
El algoritmo de Schoof para curvas
elípticas

Virginia Villacampa Casalod
Trabajo de fin de grado de Matemáticas

Universidad de Zaragoza

Directores del trabajo: Carlos de Vera Piquero y
Miguel Ángel Marco Buzunáriz

12 de junio de 2024





Abstract

Elliptic curves are algebraic structures with a wide range of applications in number theory and cry-
ptography. These curves have gained significant importance over the last few years, specially during the
1980s, when they began to be used in cryptographic applications, leading to the development of elliptic
curve techniques for factorization, among others. In recent decades, elliptic curve cryptography has be-
come widely established in public key cryptography algorithms and it has been integrated into security
products since the late 1990s.

The security of this type of cryptography relies on the difficulty of solving the discrete logarithm
problem within the group structure of the points on elliptic curves defined over finite fields.

However, some algorithms can reduce the discrete logarithm problem on elliptic curves to groups
where the solution to this problem is easier to find.

To ensure the cryptographic security of a curve, it is crucial to know the order of the underlying group
that comprises the set of points of an elliptic curve over its defining field.

Schoof’s algorithm, which employs Hasse’s Theorem, the Frobenius endomorphism, and the Chinese
Remainder Theorem, is currently the most efficient method for calculating this order.

The goal of the present project is to develop the theory of Schoof’s algorithm, providing a com-
prehensive overview of the mathematical concepts and practical applications associated with elliptic
curves and their use in cryptographic systems, with examples of how the theory can be used.

The first chapter of this work introduces basic concepts necessary to understand elliptic curves. Both
affine space and the projective plane are defined to illustrate the notion of an elliptic curve from different
points of view, including their definition via the Weierstrass equation. It will be assumed that an elliptic
curve is given in its Weierstrass equation when there is no specification about it. A special point belonging
to the curve appears during this process. It will be the neutral point for the operation constructed over
elliptic curves.

The second chapter covers endomorphisms and key results about them, such as the reduction of the
general expression to a more practical way of presenting the rational functions that define the endo-
morphism. Some easy and short examples are added to showcase the ideas explained in this chapter.
The torsion subgroup is also included here. The next topic is endomorphism rings. A theorem is stated
without proof to facilitate the discussion in the next section.

The focus then shifts to Frobenius endomorphism. After proving some of its fundamental properties,
everything is ready to show Hasse’s Theorem. It is important because it will provide a prediction for the
order of the group formed by the points on the elliptic curve. Furthermore, the Frobenius endomorphism
satisfies an important equation called the characteristic equation. This equation is used during Schoof’s
algorithm, and both its formula and proof are provided at the end of this section.

A brief description of division polynomials is included to express the addition of a point to itself
using rational functions. These functions satisfy recursive relations between them.

The third chapter is the core of the project: the detailed presentation of Schoof’s algorithm. This
includes the computation of the Frobenius trace modulo small primes and the combination of these results
using the Chinese Remainder Theorem to determine the exact number of points on the elliptic curve.
This chapter finishes with an example of the algorithm applied to an elementary curve. All computations
needed to solve each step have been done in Sage.

The fourth chapter is the last one of the work. It highlights the applications of elliptic curves in
cryptography, emphasizing their importance in creating secure communication systems. The work de-
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IV Abstract

monstrates not only the theoretical underpinnings of the algorithm but also its practical implications in
modern cryptographic practices. The Elliptic Curves Discrete Logarithm Problem is presented at the
beginning of the chapter. Some public key schemes rely on the hardship of solving this problem.

If the order of the curve is not taken into account when choosing the cryptographic system based
on it, it is possible to attack these curves because there are orders which make them insecure. Three
examples of these attacks are explained at the end of this work.

The greatest part of the project has been done with the help of the texts from [5], [6] and [9], in
addition to those explicitly cited in the text.
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Capítulo 1

Preliminares

En este primer capítulo, se darán las definiciones básicas para poder desarrollar el resto del trabajo.
Las curvas elípticas son una familia de curvas algebraicas. Existen varias definiciones alternativas, pero
equivalentes, de lo que es una curva elíptica. Según el contexto, se puede utilizar una u otra. En este caso,
la primera que se dará requiere algunos conceptos previos.

1.1. Ecuación de Weierstrass

Definición. Sea F un cuerpo. El espacio afín tridimensional sobre F, habitualmente denotado por A3
F, es

el conjunto de puntos tales que
A3
F = {(x,y,z) | x,y,z ∈ F}

Se define ∼ como la relación de equivalencia dada por

(x,y,z)∼ (λx,λy,λ z), ∀λ ∈ (F\{0})

Notar que la relación de equivalencia se toma fuera del origen. La clase de equivalencia de (x,y,z) se
escribe como (x : y : z).

Definición. El plano proyectivo es el cociente entre el espacio afín y la relación de equivalencia ∼

P2
F = (A3

F \{(0,0,0)})/∼

Llegados a este punto, se puede dar una primera pincelada acerca de lo que es una curva elíptica:

Una curva elíptica es una curva lisa E ⊂ P2
F de grado 3.

Esta afirmación se puede visualizar de manera más concisa si se escribe una curva elíptica como el
conjunto de puntos que satisfacen la ecuación general de una cúbica en P2

F

Ax3 +Bx2y+Cx2z+Dxyz+Ey2z+Fxy2 +Gy3 +Hz3 + Ixz2 + Jyz2 = 0

Si char(F) ̸= 2,3, se puede realizar un cambio de variables, y deshomogeneizando (es decir, eva-
luando z = 1), queda que una curva elíptica E se puede definir mediante una ecuación más sencilla.

Definición. Sea F un cuerpo tal que char(F) ̸= 2,3. Una curva elíptica E definida sobre F es una curva
proyectiva cuya ecuación afín asociada es de la forma

y2 = x3 +Ax+B, A,B ∈ F, 4A3 +27B2 ̸= 0

El algoritmo de Schoof se puede utilizar también en características 2 y 3 pero las ecuaciones obtenidas
para ello son distintas y no serán tenidas en cuenta en este trabajo.

Se denotará con E(F) al conjunto de puntos de la curva elíptica. Este conjunto está formado por los
puntos (x,y) ∈F×F que son solución a la ecuación mencionada E junto con un punto extra, denotado
como O y cuya procedencia será detallada más adelante. Esta ecuación se conoce como la ecuación
simplificada de Weierstrass para una curva elíptica E.
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2 Capítulo 1. Preliminares

La condición de que el discriminante no sea nulo en el cuerpo, 4A3 +27B2 ̸= 0, se exige para que el
polinomio x3 +Ax+B no tenga raíces múltiples. En este caso, se dice que la curva es lisa o no singular.

Una vez fijada la ecuación, se pueden definir tantos conjuntos de puntos que la cumplan como exten-
siones tenga F. La misma definición de curva elíptica se puede usar para cada una de estas extensiones
del cuerpo. Cuando pueda haber confusión sobre el cuerpo en el que están las coordenadas de un punto
(x,y), se dice que el punto es F-racional si sus coordenadas están en F.

El punto extra, O , procede del proceso de homogeneización de la ecuación simplificada de Weiers-

trass. Esto se realiza estableciendo que x =
X
Z
, y =

Y
Z

, así se obtiene la ecuación en el plano proyectivo

correspondiente. Se hace una distinción: las minúsculas x e y son las coordenadas en el plano afín y las
mayúsculas X ,Y y Z son las coordenadas en el plano proyectivo. Por lo tanto, la ecuación de Weierstrass
homogeneizada es la siguiente

Y 2Z = X3 +AXZ2 +BZ3

Si Z ̸= 0, entonces (X : Y : Z) =
(

X
Z

:
Y
Z

: 1
)
= (x : y : 1), recuperando la ecuación afín original

y2 = x3 +Ax+B. Estos son los puntos ‘finitos’ del plano proyectivo.

Si Z = 0, se puede pensar que esta recta es la del infinito y por tanto los puntos de la forma
(X : Y : 0) se llaman puntos del infinito. Sustituyendo Z = 0 en la ecuación proyectiva, se obtiene
que X3 = 0. Por tanto, X = 0 y entonces Y ̸= 0 porque en la definición de la relación de equivalencia
se excluye la posibilidad de que las tres coordenadas del plano proyectivo sean cero. Por lo que
queda (0 : Y : 0). La ecuación proyectiva correspondiente a la ecuación de Weierstrass posee solo
una solución en la recta del infinito Z = 0, que al reescalar se convierte en el punto (0 : 1 : 0).
Esta solución es el punto extra que se añade y se escribe como O = (0 : 1 : 0). Todo ello es
coherente con el teorema de Bézout, que dice que la intersección entre una recta y una cúbica se
debe producir en tres puntos, contando con la multiplicidad de cada uno de ellos.

Este punto es muy importante ya que se tomará como elemento neutro a la hora de construir una opera-
ción ⊕ sobre E(F) que proporcionará una estructura de grupo a las curvas elípticas. A continuación, se
describe el proceso que define esta operación.

1. Se toman dos puntos P1 = (x1,y1) y P2 = (x2,y2) en una curva elíptica E(F) dada por la ecuación
simplificada de Weierstrass y2 = x3 +Ax+B.

2. Se traza la recta L que pasa por P1 y P2. Esta recta corta a E en un tercer punto, que se considera
distinto de O , denotado por P′

3 = (x′3,y
′
3).

3. Se une este tercer punto P′
3 con el punto del infinito O a través de la recta L′ con la que se obtiene

P3 = (x3,y3). Notar que, si P′
3 ̸= O , la recta L′ es la vertical que pasa por P′

3. Debido a la simetría
de la ecuación, se tiene entonces que P3 = (x′3,−y′3). Por tanto, este último paso es equivalente a
reflejar el punto P′

3 respecto del eje x.

4. Se define precisamente el resultado de esta nueva operación como P1 ⊕P2 = P3.

En esta explicación, se ha omitido en varias ocasiones el caso en el que dos puntos de la curva elíptica
sean el mismo, puesto que para definir una recta geométricamente se necesita que estos sean distintos.
Cada vez que aparezca este problema de considerar la recta que pase por dos puntos y que estos dos sean
iguales, la solución será tomar la recta tangente a la curva en dicho punto, lo que es equivalente a pensar
que la tangente corta dos veces a la curva en el mismo punto (en este caso, se dice que la curva tiene
multiplicidad de intersección 2 con la recta en el punto). La recta tangente a un punto será entendida
como la única recta que pasa por un punto con multiplicidad mayor estrictamente que uno.

En el segundo paso, se ha supuesto que P′
3 ̸= O . Si por el contrario se tiene que P′

3 = O , la recta L′

corta a la curva en O con multiplicidad al menos 2 y por definición, esta debe ser la recta tangente. Por
otro lado, ya se ha visto que Z = 0 corta a la curva en O con multiplicidad 3. La unicidad de la recta
tangente demuestra que estas dos son en realidad la misma recta, y que Z = 0 es la única tangente a la
curva en O .
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Figura 1.1: Ilustración geométrica de la construcción ⊕ (con la curva elíptica y2 = x3 +7 sobre R)

1.2. Estructura de grupo de las curvas elípticas

Si se utiliza la suma habitual +, entendida coordenada a coordenada, con dos puntos, el resultado
no tiene que estar necesariamente en la curva, y por tanto, no da una suma en ese conjunto. Por este
motivo, se hace esta distinción en cuanto a la notación para no confundir a esta con la nueva operación
cuando estas dos aparezcan simultáneamente en una discusión o argumento. La suma que hasta ahora se
venía conociendo se denotará por + mientras que para la nueva operación de puntos en la curva elíptica
se reservará el símbolo ⊕. También se llamará suma, ya que satisface las mismas propiedades que la
anterior pero en el grupo de la curva elíptica.

Proposición. La curva elíptica E(F) con la operación ⊕ forman un grupo abeliano, es decir, se satis-
facen las siguientes propiedades ∀P,Q,R ∈ E(F):

1. Conmutatividad: P⊕Q = Q⊕P.

2. Existencia del elemento neutro, O: P⊕O = P.

3. Existencia del elemento opuesto, −P: P⊕ (−P) = O .

4. Asociatividad: (P⊕Q)⊕R = P⊕ (Q⊕R).

Demostración. Se realizará la demostración siguiendo los mismos puntos ya establecidos.

1. Proporcionados dos puntos distintos, existe una única recta que pase por ambos.

2. La recta L que une a P y O corta a E en un tercer punto R por el teorema de Bézout. La recta L′

que pasa por O y R, siguiendo el mismo argumento que en 1, es de hecho igual a L, y por tanto el
tercer punto de intersección con E vuelve a ser de nuevo P.

3. Dado un punto P = (x,y), su elemento opuesto es −P = (x,−y). Para probar esto, se suma P al
punto −P. La recta L que pasa a través de P y −P es vertical, así que el tercer punto de intersección
es O . Ahora se une O con O , lo que resulta en la recta del infinito, y el tercer punto de intersección
vuelve a ser O porque esta recta corta a la curva en O con multiplicidad de intersección 3.

4. Una demostración completa de esta propiedad puede encontrarse en el capítulo 2 sección 4 de [10].



4 Capítulo 1. Preliminares

Dados P1 = (x1,y1) y P2 = (x2,y2) se plantea ahora la siguiente cuestión: calcular P1 ⊕ P2 = P3
eficientemente, con P3 = (x3,y3).

El primer caso que se va a estudiar es P1 ̸= P2 y ninguno de ellos O . La recta L que junta P1 y P2 tiene
pendiente

m =
y2 − y1

x2 − x1

Si x1 = x2 entonces L es vertical. Este caso será tratado más tarde, así que por el momento se puede
asumir que x1 ̸= x2. La ecuación de L es entonces

y = m(x− x1)+ y1

Sin más que sustituir en la ecuación de la curva E para encontrar la intersección se obtiene la igualdad

(m(x− x1)+ y1)
2 = x3 +Ax+B

Se reorganiza escribiendo todos los términos en un mismo lado de la igualdad de forma queda lo siguiente

0 = x3 −m2x2 +(A+2m(y1 − x1))x+B+m2x2
1 + y2

1 −2mx1y1

Esto es una ecuación cúbica en x, y sus tres raíces r,s, t dan las coordenadas de la x de los tres puntos
de intersección de L con E. Generalmente, resolver una cúbica no es fácil, pero en este caso dos de las
raíces ya son conocidas, x1 y x2, ya que P1 y P2 son puntos que están tanto en L como en E. Por lo tanto,
se podría factorizar la cúbica para obtener el tercer valor de x. Pero hay una forma más sencilla. Si se
tiene un polinomio de grado 3, x3 +ax3 +bx+ c, con raíces r,s, t entonces

x3 +ax2 +bx+ c = (x− r)(x− s)(x− t) = x3 − (r+ s+ t)x2 +(rs+ st + rt)x− srt

Igualando los coeficientes del término x2 a ambos lados

r+ s+ t =−a

Si se conocen dos de las raíces, r,s, se puede recuperar la tercera como t = −a− r − s. En este caso
particular

x = m2 − x1 − x2, y = m(x− x1)+ y1,

Ahora, reflejando respecto del eje x para obtener el punto P3 = (x3,y3)

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1,

En el caso en el que x1 = x2 pero y1 ̸= y2, la simetría de la ecuación y2 = x3 +Ax+B conduce a deducir
que lo que ocurre en este supuesto es que y2 = −y1. Entonces, la recta a través de P1 y P2 es una recta
vertical, que, por lo tanto, interseca a E en O , y ya se ha visto que entonces P3 = O .

Ahora se analiza el caso en el que P1 = P2 = (x0,y0). Para este caso, se debe considerar la recta
tangente a E en dicho punto. De la relación y2 = f (x) se deduce, por diferenciación implícita, que la
pendiente m de la recta tangente L es

2y
dy
dx

= f ′(x) = 3x2 +A =⇒ m =
dy
dx

=
f ′(x)
2y

=
3x2

0 +A
2y0

Si y0 ̸= 0, esta es la fórmula de la pendiente utilizada cuando se quiere duplicar un punto. En este
caso, solamente una raíz es conocida, x0, pero es una raíz doble ya que L es la tangente a E en (x0,y0).
Una vez obtenido el valor para m, simplemente se sustituye en las fórmulas de arriba.

Si y0 = 0, entonces la recta tangente es vertical y se obtiene P1 ⊕P2 = O al igual que antes.



Capítulo 2

Número de puntos en la curva elíptica

El propósito principal de este capítulo es preparar todos los requisitos necesarios para hacer un es-
quema de la demostración del Teorema de Hasse. Este teorema proporciona una cota del número de
puntos en la curva elíptica. Para ello, se demostrarán algunos resultados técnicos sobre endomorfismos
separables.

Notar que E es la ecuación de la curva elíptica mientras que E(F) son las soluciones de dicha ecua-
ción con coordenadas en F. Por tanto, E(F) son las soluciones de la ecuación consideradas en la clausura
algebraica del cuerpo anterior. Entonces, el cardinal del grupo que forma el conjunto de puntos de la
curva elíptica dependerá del cuerpo en el que sean consideradas las soluciones de la ecuación. Además,
se tiene que E(F)⊆ E(F) ya que F⊆ F.

2.1. Endomorfismos

Definición. Un endomorfismo de una curva E definida sobre un cuerpo F es un homomorfismo de grupos
α : E(F)→ E(F) dado por funciones racionales (cocientes de polinomios con coeficientes en F).

Si los coeficientes de las funciones racionales están en el cuerpo F, entonces α induce un endomor-
fismo α : E(F)→ E(F) del grupo de puntos F-racionales de E.

Por ser endomorfismo de grupos, en particular, ∀P1,P2 ∈ E(F) se cumple que α(P1 ⊕P2) = α(P1)⊕
α(P2) y α(O) = O . El endomorfismo trivial que lleva cada punto a O se denotará por 0. En este trabajo
se asumirá que α es no trivial; es decir, que existe algún punto P = (x,y) tal que α(P) ̸= O .

Los endomorfismos distintos del trivial son sobreyectivos. Intuitivamente, trabajar con la clausura
algebraica de un cuerpo permite resolver las ecuaciones definidas para encontrar la imagen inversa de un
punto.

Ejemplo. Sea E dada por y2 = x3 +Ax+B y sea α(P) = 2P. Entonces α es un homomorfismo y,

α(P) =

((
3x2 +A

2y

)2

−2x,
3x2 +A

2y

(
3x−

(
3x2 +A

2y

)2
)
− y

)

donde P = (x,y). Como α está dado por funciones racionales, es un endomorfismo de E. Se denota [2]:

[2] : E(F) −→ E(F)
P 7−→ 2P = P⊕P.

Ejemplo. El ejemplo anterior se puede generalizar tomando α(P) = mP con m ∈ Z arbitrario, dando
lugar a un endomorfismo que siguiendo con la misma notación que antes, se escribirá [m]:

[m] : E(F) −→ E(F)
P 7−→ mP = P⊕ . . .⊕P︸ ︷︷ ︸

m

.
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6 Capítulo 2. Número de puntos en la curva elíptica

Las expresiones concretas para las coordenadas de [m] en términos de los coeficientes A y B de la
ecuación simplificada de Weierstrass para E se pueden obtener utilizando las fórmulas de la duplicación
de un punto sucesivamente, todas las veces que sean necesarias. Incluso las fórmulas para la suma de
dos puntos distintos, en el caso en el que m sea un número impar. Esto resultará de gran utilidad a la
hora de averiguar los puntos de E(F) que satisfacen que mP = O .

A continuación, se argumentará que la expresión general de un endomorfismo puede simplificarse.
Partiendo de la definición, se tiene en consideración que tanto el punto de partida como su respectiva
imagen, deben estar en la curva elíptica. Esto quiere decir que ambas coordenadas deben ser soluciones
de la ecuación de la curva elíptica. Se asume que la curva elíptica viene dada en su forma de Weierstrass
simplificada.

Por lo tanto, se puede reemplazar cualquier potencia par de y por un polinomio en x, y cualquier
potencia impar de y por un polinomio en x multiplicado por y. Este argumento de sustitución de las
potencias pares de y por la correspondiente ecuación en x se repite siempre. Entonces si R(x,y) es una
función racional, tenemos que se puede escribir de la siguiente manera

R(x,y) =
f1(x)+ f2(x)y
q1(x)+q2(x)y

A continuación, se racionaliza y se vuelve a utilizar que se debe cumplir la ecuación de Weierstrass. El
resultado de realizar estos cambios es

R(x,y) =
f3(x)+ f4(x)y

q3(x)

Considerando un endomorfismo tal que α(x,y) = (R1(x,y),R2(x,y)), se sabe que α(x,−y) = α(−(x,y))
y utilizando las propiedades de los endomorfismos, esto último es α(−(x,y)) =−α(x,y). Reescribiendo
esto con R1 y R2 es equivalente a R1(x,−y) = R1(x,y) y R2(x,−y) = −R2(x,y). De aquí se deduce que
en R1 el polinomio f4(x) = 0 y en R2 el polinomio f3(x) = 0.

La conclusión extraída del argumento desarrollado en los párrafos precedentes se halla enunciada en
la siguiente proposición.

Proposición. Un endomorfismo α : E(F)→ E(F) viene dado por α(x,y) = (r1(x),r2(x) ·y) donde r1(x)
y r2(x) son funciones racionales.

Ejemplo. Al realizar el cambio sugerido en la explicación de la sustitución de las potencias pares de y
por la ecuación de Weierstrass en el ejemplo anterior, donde α(P) = 2P, se obtiene el siguiente resultado

α(P) =
(

x4 −2Ax2 −8Bx+A2

4(x3 +Ax+B)
,y · x6 +5Ax4 +20Bx3 −5A2x2 −4ABx−A3 −8B2

8(x3 +Ax+B)2

)
Obsérvese que la primera coordenada es una función racional en x mientras que en la segunda aparece
el factor y con exponente uno, tal y como se ha descrito con anterioridad.

Observación. Los siguientes aspectos se deducen de lo visto hasta el momento.

Se puede escribir r1(x) =
g(x)
q(x)

, con g(x) y q(x) polinomios sin factores comunes.

Si q(x) = 0 para algún punto (x,y), entonces α(x,y) = O .

Si q(x) ̸= 0, entonces r1(x) está bien definida y r2(x) también ya que (yr2(x))2 = f (r1(x)). Se
puede decir que el endomorfismo está bien definido por estarlo ambas funciones racionales.

El núcleo de un endomorfismo no trivial es finito porque α(x,y) = O en los puntos (x,y) para los
que q(x) = 0. Habrá tantos puntos de estos como raíces tenga el polinomio q(x), cuyo número viene
determinado por su grado, y por tanto, existen solamente una cantidad finita de ellas.



El algoritmo de Schoof para curvas elípticas - Virginia Villacampa Casalod 7

Definición. Sea α un endomorfismo no trivial.

El grado de α es
gr(α) = máx{gr(g(x)),gr(q(x))}

Si α = 0, entonces gr(0) = 0. Por lo tanto, el grado de un endomorfismo siempre es un número
mayor o igual que cero.

Se dice que el endomorfismo es separable si r′1(x) ̸= 0, o equivalentemente, si g′(x) ̸= 0 ó q′(x) ̸= 0.

Ejemplo. Regresando de nuevo al ejemplo del endomorfismo [2], su grado es gr(α) = 4 y, además, es
separable ya que 3x2 +A ̸= 0.

2.2. Anillos de endomorfismos

Definición. Sea E una curva elíptica definida sobre un cuerpo F. El anillo de endomorfismos End(E) de
E(Fq) en E(Fq) está formado por el grupo abeliano bajo la suma, donde la suma α +β está definida por

(α +β )(P) = α(P)⊕β (P)

y el endomorfismo cero es la identidad aditiva, con la multiplicación definida por composición (αβ =
α ◦β ). Así pues, para cualquier α ∈ End(E) se tiene

nα := α + . . .+α︸ ︷︷ ︸
n

= [n]◦α,

donde se recuerda que [n] es el endomorfismo multiplicación por n en E(Fq).

Notar que [1] = 1 es la identidad multiplicativa (el endomorfismo identidad). Cuando el contexto
lo deje suficientemente claro, se identificarán los endomorfismos de los enteros [n] con n. El ejemplo
anterior generalizado junto con la multiplicación por un entero motiva la siguiente definición.

Definición. Sea n un entero positivo. El núcleo del endomorfismo de la multiplicación por un n ∈ Z es
el subgrupo de n-torsión.

E[n] = {P ∈ E(F) | nP = O}

Sea E una curva elíptica definida sobre un cuerpo de característica p (incluyendo la posibilidad
de que sea p = 0). Para cualquier α ∈ End(E), se considera la restricción αn de α al subgrupo de n-
torsión E[n]. Como α es un homomorfismo de grupos, conserva los puntos de n-torsión, así que αn es un
endomorfismo del grupo abeliano E[n].

Cuando n es un entero positivo no divisible por p, los subgrupos de n-torsión tienen rango 2. En
otro caso, tienen rango 0 ó 1. La prueba se da en el primer teorema de la séptima sección de [8]. Por
lo tanto, suponiendo la primera situación, que es la que resulta interesante para lo que viene después, se
puede elegir {β1,β2} una base que genere E[n] como un grupo abeliano. Todos sus elementos se pueden
expresar como una combinación lineal de β1 y β2, es decir, de la forma m1β1 +m2β2 con m1,m2 ∈ Z,
únicamente determinados módulo n. Se puede representar αn como una matriz 2×2

αn =

(
a b
c d

)
con a,b,c,d ∈ Z/nZ tales que

α(β1) = aβ1 + cβ2, α(β2) = bβ1 +dβ2.

Notar que la representación de esta matriz depende solamente de la elección de la base, pero los inva-
riantes de la matriz, como la traza o el determinante, son independientes de esta elección.

La composición de homomorfismos se corresponde con la multiplicación de matrices. En particular,
los endomorfismos son homomorfismos, y por lo tanto esto también se cumple para ellos.
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Teorema 2.1. Sea α,β ∈ End(E). Entonces:

∃! α̂ : E(F)→ E(F) tal que αα̂ = α̂α = [n], donde n = gr(α) = gr(α̂).

α̂ +β = α̂ + β̂ .

α̂β = β̂ α̂

Si n ∈ Z, entonces ˆ[n] = [n] y su grado es n2.

Observación. Si gr(α) = 1, entonces α es un isomorfismo y α̂ el endomorfismo inverso de α .

Lema. Para cualquier endomorfismo α se tiene que α + α̂ = [a], donde a = 1+gr(α)−gr(α −1).

Demostración. Para cualquier α ∈ End(E), incluyendo α = 0

gr(α −1) = (α̂ −1)(α −1) = (α̂ − 1̂)(α −1) = (α̂ −1)(α −1) = 1− (α + α̂)+gr(α),

y por lo tanto, α + α̂ = 1+gr(α)−gr(α −1)

Definición. El entero a verificando el lema anterior se denomina traza del endomorfismo α , y se denotará
tr(α). Es decir, tr(α) es el entero determinado por la condición

[tr(α)] = α + α̂.

Teorema 2.2. Sea α ∈ End(E) un endomorfismo no trivial. Ambas α y α̂ son raíces del polinomio
característico

x2 − tr(α)x+gr(α)

Demostración. Sustituyendo directamente en la ecuación

α2 − tr(α)α +gr(α) = α2 − (α + α̂)α +αα̂ = 0

α̂2 − tr(α)α̂ +gr(α) = α̂2 − (α + α̂)α̂ +αα̂ = 0

2.3. El endomorfismo de Frobenius

Se introduce a continuación otro tipo de ejemplo de endomorfismo, algo más concreto, distinto de la
multiplicación por un entero, que juega un papel crucial en la teoría de curvas elípticas sobre un cuerpo
finito, Fq. Aquí, q, es una potencia de primo, es decir, q = pk para k ∈ N, con p un número primo
cualquiera, que será la característica del cuerpo.

Proposición. Sea E una curva elíptica definida sobre Fq. La aplicación siguiente es un automorfismo.

φq : E(Fq) −→ E(Fq)
(x,y) 7−→ (xq,yq)
O 7−→ O

Demostración. La inyectividad y la sobreyectividad de φq son evidentes por definición (para la sobreyec-
tividad notar de nuevo que se trabaja sobre la clausura algebraica). Por lo tanto, es suficiente comprobar
que φq es un endomorfismo. Se tiene que probar que φq : E(Fq)→ E(Fq) es un homomorfismo de grupos
dado por funciones racionales. Esto último se ve directamente, ya que la función está dada por polino-
mios. El siguiente paso es ver que en efecto se trata de un homomorfismo.
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Considerando la curva elíptica en su forma de Weierstrass, sean P1 = (x1,y1),P2 = (x2,y2) ∈ E(Fq)
con x1 ̸= x2. Utilizando las fórmulas ya desarrolladas en secciones anteriores para la suma, el punto
P3 = (x3,y3) = P1 ⊕P2 vendrá dado por

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1, m =
y2 − y1

x2 − x1

Elevando todo a la q-ésima potencia se obtiene que

xq
3 = m′2 − xq

1 − xq
2, yq

3 = m′(xq
1 − xq

3)− yq
1, m′ =

yq
2 − yq

1
xq

2 − xq
1

Lo que demuestra que φq(x3,y3) = φq(x1,y1)⊕φq(x2,y2).
En el caso en el que x1 = x2 pero y1 ̸= y2, ya es sabido que P3 = O . Entonces xq

1 = xq
2 e yq

1 ̸= yq
2, por

lo que φq(x1,y1)⊕φq(x2,y2) = O , como se quería probar.
Se supone ahora que P2 =O , entonces P1⊕O =P1,∀P1 ∈E(Fq). Además, se tiene que φq(x2,y2)=O

y trivialmente φq(x1,y1)⊕O = φq(x1,y1).
Finalmente, se aborda este problema en el caso en el que se esté sumando un punto consigo mismo.

Las fórmulas para las coordenadas de 2P1 = P3 son iguales que anteriormente pero la pendiente cambia

transformándose en m =
3x2

1 +A
2y1

y cuando se produce el paso de elevar a la q-ésima potencia se obtiene

m′ =
3q(xq

1)
2 +Aq

2qyq
1

. Como 2,3,A ∈ Fq, se tiene 2q = 2,3q = 3,Aq = A. Esto significa que el resultado

cumple lo esperado 2(xq
1,y

q
1) = (xq

3,y
q
3).

Definición. El endomorfismo anterior es lo que se conoce como el endomorfismo de Frobenius.

Lema. El endomorfismo de Frobenius tiene grado q y no es separable.

Demostración. El grado de los polinomios que definen el endomorfismo de Frobenius es q. Además,
como q es múltiplo de la característica, cumple que q ·1 = 0 en Fq, y las derivadas tanto de xq como de
yq son idénticamente cero. Por lo tanto, φq no es separable.

Proposición. El endomorfismo de Frobenius satisface estas dos propiedades.

1. Ker(φq −1) = E(Fq).

2. φq −1 es un endomorfismo separable y además, se puede deducir que #E(Fq) = gr(φq −1).

Demostración. El primer punto es más sencillo de probar que el segundo.

1. (x,y)∈E(Fq) ⇐⇒ (x,y)∈Fq ⇐⇒ xq = x, yq = y ⇐⇒ φq(x,y)= (x,y) ⇐⇒ (x,y)∈Ker(φq−1)

2. La definición del endomorfismo φq −1 actuando sobre un punto (x,y) es

(φq −1)(x,y) = φq(x,y)− (x,y) = (xq,yq)+(x,−y)

El cálculo de la expresión para la primera coordenada es(
− y− yq

x− xq

)2

− xq − x =
(
− y(1+ yq−1)

x− xq

)2

− xq − x =
(−y)2(1+ yq−1)2

(x− xq)2 − xq − x

Utilizando el cambio habitual y2 = f (x) para que todo dependa únicamente de la variable x y
teniendo en cuenta que q−1 es par por ser q impar

f (x)(1+ f (x)
q−1

2 )2

(x− xq)2 − xq − x
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La derivada del denominador no es el polinomio nulo

2(x− xq)(1−qxq−1) = 2(x− xq) ̸= 0

Se concluye que efectivamente φq −1 es un endomorfismo separable.

Llevar a cabo la demostración de la segunda parte de esta afirmación, mencionada en el enunciado
como una deducción de la primera, requiere de un detalle riguroso, por lo que se trata de una tarea
costosa que excede en cuanto a su longitud para las características de este trabajo. Sin embargo,
una demostración completa de esta propiedad puede encontrarse en la novena sección del segundo
capítulo de [10].

Lema. Sean r,s ∈ Z. Entonces gr(rφq − s) = r2q+ s2 − rst, donde t es la traza del endomorfismo de
Frobenius φq.

Demostración. Se resuelve este apartado usando técnicas similares a la sección anterior

gr(rφq − s) = (r̂φq − s)(rφq − s) = (r̂φ̂q − ŝ)(rφq − s) = r2
φ̂qφq + s2 − rsφ̂q − rsφq = r2q+ s2 − rst.

Teorema 2.3 (Teorema de Hasse). Sea E una curva elíptica definida sobre el cuerpo finito Fq. Entonces,
el orden de E(Fq) viene dado por la siguiente igualdad

#E(Fq) = q+1− t, |t| ≤ 2
√

q

donde t vuelve a ser la traza del endomorfismo de Frobenius.

Demostración. Sea φq(x,y) = (xq,yq) el endomorfismo de Frobenius en la curva. Entonces, E(Fq) es el
subgrupo de E(Fq) fijado por φq, así que E(Fq) = ker(φq − 1). El endomorfismo φq − 1 es separable y
por lo tanto, se tiene

#Ker(φq −1) = #E(Fq) = gr(φq −1) = (φ̂q −1)(φq −1) = φ̂qφq +1− (φ̂q +φq) = q+1− t.

Solo queda probar que efectivamente se cumple que |t| ≤ 2
√

q. Para ello, se utiliza el lema anterior.

gr(rφq − s)≥ 0 ⇐⇒ r2q+ s2 − rst ≥ 0 ⇐⇒ r2q
s2 +

s2

s2 −
rst
s2 ≥ 0 ⇐⇒ q

(
r
s

)2

− t
(

r
s

)
+1 ≥ 0

Esto es cierto para todos los números racionales distintos de cero de la forma r/s.
El conjunto de los números racionales r/s tales que mcd(s,q) = 1 es denso en R.
Por lo tanto, qx2 − tx+ 1 ≥ 0,∀x ∈ R. Se sigue que el discriminante de este polinomio, t2 − 4q no

puede ser positivo, lo que se puede escribir como t2 −4q ≤ 0 y esto da la cota deseada |t| ≤ 2
√

q.

Teorema 2.4 (Ecuación característica de Frobenius). Se tiene φ 2
q − tφq + q = 0 como endomorfismo de

E, donde t es la traza del endomorfismo de Frobenius. En otras palabras, ∀(x,y) ∈ E(Fq) se cumple que

(xq2
,yq2

)− t(xq,yq)+q(x,y) = O

Más aún, t es el único entero que satisface esta relación.
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Demostración. Si φ 2
q − tφq + q no es el endomorfismo trivial, entonces su núcleo es finito ya que los

elementos del núcleo se pueden calcular encontrando soluciones a una ecuación polinómica.
Se probará que el núcleo es infinito, por tanto es el endomorfismo cero.
Sea m ≥ 1 un entero primo distinto de la característica del cuerpo. Recordar que φq induce una matriz

(φq)m que describe la acción de φq sobre el subgrupo de m-torsión E[m]. Sea esta matriz la siguiente

(φq)m =

(
a b
c d

)
Se tiene que X2 − tX + q (mód m) es el polinomio característico de φq como endomorfismo de E[m].
En particular, el polinomio característico se anula al evaluarlo en X = φq. Es decir, el endomorfismo
(φq)

2 − tφq +q coincide con el endomorfismo 0 en E[m]. Esto es lo que se prueba a continuación.
Utilizando que φq−1 es separable y la equivalencia det((φq)m)≡ gr(φq) (mód m)1, se puede escribir

la siguiente cadena de igualdades

#Ker(φq −1) = gr(φq −1)≡ det((φq)m − I) = ad −bc− (a+d)+1 (mód m)

Observar que volviendo a usar la misma equivalencia se obtiene que ad−bc= det((φq)m)≡ q (mód m).
Y gracias al teorema de Hasse #Ker(φq−1) = q+1−t. Por lo tanto, Traza((φq)m) = a+d ≡ t (mód m).

Esto significa que el endomorfismo φ 2
q − tφq + q es idénticamente 0 en E[m]. Como hay infinitas

elecciones para m, el núcleo del endomorfismo es infinito, como se quería demostrar.
Para probar la unicidad, se supone que u ̸= t también satisface φ 2

q − uφq + q = 0. Para cualquier m
primo y cualquier P ∈ E[m] no trivial, se tiene

(t −u)φq(P) = (φ 2
q (P)− tφq(P)+q(P))− (φ 2

q (P)−uφq(P)+q(P)) = 0.

Como φq(P) ̸= 0 en E[m] y m es primo, el punto φq(P) tiene orden m. De la ecuación anterior se deduce
que m debe dividir a t − u, por lo que u ≡ t (mód m). Por lo tanto, t es único módulo m. Y otra vez,
como hay infinitas elecciones para m, el entero t es único.

2.4. Polinomios de división

Para estudiar los subgrupos de torsión, es necesario describir los endomorfismos dados por la multi-
plicación por un entero. El objetivo de este apartado es desarrollar las fórmulas para la suma de un punto
genérico consigo mismo n veces. Este punto P se encuentra en la curva E definida por y2 = x3 +Ax+B.

El punto nP tiene la forma
(

φn

ψ2
n
,

ωn

ψ3
n

)
donde φn,ωn,ψn ∈ Z[x,y,A,B] son polinomios que se reducen

módulo la ecuación de la curva para que el grado de y sea como mucho 1.
Una observación será que φn y ψ2

n no dependen de y, y exactamente uno de ωn y ψ3
n depende de una

potencia impar de y, así que esto dará el endomorfismo [n] de forma estándar, con funciones racionales.
El polinomio ψn se conoce como el n-ésimo polinomio de división, que se define de forma recursiva,

empezando con las variables A y B:

ψ0 = 0

ψ1 = 1

ψ2 = 2y

ψ3 = 3x4 +6Ax2 +12Bx−A2

ψ4 = 4y(x6 +5Ax4 +20Bx3 −5A2x2 −4ABx−A3 −8B2)

ψ2n+1 = ψn+2ψ
3
n −ψn−1ψ

3
n+1, para n ≥ 2

ψ2n = (2y)−1
ψm(ψn+2ψ

2
n−1 −ψn−2ψ

2
n+1), para n ≥ 2

1La demostración de esta equivalencia utiliza un concepto introducido en el último capítulo de este trabajo, el pairing de
Weil. Para más detalles, se ruega consultar la tercera sección del tercer capítulo [10].
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donde se reduce el resultado módulo la ecuación de la curva para que ψn sea como mucho lineal en y.
Se puede probar que ψm(ψn+2ψ2

n−1 −ψn−2ψ2
n+1) siempre es divisible por (2y)−1, por lo que ψ2n es,

de hecho, un polinomio. Si se define ψ−n := −ψn, se puede probar que estas recurrencias se cumplen
∀n ∈ Z. Entonces, los siguientes se definen como

φn := xψ
2
n −ψn+1ψn−1, ∀n ∈ Z

ωn := (4y)−1(ψn+2ψ
2
n−1 −ψn−2ψ

2
n+1), ∀n ∈ Z

Se puede demostrar que φ−n = φn y ω−n = ωn. Al igual que antes, se reducen estos polinomios módulo
la ecuación de la curva para que sean como mucho lineales en y.

Lema. Para todo entero n:

ψn pertenece a
{

Z[x,A,B], si n impar
2yZ[x,A,B], si n par

ωn pertenece a
{

Z[x,A,B], si n par
yZ[x,A,B], si n impar

φn pertenece a Z[x,A,B]

Demostración. Se pueden realizar fácilmente por inducción; consultar el tercer y cuarto lemas de la
segunda sección del tercer capítulo [10].

Se sigue del lema que, después de reemplazar y2 por x3 +Ax+B si es necesario, ψ2
n pertenece a

Z[x,A,B] para todo n positivo, así que se puede pensar en φn y ψ2
n como polinomios en x solamente,

mientras que exactamente uno de ωn y ψ3
n dependen de y. En este último caso, se puede multiplicar

el numerador y el denominador de ωn/ψ3
n por y, para después reemplazar y2 en el denominador con

x3 +Ax+B. Notar que ψn no es necesariamente un polinomio en x.
Se finaliza el capítulo con el siguiente resultado, que no es del todo trivial.

Teorema 2.5. Sea E(Fq) una curva elíptica definida por la ecuación y2 = x3+Ax+B y sea n∈Z distinto
de cero. La función racional

[n](x,y) =
(

φn(x)
ψ2

n (x)
,

ωn(x)
ψ3

n (x,y)

)
envía cada punto P ∈ E(Fq) a nP, y es separable si y solo si n no es divisible por la característica de Fq.

Demostración. Un esquema de la prueba se puede encontrar en la sexta sección de [8].



Capítulo 3

Algoritmo de Schoof

En 1985, René Schoof introdujo el primer algoritmo para calcular #E(Fq) en un periodo de tiempo
razonable, mucho más rápido que los algoritmos que existían hasta entonces. Posteriormente, se de-
sarrollaron extensiones del algoritmo que refinaron y mejoraron el original y que siguen siendo en la
actualidad el método elegido para contar puntos cuándo la característica de Fq tiene varios cientos de
dígitos decimales. La estrategia básica de Schoof es muy simple: calcular la traza del endomorfismo de
Frobenius t módulo muchos primos pequeños ℓ (excluyendo la característica del cuerpo por simplicidad)
para después utilizar el Teorema Chino de los Restos y obtener t; esto determinará #E(Fq) = q+1− t.

El algoritmo se repite hasta que el producto de todos los primos ℓ es mayor que 4
√

q porque se tiene
que determinar la traza, que se sabe que está entre −2

√
q y 2

√
q gracias al teorema de Hasse. Si se

conoce módulo un número más grande que la amplitud de ese intervalo, ya está. Incluso si q es muy
grande, no hacen falta muchos primos ya que el producto de ellos crece muy rápidamente.

3.1. La traza de Frobenius módulo 2

Se considera primero el caso ℓ = 2. Si q es impar (de hecho, lo es, ya que q debe ser potencia de
primo, siendo este mayor estricto que 3), entonces

t = q+1−#E(Fq) es divisible por 2 ⇐⇒ #E(Fq) es divisible por 2 ⇐⇒ ∃P ∈ E(Fq) tal que 2P = O

Si E tiene ecuación de Weierstrass y2 = f (x), los puntos de orden 2 en E(Fq) son aquellos de la forma
(x0,0), donde x0 ∈ Fq es una raíz de f (x). Así que,

t ≡
{

0 (mód 2), si f (x) tiene una raíz en Fq

1 (mód 2), en otro caso

No es necesario encontrar las raíces de f (x) en Fq, solo se necesita determinar si existen. Para ello,
simplemente se debe calcular g = mcd(xq − x, f (x)). El grado de g es el número de raíces distintas de f ,
así que t ≡ 0 (mód 2) si y solo si gr(g)> 0.

Esto acaba el caso ℓ= 2, a partir de ahora se puede asumir que ℓ es impar.

3.2. La ecuación característica de Frobenius módulo ℓ

Recordar que el endomorfismo de Frobenius φq(x,y) = (xq,yq) cumple la ecuación característica
φ 2

q − tφq +q = 0 en el anillo de endomorfismos End(E), donde t = q+1−#E(Fq) y q = gr(φq).
Si se restringe φq al grupo de ℓ-torsión, entonces la ecuación (φ 2

q )ℓ− tℓ(φq)ℓ+ qℓ = 0 es cierta en
End(E[ℓ]), donde tℓ ≡ t (mód ℓ) y qℓ ≡ q (mód ℓ) se pueden tomar como escalares en Z/ℓZ multiplica-
dos por la restricción al grupo de ℓ-torsión, E[ℓ], del endomorfismo identidad, [1]ℓ. Considerando qℓ[1]ℓ
como la suma de qℓ copias de [1]ℓ, entonces se puede calcular dicha expresión utilizando las fórmulas
para la suma, una vez sean conocidos tanto End(E[ℓ]) como la suma explícita sus elementos.

13
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Definición. Se denota por End(E[ℓ]) al anillo de los endomorfismos del grupo E[ℓ]. Estos endomorfis-
mos se obtienen por la restricción de endomorfismos de E a su subgrupo de ℓ-torsión.

Sea h = ψℓ el ℓ-ésimo polinomio de división de E; como ℓ es primo, sabemos que ψℓ no depende de
la coordenada y, así que h ∈ Fq[x]. Un punto (x0,y0) ∈ E(Fq) pertenece a E[ℓ] si y solo si h(x0) = 0. Por
lo tanto, cuando se escriben los elementos de End(E[ℓ]) como funciones racionales, se pueden tratar los
polinomios que aparecen en estas funciones como elementos del anillo Fq[x,y]/(h(x),y2 − f (x)) donde
f (x) es la ecuación de Weierstrass de E.

En el caso del endomorfismo de Frobenius, se tiene

(φq)ℓ = (xq mód h(x),yq mód (h(x),y2 − f (x)) = (xq mód h(x),y( f (x)
q−1

2 mód h(x)))

igualmente,

(φ 2
q )ℓ = (xq2

mód h(x),y( f (x)
q2−1

2 mód h(x)))

Notar también que
[1]ℓ = (x mód h(x),y(1 mód h(x)))

Por lo tanto, se pueden representar todos los endomorfismos que aparecen en la ecuación característica
de Frobenius módulo ℓ de la forma (a(x),b(x)y), donde a y b son polinomios del anillo Fq[x]/(h(x)).

A continuación, se analiza como sumar y multiplicar los elementos de End(E[ℓ]) que se encuentran
representados de esta manera.

3.3. Estructura de End(E[ℓ])

Se toman α1 = (a1(x),b1(x)y),α2 = (a2(x),b2(x)y) ∈ End(E[ℓ]).
Recordar que el producto en End(E[ℓ]) se define por composición

α1 ◦α2 = (a1(a2(x)),b1(b2(x))y)

donde cada una de las componentes se reduce módulo h(x).
La suma de endomorfismos, como ya se sabe, se define en términos de la suma en la curva elíptica.

Para calcular α3 = α1+α2 simplemente se utilizan las fórmulas para la suma de puntos. Recordar que la
fórmula general para calcular una suma distinta de cero (x3,y3) = (x1,y1)+ (x2,y2) en la curva elíptica
E : y2 = x3 +Ax+B es

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1,

donde

m =


y1 − y2

x1 − x2
, si x1 ̸= x2

3x2
1 +A
2y1

, si x1 = x2

Utilizando estas mismas con x1 = a1(x),x2 = a2(x),y1 = b1(x)y,y2 = b2(x)y, cuando x1 ̸= x2 se tiene

m(x,y) =
b1(x)−b2(x)
a1(x)−a2(x)

y = r(x)y

donde r =
b1 −b2

a1 −a2
, y cuando x1 = x2 se tiene

m(x,y) =
3a1(x)2 +A

2b1(x)y
=

3a1(x)2 +A
2b1(x) f (x)

y = r(x)y
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donde ahora r =
3a2

1 +A
2b1 f

. Notar que m(x,y)2 = (r(x)y)2 = r(x)2 f (x), entonces la suma α1 +α2 = α3 =

(a3(x),b3(x)y) está dada por

a3 = r2 f −a1 −a2

b3 = r(a1 −a3)−b1

En ambos casos, suponiendo que el denominador de r es invertible en el anillo Fq[x]/(h(x)), se puede
reducir r a un polinomio módulo h y obtener α3 = (a3(x),b3(x)y), con a3,b3 ∈ Fq[x]/(h(x)).

Esto no siempre es posible, porque cabe la opción de que el polinomio de división h = ψℓ no sea irre-
ducible (de hecho, si E[ℓ]⊆E(Fq) se factorizará en polinomios lineales), así que el anillo Fq[x]/(h(x)) no
es necesariamente un cuerpo y puede contener elementos distintos de cero que no sean invertibles. Esto
afecta cuando el denominador d de r no es invertible módulo h. En este caso, se tomará mcd(d,h) = g ̸= 1
tal que gr(g)< gr(h). Esto es claro cuando el denominador es d = a1−a2, ya que tanto a1 como a2 están
reducidos módulo h y por lo tanto gr(d)< gr(h).

Una vez g ha sido hallado, la estrategia es simplemente sustituir h por g y volver a empezar el cálculo
de la traza de Frobenius módulo ℓ. Las raíces de g corresponden a las primeras componentes de las
coordenadas de un subconjunto no vacío de puntos afines en E[ℓ], y se sigue del teorema 2.4 que se
puede centrar la atención a la acción del endomorfismo de Frobenius módulo ℓ en este subconjunto. Esto
permite representar los elementos End(E[ℓ]) usando coordenadas en el anillo Fq[x]/(g(x)) en lugar de
en el anillo Fq[x]/(h(x)).

3.4. La traza de Frobenius módulo ℓ

Durante el algoritmo, los elementos de End(E[ℓ]) están representados en la forma (a(x),b(x)y) con
a,b ∈ Fq[x]/(h(x)) y todas las operaciones polinomiales tienen lugar en este anillo. Este algoritmo da un
método para calcular tℓ, la traza de Frobenius módluo ℓ. Dada una curva elíptica E : y2 = f (x) sobre Fq

y un primo impar ℓ, se calcula tℓ como sigue:

1. Calcular el ℓ-ésimo polinomio de división h = ψℓ ∈ Fq[x] en E.

2. Calcular φℓ = (xq mód h,( f
q−1

2 mód h)y).

3. Calcular φ 2
ℓ = φℓ ◦φℓ.

4. Calcular la multiplicación escalar qℓ = qℓ[1]ℓ.

5. Calcular φ 2
ℓ +qℓ.

6. Hallar x ∈ [0, . . . , ℓ−1] tal que xφℓ = φ 2
ℓ +qℓ.

7. Devolver x = tℓ.

Si en cualquiera de los pasos surge algún denominador d no invertible, reemplazar h por g = mcd(h,d)
y volver al paso 2.

Ejemplo. Sea E la curva elíptica y2 = x3 + x+1 (mód 7). Entonces

#E(Fq) = 7+1− t

Se quiere determinar t. Son necesarios los siguientes primos

2 ·3 ·5 = 30 > 11 ≈ 4
√

7

El primero es ℓ= 2. Se calcula
x7 ≡ 2x2 +6 mód x3 + x+1
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entonces, el máximo común divisor a calcular es

mcd(x7 − x,x3 + x+1) = mcd(2x2 − x+6,x3 + x+1) = 1

Se sigue que x3+x+1 no tiene raíces en Fq. Por tanto, no hay 2-torsión en E(Fq), así que t ≡ 1 (mód 2).
Para ℓ= 3, el tercer polinomio de división es

h = ψ3 = 3x4 +6Ax2 +12Bx−A2 = 3x4 +6x2 +12x−12 = 3x4 +6x2 +5x+6

Se calcula la coordenada x de φ3

x7 ≡ 2x3 +2x2 +6x+1 mód 3x4 +6x2 +5x+6

Se calcula la coordenada y de φ3

(x3 + x+1)
7−1

2 = (x3 + x+1)3 ≡ x3 + x2 +3x mód 3x4 +6x2 +5x+6

Obteniendo pues que
φ3 = (2x3 +2x2 +6x+1,(x3 + x2 +3x)y)

Se calcula la coordenada x de φ 2
3

x49 ≡ x mód 3x4 +6x2 +5x+6

Se calcula la coordenada y de φ 2
3

(x3 + x+1)24 ≡ 6 mód 3x4 +6x2 +5x+6 ≡−1 (mód 7)

Obteniendo pues que
φ

2
3 =−1

Se tiene que q ≡ 1 (mód 3). Por lo tanto, q3 = 1, y es necesario calcular

φ
2
3 +q3 = 0

La traza de Frobenius es t ≡ 0 (mód 3).
Se repite el mismo proceso para ℓ= 5. El quinto polinomio de división es

h = ψ5 = 5x12 +6x10 +2x9 +2x7 +6x6 +4x5 +6x4 +4x2 +2x

Se calcula la coordenada x de φ5
x7 ≡ x7 mód h(x)

Se calcula la coordenada y de φ5

(x3 + x+1)
7−1

2 = (x3 + x+1)3 ≡ x9 +3x7 +3x6 +3x5 +6x4 +4x3 +3x2 +3x+1 mód h(x)

Obteniendo pues que

φ5 = (x7,(x9 +3x7 +3x6 +3x5 +6x4 +4x3 +3x2 +3x+1)y)

Se calcula la coordenada x de φ 2
5

x49 ≡ 6x11 +4x10 +2x9 +2x8 +5x7 + x6 +5x5 +4x4 + x3 + x2 mód h(x)

Se calcula la coordenada y de φ 2
5

(x3 + x+1)24 ≡ 2x11 +6x10 + x8 +4x7 +5x6 +4x5 + x4 +5x3 +3x2 +6x+1 mód h(x)
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Se tiene que q ≡ 2 (mód 5). Por lo tanto, q5 = 2, y realizando los cálculos pertinentes,

φ
2
5 +q5 = 3φ5

La traza de Frobenius es t ≡ 3 (mód 5).
La información de ℓ= 2,3,5 es suficiente para determinar t.

t ≡


1 (mód 2)
0 (mód 3)
3 (mód 5)

La solución del sistema está expresada en módulo N = 2 · 3 · 5 = 30. Hay que encontrar encontrar los
valores (enteros) de x1, y1 y z1 tales que

x1 =
30
2

= 15, y1 =
30
3

= 10, z1 =
30
5

= 6

Con los valores de x1, y1 y z1 se debe determinar x2, y2 y z2

15x2 ≡ 1 (mód 2), 10y2 ≡ 1 (mód 3), 6z2 ≡ 1 (mód 5)

⇓

x2 ≡ 1 (mód 2), y2 ≡ 1 (mód 3), z2 ≡ 1 (mód 5)

De esta manera, la solución final al sistema de congruencias (por el Teorema Chino del Resto) está dada
por

t ≡ 1 ·15 ·1+0 ·10 ·1+3 ·6 ·1 = 33 ≡ 3 (mód 30)

Como |t|< 2
√

7 < 5, debe ser t = 3. Regresando de nuevo al inicio, #E(Fq) = 5.
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Capítulo 4

Aplicaciones

Ciertas elecciones de algunas de las propiedades de las curvas elípticas y/o el cuerpo sobre el que
están definidas, reducen la dificultad de resolución del problema del logaritmo discreto en esa curva y,
como consecuencia, se produce una disminución de la seguridad de los esquemas criptográficos imple-
mentados en esas curvas elípticas, convirtiéndolas en criptográficamente inseguras. Es necesario que el
orden cumpla una serie de requisitos para que la curva sea segura. En este último capítulo se describirán
tres ataques que se aprovechan de varias características dependientes del orden que debilitan el poder de
una curva. Los artículos originales del ataques que se van a explicar a continuación se encuentran en [2],
[4] y [7]. Para facilitar la comprensión de los dos primeros se ha utilizado [3] y para el último [1].

4.1. El problema del logaritmo discreto

Sea G cualquier grupo, se mantiene la notación multiplicativa por el momento. Sean a,b ∈ G. Se
supone conocido que ak = b para algún k ∈ Z. El problema del logaritmo discreto es encontrar k dados a
y b. Por ejemplo, G podría ser el grupo multiplicativo F×

q de un cuerpo finito. También, G podría ser el
grupo formado por los puntos que satisfacen la ecuación de una curva elíptica E(Fq), en cuyo caso a y b
son puntos de la curva y por tanto, se trata de encontrar k ∈ Z con ka = b. Con esta notación, en la que
se considera E(Fq) como un grupo aditivo, se puede establecer el siguiente isomorfismo:

Z/nZ −→ ⟨Q⟩
[k] 7−→ kQ.

Aquí [k] se refiere a la clase de equivalencia de k módulo n con n ∈ Z el orden de Q en E(Fq).
Por lo que el problema del logaritmo discreto también se puede enunciar de tal forma que el proce-

dimiento para resolverlo sea encontrar una inversa a dicha aplicación.
La seguridad de los sistemas criptográficos subyace en la dificultad de la resolución del problema del

logaritmo discreto. El enunciado del problema del logaritmo discreto en curvas elípticas (ECDLP, por
sus iniciales en inglés ‘Elliptic Curves Discrete Logarithm Problem’) es el siguiente.

Definición. Sea E una curva elíptica definida sobre un cuerpo finito Fq. Dado un punto Q ∈ E(Fq) de
orden n ∈ Z y un punto P ∈ ⟨Q⟩ (subgrupo generado por Q), calcular el entero k ∈ [0,n− 1] tal que
P = kQ. El entero k se conoce como el logaritmo discreto de P respecto de la base Q y en algunas
ocasiones se escribe como k = logQ(P).

Una forma de atacar el ECDLP es, simplemente, fuerza bruta: probar todos los posibles valores de
k hasta hallar uno que funcione. Esto es poco práctico, especialmente cuando la respuesta k puede ser
un entero de varios cientos de dígitos, lo que es un tamaño típico usado en criptografía. Por lo tanto, se
necesitan mejores técnicas.
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4.2. Ataque de Pohlig-Hellman

Una posibilidad de curvas elípticas débiles son aquellas para las que E(Fq) no tiene subgrupos primos
lo suficientemente grandes. Este ataque simplifica el proceso de resolver ECDLP en E(Fq) a resolver el
mismo problema pero en los subgrupos primos de ⟨Q⟩.

Sea n el orden del subgrupo generado por Q, es decir, #⟨Q⟩ = n. Ahora, se toma la factorización en
primos de n = pe1

1 · pe2
2 · . . . · per

r (única salvo reordenación de los factores). El objetivo es hallar ki ≡ k
(mód pei

i ),∀i = 1, . . . ,r y para ello se representa ki = zi
0 + zi

1 pi + zi
2 p2

i + . . .+ zi
ei−1 pei−1 y se calcula

zi
j,∀i = 1, . . . ,r y ∀ j = 1, . . . ,ei −1.

Esto se hace escribiendo Qi
0 =

n
pi

Q y Pi
0 =

n
pi

P. De aquí se puede deducir que Qi
0 tiene orden pi,

ya que piQi
0 =

pin
pi

Q = nQ. Además, ki ≡ zi
0 (mód pi). Teniendo en cuenta que zi

0 es el dígito menos

significativo de la representación de ki en la base pi y manipulando la ecuación un poco, se obtiene que

Pi
0 =

n
pi

P =
n
pi
(kQ) =

n
pi
(zi

0Q) = zi
0(

n
pi

Q) = zi
0Qi

0

Por lo tanto, encontrar zi
0 requiere calcular ECDLP en ⟨Qi

0⟩. Repitiendo el mismo argumento, se puede
hallar cada zi

j resolviendo Pi
j = zi

jQ
i
0 donde

Pi
j =

n

p j+1
i

(P− zi
0Q− zi

1 piQ− zi
2 p2

i Q− . . .− zi
j−1 p j−1

i Q)

todo este desarrollo se realiza para conseguir un sistema de ecuaciones como a este

k ≡


k1 (mód pe1

1 )
k2 (mód pe2

2 )
...
kr (mód per

r )

Se sabe que se puede resolver este sistema utilizando el Teorema Chino de los Restos, ya que todos los
factores primos son ciertamente coprimos dos a dos, y por lo tanto, el proceso recupera k, la solución al
ECDLP.

4.3. Ataque de MOV

El nombre del ataque proviene de los apellidos Menezes, Okamoto y Vanstone [2]. La idea es reducir
el problema del logaritmo discreto en el grupo de puntos de una curva elíptica sobre un cuerpo finito al
mismo problema pero en el grupo multiplicativo de otro cuerpo finito (quizás más grande). Para ello, se
utiliza el pairing de Weil, que es una función que relaciona dos puntos en un subgrupo de torsión en una
curva elíptica E con un elemento de Fqd , para un cierto d que se definirá más adelante. El problema del
logaritmo discreto en Fqd puede ser atacado por algunos métodos que son más rápidos que resolver el
problema del logaritmo discreto sobre curvas elípticas, siempre que Fqd no sea mucho más grande que
Fq. Para que una curva sea segura este d tiene que ser lo suficientemente grande.

Sea una curva elíptica definida sobre un cuerpo finito E(Fq) y sea n ∈ Z tal que no es divisible por la
característica de Fq. Sea

µn =
{

x ∈ Fq | xn = 1
}

el grupo de las raíces n-ésimas de la unidad en Fq. Como la característica de Fq no divide a n, la ecuación
xn = 1 no tiene raíces múltiples y entonces tiene n raíces distintas en Fq. Por lo tanto, µn es un grupo
cíclico de orden n. Cualquier generador ζ de µn se llama raíz n-ésima primitiva de la unidad. Esto es
equivalente a decir que ζ m = 1 si y solo si n divide a m.
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Teorema 4.1 (Pairing de Weil). Sea E una curva elíptica definida sobre un cuerpo finito Fq y sea n ∈ Z
positivo. Asumimos que la característica de Fq no divide a n. Entonces existe un pairing

en : E[n]×E[n]−→ µn

que satisface las siguientes propiedades:

1. en es bilineal en cada variable:

en(S1 +S2,T ) = en(S1,T )en(S2,T ), ∀S1,S2,T ∈ E[n]

en(S,T1 +T2) = en(S,T1)en(S,T2), ∀T1,T2,S ∈ E[n]

2. en es no degenerado en cada variable:

si en(S,T ) = 1 ∀T ∈ E[n], entonces S = O

si en(S,T ) = 1 ∀S ∈ E[n], entonces T = O

3. en(S,S) = 1, ∀S ∈ E[n].

4. en(T,S) = en(S,T )−1, ∀S,T ∈ E[n].

5. en(σ(S),σ(T )) = σ(en(S,T )) para todos los automorfismos σ de Fq tales que σ es la función
identidad en los coeficientes de la curva elíptica (si está en la forma de Weierstrass esto significa
que σ(A) = A y σ(B) = B).

6. en(α(S),α(T )) = en(S,T )gr(α) para todos los endomorfismos α (incluido el de Frobenius).

Observación. Notar que de la bilinealidad de en se deduce en particular que

en(aS,bT ) = en(aS,T )b = en(baS,T ) = en(S,T )ba = en(S,T )ab

El pairing de Weil se puede describir a través de una función bilineal que asocia una raíz n-ésima de la
unidad dados dos puntos de n-torsión.

Corolario. Sea {T1,T2} una base de E[n]. Entonces en(T1,T2) es una raíz n-ésima primitiva de la unidad.

Demostración. Supongamos que en(T1,T2) = ζ con ζ d = 1. Entonces en(T1,dT2) = 1. También se tiene
en(dT1,T2) = 1 (por la observación anterior). Sea S ∈ E[n]. Entonces S = aT1+bT2 para algunos a,b ∈Z.
Por lo tanto,

en(S,dT2) = en(T1,dT2)
aen(T2,dT2)

b = 1

Como esto se cumple para todo S, 2 implica que dT2 = O , y como esto ocurre si y solo si n|d, se sigue
que ζ es una raíz n-ésima primitiva de la unidad.

El grado de inmersión de un entero en un cuerpo finito es un pilar fundamental de este ataque.

Lema. Sea n un divisor primo del cardinal m = #E(Fq) y tal que mcd(n,q) = 1. Existe un d ∈Z positivo
que verifica las condiciones equivalentes:

1. n|(qd −1)

2. F×
qd contiene un subgrupo cíclico de orden n.

Demostración. El grupo F×
qd es cíclico, con cardinal qd −1. Tal grupo contiene a un subgrupo de cardinal

n si, y solamente si, n|(qd −1), es decir, qd ≡ 1 (mód n). Ahora bien, por hipótesis, mcd(n,q) = 1, y por
tanto, q ∈ (Z/nZ)×. El orden d de q en tal grupo es una solución al problema.
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Definición. El mínimo d verificando el lema anterior se denomina grado de inmersión de E(Fq) respecto
a n. Si n es el mayor divisor primo de m, entonces se dice simplemente que d es el grado de inmersión
de E(Fq).

Ejemplo. Sea E : y2 = x3 + 2 una curva elíptica definida sobre F89, y tal que #E(F89) = 90. El punto
P = (20,9) pertenece a la curva y tiene orden 5. Para calcular el grado de inmersión de E(F89) respecto
a 5, hay que encontrar el mínimo d tal que 5|89d − 1. No se verifica para d = 1, pero para d = 2,
892−1 = 5 ·1584. Luego E(F89) tiene grado de inmersión 2 respecto a 5. Además, 5 es el mayor divisor
primo de 90, entonces se puede decir que 2 es el grado de inmersión de la curva.

Lema. Sea E una curva elíptica definida sobre un cuerpo finito Fq y se asume que mcd(n,q) = 1. Sea d
el grado de inmersión del entero n en E(Fq). Suponiendo que d > 1, entonces E[n]⊂ E(Fqd ).

Demostración. Es suficiente con probar que una base de E[n] está contenida en E(Fqd ).
Sea P ∈ E(Fq) un punto de orden n (se sabe que existe tal punto porque n es un factor primo del

cardinal de la curva) y se elige un T ∈ E[n] tal que {P,T} forme una base para E[n]. Como es habitual,
φq denotará al endomorfismo de Frobenius. El objetivo es probar que φqd (T ) = T , porque esto implicaría
que T ∈ E(Fqd ). Ya se sabe por lo visto anteriormente que para el endomorfismo de Frobenius se cumple
que φq(P) = P ya que P ∈ E(Fq) y φq(T ) = a ·P+b ·T para ciertos a,b ∈ Z/nZ.

Como {P,T} forma una base para E[n], el pairing de Weil en(P,T ) es una raíz n-ésima primitiva de
la unidad, como en el corolario anterior. Por las propiedades del pairing de Weil, se satisface que

en(P,T )q = φq(en(P,T )) = en(φq(P),φq(T )) = en(P,a ·P+b ·T ) = en(P,P)aen(P,T )b = en(P,T )b

El hecho de que en(P,T ) sea una raíz n-ésima primitiva de la unidad implica que b ≡ q (mód n). Por lo
tanto,

φq(T ) = a ·P+q ·T
φq(φq(T )) = a ·P+q(a ·P+q ·T )

= a ·P+qa ·P+q2 ·T
(φq ◦ . . .◦φq)︸ ︷︷ ︸

d

(T ) = (a(1+q+ . . .+qd−1)) ·P+qd ·T

pero d es el grado de inmersión n en E(Fq), así que qd ≡ 1 (mód n) y además también se tiene que
1+q+q2 + . . .+qd−1 ≡ 0 (mód n).

Esta última congruencia se debe a que qd −1 = (q−1)(1+q+q2 + . . .+qd−1) y n primo no divide
a q−1 pero sí a qq −1. El razonamiento anterior implica que φqd (T ) = T .

Por lo tanto, la base de E[n] dada por {P,T} está contenida en E(Fqd ) y entonces E[n]⊂ E(Fqd ).

Algoritmo del ataque de MOV

1. Se elige un punto aleatorio T ∈ E(Fqd ) donde d es el grado de inmersión de n en E(Fq).

2. Se calcula el orden m de T .

3. Se calcula
m
n

. Si n ∤ m, se vuelve al paso 1.

4. Se calcula T1 = (m/n)T . Entonces T1 tiene orden n. Como n es primo esto significa que T1 ∈ E[n].

5. Se calcula ζ1 = en(Q,T1) y ζ2 = en(P,T1). Entonces, ambas ζ1,ζ2 ∈ µn ⊆ F×
qd .

6. Se resuelve el problema del logaritmo discreto ζ2 = ζ k
1 en F×

qd . Esto da una solución k (mód n).

Observación. El elemento en(P,T ) tiene orden n.

El grado de inmersión d de n en E(Fq) determina la complejidad del ataque de MOV. Entonces, si
este es razonablemente pequeño, el ataque produce una ventaja computacional para resolver ECDLP.



El algoritmo de Schoof para curvas elípticas - Virginia Villacampa Casalod 23

4.4. Ataque de Smart

Otra posibilidad de curvas elípticas débiles son aquellas tales que #E(Fp) = p, con p un número
primo, o lo que es lo mismo, aquellas para las que la traza de Frobenius es 1. Sin embargo, describir este
ataque requiere un contexto adicional. Se pueden definir curvas elípticas sobre los siguientes cuerpos
definidos a continuación. Esto permitirá reducir ECDLP al grupo Z/pZ, donde se calcula fácilmente.

Definición. Un número p-ádico se puede representar como una serie infinita de la siguiente forma

c−n p−n + . . .+ c0 + c1 p+ . . .+ cm pm + . . . ci ∈ Fp,∀i

El cuerpo de los números p-ádicos se escribe como Qp y aquellos que no tienen potencias negativas de
p (i.e. ci = 0,∀i < 0) se conocen como los enteros p-ádicos y se denotan por Zp.

El siguiente lema se usará para ‘levantar’ elementos de Fp a Qp.

Lema (Lema de Hensel). Para f (X) ∈ Z[X ], sea x tal que f (x)≡ 0 (mód ps) y sea f ′ invertible módulo
p. Entonces, se puede construir un x′ que cumpla que x′ ≡ x (mód ps) y f (x′)≡ 0 (mód ps+1).

Otra componente importante de este ataque es la reducción de una curva elíptica módulo p. Esto
se basa principalmente en tomar los coeficientes y puntos de la curva y trabajar con sus congruencias
módulo el primo p.

Sea E(Qp) una curva elíptica definida sobre el cuerpo p-ádico. Se establece una nueva curva sobre
Fp reduciendo los coeficientes de E(Qp) módulo p. Previamente, se puede suponer que los puntos de
la curva elíptica se encuentran en E(Zp), ya que al realizar común denominador sobre las coordenadas
proyectivas, los denominadores ‘desaparecen’. La única restricción impuesta es que al menos una de las
coordenadas no debe ser múltiplo de p.

Se debería comprobar que esta nueva curva no es singular calculando el discriminante y viendo que
no es cero, pero simplemente va a ser asumido.

Se sigue un proceso muy similar para los puntos de la curva elíptica, donde cada una de sus coorde-
nadas se reduce módulo p.

Así se establece un homomorfismo de grupos de E(Qp) a E(Fp). Si se denota E1(Qp) al núcleo de
este homomorfismo, se tiene que E1(Qp) contiene todos los puntos de E(Qp) que se reducen al punto
del infinito en E(Fp).

E(Qp) −→ E(Fp)
Q 7−→ Q
pQ 7−→ pQ = O

esto último se debe a la hipótesis de que #E(Fp) = p por lo que pQ ∈ E1(Qp).
De forma similar, se construye otro grupo al que se le llamará E2(Qp) de tal manera que al hacer el

cociente entre ambos se obtiene un isomorfismo E1(Qp)/E2(Qp)∼= Z/pZ.

Definición. El logaritmo elíptico p-ádico ψp es un morfismo de E1(Qp) a Z/pZ cuyo núcleo es E2(Qp)
que se calcula como

ψp(S) =−x(S)
y(S)

para S ∈ E1(Qp) donde x(S) e y(S) denotan la primera y segunda coordenada del punto S, respectiva-
mente.

Hay que recordar que se está tratando de encontrar k tal que P = kQ donde P,Q ∈ E(Fp) y #E(Fp) =
p. El primer paso es hallar P′,Q′ ∈ E(Qp). Esto se hace estableciendo la coordenada x de Q′ igual
a la coordenada x de Q. Ahora, se utiliza el lema de Hensel descrito arriba para calcular la segunda
coordenada en Qp teniendo en cuenta la ecuación de la curva elíptica donde x está fijo. Se sabe que



24 Capítulo 4. Aplicaciones

P′− kQ′ ∈ E(Qp) se reduce módulo p al punto del infinito y por tanto está en E1(Qp). Si se multiplica
por p, se obtiene que pP′− k(pQ′) ∈ E1(Qp). Por lo tanto,

ψp(pP′)− kψp(pQ′) ∈ Z/pZ, k =
ψp(pP′)

ψp(pQ′)

Por último, se reduce k módulo p para volver a Fp, resolviendo ECDLP.
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