
Un método heurístico para optimizar la
respuesta a consultas relacionales.

Pablo Aranda Luna
Trabajo de fin de grado de Matemáticas

Universidad de Zaragoza
Junio 2024

Director del trabajo
Jorge Lloret Gazo

Abstract

The relational model in the field of databases has had a significant impact since its initial imple-
mentations in database management programs. It allows organizing information into structures called
relations. This model facilitates data manipulation and querying through a standard language known as
SQL (Structured Query Language).

In the context of relational databases, query optimization is an essential aspect because it enables
the machine to provide quick and efficient responses to the user, which becomes increasingly important
when dealing with large databases.

On the following pages, techniques based on cost and heuristic methods used in the optimization of
relational queries are described. It demonstrates the use of relational algebra in manipulating the infor-
mation stored in a relational database, and how query trees play an important role in this process.

Through the implementation and comparison of different optimization algorithms, including query
transformation and index usage, significant reductions in query response times can be achieved.

III

Índice general

Abstract III

1. El modelo relacional 1
1.1. Estructura . 2

1.1.1. Esquemas de relación . 2
1.2. Valores de una tupla . 2

1.2.1. Relación . 3
1.2.2. Orden en una relación . 3
1.2.3. Interpretación de una relación . 3

1.3. Base de datos relacional . 4

2. El álgebra relacional 7
2.1. Operaciones unarias . 7

2.1.1. El operador SELECT . 7
2.1.2. El operador PROJECT . 8

2.2. Operaciones binarias . 9
2.2.1. El producto cartesiano . 9
2.2.2. La operación JOIN . 10

2.3. Ejemplos . 10

3. Un método heurístico 13
3.1. Consultas SQL a álgebra relacional . 14
3.2. Árboles de consulta . 15
3.3. Reglas y algoritmo de transformación . 16

3.3.1. Optimización heurística . 19
3.3.2. Optimización de árboles de consulta . 20

4. Optimización basada en el coste 23
4.1. Determinantes del coste . 23
4.2. Funciones de coste . 24

4.2.1. Operación SELECT . 24
4.2.2. Operación JOIN . 25

4.3. Ordenación de JOIN . 25
4.4. Ejemplo de optimización basada en el coste . 25

Bibliografía 29

V

Capítulo 1

El modelo relacional

El concepto del modelo relacional para la creación de bases de datos, fue acuñado por primera vez
por el científico informático inglés Edgar Frank Codd, en su conocido artículo A relational model of
data for large shared data banks [1]. En dicho artículo Codd, con la intención de mejorar y optimizar
el funcionamiento de grandes bases de datos, introdujo un nuevo enfoque para la estructuración de su
información, la base de datos relacional.

En su artículo, Codd presenta su modelo relacional como un conjunto de relaciones, donde cada una
se define como un conjunto de registros de la base de datos. Esta definición permite aplicar a las relacio-
nes operaciones básicas de conjuntos. Por ejemplo, permite permutar, proyectar y combinar elementos
de una relación.

Su objetivo consistía en desarrollar un modelo en el cual fuera únicamente necesario describir la
estructura natural de los datos, sin requerir de un sistema adicional para su representación. Los modelos
ya existentes eran vulnerables a cambios en la organización e información, de igual modo presentaban
una fuerte dependencia del orden e indexación de los datos. La perspectiva relacional permitía sentar un
cimiento sólido para gestionar la redundancia y consistencia, a diferencia de los modelos de red genera-
les que tenían grandes limitaciones para abordar estos asuntos al almacenar la información.

Las ideas de Codd atrajeron rápidamente la atención de gran parte del sector de la industria infor-
mática. En los años posteriores a la publicación del artículo, IBM, empresa en la cual trabajaba Codd,
desarrolló un sistema de gestión de bases de datos conocido como System R. Este sistema introdujo un
lenguaje de consulta para implementar el modelo propuesto, el cual fue llamado SEQUEL (Structured
English Query Language) y que, en siguientes versiones, se convirtió en lo que hoy conocemos como
SQL (Structured Query Language).

Por otro lado, Larry Ellison, Ed Oates y Bob Miner, cofundadores de Software Development Labora-
tories, motivados por el modelo de Codd desarrollaron un sistema de gestión de bases de datos conocido
como Oracle Database 2.0. Dicha empresa es la hoy conocida como Oracle Corporation. Su producto
tuvo un gran éxito, y gracias a él SQL alcanzó gran reconocimiento en el tratamiento de las bases de
datos. Desde entonces han sido desarrollados gran cantidad de sistemas basados en tal modelo, algunos
incluso de software libre. En la actualidad SQL se ha convertido en el lenguaje estándar en los sistemas
de gestión de bases de datos que basan su estructura en el modelo relacional.

El modelo relacional, para la creación y estructuración de bases de datos, se basa en el concepto de
relación matemática. Se fundamenta en la teoría de conjuntos y en la lógica de predicados. En este
primer capítulo trataremos de explicar en qué consiste el modelo relacional, para ello definiremos sus
conceptos básicos y veremos cómo se relacionan los diferentes elementos de dicho modelo.

1

2 Capítulo 1. El modelo relacional

En el modelo relacional, una base de datos se representa como una colección de relaciones. Cada una
de estas relaciones es representada con una tabla, donde cada fila está formada por un conjunto de datos,
con una determinada relación entre sí, conformando un registro en la base de datos, es decir, cada fila
representa un objeto real. Los nombres de las columnas nos ayudan a interpretar el tipo de información
que contiene cada fila.

Cada fila se denomina tupla y cada columna se llama atributo. Finalmente a la tabla en su conjunto
es lo que conocemos como relación.

1.1. Estructura

En esta primera sección se describe la estructura de una base de datos relacional, así como de los
diferentes elementos que la componen.

Definición. Cada una de las propiedades por las que un objeto, o entidad, es caracterizado en una base
de datos relacional se conoce como atributo.

Cuando una relación es gráficamente representada podemos identificar los atributos como las dife-
rentes columnas que la componen.

Definición. Denominamos como dominio al conjunto de los posibles valores que un atributo puede
tomar, lo denotamos D.

Además, cada elemento del dominio es indivisible. Un dominio está dado por un nombre, un tipo de
valor (número, cadena, etc), y por un formato. Para definir un dominio, por ejemplo el dominio de las
matrículas de coche, podemos hacerlo de las siguientes maneras:

Definición lógica: Conjunto de todas las matrículas válidas de tres letras y cuatro números.

Definición formal: Conjunto de todas las cadenas de la forma LLLNNNN , siendo L una letra y N
un número natural de 0 a 9.

1.1.1. Esquemas de relación

Para representar una relación y el conjunto de sus atributos usamos un esquema de relación. Se
denota R(A1, ...,An), donde R es el nombre del esquema de relación y A1, ...,An una lista de atributos,
además el número n de atributos de la relación se conoce como grado de la relación. Cada atributo Ai

tiene un dominio en la relación, denotado como dom(Ai).
Un esquema de base de datos relacional S es un conjunto de esquemas de relación S = {R1, ...,Rm}
junto con un conjunto de restricciones de integridad (IC).

1.2. Valores de una tupla

Los valores que una tupla puede almacenar están delimitados por el dominio de sus atributos, como
ya hemos visto. Por otro lado, cada valor es indivisible, es decir, no se puede separar en componentes.
Es por ello que, en el modelo relacional, debemos representar en diferentes relaciones los atributos
multievaluados; de la misma forma, un atributo compuesto es necesario definirlo como un conjunto
de atributos más básicos. En algunos casos, en los que no conocemos un valor o no existe ese atributo
para un registro, se toma como nulo ese atributo (null en inglés).

TFG - Pablo Aranda Luna 3

1.2.1. Relación

Definición. Una relación r de un esquema de relación R(A1, ...,An) , es un conjunto de n-tuplas r =
{t1, ..., tm}, donde cada n-tupla t j es una lista ordenada de n valores, es decir, t j =< v1, ...,vn > y en
donde cada vi es un elemento de dom(Ai) o es un valor nulo.

En otras palabras, llamamos relación al conjunto de tuplas de un esquema de relación. Cada tupla
está formada por un dato para cada atributo. En algunos casos se denomina también como estado de
relación.

Basándonos en la ya mencionada teoría de conjuntos, podemos formalizar dichos conceptos. Por
ejemplo, sean dom(A1), ...,dom(An) los respectivos dominios de los atributos A1, ...,An de un esquema
de relación R. Si hacemos el siguiente producto cartesiano:

dom(A1)×dom(A2)× ...×dom(An)

Un estado de relación r(R) es un subconjunto de dicho producto, es decir:

r(R)⊆ dom(A1)×dom(A2)× ...×dom(An)

El producto cartesiano recorre todas las posibles combinaciones de todos los datos de cada uno de los do-
minios, en este caso de todas las posibles tuplas en la relación. Además, la cardinalidad de este producto
aporta el número total de tuplas posibles en un estado r(R).

1.2.2. Orden en una relación

Cuando se trata de los elementos de un conjunto no hay ningún orden entre ellos, por lo tanto en una
relación no hay un orden específico entre los diferentes registros o tuplas.

Al representar una relación en forma de tabla es cuando se necesita un orden; se suele ordenar en
función de alguno de los atributos, y aunque pueda ser representada por tablas ordenadas de diferente
manera la relación es la misma, sin importar el atributo que tomemos como referencia en la ordenación.

De igual manera, si hablamos de manera abstracta, no es importante el orden en el que aparecen los
diferentes atributos dentro de una tupla, mientras que cada atributo mantenga sus determinados valores.
Aunque, como ya hemos visto, un esquema de relación está formado por un conjunto de n-tuplas orde-
nadas, luego el orden en este caso es importante porque mantenerlo nos permite identificar a qué atributo
corresponde cada valor de cada n-tupla.

1.2.3. Interpretación de una relación

Podemos interpretar una relación como una simple afirmación que representa un hecho. Por ejemplo,
en la relación:

ESTUDIANTE (Nombre, DNI, Telef_casa, Direccion, Telef_movil, Edad, Nota_media)

Interpretamos cada registro de la relación como un hecho. Si la primera tupla fuera:

(Arturo, 73456625N, 976012545, Calle Pedro Cerbuna, 656241569, 22, 8)

Estaría así afirmando que existe un alumno llamado Arturo, tiene 22 años y tiene una nota media de 8. En
este caso la relación ESTUDIANT E está representando hechos de una entidad, un alumno, pero puede
ocurrir que represente hechos sobre una relación entre dos entidades. Por ejemplo, en la relación

ESPECIALIZACION(Estudiante_DNI, Codigo_departamento)

4 Capítulo 1. El modelo relacional

Cada tupla de esta relación está correlacionando cada alumno con el departamento de su especialización.

Otra interpretación de un esquema de relación es como si fuera un enunciado. Las tuplas que perte-
necen a la relación son aquellas cuyos valores satisfacen dicho enunciado.

1.3. Base de datos relacional

Definición. Una base de datos relacional DB de S es un conjunto de estados de relación
DB = {r1, ...,rm} donde cada ri satisface las restricciones de integridad.

Dicho de otro modo, una base de datos relacional es un conjunto de relaciones, una por cada esque-
ma de relación que exista en el esquema de base de datos. Si un estado cumple todas las restricciones se
denomina estado válido, en su defecto, se denomina no válido. En algunas ocasiones se denomina como
estado de la base de datos.

En una base de datos relacional las diferentes relaciones interactúan, se interconectan, comparten
información unas con otras. Para comprender cómo se relacionan hemos definido los conceptos de es-
quema y estado de base de datos.

En algún caso es posible encontrar que dos conceptos reales distintos hayan sido llamados de igual
manera en relaciones diferentes. En el ejemplo anterior DNI y Estudiante_DNI representan lo mismo, el
número del DNI de cada alumno. Por otro lado, también podría ser posible que en diferentes relaciones
el mismo concepto real es llamado de diferente manera. Esto último es importante, ya que el mismo
concepto real puede ejercer un rol distinto dentro de una misma relación.

Ejemplo 1.1. En la siguiente relación de los trabajadores de una empresa:

EMPLEADOS(Nombre, DNI, Fecha_nac, Direccion, Sexo, Salario, Supervisor_DNI, Num_Dpto)

A cada empleado se le asigna a un superior, con lo cual, para distinguir el DNI de cada trabajador
con el Supervisor_DNI de su superior asignado, se han creado dos atributos diferentes para representar
el mismo concepto real, el número de identificación.

Las relaciones descritas a continuación, junto con la relación presentada EMPLEADOS, conforman
la base de datos de una empresa, sobre la cual trabajaremos en los siguientes capítulos.

DEPARTAMENTOS (Dnombre, Num_Dpto, Jefe_DNI, Jefe_fecha_comienzo)

DEPTO_LOCALIZACION (Dnum, Dlocalizacion)

Donde en la relación DEPARTAMENTOS definimos el nombre y número de identificación del departa-
mento, y la fecha de nacimiento y el número de identificaión del jefe de dicho departamento.
En DEPTO_LOCALIZACION el número de identificación y la localización de cada departamento.

PROYECTOS (Pnombre, Pnum, Plocalizacion, Dnum)

TRABAJA_EN (Emp_DNI, Pnum, Horas)

DEPENDIENTES (Emp_DNI, Nombre_dependiente, Sexo, Fecha_nac)

La relación PROY ECTOS determina el número y nombre de los proyectos, además de su localización y el
número de departamento que lo controla. En T RABAJA_EN el número de indentificación del empleado,
el número del proyecto y el número de horas que invierte en dicho proyecto. Finalmente, la relación
DEPENDIENT ES contiene información sobre las personas dependientes de cada empleado.

Este ejemplo, así como otros empleados a lo largo de este trabajo, ha sido extraído del libro de
Elmasri y Navathe Fundamentals of database systems [6].

TFG - Pablo Aranda Luna 5

Nombre DNI Fecha_nac Direccion Sexo Salario Supervisor_DNI Num_Dpto
Juan 123456789 09-01-1965 731 Fondren, Houston M 30.000 333445555 5
Fran 333445555 08-12-1955 638 Voss, Houston M 40.000 888665555 5

Alicia 999887777 19-01-1968 3321 Castle, Spring F 25.000 987654321 4
Jennifer 987654321 20-06-1941 291 Berry, Bellaire F 43.000 888665555 4
Ramón 666884444 15-09-1962 975 Fire Oak, Humble M 38.000 333445555 5
Julia 453453453 31-07-1972 5631 Rice, Houston F 25.000 333445555 5

Ahmad 987987987 29-03-1969 980 Dallas, Houston M 25.000 987654321 4
Jaime 888665555 10-11-1937 450 Stone, Houston M 55.000 NULL 1

EMPLEADOS

Dnum Dlocalizacion
1 Houston
4 Stafford
5 Bellaire
5 Sugarland
5 Houston

DEPTO_LOCALIZACION

Emp_DNI Pnum Horas
123456789 1 32.5
123456789 2 7.5
666884444 3 40.0
453453453 1 20.0
453453453 2 20.0
333445555 2 10.0
333445555 3 10.0
333445555 10 10.0
333445555 20 10.0
999887777 30 30.0
999887777 10 10.0
987987987 10 35.0
987987987 30 5.0
987654321 30 20.0
987654321 20 15.0
888665555 20 NULL

TRABAJA_EN

Dnombre Num_Dpto Jefe_DNI Jefe_fecha_comienzo
Investigación 5 333445555 22-05-1988

Administración 4 987654321 01-01-1995
Oficinas Centrales 1 888665555 19-06-1981

DEPARTAMENTOS

Pnombre Pnum Plocalizacion Dnum
ProductoX 1 Bellaire 5
ProductoY 2 Sugarland 5
ProductoZ 3 Houston 5

Digitalizacion 10 Stafford 4
Reorganización 20 Houston 1

Nuevos beneficios 30 Stafford 4

PROYECTOS

Emp_DNI Nombre_Dependiente Sexo Fecha_nac
333445555 Alicia F 05-04-1968
333445555 Teodoro M 25-10-1983
333445555 Teresa F 03-05-1958
987654321 Aner M 28-02-1942
123456789 Miguel M 04-01-1988
123456789 Alicia F 30-12-1988
123456789 Isabel F 05-05-1967

DEPENDEINTES

Cuadro 1.1

Este es un estado del esquema de base de datos relacional de la compañía, además es el ejemplo que
vamos a emplear en futuros capítulos y sobre el cual realizaremos diferentes consultas.

Capítulo 2

El álgebra relacional

En una base de datos es importante conocer su estructura, cómo se organizan y almacenan los datos,
pero además es necesario conocer cómo interactuar con dicha información.
En este capítulo nos adentraremos en el álgebra relacional, lenguaje formal del modelo relacional, el
cual permite la manipulación de bases de datos, y es empleado en la elaboración y optimización de las
respuestas de las consultas de los usuarios. Vamos a explicar cómo funcionan sus operaciones básicas.

El álgebra relacional está constituido principalmente por un conjunto de operaciones que actúan
sobre los esquemas de relación de la base de datos.

Podemos dividir estas operaciones en dos grupos:

Las operaciones específicas de bases de datos: SELECT, PROJECT y JOIN.

Las operaciones definidas en la teoría matemática de conjuntos: UNIÓN, INTERSECCIÓN, DI-
FERENCIA, y PRODUCTO CARTESIANO. Estas operaciones son onsecuencia de considerar
una relación como un conjunto de tuplas.

Cabe destacar que los resultados de las operaciones del álgebra relacional son nuevas expresiones
de álgebra relacional, las cuales constituyen una nueva relación. Esto permite una gran variedad de
posibilidades, ya que habilita la anidación y combinación de las diferentes operaciones.

2.1. Operaciones unarias

Las operaciones unarias son aquellas que actúan únicamente en una de las relaciones de la base de
datos. En este grupo vamos a explicar las operaciones SELECT y PROJECT.

2.1.1. El operador SELECT

La operación SELECT escoge un subconjunto de tuplas de una relación que satisface las condiciones
de selección. La labor se lleva a cabo comprobando cada tupla de manera individual si cumple o no dicha
condición. La acción de este operador puede verse como una partición del conjunto de tuplas en dos
subconjuntos: el conjunto de tuplas que satisfacen la condición y aquel que engloba a las tuplas que no
satisfacen la condición. De manera formal la operación SELECT se define:

σ <Condición de selección>(R)

Donde σ denota la operación, R es el esquema de relación en el que se aplica la acción, la cual es
una expresión de álgebra relacional y cuyo resultado es una relación con los mismos atributos que R.
La condición de selección es una expresión booleana formada por una comparación entre dos atributos
de la relación o entre un atributo y una constante, los comparadores empleados son: [=,<,≤,>,≥, ̸=].

7

8 Capítulo 2. El álgebra relacional

También es posible conectar más de una condición usando los operadores lógicos: [∧,∨,¬]

El grado de la relación resultante de la acción de SELECT es el mismo que el de la relación original
R, además su número de tuplas será siempre menor o igual al número de R, es decir:

|σc(R)| ≤ |R|

Ejemplo 2.1. Para seleccionar los empleados que se encuentran en el departamento 4 podríamos hacerlo
usando SELECT de la siguiente manera:

σNum_Dpto = 4(EMPLEADOS)

Ejemplo 2.2. Aquellos trabajadores con un salario mayor a 30.000C:

σSalario >30.000(EMPLEADOS)

Ejemplo 2.3. Teniendo en cuenta que, al ejecutar la operación sobre una relación da como resultado
también una relación, permite anidar varios SELECT, en este caso podemos unir ambas condiciones en
una sola.

σNum_Dpto = 4(σSalario >30.000(EMPLEADOS)) = σ(Num_Dpto = 4) ∧ (Salario >30.000)(EMPLEADOS)

Notar también que SELECT es una operación conmutativa.

σNum_Dpto = 4(σSalario >30.000(EMPLEADOS)) = σSalario >30.000(σNum_Dpto = 4(EMPLEADOS))

2.1.2. El operador PROJECT

La operación PROJECT actúa sobre una única relación escogiendo un grupo de atributos y eliminan-
do el resto, manteniendo el número de tuplas. Es decir, este operador proyecta la relación sobre un grupo
de atributos. Si se piensa en una relación como una tabla, la operación SELECT realiza una partición
horizontal, mientras que la operación PROJECT ejecuta una partición vertical. La definición formal del
operador es:

π <Lista de atributos>(R)

Donde π representa el operador y la lista de atributos es el grupo sobre el cual queremos proyectar
la relación. Del mismo modo que en el caso de la operación SELECT, R es en general una expresión de
álgebra relacional, el caso más básico es simplemente un esquema de relación.
La relación resultado de la operación posee el mismo grado que número de atributos haya en la lista,
ordenados del mismo modo que aparecen en ella, y su número de tuplas es menor o igual al número de
tuplas en R.

Ejemplo 2.4. En nuestra relación ejemplo de empleados, listamos únicamente los atributos de nombre y
salario de la relación.

πNombre, Salario(EMPLEADOS)

Ejemplo 2.5. Se pueden combinar las operaciones de SELECT y PROJECT. Si queremos obtener el
nombre y el salario de los empleados que trabajan en el departamento 4, podemos anidar SELECT y
PROJECT de la siguiente manera:

πNombre, Salario(σNum_Dpto = 4(EMPLEADOS))

Por otro lado, podemos mostrar explícitamente el orden de operaciones mediante relaciones interme-
dias y usando la operación de asignación (←).

DEP4_EMP← σNum_Dpto = 4(EMPLEADOS)

RESULTADO← πNombre, Salario(DEP4_EMP)

TFG - Pablo Aranda Luna 9

En algunos casos podemos necesitar cambiar el nomre de algún atributo o incluso de una relación.
En estas situaciones usamos la operación unaria RENOMBRAR, la cual se define formalmente como:

ρS(B1,B2,...,Bn)(R)

Donde ρ denota al operador, S es el nuevo nombre del esquema del relación, B1,B2, ...,Bn la lista de
los nuevos nombres de los atributos, y R el esquema de relación que queremos renombrar. Si los atributos
de R son A1, ...,An, el nombre del atributo Ai es sustituido por Bi con i ∈ [1,n].

Si el nombre del esquema de relación no se quiere modificar, o ningún atributo cambia su nombre,
se pueden omitir aquellos elementos que no vayan a ser alterados por la operación.

2.2. Operaciones binarias

Las operaciones binarias son aquellas que actúan sobre dos relaciones de la base de datos. En este
grupo encontramos operaciones de la teoría de conjuntos: unión, intersección, diferencia de conjuntos
y producto cartesiano. En el caso de las tres primeras es necesario que las dos relacionas sobre las que
actúan sean unión compatibles.

Definición. Dos relaciones R(A1, ...,An) y S(B1, ...,Bn) son unión compatibles si tienen el mismo grado
y dom(Ai) = dom(Bi) con i ∈ [1,n].

Es decir, cada relación tienen el mismo número de atributos y cada pareja de atributos tiene el mismo
dominio.

2.2.1. El producto cartesiano

El producto cartesiano opera sobre dos relaciones combinando cada tupla de una relación con cada
una de las tuplas de la otra relación, y además no es necesario que ambas relaciones sean unión compa-
tibles. La operación se denota ×.

En general, definimos el producto cartesiano como una operación sobre dos relaciones R(A1, ...,An)
y S(B1, ...,Bm), y cuyo resultado es una relación Q(A1, ...,An,B1, ...,Bm) de grado n+m donde cada una
de las tuplas son una combinación de una tupla de R y otra tupla de S.
Sea nr el número de tuplas de R, y análogamente ns el número de tuplas de S, entonces el número de
tuplas de Q será el producto de ambos:

|Q|= |R| · |S|= nr ·ns

El producto cartesiano como operación no tiene un gran interés, es mucho más útil cuando va seguido
de la operación SELECT.

Ejemplo 2.6. Si queremos obtener como respuesta una lista de los dependientes de cada empleada:

MUJERES_EMP←− σSexo = ’F’(EMPLEADOS)

NOMBRES_EMP←− πNombre, DNI(MUJERES_EMP)

DEPENDIENTES_EMP←− DEPENDIENTES×NOMBRES_EMP

DEPENDIENTES_REALES←− σDNI=Emp_DNI(DEPENDIENTES_EMP)

RESULTADO←− πNombre, Nombre_dependiente(DEPENDIENTES_REALES)

En primer lugar se seleccionan las tuplas de las empleadas, y a continuación se proyectan únicamente
sus nombres y DNI. Seguidamente, la relación NOMBRES_EMP que hemos obtenido es cruzada con la
de DEPENDIENT ES, pero la relación resultante no tiene mucho interés, por tanto después realizamos
una selección para elegir únicamente aquellas tuplas en las que el número de DNI coincida en ambos
casos. Finalmente se proyectan los atributos que queremos obtener como respuesta, que son el nombre
de la empleada con el nombre de su dependiente.

10 Capítulo 2. El álgebra relacional

2.2.2. La operación JOIN

La operación JOIN es una de las más importantes en el procesamiento de bases de datos relacionales,
ya que permite manipular y trabajar con las interrelaciones que existen entre las diferentes relaciones.
Se puede describir como un producto cartesiano entre dos relaciones seguido del operador SELECT. De
manera formal el operador JOIN sobre dos relaciones R(A1, ...,An) y S(B1, ...,Bm) se define como:

R ▷◁ <Condición de unión> S

Donde ▷◁ representa el operador. El resultado es una relación Q con n+m atributos, igual que si fuera
el producto cartesiano, con la excepción de que las únicas tuplas que contiene son aquellas que satisfacen
la condición de unión. Esta condición, en general, es de la forma:

< Condición1 > ∧< Condición2 > ∧ ... ∧< Condiciónm >

Cada una de estas condiciones se expresa como: Ai θ B j con Ai un atributo de R, B j un atributo de S,
dom(Ai) = dom(B j), y θ uno de los operadores [=,<,≤,>,≥, ̸=].
La operación JOIN deriva en una relación con un número de tuplas entre cero y nr ·ns dependiendo del
número de tuplas que satisfagan la condición de unión.En la práctica el uso más habitual del operador es
con condiciones de unión de igualdad, en estos casos donde el único operador de comparación es = la
operación se denomina EQUIJOIN.

Ejemplo 2.7. Anteriormente se ha empleado un producto cartesiano entre las relaciones DEPENDIENT ES
y NOMBRES_EMP, y a continuación un SELECT para tomar únicamente las tuplas en las cuales DNI
y Emp_DNI coincidiesen:

DEPENDIENTES_EMP←− DEPENDIENTES×NOMBRES_EMP

DEPENDIENTES_REALES←− σDNI=Emp_DNI(DEPENDIENTES_EMP)

Podemos reemplazar estas dos operaciones con un solo JOIN, del siguiente modo:

DEPENDIENTES_REALES←− DEPENDIENTES ▷◁DNI = Emp_DNI NOMBRES_EMP

2.3. Ejemplos

Una vez presentados los operadores del álgebra relacional, para facilitar la comprensión de su fun-
cionamiento y cómo interactúan entre sí, veamos algunos ejemplos:

Consulta 1. Obtener el nombre y la dirección de todos los empleados que trabajan en el departamento
“Investigación”.

INVESTIGACION_DEPTO←− σDnombre=’Investigación’(DEPARTAMENTOS)

INVESTIGACION_EMP←− INVESTIGACION_DEPTO ▷◁Num_Dpto=Num_Dpto EMPLEADOS

RESULTADO← πNombre, Direccion(INVESTIGACION_EMP)

Podriamos escribir la consulta en una sola línea:

πNombre, Direccion(σDnombre=’Investigación’(DEPARTAMENTOS ▷◁Num_Dpto=Num_Dpto EMPLEADOS)

Localizamos, en primer lugar, el departamento de investigación, después realizamos un join con la
relación de los empleados para conocer cuáles de ellos trabajan en dicho departamento, terminamos lis-
tando los atributos pedidos.

Hay algunas ocasiones en las cuales los atributos que han de ser iguales en la condición de unión de
un JOIN tienen el mismo nombre, en esos casos tenemos lo que se conoce como NATURAL JOIN, se
denota por (∗), aunque también se puede representar con el operador JOIN sin una condición de unión.

INVESTIGACION_EMP←− INVESTIGACION_DEPTO ∗ EMPLEADOS

Al efectuar esta consulta en el estado del esquema de base de datos del Cuadro 1.1 el resultado es:

TFG - Pablo Aranda Luna 11

Nombre Direccion
Juan 731 Fondren, Houston
Fran 638 Voss, Houston

Ramón 975 Fire Oak, Humble
Julia 5631 Rice, Houston

Resultado Consulta 1.

Consulta 2. Para cada proyecto localizado en “Stafford”, obtener el número del proyecto, su departa-
mento correspondiente, y el nombre, direccion y fecha de nacimiento del jefe de departamento.

PROY_STAFFORD←− σPlocalizacion=’Stafford’(PROYECTOS)

DEPTO_CORRESP←− PROY_STAFFORD ▷◁Dnum=Num_Dpto DEPARTAMENTOS

PROY_DEPTO_JEFE←− DEPTO_CORRESP ▷◁Jefe_DNI=Emp_DNI EMPLEADOS

RESULTADO← πPnum, Dnum, Nombre, Direccion, Fecha_nac(PROY_DEPTO_JEFE)

RESULTADO_RENOM← ρ(Num_proyecto, Num_depto, Nombre_jefe, Direccion_jefe, Fecha_nac_jefe)(RESULTADO)

Seleccionamos todos los proyectos de “Stafford”, después los unimos con sus departamentos, luego
con los jefes de departamento. Y finalmente listamos los atributos requeridos, renombrando en el resul-
tado cada uno de ellos para una mejor comprensión. El resultado de esta consulta aplicado a la base de
datos del Cuadro 1.1 es:

Num_proyecto Num_depto Nombre_jefe Direccion_jefe Fecha_nac_jefe
Digitalización 4 Fran 638 Voss, Houston 8-12-1955

Nuevos beneficios 4 Fran 638 Voss, Houston 8-12-1955

Resultado Consulta 2.

Consulta 3. Encontramos el número de los proyectos en los que trabajan alguien que se llame “Juan”,
ya sea un empleado o el jefe del proyecto.

JUANES←− σNombre=’Juan’(EMPLEADOS)

JUAN_TRABAJA_PROY←− πPnum(TRABAJA_EN ▷◁ Emp_DNI=DNI JUANES)

JEFES←− πNombre, Num_Dpto(DEPARTAMENTOS ▷◁ Jefe_DNI=Emp_DNI EMPLEADOS)

JUAN_JEFE_DEPTO←− σNombre=’Juan’(JEFES)

JUAN_JEFE_PROY←− πPnum(JUAN_JEFE_DEPTO ▷◁Num_Dpto=Dnum PROYECTOS)

RESULTADO← JUAN_TRABAJA_PROY ∪ JUAN_JEFE_PROY

En primer lugar obtenemos los empleados que se llaman Juan y seguidamente listamos los números
de los proyectos en los que trabajan. Por otro lado obtenemos los jefes y sus números de departamen-
tos, después nos quedamos con aquellos que se llaman Juan, y finalmente obtenemos los números de
los proyectos que dirigen. Una vez que tenemos los números de los proyectos en los que hay un Juan
trabajando y los que están dirigidos por alguien llamado Juan, concluimos uniendo ambos conjuntos de
soluciones. Al aplicar esta consulta, nuevamente, al estado del esquema de base de datos del Cuadro 1.1
nos devuelve el siguiente resultado:

Pnum
1
2

Resultado Consulta 3.

Capítulo 3

Un método heurístico

Una vez presentados el modelo y el álgebra relacional disponemos de las herramientas necesarias
para describir métodos que se pueden seguir para conseguir optimizar las respuestas a las consultas del
lenguaje SQL. El término optimización, en este contexto, no significa encontrar la ejecución óptima de
una consulta, sino que se trata de alcanzar, con la información disponible, una estrategia razonablemente
eficiente en un tiempo razonable. Para calcular la mejor opción, en muchas ocasiones, se pierde gran
cantidad de tiempo y esfuerzo, lo que la convierte en algo ineficiente.

Cuando un sistema de gestión de bases de datos recibe una consulta externa, sobre la información
que posee, lleva a cabo los siguientes pasos para tratar de dar una respuesta de manera eficiente:

Consulta

Escaneo, análisis, y validación

Forma inmediata de una consulta

Optimizador de consulta

Ejecución del plan

Generador del código

Código que ejecuta la consulta

Procesador de base de datos en tiempo de ejecución

Resultado

Figura 3.1: Pasos para procesar una consulta.

Cuando el sistema recibe una consulta SQL la escanea, analiza y valida que los nombres de los
atributos y las relaciones son válidos en el esquema de la base de datos, después el optimizador de
consulta elige la mejor estrategia de ejecución para la consulta. Seguidamente el generador de código del
sistema procesa la estrategia y produce el código para ejecutarla. Y finalmente, el procesador de base de
datos en tiempo de ejecución es el encargado de efectuar dicho código y obtener el resultado.

Este trabajo se enfoca en explicar qué ocurre en la optimización del plan de ejecución.

En primer lugar, una consulta SQL es traducida en una expresión de álgebra relacional, seguidamente

13

14 Capítulo 3. Un método heurístico

se representa como un árbol de consulta y finalmente se optimiza. Existen varias maneras de llevar a
cabo tal proceso, una de las técnicas más importantes es tratar de estimar el coste de diferentes estrategias
de ejecución de una consulta y elegir aquella que lo minimice.

En nuestro caso nos centraremos en desarrollar un método heurístico, el cual se basa en diferentes
reglas que ordenan las operaciones dentro de la estrategia de ejecución de las consultas, con el fin de
minimizar el tiempo de respuesta.

3.1. Consultas SQL a álgebra relacional

El lenguaje SQL se traduce en expresiones de álgebra relacional de la siguiente manera:

En la cláusula WHERE de una consulta SQL se especifica la operación SELECT, por ejemplo la
consulta:

SELECT *
FROM EMPLEADOS
WHERE Num_Dpto = 4 AND Salario > 30.000 ;

Se traduce en la expresión: σ(Num_Dpto = 4) ∧ (Salario >30.000)(EMPLEADOS).

En la cláusula SELECT se especifica la operación PROJECT, por ejemplo, si queremos como
respuesta de la anterior consulta únicamente los nombres de los empleados la consulta SQL es:

SELECT Nombre
FROM EMPLEADOS
WHERE Num_Dpto = 4 AND Salario > 30.000 ;

Esta consulta se traduce en álgebra relacional de la siguiente manera:

πNombre(σ(Num_Dpto = 4) ∧ (Salario >30.000)(EMPLEADOS))

En SQL se emplea la cláusula JOIN dentro de la cláusula FROM para cruzar la información de
dos relaciones, por ejemplo:

SELECT *
FROM (DEPENDIENTES JOIN NOMBRES_EMP ON DNI = Emp_DNI);

Otra manera es especificar la condición de unión en la cláusula WHERE:

SELECT *
FROM DEPENDIENTES, NOMBRES_EMP
WHERE DNI = Emp_DNI;

Si en la cláusula WHERE no se especifica ninguna condición el resultado que obtenemos es el
producto cartesiano de ambas relaciones.

Estas dos consultas de SQL se traducen en la misma expresión de álgebra relacional, la cual es:

DEPENDIENTES ▷◁DNI = Emp_DNI NOMBRES_EMP

Las cláusulas UNION, INTERSECT y EXCEPT corresponden a las operaciones de unión, inter-
sección y diferencia de conjuntos, las cuales están definidas en SQL tal y como las conocemos.

TFG - Pablo Aranda Luna 15

Normalmente las consultas SQL están formadas por varios bloques, son consultas anidadas, por tanto
se debe traducir cada bloque por separado y optimizar cada uno de ellos.

Ejemplo 3.1. Consideremos la siguiente consulta sobre la relación EMPLEADOS, la cual obtiene el
nombre y DNI de los empleados que cobren más que Juan:

SELECT Nombre, DNI
FROM EMPLEADOS
WHERE Salario > (SELECT Salario

FROM EMPLEADOS
WHERE Nombre = ’Juan’);

Luego, los dos bloques a optimizar son:

SELECT Salario
FROM EMPLEADOS
WHERE Nombre = ’Juan’;

Este bloque devuelve el salario de Juan.

SELECT Nombre, DNI
FROM EMPLEADOS
WHERE Salario > c;

Donde c representa el resultado del primer bloque, el salario de Juan. Las expresiones de álgebra rela-
cional correspondientes al primer bloque y al segundo, respectivamente son:

πSalario(σNombre=’Juan’(EMPLEADOS))

πNombre, DNI(σSalario>c(EMPLEADOS))

A continuación, cada bloque debe ser evaluado y optimizado por separado. Notar que el primer bloque
solo debe ser evaluado una vez, el cual será usado en la optimización del segundo bloque como una
constante.

3.2. Árboles de consulta

Durante el proceso de optimización, una herramienta que permite representar, analizar y transformar
las consultas SQL mediante la descomposición de las expresiones algebraicas en operaciones básicas son
los árboles de consulta. En el procedimiento que se sigue para dar respuestas a una consulta relacional
(Figura 3.1), los árboles de consulta son empleados por el optimizador de consulta en la elaboración del
plan de ejecución.

Definición. Un árbol de consulta es una representación gráfica y estructurada de una expresión de álgebra
relacional.

En un árbol de consulta las relaciones de entrada son representados como nodos hoja, y las diferentes
operaciones de la expresión algebráica son denotadas como nodos internos. Las operaciones de los
nodos se ejecutan cuando sus operandos están disponibles y una vez ejecutada la operación el nodo es
sustituido por su resultado. La ejecución de los árboles de consulta comienza por los nodos hoja y termina
cuando se ejecuta el nodo raíz, el cual representa la última operación de la consulta y su aplicación da
el resultado final.

16 Capítulo 3. Un método heurístico

πNombre, Direccion

σDnombre=’Investigación’

▷◁Num_Dpto=Num_Dpto

DEPARTAMENTOS EMPLEADOS

Figura 3.2: Árbol de Consulta 1.

Ejemplo 3.2. Veamos cómo es el árbol de consulta de una expresión de álgebra relacional. Por ejemplo,
tomamos la expresión de la Consulta 1, con la que queremos obtener el nombre y dirección de todos los
empleados que trabajan en el departamento “Investigación”.

πNombre, Direccion(σDnombre=’Investigación’(DEPARTAMENTOS ▷◁Num_Dpto=Num_Dpto EMPLEADOS)

El árbol de consulta correspondiente es:
La primera operación en ser ejecutada en este árbol de consulta es la operación JOIN entre las re-

laciones DEPART MENTOS y EMPLEADOS, después se aplica la operación SELECT y finalmente se
ejecuta un PROJECT. De manera informal, las operaciones en un árbol de consulta se ejecutan de abajo
hacia arriba.

3.3. Reglas y algoritmo de transformación

En la optimización de las consultas nuestro interés se centra en transformar las expresiones de ál-
gebra relacional en otras equivalentes, cuyo resultado contenga la misma información que la expresión
original, aunque pueda variar el orden de los atributos.

Presentamos en esta sección una serie de reglas para transformar estas expresiones de álgebra rela-
cional en otras equivalentes.

1. Secuencia de σ .
σc1 ∧ c2 ∧ ... ∧ cn(R) = σc1(σc2(...(σcn(R))...))

Demostración. Lo probamos por doble contenido.

Sea x ∈ σc1 ∧ c2 ∧ ... ∧ cn(R), entonces el elemento x cumple todas las condiciones c1, ...,cn. Obvia-
mente x ∈ σcn(R), pero x también cumple cn−1, luego x ∈ σcn−1(σcn(R)), repitiendo este razona-
miento llegamos a que x ∈ σc1(σc2(...(σcn(R))...))

Ahora, sea x ∈ σc1(σc2(...(σcn(R))...)), luego x ∈ σc2(...(σcn(R))...) y cumple la condición c1, por
lo tanto x ∈ σc3(...(σcn(R))...) y cumple las condiciones c1,c2. Reiterando dicha lógica llegamos a
que x ∈ R y cumple todas las condiciones c1,c2, ...,cn, es decir, x ∈ σc1 ∧ c2 ∧ ... ∧ cn(R).

2. Conmutatividad de σ .
σc1(σc2(R))≡ σc2(σc1(R))

TFG - Pablo Aranda Luna 17

Demostración. Siendo que el operador lógico de conjunción es conmutativo, por la Regla 1:

σc1(σc2(R))≡ σc1 ∧ c2(R)≡ σc2 ∧ c1(R)≡ σc2(σc1(R))

3. Secuencia de π .

Sean Lista1 ⊆ Lista2 ⊆ ...⊆ Listan. Entonces:

πLista1(πLista2(...(πListan(R))...)≡ πLista1(R)

Demostración. Es fácil ver que el resultado de la operación PROJECT proyectando los atributos
Lista1 será igual con independencia de los atributos que contenga el esquema de relación sobre el
que actúa, siempre que éste contenga al menos los atributos que contiene la lista de dicha opera-
ción.

4. Conmutar σ con π .
Si la condición de unión c involucra únicamente los atributos A1,A2, ...,An, entonces ambas ope-
raciones conmutan de la forma:

πA1,A2,...,An(σc(R))≡ σc(πA1,A2,...,An(R))

Demostración. Veamos en primer lugar que: πA1(σc(R))≡ σc(πA1(R))

Las tuplas que contiene σc(R) son todas aquellas contenidas en la relación R que cumplen la
condición de selección c. Por lo tanto, el conjunto πA1(σc(R)) contiene únicamente el atributo A1
de todas las tuplas de R que satisfacen c.

Por otro lado, πA1(R) proyecta solamente el atributo A1 de R, si aplicamos la operación SELECT
el resultado es σc(πA1(R)), un conjunto que contiene únicamente el atributo A1 de todas las tuplas
de R que satisfacen c.

Ahora, haciendo uso de lo probado:

πA1,A2,...,An(σc(R))≡ πA1,A2,...,An−1(πAn(σc(R)))≡ πA1,A2,...,An−1(σc(πAn(R)))

Repetimos el proceso con el resto de atributos A1, ...,An−1, y llegamos finalmente a:

πA1,A2,...,An(σc(R))≡ σc(πA1,A2,...,An(R))

5. Convertir una secuencia de σ y × en un ▷◁.

σc(R × S)≡ R ▷◁c S

Demostración. Por la definición de la operación JOIN se da la igualdad. Ambos conjuntos con-
tienen los elementos del producto cartesiano entre ambas relaciones que cumplen la condición de
unión c.

6. Conmutatividad de ▷◁.
R ▷◁c S≡ S ▷◁c R

Notar que el orden de los atributos en la relación resultado podría no ser el mismo que en las
relaciones originales. Análogo para el caso del producto cartesiano.

18 Capítulo 3. Un método heurístico

Demostración. Teniendo en cuenta la conmutatividad del producto cartesiano, salvo reordenación
de los atributos:

R ▷◁c S≡ σc(R×S)≡ σc(S×R)≡ S ▷◁c R

7. Conmutación de σ con ▷◁.
σc(R ▷◁ S)≡ (σc(R)) ▷◁ S

Análogo para el caso del producto cartesiano.

Demostración. Si x ∈ σc(R ▷◁ S), entonces x ∈ R ▷◁ S y además cumple c. Ahora, si x ∈ (σc(R))
entonces x∈ R y cumple la condición c, luego si se ejecuta una operación JOIN entre este conjunto
y la relación S tenemos que sus elementos pertenecerán a R y S, y además cumplirán la condición
c.

8. Conmutar π con ▷◁.
Sea L una lista de atributos L = A1,A2, ...,An,B1,B2, ...,Bm, donde A1,A2, ...,An son atributos de
una relación R y B1,B2, ...,Bm atributos de una realación S, entonces si la condición de unión c
solo involucra atributos de L, las operaciones conmutan de la siguiente manera:

πL(R ▷◁c S)≡ (πA1,A2,...,An(R)) ▷◁c (πB1,B2,...,Bm(S))

Demostración.
πL(R ▷◁c S)≡ πL(σc(R×S))≡ πL(σc(R)×σc(S))

Teniendo en cuenta ahora que la operación PROJECT es distributiva respecto del producto carte-
siano, ya que no modifica la estructura de la relación. Se tiene entonces:

πL(σc(R)×σc(S))≡ πL(σc(R))×πL(σc(S))

Sea A = A1,A2, ...,An y B = B1,B2, ...,Bm, entonces L = A∪B la operación PROJECT sobre la
relación R de los atributos de L será igual que si proyecta el conjunto A, ya que los atributos de
B no pertenecen al esquema de relación de R, análogamente sobre la relación S únicamente se
proyectan los atributos contenidos en la lista B.

Además, aplicando la Regla 4 que implica la conmutación de PROJECT y SELECT, se tiene:

πL(σc(R))×πL(σc(S))≡ σc(πA(R))×σc(πB(R))≡ σc(πA(R)×πB(S))

Finalmente, aplicando la Regla 5 tenemos la equivalencia buscada.

9. Asociatividad de ▷◁, ×, ∪, ∩.
Sea θ una operación de las cuatro cualquiera, entonces:

(R θ S) θ T ≡ R θ (S θ T)

Demostración. Se sigue de la propia definición de las operaciones, teniendo en cuenta que la
operación JOIN se fundamenta en el producto cartesiano, y ésta es una operación que cumple la
propiedad asociativa.

10. Conmutar σ con las operaciones de conjuntos.
La operación SELECT conmuta con la unión, intersección y la diferencia de conjuntos. Sea θ una
operación cualquiera de las tres, entonces:

σc(R θ S)≡ (σc(R)) θ (σc(S))

TFG - Pablo Aranda Luna 19

11. Conmutación de π con ∪.

πL(R ∪ S)≡ (πL(R)) ∪ (πL(S))

Demostración. Como la operación PROJECT no repercute en la estructura de la relación no im-
porta su lugar en el orden de ejecución de las operaciones.

12. Distributividad de σ con la diferencia de conjuntos.

σc(R − S) = σc(R) − σc(S)

Pero esta regla podría verse aplicando únicamente la operación SELCT sobre el esquema de rela-
ción R:

σc(R − S) = σc(R) − S

13. La operación σ sobre solo uno de los argumentos de la intersección.
Si los atributos de la condición de selección c pertenecen al esquema de relación R, entonces:

σc(R ∩ S) = σc(R) ∩ S

Demostración. Como los atributos que involucra c sólo pertenecen al esquema de relación de R
no tiene sentido la operación SELECT con la condición c sobre la relación S.

Si x ∈ σc(R ∩ S) entonces x ∈ R∩S, y además cumple c. Por otro lado, si x ∈ σc(R) se tiene que
x ∈ R y cumple c, y por lo tanto, sea x ∈ σc(R) ∩ S entonces además pertenece a S, luego tenemos
x ∈ R∩S y cumple la condición de unión c. Dándose así la igualdad.

14. Otras transformaciones triviales.
Si S no contiene ningún elemento, entonces: R∪S = R∪ /0 = R.
Si la condición de selección c se cumple en todas las tuplas de la realción R, entonces: σc(R) = R.

3.3.1. Optimización heurística

Una vez presentado el álgebra relacional, los árboles de consulta y las reglas para la transformación
equivalente de expresiones de álgebra relacional, estamos en disposición de describir un algoritmo que
modifique un árbol de consulta inicial y lo convierta en uno más eficiente. Los pasos son los siguientes:

1. Convertir cada operación SELECT que posea una condición de selección conjuntiva en una se-
cuencia anidada de operaciones SELECT, Regla 1.

2. Usando las transformaciones de las Reglas 2, 4, 7 y las Reglas 10, 12, 13 mover cada operación
SELECT lo más abajo posible del árbol de consulta. Por ejemplo, si la condición de selección de
SELECT posee atributos de una sola relación, dicha operación se situa inmediatamente después
del nodo que representa la relación. Si, por el contrario, la condición involucra dos relaciones se
situa justo después de la operación JOIN que involucre ambas.

3. Empleando las Reglas 6, 10 reordenar los nodos hoja del árbol de consulta, con el objetivo de
ejecutar en primer lugar las operaciones SELECT más restrictivas, es decir, aquellas cuyo resultado
posea el menor número de tuplas.

Al realizar este reajuste se debe asegurar que no cause un producto cartesiano entre las diferentes
relaciones, es decir, si las dos relaciones que poseen una condición de selección más restrictiva
no tienen una operación SELECT con una condición de unión entre ellas, lo mejor es cambiar el
orden de los nodos hoja para evitar un producto cartesiano entre ellas.

20 Capítulo 3. Un método heurístico

4. Reemplazar cada producto cartesiano seguido de una operación SELECT por una operación JOIN,
si la condición del SELECT representa una condición de unión, Regla 5.

5. Usando las Reglas 3, 4, 8, 11 mover cada operación PROJECT los más abajo posible en el árbol
de consulta, además solo se deben proyectar aquellos atributos que aparecen en el resultado de la
consulta, y aquellos que se necesiten para ejecutar las operaciones intermedias.

6. Identificar posibles subárboles de consulta que puedan ser ejecutados por un único algoritmo.

En resumen, el objetivo del algoritmo es conseguir ejecutar en primer lugar aquellas operaciones que
reduzcan el tamaño de las relaciones intermedias, reordenando las operaciones SELECT y PROJECT.
Después se intenta evitar cualquier producto cartesiano reordenando los nodos hoja y ajustando el resto
del árbol de consulta.

3.3.2. Optimización de árboles de consulta

Una consulta de una base de datos puede ser descrita de varias maneras como expresión de álgebra
relacional, ya que ésta no es única. Cuando se analiza y transforma una consulta SQL, el árbol de consulta
inicial que se obtiene no está optimizado. El método heurístico para optimizar una consulta transforma
este árbol de consulta inicial en uno equivalente para que su ejecución sea más eficiente.

Esta optimización se lleva a cabo siguiendo los pasos del algoritmo que se acaba de presentar y
empleando las reglas de equivalencia ya descritas. Para explicar mejor cómo se optimiza un árbol de
consulta lo haremos con un ejemplo.

Ejemplo 3.3. Queremos conocer el nombre de los empleados nacidos después de 1957 y que trabajan
en el proyecto “Digitalizacion”. El código SQL de esta consulta es:

SELECT E.Nombre
FROM EMPLEADOS E, TRABAJA_EN T, PROYECTOS P
WHERE P.Pnombre = ’Digitalizacion ’ AND P.Pnum = T.Pnum AND

E.DNI = T.Emp_DNI AND E.Fecha_nac > ’31−12−1957’

Tener en cuenta que en SQL, cuando se emplea más de una relación y debemos distinguir sus atributos,
se denota cada relación por una inicial y se escribe delante de cada atributo la relación a la que pertenece
seguida de un punto. El árbol de consulta inicial correspondiente al código de la consulta es:

πNombre

σ(Pnombre=’Digitalizacion’) ∧ (Pnum=Pnum) ∧ (DNI=Emp_DNI) ∧ (Fecha_nac >’31-12-1957’)

×

×
PROYECTOS

EMPLEADOS TRABAJA_EN

Figura 3.3

TFG - Pablo Aranda Luna 21

Si este primer árbol fuera ejecutado el resultado ocuparía mucho espacio al tratarse del producto
cartesiano de las tres relaciones. Por tanto, este árbol debe ser transformado en otro equivalente.

Para reducir el tamaño de las relaciones, antes de ejecutar el producto cartesiano, se aplica la ope-
ración SELECT en cada relación, es decir desplazamos las operaciones SELECT lo más abajo posible
en el árbol. En nuestro caso queremos que la operación SELECT seleccione la tupla de la relación
PROY ECTOS correspondiente al proyecto “Digitalizacion”, y filtre únicamente los empleados nacidos
después de 1957 de la relación EMPLEADOS.

Corresponde con el Paso 1 del algoritmo, en el cual hemos empleado la Regla 1 para separar un único
SELECT con una condición de selección conjuntiva en una secuencia de operaciones. Además, en este
mismo árbol de consulta se ha aplicado también el Paso 2 usando la Regla 7 para mover cada operación
SELECT lo más abajo posible del árbol de consulta.

πNombre

σ(DNI=Emp_DNI)

×

σ(Pnum=Pnum) σ(Fecha_nac >’31-12-1957’)

EMPLEADOS×

σ(Pnombre=’Digitalizacion’) TRABAJA_EN

PROYECTOS

Figura 3.4

La siguiente mejora que se puede realizar es reemplazar el producto cartesiano y la condición de
unión que le sigue en cada caso por la operación JOIN. Aplicamos el Paso 4 del algoritmo en el cual la
Regla 5 permite transformar el producto cartesiano, entre la relación T RABAJA_EN y el resultado de se-
leccionar el proyecto “Digitalizacion” de la relación PROY ECTOS, seguido de una operación SELECT,
en la cual se seleccionan las tuplas en las que coinciden el número de proyecto. Se convierte en una
operación JOIN entre ambas relaciones.

Aplicando estas ideas al árbol de consulta de la Figura 3.4:

22 Capítulo 3. Un método heurístico

πNombre

▷◁(DNI=Emp_DNI)

▷◁(Pnum=Pnum) σ(Fecha_nac >’31-12-1957’)

EMPLEADOS

σ(Pnombre=’Digitalizacion’) TRABAJA_EN

PROYECTOS

Figura 3.5

Un último avance en la eficiencia de la ejecución del árbol de consulta es aplicar lo antes posible la
operación PROJECT, se consigue así que las relaciones intermedias posean el menor número de atributos
posible.

En el ejemplo, antes de realizar ninguna operación JOIN que involucre más de una relación se pro-
yectan únicamente los atributos, de cada relación que participa en la consulta, necesarios para realizar las
siguientes operaciones. Es decir, de la relación PROY ECTOS se necesita el atributo Pnum para la pos-
terior operación JOIN, de la relación T RABAJA_EN se proyectan los atributos Pnum y Emp_DNI para
la primera y la segunda operación JOIN respectivamente, y de la relación EMPLEADOS se proyecta el
atributo DNI para poder realizar la operación JOIN y el atributo Nombre que se pide como resultado de
la consulta. El árbol de consulta resultante de este paso es:

πNombre

▷◁(DNI=Emp_DNI)

▷◁(Pnum=Pnum) πNombre, DNI

σ(Fecha_nac >’31-12-1957’)

πPnum πEmp_DNI, Pnum

σ(Pnombre=’Digitalizacion’)

PROYECTOS TRABAJA_EN

EMPLEADOS

Figura 3.6

Se ha ejecutado el Paso 5 del algoritmo heurístico, la Regla 8 permite conmutar la operación PRO-
JECT con la operación JOIN. Por otro lado, la Regla 3 se emplea para proyectar únicamente el atributo
necesario en el resultado. Tal y como acabamos de demostrar, un árbol de consulta puede ser optimizado
paso a paso siendo transformado en un árbol de consulta equivalente. A pesar de todo, se debe asegurar
que las transformaciones dan como resultado un árbol equivalente y, por lo tanto, el optimizador debe
conocer las reglas que preserven dicha equivalencia.

Capítulo 4

Optimización basada en el coste

La optimización de consultas relacionales no sólo involucra las técnicas heurísticas, las cuales he-
mos visto que se basan en la aplicación de una serie de reglas que llevan a una mejora en la eficiencia
de respuesta de las consultas al simplificar y transformar el árbol de consulta, sino que también realiza
estimaciones sobre el coste de ejecución de diferentes maneras y lleva a cabo aquella con el menor coste
estimado, conocida como optimización basada en el coste.

La optimización, usando técnicas tradicionales, estima una función objetivo del coste, tratando de
minimizarlo y elegir la ejecución más rápida y eficiente. Normalmente esta optimización se lleva a cabo
a partir de un árbol de consulta previamente optimizado heurísticamente.

Estas funciones de coste son aproximaciones, por lo que la estrategia de ejecución que resulta de la
optimización no es la óptima del problema, ya que su búsqueda podría llevar mucho tiempo al tener que
calcular el coste de ejecución de cada posible estrategia.

4.1. Determinantes del coste

Los diferentes componentes de los que depende el coste de ejecución de una consulta relacional son
los siguientes:

Costo de acceso al almacenamiento secundario. Se refiere al coste de leer y escribir bloques
de datos entre el almacenamiento en disco secundario y la memoria principal. El coste de buscar
registros en un archivo de disco depende del tipo de estructuras de acceso en ese archivo, como el
ordenamiento e índices primarios o secundarios.

Coste de almacenamiento en disco. Es el coste de almacenar en disco cualquier archivo interme-
dio que se necesite para la ejecución.

Coste de computación. Se trata del coste de realizar operaciones en memoria RAM sobre los
registros durante la ejecución de la consulta.

Tales operaciones incluyen la búsqueda y ordenamiento de registros, la combinación de registros
para una operación de unión o de ordenamiento, y la realización de cálculos sobre los valores de
las columnas.

Coste de memoria. Es el coste referido a la cantidad de memoria principal necesaria durante la
ejecución de la consulta.

Coste de comunicación. El coste de enviar la consulta y sus resultados desde el sitio de la base de
datos al sitio o terminal donde se originó la consulta.

23

24 Capítulo 4. Optimización basada en el coste

Principalmente, en grandes bases de datos, la optimización se enfoca en reducir el coste de acceso al
almacenamiento secundario. Por otro lado, el optimizador de consulta necesita conocer algunos datos
sobre los contenidos de las relaciones para poder realizar una estrategia adecuada:

El número de tuplas en una relación, es decir, su cardinalidad: |R|.

La longitud media de una tupla en la relación.

El número de bloques que ocupa la relación en el disco, se denota br.

El número de tuplas por bloque, conocido como factor de bloque (bfr).

El número de valores distintos de un atributo A en la relación R, se denota (NDV(A,R)). También
son importantes el valor máximo y el mínimo, max(A,R) y min(A,R).

La selectividad (sl), que es la fracción de tuplas que cumplen la condición de selección de un
atributo.

Y la cardinalidad de selección (sc = sl ∗ |R|), que es el número medio de tuplas que satisfacen una
condición de selección.

La selectividad de una operación JOIN se refiere a la relación entre el número de tuplas que con-
tiene el resultado de la operación y el producto cartesiano entre ambas relaciones, es decir:

js = |(R ▷◁c S)|/|(R×S)|= |(R ▷◁c S)|/(|R| ∗ |S|)

La estimación del número de tuplas del resultado de una operación JOIN es la cardinalidad de la
unión: jc = js∗ |R| ∗ |S|.

La existencia de índices. Un índice es una estructura de datos utilizada para mejorar la velocidad
de recuperación de registros y que permitien un acceso rápido a las filas de una tabla basándose en
los valores de una o más columnas. Hay varios tipos:

• Primario: índice creado en la clave primaria1 de la relación.

• Secundario: índice creado en uno o más atributos que no son la clave primaria.

Información sobre los índices. El número de niveles (x) de cada índice multinivel es necesario
para las funciones de costo que estiman el número de accesos a bloques durante la ejecución de
consultas.

4.2. Funciones de coste

Para llevar a cabo una operación SELECT o JOIN se pueden usar diferentes algoritmos para encontrar
los registros de la base de datos que satisfacen la condición de selección, dependiendo de la información
que dispongamos. Para llevar a cabo la optimización de la consulta se estima el coste de cada algoritmo
para tratar de elegir la mejor solución. Presentamos algunos de estos algoritmos:

4.2.1. Operación SELECT

Búsqueda lineal. Comprobar fila por fila cuales de ellas satisfacen la condición. La estimación del
coste de ejecución es igual al número de bloques que ocupe la relación, es decir: Coste = br.

1Una clave primaria es un conjunto de uno o más atributos de una relación de la base de datos que identifica de manera
única cada tupla.

TFG - Pablo Aranda Luna 25

4.2.2. Operación JOIN

Bucle anidado. Es el algoritmo por defecto. Si la operación es entre dos relaciones, por ejemplo
R y S, evalúa en un bucle externo cada registro t de R con cada registro s de S y comprueba cuando
se satisface la condición de unión de la operación JOIN t[A] = s[B], siendo A y B atributos de las
relaciones R y S respectivamente.

Supongamos que tomamos R en el bucle externo, entonces tenemos la siguiente función de coste
que estima el número de accesos al bloque:

Coste = bR +(bR ∗bS)+((js∗ |R| ∗ |S|)/b f rRS) = bR +(bR ∗bS)+(jc/b f rRS)

El primer término de la fórmula, br, indica el coste de leer los bloques de la relación R. El producto
br ∗bs indica el coste de leer los bloques de la relación S, ya que en un bucle anidado evalúa cada
fila de R en cada fila de S. Finalmente, el último término de la función representa el coste de
escribir el resultado en la memoria, estima el número de bloques que ocupa.

Bucle anidado basado en índice. Si existe un índice para uno de los dos atributos de la condición
del JOIN, por ejemplo el atributo B de la relación S y cuyo nivel de índice es xB, recupera con
un bucle cada registro t de R y luego usa el índice para recuperar directamente todos los registros
coincidentes s de S que satisfacen s[B] = t[A].

El coste depende del tipo del índice, para un índice primario:

Coste = bR +(|R| ∗ (xB +1))+((js∗ |R| ∗ |S|)/b f rRS)

Para un índice secundario, donde sB es la cardinalidad de selección del atributo B de la relación S:

Coste = bR +(|R| ∗ (xB +1+ scB))+((js∗ |R| ∗ |S|)/b f rRS)

4.3. Ordenación de JOIN

Cuando hay más de dos operaciones JOIN, el orden de ejecución es relevante para optimizar el
coste. En una operación JOIN entre n relaciones, éstas pueden ser ordenadas de n! formas distintas, pero
no todas son evaluadas para después elegir la mejor de todas sino que, si por ejemplo tenemos cinco
relaciones, se estima la mejor manera para las tres primeras y después se estima el mejor orden entre las
dos relaciones restantes y el resultado de la primera estimación:

r1 ▷◁ r2 ▷◁ r3 ▷◁ r4 ▷◁ r5 = (r1 ▷◁ r2 ▷◁ r3) ▷◁ r4 ▷◁ r5 = rResultado ▷◁ r4 ▷◁ r5

Dando un resultado de 3!+3! = 12 maneras evaluadas, y no de 5! = 120 formas distintas.
Otro aspecto importante a tener en cuenta es el tamaño de las relaciones involucradas, si por ejemplo

la operación JOIN involucra dos relaciones con 100 tuplas cada una y otra con 20, es preferible que la
primera operación JOIN contenga a la relación con menos registros y la relación intermedia generada
sea del menor tamaño posible.

4.4. Ejemplo de optimización basada en el coste

En esta sección se explica un ejemplo para mostrar de manera más clara cómo funciona esta opti-
mización. Supongamos que se tiene la siguiente consulta SQL en la que se quiere obtener una serie de
información sobre los proyectos localizados en Stafford.

SELECT Pnum, Num_Dpto, Nombre, Direccion, Fecha_nac
FROM PROYECTOS, DEPARTAMENTOS, EMPLEADOS
WHERE Dnum = Num_Dpto AND Jefe_DNI = DNI AND Plocalizacion = ’ Stafford ’

26 Capítulo 4. Optimización basada en el coste

El esquema de base de datos sobre el que se realiza este ejemplo es el mismo empleado durante
todo el trabajo (Cuadro 1.1), pero no así las tuplas de las diferentes relaciones mostradas en el primer
capítulo, sólo se conoce que existen diez proyectos localizados en Stafford y la información sobre las
tres relaciones involucradas mostrada en el cuadro siguiente:

Nombre Tabla Nombre Columna Distintos Valor_Mín Valor_Máx
PROYECTOS Plocalizacion 200 1 200
PROYECTOS Pnum 2000 1 2000
PROYECTOS Dnum 50 1 50

DEPARTAMENTOS Num_Dpto 50 1 50
DEPARTAMENTOS Jefe_DNI 50 1 50

EMPLEADOS DNI 10 000 1 10 000
EMPLEADOS Num_Dpto 50 1 50
EMPLEADOS Salario 500 1 500

(a) Información de columnas.

Nombre Indice Unicidad BNivela Claves distintas
PROY_PLOC No único 1 200

EMP_DNI Único 1 10 000
EMP_SAL No único 1 500

(b) Información de índices.

aNúmero de niveles sin el nodo hoja.

Nombre Tabla Número de Filas Bloques Factor de bloque
PROYECTOS 2000 100 20

DEPARTAMENTOS 50 5 10
EMPLEADOS 10 000 2000 5

(c) Información de relaciones.

Cuadro 4.1: Información estadística de las relaciones.

La primera optimización basada en el coste que se debe realizar es elegir el orden de la operación
JOIN entre las tres relaciones. Existen 3! = 6 posibilidades distintas:

1. PROY ECTOS ▷◁ DEPARTAMENTOS ▷◁ EMPLEADOS

2. DEPARTAMENTOS ▷◁ PROY ECTOS ▷◁ EMPLEADOS

3. DEPARTAMENTOS ▷◁ EMPLEADOS ▷◁ PROY ECTOS

4. EMPLEADOS ▷◁ DEPARTAMENTOS ▷◁ PROY ECTOS

5. EMPLEADOS ▷◁ PROY ECTOS ▷◁ DEPARTAMENTOS

6. PROY ECTOS ▷◁ EMPLEADOS ▷◁ DEPARTAMENTOS

Las opciones 5 y 6 se pueden desechar, ya que no resulta eficiente realizar en primer lugar un JOIN entre
las relaciones EMPLEADOS y PROY ECTOS, porque el número de registros del resultado sería mucho
más grande que las otras posibilidades por culpa de que de las tres son las dos relaciones con una mayor
cardinalidad, número de filas.

Es interesante también que la relación DEPARTAMENTOS esté presente en la primera operación
JOIN que se ejecuta debido a que por el Cuadro 4.1 sabemos que su cardinalidad es 50. Consideramos el
coste de ejecutar la primera alternativa.

TFG - Pablo Aranda Luna 27

Se estima primero el coste de la operación JOIN 1 = PROY ECTOS ▷◁ DEPARTAMENTOS.

En primer lugar se debe estimar el coste de acceso a la memoria que guarda la información contenida
en las relaciones, y posteriormente se estima el coste de su ejecución. La relación DEPARTAMENTOS
no tiene un índice, por lo que el único método es la búsqueda lineal que tiene un coste de 5 accesos
a bloque. En el caso de la relación PROY ECTOS, asumiendo que la operación SELECT ya ha sido
ejecutada, se puede realizar una búsqueda lineal o usar el índice de la relación que en este caso es
PROY _PLOC, es aquí dónde se debe comparar el coste de las dos alternativas.

La búsqueda lineal se estima que tiene un coste de 100 accesos de bloque.

Como se indica en el Cuadro 4.1, tiene un coste de acceso al índice de 2 (Bnivel más nivel nodo
hoja) y además no es único, con lo cual el optimizador asume una distribución normal de los datos.
La estimación del coste, con los datos del Cuadro 4.1, se calcula de la forma:

Coste = sl∗Núm_Filas =
Núm_Filas
Distintos

=
2000
200

= 10

Luego, el coste estimado de acceso con el índice es: 10 + 2 = 12.

Por lo tanto, concluímos que para acceder a la relación PROYECTOS se hace mediante el índice
de la relación. Calculamos ahora el coste de ejecución de la operación JOIN siguiendo el algoritmo de
bucle anidado, en el cual la relación del bucle exterior será aquella resultante de la operación SELECT
en la relación PROY ECTOS y en el bucle interior la relación DEPARTAMENTOS. Como la relación
PROY ECTOS tiene un factor de bloque de 20 y únicamente estamos tratando con 10 de sus registros
la primera relación ocupa un solo bloque, y se necesita leer cada uno de los cinco bloques que ocupa
la relación de los departamentos, así que el coste total de la operación será de seis bloques más lo que
cueste escribir la nueva relación.

El atributo Num_Dpto de la relación DEPARTAMENTOS toma un único valor para cada tupla, por
lo tanto cada Dnum de la relación resultado de SELECT coincidirá sólo con un registro de la relación
DEPARTAMENTOS, consecuentemente la relación resultado tendrá diez registros. Ahora, si supone-
mos que la relación resultante tiene un factor de bloque de cinco filas por bloque nos da un total de dos
bloques que se necesitan para almacenar dicha relación. Con lo cual, tenemos un coste estimado de la
ejecución del JOIN 1 de: 5 + 12 + 6 + 2 = 25.

Estimamos el coste de la operación JOIN 2 = JOIN 1 ▷◁ EMPLEADOS.

Se puede ejecutar un JOIN de un solo bucle, ya que en este caso se puede usar el índice EMP_DNI
para localizar los registros coincidentes entre la relación EMPLEADOS y el primer JOIN. Por lo tanto, el
método de unión implicaría leer cada bloque del primer resulatdo y buscar cada uno de los cinco valores
del atributo Jefe_DNI utilizando el índice EMP_DNI. Cada búsqueda de índice requeriría un acceso a
la raíz, un acceso a la hoja y un acceso a un bloque de datos , en total, 3 niveles. Así, 10 búsquedas re-
quieren 30 accesos a bloques. Sumando los dos accesos a bloques para acceder al resultado de la primera
operación se obtiene un total de 32 accesos a bloques para este JOIN.

El coste final es la suma de ambas operaciones y es igual a: 25 + 32 = 57 accesos a bloque. El
optimizador debe realizar este proceso aquí descrito para las demás alternativas y elegir así la forma más
eficiente.

Bibliografía

[1] CODD, E. F. (1970). A relational model of data for large shared data banks,
Communications of the ACM, 13(6), 377-387.

[2] CODD, E. F. (1990). The relational model for database management: Version 2. Addison-Wesley.

[3] DATE, C. J. (2012). SQL and Relational Theory: How to Write Accurate SQL Code (2ª ed.).
O’Reilly Media.

[4] DATE, C. J. (2003). An Introduction to Database Systems (8ª ed.). Pearson.

[5] DATE, C. J. (2000). The database relational model: A retrospective review analysis (1ª ed.).
Prentice Hall.

[6] ELMASRI, R. & NAVATHE, S. B. (2015). Fundamentals of database systems (7ª ed.). Pearson.

[7] SIMON, A. R. & MELTON, J. (2001). SQL: 1999: Understanding Relational Language Compo-
nents (1ª ed.). Morgan Kaufmann

29

	Abstract
	El modelo relacional
	Estructura
	Esquemas de relación

	Valores de una tupla
	Relación
	Orden en una relación
	Interpretación de una relación

	Base de datos relacional

	El álgebra relacional
	Operaciones unarias
	El operador SELECT
	El operador PROJECT

	Operaciones binarias
	El producto cartesiano
	La operación JOIN

	Ejemplos

	Un método heurístico
	Consultas SQL a álgebra relacional
	Árboles de consulta
	Reglas y algoritmo de transformación
	Optimización heurística
	Optimización de árboles de consulta

	Optimización basada en el coste
	Determinantes del coste
	Funciones de coste
	Operación SELECT
	Operación JOIN

	Ordenación de JOIN
	Ejemplo de optimización basada en el coste

	Bibliografía

