Un método heuristico para optimizar la
respuesta a consultas relacionales.

macultad de Ciencias
Universidad Zaragoza

w2s Universidad
181 Zaragoza

1542

Pablo Aranda Luna
Trabajo de fin de grado de Matematicas

Universidad de Zaragoza
Junio 2024

Director del trabajo
Jorge Lloret Gazo

Abstract

The relational model in the field of databases has had a significant impact since its initial imple-
mentations in database management programs. It allows organizing information into structures called
relations. This model facilitates data manipulation and querying through a standard language known as
SQL (Structured Query Language).

In the context of relational databases, query optimization is an essential aspect because it enables
the machine to provide quick and efficient responses to the user, which becomes increasingly important
when dealing with large databases.

On the following pages, techniques based on cost and heuristic methods used in the optimization of
relational queries are described. It demonstrates the use of relational algebra in manipulating the infor-

mation stored in a relational database, and how query trees play an important role in this process.

Through the implementation and comparison of different optimization algorithms, including query
transformation and index usage, significant reductions in query response times can be achieved.

II1

Indice general

Abstract

1. El modelo relacional

1.1. Bstructura
1.1.1. Esquemasderelacién.
1.2. Valoresdeunatupla.
1.2.1. Relaciébn
1.2.2. Ordenenunarelaciéon
1.2.3. Interpretacion de una relacién . . .
1.3. Base de datos relacional

2. El algebra relacional
2.1. Operacionesunarias
2.1.1. Eloperador SELECT
2.1.2. Eloperador PROJECT
2.2. Operaciones binarias
2.2.1. El producto cartesiano
2.2.2. LaoperacionJOIN
23. Ejemplos

3. Un método heuristico
3.1. Consultas SQL a dlgebra relacional
3.2. Arbolesdeconsulta
3.3. Reglas y algoritmo de transformacién . . .
3.3.1. Optimizacién heuristica
3.3.2. Optimizacién de arboles de consulta

4. Optimizacién basada en el coste
4.1. Determinantes delcoste
4.2. Funcionesdecoste
4.2.1. Operaciéon SELECT
4.2.2. Operacion JOIN
4.3. OrdenaciondeJOIN
4.4. Ejemplo de optimizacién basada en el coste

Bibliografia

111

13
14
15
16
19
20

23
23
24
24
25
25
25

29

Capitulo 1

El modelo relacional

El concepto del modelo relacional para la creacion de bases de datos, fue acufiado por primera vez
por el cientifico informatico inglés Edgar Frank Codd, en su conocido articulo A relational model of
data for large shared data banks [1]. En dicho articulo Codd, con la intencién de mejorar y optimizar
el funcionamiento de grandes bases de datos, introdujo un nuevo enfoque para la estructuracion de su
informacion, la base de datos relacional.

En su articulo, Codd presenta su modelo relacional como un conjunto de relaciones, donde cada una
se define como un conjunto de registros de la base de datos. Esta definicién permite aplicar a las relacio-
nes operaciones bésicas de conjuntos. Por ejemplo, permite permutar, proyectar y combinar elementos
de una relacién.

Su objetivo consistia en desarrollar un modelo en el cual fuera Unicamente necesario describir la
estructura natural de los datos, sin requerir de un sistema adicional para su representacién. Los modelos
ya existentes eran vulnerables a cambios en la organizacién e informacién, de igual modo presentaban
una fuerte dependencia del orden e indexacidén de los datos. La perspectiva relacional permitia sentar un
cimiento sélido para gestionar la redundancia y consistencia, a diferencia de los modelos de red genera-
les que tenian grandes limitaciones para abordar estos asuntos al almacenar la informacion.

Las ideas de Codd atrajeron rdpidamente la atencidén de gran parte del sector de la industria infor-
madtica. En los afios posteriores a la publicacién del articulo, IBM, empresa en la cual trabajaba Codd,
desarroll6 un sistema de gestion de bases de datos conocido como System R. Este sistema introdujo un
lenguaje de consulta para implementar el modelo propuesto, el cual fue llamado SEQUEL (Structured
English Query Language) y que, en siguientes versiones, se convirtié en lo que hoy conocemos como
SQL (Structured Query Language).

Por otro lado, Larry Ellison, Ed Oates y Bob Miner, cofundadores de Software Development Labora-
tories, motivados por el modelo de Codd desarrollaron un sistema de gestion de bases de datos conocido
como Oracle Database 2.0. Dicha empresa es la hoy conocida como Oracle Corporation. Su producto
tuvo un gran éxito, y gracias a él SQL alcanzé gran reconocimiento en el tratamiento de las bases de
datos. Desde entonces han sido desarrollados gran cantidad de sistemas basados en tal modelo, algunos
incluso de software libre. En la actualidad SQL se ha convertido en el lenguaje estandar en los sistemas
de gestion de bases de datos que basan su estructura en el modelo relacional.

El modelo relacional, para la creacidn y estructuracién de bases de datos, se basa en el concepto de
relacion matematica. Se fundamenta en la teoria de conjuntos y en la légica de predicados. En este
primer capitulo trataremos de explicar en qué consiste el modelo relacional, para ello definiremos sus
conceptos basicos y veremos cémo se relacionan los diferentes elementos de dicho modelo.

2 Capitulo 1. El modelo relacional

En el modelo relacional, una base de datos se representa como una coleccion de relaciones. Cada una
de estas relaciones es representada con una tabla, donde cada fila estd formada por un conjunto de datos,
con una determinada relacion entre si, conformando un registro en la base de datos, es decir, cada fila
representa un objeto real. Los nombres de las columnas nos ayudan a interpretar el tipo de informacién
que contiene cada fila.

Cada fila se denomina tupla y cada columna se llama atributo. Finalmente a la tabla en su conjunto
es lo que conocemos como relacion.

1.1. Estructura

En esta primera seccion se describe la estructura de una base de datos relacional, asi como de los
diferentes elementos que la componen.

Definicion. Cada una de las propiedades por las que un objeto, o entidad, es caracterizado en una base
de datos relacional se conoce como atributo.

Cuando una relacién es graficamente representada podemos identificar los atributos como las dife-
rentes columnas que la componen.

Definicion. Denominamos como dominio al conjunto de los posibles valores que un atributo puede
tomar, lo denotamos D.

Ademds, cada elemento del dominio es indivisible. Un dominio estd dado por un nombre, un tipo de
valor (nimero, cadena, etc), y por un formato. Para definir un dominio, por ejemplo el dominio de las
matriculas de coche, podemos hacerlo de las siguientes maneras:

= Definicién l6gica: Conjunto de todas las matriculas vélidas de tres letras y cuatro niimeros.

= Definicion formal: Conjunto de todas las cadenas de la forma LLLNNNN , siendo L una letray N
un nimero natural de 0 a 9.

1.1.1. Esquemas de relacion

Para representar una relacion y el conjunto de sus atributos usamos un esquema de relacion. Se
denota R(Ay,...,A,), donde R es el nombre del esquema de relacién y Ay, ...,A, una lista de atributos,
ademads el niimero n de atributos de la relacién se conoce como grado de la relacién. Cada atributo A;
tiene un dominio en la relacion, denotado como dom(A;).

Un esquema de base de datos relacional S es un conjunto de esquemas de relacién S = {Ry,...,R,}
junto con un conjunto de restricciones de integridad (IC).

1.2. Valores de una tupla

Los valores que una tupla puede almacenar estan delimitados por el dominio de sus atributos, como
ya hemos visto. Por otro lado, cada valor es indivisible, es decir, no se puede separar en componentes.
Es por ello que, en el modelo relacional, debemos representar en diferentes relaciones los atributos
multievaluados; de la misma forma, un atributo compuesto es necesario definirlo como un conjunto
de atributos mds bdsicos. En algunos casos, en los que no conocemos un valor o no existe ese atributo
para un registro, se toma como nulo ese atributo (null en inglés).

TFG - Pablo Aranda Luna 3

1.2.1. Relacion

Definicion. Una relacion r de un esquema de relacién R(Ay,...,A,) , es un conjunto de n-tuplas r =
{t1,...,tn}, donde cada n-tupla tj es una lista ordenada de n valores, es decir, t; =< vi,...,v, >y en
donde cada v; es un elemento de dom(A;) o es un valor nulo.

En otras palabras, llamamos relacién al conjunto de tuplas de un esquema de relacién. Cada tupla
estd formada por un dato para cada atributo. En algunos casos se denomina también como estado de
relacion.

Basdndonos en la ya mencionada teoria de conjuntos, podemos formalizar dichos conceptos. Por
ejemplo, sean dom(A1),...,dom(A,) los respectivos dominios de los atributos Ay, ...,A, de un esquema
de relacién R. Si hacemos el siguiente producto cartesiano:

dom(A) x dom(Ay) X ... x dom(A,,)
Un estado de relacién r(R) es un subconjunto de dicho producto, es decir:
r(R) Cdom(Ay) x dom(Az) X ... x dom(A,)

El producto cartesiano recorre todas las posibles combinaciones de todos los datos de cada uno de los do-
minios, en este caso de todas las posibles tuplas en la relacion. Ademds, la cardinalidad de este producto
aporta el nimero total de tuplas posibles en un estado r(R).

1.2.2. Orden en una relacion

Cuando se trata de los elementos de un conjunto no hay ningin orden entre ellos, por lo tanto en una
relacion no hay un orden especifico entre los diferentes registros o tuplas.

Al representar una relacion en forma de tabla es cuando se necesita un orden; se suele ordenar en
funcién de alguno de los atributos, y aunque pueda ser representada por tablas ordenadas de diferente
manera la relacién es la misma, sin importar el atributo que tomemos como referencia en la ordenacion.

De igual manera, si hablamos de manera abstracta, no es importante el orden en el que aparecen los
diferentes atributos dentro de una tupla, mientras que cada atributo mantenga sus determinados valores.
Aunque, como ya hemos visto, un esquema de relacion estd formado por un conjunto de n-tuplas orde-
nadas, luego el orden en este caso es importante porque mantenerlo nos permite identificar a qué atributo
corresponde cada valor de cada n-tupla.

1.2.3. Interpretacion de una relacion

Podemos interpretar una relacién como una simple afirmacion que representa un hecho. Por ejemplo,
en la relacion:

ESTUDIANTE (Nombre, DNI, Telef_casa, Direccion, Telef_movil, Edad, Nota_media)
Interpretamos cada registro de la relacién como un hecho. Si la primera tupla fuera:
(Arturo, 73456625N, 976012545, Calle Pedro Cerbuna, 656241569, 22, 8)

Estarfa as{ afirmando que existe un alumno llamado Arturo, tiene 22 afios y tiene una nota media de 8. En
este caso la relacion ESTUDIANTE esta representando hechos de una entidad, un alumno, pero puede
ocurrir que represente hechos sobre una relacion entre dos entidades. Por ejemplo, en la relacién

ESPECIALIZACION(Estudiante_DNI, Codigo_departamento)

4 Capitulo 1. El modelo relacional

Cada tupla de esta relacion esta correlacionando cada alumno con el departamento de su especializacion.

Otra interpretacion de un esquema de relacion es como si fuera un enunciado. Las tuplas que perte-
necen a la relacion son aquellas cuyos valores satisfacen dicho enunciado.

1.3. Base de datos relacional

Definicion. Una base de datos relacional DB de S es un conjunto de estados de relacion
DB = {ry,...,r,} donde cada r; satisface las restricciones de integridad.

Dicho de otro modo, una base de datos relacional es un conjunto de relaciones, una por cada esque-
ma de relacién que exista en el esquema de base de datos. Si un estado cumple todas las restricciones se
denomina estado vélido, en su defecto, se denomina no vdlido. En algunas ocasiones se denomina como
estado de la base de datos.

En una base de datos relacional las diferentes relaciones interactdan, se interconectan, comparten
informacién unas con otras. Para comprender cémo se relacionan hemos definido los conceptos de es-
quema y estado de base de datos.

En algtin caso es posible encontrar que dos conceptos reales distintos hayan sido llamados de igual
manera en relaciones diferentes. En el ejemplo anterior DNI y Estudiante_DNI representan lo mismo, el
nimero del DNI de cada alumno. Por otro lado, también podria ser posible que en diferentes relaciones
el mismo concepto real es llamado de diferente manera. Esto dltimo es importante, ya que el mismo
concepto real puede ejercer un rol distinto dentro de una misma relacion.

Ejemplo 1.1. En la siguiente relacién de los trabajadores de una empresa:
EMPLEADOS(Nombre, DNI, Fecha_nac, Direccion, Sexo, Salario, Supervisor_DNI, Num_Dpto)

A cada empleado se le asigna a un superior, con lo cual, para distinguir el DNI de cada trabajador
con el Supervisor_DNI de su superior asignado, se han creado dos atributos diferentes para representar
el mismo concepto real, el nimero de identificacidn.

Las relaciones descritas a continuacién, junto con la relacioén presentada EMPLEADOS, conforman
la base de datos de una empresa, sobre la cual trabajaremos en los siguientes capitulos.

DEPARTAMENTOS (Dnombre, Num_Dpto, Jefe_DNI, Jefe_fecha_comienzo)
DEPTO_LOCALIZACION (Dnum, Dlocalizacion)

Donde en la relacion DEPARTAMENT OS definimos el nombre y niimero de identificacién del departa-
mento, y la fecha de nacimiento y el nimero de identificaion del jefe de dicho departamento.
En DEPTO_LOCALIZACION el nimero de identificacién y la localizacién de cada departamento.

PROYECTOS (Pnombre, Pnum, Plocalizacion, Dnum)
TRABAJA_EN (Emp_DNI, Pnum, Horas)
DEPENDIENTES (Emp_DNI, Nombre_dependiente, Sexo, Fecha_nac)

Larelaciéon PROY ECT OS determina el nimero y nombre de los proyectos, ademds de su localizacién y el
nimero de departamento que lo controla. En TRABAJA_EN el nimero de indentificacién del empleado,
el nimero del proyecto y el nimero de horas que invierte en dicho proyecto. Finalmente, la relacién
DEPENDIENTES contiene informacion sobre las personas dependientes de cada empleado.

Este ejemplo, asi como otros empleados a lo largo de este trabajo, ha sido extraido del libro de
Elmasri y Navathe Fundamentals of database systems [6].

TFG - Pablo Aranda Luna

Nombre DNI Fecha_nac Direccion Sexo | Salario | Supervisor_DNI | Num_Dpto
Juan 123456789 | 09-01-1965 | 731 Fondren, Houston | M 30.000 333445555 5
Fran 333445555 | 08-12-1955 638 Voss, Houston M 40.000 888665555 5

Alicia | 999887777 | 19-01-1968 | 3321 Castle, Spring F 25.000 987654321 4
Jennifer | 987654321 | 20-06-1941 291 Berry, Bellaire F 43.000 888665555 4
Ramén | 666884444 | 15-09-1962 | 975 Fire Oak, Humble | M 38.000 333445555 5

Julia 453453453 | 31-07-1972 | 5631 Rice, Houston F 25.000 333445555 5
Ahmad | 987987987 | 29-03-1969 | 980 Dallas, Houston M 25.000 987654321 4
Jaime | 888665555 | 10-11-1937 | 450 Stone, Houston M 55.000 NULL 1
EMPLEADOS
Dnum | Dlocalizacion

1 Houston Dnombre Num_Dpto | Jefe DNI | Jefe fecha comienzo

4 Stafford Investigacién 5 333445555 22-05-1988

3 Bellaire Administracion 4 987654321 01-01-1995

Oficinas Centrales 1 888665555 19-06-1981
5 Sugarland
5 Houston DEPARTAMENTOS
DEPTO_LOCALIZACION
Pnombre Pnum | Plocalizacion | Dnum
Emp_DNI | Pnum | Horas ProductoX 1 Bellaire 5
123456789 1 325 ProductoY 2 Sugarland 5
123456789 2 1.5 ProductoZ 3 Houston 5
666884444 3 40.0 Digitalizacion 10 Stafford 4
453453453 1 20.0 Reorganizacién 20 Houston 1
453453453 2 20.0 Nuevos beneficios 30 Stafford 4
333445555 2 10.0
333445555 | 3 | 100 PROYECTOS
333445555 10 10.0
333445555 20 10.0 Emp_DNI | Nombre_Dependiente | Sexo | Fecha_nac
999887777 30 30.0 333445555 Alicia F 05-04-1968
999887777 10 10.0 333445555 Teodoro M | 25-10-1983
987987987 10 35.0 333445555 Teresa F 03-05-1958
987987987 30 5.0 987654321 Aner M | 28-02-1942
987654321 30 20.0 123456789 Miguel M | 04-01-1988
987654321 20 15.0 123456789 Alicia F 30-12-1988
888665555 20 NULL 123456789 Isabel F 05-05-1967
TRABAJA_EN DEPENDEINTES
Cuadro 1.1

Este es un estado del esquema de base de datos relacional de la compaiiia, ademaés es el ejemplo que

vamos a emplear en futuros capitulos y sobre el cual realizaremos diferentes consultas.

Capitulo 2

El algebra relacional

En una base de datos es importante conocer su estructura, como se organizan y almacenan los datos,
pero ademds es necesario conocer como interactuar con dicha informacion.
En este capitulo nos adentraremos en el algebra relacional, lenguaje formal del modelo relacional, el
cual permite la manipulacién de bases de datos, y es empleado en la elaboracién y optimizacién de las
respuestas de las consultas de los usuarios. Vamos a explicar cdmo funcionan sus operaciones bdsicas.

El élgebra relacional estd constituido principalmente por un conjunto de operaciones que actian
sobre los esquemas de relacion de la base de datos.
Podemos dividir estas operaciones en dos grupos:

= Las operaciones especificas de bases de datos: SELECT, PROJECT y JOIN.

= Las operaciones definidas en la teoria matemadtica de conjuntos: UNION, INTERSECCION, DI-
FERENCIA, y PRODUCTO CARTESIANO. Estas operaciones son onsecuencia de considerar
una relacién como un conjunto de tuplas.

Cabe destacar que los resultados de las operaciones del dlgebra relacional son nuevas expresiones
de élgebra relacional, las cuales constituyen una nueva relaciéon. Esto permite una gran variedad de
posibilidades, ya que habilita la anidacién y combinacién de las diferentes operaciones.

2.1. Operaciones unarias

Las operaciones unarias son aquellas que actian tnicamente en una de las relaciones de la base de
datos. En este grupo vamos a explicar las operaciones SELECT y PROJECT.

2.1.1. El operador SELECT

La operacion SELECT escoge un subconjunto de tuplas de una relacién que satisface las condiciones
de seleccidn. La labor se lleva a cabo comprobando cada tupla de manera individual si cumple o no dicha
condicién. La accidn de este operador puede verse como una particién del conjunto de tuplas en dos
subconjuntos: el conjunto de tuplas que satisfacen la condicién y aquel que engloba a las tuplas que no
satisfacen la condicién. De manera formal la operaciéon SELECT se define:

O <Condicién de seleccién> (R)

Donde ¢ denota la operacién, R es el esquema de relacidn en el que se aplica la accidn, la cual es
una expresion de dlgebra relacional y cuyo resultado es una relacién con los mismos atributos que R.
La condicién de seleccién es una expresion booleana formada por una comparacién entre dos atributos
de la relacién o entre un atributo y una constante, los comparadores empleados son: [=, <, <,>, >, #].

7

8 Capitulo 2. El dlgebra relacional

También es posible conectar mas de una condicién usando los operadores 16gicos: [A,V,]

El grado de la relacién resultante de la acciéon de SELECT es el mismo que el de la relacién original
R, ademads su nimero de tuplas serd siempre menor o igual al niimero de R, es decir:

[oc(R)| < [R|

Ejemplo 2.1. Para seleccionar los empleados que se encuentran en el departamento 4 podriamos hacerlo
usando SELECT de la siguiente manera:

ONum_Dpto = 4(EMPLEADOS)
Ejemplo 2.2. Aquellos trabajadores con un salario mayor a 30.000€:
OSalario >30.000(EMPLEADOS)

Ejemplo 2.3. Teniendo en cuenta que, al ejecutar la operacién sobre una relacién da como resultado
también una relacion, permite anidar varios SELECT, en este caso podemos unir ambas condiciones en
una sola.

ONum_Dpto = 4(Osalario >30.000(EMPLEADOS)) = 6(Num_Dpto = 4) A (Salario >30.000) (EMPLEADOS)
Notar también que SELECT es una operacién conmutativa.

ONum_Dpto = 4(OSatario >30.000(EMPLEADOS)) = Gsatario >30.000(ONum_Dpto = 4(EMPLEADOS))

2.1.2. El operador PROJECT

La operacién PROJECT actia sobre una tnica relacién escogiendo un grupo de atributos y eliminan-
do el resto, manteniendo el nimero de tuplas. Es decir, este operador proyecta la relacién sobre un grupo
de atributos. Si se piensa en una relacién como una tabla, la operacién SELECT realiza una particién
horizontal, mientras que la operacién PROJECT ejecuta una particién vertical. La definicion formal del
operador es:

T <Lista de atributos> (R)

Donde 7 representa el operador y la lista de atributos es el grupo sobre el cual queremos proyectar
la relacién. Del mismo modo que en el caso de la operacién SELECT, R es en general una expresion de
dlgebra relacional, el caso mds bdsico es simplemente un esquema de relacion.

La relacion resultado de la operacion posee el mismo grado que nimero de atributos haya en la lista,
ordenados del mismo modo que aparecen en ella, y su ndmero de tuplas es menor o igual al nimero de
tuplas en R.

Ejemplo 2.4. En nuestra relacién ejemplo de empleados, listamos tinicamente los atributos de nombre y
salario de la relacién.
nNombre, Salario (EMPLEADOS)

Ejemplo 2.5. Se pueden combinar las operaciones de SELECT y PROJECT. Si queremos obtener el
nombre y el salario de los empleados que trabajan en el departamento 4, podemos anidar SELECT y
PROJECT de la siguiente manera:

77:N0mbre, Salario (GNum_Dpto =4 (EMPLEADOS))

Por otro lado, podemos mostrar explicitamente el orden de operaciones mediante relaciones interme-
dias y usando la operacion de asignacién (<).

DEP4_EMP < Gum Dpto = 4(EMPLEADOS)
RESULTADO < Ziombre, Salario(DEP4_EMP)

TFG - Pablo Aranda Luna 9

En algunos casos podemos necesitar cambiar el nomre de algin atributo o incluso de una relacién.
En estas situaciones usamos la operacién unaria RENOMBRAR, la cual se define formalmente como:

PS(B,,Bs,....B,) (R)

Donde p denota al operador, S es el nuevo nombre del esquema del relacién, By, By, ..., B, la lista de
los nuevos nombres de los atributos, y R el esquema de relacién que queremos renombrar. Si los atributos
de RsonAy,...,A,, el nombre del atributo A; es sustituido por B; con i € [1,n].

Si el nombre del esquema de relacién no se quiere modificar, o ningtin atributo cambia su nombre,
se pueden omitir aquellos elementos que no vayan a ser alterados por la operacion.

2.2. Operaciones binarias

Las operaciones binarias son aquellas que actian sobre dos relaciones de la base de datos. En este
grupo encontramos operaciones de la teoria de conjuntos: unién, interseccién, diferencia de conjuntos
y producto cartesiano. En el caso de las tres primeras es necesario que las dos relacionas sobre las que
actdan sean unién compatibles.

Definicion. Dos relaciones R(Ay,...,A,) y S(Bi,...,B,) son unién compatibles si tienen el mismo grado
y dom(A;) = dom(B;) coni € [1,n].

Es decir, cada relacién tienen el mismo nimero de atributos y cada pareja de atributos tiene el mismo
dominio.

2.2.1. El producto cartesiano

El producto cartesiano opera sobre dos relaciones combinando cada tupla de una relacién con cada
una de las tuplas de la otra relacién, y ademads no es necesario que ambas relaciones sean unién compa-
tibles. La operacion se denota x.

En general, definimos el producto cartesiano como una operacion sobre dos relaciones R(Ay, ...,A,)
y S(Bi,...,Bn), y cuyo resultado es una relacién Q(Ay,...,An, B1,...,B,) de grado n+ m donde cada una
de las tuplas son una combinacion de una tupla de R y otra tupla de S.
Sea n, el nimero de tuplas de R, y andlogamente n, el niimero de tuplas de S, entonces el nimero de
tuplas de Q serd el producto de ambos:

O] = |R]-[S] = n,-ns

El producto cartesiano como operacién no tiene un gran interés, es mucho mads util cuando va seguido
de la operacion SELECT.

Ejemplo 2.6. Si queremos obtener como respuesta una lista de los dependientes de cada empleada:

MUJERES_EMP < Osexo = ' (EMPLEADOS)
NOMBRES_EMP < 7inombre, pn1(MUJERES_EMP)
DEPENDIENTES_EMP < DEPENDIENTES x NOMBRES_EMP
DEPENDIENTES_REALES < opni—gmp_pni(DEPENDIENTES_EMP)
RESULTADO <~ 7iNombre, Nombre_dependiente(DEPENDIENTES_REALES)

En primer lugar se seleccionan las tuplas de las empleadas, y a continuacidn se proyectan tinicamente
sus nombres y DNI. Seguidamente, la relacion NOMBRES_EMP que hemos obtenido es cruzada con la
de DEPENDIENTES, pero la relacién resultante no tiene mucho interés, por tanto después realizamos
una seleccién para elegir inicamente aquellas tuplas en las que el nimero de DNI coincida en ambos

casos. Finalmente se proyectan los atributos que queremos obtener como respuesta, que son el nombre
de la empleada con el nombre de su dependiente.

10 Capitulo 2. El dlgebra relacional

2.2.2. La operacion JOIN

La operacién JOIN es una de las mds importantes en el procesamiento de bases de datos relacionales,
ya que permite manipular y trabajar con las interrelaciones que existen entre las diferentes relaciones.
Se puede describir como un producto cartesiano entre dos relaciones seguido del operador SELECT. De
manera formal el operador JOIN sobre dos relaciones R(A1,...,A,) y S(B1,...,By) se define como:

R > <Condicién de unién> S

Donde < representa el operador. El resultado es una relacién Q con n+ m atributos, igual que si fuera
el producto cartesiano, con la excepcién de que las dnicas tuplas que contiene son aquellas que satisfacen
la condicién de unién. Esta condicion, en general, es de la forma:

< Condicién; > A < Condicién; > A ... A < Condicion,, >

Cada una de estas condiciones se expresa como: A; 6 B; con A; un atributo de R, B; un atributo de S,
dom(A;) = dom(B;), y 6 uno de los operadores [=, <, <,>,>, #]|.

La operacién JOIN deriva en una relacién con un nimero de tuplas entre cero y n, - ny dependiendo del
nimero de tuplas que satisfagan la condicién de unién.En la practica el uso mas habitual del operador es
con condiciones de unién de igualdad, en estos casos donde el inico operador de comparacién es = la
operacién se denomina EQUIJOIN.

Ejemplo 2.7. Anteriormente se ha empleado un producto cartesiano entre las relaciones DEPENDIENTES
y NOMBRES_EMP, y a continuacién un SELECT para tomar Unicamente las tuplas en las cuales DNI
y Emp_DNI coincidiesen:

DEPENDIENTES_EMP < DEPENDIENTES x NOMBRES_EMP
DEPENDIENTES_REALES < 6pNi—Emp_pni1(DEPENDIENTES_EMP)

Podemos reemplazar estas dos operaciones con un solo JOIN, del siguiente modo:

DEPENDIENTES_REALES < DEPENDIENTES b<pni = Emp_oni NOMBRES_EMP
2.3. Ejemplos

Una vez presentados los operadores del dlgebra relacional, para facilitar la comprensién de su fun-
cionamiento y cdmo interactian entre si, veamos algunos ejemplos:

Consulta 1. Obtener el nombre y la direccién de todos los empleados que trabajan en el departamento
“Investigacion”.

INVESTIGACION_DEPTO <— Opnombre="Tnvestigacisn’ (DEPARTAMENTOS)
INVESTIGACION_EMP <« INVESTIGACION_DEPTO t<iNum_Dpto=Num_Dpto EMPLEADOS
RESULTADO < ZiNombre, Direccion (INVESTIGACION_EMP)

Podriamos escribir la consulta en una sola linea:
TtNombre, Direccion (GDnombre:’Investigacién’ (DEPARTAMENTOS MNumepto:Numepto EMPLEADOS)

Localizamos, en primer lugar, el departamento de investigacion, después realizamos un join con la
relacién de los empleados para conocer cudles de ellos trabajan en dicho departamento, terminamos lis-
tando los atributos pedidos.

Hay algunas ocasiones en las cuales los atributos que han de ser iguales en la condicién de unién de
un JOIN tienen el mismo nombre, en esos casos tenemos lo que se conoce como NATURAL JOIN, se
denota por (), aunque también se puede representar con el operador JOIN sin una condicién de unién.

INVESTIGACION_EMP «+ INVESTIGACION_DEPTO = EMPLEADOS

Al efectuar esta consulta en el estado del esquema de base de datos del Cuadro 1.1 el resultado es:

TFG - Pablo Aranda Luna 11

Nombre Direccion
Juan 731 Fondren, Houston
Fran 638 Voss, Houston

Ramoén | 975 Fire Oak, Humble
Julia 5631 Rice, Houston

Resultado Consulta 1.

Consulta 2. Para cada proyecto localizado en “Stafford”, obtener el niimero del proyecto, su departa-
mento correspondiente, y el nombre, direccion y fecha de nacimiento del jefe de departamento.

PROY_STAFFORD < Opjocalizacion—"Stafford’ (PROYECTOS)
DEPTO_CORRESP «- PROY_STAFFORD ><pjum=Num_ppto DEPARTAMENTOS
PROY_DEPTO_JEFE <- DEPTO_CORRESP ><jefe_pNi=Emp_pN1 EMPLEADOS
RESULTADO <~ 7tpyum, Dnum, Nombre, Direccion, Fecha_nac(PROY_DEPTO_JEFE)
RESULTADO_RENOM <~ p(Num_proyecto, Num_depto, Nombre_jefe, Direccion_jefe, Fecha_nac_jefe)(RESULTADO)

Seleccionamos todos los proyectos de “Stafford”, después los unimos con sus departamentos, luego
con los jefes de departamento. Y finalmente listamos los atributos requeridos, renombrando en el resul-
tado cada uno de ellos para una mejor comprension. El resultado de esta consulta aplicado a la base de
datos del Cuadro 1.1 es:

Num_proyecto | Num_depto | Nombre_jefe | Direccion_jefe Fecha_nac_jefe
Digitalizacién 4 Fran 638 Voss, Houston 8-12-1955
Nuevos beneficios 4 Fran 638 Voss, Houston 8-12-1955

Resultado Consulta 2.

Consulta 3. Encontramos el nimero de los proyectos en los que trabajan alguien que se llame “Juan”,
ya sea un empleado o el jefe del proyecto.

JUANES <~ ONombre—"Juan’ (EMPLEADOS)
JUAN_TRABAJA_PROY <~ ppum(TRABAJA_EN i< g, pNi—pNT JUANES)
JEFES < TNombre, Num_Dpto(DEPARTAMENTOS 14 jefe pNI—Emp Nt EMPLEADOS)
JUAN_JEFE_DEPTO <~ GNombre—"Juan’ (JEFES)
JUAN_JEFE_PROY ¢~ ppum (JUAN_JEFE_DEPTO b<iNum Dpto—Dnum PROYECTOS)
RESULTADO < JUAN_TRABAJA_PROY U JUAN_JEFE_PROY

En primer lugar obtenemos los empleados que se llaman Juan y seguidamente listamos los nimeros
de los proyectos en los que trabajan. Por otro lado obtenemos los jefes y sus nimeros de departamen-
tos, después nos quedamos con aquellos que se llaman Juan, y finalmente obtenemos los niimeros de
los proyectos que dirigen. Una vez que tenemos los nimeros de los proyectos en los que hay un Juan
trabajando y los que estan dirigidos por alguien llamado Juan, concluimos uniendo ambos conjuntos de
soluciones. Al aplicar esta consulta, nuevamente, al estado del esquema de base de datos del Cuadro 1.1
nos devuelve el siguiente resultado:

Pnum
1
2

Resultado Consulta 3.

Capitulo 3

Un método heuristico

Una vez presentados el modelo y el dlgebra relacional disponemos de las herramientas necesarias
para describir métodos que se pueden seguir para conseguir optimizar las respuestas a las consultas del
lenguaje SQL. El término optimizacién, en este contexto, no significa encontrar la ejecuciéon 6ptima de
una consulta, sino que se trata de alcanzar, con la informacién disponible, una estrategia razonablemente
eficiente en un tiempo razonable. Para calcular la mejor opcidén, en muchas ocasiones, se pierde gran
cantidad de tiempo y esfuerzo, lo que la convierte en algo ineficiente.

Cuando un sistema de gestién de bases de datos recibe una consulta externa, sobre la informacién
que posee, lleva a cabo los siguientes pasos para tratar de dar una respuesta de manera eficiente:

Consulta

|

’ Escaneo, andlisis, y validacién ‘

!

Forma inmediata de una consulta

|

’ Optimizador de consulta ‘

!

Ejecucion del plan

|

’ Generador del codigo ‘

!

Cédigo que ejecuta la consulta

|

Procesador de base de datos en tiempo de ejecucion

!

Resultado

Figura 3.1: Pasos para procesar una consulta.

Cuando el sistema recibe una consulta SQL la escanea, analiza y valida que los nombres de los
atributos y las relaciones son vélidos en el esquema de la base de datos, después el optimizador de
consulta elige la mejor estrategia de ejecucion para la consulta. Seguidamente el generador de cédigo del
sistema procesa la estrategia y produce el cédigo para ejecutarla. Y finalmente, el procesador de base de
datos en tiempo de ejecucidn es el encargado de efectuar dicho c6digo y obtener el resultado.

Este trabajo se enfoca en explicar qué ocurre en la optimizacion del plan de ejecucion.

En primer lugar, una consulta SQL es traducida en una expresién de dlgebra relacional, seguidamente

13

14 Capitulo 3. Un método heuristico

se representa como un arbol de consulta y finalmente se optimiza. Existen varias maneras de llevar a
cabo tal proceso, una de las técnicas mas importantes es tratar de estimar el coste de diferentes estrategias
de ejecucidn de una consulta y elegir aquella que lo minimice.

En nuestro caso nos centraremos en desarrollar un método heuristico, el cual se basa en diferentes
reglas que ordenan las operaciones dentro de la estrategia de ejecucion de las consultas, con el fin de
minimizar el tiempo de respuesta.

3.1. Consultas SQL a algebra relacional
El lenguaje SQL se traduce en expresiones de dlgebra relacional de la siguiente manera:

= En la cldusula WHERE de una consulta SQL se especifica la operacion SELECT, por ejemplo la
consulta:

SELECT =
FROM EMPLEADOS
WHERE Num_Dpto = 4 AND Salario > 30.000 ;

Se traduce en la expresion: 6(Num_Dbpto = 4) A (Salario >30.000) (EMPLEADOS).

» En la cldusula SELECT se especifica la operacion PROJECT, por ejemplo, si queremos como
respuesta de la anterior consulta tinicamente los nombres de los empleados la consulta SQL es:

SELECT Nombre
FROM EMPLEADOS
WHERE Num_Dpto = 4 AND Salario > 30.000 ;

Esta consulta se traduce en dlgebra relacional de la siguiente manera:
TeNombre (O(Num_Dpto = 4) A (Salario >30.000) (EMPLEADOS))

= En SQL se emplea la cldusula JOIN dentro de la cldusula FROM para cruzar la informacién de
dos relaciones, por ejemplo:

SELECT =
FROM (DEPENDIENTES JOIN NOMBRES_EMP ON DNI = Emp_DNI);

Otra manera es especificar la condicién de unién en la cldusula WHERE:

SELECT =
FROM DEPENDIENTES, NOMBRES_EMP
WHERE DNI = Emp_DNI;

Si en la clausula WHERE no se especifica ninguna condicién el resultado que obtenemos es el
producto cartesiano de ambas relaciones.

Estas dos consultas de SQL se traducen en la misma expresion de dlgebra relacional, la cual es:

DEPENDIENTES ><ipnj = Emp_pnt NOMBRES_EMP

= Las cldusulas UNION, INTERSECT y EXCEPT corresponden a las operaciones de unidn, inter-
seccidn y diferencia de conjuntos, las cuales estdn definidas en SQL tal y como las conocemos.

TFG - Pablo Aranda Luna 15

Normalmente las consultas SQL estan formadas por varios bloques, son consultas anidadas, por tanto
se debe traducir cada bloque por separado y optimizar cada uno de ellos.

Ejemplo 3.1. Consideremos la siguiente consulta sobre la relacion EMPLEADOS, la cual obtiene el
nombre y DNI de los empleados que cobren mas que Juan:

SELECT Nombre, DNI

FROM EMPLEADOS

WHERE Salario > (SELECT Salario
FROM EMPLEADOS
WHERE Nombre = ’Juan’);

Luego, los dos bloques a optimizar son:

SELECT Salario
FROM EMPLEADOS
WHERE Nombre = "Juan’;

Este bloque devuelve el salario de Juan.

SELECT Nombre, DNI
FROM EMPLEADOS
WHERE Salario > c;

Donde c representa el resultado del primer bloque, el salario de Juan. Las expresiones de dlgebra rela-
cional correspondientes al primer bloque y al segundo, respectivamente son:

TtSalario (ONombre="Juan’ (EMPLEADOS))

nNombre, DNI (GSa]ari0>c (EMPLEADOS))

A continuacién, cada bloque debe ser evaluado y optimizado por separado. Notar que el primer bloque
solo debe ser evaluado una vez, el cual serd usado en la optimizacién del segundo bloque como una
constante.

3.2. Arboles de consulta

Durante el proceso de optimizacion, una herramienta que permite representar, analizar y transformar
las consultas SQL mediante la descomposicion de las expresiones algebraicas en operaciones basicas son
los arboles de consulta. En el procedimiento que se sigue para dar respuestas a una consulta relacional
(Figura 3.1), los arboles de consulta son empleados por el optimizador de consulta en la elaboracion del
plan de ejecucion.

Definicion. Un arbol de consulta es una representacion grafica y estructurada de una expresion de algebra
relacional.

En un arbol de consulta las relaciones de entrada son representados como nodos heoja, y las diferentes
operaciones de la expresion algebrdica son denotadas como nodos internos. Las operaciones de los
nodos se ejecutan cuando sus operandos estdn disponibles y una vez ejecutada la operacion el nodo es
sustituido por su resultado. La ejecucion de los drboles de consulta comienza por los nodos hoja y termina
cuando se ejecuta el nodo raiz, el cual representa la dltima operacién de la consulta y su aplicacion da
el resultado final.

16 Capitulo 3. Un método heuristico

TN ombre, Direccion

ODnombre="Investigacién’

>INum_Dpto=Num_Dpto

DEPARTAMENTOS EMPLEADOS

Figura 3.2: Arbol de Consulta 1.

Ejemplo 3.2. Veamos como es el arbol de consulta de una expresion de dlgebra relacional. Por ejemplo,
tomamos la expresién de la Consulta 1, con la que queremos obtener el nombre y direccién de todos los
empleados que trabajan en el departamento “Investigacion”.

N ombre, Direccion (ODnombre="Investi gacién’ (DEPARTAMENTOS D<]Num_DptO:Num_Dpto EMPLEADOS)

El arbol de consulta correspondiente es:

La primera operacién en ser ejecutada en este drbol de consulta es la operacion JOIN entre las re-
laciones DEPARTMENTOS y EMPLEADOS, después se aplica la operacion SELECT y finalmente se
ejecuta un PROJECT. De manera informal, las operaciones en un arbol de consulta se ejecutan de abajo
hacia arriba.

3.3. Reglas y algoritmo de transformacion

En la optimizacién de las consultas nuestro interés se centra en transformar las expresiones de al-
gebra relacional en otras equivalentes, cuyo resultado contenga la misma informacién que la expresién
original, aunque pueda variar el orden de los atributos.

Presentamos en esta seccién una serie de reglas para transformar estas expresiones de dlgebra rela-
cional en otras equivalentes.

1. Secuencia de o.
Oci Aoy A A ey (R) = O (O, (- (00, (R))-.))

Demostracion. Lo probamos por doble contenido.

Seax € Oy pey A ... nc,(R), entonces el elemento x cumple todas las condiciones c, ..., c,. Obvia-
mente x € o, (R), pero x también cumple ¢,_1, luegox € o, (0., (R)), repitiendo este razona-
miento llegamos a que x € o, (0, (...(0, (R))...))

Ahora, sea x € o, (0, (...(0,(R))...)), luego x € o, (...(0, (R))...) y cumple la condicién ¢y, por
lo tanto x € o, (...(0,(R))...) y cumple las condiciones ¢y, c,. Reiterando dicha 16gica llegamos a
que x € R y cumple todas las condiciones cy, ¢, ..., ¢y, €8 decir, X € O Ay A .. A e, (R). L]

2. Conmutatividad de o.
¢, (0, (R)) = 0, (0 (R))

TFG - Pablo Aranda Luna 17

Demostracion. Siendo que el operador l6gico de conjuncién es conmutativo, por la Regla I:

Oc, (66‘2 (R)) =0c Ay (R) = O Ay (R) = 662(601 (R))

3. Secuencia de 7.

Sean Lista; C Lista, C ... C Lista,,. Entonces:
77:Lista| (TCListaz (---(TCListan (R))) = TcListm (R)

Demostracion. Es facil ver que el resultado de la operacion PROJECT proyectando los atributos
Lista serd igual con independencia de los atributos que contenga el esquema de relacién sobre el
que actda, siempre que éste contenga al menos los atributos que contiene la lista de dicha opera-
cion. O

4. Conmutar ¢ con 7.
Si la condicién de unién ¢ involucra Unicamente los atributos Aj,A»,...,A,, entonces ambas ope-
raciones conmutan de la forma:

Ay As.... A, (Oc(R)) = 0(Ta, ..., (R))

Demostracion. Veamos en primer lugar que: s, (0.(R)) = 0.(74,(R))

Las tuplas que contiene o.(R) son todas aquellas contenidas en la relacién R que cumplen la
condicion de seleccién c. Por lo tanto, el conjunto 74, (0.(R)) contiene inicamente el atributo A;
de todas las tuplas de R que satisfacen c.

Por otro lado, m4, (R) proyecta solamente el atributo A; de R, si aplicamos la operacion SELECT
el resultado es o, (74, (R)), un conjunto que contiene tnicamente el atributo A; de todas las tuplas
de R que satisfacen c.

Ahora, haciendo uso de lo probado:

Ay As,eo Ay (Oc(R)) = Tay ay A, (T4, (Oc(R))) = Tay ..., (Oc(Ta, (R)))

Repetimos el proceso con el resto de atributos Ay, ...,A,—1, y llegamos finalmente a:

A, As.... A, (Oc(R)) = Oc(Ta, 4.4, (R))

5. Convertir una secuencia de 6 y X en un <.

0.(R x S§)=Rr<,. S

Demostracion. Por la definicidn de la operacién JOIN se da la igualdad. Ambos conjuntos con-
tienen los elementos del producto cartesiano entre ambas relaciones que cumplen la condicién de
union c. O

6. Conmutatividad de <.
R, S=S1<. R

Notar que el orden de los atributos en la relacién resultado podria no ser el mismo que en las
relaciones originales. Andlogo para el caso del producto cartesiano.

18

10.

Capitulo 3. Un método heuristico

Demostracion. Teniendo en cuenta la conmutatividad del producto cartesiano, salvo reordenacién
de los atributos:
Ri<; S=0.(RxS)=0.(SXR) =S R

Conmutacion de o con <.
0.(R<S)=(0.(R)) =S

Andlogo para el caso del producto cartesiano.

Demostracion. Six € o.(R1<S), entonces x € R<1 S y ademds cumple c. Ahora, si x € (0,(R))
entonces x € Ry cumple la condicion ¢, luego si se ejecuta una operacion JOIN entre este conjunto
y la relacién S tenemos que sus elementos pertenecerdn a Ry S, y ademds cumplirdn la condicién
c. O

. Conmutar 7 con <.

Sea L una lista de atributos L = A,A»,...,A,,B1,B>,...,B,, donde Aj,A»,...,A, son atributos de
una relacién Ry By, B>, ..., B, atributos de una realacién S, entonces si la condicién de unién ¢
solo involucra atributos de L, las operaciones conmutan de la siguiente manera:

T (R o< S) = (T, 4,4, (R)) e (7B, 5,,....B,, (S))
Demostracion.
L (R<. S) = m (0. (R%xS)) = m.(0.(R) x 0,(5))

Teniendo en cuenta ahora que la operacién PROJECT es distributiva respecto del producto carte-
siano, ya que no modifica la estructura de la relacion. Se tiene entonces:

7L(0(R) X 0.(S)) = m.(0c(R)) X 7L(0:(S))

Sea A =A1,As,...,A, y B=B1,B,,...,B,, entonces L = AU B la operacién PROJECT sobre la
relacién R de los atributos de L serd igual que si proyecta el conjunto A, ya que los atributos de
B no pertenecen al esquema de relacién de R, andlogamente sobre la relacién S Gnicamente se
proyectan los atributos contenidos en la lista B.

Ademais, aplicando la Regla 4 que implica la conmutaciéon de PROJECT y SELECT, se tiene:

71(6:(R)) x 1(0(S)) = 0.(Ta(R)) x 0.(M(R)) = 6.(na(R) x 75(S))

Finalmente, aplicando la Regla 5 tenemos la equivalencia buscada. O

Asociatividad de <, x, U, N.
Sea 0 una operacion de las cuatro cualquiera, entonces:

(ROS)OT=RO(SOT)

Demostracion. Se sigue de la propia definicion de las operaciones, teniendo en cuenta que la
operacion JOIN se fundamenta en el producto cartesiano, y ésta es una operacién que cumple la
propiedad asociativa. O

Conmutar ¢ con las operaciones de conjuntos.

La operacion SELECT conmuta con la unidn, interseccion y la diferencia de conjuntos. Sea 8 una
operacion cualquiera de las tres, entonces:

6.(R0S)=(0.(R)) 0 (c.(S5))

TFG - Pablo Aranda Luna 19
11. Conmutacion de 7 con U.

(R U S) = (m(R)) U (m.(S))

Demostracion. Como la operacién PROJECT no repercute en la estructura de la relacién no im-
porta su lugar en el orden de ejecucion de las operaciones. O

12. Distributividad de o con la diferencia de conjuntos.

o.(R — S)=0.(R) — o.(5)

Pero esta regla podria verse aplicando dnicamente la operacién SELCT sobre el esquema de rela-
cién R:

o.(R—S)=0.(R) — S

13. La operacién ¢ sobre solo uno de los argumentos de la interseccion.
Si los atributos de la condicion de seleccion ¢ pertenecen al esquema de relacién R, entonces:

o (RNS)=0c.(R) NS

Demostracion. Como los atributos que involucra ¢ s6lo pertenecen al esquema de relacién de R
no tiene sentido la operaciéon SELECT con la condicién ¢ sobre la relacion S.

Six € 0.(R N S) entonces x € RN S, y ademds cumple ¢. Por otro lado, si x € 6.(R) se tiene que
x € Ry cumple ¢, y por lo tanto, sea x € 6,.(R) N S entonces ademds pertenece a S, luego tenemos
x € RN Sy cumple la condicién de unién c. Dandose asi la igualdad. O

14. Otras transformaciones triviales.
Si S no contiene ningtin elemento, entonces: RUS =RUO =R.
Si la condicién de seleccién ¢ se cumple en todas las tuplas de la realcién R, entonces: 6.(R) = R.

3.3.1. Optimizacion heuristica

Una vez presentado el dlgebra relacional, los drboles de consulta y las reglas para la transformacién
equivalente de expresiones de dlgebra relacional, estamos en disposicién de describir un algoritmo que
modifique un arbol de consulta inicial y lo convierta en uno més eficiente. Los pasos son los siguientes:

1. Convertir cada operaciéon SELECT que posea una condicién de seleccién conjuntiva en una se-
cuencia anidada de operaciones SELECT, Regla 1.

2. Usando las transformaciones de las Reglas 2, 4, 7 y las Reglas 10, 12, 13 mover cada operacioén
SELECT lo mas abajo posible del arbol de consulta. Por ejemplo, si la condicién de seleccion de
SELECT posee atributos de una sola relacién, dicha operacidn se situa inmediatamente después
del nodo que representa la relacion. Si, por el contrario, la condicién involucra dos relaciones se
situa justo después de la operacién JOIN que involucre ambas.

3. Empleando las Reglas 6, 10 reordenar los nodos hoja del arbol de consulta, con el objetivo de
ejecutar en primer lugar las operaciones SELECT mds restrictivas, es decir, aquellas cuyo resultado
posea el menor nimero de tuplas.

Al realizar este reajuste se debe asegurar que no cause un producto cartesiano entre las diferentes
relaciones, es decir, si las dos relaciones que poseen una condicioén de seleccién mds restrictiva
no tienen una operacién SELECT con una condicién de unién entre ellas, lo mejor es cambiar el
orden de los nodos hoja para evitar un producto cartesiano entre ellas.

20 Capitulo 3. Un método heuristico

4. Reemplazar cada producto cartesiano seguido de una operacién SELECT por una operacién JOIN,
si la condicién del SELECT representa una condicién de unidn, Regla 5.

5. Usando las Reglas 3, 4, 8, 11 mover cada operacién PROJECT los mas abajo posible en el arbol
de consulta, ademads solo se deben proyectar aquellos atributos que aparecen en el resultado de la
consulta, y aquellos que se necesiten para ejecutar las operaciones intermedias.

6. Identificar posibles subarboles de consulta que puedan ser ejecutados por un tnico algoritmo.

En resumen, el objetivo del algoritmo es conseguir ejecutar en primer lugar aquellas operaciones que
reduzcan el tamafio de las relaciones intermedias, reordenando las operaciones SELECT y PROJECT.
Después se intenta evitar cualquier producto cartesiano reordenando los nodos hoja y ajustando el resto
del arbol de consulta.

3.3.2. Optimizacion de arboles de consulta

Una consulta de una base de datos puede ser descrita de varias maneras como expresion de dlgebra
relacional, ya que ésta no es tnica. Cuando se analiza y transforma una consulta SQL, el arbol de consulta
inicial que se obtiene no estd optimizado. El método heurfstico para optimizar una consulta transforma
este arbol de consulta inicial en uno equivalente para que su ejecucion sea mas eficiente.

Esta optimizacién se lleva a cabo siguiendo los pasos del algoritmo que se acaba de presentar y
empleando las reglas de equivalencia ya descritas. Para explicar mejor como se optimiza un drbol de
consulta lo haremos con un ejemplo.

Ejemplo 3.3. Queremos conocer el nombre de los empleados nacidos después de 1957 y que trabajan
en el proyecto “Digitalizacion”. El c6digo SQL de esta consulta es:

SELECT E.Nombre

FROM EMPLEADOS E, TRABAJA_EN T, PROYECTOS P

WHERE P.Pnombre =’ Digitalizacion AND P.Pnum = T.Pnum AND
E.DNI = T.Emp_DNI AND E.Fecha_nac > *31-12-1957’

Tener en cuenta que en SQL, cuando se emplea mds de una relacion y debemos distinguir sus atributos,
se denota cada relacién por una inicial y se escribe delante de cada atributo la relacién a la que pertenece
seguida de un punto. El drbol de consulta inicial correspondiente al c6digo de la consulta es:

TlNombre

c7(Pnombre=’Digitalizacion’) A (Pnum=Pnum) A (DNI=Emp_DNI) A (Fecha_nac >’31-12-1957")

X
X
PROYECTOS
TRABAJA_EN

Figura 3.3

EMPLEADOS

TFG - Pablo Aranda Luna 21

Si este primer arbol fuera ejecutado el resultado ocuparia mucho espacio al tratarse del producto
cartesiano de las tres relaciones. Por tanto, este arbol debe ser transformado en otro equivalente.

Para reducir el tamafio de las relaciones, antes de ejecutar el producto cartesiano, se aplica la ope-
raciéon SELECT en cada relacion, es decir desplazamos las operaciones SELECT lo mds abajo posible
en el arbol. En nuestro caso queremos que la operacion SELECT seleccione la tupla de la relacién
PROY ECTOS correspondiente al proyecto “Digitalizacion”, y filtre unicamente los empleados nacidos
después de 1957 de la relacion EMPLEADOS.

Corresponde con el Paso I del algoritmo, en el cual hemos empleado la Regla I para separar un inico
SELECT con una condicion de seleccion conjuntiva en una secuencia de operaciones. Ademas, en este
mismo 4rbol de consulta se ha aplicado también el Paso 2 usando la Regla 7 para mover cada operacién
SELECT lo mas abajo posible del arbol de consulta.

TlNombre

O(DNI=Emp_DNI)

X

/N

O(Pnum=Pnum) O(Fecha_nac >'31-12-1957")

X EMPLEADOS
G(Pnombre:’ Digitalizacion’) TRABAJA_EN

PROYECTOS

L

Figura 3.4

La siguiente mejora que se puede realizar es reemplazar el producto cartesiano y la condicion de
unién que le sigue en cada caso por la operacién JOIN. Aplicamos el Paso 4 del algoritmo en el cual la
Regla 5 permite transformar el producto cartesiano, entre la relacion TRABAJA_EN y el resultado de se-
leccionar el proyecto “Digitalizacion” de la relacién PROY ECT OS, seguido de una operaciéon SELECT,
en la cual se seleccionan las tuplas en las que coinciden el nimero de proyecto. Se convierte en una
operacion JOIN entre ambas relaciones.

Aplicando estas ideas al drbol de consulta de la Figura 3.4:

22 Capitulo 3. Un método heuristico

TlNombre

>(DNI=Emp_DNI)

N\

>(Pnum=Pnum) O(Fecha_nac >'31-12-1957")

EMPLEADOS
TRABAJA_EN

N

G(Pnombre:’Digitalizacion’)

PROYECTOS

|

Figura 3.5

Un ultimo avance en la eficiencia de la ejecucion del arbol de consulta es aplicar lo antes posible la
operacion PROJECT, se consigue asi que las relaciones intermedias posean el menor nimero de atributos
posible.

En el ejemplo, antes de realizar ninguna operacién JOIN que involucre mds de una relacién se pro-
yectan Gnicamente los atributos, de cada relacién que participa en la consulta, necesarios para realizar las
siguientes operaciones. Es decir, de la relacion PROY ECT OS se necesita el atributo Pnum para la pos-
terior operacion JOIN, de la relacion TRABAJA_EN se proyectan los atributos Pnum y Emp_DNI para
la primera y la segunda operacién JOIN respectivamente, y de la relacion EMPLEADOS se proyecta el
atributo DN/ para poder realizar la operacién JOIN y el atributo Nombre que se pide como resultado de
la consulta. El 4rbol de consulta resultante de este paso es:

TlNombre

>(DNI=Emp_DNI)

7\

[><](Pnum:Pnum) TtNombre, DNI
/ \ O(Fecha_nac >'31-12-1957")
TPnum TTEmp_DNI, Pnum

O(Pnombre="Digitalizacion’)

PROYECTOS

Se ha ejecutado el Paso 5 del algoritmo heuristico, la Regla 8 permite conmutar la operaciéon PRO-
JECT con la operacién JOIN. Por otro lado, la Regla 3 se emplea para proyectar Unicamente el atributo
necesario en el resultado. Tal y como acabamos de demostrar, un drbol de consulta puede ser optimizado
paso a paso siendo transformado en un arbol de consulta equivalente. A pesar de todo, se debe asegurar
que las transformaciones dan como resultado un arbol equivalente y, por lo tanto, el optimizador debe
conocer las reglas que preserven dicha equivalencia.

EMPLEADOS
TRABAJA_EN

Figura 3.6

Capitulo 4

Optimizacion basada en el coste

La optimizacion de consultas relacionales no sélo involucra las técnicas heuristicas, las cuales he-
mos visto que se basan en la aplicacién de una serie de reglas que llevan a una mejora en la eficiencia
de respuesta de las consultas al simplificar y transformar el arbol de consulta, sino que también realiza
estimaciones sobre el coste de ejecucion de diferentes maneras y lleva a cabo aquella con el menor coste
estimado, conocida como optimizacién basada en el coste.

La optimizacién, usando técnicas tradicionales, estima una funcién objetivo del coste, tratando de
minimizarlo y elegir la ejecucion mads rdpida y eficiente. Normalmente esta optimizacion se lleva a cabo
a partir de un arbol de consulta previamente optimizado heuristicamente.

Estas funciones de coste son aproximaciones, por lo que la estrategia de ejecucion que resulta de la
optimizacién no es la éptima del problema, ya que su biisqueda podria llevar mucho tiempo al tener que
calcular el coste de ejecucion de cada posible estrategia.

4.1. Determinantes del coste

Los diferentes componentes de los que depende el coste de ejecucion de una consulta relacional son
los siguientes:

= Costo de acceso al almacenamiento secundario. Se refiere al coste de leer y escribir bloques
de datos entre el almacenamiento en disco secundario y la memoria principal. El coste de buscar
registros en un archivo de disco depende del tipo de estructuras de acceso en ese archivo, como el
ordenamiento e indices primarios o secundarios.

= Coste de almacenamiento en disco. Es el coste de almacenar en disco cualquier archivo interme-
dio que se necesite para la ejecucion.

= Coste de computacion. Se trata del coste de realizar operaciones en memoria RAM sobre los
registros durante la ejecucion de la consulta.

Tales operaciones incluyen la bisqueda y ordenamiento de registros, la combinacién de registros
para una operacién de unién o de ordenamiento, y la realizacién de cdlculos sobre los valores de
las columnas.

= Coste de memoria. Es el coste referido a la cantidad de memoria principal necesaria durante la
ejecucion de la consulta.

= Coste de comunicacion. El coste de enviar la consulta y sus resultados desde el sitio de la base de
datos al sitio o terminal donde se originé la consulta.

23

24 Capitulo 4. Optimizacion basada en el coste

Principalmente, en grandes bases de datos, la optimizacién se enfoca en reducir el coste de acceso al
almacenamiento secundario. Por otro lado, el optimizador de consulta necesita conocer algunos datos
sobre los contenidos de las relaciones para poder realizar una estrategia adecuada:

= El ndmero de tuplas en una relacién, es decir, su cardinalidad: |R]|.

» La longitud media de una tupla en la relacién.

= El niimero de bloques que ocupa la relacién en el disco, se denota b,.

= El niimero de tuplas por bloque, conocido como factor de bloque (bfr).

= El ndmero de valores distintos de un atributo A en la relacion R, se denota (NDV(A,R)). También
son importantes el valor mdximo y el minimo, max(A,R) y min(A,R).

= La selectividad (sl), que es la fraccién de tuplas que cumplen la condicién de seleccién de un
atributo.
Y la cardinalidad de seleccion (sc = sl |R]), que es el nimero medio de tuplas que satisfacen una

condicion de seleccion.

= La selectividad de una operacién JOIN se refiere a la relacion entre el niimero de tuplas que con-
tiene el resultado de la operacién y el producto cartesiano entre ambas relaciones, es decir:

Js = [(Ra:)|/|[(Rx S)| = |[(Rv<e S)|/(IR] *S])
La estimacion del niimero de tuplas del resultado de una operacién JOIN es la cardinalidad de la
unién: jc = js*|R|*|S|.

= La existencia de indices. Un indice es una estructura de datos utilizada para mejorar la velocidad
de recuperacién de registros y que permitien un acceso rapido a las filas de una tabla basdndose en
los valores de una o mds columnas. Hay varios tipos:

+ Primario: indice creado en la clave primaria' de la relacién.
* Secundario: indice creado en uno o més atributos que no son la clave primaria.
= Informacion sobre los indices. El nimero de niveles (x) de cada indice multinivel es necesario

para las funciones de costo que estiman el nimero de accesos a bloques durante la ejecucion de
consultas.

4.2. Funciones de coste

Para llevar a cabo una operacion SELECT o JOIN se pueden usar diferentes algoritmos para encontrar
los registros de la base de datos que satisfacen la condicién de seleccion, dependiendo de la informacién
que dispongamos. Para llevar a cabo la optimizacién de la consulta se estima el coste de cada algoritmo
para tratar de elegir la mejor solucién. Presentamos algunos de estos algoritmos:

4.2.1. Operacion SELECT

» Bisqueda lineal. Comprobar fila por fila cuales de ellas satisfacen la condicion. La estimacion del
coste de ejecucion es igual al niimero de bloques que ocupe la relacién, es decir: Coste = b,.

'Una clave primaria es un conjunto de uno o més atributos de una relacién de la base de datos que identifica de manera
unica cada tupla.

TFG - Pablo Aranda Luna 25

4.2.2. Operacion JOIN

= Bucle anidado. Es el algoritmo por defecto. Si la operacidn es entre dos relaciones, por ejemplo
Ry §, evaltia en un bucle externo cada registro ¢ de R con cada registro s de S y comprueba cuando
se satisface la condicién de unién de la operacion JOIN ¢[A] = s[B], siendo A y B atributos de las
relaciones R y S respectivamente.

Supongamos que tomamos R en el bucle externo, entonces tenemos la siguiente funcién de coste
que estima el nimero de accesos al bloque:

Coste = bg+ (br*bs)+ ((js*|R|*|S|)/bfrrs) = br+ (br xbs) + (jc/bfrrs)

El primer término de la férmula, b,, indica el coste de leer los bloques de la relacién R. El producto
b, * by indica el coste de leer los bloques de la relacion S, ya que en un bucle anidado evalia cada
fila de R en cada fila de S. Finalmente, el dltimo término de la funcién representa el coste de
escribir el resultado en la memoria, estima el nimero de bloques que ocupa.

= Bucle anidado basado en indice. Si existe un indice para uno de los dos atributos de la condicién
del JOIN, por ejemplo el atributo B de la relacién S y cuyo nivel de indice es xp, recupera con
un bucle cada registro ¢ de R y luego usa el indice para recuperar directamente todos los registros
coincidentes s de S que satisfacen s[B] = t[A].

El coste depende del tipo del indice, para un indice primario:
Coste =br+ (|R|*(xg+ 1))+ ((js*|R|*|S|)/bfrgs)

Para un indice secundario, donde sp es la cardinalidad de seleccion del atributo B de la relacion S:

Coste =bg+ (|R|* (xg+1+scp))+ ((js*|R|*|S|)/bfrrs)

4.3. Ordenacion de JOIN

Cuando hay mdas de dos operaciones JOIN, el orden de ejecucién es relevante para optimizar el
coste. En una operacién JOIN entre n relaciones, éstas pueden ser ordenadas de n! formas distintas, pero
no todas son evaluadas para después elegir la mejor de todas sino que, si por ejemplo tenemos cinco
relaciones, se estima la mejor manera para las tres primeras y después se estima el mejor orden entre las
dos relaciones restantes y el resultado de la primera estimacion:

FIDIr DUy DX Py XU rs = (1 DUy DXL 13) DX 7 DX F's = FResultado D T4 DX '

Dando un resultado de 3!+ 3! = 12 maneras evaluadas, y no de 5! = 120 formas distintas.

Otro aspecto importante a tener en cuenta es el tamafio de las relaciones involucradas, si por ejemplo
la operacién JOIN involucra dos relaciones con 100 tuplas cada una y otra con 20, es preferible que la
primera operacién JOIN contenga a la relacién con menos registros y la relacion intermedia generada
sea del menor tamaiio posible.

4.4. Ejemplo de optimizacion basada en el coste

En esta seccidn se explica un ejemplo para mostrar de manera mds clara cémo funciona esta opti-
mizacién. Supongamos que se tiene la siguiente consulta SQL en la que se quiere obtener una serie de
informacién sobre los proyectos localizados en Stafford.

SELECT Pnum, Num_Dpto, Nombre, Direccion, Fecha_nac
FROM PROYECTOS, DEPARTAMENTOS, EMPLEADOS
WHERE Dnum = Num_Dpto AND Jefe_DNI = DNI AND Plocalizacion = ’ Stafford’

26 Capitulo 4. Optimizacion basada en el coste

El esquema de base de datos sobre el que se realiza este ejemplo es el mismo empleado durante
todo el trabajo (Cuadro 1.1), pero no asi las tuplas de las diferentes relaciones mostradas en el primer
capitulo, s6lo se conoce que existen diez proyectos localizados en Stafford y la informacién sobre las
tres relaciones involucradas mostrada en el cuadro siguiente:

Nombre Tabla Nombre Columna | Distintos | Valor_Min | Valor_Max
PROYECTOS Plocalizacion 200 1 200
PROYECTOS Pnum 2000 1 2000
PROYECTOS Dnum 50 1 50
DEPARTAMENTOS Num_Dpto 50 1 50
DEPARTAMENTOS Jefe_ DNI 50 1 50
EMPLEADOS DNI 10 000 1 10 000
EMPLEADOS Num_Dpto 50 1 50
EMPLEADOS Salario 500 1 500

(a) Informacidn de columnas.

Nombre Indice | Unicidad | BNivel* | Claves distintas
PROY_PLOC No tnico 1 200
EMP_DNI Unico 1 10 000
EMP_SAL No tnico 1 500

(b) Informacién de indices.

“Nidmero de niveles sin el nodo hoja.

Nombre Tabla Numero de Filas | Bloques | Factor de bloque

PROYECTOS 2000 100 20
DEPARTAMENTOS 50 5 10

EMPLEADOS 10 000 2000 5

(c) Informacion de relaciones.

Cuadro 4.1: Informacion estadistica de las relaciones.

La primera optimizacién basada en el coste que se debe realizar es elegir el orden de la operacién
JOIN entre las tres relaciones. Existen 3! = 6 posibilidades distintas:
1. PROYECTOS < DEPARTAMENTOS <t EMPLEADOS
2. DEPARTAMENTOS <t PROYECTOS <t EMPLEADOS
3. DEPARTAMENTOS <t EMPLEADOS <t PROYECTOS
4. EMPLEADOS <t DEPARTAMENT OS <t PROYECT OS
5. EMPLEADOS <t PROYECT OS <t DEPARTAMENTOS
6. PROYECTOS <t EMPLEADOS <t DEPARTAMENT OS
Las opciones 5 y 6 se pueden desechar, ya que no resulta eficiente realizar en primer lugar un JOIN entre
las relaciones EMPLEADOS y PROY ECT OS, porque el niimero de registros del resultado seria mucho

mds grande que las otras posibilidades por culpa de que de las tres son las dos relaciones con una mayor
cardinalidad, ndmero de filas.

Es interesante también que la relacion DEPARTAMENT OS esté presente en la primera operacion
JOIN que se ejecuta debido a que por el Cuadro 4.1 sabemos que su cardinalidad es 50. Consideramos el
coste de ejecutar la primera alternativa.

TFG - Pablo Aranda Luna 27

Se estima primero el coste de la operacion JOIN 1 = PROYECT OS <t DEPARTAMENT OS.

En primer lugar se debe estimar el coste de acceso a la memoria que guarda la informacién contenida
en las relaciones, y posteriormente se estima el coste de su ejecucion. La relacion DEPARTAMENT OS
no tiene un indice, por lo que el tnico método es la bisqueda lineal que tiene un coste de 5 accesos
a bloque. En el caso de la relacion PROY ECT OS, asumiendo que la operacién SELECT ya ha sido
ejecutada, se puede realizar una buisqueda lineal o usar el indice de la relacién que en este caso es
PROY_PLOC, es aqui donde se debe comparar el coste de las dos alternativas.

» La buisqueda lineal se estima que tiene un coste de 100 accesos de bloque.

= Como se indica en el Cuadro 4.1, tiene un coste de acceso al indice de 2 (Bnivel mas nivel nodo
hoja) y ademas no es tnico, con lo cual el optimizador asume una distribucion normal de los datos.
La estimacién del coste, con los datos del Cuadro 4.1, se calcula de la forma:

Nium_Filas 2000

= 10
Distintos 200

Coste = sl « Num_Filas =

Luego, el coste estimado de acceso con el indice es: 10 + 2 = 12.

Por lo tanto, concluimos que para acceder a la relacion PROYECTOS se hace mediante el indice
de la relacion. Calculamos ahora el coste de ejecucion de la operacion JOIN siguiendo el algoritmo de
bucle anidado, en el cual la relacién del bucle exterior serd aquella resultante de la operacion SELECT
en la relacion PROYECT OS y en el bucle interior la relacion DEPARTAMENT OS. Como la relacién
PROYECTOS tiene un factor de bloque de 20 y unicamente estamos tratando con 10 de sus registros
la primera relacién ocupa un solo bloque, y se necesita leer cada uno de los cinco bloques que ocupa
la relacién de los departamentos, asi que el coste total de la operacidn serd de seis bloques mds lo que
cueste escribir la nueva relacion.

El atributo Num_Dpto de la relacion DEPARTAMENT OS toma un tnico valor para cada tupla, por
lo tanto cada Dnum de la relacién resultado de SELECT coincidira sélo con un registro de la relacién
DEPARTAMENT OS, consecuentemente la relacion resultado tendrd diez registros. Ahora, si supone-
mos que la relacién resultante tiene un factor de bloque de cinco filas por bloque nos da un total de dos
bloques que se necesitan para almacenar dicha relacién. Con lo cual, tenemos un coste estimado de la
ejecucion del JOIN 1. de: 5+ 12+ 6 +2 =25.

Estimamos el coste de la operacién JOIN 2 = JOIN 1<t EMPLEADOS.

Se puede ejecutar un JOIN de un solo bucle, ya que en este caso se puede usar el indice EMP_DNI
para localizar los registros coincidentes entre la relacion EMPLEADOS y el primer JOIN. Por lo tanto, el
método de unién implicaria leer cada bloque del primer resulatdo y buscar cada uno de los cinco valores
del atributo Jefe_DNI utilizando el indice EMP_DNI. Cada bisqueda de indice requeriria un acceso a
la raiz, un acceso a la hoja y un acceso a un bloque de datos , en total, 3 niveles. Asi, 10 bisquedas re-
quieren 30 accesos a bloques. Sumando los dos accesos a bloques para acceder al resultado de la primera
operacion se obtiene un total de 32 accesos a bloques para este JOIN.

El coste final es la suma de ambas operaciones y es igual a: 25 + 32 = 57 accesos a bloque. El
optimizador debe realizar este proceso aqui descrito para las demads alternativas y elegir asi la forma mas
eficiente.

Bibliografia

[1] Copp, E. F. (1970). A vrelational model of data for large shared data banks,
Communications of the ACM, 13(6), 377-387.

[2] CoDD, E. F. (1990). The relational model for database management: Version 2. Addison-Wesley.

[3] DATE, C. J. (2012). SQL and Relational Theory: How to Write Accurate SQL Code (2° ed.).
O’Reilly Media.

[4] DATE, C. J. (2003). An Introduction to Database Systems (8“ ed.). Pearson.

[5] DATE, C. J. (2000). The database relational model: A retrospective review analysis (1° ed.).
Prentice Hall.

[6] ELMASRI, R. & NAVATHE, S. B. (2015). Fundamentals of database systems (7 ed.). Pearson.

[7] SIMON, A. R. & MELTON, J. (2001). SQL: 1999: Understanding Relational Language Compo-
nents (1 ed.). Morgan Kaufmann

29

	Abstract
	El modelo relacional
	Estructura
	Esquemas de relación

	Valores de una tupla
	Relación
	Orden en una relación
	Interpretación de una relación

	Base de datos relacional

	El álgebra relacional
	Operaciones unarias
	El operador SELECT
	El operador PROJECT

	Operaciones binarias
	El producto cartesiano
	La operación JOIN

	Ejemplos

	Un método heurístico
	Consultas SQL a álgebra relacional
	Árboles de consulta
	Reglas y algoritmo de transformación
	Optimización heurística
	Optimización de árboles de consulta

	Optimización basada en el coste
	Determinantes del coste
	Funciones de coste
	Operación SELECT
	Operación JOIN

	Ordenación de JOIN
	Ejemplo de optimización basada en el coste

	Bibliografía

