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Abstract

Elliptic curves are algebraic structures with a wide range of applications in number theory and cry-
ptography. These curves have gained significant importance over the last few years, specially during the
1980s, when they began to be used in cryptographic applications, leading to the development of elliptic
curve techniques for factorization, among others. In recent decades, elliptic curve cryptography has be-
come widely established in public key cryptography algorithms and it has been integrated into security
products since the late 1990s.

The security of this type of cryptography relies on the difficulty of solving the discrete logarithm
problem within the group structure of the points on elliptic curves defined over finite fields.

However, some algorithms can reduce the discrete logarithm problem on elliptic curves to groups
where the solution to this problem is easier to find.

To ensure the cryptographic security of a curve, it is crucial to know the order of the underlying group
that comprises the set of points of an elliptic curve over its defining field.

Schoof’s algorithm, which employs Hasse’s Theorem, the Frobenius endomorphism, and the Chinese
Remainder Theorem, is currently the most efficient method for calculating this order.

The goal of the present project is to develop the theory of Schoof’s algorithm, providing a com-
prehensive overview of the mathematical concepts and practical applications associated with elliptic
curves and their use in cryptographic systems, with examples of how the theory can be used.

The first chapter of this work introduces basic concepts necessary to understand elliptic curves. Both
affine space and the projective plane are defined to illustrate the notion of an elliptic curve from different
points of view, including their definition via the Weierstrass equation. It will be assumed that an elliptic
curve is given in its Weierstrass equation when there is no specification about it. A special point belonging
to the curve appears during this process. It will be the neutral point for the operation constructed over
elliptic curves.

The second chapter covers endomorphisms and key results about them, such as the reduction of the
general expression to a more practical way of presenting the rational functions that define the endo-
morphism. Some easy and short examples are added to showcase the ideas explained in this chapter.
The torsion subgroup is also included here. The next topic is endomorphism rings. A theorem is stated
without proof to facilitate the discussion in the next section.

The focus then shifts to Frobenius endomorphism. After proving some of its fundamental properties,
everything is ready to show Hasse’s Theorem. It is important because it will provide a prediction for the
order of the group formed by the points on the elliptic curve. Furthermore, the Frobenius endomorphism
satisfies an important equation called the characteristic equation. This equation is used during Schoof’s
algorithm, and both its formula and proof are provided at the end of this section.

A brief description of division polynomials is included to express the addition of a point to itself
using rational functions. These functions satisfy recursive relations between them.

The third chapter is the core of the project: the detailed presentation of Schoof’s algorithm. This
includes the computation of the Frobenius trace modulo small primes and the combination of these results
using the Chinese Remainder Theorem to determine the exact number of points on the elliptic curve.
This chapter finishes with an example of the algorithm applied to an elementary curve. All computations
needed to solve each step have been done in Sage.

The fourth chapter is the last one of the work. It highlights the applications of elliptic curves in
cryptography, emphasizing their importance in creating secure communication systems. The work de-
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v Abstract

monstrates not only the theoretical underpinnings of the algorithm but also its practical implications in
modern cryptographic practices. The Elliptic Curves Discrete Logarithm Problem is presented at the
beginning of the chapter. Some public key schemes rely on the hardship of solving this problem.

If the order of the curve is not taken into account when choosing the cryptographic system based
on it, it is possible to attack these curves because there are orders which make them insecure. Three
examples of these attacks are explained at the end of this work.

The greatest part of the project has been done with the help of the texts from [5], [6] and [9], in
addition to those explicitly cited in the text.



Indice general

Abstract

1. Preliminares

1.1. Ecuaciénde Weierstrass . . . . . . . . . . ...
1.2. Estructura de grupo de las curvas elipticas . . . . . . . ... ... ...

2. Nuamero de puntos en la curva eliptica

2.1. Endomorfismos

2.2. Anillos de endomorfisSmos . . . . . . . ... e
2.3. Elendomorfismo de Frobenius . . . . . . . . . . . . ... ...
2.4. Polinomios de divisiOn . . . . . . . . . .. e e e e

3. Algoritmo de Schoof

3.1. Latrazade Frobeniusmédulo2 . . . . .. . .. . ... .. ... ... ..
3.2. Laecuacion caracteristica de Frobeniusmoédulo ¢ . . . . . . . .. ... ... ... ...
3.3. Estructurade End(E[f]) . . . . .«
34. Latrazade Frobeniusmédulo 4. . . . . . . . . . . .. ...

4. Aplicaciones

4.1. Elproblema del logaritmo discreto . . . . . . . . . . ... Lo
4.2. Ataque de Pohlig-Hellman . . . . . . ... ... ... ... ... ... ... .....

4.3. Ataque de MOV
4.4. Ataque de Smart

Bibliografia

111

13
13
13
14
15

19
19
20
20
23

25






Capitulo 1

Preliminares

En este primer capitulo, se dardn las definiciones basicas para poder desarrollar el resto del trabajo.
Las curvas elipticas son una familia de curvas algebraicas. Existen varias definiciones alternativas, pero
equivalentes, de lo que es una curva eliptica. Segun el contexto, se puede utilizar una u otra. En este caso,
la primera que se dard requiere algunos conceptos previos.

1.1. Ecuacion de Weierstrass

Definicién. Sea IF un cuerpo. El espacio afin tridimensional sobre IF, habitualmente denotado por A3, es
el conjunto de puntos tales que
A]% = {(x,y,z) | X02 € F}

Se define ~ como la relacién de equivalencia dada por
(x,,2) ~ (Ax,Ay,Az), VA € (F\{0})

Notar que la relacion de equivalencia se toma fuera del origen. La clase de equivalencia de (x,y,z) se
escribe como (x:y: z).

Definicion. El plano proyectivo es el cociente entre el espacio afin y la relacién de equivalencia ~

P% = (AF\ {(0,0,0)})/ ~
Llegados a este punto, se puede dar una primera pincelada acerca de lo que es una curva eliptica:
Una curva eliptica es una curva lisa £ C IP’IZF de grado 3.

Esta afirmacion se puede visualizar de manera mds concisa si se escribe una curva eliptica como el
conjunto de puntos que satisfacen la ecuacién general de una ciibica en IP%

Ax® +Bx2y +Cx’z + Dxyz —|—Ey2z+ ny2 + Gy3 +HZ +1Ix7? —i—Jyz2 =0

Si char(FF) # 2,3, se puede realizar un cambio de variables, y deshomogeneizando (es decir, eva-
luando z = 1), queda que una curva eliptica E se puede definir mediante una ecuacién mds sencilla.

Definicion. Sea IF un cuerpo tal que char(IF) # 2,3. Una curva eliptica E definida sobre F es una curva
proyectiva cuya ecuacién afin asociada es de la forma

vV =x'+Ax+B, ABcTF, 4A°+27B>+£0

El algoritmo de Schoof se puede utilizar también en caracteristicas 2 y 3 pero las ecuaciones obtenidas
para ello son distintas y no serdn tenidas en cuenta en este trabajo.

Se denotard con E(IF) al conjunto de puntos de la curva eliptica. Este conjunto estd formado por los
puntos (x,y) € I x IF que son solucién a la ecuacién mencionada E junto con un punto extra, denotado
como O y cuya procedencia serd detallada mas adelante. Esta ecuacién se conoce como la ecuacion
simplificada de Weierstrass para una curva eliptica E.



2 Capitulo 1. Preliminares

La condicién de que el discriminante no sea nulo en el cuerpo, 443 4+ 27B? # 0, se exige para que el
polinomio x> 4+ Ax + B no tenga raices multiples. En este caso, se dice que la curva es lisa o no singular.

Una vez fijada la ecuacién, se pueden definir tantos conjuntos de puntos que la cumplan como exten-
siones tenga IF. La misma definicién de curva eliptica se puede usar para cada una de estas extensiones
del cuerpo. Cuando pueda haber confusion sobre el cuerpo en el que estdn las coordenadas de un punto
(x,y), se dice que el punto es F-racional si sus coordenadas estdn en F.

El punto extra, &, procede del proceso de homogeneizacion de la ecuacién simplificada de Weiers-

X Y . ., .
7 y= A asi se obtiene la ecuacién en el plano proyectivo

correspondiente. Se hace una distincién: las mindsculas x e y son las coordenadas en el plano afin y las
mayusculas X, Y y Z son las coordenadas en el plano proyectivo. Por lo tanto, la ecuacion de Weierstrass
homogeneizada es la siguiente

trass. Esto se realiza estableciendo que x =

Y?Z = X +AXZ* 4+ BZ?
, X Y . .

» SiZ#0,entonces (X :Y:Z) = (Z P 1) = (x:y: 1), recuperando la ecuacién afin original
y? = x> + Ax + B. Estos son los puntos “finitos’ del plano proyectivo.

= Si Z =0, se puede pensar que esta recta es la del infinito y por tanto los puntos de la forma
(X : Y : 0) se llaman puntos del infinito. Sustituyendo Z = 0 en la ecuacién proyectiva, se obtiene
que X3 = 0. Por tanto, X = 0 y entonces Y # 0 porque en la definicién de la relacién de equivalencia
se excluye la posibilidad de que las tres coordenadas del plano proyectivo sean cero. Por lo que
queda (0:Y :0). La ecuacion proyectiva correspondiente a la ecuacion de Weierstrass posee solo
una solucion en la recta del infinito Z = 0, que al reescalar se convierte en el punto (0: 1 :0).
Esta solucion es el punto extra que se afiade y se escribe como ¢ = (0: 1 : 0). Todo ello es
coherente con el teorema de Bézout, que dice que la interseccion entre una recta y una cibica se
debe producir en tres puntos, contando con la multiplicidad de cada uno de ellos.

Este punto es muy importante ya que se tomard como elemento neutro a la hora de construir una opera-
cién @ sobre E(IF') que proporcionard una estructura de grupo a las curvas elipticas. A continuacion, se
describe el proceso que define esta operacion.

1. Se toman dos puntos P, = (x1,y1) y P» = (x2,y2) en una curva eliptica E(IF) dada por la ecuacién
simplificada de Weierstrass y> = x> +Ax + B.

2. Se traza la recta L que pasa por P, y P». Esta recta corta a £ en un tercer punto, que se considera
distinto de &, denotado por P§ = (x5,5).

3. Se une este tercer punto P4 con el punto del infinito & a través de la recta L' con la que se obtiene
P; = (x3,y3). Notar que, si Py # O, larecta L' es la vertical que pasa por P;. Debido a la simetria
de la ecuacion, se tiene entonces que P3 = (x}, —yj3). Por tanto, este ltimo paso es equivalente a
reflejar el punto P; respecto del eje x.

4. Se define precisamente el resultado de esta nueva operacién como P, & P> = Ps.

En esta explicacion, se ha omitido en varias ocasiones el caso en el que dos puntos de la curva eliptica
sean el mismo, puesto que para definir una recta geométricamente se necesita que estos sean distintos.
Cada vez que aparezca este problema de considerar la recta que pase por dos puntos y que estos dos sean
iguales, la solucién serd tomar la recta tangente a la curva en dicho punto, lo que es equivalente a pensar
que la tangente corta dos veces a la curva en el mismo punto (en este caso, se dice que la curva tiene
multiplicidad de interseccién 2 con la recta en el punto). La recta tangente a un punto serd entendida
como la tnica recta que pasa por un punto con multiplicidad mayor estrictamente que uno.

En el segundo paso, se ha supuesto que P; # ¢ Si por el contrario se tiene que Py = ¢, la recta L’
corta a la curva en ¢ con multiplicidad al menos 2 y por definicién, esta debe ser la recta tangente. Por
otro lado, ya se ha visto que Z = 0 corta a la curva en & con multiplicidad 3. La unicidad de la recta
tangente demuestra que estas dos son en realidad la misma recta, y que Z = 0 es la tnica tangente a la
curvaen 0.
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Figura 1.1: Tlustracién geométrica de la construccién @ (con la curva eliptica y?> = x> + 7 sobre R)

1.2.

Estructura de grupo de las curvas elipticas

Si se utiliza la suma habitual +, entendida coordenada a coordenada, con dos puntos, el resultado
no tiene que estar necesariamente en la curva, y por tanto, no da una suma en ese conjunto. Por este
motivo, se hace esta distincién en cuanto a la notacién para no confundir a esta con la nueva operacién
cuando estas dos aparezcan simultineamente en una discusion o argumento. La suma que hasta ahora se
venia conociendo se denotard por + mientras que para la nueva operacién de puntos en la curva eliptica
se reservard el simbolo €. También se llamard suma, ya que satisface las mismas propiedades que la
anterior pero en el grupo de la curva eliptica.

Proposicion. La curva eliptica E(IF) con la operacion @ forman un grupo abeliano, es decir, se satis-
facen las siguientes propiedades VP,Q,R € E(IF):

1.
2.

3.

Conmutatividad: P& Q = Q D P.
Existencia del elemento neutro, O: P® O = P.

Existencia del elemento opuesto, —P: P® (—P) = 0.

4. Asociatividad: (P®Q)®R=P®(Q®R).

Demostracion. Se realizard la demostracion siguiendo los mismos puntos ya establecidos.

1.
2.

Proporcionados dos puntos distintos, existe una dnica recta que pase por ambos.

La recta L que une a Py @ corta a E en un tercer punto R por el teorema de Bézout. La recta L’
que pasa por &'y R, siguiendo el mismo argumento que en 1, es de hecho igual a L, y por tanto el
tercer punto de interseccién con E vuelve a ser de nuevo P.

. Dado un punto P = (x,y), su elemento opuesto es —P = (x, —y). Para probar esto, se suma P al

punto —P. Larecta L que pasa a través de Py —P es vertical, asi que el tercer punto de interseccién
es €. Ahora se une & con €, lo que resulta en la recta del infinito, y el tercer punto de interseccion
vuelve a ser & porque esta recta corta a la curva en ¢ con multiplicidad de interseccién 3.

Una demostracién completa de esta propiedad puede encontrarse en el capitulo 2 seccién 4 de [10].

O]



4 Capitulo 1. Preliminares

Dados P, = (x1,y1) y P> = (x2,y2) se plantea ahora la siguiente cuestién: calcular P, & P, = P;
eficientemente, con Py = (x3,y3).
El primer caso que se va a estudiar es P; # P; y ninguno de ellos &. La recta L que junta P; y P, tiene
pendiente
Y2 =1
m =
X2 — X1

Si x; = x, entonces L es vertical. Este caso serd tratado mds tarde, asi que por el momento se puede
asumir que x; # x,. La ecuacién de L es entonces

y=m(x—x1)+y
Sin mas que sustituir en la ecuacidn de la curva E para encontrar la interseccion se obtiene la igualdad
(m(x—x1)+y1)* =x +Ax+B
Se reorganiza escribiendo todos los términos en un mismo lado de la igualdad de forma queda lo siguiente
0=x>—m*x*+ (A+2m(y; —x1))x+ B +m*x? +y3 —2mxy

Esto es una ecuacién cubica en x, y sus tres raices r,s,¢ dan las coordenadas de la x de los tres puntos
de interseccién de L con E. Generalmente, resolver una cibica no es facil, pero en este caso dos de las
raices ya son conocidas, x| y xp, ya que P; y P> son puntos que estdn tanto en L como en E. Por lo tanto,
se podria factorizar la ctibica para obtener el tercer valor de x. Pero hay una forma mas sencilla. Si se
tiene un polinomio de grado 3, x> 4 ax? + bx + ¢, con raices r,s,t entonces

S rat+bxt+ce=(x—r)(x—s)(x—t) =x — (r+s+1)x>+ (rs+ st +rt)x — srt

2

Igualando los coeficientes del término x~ a ambos lados

r+s+t=-—a
Si se conocen dos de las raices, r,s, se puede recuperar la tercera como t = —a —r — s. En este caso
particular
2
xX=m"—x; —Xxp, y=m(x—x1)+y1,

Abhora, reflejando respecto del eje x para obtener el punto P; = (x3,y3)
x3=ml—xi—xy,  y3=m(x;—x3) =y,

En el caso en el que x| = x, pero y; # y», la simetrfa de la ecuacién y?> = x> +Ax + B conduce a deducir
que lo que ocurre en este supuesto es que y, = —y;. Entonces, la recta a través de P, y P, es una recta
vertical, que, por lo tanto, interseca a E en ¢, y ya se ha visto que entonces P = 0.

Ahora se analiza el caso en el que P, = P, = (xp,)0). Para este caso, se debe considerar la recta
tangente a E en dicho punto. De la relacién y* = f(x) se deduce, por diferenciacién implicita, que la
pendiente m de la recta tangente L es

d
b%zf@zhﬂ%zﬁm
X

dy  fl(x) 3x3+A
Cdx 2y 2y

Si yg # 0, esta es la férmula de la pendiente utilizada cuando se quiere duplicar un punto. En este
caso, solamente una raiz es conocida, xy, pero es una raiz doble ya que L es la tangente a E en (xo, o).
Una vez obtenido el valor para m, simplemente se sustituye en las férmulas de arriba.

Si yp = 0, entonces la recta tangente es vertical y se obtiene P & P, = € al igual que antes.



Capitulo 2

Numero de puntos en la curva eliptica

El propésito principal de este capitulo es preparar todos los requisitos necesarios para hacer un es-
quema de la demostracién del Teorema de Hasse. Este teorema proporciona una cota del nimero de
puntos en la curva eliptica. Para ello, se demostrardn algunos resultados técnicos sobre endomorfismos
separables.

Notar que E es la ecuacién de la curva eliptica mientras que E(IF) son las soluciones de dicha ecua-
cién con coordenadas en IF. Por tanto, E(F) son las soluciones de la ecuacién consideradas en la clausura
algebraica del cuerpo anterior. Entonces, el cardinal del grupo que forma el conjunto de puntos de la
curva eliptica dependera del cuerpo en el que sean consideradas las soluciones de la ecuacién. Ademas,

se tiene que E(F) C E(F) yaque F C .

2.1. Endomorfismos

Definicion. Un endomorfismo de una curva E definida sobre un cuerpo F es un homomorfismo de grupos

a : E(F) — E(F) dado por funciones racionales (cocientes de polinomios con coeficientes en F).

Si los coeficientes de las funciones racionales estan en el cuerpo F, entonces o induce un endomor-
fismo & : E(F) — E(TF) del grupo de puntos F-racionales de E.

Por ser endomorfismo de grupos, en particular, VP, P, € E(F) se cumple que o(P; ® P3) = a(P) ®
o(P,) y a(0) = 0. El endomorfismo trivial que lleva cada punto a & se denotard por 0. En este trabajo
se asumird que o es no trivial; es decir, que existe algiin punto P = (x,y) tal que a(P) # 0.

Los endomorfismos distintos del trivial son sobreyectivos. Intuitivamente, trabajar con la clausura
algebraica de un cuerpo permite resolver las ecuaciones definidas para encontrar la imagen inversa de un

punto.

Ejemplo. Sea E dada por y* = x> +Ax+ B y sea o(P) = 2P. Entonces o es un homomorfismo y,

32 +A 2 32 +A 32 +A 2
a(P)_<< 2y >_2x’ 2y 3x_< 2y ) -

donde P = (x,y). Como @ estd dado por funciones racionales, es un endomorfismo de E. Se denota [2):

2]:E(F) — E(F)
P +—— 2P=P®P.

Ejemplo. El ejemplo anterior se puede generalizar tomando o.(P) = mP con m € 7 arbitrario, dando
lugar a un endomorfismo que siguiendo con la misma notacion que antes, se escribird [m|:

[m]:E(F) — E(?)
P — mP=P®...0P.
—_——

m
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Las expresiones concretas para las coordenadas de [m| en términos de los coeficientes A y B de la
ecuacion simplificada de Weierstrass para E se pueden obtener utilizando las formulas de la duplicacion
de un punto sucesivamente, todas las veces que sean necesarias. Incluso las férmulas para la suma de
dos puntos distintos, en el caso en el que m sea un niimero impar. Esto resultard de gran utilidad a la
hora de averiguar los puntos de E(F) que satisfacen que mP = 0.

A continuacién, se argumentard que la expresidon general de un endomorfismo puede simplificarse.
Partiendo de la definicién, se tiene en consideracién que tanto el punto de partida como su respectiva
imagen, deben estar en la curva eliptica. Esto quiere decir que ambas coordenadas deben ser soluciones
de la ecuacién de la curva eliptica. Se asume que la curva eliptica viene dada en su forma de Weierstrass
simplificada.

Por lo tanto, se puede reemplazar cualquier potencia par de y por un polinomio en x, y cualquier
potencia impar de y por un polinomio en x multiplicado por y. Este argumento de sustitucion de las
potencias pares de y por la correspondiente ecuacion en x se repite siempre. Entonces si R(x,y) es una
funcién racional, tenemos que se puede escribir de la siguiente manera

J1(x) + fa(x)y

Roy) = O T )y

A continuacién, se racionaliza y se vuelve a utilizar que se debe cumplir la ecuacién de Weierstrass. El
resultado de realizar estos cambios es

f3(x) + fa(x)y

Rxy) = q3(x)

Considerando un endomorfismo tal que a(x,y) = (Ri(x,y),Ra(x,y)), se sabe que a(x,—y) = a(—(x,y))
y utilizando las propiedades de los endomorfismos, esto dltimo es a(—(x,y)) = —o(x,y). Reescribiendo
esto con R y R; es equivalente a Ry (x,—y) = R;(x,y) y Ra(x,—y) = —Rx(x,y). De aqui se deduce que
en R, el polinomio f4(x) = 0y en R, el polinomio f3(x) = 0.

La conclusién extraida del argumento desarrollado en los parrafos precedentes se halla enunciada en
la siguiente proposicién.

Proposicion. Un endomorfismo a.: E(F) — E(F) viene dado por o(x,y) = (r1(x),r2(x) -y) donde r(x)
y r2(x) son funciones racionales.

Ejemplo. Al realizar el cambio sugerido en la explicacion de la sustitucion de las potencias pares de y
por la ecuacion de Weierstrass en el ejemplo anterior, donde a(P) = 2P, se obtiene el siguiente resultado

o(P) = x' —2Ax* —8Bx+A?  x®+5Ax" +20Bx’ — 5A%x* —4ABx— A’ — 8B’
B A3 +Ax+B) 8(x3 +Ax+B)?

Obsérvese que la primera coordenada es una funcion racional en x mientras que en la segunda aparece
el factor y con exponente uno, tal y como se ha descrito con anterioridad.

Observacion. Los siguientes aspectos se deducen de lo visto hasta el momento.

g(x)

» Se puede escribir ri(x) = ==—, con g(x) y q(x) polinomios sin factores comunes.

q(x)

» Si g(x) =0 para algiin punto (x,y), entonces o.(x,y) = O.

» Si g(x) # 0, entonces ri(x) estd bien definida y ry(x) también ya que (yra(x))* = f(ri(x)). Se
puede decir que el endomorfismo estd bien definido por estarlo ambas funciones racionales.

El nicleo de un endomorfismo no trivial es finito porque a(x,y) = ¢ en los puntos (x,y) para los
que ¢(x) = 0. Habr4 tantos puntos de estos como raices tenga el polinomio g(x), cuyo nimero viene
determinado por su grado, y por tanto, existen solamente una cantidad finita de ellas.



El algoritmo de Schoof para curvas elipticas - Virginia Villacampa Casalod 7

Definicion. Sea o un endomorfismo no trivial.

= El grado de o es
gr(a) = max {gr(g(x)),gr(q(x))}
Si oo = 0, entonces gr(0) = 0. Por lo tanto, el grado de un endomorfismo siempre es un nimero
mayor o igual que cero.

» Se dice que el endomorfismo es separable si | (x) # 0, o equivalentemente, si g’ (x) # 06 ¢(x) # 0.

Ejemplo. Regresando de nuevo al ejemplo del endomorfismo (2], su grado es gr(a) =4 y, ademds, es
separable ya que 3x*> +A # 0.

2.2. Anillos de endomorfismos

Definicién. Sea E una curva eliptica definida sobre un cuerpo F. El anillo de endomorfismos End(E) de

E(F,) en E(F,) esta formado por el grupo abeliano bajo la suma, donde la suma o + 3 estd definida por

(a+pB)(P)=a(P)©B(P)

y el endomorfismo cero es la identidad aditiva, con la multiplicacién definida por composicién (aff =
oo f3). Asi pues, para cualquier @ € End(E) se tiene

noa:=0o+...+0o=noa,
N——
n

donde se recuerda que [n] es el endomorfismo multiplicacién por n en E(F,).

Notar que [1] = 1 es la identidad multiplicativa (el endomorfismo identidad). Cuando el contexto
lo deje suficientemente claro, se identificardn los endomorfismos de los enteros [n] con n. El ejemplo
anterior generalizado junto con la multiplicacién por un entero motiva la siguiente definicion.

Definicion. Sea n un entero positivo. El niicleo del endomorfismo de la multiplicacién por un n € Z es
el subgrupo de n-torsion.
En)={P€E(F)|nP =0}

Sea E una curva eliptica definida sobre un cuerpo de caracteristica p (incluyendo la posibilidad
de que sea p = 0). Para cualquier @ € End(E), se considera la restriccién o, de a al subgrupo de n-
torsion E[n]. Como a es un homomorfismo de grupos, conserva los puntos de n-torsion, asi que @, es un
endomorfismo del grupo abeliano E[n].

Cuando n es un entero positivo no divisible por p, los subgrupos de n-torsioén tienen rango 2. En
otro caso, tienen rango 0 6 1. La prueba se da en el primer teorema de la séptima seccién de [8]. Por
lo tanto, suponiendo la primera situacion, que es la que resulta interesante para lo que viene después, se
puede elegir {1, 5, } una base que genere E[n] como un grupo abeliano. Todos sus elementos se pueden
expresar como una combinacién lineal de 1 y B, es decir, de la forma m; 1 +my B> con my,m; € Z,
unicamente determinados médulo n. Se puede representar ¢, como una matriz 2 x 2

a_ab
" \c d

a(Bi) =aPi+cBz, oB2) =bPi+dps.

Notar que la representacién de esta matriz depende solamente de la eleccién de la base, pero los inva-
riantes de la matriz, como la traza o el determinante, son independientes de esta eleccion.

La composicién de homomorfismos se corresponde con la multiplicacién de matrices. En particular,
los endomorfismos son homomorfismos, y por lo tanto esto también se cumple para ellos.

con a,b,c,d € Z/nZ tales que
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Teorema 2.1. Sea o, 3 € End(E). Entonces:

» 31 &@:E(F)— E(F) tal que a&t = 0coe = [n), donde n = gr(ot) = gr(&).
s a+B=a+p.
- ap =

A

» Sin €7, entonces [n] = [n] y su grado es n°.

Observacion. Si gr(a) = 1, entonces a es un isomorfismo y & el endomorfismo inverso de o.
Lema. Para cualquier endomorfismo o se tiene que 0.+ 0. = [a], donde a =1+ gr(a) —gr(a —1).

Demostracion. Para cualquier o € End(E), incluyendo @ =0
gria—1)=(a—1)(a-1)=(&—1)(@—1)=(@—1)(a-1)=1-(a+&) +gr(c),
y por lo tanto, ot + & = 1+ gr(a) — gr(oc — 1) O

Definicion. El entero a verificando el lema anterior se denomina traza del endomorfismo @, y se denotara
tr(e). Es decir, tr(a) es el entero determinado por la condicién

tr(a)] = o+ &

Teorema 2.2. Sea oo € End(E) un endomorfismo no trivial. Ambas 'y & son raices del polinomio
caracteristico
x> —tr(o)x+gr(a)

Demostracion. Sustituyendo directamente en la ecuacion
» o’ —tr(a)a+gr(a) =a*— (a+&)a+oad=0

» & —tr(@)a+gr(a)=a*— (a+&)&+ad =0

2.3. El endomorfismo de Frobenius

Se introduce a continuacién otro tipo de ejemplo de endomorfismo, algo més concreto, distinto de la
multiplicacién por un entero, que juega un papel crucial en la teorfa de curvas elipticas sobre un cuerpo
finito, ;. Aqui, g, es una potencia de primo, es decir, g = pk para k € N, con p un nimero primo
cualquiera, que serd la caracteristica del cuerpo.

Proposicion. Sea E una curva eliptica definida sobre F,. La aplicacion siguiente es un automorfismo.

¢ E(Fy) — E(?q)
(ry) o (x99
o — o

Demostracion. Lainyectividad y la sobreyectividad de ¢, son evidentes por definicion (para la sobreyec-
tividad notar de nuevo que se trabaja sobre la clausura algebraica). Por lo tanto, es suficiente comprobar
que ¢, es un endomorfismo. Se tiene que probar que ¢, : E (Fq) —E (Fq) es un homomorfismo de grupos
dado por funciones racionales. Esto ultimo se ve directamente, ya que la funcién estd dada por polino-

mios. El siguiente paso es ver que en efecto se trata de un homomorfismo.
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Considerando la curva eliptica en su forma de Weierstrass, sean Py = (x1,y1),P» = (x2,y2) € E(IF,)
con xj # xp. Utilizando las férmulas ya desarrolladas en secciones anteriores para la suma, el punto
P; = (x3,y3) = P, @ P, vendré dado por

2 Y2—)i
X3=m-—x1—x2,  y3=m(x;—x3)—y;, m=
X2 —X1
Elevando todo a la g-ésima potencia se obtiene que

q_ 4
q9_ .2 g g N B NN r_ 27N
X3 =M= —Xp — Xy, y3 =m (x] —x3) =7, m="a_ 4
27 %1

Lo que demuestra que ¢ (x3,y3) = 9 (x1,31) & B, (x2,72).

En el caso en el que x; = x, pero y; # yz, ya es sabido que P; = & Entonces x{ = xI e yI # y1, por
lo que ¢y (x1,y1) ® @4(x2,y2) = €, como se queria probar.

Se supone ahora que P, = 0, entonces Py & 0 = P;,VP| € E (Fq). Ademids, se tiene que @, (x2,y2) =0
y trivialmente ¢, (x1,y1) ® O = ¢y(x1,y1).

Finalmente, se aborda este problema en el caso en el que se esté sumando un punto consigo mismo.
Las férmulas para las coordenadas de 2P, = P; son iguales que anteriormente pero la pendiente cambia

3x2+A
transformandose en m = it y cuando se produce el paso de elevar a la g-ésima potencia se obtiene
Y1
. 3q(x‘11)2 + A4 . -
= qu. Como 2,3,A € F,, se tiene 29 = 2,39 = 3,A9 = A. Esto significa que el resultado
1

cumple lo esperado 2(x?,y{) = (x%,9). O
Definicion. El endomorfismo anterior es lo que se conoce como el endomorfismo de Frobenius.
Lema. El endomorfismo de Frobenius tiene grado q y no es separable.

Demostracion. El grado de los polinomios que definen el endomorfismo de Frobenius es g. Ademas,
como ¢ es miiltiplo de la caracteristica, cumple que g-1 =0 en F, y las derivadas tanto de x? como de
y? son idénticamente cero. Por lo tanto, ¢, no es separable. 0

Proposicion. El endomorfismo de Frobenius satisface estas dos propiedades.
1. Ker(¢,—1) =E(F,).
2. ¢, — 1 es un endomorfismo separable y ademds, se puede deducir que #E (F,) = gr(¢,—1).
Demostracion. El primer punto es mds sencillo de probar que el segundo.
l. (x,y)€E(F,) < (x,y) €F, <= x1=x, yl=y < ¢,(x,y) = (x,y) <= (x,y) €Ker(¢,—1)
2. La definicién del endomorfismo ¢, — 1 actuando sobre un punto (x,y) es
(9= 1) (x,y) = 94(x,y) = (x,9) = (x%,57) + (x, =)

El cédlculo de la expresion para la primera coordenada es

<—y—yq)2_xq_x: ( —y(1+y‘7“)>2_xq_x: (2470,

x—x4 x—x4 (xfxq)2

Utilizando el cambio habitual y?> = f(x) para que todo dependa tnicamente de la variable x y
teniendo en cuenta que g — 1 es par por ser g impar

FE 1+ f(x)'7)?

—x41_—
(—x9)2 xT—x
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La derivada del denominador no es el polinomio nulo
2(x—x?)(1—gx? 1) =2(x—x7) #0

Se concluye que efectivamente ¢, — 1 es un endomorfismo separable.

Llevar a cabo la demostracidn de la segunda parte de esta afirmacién, mencionada en el enunciado
como una deduccién de la primera, requiere de un detalle riguroso, por lo que se trata de una tarea
costosa que excede en cuanto a su longitud para las caracteristicas de este trabajo. Sin embargo,
una demostracién completa de esta propiedad puede encontrarse en la novena seccién del segundo
capitulo de [10].

O

Lema. Sean r,s € Z. Entonces gr(r¢, —s) = r?q+ s* — rst, donde t es la traza del endomorfismo de
Frobenius ¢,.

Demostracion. Se resuelve este apartado usando técnicas similares a la seccién anterior

gr(rdy —s) = (10 —3)(rdy —5) = (16, = $)(rdy =) = r*Gy0y + 5> =156y —rs9, = Pq+5> —rst.

O]

Teorema 2.3 (Teorema de Hasse). Sea E una curva eliptica definida sobre el cuerpo finito IF,. Entonces,
el orden de E(FF,) viene dado por la siguiente igualdad

#E(Fy) =q+1—1t, |t|<2/q
donde t vuelve a ser la traza del endomorfismo de Frobenius.

Demostracion. Sea @q(x,y) = (x7,y7) el endomorfismo de Frobenius en la curva. Entonces, E(F,) es el
subgrupo de E(F,) fijado por ¢, asi que E(F,) = ker(¢, — 1). El endomorfismo ¢, — 1 es separable y
por lo tanto, se tiene

#Ker(9,— 1) =#E(Fy) = gr(¢,— 1) = (¢, — 1) (¢ — 1) = ‘ﬁq‘f’q"‘ 1— (‘i;q‘f‘(l)q) =q+1-1t.
Solo queda probar que efectivamente se cumple que |¢| < 2,/g. Para ello, se utiliza el lema anterior.

2 2

2
1
gr(rg,—s) >0 < Pg+s?—rst >0 < rs—zq—l—z—z—%ZO = q<:> —t<:>+120

Esto es cierto para todos los niimeros racionales distintos de cero de la forma r/s.

El conjunto de los nimeros racionales r/s tales que mcd(s,q) = 1 es denso en R.

Por lo tanto, gx> —tx+ 1 > 0,Vx € R. Se sigue que el discriminante de este polinomio, > — 4g no
puede ser positivo, lo que se puede escribir como > —4g < 0y esto da la cota deseada |¢| < 2./4. O

Teorema 2.4 (Ecuacién caracteristica de Frobenius). Se tiene ¢5 —t¢,+q = 0 como endomorfismo de

E, donde t es la traza del endomorfismo de Frobenius. En otras palabras, ¥(x,y) € E(IF;) se cumple que

() —1(x9,y0) + q(x,y) = O

Mds aiin, t es el uinico entero que satisface esta relacion.



El algoritmo de Schoof para curvas elipticas - Virginia Villacampa Casalod 11

Demostracion. Si ¢qz —t9, + g no es el endomorfismo trivial, entonces su nicleo es finito ya que los
elementos del niicleo se pueden calcular encontrando soluciones a una ecuacién polindmica.

Se probara que el niicleo es infinito, por tanto es el endomorfismo cero.

Seam > 1 un entero primo distinto de la caracteristica del cuerpo. Recordar que ¢, induce una matriz
(@4)m que describe la accién de ¢, sobre el subgrupo de m-torsion E|m)]. Sea esta matriz la siguiente

wn=(2 1)

Se tiene que X* —tX +¢ (méd m) es el polinomio caracteristico de ¢, como endomorfismo de E[m].
En particular, el polinomio caracteristico se anula al evaluarlo en X = ¢,. Es decir, el endomorfismo
(¢4)* — 19, + g coincide con el endomorfismo 0 en E[m]. Esto es lo que se prueba a continuacion.

Utilizando que ¢, — 1 es separable y la equivalencia det ((¢,)m) = gr(¢,) (méd m)?, se puede escribir
la siguiente cadena de igualdades

#Ker(9,— 1) = gr(9,— 1) =det((¢g)m —I) = ad —bc— (a+d)+1 (méd m)

Observar que volviendo a usar la misma equivalencia se obtiene que ad — bc = det((¢y)m) =g (m6d m).
Y gracias al teorema de Hasse #Ker (¢, — 1) = g+ 1 —1t. Por lo tanto, Traza((¢g)m) =a+d =t (méd m).
Esto significa que el endomorfismo ¢qz — 1@, + g es idénticamente 0 en E[m]. Como hay infinitas
elecciones para m, el nicleo del endomorfismo es infinito, como se queria demostrar.
Para probar la unicidad, se supone que u # ¢ también satisface ¢q2 —u¢, +q = 0. Para cualquier m
primo y cualquier P € E[m] no trivial, se tiene

(=)0 (P) = (87 (P) —164(P) +q(P)) — (93 (P) — ¢, (P) +4(P)) = 0.

Como ¢,(P) # 0 en E[m] y m es primo, el punto ¢,(P) tiene orden m. De la ecuacion anterior se deduce
que m debe dividir a t — u, por lo que u =t (méd m). Por lo tanto, 7 es dnico médulo m. Y otra vez,
como hay infinitas elecciones para m, el entero ¢ es tinico. 0

2.4. Polinomios de division

Para estudiar los subgrupos de torsion, es necesario describir los endomorfismos dados por la multi-
plicacién por un entero. El objetivo de este apartado es desarrollar las férmulas para la suma de un punto
genérico consigo mismo n veces. Este punto P se encuentra en la curva E definida por y* = x> +Ax +B.

On w") donde ¢, w,, ¥, € Z|x,y,A,B] son polinomios que se reducen

w2 wl
) » Vi Vi
mddulo la ecuacidn de la curva para que el grado de y sea como mucho 1.
Una observacion serd que ¢, y W2 no dependen de y, y exactamente uno de @, y ¥, depende de una
potencia impar de y, asi que esto dard el endomorfismo [n] de forma estdndar, con funciones racionales.
El polinomio y;, se conoce como el n-ésimo polinomio de division, que se define de forma recursiva,

empezando con las variables A y B:

El punto nP tiene la forma (

Vo=0
yi=1
Yy, =2y

w3 = 3x* 4+ 6Ax> + 12Bx — A2
vy = 4y(x® + 5Ax* +20Bx> — 5A%x*> — 4ABx — A® — 8B?)
Yont1 = Wn+21//3 - llln71l//3+1, paran>2
Wou = (29) " W (Wi2 Wy — WH*ZW,%_F]), paran>?2

La demostracién de esta equivalencia utiliza un concepto introducido en el dltimo capitulo de este trabajo, el pairing de
Weil. Para mds detalles, se ruega consultar la tercera seccién del tercer capitulo [10].
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donde se reduce el resultado médulo la ecuacién de la curva para que Y, sea como mucho lineal en y.

Se puede probar que Y, (W22 | — W22, ;) siempre es divisible por (2y)~!, por lo que v, es,
de hecho, un polinomio. Si se define y_, := —V,, se puede probar que estas recurrencias se cumplen
Vn € Z. Entonces, los siguientes se definen como

On = XY — Y1 Y1, YN EZ
W, = (4y)_1(l[/n+21[/3_1 - l//n72l//r%+1)a VneZ

Se puede demostrar que ¢_, = ¢, y ®_, = ,. Al igual que antes, se reducen estos polinomios médulo
la ecuacién de la curva para que sean como mucho lineales en y.

Lema. Para todo entero n:

ertenece a Llx,A,B], sin impar ertenece a Z[x,A,B], sinpar
Yop 2yZ[x,A,B], sinpar @h P YZ|x,A,B|, sinimpar

O pertenece a Z[x,A, B]

Demostracion. Se pueden realizar facilmente por induccién; consultar el tercer y cuarto lemas de la
segunda seccién del tercer capitulo [10]. 0

Se sigue del lema que, después de reemplazar y* por x> +Ax + B si es necesario, W pertenece a
Z|x,A,B] para todo n positivo, asi que se puede pensar en ¢, y W2 como polinomios en x solamente,
mientras que exactamente uno de @, y W, dependen de y. En este tltimo caso, se puede multiplicar
el numerador y el denominador de @,/y; por y, para después reemplazar y*> en el denominador con
x> +Ax+ B. Notar que ¥, no es necesariamente un polinomio en x.

Se finaliza el capitulo con el siguiente resultado, que no es del todo trivial.

Teorema 2.5. Sea E(IF,;) una curva eliptica definida por la ecuacion y? = x> +Ax+By sea n € Z distinto
de cero. La funcion racional
Pu(x)  @a(x) >

vi(x) wi(x,y)

envia cada punto P € E (Fq) anP, y es separable si'y solo si n no es divisible por la caracteristica de IF,.

o) =

Demostracion. Un esquema de la prueba se puede encontrar en la sexta seccion de [8]. O



Capitulo 3

Algoritmo de Schoof

En 1985, René Schoof introdujo el primer algoritmo para calcular #E(F,) en un periodo de tiempo
razonable, mucho més rdpido que los algoritmos que existian hasta entonces. Posteriormente, se de-
sarrollaron extensiones del algoritmo que refinaron y mejoraron el original y que siguen siendo en la
actualidad el método elegido para contar puntos cudndo la caracteristica de I, tiene varios cientos de
digitos decimales. La estrategia basica de Schoof es muy simple: calcular la traza del endomorfismo de
Frobenius t médulo muchos primos pequefios ¢ (excluyendo la caracteristica del cuerpo por simplicidad)
para después utilizar el Teorema Chino de los Restos y obtener #; esto determinard #E(F,) =g+ 1 —1.

El algoritmo se repite hasta que el producto de todos los primos £ es mayor que 4,/g porque se tiene
que determinar la traza, que se sabe que estd entre —2,/q y 2,/q gracias al teorema de Hasse. Si se
conoce moédulo un nimero mas grande que la amplitud de ese intervalo, ya esta. Incluso si g es muy
grande, no hacen falta muchos primos ya que el producto de ellos crece muy rdpidamente.

3.1. Latraza de Frobenius modulo 2

Se considera primero el caso £ = 2. Si ¢ es impar (de hecho, lo es, ya que ¢ debe ser potencia de
primo, siendo este mayor estricto que 3), entonces

t=q+1—#E(F,) es divisible por 2 <= #E(F,) es divisible por 2 <= 3P € E(F,) tal que 2P = 0

Si E tiene ecuacion de Weierstrass y* = f(x), los puntos de orden 2 en E(F,) son aquellos de la forma
(x0,0), donde xg € I, es una raiz de f(x). Asi que,

(= 0 (méd 2), sif(x)tiene unaraizenF,
| 1 (mdd2), enotrocaso

No es necesario encontrar las raices de f(x) en IF,, solo se necesita determinar si existen. Para ello,
simplemente se debe calcular g = med(x? — x, f(x)). El grado de g es el nimero de raices distintas de f,
asiquet =0 (mdd 2) siy solo si gr(g) > 0.

Esto acaba el caso £ = 2, a partir de ahora se puede asumir que ¢ es impar.

3.2. La ecuacion caracteristica de Frobenius modulo ¢

Recordar que el endomorfismo de Frobenius ¢,(x,y) = (x4,y7) cumple la ecuacién caracteristica
%2 —t¢,+¢ = 0 en el anillo de endomorfismos End(E), donde t = g+ 1 —#E(F,) y g = gr(¢y).

Si se restringe ¢, al grupo de (-torsion, entonces la ecuacién ((qu) ¢ —1t(dq)e +qe = 0 es cierta en
End(E[(]),dondet; =t (mé6d £)y g, =¢q (méd £) se pueden tomar como escalares en Z/¢Z multiplica-
dos por la restriccion al grupo de ¢-torsion, E|[¢], del endomorfismo identidad, [1],. Considerando g,[1],
como la suma de g, copias de [1];, entonces se puede calcular dicha expresion utilizando las férmulas
para la suma, una vez sean conocidos tanto End(E[(]) como la suma explicita sus elementos.

13
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Definicién. Se denota por End(E[¢]) al anillo de los endomorfismos del grupo E[¢]. Estos endomorfis-
mos se obtienen por la restriccion de endomorfismos de E a su subgrupo de ¢-torsion.

Sea h = yy el £-ésimo polinomio de division de E; como ¢ es primo, sabemos que ¥ no depende de
la coordenada y, as que i € Fy[x]. Un punto (xo,yo0) € E(F,) pertenece a E[/] siy solo si h(xy) = 0. Por
lo tanto, cuando se escriben los elementos de End(E[(]) como funciones racionales, se pueden tratar los
polinomios que aparecen en estas funciones como elementos del anillo F,[x,y]/(h(x),y* — f(x)) donde
f(x) es la ecuacién de Weierstrass de E.

En el caso del endomorfismo de Frobenius, se tiene

q—

(6)c = (¥ m6d h(x),y* méd (h(x),y* - f(x)) = (x* m6d h(x),y(f(x)'Z méd h(x)))

igualmente,
2

(67)¢ = (=" m6d h(x),y(f (1) mod h(x)))
Notar también que
[1]¢ = (x mdd A(x),y(1 méd h(x)))

Por lo tanto, se pueden representar todos los endomorfismos que aparecen en la ecuacion caracteristica
de Frobenius médulo ¢ de la forma (a(x),b(x)y), donde a y b son polinomios del anillo F,[x]/(h(x)).

A continuacion, se analiza como sumar y multiplicar los elementos de End(E|[{]) que se encuentran
representados de esta manera.

3.3. Estructura de End(E[(])

Se toman a; = (aj(x),b;(x)y), 0 = (az(x),b2(x)y) € End(E[(]).
Recordar que el producto en End(E[¢]) se define por composicion

o100 = (ai(az(x)),b1(ba(x))y)

donde cada una de las componentes se reduce médulo A (x).

La suma de endomorfismos, como ya se sabe, se define en términos de la suma en la curva eliptica.
Para calcular o3 = o] + o simplemente se utilizan las férmulas para la suma de puntos. Recordar que la
férmula general para calcular una suma distinta de cero (x3,y3) = (x1,y1) + (x2,y2) en la curva eliptica
E:y’=x+Ax+Bes

2
x3=m"—Xx|—x2, y3=m(x;—x3)—yi,

donde
)’1—)’2’ six) £ X
m— X1 — X2
) 3+A
, S1X1 =X2
2y

Utilizando estas mismas con x; = a;(x),x2 = az(x),y; = b1 (x)y,y2 = b2(x)y, cuando x| # x; se tiene

by (x) — by (x)

@) —a) " r(x)y

m(xvy) =

by —b;
ap —ap

donde r =

, y cuando x| = x» se tiene

m(x,y) = 3a1(x)2+A _ 3a;(x)*+A
T o)y 261(0) F (%)

y=r(x)y
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3a7 +A

1
(a3(x),b3(x)y) esta dada por

donde ahora r = . Notar que m(x,y)? = (r(x)y)? = r(x)%f(x), entonces la suma ot; + 0, = oz =

a=r'f—a—a

by =r(a)1 —a3) — b

En ambos casos, suponiendo que el denominador de r es invertible en el anillo I, [x]/(h(x)), se puede
reducir  a un polinomio médulo % y obtener o3 = (a3(x),b3(x)y), con az, b3 € Fylx]/(h(x)).

Esto no siempre es posible, porque cabe la opcién de que el polinomio de divisién & = y; no sea irre-
ducible (de hecho, si E[¢] C E(F,) se factorizard en polinomios lineales), asi que el anillo F[x]/(h(x)) no
es necesariamente un cuerpo y puede contener elementos distintos de cero que no sean invertibles. Esto
afecta cuando el denominador d de r no es invertible médulo /. En este caso, se tomara mcd(d,h) = g # 1
tal que gr(g) < gr(h). Esto es claro cuando el denominador es d = a; — az, ya que tanto a; como a, estan
reducidos médulo £ y por lo tanto gr(d) < gr(h).

Una vez g ha sido hallado, la estrategia es simplemente sustituir / por g y volver a empezar el cdlculo
de la traza de Frobenius médulo /. Las raices de g corresponden a las primeras componentes de las
coordenadas de un subconjunto no vacio de puntos afines en E[{], y se sigue del teorema 2.4 que se
puede centrar la atencion a la accién del endomorfismo de Frobenius médulo ¢ en este subconjunto. Esto
permite representar los elementos End(E[¢]) usando coordenadas en el anillo F[x]/(g(x)) en lugar de
en el anillo F,[x]/(h(x)).

3.4. Latraza de Frobenius modulo ¢

Durante el algoritmo, los elementos de End(E[(]) estdn representados en la forma (a(x),b(x)y) con
a,b € Fy[x]/(h(x)) y todas las operaciones polinomiales tienen lugar en este anillo. Este algoritmo da un
método para calcular ¢, la traza de Frobenius médluo £. Dada una curva eliptica E : y* = f(x) sobre I,
y un primo impar ¢, se calcula ¢, como sigue:

1. Calcular el £-ésimo polinomio de division 7 = y; € Fy[x] en E.
2. Calcular ¢y = (x4 méd h, (f*= méd h)y).

3. Calcular ¢? = ¢y o ¢y

4. Calcular la multiplicacion escalar gy = g¢[1],.

5. Calcular (})42 +qy.

6. Hallar x € [0,...,¢— 1] tal que x¢y = 97 + gy

7. Devolver x = t,.

Si en cualquiera de los pasos surge algiin denominador d no invertible, reemplazar i por g = med(h,d)
y volver al paso 2.

Ejemplo. Sea E la curva eliptica y* = x> +x+1 (méd 7). Entonces
#E(F,) =7+1—1t
Se quiere determinar t. Son necesarios los siguientes primos
2:3-5=30> 11 ~4V/7

El primero es £ = 2. Se calcula
X =20+ 6 méd x> +x+1
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entonces, el mdximo comiin divisor a calcular es
med(x” —x,x> +x+1) =med(2x* —x+6,x> +x+1)=1

Se sigue que x> +x+ 1 no tiene raices en IF,. Por tanto, no hay 2-torsion en E(F), asi quet =1 (méd 2).
Para ¢ =3, el tercer polinomio de division es

h=vy; =3x*"+6Ax* + 12Bx — A2 = 3x* + 602 + 12x — 12 = 3x* + 60> + 5x + 6
Se calcula la coordenada x de ¢3
x' =2x° +2x% +6x+ 1 méd 3x* 4 63> +5x 46
Se calcula la coordenada y de ¢3
(P +x+1)T =P 4+x+17 =8+ 22 +3r m6d 3x* + 622+ 5x+6

Obteniendo pues que
03 = (2% + 202 + 6x+ 1, (x* +x* 4+ 3x)y)

Se calcula la coordenada x de ¢3
x* =x méd 3x* +6x* +5x+6
Se calcula la coordenada 'y de ¢3
(P +x+1)* =6 méd 3x* +6x +5x+6=—1 (méd 7)

Obteniendo pues que

Se tiene que ¢ =1 (méd 3). Por lo tanto, g3 = 1, y es necesario calcular
$3+43=0

La traza de Frobenius est =0 (mdd 3).
Se repite el mismo proceso para £ = 5. El quinto polinomio de division es

h=ys = 5x"2 +6x'0 4+ 24" + 2x7 + 6x° +4x° + 6x* + 4x* + 2x

Se calcula la coordenada x de ¢s
x’ =x" méd h(x)

Se calcula la coordenada y de ¢s
(¥4 x+ 1)% = (P +x+1)3 =7+ 327 +3x + 387 + 6x* +4x> +3x2 + 3x+ 1 méd h(x)
Obteniendo pues que
05 = (x7, (27 4+ 3x7 4+ 3x% 4+ 3% + 6x* + 42 +3x> +3x+1)y)
Se calcula la coordenada x de (}552
1% = 6 4 4x10 4 207 + 208 4 507 4+ 40 + 5x° + 4x* + x + x% méd h(x)
Se calcula la coordenada y de ¢52

(F + x4 1) = 2 4 6x10 428 4 4x” + 500+ 4x +x* +5x° +3x% 4+ 6x+ 1 méd h(x)
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Se tiene que ¢ =2 (méd 5). Por lo tanto, qs = 2, y realizando los cdlculos pertinentes,

03 + g5 = 3¢

La traza de Frobenius est =3 (méd 5).
La informacion de £ = 2,3,5 es suficiente para determinar t.

1 (méd 2)
t={ 0 (méd 3)
3 (méd 5)

La solucion del sistema estd expresada en modulo N =2 -3 -5 = 30. Hay que encontrar encontrar los
valores (enteros) de x1, y1 y z1 tales que

30 30 30

o 3 5

Con los valores de x1, y1 y 71 se debe determinar x3, y2 y 22
I15x,=1 (m6d2), 10y,=1 (méd3), 6z,=1 (mdd>5)
I
=1 (méd2), y,=1 (méd3), z=1 (mbd5)

De esta manera, la solucion final al sistema de congruencias (por el Teorema Chino del Resto) estd dada
por
t=1-15-140-10-143-6-1=33=3 (mdd 30)

Como |t| < 2v/7 < 5, debe sert = 3. Regresando de nuevo al inicio, #E(F,) = 5.
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Capitulo 4

Aplicaciones

Ciertas elecciones de algunas de las propiedades de las curvas elipticas y/o el cuerpo sobre el que
estdn definidas, reducen la dificultad de resolucién del problema del logaritmo discreto en esa curva y,
como consecuencia, se produce una disminucién de la seguridad de los esquemas criptograficos imple-
mentados en esas curvas elipticas, convirtiéndolas en criptograficamente inseguras. Es necesario que el
orden cumpla una serie de requisitos para que la curva sea segura. En este ultimo capitulo se describirdn
tres ataques que se aprovechan de varias caracteristicas dependientes del orden que debilitan el poder de
una curva. Los articulos originales del ataques que se van a explicar a continuacién se encuentran en [2],
[4] y [7]. Para facilitar la comprensién de los dos primeros se ha utilizado [3] y para el dltimo [1].

4.1. El problema del logaritmo discreto

Sea G cualquier grupo, se mantiene la notacién multiplicativa por el momento. Sean a,b € G. Se
supone conocido que ¢ = b para algiin k € Z. El problema del logaritmo discreto es encontrar k dados a
y b. Por ejemplo, G podria ser el grupo multiplicativo IF; de un cuerpo finito. También, G podria ser el
grupo formado por los puntos que satisfacen la ecuacién de una curva eliptica E(F,), en cuyo caso a y b
son puntos de la curva y por tanto, se trata de encontrar k € Z con ka = b. Con esta notacién, en la que
se considera E(IF,) como un grupo aditivo, se puede establecer el siguiente isomorfismo:

Z/nZ — {(Q)
k] — kQ.

Aqui [k] se refiere a la clase de equivalencia de k médulo n con n € Z el orden de Q en E(F,).

Por lo que el problema del logaritmo discreto también se puede enunciar de tal forma que el proce-
dimiento para resolverlo sea encontrar una inversa a dicha aplicacién.

La seguridad de los sistemas criptograficos subyace en la dificultad de la resolucién del problema del
logaritmo discreto. El enunciado del problema del logaritmo discreto en curvas elipticas (ECDLP, por
sus iniciales en inglés ‘Elliptic Curves Discrete Logarithm Problem’) es el siguiente.

Definicién. Sea E una curva eliptica definida sobre un cuerpo finito ;. Dado un punto Q € E(F,) de
orden n € Z y un punto P € (Q) (subgrupo generado por Q), calcular el entero k € [0,n — 1] tal que
P = kQ. El entero k se conoce como el logaritmo discreto de P respecto de la base Q y en algunas
ocasiones se escribe como k = log,(P).

Una forma de atacar el ECDLP es, simplemente, fuerza bruta: probar todos los posibles valores de
k hasta hallar uno que funcione. Esto es poco prictico, especialmente cuando la respuesta k puede ser
un entero de varios cientos de digitos, lo que es un tamaifio tipico usado en criptografia. Por lo tanto, se
necesitan mejores técnicas.
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4.2. Ataque de Pohlig-Hellman

Una posibilidad de curvas elipticas débiles son aquellas para las que E(F,) no tiene subgrupos primos
lo suficientemente grandes. Este ataque simplifica el proceso de resolver ECDLP en E(IF,) a resolver el
mismo problema pero en los subgrupos primos de (Q).

Sea n el orden del subgrupo generado por Q, es decir, #(Q) = n. Ahora, se toma la factorizacién en
primos de n = p{' - p3*-...- p¢ (unica salvo reordenacién de los factores). El objetivo es hallar k; = k
(méd pi7),Vi=1,...,r y para ello se representa k; = zj + 2\ p; + z,p7 + ...+Z2i,1pe"_1 y se calcula
& Vi=1,...,ryVj=1,...,e;—1.

Esto se hace escribiendo Q) = "o y Pl = " p. De aqui se puede deducir que Q) tiene orden p;,
pPi Di

ya que p,QO = —Q =nQ. Ademis, k; = ZO (m6d p;). Teniendo en cuenta que 26 es el digito menos

significativo de la representacwn de k; en la base p; y manipulando la ecuacién un poco, se obtiene que

, n [
Py=— (kQ) (ZOQ) = 2(—0) = %0}
i pt i i
Por lo tanto, encontrar zf) requiere calcular ECDLP en <Q6>. Repitiendo el mismo argumento, se puede
hallar cada zg resolviendo P} = z?Qf) donde

. n . . . 1
Pi= ﬁ(P—ZloQ—lepiQ—lep%Q —7 ')
pi

todo este desarrollo se realiza para conseguir un sistema de ecuaciones como a este

ki (mo6d p?)
k2 (méd p;z)

kr (mod pyr)

Se sabe que se puede resolver este sistema utilizando el Teorema Chino de los Restos, ya que todos los
factores primos son ciertamente coprimos dos a dos, y por lo tanto, el proceso recupera k, la solucién al
ECDLP.

4.3. Ataque de MOV

El nombre del ataque proviene de los apellidos Menezes, Okamoto y Vanstone [2]. La idea es reducir
el problema del logaritmo discreto en el grupo de puntos de una curva eliptica sobre un cuerpo finito al
mismo problema pero en el grupo multiplicativo de otro cuerpo finito (quizds mas grande). Para ello, se
utiliza el pairing de Weil, que es una funcién que relaciona dos puntos en un subgrupo de torsién en una
curva eliptica E con un elemento de F 4, para un cierto d que se definird mas adelante. El problema del
logaritmo discreto en F s puede ser atacado por algunos métodos que son mds rapidos que resolver el
problema del logaritmo discreto sobre curvas elipticas, siempre que F s no sea mucho mds grande que
[F,. Para que una curva sea segura este d tiene que ser lo suficientemente grande.

Sea una curva eliptica definida sobre un cuerpo finito E(F,) y sea n € Z tal que no es divisible por la
caracteristica de [F,. Sea

p={xeF,|x"=1}

el grupo de las rafces n-ésimas de la unidad en F,.. Como la caracteristica de F,, no divide a n, la ecuacién
x" =1 no tiene raices multiples y entonces tiene n raices distintas en Fq. Por lo tanto, u, es un grupo
ciclico de orden n. Cualquier generador § de u, se llama raiz n-ésima primitiva de la unidad. Esto es
equivalente a decir que {™ = 1 si y solo si n divide a m.
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Teorema 4.1 (Pairing de Weil). Sea E una curva eliptica definida sobre un cuerpo finito ¥, y sean € Z
positivo. Asumimos que la caracteristica de F, no divide a n. Entonces existe un pairing

e, E[n] x E[n] — U,
que satisface las siguientes propiedades:

1. e, es bilineal en cada variable:

en(S1+82,T) =en(S1,T)en(S2,T), VS1,8,,T € En]
en(S,T1 + 1) =e,(S,Th)en(S, Tn), v11,1,,S € E[n]

2. ey, es no degenerado en cada variable:

si e,(S,T)=1 VT €Eln|, entonces S=0
si e,(S,T)=1 VS€En], entonces T=0

3. en(S,S) =1, VS € En].
4. ey(T,S) =e,(S,T)"', VS, T € E[n].

5. ex(0(S),0(T)) = o(ex(S,T)) para todos los automorfismos o de F, tales que & es la funcion
identidad en los coeficientes de la curva eliptica (si estd en la forma de Weierstrass esto significa
que 6(A) =Ay o(B) =B).

6. en(a(S),a(T)) = e,(S,T)"* para todos los endomorfismos o (incluido el de Frobenius).

Observacion. Notar que de la bilinealidad de e, se deduce en particular que
en(aS,bT) = e,(aS,T)" = e,(baS,T) = e,(S,T)"* = e, (S, T)

El pairing de Weil se puede describir a través de una funcion bilineal que asocia una raiz n-ésima de la
unidad dados dos puntos de n-torsion.

Corolario. Sea {T\,T>} una base de En). Entonces e,(Ti,T») es una raiz n-ésima primitiva de la unidad.

Demostracién. Supongamos que e,(T1,Tz) = ¢ con {¢ = 1. Entonces e,(T1,dT;) = 1. También se tiene
en(dTy,T>) = 1 (por la observacion anterior). Sea S € E[n]. Entonces S = aT; + bT, para algunos a,b € Z.
Por lo tanto,

en(S,dTs) = e, (Ty,dTs) e, (Tr,dT>)” = 1

Como esto se cumple para todo S, 2 implica que dT, = ¢, y como esto ocurre si y solo si n|d, se sigue
que § es una raiz n-ésima primitiva de la unidad. O

El grado de inmersién de un entero en un cuerpo finito es un pilar fundamental de este ataque.

Lema. Sea n un divisor primo del cardinal m =#E(F,) y tal que med(n,q) = 1. Existe un d € 7 positivo
que verifica las condiciones equivalentes:

1. n|(g?—1)
2. IF;, contiene un subgrupo ciclico de orden n.

Demostracion. El grupo F*, es ciclico, con cardinal ¢? — 1. Tal grupo contiene a un subgrupo de cardinal
q

n si, y solamente si, n|(¢? — 1), es decir, ¢/ =1 (m6d n). Ahora bien, por hipétesis, med(n,q) = 1, y por
tanto, ¢ € (Z/nZ)*. El orden d de g en tal grupo es una solucién al problema. O
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Definicién. El minimo d verificando el lema anterior se denomina grado de inmersion de E(F,) respecto
a n. Si n es el mayor divisor primo de m, entonces se dice simplemente que d es el grado de inmersién
de E(FF,).

Ejemplo. Sea E : y* = x> +2 una curva eliptica definida sobre Fgo, y tal que #E(Fg9) = 90. El punto
P = (20,9) pertenece a la curva y tiene orden 5. Para calcular el grado de inmersion de E (Fgy) respecto
a 5, hay que encontrar el minimo d tal que 5897 — 1. No se verifica para d = 1, pero para d = 2,
892 — 1 =5-1584. Luego E(Fgo) tiene grado de inmersion 2 respecto a 5. Ademds, 5 es el mayor divisor
primo de 90, entonces se puede decir que 2 es el grado de inmersion de la curva.

Lema. Sea E una curva eliptica definida sobre un cuerpo finito ¥ y se asume que med(n,q) = 1. Sea d
el grado de inmersion del entero n en E(F,). Suponiendo que d > 1, entonces E[n] C E(F ).

Demostracion. Es suficiente con probar que una base de E|n] estd contenida en E(F ).

Sea P € E(IF,;) un punto de orden n (se sabe que existe tal punto porque n es un factor primo del
cardinal de la curva) y se elige un T € E[n] tal que {P, T} forme una base para E[n]. Como es habitual,
¢4 denotard al endomorfismo de Frobenius. El objetivo es probar que ¢ (T) =T, porque esto implicaria
que T € E (qu ). Ya se sabe por lo visto anteriormente que para el endomorfismo de Frobenius se cumple
que ¢,(P) =Pyaque P E(F,)y ¢,(T) =a-P+b-T paraciertos a,b € Z/nZ..

Como {P,T} forma una base para E[n], el pairing de Weil e,(P,T) es una raiz n-ésima primitiva de
la unidad, como en el corolario anterior. Por las propiedades del pairing de Weil, se satisface que

en(P,T) = ‘Pq(en(P’T)) = en(‘Pq(P)a‘Pq(T)) =ey(Pa-P+b-T)=e,(P,P)"e,(P, T)b = en(RT)b

El hecho de que e, (P,T) sea una raiz n-ésima primitiva de la unidad implica que b = ¢ (mdéd n). Por lo
tanto,

0,(T)=a-P+q-T
04(04(T)) =a-P+qla-P+q-T)
=a-P+qga-P+q¢*-T
(9g0...00)(T) = (a(l+q+...4¢" ")) -P+¢*-T
d

pero d es el grado de inmersién n en E(F,), asi que ¢¢ =1 (méd n) y ademds también se tiene que
1+qg+¢*+...+¢* ' =0 (méd n).

Esta dltima congruencia se debe a que ¢¢ — 1= (g —1)(1+g+¢*+...+¢%"!) y n primo no divide
a g — 1 pero si a ¢ — 1. El razonamiento anterior implica que ¢,«(T) =T .

Por lo tanto, la base de E[n] dada por {P, T } estd contenida en E(F ) y entonces E[n] C E(F ). O

Algoritmo del ataque de MOV

1. Se elige un punto aleatorio 7' € E(FF,«) donde d es el grado de inmersion de n en E(F,).

2. Secalculael ordenmde T.

3. Se calcula . Sin {m, se vuelve al paso 1.
n

4. Se calcula 71 = (m/n)T. Entonces T; tiene orden n. Como n es primo esto significa que 7} € E|n].

5. Se calcula §; = €,(Q,T1) y & = e,(P,T1). Entonces, ambas §;, 8 € p, C }qud.

6. Se resuelve el problema del logaritmo discreto &, = {F en qud. Esto da una solucién & (méd n).

Observacion. El elemento e, (P,T) tiene orden n.

El grado de inmersién d de n en E(F,) determina la complejidad del ataque de MOV. Entonces, si
este es razonablemente pequeio, el ataque produce una ventaja computacional para resolver ECDLP.



El algoritmo de Schoof para curvas elipticas - Virginia Villacampa Casalod 23

4.4. Ataque de Smart

Otra posibilidad de curvas elipticas débiles son aquellas tales que #E(F,) = p, con p un nimero
primo, o lo que es lo mismo, aquellas para las que la traza de Frobenius es 1. Sin embargo, describir este
ataque requiere un contexto adicional. Se pueden definir curvas elipticas sobre los siguientes cuerpos
definidos a continuacién. Esto permitira reducir ECDLP al grupo Z/pZ, donde se calcula facilmente.

Definicion. Un niimero p-ddico se puede representar como una serie infinita de la siguiente forma
cap "+...tcotapt+.. . Femp"+... i €F,Vi

El cuerpo de los niimeros p-ddicos se escribe como Q, y aquellos que no tienen potencias negativas de
p (i.e. ¢; =0,Vi < 0) se conocen como los enteros p-ddicos y se denotan por Z,.

El siguiente lema se usard para ‘levantar’ elementos de IF, a Q,,.

Lema (Lema de Hensel). Para f(X) € Z[X], sea x tal que f(x) =0 (méd p*) y sea f' invertible médulo
p. Entonces, se puede construir un x' que cumpla que X' = x (méd p*) y f(¥') =0 (méd p*+1).

Otra componente importante de este ataque es la reduccién de una curva eliptica médulo p. Esto
se basa principalmente en tomar los coeficientes y puntos de la curva y trabajar con sus congruencias
moédulo el primo p.

Sea E(Q)) una curva eliptica definida sobre el cuerpo p-ddico. Se establece una nueva curva sobre
IF,, reduciendo los coeficientes de E(Q,) médulo p. Previamente, se puede suponer que los puntos de
la curva eliptica se encuentran en E(Z,), ya que al realizar comin denominador sobre las coordenadas
proyectivas, los denominadores ‘desaparecen’. La Unica restriccién impuesta es que al menos una de las
coordenadas no debe ser multiplo de p.

Se deberia comprobar que esta nueva curva no es singular calculando el discriminante y viendo que
no es cero, pero simplemente va a ser asumido.

Se sigue un proceso muy similar para los puntos de la curva eliptica, donde cada una de sus coorde-
nadas se reduce médulo p.

Asi se establece un homomorfismo de grupos de E(Q,) a E(IF,). Si se denota E;(Q,) al nicleo de
este homomorfismo, se tiene que E;(Q),) contiene todos los puntos de E(Q,) que se reducen al punto
del infinito en E(IF,,).

E@Q,) — EF,)

o — 0
pQ —— pO=0

esto ultimo se debe a la hipétesis de que #E(IF,) = p por lo que pQ € E1(Q,).
De forma similar, se construye otro grupo al que se le llamara E»(Q),,) de tal manera que al hacer el
cociente entre ambos se obtiene un isomorfismo E1(Q,)/E»(Q,) = Z/pZ.

Definicién. El logaritmo eliptico p-ddico y,, es un morfismo de E(Q,) a Z/pZ cuyo nicleo es E>(Q))

que se calcula como
x(8)
Wo(S) ==
g ¥(S)
para S € E(Q,) donde x(S) e y(S) denotan la primera y segunda coordenada del punto S, respectiva-
mente.

Hay que recordar que se estd tratando de encontrar k tal que P =kQ donde P,Q € E(FF,) y #E(FF,) =
p. El primer paso es hallar P',Q" € E(Q,). Esto se hace estableciendo la coordenada x de Q' igual
a la coordenada x de Q. Ahora, se utiliza el lema de Hensel descrito arriba para calcular la segunda
coordenada en Q, teniendo en cuenta la ecuacién de la curva eliptica donde x estd fijo. Se sabe que
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P'—kQ' € E(Q,) se reduce médulo p al punto del infinito y por tanto estd en E£1(Q,). Si se multiplica
por p, se obtiene que pP’ — k(pQ’) € E(Q)). Por lo tanto,

vy (pP')
Wp(PQ/)

Por tltimo, se reduce k médulo p para volver a IF,, resolviendo ECDLP.

Wy (pP) — kv, (pQ) € Z/pZ, k=
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