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Abstract

The purpose of this work is to study the congruent number problem. The discussion begins with the
simple definition of what a congruent number is and proceeds to explain the relationship between the
problem and the broad field of elliptic curves. This ultimately leads us to state the Birch and Swinnerton-
Dyer Conjecture.

Congruent numbers are defined as integers that can be represented as the area of a right triangle with
rational sides. This definition is followed by the result discovered by Arab students in the 10th century,
which establishes a relationship between congruent numbers and rational numbers x satisfying that x — n,
x, and x + n are each the square of a rational number. This relationship is the reason why these numbers
are called congruent, as x —n, x, and x + n are congruent modulo 7.

Using this correspondence, the paper proceeds to derive a cubic equation related to the problem. This
equation is

E, :y2 = x> —n’x.

Moreover, it is proved that there is a bijective mapping between right triangles with rational sides
and area n, and rational solutions of the above cubic equation with y # 0. Thus, the problem of finding
congruent numbers is translated into solving this cubic equation.

This cubic equation happens to be an elliptic curve. For this reason, the necessary background about
them is discussed. The most relevant result is that if we define a certain group operation for the elliptic
curve in the projective space, we give the curve the structure of an abelian group. Therefore, we are able
to talk about the order of the points in the elliptic curve.

By using techniques from the study of elliptic curves over C and combining a reduction modulo
prime argument with a theorem of Dirichlet, it is proved that there are only 4 points of finite order in the
elliptic curve E, over the rationals. With this, Mordell’s theorem allows us to reformulate our problem as
follows:

An integer n > 0 is a congruent number if and only if E,(Q) is infinite.

Finally, the modern Birch and Swinnerton-Dyer Conjecture is stated in order to provide a criterion
to decide whether E,(Q) has infinite points or not.
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Capitulo 1

Introduccion

Determinar si un nimero entero puede ser el drea de un tridngulo rectdngulo de lados racionales
ha sido un problema ampliamente estudiado a lo largo de muchos siglos. Desde el siglo X, cuando
estuadiantes drabes reformularon el problema mediante una correspondencia entre dichos tridngulos y
numeros racionales x tal que x —n, x y x4 n son cada uno el cuadrado de un niimero racional. Hasta el
dia de hoy que es una cuestién que sigue abierta. El objetivo de este trabajo es estudiar estos nimeros
llamados congruentes.

Para ello, en el primer capitulo se presentan las primeras definiciones necesarias sobre el problema.
A continuacién, se observa que la cuestion no es tan sencilla como su planteamiento a través de un
algoritmo paramétrico ineficiente. Con el objetivo de encontrar otra manera en la que abordar la cuestion,
se desarrolla en profundidad la equivalencia ya mencionada que fue planteada por los estudiantes drabes.
Esta equivalencia da nombre al problema, ya que x — n, x y x4+ n son congruentes médulo »n desde la
perspectiva habitual. Después, para completar la explicacién se demuestra el Teorema de Fermat. Este
teorema es un resultado clédsico que dice que el ndmero 1 no es congruente y en consecuencia demuestra
que ningin cuadrado perfecto lo es. Para finalizar el capitulo, se introduce una ecuacién ctibica que
resulta ser de gran importancia:

E, :y2 = x> —n’x.
De hecho, demostramos que hay una aplicacién biyectiva entre las soluciones racionales de esta ecuacién
E, con y # 0y los trios racionales que forman un tridngulo rectdngulo y cuya drea es n.

La ecuacion anterior define una curva eliptica y por ello dedicamos el segundo capitulo al estudio
de esas curvas. En primer lugar, se da la definicién de curva eliptica y se presentan la ecuacién de
Weierstrass simplificada y su forma generalizada. A continuacién, definimos una ley de grupo en el
conjunto de soluciones racionales de la curva. Para ello, es necesario homogeneizar la ecuacion anterior
y considerar asi la curva proyectiva asociada a E,. En este proceso, ganamos’ una solucién adicional
representada por el tnico punto de la curva proyectiva que corta la recta del infinito. Este punto, que
denotaremos Of,, juega un papel fundamental en la ley de grupo: es el elemento neutro de la operacion.
Esta operacion resulta que dota a las curvas elipticas de estructura de grupo abeliano. Ademads, también
nos permite hablar sobre el orden de cada punto. Esto es importante para el problema porque resulta que
hay una estrecha relacién entre los nimeros congruentes n y las soluciones infinitas de la ecuacién ctibica
E,. Paraddjicamente, el estudio de los puntos de orden infinito es abordado a través de los resultados
sobre los puntos de orden finito. Para el estudio de estos puntos, juegan un papel fundamental técnicas
que se obtienen estudiando las curvas elipticas sobre los nimeros complejos. Por eso, se introducen las
definiciones y resultados necesarios en C para facilitar el estudio de dichos puntos de orden finito. Al
final de este capitulo, conseguimos demostrar un importante resultado que dice que para nuestra curva
eliptica concreta E, solo hay cuatro puntos de orden finito. Es decir, el subgrupo de torsién de E,(Q)
tiene cardinal 4:

#E), (@)tors =4

Notemos que este resultado es independiente de n. De hecho, los cuatro puntos que forman E,, (Q)ors SON
el punto Og, junto con las soluciones obvias (0,0), (0,£n) de la ecuacién afin que define E, (que son
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precisamente aquellas en las que y = 0).

En el dltimo capitulo, somos capaces de reformular nuestro problema gracias al estudio realizado en
los anteriores capitulos. Empezamos presentando el Teorema de Mordell, que plantea que el conjunto
de soluciones racionales de una curva eliptica definida sobre ese mismo cuerpo es un grupo abeliano
finitamente generado. En consecuencia, relacionando la correspondencia que aparece al final del primer
capitulo con la conclusién del tercer capitulo sobre los puntos de orden finito, se obtiene que:

n es congruente si'y solo si E,(Q) es infinito.

Finalmente, se presenta de forma breve la conjetura de Birch y Swinnerton-Dyer, que propone un criterio
para decidir cudndo el grupo de puntos racionales E(Q) de una curva eliptica E definida sobre Q es
infinito.



Capitulo 2

Nuameros congruentes

En este capitulo se introducen las definiciones necesarias para el problema de los nimeros congruen-
tes, asi como una aproximacién al problema mediante un algoritmo paramétrico y correspondencias que
relacionan el problema con curvas elipticas. Ademads, ofrecemos la demostracién del Teorema de Fermat
que asegura que 1 no es congruente. Para este desarrollo se ha seguido el articulo Congruent Numbers
de K. Conrad [2] y el primer capitulo del libro Introduction to Elliptic Curves and Modular Forms de N.
Koblitz [1].

2.1. Definiciones

Definicion. Sean € Q. Se dice que n es un niimero congruente si existe un tridangulo rectangulo cuyos
lados son racionales y tiene drea n.

Nota: Supongamos que r € Q" es el drea de un tridngulo rectangulo con lados X, Y, Z € Q. Entonces,
podemos encontrar un s € QT tal que s> es un entero libre de cuadrados. En este caso, el drea del
triangulo de lados sX, sY y sZ es s*r. Por lo tanto, podemos asumir que » = n es un nimero natural
libre de cuadrados sin perder generalidad. De esta manera, probar que 1 no es congruente, resultado que
veremos mds adelante, demuestra que ningtin racional que sea cuadrado es congruente.

Por ejemplo, 6 es el area del tridngulo rectangulo de lados 3, 4 y 5 por lo que es un nimero con-
gruente.

H

3

Figura 2.1: Tridngulo rectangulo de érea 6.
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2.2. Algoritmo paramétrico

Es sencillo de observar que los tridngulos rectingulos con lados racionales con catetos X, Y e hi-
potenusa Z estdn en biyeccién con las soluciones racionales de X2 +Y? = Z2, ya que cada tridngulo
rectangulo debe cumplir esa ecuacién y cada trio de ndmeros que la cumple puede ser representado co-
mo tridngulo rectdngulo. Sin embargo, si tomamos (a,b,c) una solucién sin ninguna restriccion, el drea
n = ab/2 del correspondiente tridngulo rectdngulo no serd necesariamente libre de cuadrados como se
requiere en la nota anterior. Por eso, se presenta la siguiente definicion.

Definicién. Llamamos ternas de Pitdgoras primitivas a las ternas de nimeros enteros positivos (a, b, ¢)
que verifican la igualdad a® + b*> = ¢? y cuyo méximo comun divisor es 1.

De esta forma, nos aseguramos de que el drea de los tridngulos rectdngulos correspondientes sea libre
de cuadrados. Por eso, serd suficiente con limitarnos a ternas de Pitdgoras primitivas.
Es bien sabido que existe una manera paramétrica de expresarlas:

(K> =02, 2k0, K*407)

donde k > ¢ >0, mecd(k,l) =1y k# ¢ (méd 2).

Cuadro 2.1: Tabla de correspondencia

k|/ (a,b,c) (1/2)ab | Parte libre de cuadrados
211 3,4,5) 6 6

411 (15,8,17) 60 15

312 (5,12,13) 30 30

6|11 @35,12,37) 210 210

512 (21,20,29) 210 210

413 (7,24,25) 84 21

8111 (63,16,65) 504 126

712 | (45,28,53) 630 70

514 (9,40,41) 180 5

Sin embargo, de este modo no se puede prever cudnto hay que esperar para encontrar algin niimero
concreto, por lo que se descarta como una herramienta efectiva para encontrar niimeros congruentes o
para decidir si un nimero dado es congruente o no. Por ejemplo, el nimero 53 es congruente pero no
aparece hasta que k = 1873180325 y £ = 1158313156.

2.3. Primera correspondencia

A pesar de que el estudio del problema de los nimeros naturales que resultan ser el area de tridn-
gulos rectdngulos con lados racionales fue de gran interés para los griegos, se tiene constancia de que
estudiantes arabes estudiaron por primera vez, en el siglo X, la cuestién de los nimeros congruentes. Es-
tos estudiantes reformularon el problema mediante la equivalencia recogida en la siguiente proposicion:

Proposicion 1. Sea n un entero positivo libre de cuadrados. Sean X,Y,Z niimeros racionales positivos,
con X <Y < Z. Existe una correspondencia uno a uno entre tridngulos rectdngulos con catetos X e Y,
hipotenusa Z y drea n 'y niimeros racionales x para los cuales x —n, x, y x +n son cada uno el cuadrado
de un niimero racional. La correspondencia es:

(X.Y.Z) —sx = <§)2

x— (X,Y,Z) = (Vx+n—+vx—n, Vx+n+vVx—n, 2yx)




En particular, n es un niimero congruente si y solo si existe x € Q tal que x —n, x, y x+n son
cuadrados de niimeros racionales.

Demostracion. Supongamos primero que X,Y,Z es una terna con las propiedades deseadas: X2 +Y? =

72, % = n. Si sumamos o restamos cuatro veces la segunda ecuacion de la primera, obtenemos:

(X+£Y)?=2Z2+4n (2.1)

Si luego dividimos ambos lados por cuatro, vemos que x = (%) tiene la propiedad de que los nimeros

x £ n son los cuadrados de %
Reciprocamente, dado x con las propiedades deseadas, es facil ver que los tres nimeros racionales

positivos X < Y < Z dados por las férmulas de la proposicion satisfacen:
XY=2n y X’4Y>=dx=27

Finalmente, para establecer la correspondencia biunivoca, vemos que dos ternas diferentes no pueden
llevar a la misma x. Supongamos que (X;,Y1,Z;) # (X2,Y2,Z») pero que para ambas se cumple que

X1 = ) = ) = X2.

Entonces como Z; y Z, son positivos deducimos que tienen que ser iguales. Ademds, como
Xi=vVxi+n—x1yXo=vxi+n—/xi,
Yi=vxi+n+yxrya=vxi+n+y/x,

podemos observar que necesariamente X; = X, y Y1 = 1> lo que contradice nuestra suposicién de que las
ternas son diferentes. 0

Se dice que esta correspondencia para nimeros congruentes es una de las razones por las que a estos
nimeros se les llama congruentes, ya que x — n, x, x + n son congruentes entre ellos médulo n.

2.4. Teorema de Fermat

Siglos después de que los estudiantes drabes investigaran el problema, renombrados matemadticos han
contribuido al avance del conocimiento en este &mbito. Como, por ejemplo, Fibonacci, que descubri6 que
7 es congruente y planted que 1 no lo era en el siglo XIII. La primera demostracién vélida de que 1 no
es congruente se conoce gracias a Fermat.

Teorema 2.1 (Fermat, 1640). El niimero 1 no es congruente.

Demostracion. Para esta prueba utilizaremos el método de descenso. Este método es particular por con-
tradiccidn y se emplea para demostrar que una hipétesis no se puede cumplir para ninglin nimero, pro-
bando que si se cumpliera, entonces también se cumpliria para nimeros atin mas pequefos, generando
asi un descenso hasta llegar a la contradiccién que se obtiene por el principio de conjuntos ordenados.

Supongamos que un tridngulo rectdngulo de lados racionales tiene drea 1. Denotemos los lados como
a/d,b/d,y c/d,donde a, b, ¢, y d son enteros positivos, de modo que a® +b* = c*y %ab = d?. Al quitar
el denominador de la segunda ecuacién, obtenemos:

a?+ b =c%
ab = 2d>. 22)

Mostraremos que la ecuacion anterior no tiene soluciones en enteros positivos.
Supongamos que existe una solucién en enteros positivos para (2.2). Demostraremos que entonces
existe una solucién donde a y b son primos entre si. Sea g = mcd(a, b), entonces gla y g|b. Luego, g*|c?
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y g%|2d?, por lo tanto, g|c y g|d. Dividiendo a, b, ¢, y d por g, obtenemos otra cuddrupla de enteros
positivos que satisface la ecuacién anterior con mcd(a,b) = 1. Por lo tanto, bastara demostrar que (2.2)
no tiene solucién en enteros positivos que cumplen que mcd(a,b) = 1.

Utilizaremos ahora el método de descenso de Fermat. Para ello, construiremos una 4-tupla de enteros
positivos (da',b’,c’,d") que satisfaga (2.2) con med(d’,b’) =1y 0 < ¢’ < c. Repitiendo esto las suficientes
veces, llegamos a una contradiccién. En el proceso de descenso, utilizaremos lo siguiente: dos enteros
positivos relativamente primos cuyo producto es un cuadrado perfecto deben ser cada uno cuadrados
perfectos.

Ahora comenzamos el descenso. Dado que ab = 2d” y a y b son relativamente primos, a o b es par
pero no ambos. Entonces ¢? = a® + b? es impar, por lo que ¢ es impar. Dado que ab es el doble de un
cuadrado, mcd(a,b) = 1,y a'y b son positivos, uno es un cuadrado y el otro es el doble de un cuadrado.
Los roles de a y b son simétricos, por lo que sin pérdida de generalidad, asumiremos que a es par y b es
impar. Entonces a = 2k?, b = ¢? para algunos enteros positivos k y £, con £ impar (porque b es impar).
La primera ecuacién (2.2) ahora se ve asi: 4k* + b* = ¢2, por lo que:

c+b c—b

2 2
Dado que b y ¢ son ambos impares y relativamente primos, % y % son enteros relativamente

primos. Por lo tanto:

— it

c+b 4 c¢c—b 4

2

para algunos enteros positivos relativamente primos r y s. Resolviendo para b y ¢ sumando y restando
estas ecuaciones:

[\S]

b:r4—s47 c:r4—|—s4,

Entonces:
P =b=(+5)(r* 5.

Los factores r> 4 s y r> — s* son relativamente primos: cualquier factor comiin serfa impar (ya que

¢ es impar) y divide la suma 2/° y la diferencia 2s?, por lo tanto, es un factor de mcd(r?,s*) = 1. Dado
que el producto de 72 4 5% y r> — s? es un cuadrado impar y uno de ellos es positivo, el otro también es
positivo y

Pys?=1, -5 =u’ (2.3)

para enteros positivos impares ¢ y u que son primos entre si. Dado que u*> = 1 (méd 4), r* —s*> =1
(méd 4), 1o que obliga a que r sea impar y s sea par. Resolviendo para r* en (2.2):

2 2
0 2 2 t+u r—u
=1 =

donde tiT“ € Z yaquet y u son impares. La ecuacion anterior nos dard una version mas pequefia de (2.2).
Estableciendo a' = HTM’ b= ’%", ¢’ =r, tenemos a’?> + b'”> = ¢’?. A partir de mcd(t,u) = 1 obtenemos

med(d',b") = 1. Ademas, utilizando (2.3),

Sead’ = 5 € Z, entonces tenemos una nueva solucién (a’,,¢’,d") . Dado que 0 < ¢’ =r <r* < rt+s* =
¢, por descenso llegamos a una contradiccion. O

Mis tarde, Fermat demostraria que el 2 y el 3 no son congruentes. Se sabe de hecho que 5, 6 y 7 son
los ndmeros conguentes mas pequefios.



2.5. Ecuacion cabica

En la demostracion de la Proposicién 1, llegamos a las ecuaciones

SUROE

siempre que X,Y,Z sean los lados de un tridngulo con drea n. Si multiplicamos estas dos ecuaciones,

obtenemos
2
LS S A FA N
4 2 '

Esto muestra que la ecuacion

tiene una solucién racional con

Luego multiplicamos por u? para obtener

Si establecemos

obtenemos el mismo x que en la Proposicién 1, y establecemos

(X2 -v?)z

entonces tenemos un par de nimeros racionales (x,y) que satisfacen la ecuacién cubica:

y? =x° —n*x.
En resumen, dado un tridngulo rectdngulo con lados racionales X,Y,Z y 4rea n, obtenemos un punto
(x,y) en el plano xy con coordenadas racionales y que yace en la curva
y? =x>—n’x.
Por lo tanto, que un entero positivo n sea congruente o no, que estd relacionado con la solubilidad de
las ecuaciones a> 4+ b* = c? y % =ncona,b,c € Q, se puede reinterpretar en términos de la solubilidad
de la ecuacién cibica y* = x> — n’x sobre los racionales.

Esta ecuacion tiene tres soluciones racionales obvias: (0,0), (n,0), y (—n,0). Sin embargo, nos in-
teresan las soluciones con y # 0.

Teorema 2.2. Sea n un niimero entero positivo. Existe una correspondencia uno a uno entre los dos
conjuntos siguientes:

b
{(a,b,c) €Q*: > +b* =7, % =n}, {(xy)€Q*:y* =x’—n’x,y #0}.

Las correspondencias mutuamente inversas entre estos conjuntos son:

(abc)i) nb  2n® (xy)»i x2—n? % x> +n?
) b C—a’c—a b b y b y ) y M
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Demostracion. Para demostrar que la correspondencia es biyectiva, veremos que f y g estdn bien defi-
nidas, que f es inyectiva y que g es la inversa de f.
Primero vamos a comprobar que los puntos en la imagen de f cumplen y> = x> —n%x, y # 0. Para

ello, dados (a,b,c) que cumplen a® +b* = 2, % = n vemos que si
nb  2n?
f(a7bvc):(xvy): < >a

c—a' c—a

entonces, y # 0 dado que n > 0. Ademads, observamos que el denominador ¢ — a no se anula. Esto se

cumple porque c representa la hipotenusa de un tridngulo y a el cateto del mismo tridngulo. Por eso, si
tuvieramos ¢ = a sustituyéndolo en la condicién a® + b> = a*> obtenemos que b = 0 y entonces % =0=n
y esto es contradictorio.

A continuacién, comprobamos que se cumple la condicion y* = x*

—n%x . Por un lado,

3 9 b3 b 1’ —nb(c—a)?
X —n"x= — -
(c—a)® c—a (c—a)?

Simplificamos la fraccién:

3 o (B —b(c*—2ca+a*)) n*(b*—bc?+2bca— ba?)
X —nx= =
(c—a)’ (c—a)’

Sustituimos ¢ = a2 + b

s o (b —b(@®+b?)+2bca—ba*)  n (b —ba* —b® +2bca— ba?)

# == (e ay - —ay
_ n3(=2ba*+2bca)  2n’ba(c—a)  2n’ba
(c=a)  (c—ap = (c—a)

Dado que ab = 2n:

4n* 2n? 2
3—2: = :2.
T T cap <<c—a>> Y

Lo que demuestra que se cumple la condicién. Por lo tanto, queda demostrado que f esta bien definida.
A continuaciéon demostraremos que f es inyectiva. Supongamos que hay dos trios (aj,by,c1) y
(az,by,c7) diferentes, cuya imagen por la correspondencia es igual:

nby 2n? nb, 2n?
cl_aI’CI_Cll B C2_a2762_02

nby nby 2n? 2n?

Esto implica que:

co—ai  o—a Y co—ai  o—a
La segunda ecuacién nos da ¢; —a; = ¢ — ap. Luego, usando esta igualdad en la primera ecuacion,
obtenemos b; = b;.
Dado que a;,b1,c1 y az,ba, co deben satisfacer

2, 12 2.2, 12 2
aj+by=ciya;+by =c,
es necesario que a; = ap y ¢ = ¢3. Por lo tanto,
(a1,by,c1) = (az,b2,¢2),

lo que muestra que necesariamente las imagenes tiene que provenir de un trio idéntico, lo que verifica la
inyectividad.



Continuamos comprobando que g esté bien definida. Consideremos un par (x,y) tal que y* = x> — n’x

y y # 0. Necesitamos verificar que la imagen por la correspondecia esté dentro del primer conjunto.
Para ello, vamos a comprobar que si tomamos:
x? —n? 2nx X +n?
_ _ c—

a= ) b_ )
y y y

satisfacen a®> +b* = ¢y (1/2)ab = n.

Primero, verificamos que a” + b* = ¢*:

b= <X2—n2>2+ <2nx>2 _ (2 —n?)? + (2nx)? _ P W T S R P

y ¥ ¥

o 4t (x4 n?)? <x2+n2>2 )

= = = =C .
¥ y? y
Ahora, verificamos que % =n:

ab 1 (x*—n?\ (2nx nx(x> —n?)  n(x®—n*x) ny?
“_Z ) = = =—=n
22\ vy y ¥ ¥ ¥

Por lo tanto, hemos mostrado que g estd bien definida.
Para acabar, vamos a comprobar si g = f~!. Para ello, comprobamos que go f = id.

nb 2n? > _ <(fi,)2—n2 2n 2L (J’_Z)ZJF"z)

c—a c—a 2n? > 2n? 7 2n?

gU@ﬁszg(

c—a c—a c—a
Desarrollando la primera coordenada, vemos que

n?b*—n?(c—a)?

T eaZ _ n*b*—n*d®—n’b* —n*a*+2n°ca) 2n’a(c—a)
% B 2n%(c—a) - 2n%(c—a)

La segunda claramente se simplifica a b, mientras que para la tercera y tltima coordenada

n2b>+n?(c—a)?

(c—a)? n?b* +n’a® +n*b* +na®> —2n’ca) 2n*(b*+a*—ca) 2n*c(c—a)
= = = =_C.
% 2n%(c—a) 2n%(c—a) 2n%(c—a)

Por lo tanto, queda demostrado que hay una correspondencia uno a uno entre los conjuntos dados.
O



Capitulo 3

Curvas elipticas

Nuestro propésito es reformular el problema clésico inicial de los nimeros congruentes. Para ello,
en este capitulo se desarrolla la teoria necesaria sobre curvas elipticas viendo algunas nociones generales
y algunos resultados concretos sobre la curva eliptica en funcién de n que hemos obtenido en el anterior
capitulo.

3.1. Curvas elipticas

Introducimos en este apartado las definiciones generales necesarias para desarrollar el problema. Con
ese proposito, se ha usado principalmente el segundo capitulo del libro Elliptic Curves: Number Theory
and Cryptography de L. C. Washington [6].

Por conveniencia, en este trabajo tomaremos la siguiente definicién de curva eliptica:

Definicion. Sea K un cuerpo con caracteristica distinta a 2 y 3. Una curva eliptica E definida sobre K es
una curva algebraica plana dada por una ecuacién de la forma

v =x>+ax+b, (3.1)
donde a, b € K tal que 4a> +27b* # 0.

La condicién 4a® +27b* # 0 garantiza que la curva no serd singular. La ecuacién (3.1) se llama
ecuacion de Weierstrass simplificada o forma normal de Weierstrass. En general y sin restringir la carac-
teristica del cuerpo K, la definicién de curva eliptica puede darse mediante su forma mas general llamada
la forma generalizada de Weiestrass:

y2+a1xy+a3y:x3—|—a2x2+a4x+a6, (3.2)
donde ahora se requiere que los coeficientes ay,...,a¢ € K verifiquen
—b3bg — 8b3 — 27b% +9bybybs # 0, (3.3)
con

by = a% =+ 4a2,
by =2a4+aja3,be = a% +4ag,
bg = a%a(, +4daras — arazas + a2a§ — ai.
La condicién (3.3) es la andloga a la condicién 4a® 4+ 27b% # 0 en el caso de la forma normal de
Weierstrass, y asegura en este caso que la curva plana definida por la ecuacién (3.2) sea no singular.
Sin embargo, con la hipétesis char(K) # 2,3 podemos realizar un cambio de variables adecuado que

nos permite usar la forma reducida (3.1). El desarrollo de este cambio de variables puede encontrarse en
la primera seccion del Capitulo III del libro The Arithmetic of Elliptic Curves de J. H. Silverman [3].

10
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Por otro lado, para poder definir una operacién de grupo en la curva eliptica es conveniente introducir
la proyectivizacidn de dicha curva. Es decir, consideraremos la curva proyectiva plana dada por la homo-
geneizacion de la ecuacién de Weierstrass simplificada (3.1). Para ello, recordaremos alguna definicion
util para nuestro cometido.

Definicién. Llamamos grado total de un monomio x'y/ a la suma de sus potencias i + j.

Definicion. Llamamos grado total de un polinomio f(x,y) al maximo grado total de los monomios que
tienen coeficientes distintos de cero.

Por ello, si f(x,y) tiene grado total n, definimos el polinomio homogéneo correspondiente F (X ,Y,Z)
de tres variables como el que se obtiene multiplicando cada monomio x’y’ en f(x,y) por Z"~I~/ para que
su grado total en las variables X,Y,Z sea n. Es decir,

FX,Y,2) = 2'f @;)

En el caso de las curvas elipticas que nos concierne, partimos de una ecuacion de la forma
f(x,y) =0con f(x,y) =y* — (x +ax+b).
Homogeneizando, obtenemos la ecuacién F(X,Y,Z) =0 con
F(X,Y,Z)=Y?Z— (X +aXZ*+bZ?).

Noétese que f(x,y) = F(x,y,1). De esta forma, las soluciones de la ecuacién homogénea de la forma
(X,Y, 1) recuperan las soluciones de la ecuacién inicial.

Supongamos que nuestros polinomios tienen coeficientes en un cuerpo K, y que estamos interesados
en trios X,Y,Z € K tales que F(X,Y,Z) = 0. Entonces, debemos reparar en lo siguiente:

1. Para cualquier A € K escalar, F(AX,AY,AZ) = A"F(X,Y,Z), siendo n el grado total de F.
2. Para cualquier A #0en K, F(AX,AY,AZ) =0siysolosi F(X,Y,Z) =0.

En particular, para Z # 0 tenemos que F(X,Y,Z) =0siysolosi F(X/Z,Y/Z,1) =0.

Debido a el segundo punto (2), es natural considerar clases de equivalencia de trios X,Y,Z € K,
donde decimos que dos trios (X,Y,Z) y (X’,Y’,Z’) son equivalentes si existe un A # 0 € K tal que
(X',Y'.Z") = A(X,Y,Z). Omitimos el trio trivial (0,0,0), y entonces, definimos el plano proyectivo P?
como el conjunto de todas las clases de equivalencia de trios no triviales. Escribiremos las clases de
equivalencia en el plano proyectivo con la notacién [X : Y : Z].

Retomando nuestro problema, la homogeneizacion de la forma normal de Weierstrass (3.1) nos pro-
porciona la ecuacién homogénea

Y?Z =X +aXZ*+bZ>.

Observamos que partiendo de nuestro polinomio homegeneizado en el plano proyectivo, para recu-
perar (3.1) tenemos que dividir entre la variable Z. Esto nos dard problemas en la recta Z = 0 a la que
Ilamamos recta del infinito. De hecho, esta es la recta que estamos ganando al pasar del plano afin al ho-
megeneizar nuestro polinomio y verlo en el plano proyectivo. Si sustituimos Z = 0 en nuestra ecuacién
en el plano proyectivo, tenemos lo siguiente:

0=Xx3. (3.4)

Es decir, que los puntos sobre la curva proyectiva que se encuentran en la recta del infinito Z = 0 son de
la forma (0,Y,0). Pero debido a la relacién de equivalencia introducida anteriormente, tenemos que €sos
puntos representan en definitiva un dnico punto: [0 : 1 : 0]. Este punto, que es el tinico en el que la curva
eliptica corta a la recta del infinito, tendra un rol indispensable en la operacién de grupo que definiremos
mds tarde.
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Reparamos, ademds, en que este punto no depende de los coeficientes a,b € K concretos que definen
la curva eliptica, lo que significa que llegaremos a €l con este proceso independientemente de la eleccién
concreta de nuestra curva eliptica. Teniendo esto en cuenta podemos dar la siguiente definicién que
incluye este punto.

Definicién. Sean E una curva eliptica definida sobre un cuerpo K y K’ una extesién de dicho cuerpo.
Llamamos conjunto de puntos K'-racionales de E al conjunto

E(K)={(x,y) €K' xK'|y* =x* +ax+b}U{0=[0:1:0]}.

Una caracteristica del punto O que serd indispensable para la ley de grupo es que corta a todas las
rectas verticales. En el plano afin, una recta vertical se escribe como x = ¢ para alguna constante. Si
homogeneizamos esta ecuacion, tenemos que X = Zc. Si calculamos la interseccidn de esta recta (que
proviene de una vertical en el plano afin) con la recta del infinito Z = 0 tenemos lo siguiente:

X=0c=0yZ=0.

Por lo tanto, la interseccién son los puntos de la forma [0 : Y : 0], que como hemos explicado representan

la clase de O = [0: 1: 0]. Nétese que este resultado es independiente de la constante c. Esto verifica que

todas las rectas verticales del plano afin (o mejor dicho, sus proyectivizaciones) intersecan el punto Og.
Ademds presentamos el siguiente teorema que se necesitard en la siguiente seccion.

Teorema 3.1 (Bézout). Sean F(X,Y,Z) y G(X,Y,Z) polinomios homogéneos de grado m 'y n, respecti-
vamente, sobre un cuerpo algebraicamente cerrado K. Supongamos que F 'y G no tienen ningiin factor
polinomial en comiin. Entonces, las curvas definidas por F y G tienen mn puntos de interseccion, con-
tando multiplicidades.

Se encuentran més detalles sobre la multiplicidad de interseccién y una prueba del teorema de Bé-
zout, por ejemplo, en el libro de R. J. Walker Algebraic Curves [7].

3.2. Operacion de grupo

En esta seccidn veremos que podemos definir una operacién que llamaremos suma y representaremos
como —+, que dota a las curvas elipticas de una estructura de grupo (abeliano). Es decir, dados dos puntos
Py Q en una curva eliptica E, definiremos cémo obtener un tercer punto en la curva, que denotaremos
P+ Q, y comprobaremos que la operacion (P,Q) — P+ Q es asociativa, que posee elemento identidad,
que todo punto tiene un inverso y que es conmutativa.

Para la descripcidn del punto P+ Q, daremos primero la idea geométrica detrds de la construccion vy,
a continuacion, la manera explicita para obtenerlo mediante férmulas.

Dados Py Q € E, para calcular P+ Q se siguen dos pasos:

(1°) Trazamos la recta que pasa por Py Q. Gracias al Teorema de Bézout, como nuestra curva tiene
grado 3 y la recta tiene grado 1, sabemos que su interseccién contard con 3 X 1 = 3 puntos de
interseccién (contados con multiplicidad). Como P y Q ya estdn en la interseccién de la curva y la
recta, existird un tercer punto R por el que la recta corta con la curva.

(2°) Trazamos la recta que une Of con R. De esta manera obtendremos una recta que, de nuevo por
el Teorema de Bézout, cortard a la curva eliptica en el punto del infinito Og, en R y en un tercer
punto que llamamos! —R. Dicho punto es por definicién P+ Q.

'El motivo de denotar por —R a este punto es que, como veremos mds adelante, se trata precisamente del inverso de R. Asi,
la relacién entre P, Q y R es de hecho P+Q+R = O.



13

Para que esta construccién tenga consistencia, tenemos que reparar en que si P = Q tenemos que
‘la recta que pasa por Py Q serd la recta tangente a la curva eliptica en P. De este modo, si dicha
recta tangente corta a la curva eliptica en otro punto (distinto) R, obtendremos —R como se explica en
el segundo paso y ese serd el resultado de hacer P+ P. Si por el contrario la recta tangente a P no corta
a la curva en otro punto del plano afin, entonces dicha recta es vertical, con lo cual el tercer punto en
la interseccion con la curva eliptica que garantiza el Teorema de Bézout es el punto del infinito Og. En
este caso, el segundo paso requiere trazar la recta tangente por Og. Dicha recta es la recta del infinito
Z =0, y como hemos observado en la seccién anterior su interseccion con la curva eliptica es (3.4), que
nos muestra que Z = 0 corta la curva eliptica en Og con multiplicidad 3. Es decir, el punto —Og que
obtendriamos en el segundo paso es de nuevo Og, concluyendo asi que en este caso P+ P = Op.

Para completar la definicién de la operacién vamos a explicar qué ocurre cuando alguno de los puntos
P, Qes Og.

= Si P = (x,y) es un punto afin de £ y Q = O, cuando trazamos la recta que pasa por P y Og
obtenemos una recta vertical, que cortard a la curva en el punto —P = (x,—y). Al ejecutar el
segundo paso, observemos que se vuelve a tomar la misma recta, recuperando el punto P = (x,y)
de nuevo:
P+Op =P

Esto nos verifica que Of tendrd el papel de elemento neutro en la suma (a falta de verificar que
ocurre lo mismo para P = Of, que se verd justo a continuacién). El argumento con P = O y
Q # Og es andlogo por simetria.

» Si P =(Q = O, larectatangente a O corta por tercera vez en el mismo punto O, como ya hemos
observado antes. De nuevo, al realizar en el segundo paso la recta tangente por Op el tercer punto
de interseccién es Og. Por lo tanto:

Or + O = Og.

Con esta idea geométrica de la suma podemos calcular las ecuaciones de las rectas y las interseccio-
nes con la curva para obtener una férmula generalizada que involucra tnicamente las coordenadas de los
puntos. Para retomar toda la casuistica, resumimos la ley de grupo

(PQ) — P+Q
de la siguiente forma:

(1) En caso de que uno de los puntos P, Q sea el punto del infinito, sin perderder generalidad escogemos
P = Og; entonces

P+0=0.
(2) SiP,Q+# Og, P=(x,y)y Q= —P = (x,—Y), entonces
P+ Q0= 0g.

(3) SiP,Q# Opy Q# —P, entonces podemos escribir la operacion con coordenadas afines. Tomando

P = (leyl) y Q = (x27y2)7

el resultado de la suma

P+ Q= (x1,y1) + (x2,y2) =t (x3,y3)
se puede obtener mediante la resolucidén de intersecciones entre la ecuacién cuibica y las rectas
correspondientes, obteniendo

2
X3 =87 —X] — X2, y3:S(x1—X3)—yl,

donde

b siP#£Q,
siP=0Q.

S =




14 Capitulo 3. Curvas elipticas

Teorema 3.2. La suma de puntos en una curva eliptica E satisface las siguientes propiedades:
1. (Conmutatividad) P+ Q = Q + P para todos los puntos P,Q € E.
2. (Existencia de la identidad) P+ O = P para todos los puntos P € E.

3. (Existencia de inversos) Dado P en E, existe P' en E tal que P+ P' = Og. Anteriormente nos
hemos referido a P' como —P.

4. (Asociatividad) (P4 Q)+ R = P+ (Q + R) para todos los P,Q,R € E.

En otras palabras, los puntos en E forman un grupo abeliano aditivo con O como el elemento
identidad.

Demostracion. La conmutatividad es obvia, ya sea desde las férmulas o desde el hecho de que la recta
que pasa por Py Q es obviamente la misma que la recta que pasa por Q y P. El hecho que Of actda
como elemento identidad ya se ha visto en la descripcion de la operacién +. La existencia de inversos
también se ha visto en la discusién anterior; simplemente notar que si P # Op, entonces — P es la reflexion
de P a través del eje x. Finalmente, quedard por demostrar la asociatividad. Esta es, con diferencia, la
propiedad mds sutil y no evidente a partir de la definicién de la suma en E. Es posible definir muchas
leyes de composicion que satisfagan las tres primeras condiciones para puntos en E, ya sean mas simples
o més complicadas que la que se ha descrito. Pero es muy improbable que tal ley sea asociativa. De
hecho, es bastante sorprendente que la ley de composiciéon que hemos definido lo sea. Después de todo,
comenzamos con dos puntos Py Q y realizamos un cierto procedimiento para obtener un tercer punto P+
Q. Luego repetimos el procedimiento con P+ Q 'y R para obtener (P+ Q)+ R. Si en cambio comenzamos
agregando Q y R, luego calculamos P + (Q + R), no parece haber una razén obvia para que esto dé el
mismo punto que el otro cdlculo. Esta demostracién se puede encontrar en el capitulo II, seccién 2.4 del
libro Elliptic Curves: Number Theory and Cryptography de L. C. Washington [6]. O

3.3. Curvas elipticas sobre C

Mas adelante en el trabajo veremos que existe una relacién estrecha entre los niimeros congruentes
y los puntos de orden infinito. Para decidir si hay tales puntos, es ttil entender los puntos m-torsién que
se introduciran en la siguiente seccioén. A su vez, para poder entender mejor los puntos de orden finito es
util ver nuestra curva eliptica que esta en principio definida en Q, definida en C. Para eso, introducimos
curvas elipticas sobre los complejos. En este apartado se ha usado de referencia principal el Capitulo I
del libro Introduction to Elliptic Curves and Modular Forms de Koblitz [1] y las notas del curso de A.
Sutherland [5], que utilizan las secciones 2 y 3 del Capitulo VI del libro The Arithmetic of Elliptic Curves
de Silverman [3].

Definicion. Sean @, € C dos nimeros complejos que no estdn en la misma recta que pasa por el
origen. Llamamos reticulo al conjunto de todas las combinaciones lineales enteras de @; y a», y lo
denotamos L = @y, a»]. Es decir,

L=[ow,w;)]:={mo;+nw, :mnecZ}CC.
Por ejemplo, si @ =iy w, = 1, obtenemos el reticulo de los enteros gaussianos,
Z[i|={m+ni:mn € Z}.

Definicion. Llamamos paralelogramo fundamental para @; y @, a cualquier subconjunto de C de la
forma
Ny ={a+aw; +bw:a,beR,0<a,b<1}, acC.



15

Nos limitaremos a IT =TIl (es decir, @ = 0) ya que el resto serdn traslaciones de éste.

Dado que w; y m, forman una R-base para C, cualquier nimero x € C se puede escribir en la forma
X = aw; + bw, para algunos a,b € R. Entonces, x se puede escribir como la suma de un elemento en el
reticulo L = [®;, @] y un elemento en I1, y esta representacion es tinica a menos que a o b sean enteros,
en cuyo caso el elemento de IT estd en la frontera de I1.

Elegimos por convenio tomar @; y @, en orden de las agujas del reloj; es decir, asumiremos que
o, /o, tiene la parte imaginaria positiva.

Introducimos definiciones sobre anélisis complejo que se utilizardn m4s adelante.

Definicién. Dado un reticulo L, decimos que una funcién meromorfa f(z) en C es una funcion eliptica
de Lsi f(z+1) = f(z) paratodo [ € L. Llamamos al conjunto de estas funciones elipticas &7.

Si L = [, ], basta con verificar esta propiedad para [ = @, y [ = @,. En otras palabras, una
funcién eliptica es periddica con dos periodos @; y @,. Tal funcién estd determinada por sus valores en
el paralelogramo fundamental I1, y sus valores en puntos opuestos de la frontera de IT son iguales, es
decir:

flaw; + @) = flaw), f(o)+bwn)= f(bw), Va,beR,0<ab<1.

Asi, se puede pensar una funcion eliptica f(z) como una funcién en el conjunto IT con lados opuestos
pegados entre si; es decir, como una funcién en el cociente C/L. Nétese que, por construccion, este
conjunto es un toro complejo.

A continuacién, damos una definicion relacionada con las funciones complejas meromorfas que uti-
lizaremos mds adelante.

Definicion. Sea f(z) una funcién compleja no nula que es meromorfa en un entorno abierto de un punto
zo € C. Definimos

n si f tiene un cero de orden n en z,
ord,,(f) := < —n si f tiene un polo de orden n en 7y,

0 €n otro caso.

Definimos lo que serd un ejemplo clave de una funcién eliptica en relacién con un reticulo L =
[@1, @]. Dicha funcién se llama funcion de Weierstrass g, y se denota ¢(z;L) o (z; @y, @,), o simple-
mente (z) si el reticulo es conocido. Se define como sigue:

1 1 1
120

Presentamos a continuacién resultados sobre la funcién (3.5) que se demuestran en la seccién 4 del
Capitulo I del libro Introduction to Elliptic Curves and Modular Forms de Koblitz mencionado antes [1].

Proposicion 2. La suma (3.5) converge absoluta y uniformemente para z en cualquier subconjunto
compacto de C — L.

Proposicion 3. @(z) € &1 y sus tinicos polos son polos dobles en cada punto del reticulo.

Presentamos también su derivada, que tendrd un papel fundamental a continuacién:

1
P)=-2) —.
leL (Z —1 >3
1#0
La funcién @ cumple una ecuacién diferencial con dos constantes que se obtienen mediante las
llamadas series de Eisenstein. Por ello, vemos la definicidn de estas series:
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Definicion. Sea L un reticulo en C y k > 2 un entero. La serie de Eisenstein de peso k para L se define
como la suma

Ea
donde L* = L — {0}.

Observacion. Si k es impar, entonces Gi(L) = 0 para cualquier reticulo L, ya que los términos # y

(7#@),( en la suma se cancelan.

Lema 1. Para cualquier reticulo L, la suma ;- # converge absolutamente para todo k > 2.

Teniendo en mente las definiciones y propiedades que acabamos de presentar, podemos enunciar el
teorema que relaciona la funcién (3.5) con una ecuacién ctbica.

Teorema 3.3. La funcion g(z) = #(z;L) satisface la ecuacion diferencial

7 (2)* =49(2)° — g2 (L) p(2) — 83(L),

donde
g2(L) :==60G4(L), g3(L):=140Ge(L). (3.6)

Ademés, con y = ¢/(z) y x = §(z), observamos que la ecuacién diferencial anterior nos recuerda a
la forma de ecuacion de Weierstrass simplificada de una curva eliptica:

y2 =4x} — go(L)x — g3(L). 3.7)
En efecto, esta ecuacion puede ser puesta en forma de Weierstrass escribiendo gp(L) = —4A y
g3(L) = —4B, asi que cada reticulo L nos da una ecuacién que podemos usar para definir una curva

eliptica sobre C, siempre y cuando podamos demostrar que la curva proyectiva definida por (3.7) no es
singular.

Para comprobar que no sea singular vemos que basta comprobar la condicién de que (g2)*(L) —
27(g3)% # 0. Asi que mientras A(L) := g»(L)> —27g3(L)? sea distinto de cero, la ecuacién (3.7) define
una curva eliptica sobre C.

Para poder demostrar que dicho discriminante es no nulo, debemos introducir algunos resultados so-
bre andlisis complejo. Comenzamos recordando la férmula del residuo ya vista y conocida ampliamente,
cuya demostracién no se da por ese motivo.

Teorema 3.4 (Férmula del residuo). Sea y una curva cerrada simple con orientacion positiva y sea f(z)
una funcion que es meromorfa en un conjunto abierto que contiene a 'y y su interior sin polos en y. Sean
21,---,2n los polos de f(z) que se encuentran en el interior de y. Entonces

N
$ r@dz=2mi Y res, ()
Y k=1
Utilizando la férmula del residuo probamos el siguiente resultado:

Teorema 3.5. Sea y una curva cerrada simple con orientacion positiva, sea f(z) una funcién meromorfa
en un conjunto abierto Q que contiene a vy su interior I, sin ceros ni polos en 7V, y sea g(z) una funcion
no nula que es holomorfa en Q.

! f’(Z) = w)or
3 |4 55 42 = L soordu().

Cuando g(z) = 1, el lado derecho es la diferencia entre el niimero de ceros y polos que f(z) tiene en T’
(contados con multiplicidad), lo cual es el principio del argumento usual.
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Demostracion. Para cualquier zg € ' que sea un cero o un polo de f(z), consideramos las expansiones
en series de Laurent

f@) =) an(z—20)", ()=} balz—20)",

n>ng n>0

donde ny = ord,,(f) es elegido de modo que a,, # 0 y notamos que g(zo) = bo. Entonces

f@)=Y nay(z—z)"",

n=ng

y tenemos

J;((zz)) - _<_g’z(i))f/l(;)r ) _ bono(z —20) ™" +ha(2)
f(2)

donde h(z) y h2(z) denotan funciones que son holomorfas en un entorno abierto de zg. Asi,

£
O

tiene un simple polo con residuo
bong = g(zo)ord;, (f)

en cada cero o polo zg de f(z), y en ningiin otro lugar. El teorema sigue de la férmula del residuo. O
Aplicando el Teorema 3.5 con g(z) = 1 a una funcidn eliptica f(z) se obtiene lo siguiente.

Teorema 3.6. Sea f(z) una funcion eliptica no nula para un reticulo L. Contando con multiplicidad,
el niimero de ceros de f(z) en cualquier paralelogramo fundamental 1y para L es igual al niimero de
polos de f(z) enI,.

Demostracion. Primero notamos que, debido a la periodicidad de f(z), es suficiente probar esto para
cualquier paralelogramo fundamental I1,. Los ceros y polos de f(z) son discretos (nétese que 1/f(z)
también es una funcién meromorfa), por lo que podemos elegir un o para el cual el contorno d de Iy
no contenga ningun cero o polo de f(z). Ahora consideramos la integral de contorno

f'(z)
o F@)

donde la curva cerrada simple 911, estd orientada positivamente. El hecho de que f(z) sea periddica con
respecto a L implica que f’(z) también es periddica con respecto a L, al igual que f’(z)/f(z), y de ello se
deduce que la suma de la integral de f'(z)/f(z)dz a lo largo de lados opuestos del paralelogramo dI1,
es cero, ya que f'(z)/f(z) toma los mismos valores en ambos lados (debido a que es periddica) pero la
curva orientada dI1a los recorre en direcciones opuestas. Tenemos asi

1 [

2mi Jon, f(2)

dz =0,

y el teorema se deduce entonces del Teorema 3.5. O

Finalmente, el dltimo lema necesario para lograr demostrar que el discriminante es diferente de 0 es
el siguiente:

Lema 2. Un punto z ¢ L es una raiz de ¢/(z;L) si'y solo si 2z € L.

Demostracion. Supongamos que 2z € L para algtn z ¢ L. Entonces

P (2) = (2—22) = @ (—2) = - (2) = 0,
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donde hemos usado el hecho de que #/(z) es tanto periédica con respecto a L como una funcién impar.
Si L = [0, @], entonces
o o o+
2727 2
son los tinicos puntos z € IT que no estdn en L y también satisfacen 2z € L. Dado que &/(z) es una funcién
eliptica de orden 3, tiene solo estos tres ceros en I1, segtin el Teorema (3.6). Por lo tanto, para cualquier

z ¢ L tenemos que &/ (z) = 0siy sélo si 2z € L. O

En términos de la operacidn de grupo en la curva eliptica, este lema nos dice que los puntos de orden
2 son precisamente los puntos de la forma (x,y) = (£(z), #/(z)) con y = ¢/(z) = 0. La condicién de que
z ¢ L significa que su clase no es trivial en C/L.

Teorema 3.7. Para cualquier reticulo L, el discriminante A(L) es distinto de cero.
Demostracion. Sea L = [@;, @] y pongamos

Q)]
ry .= —
27

[ 0O+
2 2

Entonces r; ¢ L'y 2r; € L para i = 1,2,3. Entonces &/(r;) = 0 por el Lema 2. De (3.7) vemos que
2(r1), $2(r2) y (r3) son las raices del ctibico f(x) = 4x> — g»(L)x — g3(L). Ahora, el discriminante A( f)
de f(x) esigual a 16A(L), por lo tanto

1
16 H(JO("i) - W(Vj))za

i<j

A(L)

y es suficiente demostrar que los £(r;) son distintos.

Sea gi(z) = @(z) — 2(ri). Entonces g;(z) es una funcién eliptica de orden 2 (sus polos son los polos
de (z)), por lo que tiene exactamente 2 ceros, segun el Teorema 3.6. Ahora r; es un cero doble porque
gi(z) = 7/ (ri) = 0, por el Lema 2. Por lo tanto g;(z) no tiene otros ceros, y por lo tanto f&(r;) # (i)
para i # j. O

En conclusioén, este resultado nos demuestra que cada reticulo del plano complejo L tiene asociada
una curva eliptica. Observamos esta relaciéon mediante la siguiente parametrizacién:

¢:C— E(C) (3.8)

o) @ (2): 1] sizéL
Z%(P(Z)_{[o:l:O]:oE sizel (3:9)

Para poder comprender mejor como funciona esta parametrizacion presentamos un ejemplo de otra
parametrizacion (mds sencilla y conocida) con el que poder hacer un paralelismo. Considerando R como
grupo abeliano (con la suma), Z C R es un subgrupo y podemos formar el grupo cociente

R/Z={x+Z:xeR}={x+n:necZ}.
Notemos que Z es el niicleo del homomorfismo de grupos

f{R—C

X f ( x) — eZﬂ:ix
y por tanto, por el Primer Teorema de Isomorfia tenemos que

R/Z = Imf =S
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En consecuencia, conseguimos una parametrizacion del circulo unidad a través de R/Z. Ademds,
observamos que el subgrupo por el que cocientamos es precisamente el subgrupo que consiste de los
periodos de las funciones (reales) que proporcionan la parametrizacion:

R/Z — S' c C = R?

t ezm'z

— (x,y) = (cos(2mt),sen(2xt)).

De manera similar a lo que ocurre en este ejemplo, las funciones £y &/ proporcionan una parametri-
zacion (compleja) de la curva eliptica sobre C asociada a un reticulo L, que hemos denotado E; (C). Esto
nos explica la relacion estrecha que hay entre las curvas elipticas sobre C y las funciones de Weierstrass
asociadas a reticulos.

En particular, E;(C) puede ser visto como curva algebraica y como grupo abeliano. La funcién
dada en (3.8) es un homomorfismo de grupos cuyo nticleo es L. Por lo tanto, por el Primer Teorema de
Isomorfia tenemos que
C/L=EL(C).

En particular, la suma en la curva eliptica E;(C) se corresponde a través de este isomorfismo con la suma
habitual en C. Como en ejemplo anterior, ndtese que el subgrupo por el que hemos concientado es de
nuevo el periodo de la funcién. De hecho, puede probarse que el isomorfismo anterior es un isomorfismo
de curvas algebraicas (cosa que queda fuera del alcance de este trabajo).

Ademas, dada E una curva eliptica sobre C se puede demostrar que existe un reticulo L tal que
E; = E. No entraremos en esta demostracion porque requiere técnicas y resultados que se escapan del
alcance de este trabajo. El desarrollo de este resultado estd en el Capitulo V de Advanced Topics in the
Arithmetic of Elliptic Curves de Silverman [4].

3.4. Puntos de orden finito

En cualquier grupo, hay una distincion bésica entre elementos de orden finito y elementos de orden
infinito. En un grupo abeliano, el conjunto de elementos de orden finito forma un subgrupo llamado
subgrupo de torsion. Para el desarrollo de ésta seccidn se utiliza el Capitulo I de Introduction to Elliptic
Curves and Modular Forms de Koblitz [1].

Definicion. Sea E una curva eliptica definida sobre un cuerpo K de caracteristica distinta a 2 'y 3. Si K’
es una extensién de K, llamamos subgrupo de torsién (de E(K')) al siguiente conjunto:

E(K')iors = {P € E(K') : mP = O para algtin m > 1}.

Es inmediato comprobar que efectivamente E (K’ )5 €s un subgrupo de E(K'). Es ttil también in-
troducir la nocién del conjunto de puntos en la clausura algebraica de K de orden divisor de m, llamados
subgrupos de m-torsion.

Definicion. Con las condiciones de la definicion anterior, sea m un entero positivo. Llamamos subgrupo
de m-torsion al siguiente conjunto,

E[m]={P e E(K)|mP=Og}.
Observamos que existe una relacion estrecha entre estos subgrupos. Sin ir mds lejos tenemos que:

E(K)wors = | E[m].

m>1

Por lo tanto, para conocer el subgrupo de torsiéon debemos conocer cada uno de los subgrupos de m-
torsién. A continuacién, vamos a familiarizarnos con los ejemplos concretos de m = 2,3, ya que son
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sencillos de calcular, y posteriormente veremos un resultado general. Como la caracterfstica del cuer-
po no es 2, E[2] se obtiene de la siguiente manera. Supongamos que la ecuacién de E puede escri-
birse como y> = (x —e)(x — e2)(x — e3), con ej,ez,e3 € K, la clausura algebraica de K. Un punto
P satisface 2P = Og si y solo si la recta tangente en P es vertical. Esto significa que y = 0, asi que
E[2] ={Og,(e1,0),(e2,0),(e3,0)}. Como grupo abstracto, es isomorfo a Z, & Zs.

Ahora veamos E[3]. De nuevo, como se ha visto en la primera seccidn, tenemos que la ecuacion puede
darse como y? = x> + ax + b gracias a la hipétesis sobre la caracteristica. Por eso, un punto P satisface
3P = Og siy solosi 2P = P+ P = —P. Esto significa que la coordenada x de 2P es igual a la coordenada x
de P (las coordenadas y, por supuesto, difieren en signo; por supuesto, si fueran iguales, entonces 2P = P,
por lo tanto, P = Og). Cuando introducimos la anterior igualdad en las férmulas dadas para el cdlculo
de la suma, obtenemos una ecuacioén de grado 4 para la coordenada x, por lo que concluimos que hay 4
valores distintos de x € K, y cada x produce dos valores de y, por lo que tenemos ocho puntos de orden
3. Dado que Of también estd en E[3], vemos que E[3] es un grupo de orden 9 en el que cada elemento
es de orden 3. Se cumple por lo tanto que E[3] es Z3 ® Zs3.

Para estudiar el caso de un m arbitrario, nos limitamos al caso en que E esta definida sobre Q. Viendo
la curva eliptica sobre los complejos, por el apartado anterior sabemos que E(C) es isomorfo a C/L para
algtin reticulo L = [@;, @;]. Con esto, a través del isomorfismo (3.8), un punto P, = ¢(z) € E(C) tiene
orden divisor de m si y solo si mz € L. Notemos que si z € C, existen dos nimeros reales x,y € R
tales que z = x@; + y@,. Por lo tanto, la condicién de que mz = mxw; +myw, € L es equivalente a que
los coeficientes sean enteros, es decir, mx,my € Z. En ese caso, el menor m para el cual se cumpla la
condicién, que serd concretamente el minimo comiin denominador de los coeficientes de w; y ax, es el
orden exacto de P,. Por lo tanto, esto se cumplird si x,y € %Z C Q. Este argumento muestra que

E[m|(C) = Zy ® Zy.
Sobre QQ, podemos deducir el siguiente resultado:

Teorema 3.8. Sea E una curva eliptica sobre Q. Dado un niimero entero positivo m cualquiera,
E[m] = Z ® Ly,

Demostracion. Como Q C C, podemos ver la curva eliptica dada E como una curva definida sobre C.
Por lo que hemos visto en el apartado anterior, tenemos que

E[m|(C) = Zy ® Zy.
Ademads por la definicién que hemos dado,
E[m] = E[m)(Q) = {P € E(Q) | mP = O}

Como Q C C tenemos que E[m] C E[m](C). Pero cualquier P = (x,y) € E[m](C) cumple la ecuacién
mP = Og. Si reparamos en las férmulas dadas para el cdlculo de la suma en la curva eliptica, vemos que
todos los coeficientes de la ecuacion mP = O estdn en Q porque la curva eliptica estd definida sobre Q.

Por lo tanto, las soluciones tendran coordenadas algebraicas, por lo que se concluye que P € E(Q). Por

lo tanto, E[m](Q) = E[m](C) = Z, ® Zy. O

De este resultado obtenemos que los puntos del grupo de m-torsion en los que estamos interesados,
que son los racionales, tendrdn que ser un subgrupo de los puntos en la clausura algebraica, lo que nos
deja con que:

E[m|(Q) < E[m|(Q) = Zun & Zn

A continuacion, vamos a ver un resultado que nos muestra cudl serd la cardinalidad de los subgrupos
de torsién (con coordenadas en Q) de las curvas elipticas de nuestro problema principal E,, : y* = x> — n’x.
Para comenzar, necesitamos dos resultados que luego se usardn en la demostracion del teorema sobre esa

cardinalidad.
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Teorema 3.9 (Dirichlet). Sean q y £ dos niimeros enteros positivos coprimos. Entonces hay infinitos
niimeros primos de la forma £+ kq con k € Z.

La demostracion de este teorema requiere la introduccién de herramientas y conceptos que se escapan
del objetivo de este trabajo. El desarrollo completo de su demostracién puede encontrarse en los libros
Algebraic Number Theory de Neukirch [8] y en A Course in Arithmetic de Serre [9].

A continuacion, tras haber estudiado las posibles formas que tiene E[m] y particularmente el sub-
grupo de 2-torsién, tenemos como objetivo demostrar que E,(Q),,,s contiene solamente esos 4 puntos
obvios. Para ello, emplearemos la reduccién médulo p de la ecuacién, notando que exceptuando el caso
p =2y los casos en que p | n, dicha reduccién proporciona una curva eliptica.

Proposicion 4. Sea p un niimero primo tal que p12n, y sea q = p’, r > 1. Supongamos que q = 3
(mod 4). Entonces hay q+ 1 puntos Fy-racionales en la (reduccion médulo p de la) curva eliptica
2_ .32

Y- =x"—nx.

Demostracion. En primer lugar, vamos a comprobar que define una curva eliptica no singular. Para ello,
sustituimos nuestros valores en 4a> 4+ 27h% # 0 y obtenemos la condicién

4(—n*)? = —4n*#0 (méd p).

Esta condicion se cumplird siempre y cuando p no divida a 2 ni a n, lo cual tenemos garantizado por
hipétesis. Por lo tanto la curva eliptica sobre I, que se obtiene por reduccién médulo p serd no singular.
Sabemos que hay cuatro puntos de orden 2: el punto en el infinito, (0,0) y (£n,0). Ahora tendremos en
cuenta todos los pares (x,y) donde x # 0,n, —n. Organizamos estos g — 3 valores de x en pares {x, —x}.
Dado que f(x) = x> —n%x es una funcién impar y —1 no es un cuadrado en IF, ya que por hipétesis g = 3
(méd 4), se sigue que exactamente uno de los dos elementos f(x) y f(—x) = —f(x) es un cuadrado en
IF,. Recordemos que en el grupo multiplicativo de un cuerpo finito, los cuadrados son un subgrupo de
indice 2, y asi el producto de dos no cuadrados es un cuadrado, mientras que el producto de un cuadrado
y un no cuadrado es un no cuadrado. Sea cual sea el elemento en {x, —x} que proporciona un cuadrado,
obtenemos exactamente dos puntos: o bien (x,%+/f(x)) o bien (—x,++/f(—x)). Asi, los (¢ —3)/2
pares nos dan g — 3 puntos. Junto con los cuatro puntos de orden dos, tenemos en total ¢ + 1 puntos
[F,-racionales, lo que pueba la proposicion. O

Habiendo demostrado este resultado, finalmente podemos presentar la proposicién que teniamos
como objetivo.

Proposicion 5. #E,(Q)ors = 4.

Demostracion. Laidea de la demostracion es construir homomorfismos de grupos de E,(Q)ors @ Ex(IF)
que sean inyectivos para una infinitud de primos p. Eso implicard que el orden de E,(Q)is divide
el orden de E,(IF,) para tales p. Pero ningtin nimero mayor que 4 podria dividir todos esos nimeros
#E,(IF,), porque sabemos que #E,(F,) recorre todos los enteros de la forma p+ 1 para p un nimero
primo congruente a 3 médulo 4 por el teorema anterior.

Comenzamos construyendo una aplicacion de 'reduccién médulo p’ IP)%Q — PJ%‘,,’ que nos permitird

definir un homomorfismo de E,(Q) a E,(F),). Para ello, elegimos trios [x : y : z] para un punto en IP%Q de
tal manera que x,y, z sean enteros sin ningin factor comun. Salvo multiplicaciones por +1, hay un tnico
trio con esas caracteristicas en su clase de equivalencia. Para cualquier primo fijo p, definimos la imagen
PdeP=[x:y:z7 € IP’%Q como el punto P=[x:y:7] € IP)IZF,,’ donde la barra denota la reduccién de un
entero médulo p. Nétese que P no es el triple idénticamente cero, porque p no divide los tres enteros
x,¥,z por la condicién que hemos pedido. También se debe notar que podriamos haber reemplazado el
trio [x : y : z] por cualquier miltiplo de un entero coprimo con p sin afectar a P.

Es facil ver que si P = [x: y : 7] resulta estar en E,(Q), es decir, si y>z = x> — n?xz?, entonces P estd
en E,(F,). Ademds, la imagen de P; + P, bajo esta aplicacion es P + P, porque es lo mismo aplicar las
férmulas de la ley de grupo para obtener la suma y luego reducir médulo p que primero reducir médulo
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py luego usar las férmulas de la ley de grupo. En otras palabras, nuestra aplicacion es un homomorfismo
de E,(Q) a E,(F,) para cualquier primo p que no divida 2n.

Supongamos que nuestra proposicion es falsa y E,(Q) contiene un punto de orden finito mayor a
2. Entonces, o contiene un elemento de orden impar o el grupo de puntos de orden 4 (o divirsor de
cuatro) contiene o 8 o 16 elementos. En cualquiera de los casos, tenemos un subgrupo S = {Py,...,P;} C
E,(Qqors), donde ¢ = #S es 8 0 un niimero impar.

Se puede demostrar que la aplicacién de reduccién médulo p de S en E,(IF),) es inyectiva. Pero esto
significa que para todos, excepto para un nimero finito de p primos congruentes a 3 mddulo 4, por la
proposicién anterior, el nimero ¢ debe dividir #E,(IF,), porque la imagen de S es un subgrupo de orden /.
Esto quiere decir que, para todos excepto para un nimero finito de primos congruentes a 3 mddulo 4, se
tiene que p = —1 (mod ¢). Pero esto contradice el teorema de Dirichlet sobre primos en una progresion
aritmética. Es decir, si £ = 8 esto significaria que hay solo un nimero finito de primos de la forma 8k + 3.
Si £ es impar, significaria que hay solo un nimero finito de primos de la forma 4¢k+3 (si 31 ¢), y que hay
solo un nimero finito de primos de la forma 12k + 7 si 3 | £. En todos los casos, el teorema de Dirichlet
nos dice que hay infinitos primos del tipo dado. Por lo tanto concluimos que #E,,(Q)ors n0 puede ser otro
que 4. 0

Para acabar este capitulo vamos a presentar un resultado sobre las posibles formas que presenta
E(Q)tors- El teorema fue enunciado en 1977 por el matematico estadounidense Barry Mazur en el articulo
Modular curves and the Eisenstein ideal [11].

Teorema 3.10 (Mazur). Sea E/Q una curva eliptica. Entonces E(Q)rs es isomorfo a uno de los si-
guientes:

(i) Z/NZparal <N<100N =12
(ii) Z/27Z.®7Z/2NZ para1 <N <4

Este teorema es muy relevante ya que nos reduce las posibilidades de la forma de los subgrupos de
torsién a simplemente 15 opciones.



Capitulo 4

Reformulacion del problema original

Al final del primer capitulo, se expone una correspondecia entre tridngulos rectingulos de lados
racionales con drea n y soluciones a la curva eliptica y> = x> — nx con y # 0. Y en el capitulo anterior,
hemos visto que precisamente los puntos de la curva cuya coordenada y es nula son los de 2-torsién:
(0,0),(n,0),(—n,0) y Og.

Ademas, por estar definida en Q, hemos visto que éstos son los tGnicos puntos de orden finito que
hay en la curva. Por ello, gracias a la correspondencia biunivoca concluimos que existirdn tridngulos
rectdngulos de lados racionales con drea n siempre y cuando haya al menos alguna solucién de nuestra
curva eliptica con y # 0 y por lo tanto de orden infinito.

El matématico L. J. Mordell present? el resultado que enunciamos a continuacion, cuya demostracion
puede leerse en su libro Diophantine Equations [12]. Este resultado nos ayudara a entender cuando
nuestra curva eliptica es infinita.

Teorema 4.1 (Mordell). Sea E/Q una curva eliptica definida sobre los niimeros racionales. Entonces
E(Q) es un grupo abeliano finitamente generado.

Esto permite una descomposicion E(Q) = E(Q)ors ® Z". Dependiendo de si r es positivo o 0, vemos
que E(Q) serd infinito o finito, respectivamente. Al entero r se le llama rango de la curva eliptica.

En otras palabras, el Teorema de Mordell afirma que existe un ndmero finito de puntos que generan
E(Q) usando la ley de grupo explicada en el capitulo 2:

apP,...,P, € E(Q) talque VQ € E(Q),Q = a1 P, +... +asPs con a; € Z.

Este resultado nos muestra que no hay infinitos puntos de orden finito. En un principio, para cada
entero m, E[m](Q) podria contener algdn punto no trivial. Sin embargo, este teorema nos asegura que
solo hay un nimero finito de m’s para los cuales el subgrupo de m-torsién no es trivial.

Por este teorema y por la argumentacion explicada al comienzo del capitulo obtenemos lo siguiente.

Proposicion 6. n es un niimero congruente si 'y solo si el rango de E,(Q) es mayor a 0.

Demostracion. Supongamos que n es un nimero congruente. En el primer capitulo hemos visto que la
existencia de un tridngulo rectdngulo de lados racionales y drea n nos lleva a un punto de la curva eliptica
y*> = x> —n’x con y # 0. Por lo que hemos visto en el apartado del segundo capitulo sobre puntos de
orden finito, tenemos que los puntos con coordenada y nula son precisamente los Unicos puntos de orden
finito de la curva. Por lo tanto, los puntos que obtenemos de la curva tendran orden infinito lo que implica
que nuestra curva tendrd un rango estrictamente positivo.

Por otro lado, si suponemos que nuestra curva tiene puntos de orden infinito, necesariamente estos
tendrdn y = 0, porque de lo contrario estarfan en el subgrupo de 2-torsién por lo que hemos visto en el
apartado de puntos de orden finito. De nuevo, por la correspondecia biyectiva que hemos visto al final
del primer capitulo, la existencia de soluciones de la curva eliptica con y # 0 nos da un trio (a,b,c) de
nimeros racionales que cumplen ser los lados de un tridngulo rectdngulo de 4rea n, lo que asegura que n
es congruente. O

23
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Ahora que hemos conseguido reformular el problema de los nimeros congruentes gracias al dltimo
resultado, la pregunta natural que nos hacemos es cémo determinar el rango de la curva eliptica E,(Q).
Resulta que este problema es muy complicado y de hecho es un problema que sigue abierto actualmente.

Para abordar el problema vamos a introducir la conjentura de Birch y Swinnerton-Dyer. Lamenta-
blemente, esta conjetura estd sujeta a una funcién de variable compleja cuyo manejo es complicado. Por
ello, se dard principalmente la idea detrds de la conjetura mas que el desarrollo completo siguiendo las
secciones 1.3 y 1.4 del Capitulo I del libro Rational Points on Modular Elliptic Curves de H. Darmon
[10].

Por simplicidad y conveniencia por las caracteristicas de nuestro problema, nos restringimos a las
curvas definidas en Q. Ademads, pese a haber usado durante el trabajo la ecuacién simplificada de Weies-
trass, y*> = x> +ax + b para esta construccién nos interesa utilizar la forma generalizada. Usando esta
forma, cuando trabajamos sobre Q, existe la llamada ecuacion minima de Weiestrass para cada curva E.
Dicha ecuacién tiene la ventaja de que sus coeficientes son enteros y su discriminante (que serd por tanto
un entero) serd minimo (en valor absoluto) entre todas las ecuaciones de este tipo que definen la misma
curva E. En particuar, tendremos una ecuacién de la forma

y2+a1xy+a3y:x3—|—a2x2—|—a4x—|—a6, 4.1)
conai,...,dg € Z.
Aqui, recordamos que su discriminante se define de la siguiente forma:
A = —b3bg — 8b3 — 27b% +9bybsbs # 0,
donde
by = a% +4ay,

by =2a4+ayaz,bg = a% +4ag,

bg = a%aé +4dayas — arazay +a2a§ — aﬁ.

La condicién A # 0 asegura que la curva sea no singular. Ademas, si p es un nimero primo que no
divide a A, entonces puede probarse que la ecuacién (4.1) reducida médulo p define una curva eliptica
sobre I .

Definicién. Sean E/Q una curva eliptica y p un niimero primo. Decimos que E tiene buena reduccion
en p si p no divide A, el discriminante de E.

Definicién. Sea E/Q una curva eliptica con buena reduccion en p. Denotamos por N, el cardinal del
grupo E(F),):
Ny = [E(Fp)|.

Es decir, N, serd el nimero de puntos de (la reduccién médulo p de) E con coordenadas en [F),. Un
argumento heuristico sencillo muestra que N, deberia ser ‘cercano’ a p + 1. De hecho, escribiendo

N,=p+1—ap,
el ‘término de error’ a,, satisface la desigualdad de Hasse (capitulo V de [3]).

lap| <2/p.

La idea detras de la conjetura de Birch y Swinnerton-Dyer es que el rango de E(Q) deberia verse
reflejado en el comportamiento asintotico de las cantidades N, cuando p tiende a infinito, y que por lo
tanto, un rango grande, que supone una mayor cantidad de puntos racionales en E(Q), deberia tender a
hacer de media N, mayor que p + 1.

Basados en experimentos numéricos, Birch y Swinnerton-Dyer propusieron la siguiente conjetura:
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Conjetura 1 (Birch y Swinnerton-Dyer). Existe una constante Cg que depende solamente de E tal que

N,
[T - ~Cellogx),
P<X,
pIN

donde r es el rango de E(Q).

Aqui con el simbolo ~ queremos expresar que el cociente de las expresiones que aparecen a ambos
lados tiende a 1 cuando X tiende a infinito.

Una de las dificultades de esta conjetura es que el producto de la izquierda, que involucra los N,
definidos de manera aritmética, es complicado de analizar analiticamente. Debido a esa complejidad, se
obtiene una mayor comprensién conceptual de la conjetura de Birch y Swinnerton-Dyer reformuldndola
en términos de la L-funcién de E /Q que introducimos a continuacion.

Para comenzar, es necesario extender la definicion que tenemos de los coeficientes a,. Como hemos
visto, éstos solo estdn definidos para aquellos primos p que no dividen a A. Por lo tanto, debemos ex-
ternder la definicién a aquellos primos (que son solo un nimero finito) que dividen a A. La extension se
hace dependiendo de cudl es la singularidad de E en IF,. Pero, debido a que es una cuestién técnica que
involucra conceptos que no se han desarrollado a lo largo del trabajo, no se explicard explicitamente esta
extension (se puede consultar en la referencia dada [10]).

Con esa extension, la funcién L de E se define como el producto de Euler infinito

L(E,s) = H (1—app™* +p172s)_1 H (1 —appfs)fl = Z an_?,
n=1

PIN pIN

en el cual la expresion de L(E,s) como una serie de Dirichlet proporciona la definicién del coeficiente
a, cuando n no es primo.
Al evaluar el producto de Euler formalmente en s = 1 da

LE 1) ="T] Nﬂ, (4.2)
P p

donde N, es la cardinalidad del grupo de puntos no singulares en E(IF,). Esta igualdad es solo formal,
ya que el producto de Euler que define L(E, s) solo converge en la mitad derecha del plano Re(s) > 3/2.

Pero precisamente, se cree que el comportamiento de L(E,s) en s = 1, asumiendo que podamos
darle sentido a esa evaluacion, deberfa reflejar la tendencia asintética del producto [],py % que aparece
en la primera version de la conjetura de Birch y Swinnerton-Dyer que se ha dado. Por lo tanto, se puede
reformular la conjeutra con la funcién L(E,s).

Conjetura 2 (Birch y Swinnerton-Dyer). La funcion L(E,s) se extiende a una funcion entera sobre C 'y
el rango r de E(Q) es igual al orden de anulacion de L(E,s) en s = 1.

Asumiendo esta conjetura, vemos por ejemplo que si la funcién L(E,,s) no se anula en s = 1, el
rango de E,(Q) es 0y por lo tanto podemos descartar que n sea congruente. De hecho:

Corolario 1. Asumiendo la Conjetura de Birch y Swinnerton-Dyer, un niimero entero n > 0 es congruente
siy solo si L(E,,1) =0.
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