo G son no negativos, haciendo asi que cada nodo
solo entre la lista de candidatos una vez. Los desarrollos de este capitulo se basan principalmente
en [5, 6].

3.1. Algoritmo de Dijkstra

Como se acaba de comentar, este algoritmo requiere obligatoriamente que ¢;; > 0, es un
caso especial del algoritmo genérico, donde los nodos son eliminados de la lista de candidatos V'
siguiendo un patrén determinado.

La idea que subyace en este algoritmo es que dado que todos los costos son mayores o iguales
que cero, se van explorando todas las rutas mas cortas que se inician desde el nodo 1 y llevan a
todos los nodos del grafo, deteniéndose el algoritmo cuando se haya encontrado el camino més
corto a todos sus nodos.

Parte de las mismas condiciones iniciales para la primera iteraciéon que el algoritmo genérico,
es decir,

V = {1}, di =0, d; = oo para todo 7 # 1,
junto con la restriccion del vector de costos, que tendra que cumplir ¢;; > 0. En cada iteracion
se elimina un nodo ¢ de la lista de candidatos que sigue el siguiente criterio:
d; = min{d,}.
= min{d;}

Para dicho nodo i, se toman sus arcos salientes (i,j) € A con j # 1 y se comprueba si
d; > d; + ¢;j. En caso de verificarse, se redefinira d; como

dj = dz‘ + Cij,

y posteriormente se anadird dicho nodo j a la lista de candidatos V en caso de que ain no
pertenezca. Al igual que el algoritmo anterior, seguird haciendo iteraciones hasta que V sea un
conjunto vacio.

El pseudocddigo del método es el que se desarrolla en el Algoritmo 2.

Para poder hacer un analisis en profundidad de este método y dar unas propiedades mas
especificas, serd necesario previamente la definiciéon del conjunto de nodos que ya han estando
en la lista de candidatos pero no lo estan actualmente.

W o= {ild; < co,i ¢ V} (3.1)

Este conjunto, permite definir una serie de propiedades a cerca del algoritmo que se pueden
ver en la siguiente proposicion.

13
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Algorithm 2: Algoritmo Dijkstra.
V + {1}
d <+ [0,00,...,00]
while V # () do

for j € V do
Se toma el minimo de los d;

Se extrae de V dicho j

end

for todos los nodos j vecinos out de ¢ do
if d; > d; +¢;j and j # 1 then

‘ dj < Clz‘ + Cij
end
if d; ¢ V then Se anade j aV
end
end

Proposicion 3.1. Considerando el problema de ruta minima (P) descrito en 1.1 y a su vez
asumiendo c¢;; > 0 y la existencia de al menos un camino P desde el nodo 1 al resto de los nodos,
se tienen las siguientes propiedades’.

a) Para cada iteracion del algoritmo, dado el conjunto W definido en 3.1, se puede afirmar:

i) Ningin nodo i € W vuelve a entrar a la lista de candidatos.

it) Al final de cada iteracion, se tiene
d; <dj, paratodoieW,j¢W.

iii) Para cada nodo i, sea P un camino que empieza en 1, termina en i y tiene todos sus
nodos en W al final de la iteracion. Se tendrd entonces que la etiqueta d; al final de
la wteracion es igual a la longitud del camino mds corto de los dados. En particular,
st d; = 0o, dicho camino no existird.

b) Todos los nodos serdn eliminados de la lista de candidatos solamente una vez, teniendo en
cuenta que i serd eliminado antes que j si d;<d;.

W puede interpretarse como un conjunto de nodos con etiquetas permanentes, ya que dado un
nodo i que entra en W, ¢ € W hasta el final del algoritmo, manteniendo asi su etiqueta constante
al no volver a entrar a V', es decir, el algoritmo finaliza cuando se han hecho permanentes todas
las etiquetas de los nodos.

Nota 1. Se puede comprobar juntando la proposicion 3.1 (a)(ii) con ¢;; > 0, que en efecto para
cada nodo ¢ que es eliminado de V,

dj < d;+c¢;j, paratodo j € W tal que (4,7) € A,
cumple las Condiciones de Holgura Complementaria.

Se vuelve a tomar el grafo representado en la figura 1.1, sobre el que se aplicara el algoritmo
de Dijkstra, y se podra ver representado en la tabla 3.1 los pasos que sigue, permitiendo asf una
comparaciéon con el algoritmo anterior.

Las distancias finales que calcula el algoritmo son las dadas cuando la lista de candidatos se
encuentra vacia, que vuelven a ser d = (0,4,1,8,5,9), representando asi la ruta minima desde

!Este algoritmo y sus propiedades fueron estudiadas en la asignatura Grafos y Combinatoria, correspondiente
al primer curso del grado de Matemaéticas, por lo que la demostracién sera omitida.
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Nutmero de Lista de Etiquetas de Nodo que
iteracion  candidatos (V) los nodos (d) sale de V
1 {1} (0,00, 00, 00, 00, 00) 1
2 {2,3} (0,5,1,00, 00, 00) 3
3 {2,5} (0,4,1,00,6,00) 2
4 (5,1} (0,4,1,8,5,00) 5
5 {4,6} (0,4,1,8,5,9) 4
6 (6} (0,4,1,8,5,9) 6

0 (0,4,1,8,5,9)

Tabla 3.1: Aplicaciéon del algoritmo de Dijkstra.

el nodo inicial 1 hasta el resto de los nodos. En este caso, las nodos que abandonan la lista de
candidatos no vuelven a ser anadidos a esta, quedéandose asi con su etiqueta fija.

El namero de iteraciones del algoritmo sera igual al namero de nodos del grafo (V). Cada
iteracion se basard en dos operaciones. La primera seré la eleccion del nodo a extraer de la lista
de candidatos, que a lo sumo tendra un costo computacional de O(N), que al repetirlo en cada
iteracion acabara siendo un total de O(IN?) operaciones. La otra operacién que se tiene en cuenta
es el ajuste de las etiquetas, que en cada iteracién el nimero de operaciones difiere, ya que el
algoritmo tiene que comprobar todos los arcos salientes. Sin embargo, teniendo en cuenta todas
las iteraciones, el algoritmo comprobaré todos los arcos del grafo, por lo que este computo se
dira que se lleva a cabo un total de m veces, siendo el numero de operaciones O(m), que se
despreciara por ser menor que O(N?), concluyendo que la complejidad del algoritmo de Dijkstra
para resolver el problema de ruta minima es de O(N?).

En los siguientes apartados se llevan a cabo unas modificaciones en el algoritmo de Dijkstra
que se realizan con objeto de mejorar la complejidad computacional del algoritmo. Estas modi-
ficaciones actuarin en la busqueda de la etiqueta minima de los nodos en la lista de candidatos,
la complejidad, O(N?), se puede reducir usando unas estructuras de datos mas adecuada. Sin
embargo, O(m), que es el numero de operaciones para llevar a cabo el ajuste de etiquetas, no
podra ser reducido. Estas modificaciones y las alteraciones que producen cada uno de ellos al
algoritmo, se analizardn de una manera mas exhaustiva a continuacion.

3.2. Algoritmo de Dijkstra con cola de prioridad

Este algoritmo, también conocido como algoritmo de Heap, se trata de una modificacién
del algoritmo de Dijkstra en el que se obtendra como resultado un coste computacional menor
haciendo uso de pilas, que son cominmente usadas para implementar colas de prioridad, estas
se utilizan para almacenar eficientemente la lista de candidatos por su valor de d;.

En este caso, se usara una pila binaria basandose en las etiquetas de los nodos y su pertenencia
a la lista de candidatos V. El nodo situado en lo mas alto de la pila, serd el nodo en V cuya
etiqueta tiene el menor valor, se le denomina la raiz. Notar también que las etiquetas de todos los
nodos pertenecientes a la lista de candidatos, nunca serédn superiores que las etiquetas de todos
sus nodos descendientes que estdn a su vez en V. Por otra parte, los nodos que no pertenecen
a la lista de candidatos estaran en la pila, aunque puede que no tengan ningin descendiente
perteneciente a V.

En cada iteraciéon el nodo en la lista de candidatos con menor etiqueta sera distinto, ya que
el anterior habra sido extraido de V, fijando asi su etiqueta permanentemente. Si la etiqueta de
algiin nodo decrece en esta iteracién, entonces este deberd mover su posicién en la pila a una
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méas cercana a la raiz. Asimismo, si entra en la lista de candidatos un nodo nuevo, tendra que
ser colocado en la pila en la posiciéon adecuada.

En este caso no se incorpora el pseudocédigo, tnicamente se indica que el proceso de incor-
poracién y borrado de nodos en la lista de candidatos se realiza con una estructura de pila. En
la implementacion se ha utilizado la librerfa heapq de Python. Todo lo necesario viene definido
dentro de la libreria, por lo que con tan solo anadir unas listas de tuplas y modificar las funciones
asociadas a estos objetos a las correspondientes de la nueva libreria, basta para tener el algoritmo
de Dijsktra con colas de prioridad.

Esta modificacion en la biisqueda de la etiqueta minima de los nodos, hace que disminuya la
complejidad computacional. Se tendra en cuenta que cada operacion de eliminacién, reubicacion o
incorporaciéon de nodos a la pila supone una complejidad de O(logN). Por lo que, al eliminarse un
nodo en cada iteracion, y ser N el nimero total de nodos eliminados, supondra una complejidad
de O(NlogN). Siendo el nimero total de nodos reubicados a lo sumo m, se tendra un coste de
O(mlogN). Si se tienen en cuenta el nimero de operaciones que se llevan a cabo para el ajuste
de la etiqueta, O(m), se llega a que la complejidad del algoritmo sera O(mlogN ).

3.3. Algoritmo de Dial

Es otra modificacién del algoritmo de Dijkstra, que disminuye su coste computacional ha-
ciendo uso de buckets en la lista de candidatos, creando asi una divisiéon de la lista.

La idea del algoritmo es guardar para cada posible valor de las etiquetas una lista de los nodos
con ese valor. Sera necesario que todos los arcos tengan un costo entero no negativo. Notar que,
al ser todos los costos positivos, una etiqueta finita representa la longitud de un camino sin ciclos,
por lo que las posibles etiquetas estaran en el rango de 0 a (N — 1)C, siendo C' el valor maximo
de todos costos asociados a los arcos. Habra asi (N — 1)C + 1 posibles valores de las etiquetas y
a su vez buckets que seran examinados en orden ascendente hasta encontrar uno no vacio.

Los buckets (By) pueden pensarse como contenedores en los que estan las etiquetas en un
rango de [0, (N — 1)C]. Cada By, contiene nodos cuya etiqueta tiene valor k.

Inicialmente, se pone 1 en By y el resto de buckets estardn vacios. En la primera iteraciéon, para
todo nodo j con (1,7) € A se afiade al bucket Bc,, con etiqueta ci; y a la lista de candidatos V.
Una vez comprobado el By, se examinara Bj. Si esta vacio se continua revisando Bs, y posteriores
en orden ascendente, si no, se repite el proceso tomando y eliminando de la lista de candidatos
un nodo de etiqueta 1 y moviendo los nodos cuya etiqueta haya cambiado a los correspondientes
buckets de nodos con etiquetas menores. Tener en cuenta que cada iteraciéon se empieza desde
el bucket del que fue extraido el anterior nodo. Como resultado, una vez que se vacia un Bj no
se vuelve a examinar, ya que el nodo eliminado, al tratarse de un algoritmo Dijkstra tiene la
menor etiqueta del resto de nodos en V, y en las siguientes iteraciones no se fijaran valores mas
pequenos al tratarse de costos no negativos.

Ne Etiquetas de Nodo que
iteracion v los (Illodos (d) Bo Bi Bz By Bs Bs Bs Br Bs By sale d;l |4
1 {1} (0,00, 00,00,00,00) 1 - - - - - - - - 1
2 {2,3} (0,5,1,00, 00, ) - 3 - - - 2 - - - - 3
3 25} (0,4,1,00,6,00) e S S 2
4 (54} (04,1,8,5,00) - T R 5
5 (4,6} (0,4,1,8,5,9) e 4
6 (6} (0,4,1,8,5,9) ... L6 6

] (0,4,1,8,5,9)

Tabla 3.2: Aplicacion del algoritmo Dial.
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En la tabla 3.2 se puede ver aplicando el algoritmo 3 sobre el grafo de la figura 1.1.

Se puede apreciar que da el mismo resultado en las mismas iteraciones que en al tabla 3.1, pero
con la diferencia de que las etiquetas de este algoritmo estén organizadas por grupos de su misma
etiqueta. Sin embargo, este pequeno cambio hace que el ntimero de operaciones sea menor que el
original, ya que se busca el menor By no vacio, en lugar de analizar toda la lista de candidatos
en busca del minimo. En cada iteracion, habra que comprobar si el bucket se encuentra vacio y
si es necesario anadir o quitar nodos, suponiendo cada operacion un costo de O(1). El costo de
buscar el minimo para cada iteracion, de forma global cuesta O(NC) ya que hay (N —1)C + 1
buckets. Ademaés, el nimero de operaciones para el ajuste de etiquetas tras actualizar los d;, se
ve reflejado en la colocaciéon de cada nodo en su bucket correspondiente y la reposicion de estos
en cada iteracion se tendran O(m) operaciones, que junto con las anteriores, se llega a un coste
computacional total de O(m+ NC), en donde, si C no es muy grande, comparado con N o logN,
mejora la complejidad original de los algortimos de Dijkstra y Dijkstra con colas de prioridad.

Algorithm 3: Algoritmo Dial.
V {1}
d <+ [0,00,...,00]
B [1(][]..-[]
140
while V # () do
while B[i] =0 do
| Se pasa al siguiente bucket
end
Se extrae un nodo j de V
for todos los elementos j vecinos out de ¢ do

if dj > d; +c;; and j # 1 then
if d; < oo then
| Extraer j de B[d;]
end
dj — dz + Cij
Se anade j a B[d;]
end
if dj ¢ V then se anade j a V

end

end
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Capitulo 4

Algoritmos de correccién de etiquetas

Los algoritmos de correcciéon de etiquetas usan métodos menos sofisticados para realizar la
eliminacién del nodo 7 de la lista de candidatos, que ir4 unido a un menor costo computacional.
Sin embargo, a diferencia de los algoritmos de asignacién de etiquetas, un nodo puede entrar
varias veces en la lista de candidatos. La mayor diferencia que se encuentra en este tipo de
algoritmos es la forma de gestionar la lista de candidatos para anadir y extraer nodos. Para el
desarrollo de los algoritmos a continuacion se ha hecho uso de [5, 6].

4.1. Algoritmo de Bellman-Ford

Se trata de un algoritmo que resuelve la ruta minima desde un nodo inicial 1 a los demas
nodos. Es notable destacar que este algoritmo si que permite la existencia de costos negativos.

Este método calcula el costo del camino 6ptimo desde el nodo inicial 1 hasta j para todo
j € N, usando como méximo tantos arcos como ntimero de iteracién en la que se encuentra el
algoritmo. Sera en la ultima iteracion cuando se fijan los valores finales de la etiquetas, hasta
entonces son tratados como temporales.

Las condiciones iniciales del algoritmo serén las siguientes,

V ={1}, di =0, d; = oo para todo i # 1,

al igual que en los algoritmos previos. La lista de candidatos sigue un orden FIFO (First In First
Out), por lo que el primer nodo en entrar sera el primero en abandonarla. En cada iteracion, se
eliminaran de la lista de candidatos todos los nodos anadidos en el paso anterior, actualizando
asi V' en cada iteracion, esto puede verse como si el algoritmo trabajara en ciclos de iteraciones.
Para cada nodo i que se extrae de V, se examinan todos los arcos (i,j) € A, comprobando si
d; > d; + ¢;j, que en caso de verificarse, se fijarad una nueva etiqueta para el nodo j,

dj = dZ + Cij,

y se anadira el nodo j al final de la lista de candidatos correspondiente con el nuevo ciclo. Se
haran N iteraciones, donde la tltima es una comprobaciéon de la existencia de ciclos en el grafo,
dado que si las etiquetas se actualizan en esta ultima iteraciéon, habra un ciclo negativo, de lo
contrario, las etiquetas resultantes seran la soluciéon buscada.

En el Algoritmo 4 se muestra el pseudocddigo de este método.

Con el fin de presentar el funcionamiento del algoritmo, serd necesario una definicién previa
a la proposicién, la cual destaca una propiedad que se distingue sobre el resto.

Definicién 5. Se denominara como df a la distancia mas corta desde el nodo 1 hasta el nodo i
usando caminos con k arcos o menos. En particular, df = 00 si no existe un camino de 1 a ¢ con
k arcos o menos, siendo d) =0 y d? = oo para todo i # 1.

19
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Algorithm 4: Algoritmo Bellman-Ford.
V + {1}
d <+ [0,00,...,00]

for i in range (N) do

1t <0

IV «len(V)

while it<[V do

it it+1

Se extrae el primer elemento de V

for todos los nodos j vecinos out de © do
if dj >d; + Cij then

if i == N — 1 then Existe un ciclo de costo negativo
dj — dl + Cij
end
if dj ¢ V then Se anade jaV /* Si j no ha sido afiadido */

/¥ a V en el ciclo actual */

end

end

end

Proposicion 4.1. Propiedad de Bellman-Ford Para cada nodo i y k > 1, k € N, se tendrd que
al final del k—ésimo ciclo de iteraciones del método de Bellman-Ford, d; < df.

Demostracion. Notar que, dada la definicién 5, d"*1 es la distancia mas corta desde el nodo 1
hasta el nodo i usando caminos con k+ 1 arcos o menos. Es decir, sera o la longitud de un camino
desde el nodo 1 al j con k arcos o menos, es decir dé? , 0 en su defecto, la longitud de un camino
desde el nodo 1 a un predecesor de j, el nodo i y luego llega a j usando el arco (i,j) € A. Esto

es,
d§+1 := min {d?, (ir%iélA{df + cij}} , para todo j,k > 1. (4.1)

Se probara la propiedad mediante el método de induccién. Una vez finalizado el primer ciclo de
iteraciones, se tendra para todo nodo 1,

0 sit=1,
di: C1; Sii;’ély(l,i)EA, dzl_{
oo sii#1y(1,1) ¢ A,

de donde se deduce d; < dz1 para todo i € N. Se supondra cierto d; < df para todo nodo 1.
Se tomara d; y V' como las etiquetas de los nodos y la lista de candidatos en el k—ésimo ciclo
respectivamente, mientras que d; indicara las etiquetas en los nodos al final del ciclo k + 1. Se

busca probar asi que d; < df“. Por la proposicion 2.1 (b)(iii) se sabe

d; < d; + ¢, para todo (i,7) € A,i ¢ V. (4.2)

Aplicando que d_] < dj, se transforma 4.2 en

dj < d; + ¢y, para todo (i,7) € A,i ¢ V. (4.3)
Por otro lado, se tiene 4.4 ya que cuando el nodo i es eliminado de la lista de candidatos, la
etiqueta actual denominada d; satisface d; < d;, y la etiqueta de j es fijada a d; + ¢;; si excede
d; + cij.
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d; < d; + cij, para todo (i,j) € A,i e V. (4.4)

Combinando asf las ecuaciones 4.3 y 4.4,

_ H.I
d; < min {d; +¢;;} < min {d¥+¢;}, ara todo j.
j = (z’,j)eA{ i b < (i,j)eA{ i ij p J

_ H.I.
A su vez, se tiene d; < d; < d;?, de donde se obtiene el paso final
- , , 4.1 k41
d; <min{d¥ min {d¥+¢;}p = dFL
) < min {df, min ()| 2

O

Notar que el algoritmo no terminara si y solo si existe un camino que empieza en el nodo 1
y contiene ciclos negativos.

Si todos los costos del grafo son no negativos, se puede asegurar que el algoritmo calculara
el camino dirigido més corto para cada nodo en un méaximo de N — 1 iteraciones, dado que
son caminos simples, pudiendo contener a lo sumo los N nodos del grafo. Por la propiedad de
Bellman-Ford 4.1 se puede concluir que si el algoritmo termina después de N — 1 iteraciones,
existe un ciclo negativo en el grafo.

Numero de iteracion Lista de candidatos (V) Etiquetas de los nodos(d)

1 {1} (0,5,1,00, 00, 00)
2 (2,3} (0,4,1,9,6,00)
3 {4,5,2) (0,4,1,8,5,10)
4 (6,4,5) (0,4,1,8,5,9)
5 (6} (0,4,1,8,5,9)
6 0 (0,4,1,8,5,9)

Tabla 4.1: Aplicacién del algoritmo de Bellman-Ford.

En la tabla 4.1 se puede ver la aplicacién del algoritmo 4.1 sobre el grafo representado en 1.1.
Las etiquetas que aparecen en cada iteracion en dicha tabla son las ya actualizadas al finalizar
cada paso. En este ejemplo se puede ver que en efecto los nodos entran varias veces la lista de
candidatos.

Por otra parte, para calcular el coste computacional, se tendra en cuenta que en el peor de
los casos en cada ciclo de iteracion el algoritmo tendra una complejidad O(m) de actualizar
etiquetas y de O(N) de tomar los nodos de la lista, siendo el ciclo de iteracién una complejidad
O(m). Teniendo en cuanta el namero total de ciclos, que a lo sumo seran N, se obtiene un coste
computacional de O(mN).

4.2. Algoritmo D’Esopo-Pape

Se trata también de una modificacion del algoritmo genérico, por lo que las condiciones
iniciales seran las mismas, no obstante la lista de candidatos seguird un orden especifico.

El nodo extraido seré el primero de la lista, sin embargo para los nodos que se anaden a V' se
distinguiré en dos casos, si ese nodo nunca ha estado en la lista de candidatos, se anadira al final
esta, por el contrario, si ya ha estado en V', el nodo sera anadido al principio de este mismo. Se
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hace de esta manera ya que cuando se elimina un nodo ¢ de V, su etiqueta afectara a los nodos
j tal que (7, ) € A pudiendo verse modificadas asi sus correspondientes etiquetas. Si se vuelve a
renovar la etiqueta del nodo ¢, es posible que también lo hagan la de los j dados, por lo que serédn
anadidos al principio de la lista, para poder asi actualizar las etiquetas lo més rapido posible.

Algorithm 5: Algoritmo D’Esopo-Pape.
V {1}
d + [0,00,...,00]
M — min{—1,(N —1) min ¢;}

(i,j)€A
while V # () do
Se extrae el primer elemento de V
for todos los nodos j vecinos out de i do
if dj > d; + Cij5 and j # 1 then
if d; ¢ V then
if d; < oo then Se afiade j al comienzo de V'
else Se anade j al final de V'

end
dj < di + Cij
if dj < M then STOP
end
end
end

La resolucién del problema habitual se muestra en la tabla 4.2. En esta tabla se ve en la lista
de candidatos los nodos que entran marcados en color, distinguiendo entre el verde para los que
entran por primera vez y se colocan al final de la fila y el rojo para los nodos que ya habian
entrado en V, colocdndose asi en cabeza. Al ser un algoritmo de correccion de etiquetas, se puede
apreciar como hay nodos que entran la lista de candidatos varias veces.

Nimero de Lista de Etiquetas de Nodo que
iteracion  candidatos (V) los nodos (d) sale de V
1 {1} (0,00, 00, 00, 00, 00) 1
2 {2,3} (0,5,1,00, 00, 00) 2
3 {3,4.5} (0,5,1,9,6,00) 3
4 {2,4,5} (0,4,1,9,6,00) 2
5 (4,5} (0,4,1,8,5,00) 4
6 (5,6} (0,4,1,8,5,10) 5
7 {6} (0,4,1,8,5,10) 6

0 (0,4,1,8,5,9)

Tabla 4.2: Aplicacion del algoritmo D’Esopo-Pape.

Este algoritmo tiene una complejidad exponencial debido que el ntimero de entradas de
algunos nodos a la lista de candidatos puede llegar a ser no polinomial. En [7] y [8] se proponen
problemas de ruta minima donde este hecho se pone en manifiesto. Sin embargo, existen variantes
de este algoritmo con complejidades polindmicas, estas pueden consultarse en [9] y [10].
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4.3. Algoritmo Small Label First (SLF)

Este algoritmo intenta colocar los nodos con etiquetas mas pequenas al comienzo de la lista
de candidatos. Cuando todos los costos asociados a los arcos son no negativos, suele reducir el
nimero de veces que entra un nodo a la lista de candidatos [11].

Se trata de una modificaciéon del algoritmo genérico, siendo asi las condiciones iniciales las
mismas. En cada iteracion se extrae de la lista de candidatos el primer nodo, mientras que el
nodo j que se anade a V', serd comparado con el nodo inicial de la lista de candidatos mediante
sus respectivas etiquetas. Sea ¢ el primer nodo de V, j es anadido al inicio de V' si d; < d;, en su
defecto, j es anadido al final de la lista de candidatos.

Notar que cuanto méas pequeiia fuera la etiqueta del nodo j en la anterior extraccién de la
lista de candidatos, serd menos probable que se actualice d;. En particular, si ¢;; > 0 y ademas,

d; < mind;
S =ty Y

ningin ¢ € V tal que (4, j) € A cumplira d; + ¢;; < dj.
Este método simula la politica del algoritmo de Dijkstra de seleccién del nodo con etiqueta

minima pero con menos operaciones, ademés de ser aptos para costos negativos.

Se trata de un algoritmo cuya complejidad computacional es no polinomial, aunque se puede
construir una versién del algoritmo que tendra complejidad polinomial, O(Nm?) [12].

En la tabla 4.2 se puede ver la aplicacion del Algoritmo 6 sobre el problema habitual. Los
nodos de color rojo son los que se anaden al principio de la lista de candidatos por ser su etiqueta
menor que la de su primer nodo, mientras que los de color verde son los que su etiqueta es menor.

Algorithm 6: Algoritmo SLF.
V {1}
d <+ [0,00,...,00]
M + min{—1,(N — 1) m‘)inAcij}

),

while V # () do
Se extrae el primer elemento de V'
for todos los nodos j vecinos out de i do
if d; > d; +c;; and j # 1 then
dj —d; + Cij
if dj < M then
| STOP
end
if len(V) == 0 then
| Se anade jaV
else if d; ¢ V then
if d; < d; then Se anade j al comienzo de V'
else Se afniade j al final de V'
end

end

end
end
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Numero de Lista de Etiquetas de Nodo que
iteracion  candidatos (V) los nodos (d) sale de V
1 {1} (0,00, 00, 00, 00, 00) 1
2 {3,2} (0,5,1,00, 00, 00) 3
3 (2,5} (0,4,1,00,6,00) P
4 (5,1} (0,4,1,8,5,00) 5
5 (4,6} (0,4,1,8,5,9) 4
6 {6} (0,4,1,8,5,9) 6

] (0,4,1,8,5.,9)

Tabla 4.3: Aplicacion del algoritmo SLF.



Capitulo 5

Estudio computacional

En este capitulo se lleva a cabo la comparaciéon del comportamiento de los algoritmos estu-
diados a lo largo del trabajo mediante unos problemas test, creados a través de un generador de
redes de problema de ruta minima! proporcionado por el director del Trabajo de Fin de Grado.
Los algoritmos se han implementado utilizando el lenguaje de programacion Python [13].

Este generador crea redes en forma de rejilla, que contendréan [ x k+ 2 nodos, correspondiendo
a las filas [ y columnas k, respectivamente. A dicha red se le afiaden dos nodos que se unen con
la primera y ultima columna, siendo asi el nodo inicial y final. Los arcos tienen una probabilidad
mayor de avanzar hacia delante en la red, aunque tienen la posibilidad de retroceder en las
columnas o quedarse en la misma que ya estaban. El ntimero total de arcos se establece en
proporcion a la densidad de la red, es decir, se proporciona una densidad « y se generan a-n(n—1)
arcos, una proporcion « sobre el ntimero maximo de aristas posibles, n(n—1), que son distribuidos
de forma uniforme.

Por ejemplo, para una red con 30 nodos, el nimero méximo de arcos es 870, y tomando una
densidad del 5 % se tendra una red con 43.5 & 44 arcos, que supondra que de cada nodo saldran
1 o0 2 arcos.

En el estudio, se va a tener en cuenta el niimero de nodos, densidad y forma de la red. Para
empezar se diferenciara en 3 cantidades de nodos diferentes, que serdan 100,500 y 1000. Por otro
lado, se aplicaran tres densidades diferentes, 5%,10% y 25 %, y por ultimo se distinguira 7
formas de redes. Con el objetivo de simplificar la notacién en la representacion de la forma, se
tomaré a x b siendo la proporcién entre | y k respectivamente, asi las formas de las redes tomadas
serdn 1 x6,1x4,1x2,1x1,2x1,4x1,6x 1. Para cada tipo de red, se generan 30 problemas con
costos positivos y se resuelven con cada algoritmo estudiado, guardando el tiempo de ejecucion
en milisegundos para su posterior estudio con R-Commander, donde se generaran las graficas y
tablas de las figuras 5.1 y 5.2 y del Anexo B.

En la figura 5.1 se representa el tiempo medio de ejecuciéon de cada algoritmo, diferenciando
entre el nimero de nodos, densidad, y formato. A continuacién se comentaré el comportamiento
de los algoritmos en las distintas situaciones dadas.

Segin el nimero de nodos, es decir, comparando la evolucién de las graficas de la figura 5.1
a través de las diferentes filas, se aprecia que el algoritmo general es el peor, sobretodo para
densidades mayores. La variacién de esta variable provoca un aumento en el tiempo de ejecucion
de los algoritmos significativo. El algoritmo Dial, con pocos nodos, obtiene tiempos mayores que
el resto de algoritmos, pero a medida que va aumentando el ntimero de nodos, sus resultados
mejoran, convirtiéndose en un algoritmo muy competente. Esto podria reflejar el término lineal
en el nimero de nodos de su complejidad.

Por el contrario, el algoritmo Heap, se comporta adecuadamente con un nimero de nodos
inferior, pero a medida que aumenta, empeora drasticamente, lo que se puede deber a que la
implantacion del paquete heapq no esté muy optimizada. El resto de algoritmos se comportan

1En el Anexo B se explica brevemente el funcionamiento del generador
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Figura 5.1: Grafica de medias del tiempo en milisegundos de cada algoritmo estudiado por el
tipo de formato. Cada fila representa la cantidad de nodos, siendo 100,500 y 1000
respectivamente, y cada columna representara la densidad, que seran 5,10 y 25.
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de forma uniforme con el aumento de nodos, ya que los algoritmos de Dijkstra, Bellman-Ford,
D’Esopo-Pape y SLF son los que mejores tiempos obtienen, incorporandose el algoritmo Dial a
los algoritmos competitivos para redes con abundancia de nodos.

Si se contrasta el desarrollo de las graficas a través de las columnas, es decir, teniendo en
cuenta el aumento de la densidad (aumento en el nimero de arcos), se percibe un sutil aumento
del tiempo de resolucién, sobretodo para el algoritmo genérico y el Heap. Se puede apreciar que
el algoritmo Dial y el algoritmo de Dijkstra pasan a ser los mas competitivos para redes densas.

Por ultimo, con respecto a la forma de las redes, es decir, el desarrollo a lo largo de cada una
de las graficas, se puede apreciar que no presenta un patrén aparente, pero para cada cantidad de
nodos, da problemas una forma distinta. Para 100, la forma 1 x 6 tiene un tiempo de resolucion
mucho mayor que el resto de las formas, para 500, resaltan la forma 2 x 1 y 1 x 1 cuando su
densidad aumenta, y por ultimo, para 1000, destaca 1 x 4.

Algoritmo®
Bell

—— Esop
-~ /sLF

800
I

600
I

400
I

mean of Tiempo(ms)

200
I

T T T
5 10 2

Densidad

Figura 5.2: Grafica de medias del tiempo en milisegundos de cada algoritmo estudiadas por la
diferencia de densidad: 5,10 y 25.

Por tltimo se ha generado una coleccién de problemas test en los que aparecen costos nega-
tivos, para evaluar la rapidez con la que los algoritmos detectan la existencia de ciclos negativos
dentro de las redes. Por esto, solo se ha estudiado con los algoritmos que permiten este tipo de
costos, a excepcidon del algoritmo genérico, ya que en el estudio previo se ha determinado que
es el que peor resultados obtiene. Se han considerado redes de 100 nodos en forma 1 x 4, con
densidades de 5%,10% y 25 %, en la figura 5.2 se puede observar el tiempo medio que tarda
cada algoritmo en detectar la existencia de los ciclos negativos, si los hay.

Se puede apreciar que a medida que la densidad aumenta, el tiempo para detectar el ciclo
lo hace también, aunque en el algoritmo de D’Esopo-Pape el crecimiento es mucho mayor. El
algoritmo de Bellman-Ford es el que obtiene mejores resultados, siendo el crecimiento del tiempo
muy sutil en el cambio de la densidad.

Tras el estudio realizado se puede concluir que para redes muy densas cuyos costos son
positivos y con muchos nodos los algoritmos més competitivos seran el Dijkstra, Dial y SLF,
mientras que para redes con pocos nodos y no densas se vuelve a recomendar el uso de los
algoritmos de Dijkstra y SLF ademés de D’Esopo-Pape y Bellman-Ford. Es decir, para costos
positivos en general se recomienda el algoritmo de Dijkstra y SLF o D’Esopo, siendo estos dos
ultimos modificaciones del algoritmo genérico, cuyas ideas subyacentes son heuristicas. Por otro
lado para redes que contienen costos negativos, el algoritmo que mejores resultados obtendra
sera el de Bellman-Ford, ya que en caso de contener ciclos, serd capaz de detener el algoritmo
mucho antes que los restantes.
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Apéndice A
Programacion lineal. Dualidad

Definiciéon 6. Un problema de programacion lineal se dice que esté de forma simétrica si todas
las variables estan restringidas a ser no negativas, y todas las restricciones son de tipo '<’ en
caso de tratarse de un problema de méaximo, o de tipo >’ en caso de minimo, es decir:

max Z =cx min Z =cx
(Praz) { sujeto a: Az <b (Pmin) { sujeto a: Az > b (A1)
x>0 x > 0.

Dado un problema de programacion lineal en forma simétrica de maximo, (Ppq,) en A.1 su
problema dual asociado seré el definido a continuacion.

min G =b"w
(Dpnin) { sujeto a: ATw > ¢!
w > 0.

Las variables de holgura de los problemas (P4z) ¥ (Dmin) se agregan a las restricciones de
tipo desigualdad del problema con el fin de convertirlas en una igualdad. Se denomina u a las
variables de holgura del problema primal y v a las del dual.

Teorema A.1 (Condiciones de Holgura Complementaria). Dadas & y w soluciones factibles de
los problemas simétricos de mdximo y su dual, entonces & y W serdn soluciones optimas para sus
problemas respectivos si y solo si (W' A — ¢)T +w! (B — AZ) = 0.

Haciendo uso de las férmulas que hay a continuacion, el teorema A.1 tomaré la forma del
teorema 1.1.

= Sean &, w soluciones factibles y @, ¥ holguras del problema primal y dual respectivamente,
entonces x>0, w>0, u>0v2>0.

max Z =cx min G =b'w
(Pprimal) § sujeto a: AT +u =25 (Daual) { sujeto a: ATw — 5 =T
x>0 w >0

» A partir de (w7 A — ¢)Z +w! (B — AZ) = 0w u+ v x, se tiene w @ =0y v’ & = 0 que
puede expresarse de forma equivalente como:

v, =0, 7=1,...,n
wiu; =0, 1=1,...,m.
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La expresion sobre la cual se ha deducido esta condicién, viene dada por propiedades previas
de holgura complementaria, donde se afirma que si & e w son soluciones factibles a dichos
problemas entonces & e @ son soluciones 6ptimas respectivamente si y solo si verifican
(wTA - )z +w? (B - Az) = 0.



Apéndice B
Problemas test y resultados

A continuacién se explicara con mas detalle el generador de problemas test utilizados para el
analisis del comportamiento de los algoritmos. Esta informacién ha sido aportada por el director
del trabajo.

Esta aplicacion genera una red de tipo rejilla con, inicialmente [ x k nodos distribuidos en [
filas y k columnas. A estos se anade un nodo previo a los nodos de la primera columna, nodo 0,
y un nodo posterior a los [ nodos de la ultima columna, nodo I x k + 1.

La red genera m arcos, [ desde el nodo 0 a cada uno de los nodos de la primera columna y
otros desde los nodos de la tltima columna hasta el nodo [ x k4 1. Para los restantes m—2-[ arcos,
se calcula la parte entera de (m — 2 -1)/(l - k), y ese nimero representaran los arcos salientes
de cada uno de los nodos de la rejilla. Para que cuadre exactamente m arcos, se completara
introduciendo aleatoriamente tantos arcos como sea necesario hasta llegar a los m.

Para generar los arcos que salen de cada uno de los [ X k nodos de la rejilla, se toma dicho
nodo asumiendo que se encuentra en la posicion (7,7) de dicha rejilla. Primero se sortea si el
nuevo arco va a otra columna diferente de la del nodo actual, con probabilidad p, que se tomaré
con un valor de 0.8; o si el arco va a un nodo dentro de la misma columna y distinta fila, con
probabilidad 1 — p, es decir, de 0.2.

Si se obtiene que el nuevo arco finaliza en una columna diferente a la del nodo actual, se
genera una distribuciéon de probabilidad que permite saltar desde la columna actual a cada una
de las otras columnas de forma que la probabilidad depende de la distancia a la columna actual,
ya sea hacia adelante o hacia atras. En este caso se ha tomado que en una misma distancia, si
el arco va hacia el nodo final, es decir, hacia la derecha, tiene el triple de probabilidad que si
va hacia el nodo inicial. Ademaés, al incrementar en uno la distancia, la probabilidad de salto
disminuiré a la mitad. Por el contrario, si se decide que el nodo se mantiene en la misma columna,
la nueva fila se sortea equiprobablemente entre el resto de filas de la columna.

Los arcos que se anaden para llegar a los m una vez introducidos los arcos que obligatoria-
mente salen de cada nodo de la rejilla, se generan tomando un nodo inicial aleatorio dentro de las
k — 1 columnas y el segundo nodo se genera en una fila aleatoria que sera a su vez equiprobable
entre todas y una columna posterior a la del nodo seleccionado, con un salto maximo de comunas
equivalente a max{1,int(0.1-k)}.

Los costos asociados a cada arco se generan de una distribucién de valores enteros y equipro-
bables entre dos ya marcados, ambos incluidos, que se han fijado en 1 y 100 para los problemas
con costos positivos y —5 y 95 para las redes con costos negativos que se han tomado. Esta red
es almacenada en un fichero en el formato Dicmacs.

A continuacion se encuentran las tablas resumenes de los distintos tipos de redes estudiadas,
distinguiendo en la densidad y cantidad de nodos en cada una de ellas. Destacar que para cada
tipo de red se han creado 30 problemas tests sobre los que se implementaré el algoritmo. En cada
tabla se observa el tiempo medio de resolucién de cada uno de los algoritmos en milisegundos
en funcién del formato de la red. Estas tablas representan los mismos datos que los dados en las

33



34

Capitulo B. Problemas test y resultados

figuras 5.1 y 5.2, pero permiten un anélisis mas preciso.
Primero se tiene en cuenta las redes con todos sus costos positivos.

s Para N =100

e Para Densidad= 5.

Algoritmo 1x6 1x4
Gen 4.9433833  3.4138467
Dij 24975833  1.0076167
Dial 31.2120867 10.2679567
Heap 1.2535033  2.5850767
Bell 0.8908433  0.9614400
Esopo 0.7825833  0.9391867
SLF 1.0910867  0.7840067

1x2
2.6828633
0.9848600
8.3245633
1.5511700
0.9212033
1.7036733
0.7864600

Forma

1x1
3.2614500
1.1361100
9.8686567
1.8510900
0.6964067
0.9820000
2.9531867

2x1
6.2289933
1.2447033
9.2561100
1.7617600
1.0394400
2.3795367
0.9754067

4x1
2.0421967
1.4181200
6.9307567
1.2421967
1.2004667
1.5925900
0.7910133

6x1
2.3872333
1.5393533
17.3926300
1.5392467
2.1544167
1.1816000
0.9825033

Tabla B.1: Tabla estadistica que representa la media del tiempo en milisegundos para N = 100
y Densidad= 5 %.

e Para Densidad= 10.

Forma
Algoritmo 1x6 1x4 1x2 1x1 2x1 4x1 6x1
Gen 14.121550  5.323403  4.352643 5.173990 8.637717 3.634133 4.358157
Dij 3.528117  1.195700  1.513000 1.645350 2.668463 2.603463 2.012403
Dial 36.691620 17.259853 11.463627 9.612643 8.742570 8.856943 7.690390
Heap 5.076380  5.737680  2.497570 2.757870 2.763697 2.326600 2.700243
Bell 2.694350  1.790510  1.511783 1.118033 2.891327 1.738577 3.672987
Esopo 2.685067  1.471770  2.197087 1.729927 3.670133 2.412363 1.554737
SLF 4.232260  1.439470  1.439173 1.784423 1.475430 1.417370 2.430053
Tabla B.2: Media del tiempo en milisegundos para N = 100 y Densidad= 10 %.
e Para Densidad= 25.
Forma
Algoritmo 1x6 1x4 1x2 1x1 2x1 4x1 6x1
Gen 39.024363 10.362870 7.415030  9.243660 13.863080 6.913957  8.831767
Dij 16.252230  1.917113 2.349630  2.398047  3.332830 2.803260  2.724463
Dial 35.802567 11.880840 9.889510 10.041813 11.204020 8.241577 13.497870
Heap 13.860167  7.836580 4.833993  5.131047  8.451633 3.453290  4.869013
Bell 7.280280  3.414790 2.786890  2.556047  5.164390 3.297217  7.276727
Esopo 6.367487  3.097807 3.603093  3.530517  6.183033 4.399310  4.184737
SLF 7.746573  2.438193 2.510293  7.787557  2.502187 2.618727  3.638220

Tabla B.3: Media del tiempo en milisegundos para N = 100 y Densidad= 25 %.

s Para N = 500

e Para Densidad= 5.
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Algoritmo 1x6 1x4 1x2
Gen 146.87948  231.71308 187.75016
Dij 34.02096  16.20041  18.93551
Dial 65.26186  67.94711  64.56541
Heap 104.37202  99.88700 120.93618
Bell 31.41976  29.72975  30.49598
Esopo 34.05244  27.88661  23.85529
SLF 45.62452  18.66935  37.07670

Forma
1x1
162.42901
37.88086
67.65150
86.36102
16.76068
15.29160
22.01906

2x1
284.36810
33.83091
96.80110
97.98055
53.73594
49.90568
23.85098

4x1
129.17379
41.55234
64.09599
81.20279
28.25483
26.67922
32.43326

35

6x1
122.36780
37.40422
67.33806
98.01178
36.96791
40.96178
36.83684

Tabla B.4: Media del tiempo en milisegundos para N = 500 y Densidad= 5 %.

e Para Densidad= 10.

Algoritmo 1x6 1x4 1x2
Gen 283.17220 270.24234  300.75959
Dij 27.38667  20.74221  28.74934
Dial 77.27568  83.85945  66.43727
Heap 117.33630 173.31925 163.75290
Bell 46.00560  39.55882  46.10512
Esopo 42.75253  27.92060  49.94408
SLF 69.06445  42.59004  47.17327

Forma
1x1
206.49235
45.66189
62.76419
114.31767
41.97179
41.44378
39.16109

2x1
378.78770
48.85034
84.14583
143.20863
83.66775
74.90775
36.70338

4x1
142.32770
46.91512
54.69922
104.29336
51.29028
45.37160
41.92610

6x1
192.42838
42.62307
82.98500
129.62983
92.24667
51.71502
43.37764

Tabla B.5: Media del tiempo en milisegundos para N = 500 y Densidad= 10 %.

e Para Densidad= 25.

Algoritmo 1x6 1x4 1x2
Gen 390.60683 321.92775 330.74715
Dij 49.89059  56.27866  50.00214
Dial 100.17582 107.86998  95.48505
Heap 192.22355 225.36473 249.65763
Bell 101.23848 100.83735  84.95960
Esopo 92.37939 105.23087  85.68959
SLF 121.85680  79.81055  99.35306

Forma
1x1
983.94711
139.59553
169.15405
479.00798
113.75162
83.66933
139.61136

2x1
547.51783
79.29547
167.36098
227.00526
143.69078
162.56531
70.27395

4x1
222.99194
77.98803
83.59601
154.93527
105.33049
77.09639
83.72806

6x1
301.51632
69.07425
109.67623
181.91381
139.40830
112.24787
91.72396

Tabla B.6: Media del tiempo en milisegundos para N = 500 y Densidad= 25 %.

s Para N = 1000

e Para Densidad= 5.
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Forma
Algoritmo 1x6 1x4 1x2 1x1 2x1 4x1 6 x1
Gen 840.4164 1407.12187 999.49124 938.1866 1010.5278 775.8545 694.8643
Dij 103.2384 71.58635  95.88300 135.7490  112.4831 160.2048 186.5426
Dial 138.7218  171.40885 142.18029 160.1962  116.4923 131.8441 187.9273
Heap 470.0631  676.44435 602.64390 527.3678  434.5030 450.3304 529.6186
Bell 185.4344  140.95666 121.37230 110.3620  170.8471 154.6204 199.0977
Esopo 133.1537 84.16786  82.40359 105.1826  178.4629 149.2580 130.9520
SLF 168.5073  104.07238 127.59259 138.3905  100.1240 144.5655 165.4383

Tabla B.7: Media del tiempo en milisegundos para N = 1000 y Densidad= 5 %.

e Para Densidad= 10.

Forma
Algoritmo 1x6 1x4 1x2 1x1 2x1 4x1 6x1
Gen 1312.1108 1701.73187 1461.87461 1237.0762 879.4927 886.9374 895.6284
Dij 110.8332 89.87194 89.78103  163.5117 235.7451 188.9447 231.2931
Dial 211.6824  232.89590  161.62963  178.2123 202.0085 226.3554 208.2938
Heap 626.8365  793.81802  678.52003  625.9275 564.7822 621.4377 568.7393
Bell 243.1595  194.82609  250.66439  181.8565 195.3071 199.3022 222.4877
Esopo 212.1692  106.18269  117.02600  149.8923 177.9223 205.7446 196.9558
SLF 167.0752 98.15223  113.13559  157.5725 139.7641 212.0660 183.7871

Tabla B.8: Media del tiempo en milisegundos para N = 1000 y Densidad= 10 %.

e Para Densidad= 25.

Forma
Algoritmo 1x6 1x4 1x2 1x1 2x1 4x1 6x1
Gen 1359.3315 1468.4184 1700.3284 1465.1374 1206.1127 1323.9907 1270.3655
Dij 203.3756  223.9715  189.7181  325.3818  281.8745  347.0623  303.1404
Dial 346.6228  344.6434  261.4775  299.0959 = 247.4207  260.6279  366.6635
Heap 737.0820  833.8920  847.6045  940.4855  739.4373  777.5109  885.4802
Bell 365.8079  347.6245  366.5095  317.7303  295.8496  365.4115  425.3093
Esopo 361.0376  403.5775  265.6948  327.8105  389.8034  342.8026  421.7340
SLF 279.1620  284.8404  274.2223  315.6332  236.4630  318.9357  389.5721

Tabla B.9: Media del tiempo en milisegundos para N = 1000 y Densidad= 25 %.

A continuacion se tiene la tabla para el estudio de las redes con costos negativos, que repre-
sentan el tiempo medio que tarda cada algoritmo en detectar un ciclo en la red dada.

Densidad
Algoritmo ) 10 25
Bell 20.73292  49.93673  94.7648
Esopo 145.08446 325.24244 882.0578
SLF 67.65166 108.00250 354.8277

Tabla B.10: Media del tiempo en milisegundos para N = 100 y Forma= 1 x 4.



Apéndice C
Implementacion de los algoritmos

En este apéndice se pueden encontrar la implementacién de los algoritmos explicados previa-
mente, y el lector de ficheros Dicmacs programados con el lenguaje Python.

C.1. Lectura ficheros Dicmacs

Funcion que lee los datos de un archivo en formato Dicmacs|14].

import numpy as np

def datos(nombre_archivo):
try:
#Se inictalizan el contador de arcos, y la cantidad total de arcos y nodos
contador=0
marcos=0

nodos=0

#4bre y lee el archivo de texto. Lee cada linea, st estd vacia o con espacto,
#continua sino guarda la primera letra.
with open (nombre_archivo,'r') as archivo:
for linea in archivo:
if not linea.strip():
continue

primera_letra = linea[0]

O 0

P 3
#los vectores donde se guardardn el origen, destino y costo de los nmodos.

#5171 la letra es se guarda el numero total de nodos y arcos y se crean
if primera_letra == 'p':

1=linea.split()

nodos=int (1[2])

marcos=int (1[3])

start=np.zeros(marcos) .astype(int) #pasa de wvariable a nimero

end=np. zeros (marcos) .astype (int)

c=np.zeros(marcos) .astype (int)

1oyt

#S51 la letra es 'a', se guarda la informacion de los arcos en los vectores
#especializados para ello.
if primera_letra == 'a':

1=linea.split()

start [contador]=int (1[1])
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end[contador]=int (1[2])

c[contador]=int (1[5])

contador=contador+1
else:

continue

#Se crean las listas de adyacencia y se afiaden los arcos correspondientes
#de cada nodo.
IN=[]
0UT=[]
for i in range (nodos):
IN.append([])
OUT. append ([1)
for i in range (contador):
IN[end[i]] . append (i)
OUT [start[i]] . append (i)

except FileNotFoundError:
print("El archivo '{}' no se encontré.".format(nombre_archivo))

#Se devuelven las siguientes variables cuando se llame a la funcidn.

return IN,O0UT,c,marcos,nodos,start,end

C.2. Algoritmo Genérico

Programa que ejecuta el algoritmo genérico explicado en el Capitulo 2 y devuelve por pantalla
las distancia minima que hay del nodo inicial a cada uno de los nodos pertenecientes al grafo y
el tiempo de ejecucion de dicho programa.

import sys

import numpy as np
from math import inf
import random

import time

#Se carga la funcion 'datos', guardada en el fichero 'funciondatos', y se llama a
#dicha funcion, que leerd los datos del fichero de texto que se meta por pantalla.
import funciondatos

iname=input ('Nombre del fichero de datos: ')

(IN,QUT, c,marcos,nodos,start,end)=funciondatos.datos (iname)

#Variable que indica cuando emptieza a contar el tiempo.

inicio = time.perf_counter_ns()

#Se define V como una lista vacia, a la que se va afiadiendo e eliminando elementos durante
#el programa. Se inicializa V={0}.

V=[]

V.append (0)

#Se define d como el vector de etiquetas. Se inicializa el vector, stendo todos sus walores
#igual a wnfinito menos el del modo inicial, que sera 0.

d=[inf]*nodos

d[0]=0
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#Se define M, constante para detectar la presencia de ciclos negativos.

M=min (-1, (nodos-1)*min(c))

#Se hacen iteraciones mientras la longitud del vector V sea mayor que 0.

while len(V)>0:
i=V.pop(random.randint (0, len(V)-1)) #elimina un nodo aleatorio de V.

#Para cada arco saliente del nodo eliminado se comprueban las CHC:
for a in OUT[i]:
if d[end[a]]l>d[start[a]]l+c[a] and end[a]!=0:
d[end[a]]=d[start[al]+c[a]
#Detecta la presencia de un ciclo y para el algoritmo.
if min(d)<M:
sys.exit ()
#Se afiade el modo a la lista si no estaba ya en ella.
if end[a] not in V:

V.append(end[a])

fin = time.perf_counter_ns()
print('Las distancias minimas del nodo 1 a todos los demas son:',d,'\n',

'El tiempo de ejecucidén fue:', (fin - inicio)/1000000 ,'milisegundos')

C.3. Algoritmo de Dijkstra

Programa que ejecuta el algoritmo de Dijkstra descrito en el Seccién 3.1 y devuelve por
pantalla las distancia que hay del nodo inicial a cada uno de los nodos pertenecientes al grafo.

En este programa y en los posteriores se explicaran solamente las partes que se han alterado,
el resto de aclaraciones han sido omitidas para evitar la repeticiéon. Por esta razén también
se ha prescindido de medir el tiempo de ejecucién, en caso de desear hacerlo, se utilizaran el
procedimiento realizado en el algoritmo genérico.

import sys
import numpy as np

from math import inf

import funciondatos
iname=input ('Nombre del fichero de datos:')
(IN,OUT,c,marcos,nodos,start,end)=funciondatos.datos (iname)

#comprueba si existe algun c_ij >=0, si es ast se para el algoritmo.
if c.any()<0:
sys.exit()
V=[]
V.append (0)
d=[inf]*nodos
d[0]=0

while len(V)>0:
#se inicializa el minimo antes del bucle, se escoje el la menor etiqueta de los nodos

#de V y se elimina dicho nodo de V j de V

minimo=inf
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for j in V:
if d[j] < minimo:
minimo=d[j]
sale=j

V.remove (sale)

for a in OUT[sale]:
if d[end[all>d[start[a]l]l+c[a]l and end[a]!=0:
d[end[a]l]=d[start[a]]+c[a]
if end[a]l not in V:
V.append(end[al)

print ('Las distancias minimas del nodo 1 a todos los demas son:',d)

C.4. Algoritmo de Dijkstra con cola de prioridad

Programa que ejecuta el algoritmo de Dijkstra con colas de prioridad detallado en el Seccion
3.2 y devuelve por pantalla las distancia que hay del nodo inicial a cada uno de los nodos
pertenecientes al grafo.

import sys
import heapq
import numpy as np

from math import inf

import funciondatos
iname=input ('Nombre del fichero de datos: ')

(IN,OUT,c,marcos,nodos,start,end)=funciondatos.datos (iname)

if c.any()<0:
sys.exit ()
d=[inf]*nodos
d[0]=0
#Se inicializa y define la pila como una lista de tuplas, que temdran como segundo elemneto

#los nodos de V, y como primero sus etiquetas.
pila=[(0,0)]

#Se hacen iteraciones mientras que la longitud de la pila sea mayor que 0 (ya que V es el
#conjunto de los segundos componentes de las tuplas de la pila).
while len(pila)>O0:
#Elimina de la pila la tupla con el primer elemento mds pequefio (nodo con menor etiqueta).
D, i=heapq.heappop(pila)

for a in OUT[i]:
if d[end[al]>d[start[a]]l+c[a] and end[a]!=0:

d[end[al]l=d[start[a]]l+c[al

#Se comprueba que el nodo eliminado de la pila no pertenezca a V y en ese

#caso se afiade.

if all (tuplalil]'!=end[a] for tupla in pila):
heapq.heappush(pila, (d[end[al],end[a]))

print ('Las distancias minimas del nodo 1 a todos los demds son:',d)
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C.5. Algoritmo Dial

Programa que ejecuta el algoritmo Dial explicado en la Secciéon 3.3 y devuelve la distancia
minima del nodo inicial a todos los nodos de la red.

import sys

import numpy as np

from math import inf

import funciondatos

iname=input ('Nombre del fichero de datos: ')

(IN,OUT, c,marcos,nodos,start,end)=funciondatos.datos (iname)

#comprueba si existe algun c_15>=0 o no entero, si es asi se para el algoritmo

if c.any()<0 or (all(isinstance(x, np.int32) for x in c))==False:
sys.exit()

v=[1

V.append (0)

d=[inf]*nodos

d[0]1=0

#Se inicializan los buckets, la cota y el contador de indices de buckets.

C=(nodos-1) *max (c)

B=[[Ifor _ in range(C+1)]
B[0] . append (0)
indice=0

while len(V)>0:
#S1 el bucket contiene algiun nodo, para y examina, st estd vacio pasa al sigueinte.
#S% ya ha examinado todos, para el bucle.
while len(B[indice])==0:
indice+=1
if indice==C+1:
break
#se elimina un nodo del bucket (da tgual cual ya que todos tiemen la misma etiqueta)
#y a su wvez de V.

sale=B[indice] .pop(0)

V.remove (sale)
for a in OUT[sale]:
if d[end[a]]l>d[start[a]]l+c[a] and end[a]!=0:
#s1 la distancia no es infinito, estd contentido en otro bucket, por lo que
#habrd que eliminarlo previamente para después poder afiadirlo.
if d[end[a]]!=inf:
Bld[end[a]]].remove(end[a])
#Se actualiza la distancia y se afiade el nodo al bucket.
d[end[al]=d[start[a]]+c[a]
B[d[end[a]l]] .append(end[a])
if end[a] not in V:
V.append(end[al)

print ('Las distancias minimas del nodo 1 a todos los demas son:', d)
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C.6. Algoritmo de Bellman-Ford

Se trata de un programa que ejecuta el algoritmo de Bellman-Ford, detallado en la Seccion
4.1 del trabajo. Este programa devuelve la distancia minima entre el nodo inicial tomado y el
resto de nodos pertenecientes a la red.

import sys
import numpy as np

from math import inf

import funciondatos
iname=input ('Nombre del fichero de datos: ')

(IN,OUT,c,marcos,nodos,start,end)=funciondatos.datos (iname)

V=[]
V.append (0)
d=[inf] *nodos
d[0]=0

#Se hacen tantas iteraciones como nodos hay en el grafo
for i in range(nodos):
it=0
long=len(V)
#Se hacen tantas tteraciones como nodos habia en V al final de la iteracion anterior
while it< long:
it+=1
j=V.pop(0)

for a in OUT[j]:
if d[end[al]l>d[start[al]l+c[a]:

#51 en la tteracon N cambia, existe un ciclo negativo

if (i==nodos-1):
print('En el grafo hay al menos un ciclo negativo')
sys.exit()

d[end[a]]l=d[start[al]+c[a]

if end[a] not in V:
V.append(end[al)

print ('Las distancias minimas del nodo 1 a todos los demds son:', d)

C.7. Algoritmo D’Esopo-Pape

Programa que desarrolla el algoritmo especificado en la Seccion 4.2, es decir, el D’Esopo Pape,
devolviendo la distancia minima entre el nodo inicial y el resto de ellos.

import sys
import numpy as np

from math import inf

import funciondatos

iname=input ('Nombre del fichero de datos: ')
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(IN,OUT,c,marcos,nodos,start,end)=funciondatos.datos (iname)

V=[]
V.append (0)
d=[inf]*nodos
d[0]=0

while len(V)>0:
#coge un elemento de la lista y lo elimina en orden FIF0

i=V.pop(0)

for a in OUT[i]:
if d[end[al]l>d[start[a]ll+c[a]l and end[a]!=0:
if end[a] not in V:
if d[end[al]l==inf:
V.append(end[al]) #lo afiade al final de la lista
else:
V.insert (0,end[a]) #afiade en el elemnto V[0] el end[a]
d[end[al]=d[start[a]]+c[a]
print ('Las distancias minimas del nodo 1 a todos los demas son:', d)

C.8. Algoritmo SLF

Programa que detalla el algoritmo SLF, explicado en la Seccion 4.3, y devuelve la distancia
minima entre el nodo inicial y el resto de ellos.

import numpy as np
from math import inf

import time

import funciondatos
iname=input ('Nombre del fichero de datos: ')

(IN,OUT, c,marcos,nodos,start,end)=funciondatos.datos (iname)

V=[]

V. append (0)
d=[inf]*nodos
d[0]=0

while len(V)>0:
i=V.pop(0)

for a in OUT[i]:
if d[end[al]l>d[start[a]]l+c[a] and end[a]!=0:
d[end[a]]=d[start[al]+c[a]
#S1 V estd vactio se afiade el nodo.
if len(V)==0:
V.append(end[al)
#S1 mo estd wvacio, se mira st la etiqueta del nodo es mayor que la del primer
#nodo de T
elif end[a]l not in V:
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if d[end[al]l>d[V[0]]:

V.append(end[a]) #lo afiade al final de la lista
else:

V.insert(0,end[a]) #afiade en el nodo V[0] el end[a]

print ('Las distancias minimas del nodo 1 a todos los demas son:', d)
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