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CAPÍTULO 1

Introducción

Las tecnologías cuánticas explotan fenómenos sin análogo clásico como la superposición o el
entrelazamiento. Entre ellas, destaca la computación cuántica por su potencial para revolucionar la
forma en la que procesamos la información. Mientras que la computación convencional o “clásica”
tiene como unidad lógica fundamental el “bit”, que puede estar en los estados ‘0’ o ‘1’, los ordenadores
cuánticos utilizan el “qubit”, capaz de encontrarse tanto en éstos como en una combinación lineal de
los mismos [1, 2]. Esta nueva característica permite explorar múltiples estados en paralelo, lo que
otorga ciertas ventajas en la resolución de problemas muy complejos relacionados con la investigación
de materiales [3] o la búsqueda en bases de datos [4] entre otros.

El principal reto de la computación cuántica reside en conseguir una realización física que permita
operar con un número suficiente de qubits. Los algoritmos cuánticos sobrepasan la capacidad de los
superordenadores más potentes a partir de un cierto volumen de procesamiento, que se estima
cercano a 50 qubits y se conoce como “supremacía cuántica” [5]. No obstante, los qubits deben ser
protegidos del ruido ambiental causado por la interacción con su entorno. Los códigos cuánticos
de corrección de errores (QEC) requieren introducir redundancia a través de un mayor número de
qubits físicos [6], lo que aumenta el tamaño requerido del procesador a miles o millones para alcanzar
dicha supremacía [7].

Actualmente nos encontramos en la era de los dispositivos cuánticos ruidosos de tamaño interme-
dio (Noisy Intermediate-Size Quantum devices, NISQs) [2], que no son capaces de aislar sus qubits
lo suficiente como para eliminar el ruido de sus resultados. Las principales propuestas se basan en
circuitos superconductores [8] o en espines electrónicos encerrados en puntos cuánticos [9, 10]. Sin
embargo, nosotros nos centramos en sistemas de espín localizados en moléculas magnéticas [11],
concretamente en complejos polinucleares que contienen iones magnéticos.
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Puesto que pueden incluir espines electrónicos y nucleares grandes (mayor que el del electrón,
S = 1/2), estos sistemas son capaces de contener múltiples qubits o, en general, qudits de dimensión
d ≥ 2 en cada molécula. Ésto abre la posibilidad de implementar algoritmos de pequeña escala,
en particular QEC [12]. En ese caso, cada molécula podría funcionar como un qubit lógico y el
procesador se “cablearía” conectando unidades ya robustas frente al ruido, lo que constituye una
ventaja competitiva muy importante sobre otras plataformas (Figura 1.1).

1
2

0

a) b)

Figura 1.1: Comparación entre la realización de un qubit lógico basado en a) circuitos superconductores y en b)
qudits moleculares, donde cada molécula incluye algoritmos de corrección de errores.

El reto se convierte entonces en encontrar una arquitectura que permita realizar operaciones
básicas sobre estos qudits y leer sus resultados [12]. Para ello, en este trabajo se explora la posibilidad
de importar técnicas actualmente utilizadas en otras plataformas de computación cuántica, como
la Electrodinámica Cuántica de circuitos (cQED) [15]. Ésta se basa en acoplar qudits moleculares
de espín a líneas de transmisión y resonadores superconductores para controlar y medir sus estados
[16, 17], así como comunicar distintos qudits entre sí, posibilitando de esta manera la escalabilidad
(Figura 1.1).

El objetivo de este trabajo es estudiar la realización de un procesador cuántico de 2 qubits en
una molécula y explorar su acoplo a resonadores superconductores. Concretamente, hemos elegido
el trímero molecular [DyLaDy], cuya estructura es idéntica a la de su análogo [ErCeEr] [18]. Por
ende, la coordinación local de cada átomo de Dy es ligeramente distinta, lo que diferencia su com-
portamiento frente a un campo magnético y permite acceder a cada qubit de forma independiente.
En comparación a los dímeros [LnLn’] previamente estudiados [19], la inclusión del ion La3+ debería
reducir el acoplo entre los dos iones magnéticos, de forma que las energías de transición relevantes
sean experimentalmente accesibles.

Este trabajo se divide en dos bloques principales, el primero dedicado a la caracterización del
trímero como un procesador cuántico de dos qubits y el segundo centrado en el estudio de su
acoplo a los resonadores superconductores. El Capítulo 2 introduce el sistema molecular y distintos
experimentos que permiten determinar los parámetros de su Hamiltoniano de Espín. En el Capítulo
3 se describen los experimentos de acoplo a circuitos, con los que determinamos la viabilidad de la
cQED para medir nuestro sistema. Finalmente, en el Capítulo 4 realizamos unos primeros intentos
de experimentos con señales pulsadas, donde buscamos medir los tiempos característicos del sistema.
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CAPÍTULO 2

Trímero [DyLaDy] como procesador de 2 qubits

2.1. Introducción

El trímero molecular utilizado, mostrado en la Figura 2.1, es sintetizado por el equipo de Gui-
llem Aromí del departamento de Química Inorgánica de la Universidad de Barcelona (Barcelona,
España). Está constituido por dos iones magnéticos Dy3+ y un ion diamagnético La3+, rodeados
por un entorno de iones diamagnéticos O2− y N5+ y una nube de ligandos orgánicos. En nuestros
experimentos, hemos utilizado muestras en polvo y cristales del compuesto puro, aunque en el fu-
turo se espera que sea posible acceder a muestras magnéticamente diluidas; es decir, en las que una
mayoría de moléculas hayan sido reemplazadas por un equivalente diamagnético como [YLaY] para
ayudar a reducir la decoherencia asociada con interacciones magnéticas entre moléculas diferentes.

Figura 2.1: Representación 3D del trímero [DyLaDy], donde los iones verdes representan Dy3+ y las flechas mostaza
sus espines, el beige La3+, los rojos O2− y los azules N5+.
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La configuración electrónica de los iones Dy3+ es [Xe] 4f9. Las reglas de Hund, provenientes del
Hamiltoniano libre Ĥ0, predicen un momento angular total J = 15/2 y una degeneración del nivel
fundamental electrónico de la capa incompleta (2J + 1) = 16. No obstante, cuando se situan en
la molécula, la interacción con los iones colindantes modifica los niveles energéticos y rompe esta
degeneración. Utilizando la teoría de Campo Cristalino en aproximación de campo débil, pues la
capa incompleta 4f de los iones de tierras raras está apantallada por los electrones situados en los
orbitales 5s y 5p, podemos introducir esta interacción como una perturbación a Ĥ0 y expresarla en
función de los operadores de Stevens de cada electrón Ôq

k, donde k es par, q ∈ Z y k ≤ 2J . Añadiendo
también la interacción Zeeman con un campo magnético externo B⃗, tenemos el Hamiltoniano Ŵ

(2.1.1), donde gJ = 4/3 es el factor de Landé y µB el magnetón de Bohr.

Ŵ =
∑
k

k∑
q=−k

Bq
kÔ

q
k(J⃗)− gJµBB⃗ · J⃗ (2.1.1)

El teorema de Jahn-Teller asegura que el nivel fundamental adaptado a la simetría es un singlete
orbital, de forma que sólo presenta degeneración por espín. Además, como el ion tiene un número
impar de electrones en la capa incompleta, el teorema de Kramers impone una degeneración par en
dicho nivel. De esta forma, podemos interpretar que este nivel es un doblete cuya degeneración se
rompe en presencia de un campo magnético y puede, por tanto, codificar los estados lógicos |0⟩ y
|1⟩ de un qubit.

Para nuestro objetivo sólo nos interesa este nivel fundamental, por lo que sería conveniente poder
describir la respuesta del sistema en función de un Hamiltoniano adaptado al subespacio de 2×2 es-
tados asociados a los dos niveles fundamentales de ambos iones. Ésto puede conseguirse proyectando
Ĥ0 + Ŵ a dicho doblete fundamental, lo que da lugar al Hamiltoniano de Espín [20]. Suponiendo
que estamos trabajando en temperaturas T y campos magnéticos B lo suficientemente bajos como
para que la energía térmica kBT y el desglosamiento Zeeman sean pequeños en comparación con la
energía del primer doblete Kramers excitado ∆, la aplicación de segundo orden de perturbaciones
nos da la evolución respecto al campo de cada ion aislado, que puede describirse con un espín efectivo
S′ = 1/2 y un tensor giromagnético anisótropo g̃i en virtud de Ĥ i

S

Ĥ i
S = µBS⃗ig̃iB⃗ (2.1.2)

Como los dos iones se encuentran a una distancia r = 7, 9Å (Figura 2.1), van a interactuar
entre sí. Podemos modelizar esta interacción como un acoplo bilineal entre sus momentos angulares
totales Ŵ12 = J⃗1C̃J⃗2, donde C̃ es un tensor de rango 2. Así, suponiendo que la interacción es
lo suficientemente débil para considerarla una perturbación del Hamiltoniano aislado de cada ion
Ĥ0 + Ŵ , un desarrollo en primer orden de perturbaciones sumado a la proyección sobre los estados
fundamentales nos da el término de interacción en el formalismo del Hamiltoniano de Espín [19]

ĤS1,S2 =
1

gJ1gJ2
S⃗1g̃1C̃g̃2S⃗2 (2.1.3)
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Suponiendo por simplicidad una interacción de Canje tipo Heisenberg, se tiene que el tensor de
acoplo original es un escalar C̃ = J12. Por ende, el Hamiltoniano de Espín de nuestra molécula es

ĤS = µBS⃗1g̃1B⃗ + µBS⃗2g̃2B⃗ +
J12

gJ1gJ2
S⃗1g̃1g̃2S⃗2 (2.1.4)

análogo al de otros dímeros [LnLn’] [19].

Este Hamiltoniano permite describir los estados que conforman el espacio “lógico” si conocemos
sus parámetros y su rango de aplicabilidad, lo que requiere varios experimentos de caracterización.
Sus resultados se discuten y analizan en las Secciones 2.4-2.6. En las dos secciones siguientes, intro-
ducimos las técnicas experimentales y la base teórica necesaria para interpretarlos. Finalmente, en
la Sección 2.7 estudiamos la viabilidad del trímero como procesador cuántico.

2.2. Métodos experimentales

2.2.1. Experimentos de caracterización magnética: magnetometría SQUID

Los experimentos de susceptibilidad magnética se realizan en el Sistema de Medidas de Propie-
dades Magnéticas (MPMS) de Quantum Design operado por el Servicio de Apoyo a la Investiga-
ción (SAI) de la Universidad de Zaragoza. Éste un magnetómetro comercial basado en un detector
SQUID-DC (Figura 2.2a), que actúa como un transductor de flujo magnético a voltaje. Su gran
sensibilidad permite medir la imanación de muestras pequeñas en un amplio rango de temperatura,
0,4 K < T < 300 K, gracias a un criostato de He líquido y otro de 3He.

La muestra se mantiene fija en el soporte de cuarzo gracias a la grasa Apiezon N, que tiene una
buena conductividad térmica hasta bajas temperaturas y cuya señal diamagnética se ha determinado
en experimentos previos. Con el fin de facilitar la interpretación de los resultados, utilizamos una
muestra en polvo, compuesta de muchos fragmentos policristalinos (Figura 2.2b).

b)

a)

Figura 2.2: a) Esquema del sensor SQUID-DC, formado por dos uniones Josephson. b) Fotografía de la muestra
policristalina adherida al tubo de cuarzo con grasa apiezón N.
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2.2.2. Experimentos de capacidad calorífica

Las medidas del calor específico se realizan en el Sistema de Medida de Propiedades Físicas
(PPMS) diseñado por Quantum Design. Entre los distintos modos posibles, permite medir la capaci-
dad calorífica en función de la temperatura y el campo aplicado a presión constante. Concretamente,
nosotros utilizamos el modelo PPMS-14T del Servicio de Medidas Físicas de la Universidad de Za-
ragoza, operado por el Servicio de Apoyo a la Investigación (SAI). También permite acceder a bajas
temperaturas por el uso de un criostato de He líquido y otro de 3He.

a)

b) c)

Figura 2.3: a) Esquema del calorímetro, formado por un portamuestras (azul) conectado a un reservorio (magenta) a
través de hilos metálicos (dorado). b) Fotografía del calorímetro, en cuyo centro está suspendido el portamuestras por

los hilos metálicos. c) Respuesta temporal del calorímetro a un pulso de potencia cuadrado.

La muestra en polvo se introduce en un calorímetro constituido por un portamuestras de zafiro,
un calentador y un termómetro, conectado a un reservorio de temperatura a través de 4 finos hilos
metálicos que permite introducir gradientes de temperatura (Figura 2.3a). Las medidas se realizan
mediante el método de relajación [21], que estudia la relajación térmica del conjunto muestra-
calorímetro en respuesta a un pulso cuadrado de potencia (Figura 2.3c). Como el sistema es análogo
a un circuito RC, donde la capacidad calorífica actúa como condensador y los hilos metálicos como
resistencia, se va a tener una evolución temporal análoga

T (t)− TB =
P

K

(
1− e−

K
C
t
)

(2.2.5)

siendo TB la temperatura del reservorio, P la potencia de la señal, K la conductividad de los hilos
y C la capacidad calorífica total del sistema, suma de la del calorímetro Cc y de la muestra Cm.
Habiendo calibrado con anterioridad CC , el estudio de la constante de decaimiento τ = C/K permite
determinar Cm = C − Cc.
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2.2.3. Experimento de Resonancia Paramagnética Electrónica (EPR)

Por último, el experimento de Resonancia Paramagnética Electrónica (EPR) se realiza en un
espectrómetro comercial Elexsys E-580 de Brucker Corporation, perteneciente al Instituto de Nano-
ciencia y Materiales de Aragón (INMA). Está formado por una cavidad resonante en cuyo interior
se coloca la muestra y que se irradia con microondas de frecuencias estándar, generalmente 9, 8

GHz (banda X), para generar excitaciones en los niveles de espín a través de la absorción de fotones
(Figura 2.4a). Está situada en el centro de un electroimán que genera el campo magnético constante.

a) b)

c)

Figura 2.4: a) Esquema del espectrómetro, donde se distinguen los imanes grandes que generan el campo continuo y
los pequeños que crean la modulación para la técnica lock-in. b) Esquema de la técnica lock-in, que genera una
respuesta proporcional a la primera derivada del espectro de absorción (c). Imágenes b) y c) obtenidas de [22].

En el experimento de onda continua, la cavidad es irradiada de forma continua mientras el
campo magnético externo varía lentamente. Además, la medición se realiza mediante la técnica lock-
in (Figura 2.4b), en la que se modula el campo en una frecuencia fija y se filtra la respuesta con
ésta misma frecuencia, lo que mejora enormemente la relación señal-ruido y provoca que el espectro
medido sea la primera derivada del espectro de absorción de la muestra (Figura 2.4c).

2.3. Marco teórico

2.3.1. Experimentos de caracterización magnética: magnetometría SQUID

Supongamos que nos situamos en el rango de temperaturas tal que en cada ion sólo el doblete
Kramers fundamental y el primer excitado, separados por una energía ∆, tienen poblaciones no
despreciables. Podemos describir la susceptibilidad magnética de la molécula usando el formalismo
general de Van Vleck para espines en un entorno anisótropo [23]. Introduciendo además la existencia
de interacciones y modelándolas como un campo magnético molecular, se tiene
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χT ≈ 2
NA⟨g2⟩µ2BS(S + 1)

3kB

T

T − θ

[
C0 + C1

2kBT

∆
tanh

(
∆

2kBT

)
+ C2 tanh

(
∆

2kBT

)]
(2.3.6)

donde ⟨g2⟩ = (g2x + g2y + g2z)/3 involucra los valores principales de los tensores giromagnéticos del
Hamiltoniano de Espin (2.1.4), S = 1/2 es el espín efectivo de los iones, θ es la temperatura de
Weiss, que parametriza la intensidad de las interacciones magnéticas entre iones, y C0, C1 y C2 son
parámetros numéricos.

2.3.2. Experimentos de capacidad calorífica

Separando las contribuciones de la red y del sistema magnético, podemos expresar el calor espe-
cífico de la muestra como Cm = Cmag + Clatt [21]. El primero viene dado por la expresión general
de Schottky

Cs

R
=

1

β2

(∑m
i=0 ε

2
i gie

−βεi
) (∑m

i=0 gie
−βεi

)
−
(∑m

i=0 εigie
−βεi

)2
(
∑m

i=0 gie
−βεi)

2 (2.3.7)

siendo gi la degeneración del nivel i, εi su energía y m el número de niveles del espectro. Por su parte,
en el segundo se distinguen la contribución de los fonones acústicos CD, descritos con el modelo de
Debye (2.3.8), y la de los ópticos CE , con el modelo de Einstein (2.3.9)

CD

R
= 9

(
T

ΘD

)3 ∫ ΘD/T

0

xex

(ex − 1)2
dx

T≪ΘD−−−−→ 234

(
T

ΘD

)3

(2.3.8)

CE

R
= 3

(
TE
T

)2 e
TE
T(

e
TE
T − 1

)2 (2.3.9)

Como en este tipo de sistemas ΘD ∈ [15, 50] K y TE ∈ [20− 30] K [21], podemos aproximar

Clatt ∝ T β ; β ∈ [2,6; 3] (2.3.10)

2.4. Resultados de la caracterización magnética

Comencemos estudiando la dependencia de la susceptibilidad magnética con la temperatura,
manteniendo para ello el campo magnético externo constante H = 1 kOe. Teniendo en cuenta la
corrección de las masas mm y mgr, y el reescalado asociado al cambio de criostato, que se detalla
en el Anexo A, se tiene la Figura 2.5, cuyas medidas se han ajustado a la fórmula de Van Vleck
(2.3.6). Cabe destacar que las altas incertidumbres (atenuadas en un factor 5 en la figura) se deben
a la medida de la imanación. Aunque se han tenido en cuenta en el ajuste, cabe comentar que se
podrían reducir hasta un orden de magnitud si cada punto se midiera múltiples veces.
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Δ

θ=0 θ<0

δEint

E

Figura 2.5: Representación de las medidas del producto χT en función de la temperatura y ajuste a la fórmula de Van
Vleck (2.3.6). A la derecha, esquema de niveles energéticos de los iones aislados (θ = 0) e interactuantes (θ < 0).

A partir de este ajuste se obtiene ∆ = (35± 9) K, θ = (−45± 10) mK y g2x + g2y + g2z = 85± 6,
cuyas elevadas incertidumbres podrían mejorarse si se consiguiera una mejor calibración entre los
dos equipos, pues proceden principalmente de la discontinuidad en T = 5 K. El primer parámetro
nos indica que el primer doblete excitado Kramers se encuentra a una distancia de 35 K respecto
al fundamental, por lo que debemos trabajar a temperaturas T ≲ 3 K para evitar su población
térmica (Figura 2.5). En esas condiciones, la molécula puede considerarse como un sistema de dos
espines efectivos S = 1/2. Además, el valor de χT en este régimen (entre 1 K ≲ T ≲ 3 K) nos
permite estimar ⟨g2⟩. Si consideramos, como es habitual en sistemas con Dy, que cada ion tiene
una anisotropía predominantemente uniaxial [19], entonces gx, gy ≪ gz y gz ≈ 9, 2, lo que permite
asociar el doblete Kramers fundamental al estado mJ = 7/2 del ion libre1.

Por su parte, la disminución en χT obtenida en T < 1 K indica la presencia de una interacción
antiferromagnética entre ambos iones (J12 > 0 en nuestro Hamiltoniano de Espín (2.1.4)), que rompe
la degeneración cuádruple del estado fundamental de la molécula en dos dobletes separados por una
diferencia energética δEint (Figura 2.5).

Discutamos a continuación la dependencia de la imanación con el campo magnético externo. En
la Figura 2.6a se muestran las isotermas medidas a diferentes temperatura. Como es de esperar,
se observa una saturación más rápida a medida que disminuye T , pues la agitación térmica de los
espines es menor.

1El desdoblamiento Zeeman del doblete Kramers cumple gzSµBB = gJmJµBB −→ mJ = gz
gJ

S ≈ 7/2.
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a) b)

Figura 2.6: Representación de la imanación en función de H en régimen de a) temperaturas altas y b) bajas.

Realizando las mismas medidas en régimen de temperaturas bajas e introduciendo el reescalado
por el cambio de criostato desarrollado en el Anexo A, se tiene la Figura 2.6b, en la que se plasma
un comportamiento análogo al caso con T = 2 K de la Figura 2.6a, pero con una saturación más
definida conforme menor es la temperatura.

Asimismo, estas medidas pueden utilizarse para cerciorarnos del comportamiento paramagnético
de los dobletes fundamentales de los iones Dy3+, pues deben cumplir la función de Brillouin. Este
análisis se hace en el Anexo B, donde vemos una correspondencia prácticamente perfecta con los
datos con T = 1 K, lo que nos indica que nuestros iones aislados se comportan como centros
paramagnéticos con S = 1/2. Además, el valor de saturación nos sugiere que el campo consigue
polarizar los espines, pues MS ≈ 11, 5µB ≈ 2gzS, lo que implica gx, gy ̸= 0. Un análisis más
detallado requeriría un modelo más complejo que considere que la muestra se ha medido en polvo.

2.5. Resultados de la capacidad calorífica

Las medidas realizadas en el intervalo T ∈ [0, 36; 20] K para distintos valores de campo magnético
externo H se muestran en la Figura 2.7a. A temperaturas suficientemente altas (T ≳ 2 K), el
calor específico c está dominado por una contribución creciente con T que se puede asociar a las
vibraciones cristalinas y moleculares. A menores temperaturas, se observa una contribución adicional
que depende de H y proviene de los niveles de espín de la molécula.

Consideremos primero los datos medidos en ausencia de campo magnético. Para estudiar la
influencia de los modos acústicos de la red, realizamos un ajuste a (2.3.10) de las medidas tomadas
a T ∈ [1, 9; 4, 5] K para evitar las contribuciones del sistema magnético y de los modos ópticos, pues
su contribución deja de ser constante a temperaturas más altas siguiendo (2.3.9). Ésta se muestra
en la Figura 2.7b como clatt, obteniendo β = (2, 703± 0, 026) y ΘD = (24, 01± 0, 28) K, dentro de
los límites esperados [21].
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a) b)

Figura 2.7: a) Medidas del calor específico en bajas temperaturas para distintos valores de H. b) Representación de
las medidas con H = 0 y ajuste a la contribución de la red clatt y a la del sistema magnético cSch.

Si nos centramos ahora en el rango de muy bajas temperaturas T < 1 K, la contribución de
tipo Schottky proporciona evidencia de la existencia de un desdoblamiento, que asociamos a las
interacciones entre iones. Podemos analizar esta contribución a través de la expresión general (2.3.7).
Como sabemos que en este régimen de temperatura tenemos dos dobletes separados por una energía
δEint (Figura 2.5), supondremos que tenemos un sistema de dos estados con degeneraciones dobles,
g0 = g1 = 2. Incluyendo la contribución de la red anteriormente determinada, se tiene el ajuste de
la Figura 2.7b, denotado como cSch, del que se obtiene δEint = (0, 500± 0, 003) K = (10, 42± 0, 06)

GHz, similar al encontrado en trímeros análogos [18]. Esta diferencia de energía impone una ligadura
en el término de interacción J12 del Hamiltoniano de Espín (2.1.4).

Los resultados medidos para H > 0 muestran que la anomalía Schottky se desplaza gradualmente
hacia temperaturas más elevadas. Ésto nos indica que el desdoblamiento entre niveles de espín
aumentan con H. A pesar de que podría intentar usarse la expresión general de Schottky (2.3.7)
para estimar su evolución, debe recordarse que estos experimentos se realizan con una muestra en
polvo y que los términos del Hamiltoniano de Espín dependientes del campo magnético externo lo
hacen con el vector B⃗, no sólo con el módulo, por lo que se obtendría un promedio. Esta dependencia
se puede utilizar para sintonizar las transiciones a las frecuencias de una excitación coherente, lo que
forma la base del control cuántico del procesador de 2 qubits.

2.6. Resultados de Resonancia Paramagnética Electrónica

Los resultados obtenidos sobre una muestra en polvo se muestran en la Figura 2.8. El espectro se
mide utilizando la banda X a T = 15 K. Aunque hayamos visto que los primeros dobletes excitados
se encuentran a ∆ = (35± 9) K (Figura 2.5), sus transiciones no parecen afectar a nuestro espectro,
pues se obtenía la misma forma con T = 10 K y T = 7 K (aunque con mayor ruido). Por ello,
usaremos el Hamiltoniano de Espín (2.1.4).
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Figura 2.8: Espectro de EPR medido a T = 15 K y simulado con los
parámetros de la Tabla 2.9 con EasySpin [24].

g⊥1 0, 15± 0, 01

g∥1 8, 6± 0, 1

g⊥2 0, 20± 0, 01

g∥2 9, 7± 0, 1

β [◦] 34, 3± 0, 1

Figura 2.9: Parámetros de la simulación
del espectro de la Figura 2.8.

Si nos situamos en el sistema de referencia de los ejes propios del tensor giromagnético ĝ1, éste
vendrá descrito únicamente por sus valores principales gx1, gy1 y gz1, los cuales pueden diferir de los
de ĝ2 por tener un entorno local distinto. Puesto que los ejes propios de ambos tensores no tienen
por qué coincidir, supondremos que están relacionadas por una matriz de rotación R̂ definida por
los tres ángulos de Euler extrínsecos α, β y γ

R =

 cos γ sin γ 0

− sin γ cos γ 0

0 0 1


cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ


 cosα sinα 0

− sinα cosα 0

0 0 1

 (2.6.11)

donde no consideramos operaciones de inversión por simplicidad. De esta forma, si U1 es la matriz de
ejes propios normalizados del tensor ĝ1 y U2 la de ĝ2, se tiene U2 = R̂U1R̂

−1. Si suponemos además
simetría axial 0 ̸= gxi = gyi ≡ g⊥i ≪ g∥i ≡ gzi ≈ 9, 2 (Figura 2.5), entonces sólo es relevante el
ángulo β en la matriz R̂. Asimismo, como J12 ≈ ∆gap · 10−2 (ver Anexo C), estimamos J12 = 500

MHz (Figura 2.7b).

Utilizando el software EasySpin [24] para simular y ajustar nuestros parámetros, se obtiene
la Figura 2.8, en la que se replica adecuadamente el espectro medido. Los parámetros utilizados,
mostrados en la Tabla 2.9, son coherentes con los experimentos anteriores, pues (2g2⊥1+g

2
∥1+2g2⊥2+

g2∥2)/2 = (84, 1± 1,3), y se tiene un factor de acoplo J12 ≈ 515 MHz.
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2.7. Complejo [DyLaDy] como procesador de 2 qubits

Una vez conocidos los parámetros del Hamiltoniano de Espín de nuestra molécula, podemos de-
terminar la evolución de los niveles energéticos en función del campo magnético externo B⃗. Ejemplos
obtenidos para dos orientaciones del campo magnético se muestran en las Figuras 2.10a y c, donde
vemos que dicha orientación afecta en gran medida al espectro. Cabe comentar que tomamos como
referencia la dirección del tercer eje propio del tensor giromagnético ĝ1; aunque sería más práctico
usar algún eje cristalino identificable macroscópicamente, desconocemos la orientación relativa entre
estos ejes y dicho tensor ĝ1. Conocerla requeriría hacer experimentos simultáneos de EPR sobre
monocristales indexados mediante difracción de rayos X, lo que escapa de nuestras posibilidades
experimentales y del ámbito de este trabajo.

Asimismo, en las Figuras 2.10b y d se muestran las frecuencias de Rabi Ωij para valores de
campo estático B y dinámico B1 concretos. Vemos que no todas las transiciones cumplen el criterio
de existencia Ωij > 0 (ver Anexo D), por lo que no todas las puertas cuánticas son accesibles en
todo momento. Ésto se debe a que deben cumplirse las reglas de transición dipolar magnética, que
establecen ∆Szi = 1 y ∆Szj = 0 para i ̸= j y STf = ST i ⊗ 1 y ŜT = Ŝ1 + Ŝ2 es el espín total.
Como dichas frecuencias dependen de B⃗, tener en los posteriores experimentos una orientación tal
que todas las puertas lógicas cuánticas sean accesibles mediante modulación del campo es esencial
para la viabilidad del trímero como procesador de dos qubits.

a) b)

c) d)

|00>

|10>

|01>

|11>

Figura 2.10: Representación de los niveles energéticos en función del campo magnético para las orientaciones a)
θ = φ = 0◦ y c) θ = −72, 5◦ y φ = 0◦. Los estados lógicos se denominan en función del autoestado predominante de
espín, siendo |0⟩ ≡ | ↓⟩ y |1⟩ ≡ | ↑⟩. En b) y d) se muestran las respectivas frecuencias de Rabi de las transiciones
entre estados calculadas con B = 50 mT y B = 410 mT respectivamente, siendo posibles únicamente aquellas con

Ωij > 0. En ambos casos, B1 = 0, 1 mT.
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CAPÍTULO 3

Acoplo a circuitos superconductores

3.1. Introducción

Como se menciona en el Capítulo 1, el siguiente paso para utilizar el trímero [DyLaDy] como
procesador cuántico consiste en integrarlo en circuitos. El grupo Q-MAD trabaja en una propuesta
que utiliza la Electrodinámica Cuántica de circuitos (cQED) [15], basada en la interacción qudit-
fotón a través de líneas de transmisión y resonadores superconductores en chip. Como el acoplo a una
sola molécula es demasiado pequeño como para poder ser detectado, es necesario utilizar cristales
moleculares, que poseen moléculas idealmente idénticas para aumentar el acoplo colectivo.

Por este motivo, en esta segunda parte del trabajo se describen los experimentos llevados a cabo
para explorar dicha interacción para el caso de cristales de [DyLaDy] depositados sobre resonadores
LC. Además de determinar el acoplo GN entre las N moléculas del cristal y los fotones del resonador,
estos experimentos ofrecen una forma de comprobar la validez de la propuesta de la Figura 2.10.

3.2. Montaje experimental

Los circuitos utilizados son diseñados y fabricados por el equipo de Alicia Gómez, pertenecien-
te al Centro de Astrobiología del INTA-CSIC (Madrid, España). Están constituidos por una o dos
líneas de transmisión, por las que se introducen y extraen fotones del circuito, y múltiples Resonado-
res de Elementos Concentrados (LERs), que son pequeños subcircuitos superconductores formados
por una inductancia y un condensador en paralelo (Figura 3.1a). Los cristales se depositan en la
inductancia, que genera el campo magnético en el resonador, y se fijan con aceite paratone, utilizado
en cristalografía y que tiene una mayor fluidez que la grasa apiezon a temperatura ambiente.
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b)

a) b)

Figura 3.1: a) Resonador LER representado como una inductancia y un condensador en paralelo con frecuencia
característica ωr. b) Espectro energético del resonador cuantizado, donde cada autoestado |n⟩ representa el número

de fotones encerrados, con n ∈ Z+. Imágenes obtenidas de [25].

Para poder utilizar nuestro sistema cuántico, necesitamos que los qudits estén inicialmente en
su estado fundamental. Ésto se consigue enfriándolo a temperaturas inferiores a ∆/kB y a δEint/kB

con un refrigerador de dilución 3He-4He LD250 de Bluefors (Figura 3.2b) operado por el Servicio de
Apoyo a la Investigación (SAI) de la Universidad de Zaragoza, pues puede enfriar hasta temperaturas
T ≥ 10 mK. Este equipo posee también un imán uniaxial superconductor de American Magnetics
que permite alcanzar campos magnéticos intensos (B ≤ 1 T), necesarios para sintonizar los niveles
energéticos de los qudits. La señal de microondas, enviada y recibida del chip superconductor vía
cables semirígidos coaxiales criogénicos, es generada y caracterizada por un analizador vectorial de
redes (VNA) ZVB14 de Rohde & Schwarz (Figura 3.2a), que mide cambios en la amplitud y fase.
El esquema general del montaje experimental se muestra en la Figura 3.2.

CHIP

Input Output

a)

b)

c)

d)

Figura 3.2: Las señales de microondas se generan en el VNA (a) y se transportan vía cables coaxiales criogénicos a
través del criostato (b) hasta el chip (c). A su salida, vuelven al VNA para su análisis. d) Representación de las

medidas de transmisión y ajuste en régimen de acoplo débil (3.3.3). Imagen a) obtenida de [25].
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En estos experimentos, me he centrado en la colocación de la muestra en los resonadores (Figura
3.3a) y en la realización de experimentos de transmisión y resonancia (Figura 3.2d), así como su
análisis e interpretación.

3.3. Marco teórico

El Hamiltoniano de nuestro cristal molecular será la suma del Hamiltoniano de Espín (2.1.4) de
las N moléculas. Por su parte, tal y como se muestra en la Figura 3.1 y se discute en el Anexo E, el
Hamiltoniano de un LER corresponde con el de un oscilador armónico cuántico. Así, si consideramos
que ambos sistemas interactúan a través de la interacción dipolar magnética, en la que la creación o
destrucción de un fotón está ligada al descenso o promoción de una excitación de espín, se obtiene
el Hamiltoniano de Tavis-Cummings generalizado [25]

ĤTC =
N∑
i=1

ĤSi + ĤR +
N∑
i=1

ĤSi,R (3.3.1)

=
N∑
i=1

ĤSi + ℏωr

(
â†â+

1

2

)
+

N∑
i=1

ℏ
(
G1Ŝ

+
i â+G∗

1Ŝ
−
i â

†
)

(3.3.2)

donde â† y â son los operadores de creación y destrucción bosónicos de los fotones y Ŝ±
i es un

operador que crea o elimina una excitación de espín en la i-ésima molécula. Se ha impuesto que
todas las moléculas tengan el mismo espectro energético y el mismo acoplo con el resonador G1. Se
define la el acoplo colectivo como GN ≡ |G1|

√
N , que será la magnitud macroscópicamente accesible.

Suponiendo que nos encontramos en régimen de acoplo débil, en el que domina los procesos de
decoherencia de las moléculas frente a la introducción de nuevos fotones al resonador desde la línea
de transmisión, podemos utilizar la teoría Input-Output para conocer la transmisión t del resonador
en el circuito [25]. Si enviamos fotones con una frecuencia f cercana a alguna frecuencia de transición
de nuestro sistema fS,i, puede aproximarse a

t =

∣∣∣∣1− eiϕ
Aκ

κ+ i(fS,i − f)

∣∣∣∣ (3.3.3)

donde ϕ es una fase cualquiera, A es la visibilidad del resonador y κ es la anchura efectiva del
resonador. Esta última puede escribirse como

κ = κ0 +
∑
i

G2
N,iγi

(geff,iµBBr)2 + γ2i
(3.3.4)

siendo κ0 la anchura intrínseca de la línea de transmisión, GN,i el acoplo colectivo qudit-fotón en la
i-ésima transición, geff,i su factor Landé efectivo y γi el ratio de decoherencia global, que incluye
todos los efectos disipativos. Por simplicidad, supondremos γi = γ = 1/T ∗

2 , con T ∗
2 el tiempo de

decoherencia global.
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3.4. Resultados

Las primeras medidas de transmisión del resonador con nuestro cristal molecular (Figura 3.3a)
se realizan con una señal de microondas con potencia P = −70 dBm debido a la baja visibilidad
del resonador, ya que potencias menores imposibilitaban distinguir los picos de resonancia del ruido.
Realizamos estas medidas para T ∈ {20, 100, 500} mK con el fin de distinguir las transiciones desde
el estado fundamental o desde excitados. Un ejemplo se muestra en la Figura 3.3b, donde destaca
el pico de transmisión asociado al resonador cuya frecuencia disminuye con el campo magnético B.
Como esta evolución es continua, podemos asegurar que el acoplo qudit-fotón se mantiene en el
régimen débil.

1

2

3

4 5

κ0

a) b)

c) d)

Figura 3.3: a) Fotografía del cristal molecular depositado sobre el resonador superconductor, donde se aprecia la
línea de transmisión. b) Representación 2D de la transmisión del resonador medida a T = 20 mK, P = −70 dBm y

el campo magnético B perpendicular al resonador. c) Espectros de absorción para distintas temperaturas. d)
Enumeración de las transiciones identificadas en el espectro de absorción con T = 20 mK.

Si ajustamos estos picos a (3.3.3) para cada valor de campo, salvo en el rango B ∈ [400, 430]

mT por el cambio en la transmisión dado por el VNA, se obtienen los espectros de absorción de
la Figura 3.3c. En éstos se vislumbra la influencia de la temperatura, cuya disminución aumenta la
intensidad de los picos de resonancias debido a la reducción de la agitación térmica de los espines.
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Utilizando el espectro obtenido a partir de las medidas con T = 20 mK por su mayor contraste, se
distinguen varios picos asociados a transiciones de espín (Figura 3.3d). Habiendo visto en la Sección
2.7 que en un monocristal pueden tenerse 1 o 2 transiciones permitidas para una frecuencia fija, este
espectro nos indica que tenemos varias orientaciones distintas de los tensores giromagnéticos dentro
del propio cristal. Ajustando cada uno a (3.3.4), se tiene en todos los casos γ = (5±0, 2) GHz, lo que
implica T ∗

2 = (0, 200±0, 008) ns, un resultado muy pobre para realizar cualquier algoritmo cuántico
[11], probablemente asociado a una mala calidad del cristal. Asimismo, GN,i y geff,i dependen de
cada transición, teniendo en general GN,i ∈ [70, 110] MHz y geff,i ∈ [1, 9; 2, 3]. Ésto también asegura
que nos encontramos en régimen de acoplo débil, pues GN,i/γ ≪ 1 [25].

Estos experimentos se repitieron con dos nuevos cristales en resonadores distintos con una fre-
cuencia característica menor, lo que esquiva el cambio en la transmisión exportado por el VNA en
f = 8 GHz. No obstante, tuvieron que realizarse a T = 3, 7 K por averías en el refrigerador, lo que
nos impide eliminar las transiciones desde estados excitados de espín. Realizando el mismo análisis
sobre los datos de transimisión (Figura 3.4a), se tienen los espectros de la Figura 3.4b. Su distinta
forma se asocia a distintas calidades de los cristales, siendo la del resonador con fS = 3, 16 GHz
mucho mejor que el de fS = 3, 52 GHz por su menor anchura en el pico asociado a una transición.

a) b)

Figura 3.4: a) Representación 2D de la transmisión del resonador medida a T = 3, 7 K, P = −95 dBm y el campo
magnético B perpendicular al resonador. b) Espectros de absorción de dos resonadores con frecuencia característica

fS distinta.

Si estudiamos sólo este espectro y ajustamos el pico localizado en B ≈ 400 mT a (3.3.3), se
tiene γ = (4, 56 ± 0, 13) GHz, asociado a T ∗

2 = (0, 219 ± 0, 006) ns, GN,i ≈ 45 MHz y geff,i ≈ 1, 1,
resultados similares a los del experimento anterior. Al contrario que el espectro de la Figura 3.3d,
éste es coherente con un monocristal donde la orientación del campo B⃗ es la de la Figura 2.10c, pues
es la única transición con intensidad apreciable. Aunque su corto tiempo de decoherencia implique
que esta molécula no es adecuada para funcionar como procesador cuántico, es necesario determinar
las distintas contribuciones de esta decoherencia con experimentos de pulsos de microondas.
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CAPÍTULO 4

Primeros intentos de experimentos con pulsos

4.1. Introducción

Hasta ahora se ha descrito la respuesta estacionaria del trímero [DyLaDy] aislado (Capítulo 2) e
integrado en circuitos (Capítulo 3). No obstante, las operaciones con información cuántica se basan
en llevar al procesador fuera del equilibrio térmico, por lo que es de especial interés determinar el
comportamiento dinámico de nuestro sistema. Dicho estudio no ha podido ser realizado con ningún
cristal de [DyLaDy], pues como ya se ha visto en la Sección 3.4 ninguno de los utilizados tenía una
calidad suficientemente buena. Por ende, se ha utilizado como sistema modelo la molécula PTMr
(Figura 4.1a).

Esta molécula se caracteriza por tener un radical atrapado; es decir, un electrón en un ambiente
cuasi-isótropo. Como su Hamiltoniano de Espín puede ser descrito únicamente con una interacción
Zeeman electrónica isótropa, el Hamiltoniano del sistema integrado en el circuito viene dado por el
Hamiltoniano de Jaynes-Cummings [26], versión simplificada del Hamiltoniano de Tavis-Cummings
(3.3.2)

ĤJC =
ℏωq

2
Ŝz + ℏωRâ

†â+ ℏ
(
G1Ŝ+â+G∗

1Ŝ−â
†
)

(4.1.1)

donde Ŝz =
∑N

i=1 σ̂z,i y Ŝ± =
∑N

i=1 σ̂±,i son los operadores de espín colectivos y se ha impuesto
la aproximación de onda rotatoria para preservar el número de excitaciones en el sistema. Puede
demostrarse [25] que sus autovalores son

E±
n = ℏωRn+

ℏ
2

(
δ ±

√
4G2

Nn+ δ2
)

(4.1.2)

siendo n el número de fotones y δ = ωq − ωR.
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El objetivo es usar este sistema de espín, mucho más sencillo que el trímero [DyLaDy], acoplado
a los circuitos para explorar su respuesta a pulsos de microondas.

4.2. Metodos experimentales

El montaje experimental utilizado es el mismo que el de los experimentos de acoplo (Figura 3.2),
pero sustituyendo el VNA por un Sistema de Control Cuántico (QCS). Éste es un conversor digital
para la generación y adquisición de señales de microondas con múltiples formas. Permite diseñar
y ejecutar secuencias de pulsos personalizadas para controlar procesadores cuánticos, asegurando
siempre sincronización temporal con precisión inferior a los nanosegundos. El modelo utilizado es el
Keysight M9046A (Figura 4.1b).

a) b)

Figura 4.1: a) Estructura de la molécula PTMr, donde el punto rojo indica el radical libre. b) Fotografía del QCS
modelo Keysight M9046A obtenida de [25].

4.3. Marco teórico

Supongamos que los únicos acoplos presentes son qubit-resonador y resonador-línea de transmi-
sión. Entonces, en el límite semi-clásico (N −→ ∞) las evoluciones temporales de los operadores
que determinan la dinámica del resonador â y de cada molécula σ̂±,j , σ̂z,j cuando están sometidos
a una excitación de frecuencia ωd pueden expresarse como [25]

d

dt
⟨â⟩ = −(iωR + κ)⟨â⟩ − i

N∑
j=1

G∗
1,j⟨σ̂−,j⟩ − i

√
κcαine

−iωdt (4.3.3)

d

dt
⟨σ̂−,j⟩ = −(iωq + γ⊥)⟨σ̂−,j⟩ − iG1,j(∆P )e⟨â⟩ (4.3.4)

d

dt
⟨σ̂z,j⟩ = −γ∥ (⟨σ̂z,j⟩+ (∆P )e)− 2iG1,j⟨σ̂+,j⟩⟨â⟩+ 2iG∗

1,j⟨σ̂−,j⟩⟨â†⟩ (4.3.5)
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donde κ es el ratio de fuga de fotones a la línea de transmisión, κc el de entrada, γ⊥ = 1/T ∗
2 el ratio de

decoherencia transversal (asociado a la relajación espín-espín), γ∥ = 1/T1 el longitudinal (asociado
a la relajación espín-red) y (∆P )e = tanh(ℏωq/kBT ) la diferencia de población en equilibrio entre
el estado fundamental de espín y el primer excitado. La evolución temporal de ⟨σ̂±,j⟩ codifica la
información de los términos no diagonales de la matriz densidad de cada molécula ρj , por lo que
está relacionada con los procesos de decoherencia. En ausencia de excitación, ⟨â⟩ t−→∞−−−−→ 0, por lo que
el resonador se queda sin fotones, y ⟨σ̂±,j⟩

t−→∞−−−−→ 0, ⟨σ̂z,j⟩
t−→∞−−−−→ (∆P )e, perdiendo la coherencia y

yendo al estado de equilibrio en las moléculas.

4.4. Resultados de los experimentos de acoplo

Previo a estudiar la respuesta dinámica del sistema, describamos brevemente la estacionaria.
Usando el montaje de la Sección 3.2 se mide la transmisión del resonador a T = 8 mK y para
distintos valores de potencia. Un ejemplo se muestra en la Figura 4.2a, donde el pico de la transmisión
evoluciona conB, desapareciendo en un intervalo. Ésto se debe al acoplo espín-fotón: cuando aumenta
B dando δ −→ 0, la diferencia entre E+

n y E−
n en (4.1.2) incrementa, siendo máxima cuando δ = 0.

En dicho caso, puede utilizarse para estimar GN . Suponiendo n = 1 por estar utilizando potencias
muy pequeñas, se tiene GN = (1, 0± 0, 1) MHz, mucho menor que en nuestro trímero (Figura 3.3).

a) b)

Figura 4.2: a) Representación 2D de la transmisión del resonador medida a T = 8 mK, P = −90 dBm y el campo
magnético B perpendicular al resonador. b) Espectros de absorción para distintas potencias de señal.

Ajustando la transmisión a (3.3.3) para los distintos valores de potencia, obtenemos los espectros
de absorción de la Figura 4.2b. Este ajuste no ha podido ser realizado en B ∈ (48, 49) mT para
potencias pequeñas, pues el acoplo se vuelve tan intenso que desaparece la transmisión y deja de ser
aplicable la expresión anterior. En general, vemos que la absorción aumenta conforme disminuye la
potencia, lo que se relaciona con la saturación del sistema: La fracción de fotones absorbidos será
mayor cuanto menor sea el número de fotones enviados por la línea de transmisión, pues el sistema
puede absorber un número finito por unidad de tiempo.
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Suponiendo que los valores de absorción calculados corresponden al régimen de acoplo débil,
usamos (3.3.4) para estimar GN = (1, 2 ± 0, 4) MHz, resultado compatible con el estimado en la
Figura 4.2a. Por su parte, γ = (12±9) MHz, lo que implica T ∗

2 = (80±60) ns. Las altas incertidumbres
nos indican que este método no es el óptimo para la determinación de estos parámetros, debido aque
no se cumple estrictamente la condición de acoplo débil. Por ello, es necesario realizar experimentos
con pulsos para determinar fehacientemente la dinámica de este sistema.

4.5. Resultados de los experimentos con pulsos

En primer lugar se determina la carga y descarga del resonador, que depende del tiempo de
vida medio del fotón tl = 1/κ. Ésto se consigue midiendo la transmisión durante la aplicación de
un pulso de microondas de 1 µs de duración y su respuesta posterior usando el QCS (Figura 4.1b).
En la Figura 4.3a se compara la respuesta a campo nulo, cuando los espines no están sintonizados
con la energía de los fotones del resonador y su acoplo no juega ningún papel, y en presencia de
éste (B = 224 mT por el cambio de resonador). Además de desplazar la frecuencia del resonador
y aumentar la anchura de la transmisión en el caso estacionario (Figura 4.2a), el acoplo también
modifica la dinámica del resonador: mientras que los fotones no acoplados tienen un tiempo de vida
medio tl ≈ 10 ns, la resonancia disminuye este valor más de un orden de magnitud tl < 1 ns. Este
rápido decaimiento asegura que las señales de los ecos de espín no van a ser atenuadas por la señal
asociada a los fotones, lo que es deseable en estos experimentos.

224 mT
a) b)

224 mT

Figura 4.3: a) Representación 2D de la transmisión del resonador medida durante la aplicación de un pulso de
microondas de 1µs y su posterior respuesta con B = 0 mT (izq.) y B = 224 mT (dcha.) b) Representación 2D de la

transmisión del resonador medida durante la aplicación de una secuencia de dos pulsos con B = 224 mT.

A continuación, intentamos realizar una secuencia de dos pulsos para medir el eco de Hahn [27].
Eligiendo un pulso

(
π
2

)
de 500 ns seguido de un pulso (π) separado del anterior por τ = 1µs, se

espera medir una señal tras un tiempo τ una vez ha finalizado el segundo pulso. Desafortunadamente,
no se ha podido medir ninguna señal, tal y como se muestra en la Figura 4.3b. A pesar de que puede
estar relacionado con el número de espines excitados, y por tanto con la intensidad de los pulsos, es
un problema en el que se está trabajando actualmente.
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CAPÍTULO 5

Conclusiones

En la primera parte de este trabajo se ha caracterizado y demostrado la capacidad del trímero
[DyLaDy] para funcionar como un procesador cuántico de 2 qubits a temperaturas suficientemente
bajas. El distinto entorno local de los iones magnéticos Dy3+ y su interacción permite modelarlos
como dos espines efectivos S = 1/2 interactuantes gracias al formalismo del Hamiltoniano de Espín,
cuyos parámetros han sido determinados con experimentos de susceptibilidad magnética, capacidad
calorífica y EPR. Además, la dependencia del espectro energético con el campo magnético externo B⃗
permite sintonizar las transiciones a las frecuencias de los resonadores de los circuitos, lo que forma
la base del control cuántico del sistema.

En la segunda parte se ha mostrado que los circuitos superconductores constituyen una buena
plataforma para la interacción qudit-fotón. Los experimentos realizados con cristales moleculares de
[DyLaDy] muestran la existencia de múltiples resonancias de espín, que pueden ser explicadas con
su Hamiltoniano de Espín. No obstante, la anchura de los picos en los espectros de absorción indican
la presencia de defectos cristalinos, por lo que deben ser utilizados cristales de mejor calidad.

Finalmente, se ha utilizado la molécula PTMr como qubit modelo para la realización de experi-
mentos con señales pulsadas. En los experimentos de acoplo se ha visto el régimen de acoplo fuerte
con el resonador, que provoca un desdoblamiento en su transmisión. Por su parte, en los de pulsado
se han caracterizado los cortos tiempos de vida medio de los fotones en el resonador en régimen de
acoplo fuerte y de desacoplo, pero no ha podido detectarse el eco de Hahn tras la secuencia de dos
pulsos por el bajo coeficiente señal-ruido presente.

Los actuales esfuerzos se centran en sintetizar un cristal con características óptimas para su acoplo
al resonador y en medir los ecos de espín una vez se haya disminuido el ruido en los experimentos
con pulsos. Ésto permitirá determinar la dinámica de nuestro trímero, luego su viabilidad como
procesador cuántico, y realizar pequeñas secuencias de pulsos que representen algoritmos cuánticos.
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APÉNDICE A

Corrección de masas y de cambio de equipo en
los experimentos de susceptibilidad magnética

A.1. Reestimación de masas

Comencemos con el equipo con el criostato de He líquido y la reestimación de las masas. Podemos
calcular la susceptibilidad magnética χ a partir de la imanación m, el campo externo H, la masa de
la muestra mm, su masa molar Mm = 3077, 50 g/mol, la masa de la grasa mgr (apiezonN en este
caso) y su susceptibilidad magnética por unidad de masa χgr = −1, 0151 · 10−6 emu

g·Oe según (A.1.1),
donde se tiene en cuenta que hay dos iones Dy3+ en cada molécula.

χ =
m

H
=

2 (m− |χgr|mgrH)

mmH
Mm (A.1.1)

A pesar de disponer de una balanza de precisión, se observaban tiempos de relajación exagera-
damente largos, por lo que se estima inicialmente mm = (1, 0 ± 0, 1) mg y mm = (0, 4 ± 0, 1) mg.
Si representamos el producto χT respecto a T con estos valores iniciales, se obtiene la Figura A.1a,
que presenta una tendencia positiva incluso en altas temperaturas, lo que puede estar asociado a
una sobreestimación de mgr. Además, como los iones lantánidos son centros paramagnéticos, deben
cumplir la ley de Curie en altas temperaturas

χT = 2g2Jµ
2
B

J(J + 1)

3kB
NA (A.1.2)
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donde gJ = 4/3 es el factor de Landé del ion libre, J = 15/2, µB es el magnetón de Bohr, kB
es la constante de Boltzmann y NA es el número de Avogadro. Sustituyendo, se tiene que χT =

28, 4 emu·K
mol·Oe , valor que no se alcanza en ningún punto de la Figura A.1a. Este resultado sugiere que

también se ha sobreestimado el valor de mm, por lo que debe ser corregido.

(a) Masas iniciales. (b) mgr corregida.

Figura A.1: Representaciones del producto χT calculadas con a) los valores iniciales de las masas mm y mgr y b)
con mgr corregida.

Para corregir la primera, vamos a suponer que, en altas temperaturas, todos los niveles energéticos
adaptados a la simetría provenientes del estado fundamental electrónico de la capa incompleta 4f
de los iones Dy3+ están completamente ocupados o vacíos. Descartamos la población de estados
electrónicos excitados por encontrarse a muy alta energía (> 5000 K) [28]. De esta forma, basta
con realizar un ajuste lineal en el rango de altas temperaturas (T > 100 K) para reestimar dicha
masa, obteniendo así mgr = (0, 244 ± 0, 004) mg y un plateau a altas temperaturas (Figura A.1b).
Comentar que no hemos considerado la incertidumbre estimada de mm para el cálculo de mgr ni
para χT , pues está claramente sobreestimada.

Por su parte, para corregir la segunda masa, imponemos que se cumpla la ley de Curie a altas
temperaturas. De esta forma, obtenemos mm = (0, 328±0, 018) mg y la Figura A.2, donde el plateau
de altas temperaturas cumple esta ley. Comentar que las incertidubres siguen siendo muy elevadas,
viniendo ahora la principal contribución de la imanación.
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Figura A.2: Representaciones del producto χT calculadas con los valores de las masas corregidas.

A.2. Calibración de cambio de equipo

Pasemos ahora a la calibración por el cambio de equipo con criostato de He líquido al de 3He.
Para ello, suponemos que se introduce una nueva componente diamagnética y un factor de propor-
cionalidad en la medida del nuevo equipo: Llamando m a la imanación medida con el nuevo equipo,
M a la medida con el equipo anterior, χdiam a la susceptibilidad diamagnética introducida por el
nuevo equipo respecto a la anterior y α ∈ R, se tiene

M = α
m− χdiam ·H

mm
Mm (A.2.3)

Estos dos parámetros se obtienen representando M/H respecto a m/H para iguales valores de
campo y temperatura. Dichos datos los obtenemos a partir de la dependencia de la susceptibilidad
magnética con el campo externoH, ya que se miden la imanación respecto a varios barridos de campo
a distintas temperaturas. Usando las medidas tomadas a T = 2 K en ambos equipos, realizamos una
interpolación de los valores y los ajustamos a una recta, obteniendo la Figura A.3a.

28



(a) Recta de calibración. (b) Susceptibilidad corregida.

Figura A.3: a) Recta de calibración entre los dos equipos para la determinación del factor de proporcionalidad entre
ambas. b) Representación del producto χT a baja temperatura con la corrección de cambio de equipo.

Cabe destacar que en esta Figura se han usado valores deM expresados en unidades de magnetón
de Bohr por molécula, por lo que la constante α se transforma en α′ = α

NAµB
. A partir de este ajuste,

se despejan α = (1, 74± 0, 02) y χdiam = (3, 57± 0, 27) · 10−9 emu
Oe , y se tiene la Figura A.3b, cuyos

valores se incluyen en las incertidumbres de los exportados por el otro equipo.
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APÉNDICE B

Comportamiento paramagnético de los iones
Dy3+

Como los iones Dy3+ aislados son paramagnéticos, la imanación debería cumplir la expresión de
Brillouin

M = NgLJµBBJ(x) (B.0.1)

siendo gL el factor de Landé y BJ la función de Brillouin

BJ(x) =
2J + 1

2J
coth

(
(2J + 1)x

2J

)
− 1

2J
coth

( x
2J

)
(B.0.2)

con x = gLJµBµ0H
kBT .

No obstante, por la anisotropía, esta ley no se aplica al multiplete J , sino a cada doblete S = 1/2.
Además, suponiendo gx, gy ≪ gz, la imanación de saturación pasa a ser MS = 1

2NgzSµB. De esta
forma, se tiene la Figura B.1, donde N ≈ 1, 15NA y µ ≈ 0,9µB. Si comparamos con los datos de la
Figura 2.6b con T = 1 K, pues sólo se tiene poblado el doblete Kramers fundamental y la interacción
no juega un gran papel, vemos una correspondencia prácticamente perfecta, lo que nos indica que
nuestros iones aislados se comportan como centros paramagnéticos. Además, el valor de saturación
nos sugiere que el campo consigue polarizar los espines, pues MS ≈ 11, 5µB ≈ 2gzS, lo que implica
gx, gy ̸= 0. Un análisis más detallado requeriría un modelo más complejo que tenga en cuenta que
la muestra se ha medido en polvo.
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Figura B.1: Representación de la imanación en el paramagnetismo de Brillouin (B.0.1) con N ≈ 1, 15NA y
µ ≈ 0,9µB y comparación con las medidas en T = 1 K de la Figura 2.6b.
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APÉNDICE C

Estimación factor de acoplo

Supongamos inicialmente que gxi = gyi = 0 y que la matriz de rotación R̂ sólo depende del
ángulo β. El término de interacción del Hamiltoniano de Espín (2.1.4) es

Ĥint =
J12

gJ1gJ2
S⃗1ĝ1R̂

−1ĝ2R̂S⃗2 = (C.0.1)

=
J12

gJ1gJ2
S⃗1

0 0 0

0 0 0

0 0 gz1


cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ


0 0 0

0 0 0

0 0 gz2


 cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 S⃗2 =

(C.0.2)

=
J12

gJ1gJ2
S⃗1

 0 0 0

0 0 0

−gz1gz2 sinβ cosβ 0 gz1gz2 cos
2 β

 S⃗2 = (C.0.3)

= J12
gz1gz2
gJ1gJ2

[
−1

2
sin(2β)Sz1 ⊗ Sx2 + cos2 βSz1 ⊗ Sz2

]
= (C.0.4)

= J12
gz1gz2
gJ1gJ2

[
−1

4
sin(2β)Sz1 ⊗ (S+2 + S−2) + cos2 βSz1 ⊗ Sz2

]
(C.0.5)

siendo S+2 y S−2 los operadores escalera del espín 2.

Definiendo C = J12
gz1gz2
gJ1gJ2

y suponiendo que el campo magnético externo B⃗ se orienta en la
dirección del tercer eje propio de ĝ1, los autoestados de los términos independientes del Hamiltoniano
pueden ser descritos por S2

1 , Sz1, S2
2 , y Sz2, de forma que usaremos la base {| ↑↑⟩, | ↑↓⟩, | ↓↑⟩, | ↓↓⟩}.
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Así, la acción del Hamiltoniano de interacción sobre ésta escrita en unidades naturales (ℏ = 1) es

Ĥint| ↑↑⟩ =
C

4

[
cos2 β| ↑↑⟩ − 1

2
sin(2β)| ↑↓⟩

]
(C.0.6)

Ĥint| ↑↓⟩ =
C

4

[
− cos2 β| ↑↓⟩ − 1

2
sin(2β)| ↑↑⟩

]
(C.0.7)

Ĥint| ↓↑⟩ =
C

4

[
− cos2 β| ↓↑⟩+ 1

2
sin(2β)| ↓↓⟩

]
(C.0.8)

Ĥint| ↓↓⟩ =
C

4

[
cos2 β| ↓↓⟩+ 1

2
sin(2β)| ↓↑⟩

]
(C.0.9)

y escrito de forma matricial

Ĥint =
C

4


cos2 β −1

2 sin(2β) 0 0

−1
2 sin(2β) − cos2 β 0 0

0 0 − cos2 β 1
2 sin(2β)

0 0 1
2 sin(2β) cos2 β

 (C.0.10)

Vemos que este Hamiltoniano es diagonal por cajas, siendo además ambos bloques idénticos
salvo signo general, lo que nos indica que va a haber una degeneración en energías, tal y como
esperábamos. Si diagonalizamos el primer bloque para obtener el gap energético δEint∣∣∣∣∣C4 cos2 β − E −C

8 sin(2β)

−C
8 sin(2β) −C

4 cos2 β − E

∣∣∣∣∣ = 0 (C.0.11)

C2

16
cos4 β − E2 = −C

2

64
sin2(2β) (C.0.12)

E = ±C
4

√
cos4 β +

1

4
sin2(2β) (C.0.13)

δEint =
C

2

√
cos4 β +

1

4
sin2(2β) (C.0.14)

podemos expresar el parámetro de interacción J12 respecto a éste

J12 =
gJ1gJ2
gz1gz2

2δEint√
cos4 β + 1

4 sin
2(2β)

≈ δEint · 10−2 (C.0.15)

donde se ha supuesto β < 57◦.
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Si suponemos ahora simetría axial 0 ̸= gxi = gyi ≡ g⊥i ≪ g⊥i ≡ gz,i, puede demostrarse de igual
forma que la matriz de interacción es

Ĵ =

g⊥1 0 0

0 g⊥1 0

0 0 g∥1


cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ


g⊥2 0 0

0 g⊥2 0

0 0 g∥2


 cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 = (C.0.16)

=

g⊥1 0 0

0 g⊥1 0

0 0 g∥1


g⊥2 cosβ 0 −g∥2 sinβ

0 g⊥2 0

g⊥2 sinβ 0 g∥2 cosβ


 cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 = (C.0.17)

=

g⊥1 0 0

0 g⊥1 0

0 0 g∥1


g⊥2 cos

2 β + g∥2 sin
2 β 0 sinβ cosβ(g⊥2 − g∥2)

0 g⊥2 0

sinβ cosβ(g⊥2 − g∥2) 0 g⊥2 sin
2 β + g∥2 cos

2 β

 = (C.0.18)

=

g⊥1(g⊥2 cos
2 β + g∥2 sin

2 β) 0 g⊥1 sinβ cosβ(g⊥2 − g∥2)

0 g⊥1g⊥2 0

g∥1 sinβ cosβ(g⊥2 − g∥2) 0 g∥1(g⊥2 sin
2 β + g∥2 cos

2 β)

 (C.0.19)

y se rompe la degeneración, salvo si β = 0 o g⊥1 = g⊥2 = 0. No obstante, como la diferencia
energética introducida es muy pequeña, podemos seguir considerando válida la expresión (C.0.15).
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APÉNDICE D

Frecuencias de Rabi

Estudiemos la interacción de nuestro trimero con un campo magnético externo de microondas
B⃗1. Para que produzca transiciones entre estados, debe cumplirse que B⃗1 ⊥ B⃗, con B⃗ el campo
magnético estático, por lo que basta con imponer que su ángulo polar θ2 respecto al tercer eje
propio del tensor giromagnético g̃1 (2.1.4) cumpla θ2 = θ1 + π

2 , con θ1 el ángulo polar de B⃗, de
forma que B⃗1 = B⃗0 cos(ωt). Asimismo, como queremos que se trate como una perturbación de
nuestro hamiltoniano inicial, debe cumplirse que dicho campo sea pequeño, B1 ≪ B, condición que
consideraremos cumplida si hay al menos un orden de magnitud de diferencia entre ambas.

Supuesto que cumplimos esta condición, podemos escribir nuestro nuevo hamiltoniano Ĥ como
el inicial sumado a una perturbación V̂ que tendrá la forma de una interacción Zeeman electrónica.

Ĥ = Ĥ0 + V̂ = Ĥ0 + µB
∑
i

S⃗i · ĝi · B⃗1 (D.0.1)

Vamos a utilizar teoría de perturbaciones dependientes del tiempo para estudiar las transiciones
entre dos autoestados de Ĥ0. Si empezamos en el autoestado |i⟩, siendo i = 0, 1, ..., 7, podemos
suponer que el estado final será una combianción lineal de éste y otro estado |j⟩, con j = 0, 1, ..., 7,
pero i ̸= j

|ψ⟩ = ci(t)e
−i

Ei
ℏ |i⟩+ cj(t)e

−i
Ej
ℏ |j⟩ (D.0.2)
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Introduciendo esta expresión en la ecuación de Schrödinger y proyectando sobre los autoestados,
obtenemos un sistema de dos ecuaciones de primer orden para estos coeficientes

iċi(t) ≈
cj(t) cosωt

ℏ
⟨i|V̂|j⟩ eiω0t = Ωijcj(t) cosωt e

iω0t (D.0.3)

iċj(t) ≈
ci(t) cosωt

ℏ
⟨i|V̂|j⟩ e−iω0t = Ωjici(t) cosωt e

−iω0t (D.0.4)

donde hemos despreciado los términos ⟨i|V|i⟩ y hemos denotado ω0 =
Ei−Ej

ℏ y Ωij =
⟨i|V̂|j⟩

ℏ , siendo
esta última la frecuencia de Rabi. Evidentemente, Ωij = Ωji.

Reorganizando estas ecuaciones y despreciando los términos que oscilan rápidamente, puede
demostrarse que

|cj(t)|2 =
Ω2
ij sin

2

(√
Ω2

ij+δ2

2 t

)
Ω2
ij + δ2

(D.0.5)

con δ = ω − ω0. Puesto que podemos generar un campo de microondas con cualquier frecuencia del
orden de los GHz, vamos a suponer que δ = 0, obteniendo así

|ψ⟩ = cos

(
Ωij

2
t

)
|i⟩+ eiα sin

(
Ωij

2
t

)
|j⟩ (D.0.6)

donde α es una fase relativa que no nos va a afectar, pues sólo estamos interesados en las amplitudes
de probabilidades. Es importante darse cuenta que, partiendo del estado inicial |i⟩, podemos pasar
al estado |j⟩ simplemente aplicando el campo B⃗1 durante un tiempo t = π

Ωij
siempre que Ωij > 0,

lo que nos va a posibilitar la realización de puertas cuánticas en nuestro sistema.
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APÉNDICE E

Derivación del Hamiltoniano del Resonador LC

Comencemos con el resonador LC. Aplicando las ecuaciones de Kirchhoff al circuito de la Figura
3.1 se tiene V (t)− Lİ(t) = 0

I(t) + CV̇ (t) = 0

ϕ̇=V−−−→ ϕ̈(t) + ω2
rϕ(t) = 0 (E.0.1)

donde se ha definido el flujo ϕ como ϕ̇ = V y ωr = 1/
√
LC.

Consideremos ahora las variables flujo ϕ y su momento canónico carga q = ∂LR/∂ϕ̇, donde
LR = C

2 ϕ̇
2− 1

2Lϕ
2 es el Lagrangiano clásico, como operadores. Si aplicamos la cuantización canónica,

entonces deben cumplir la relación de conmutación [ϕ̂, q̂] = iℏ. Definiendo los operadores de creación
â† y destrucción â como

â ≡
√

1

2ℏZ

(
ϕ̂+ iZq̂

)
(E.0.2)

â† ≡
√

1

2ℏZ

(
ϕ̂− iZq̂

)
(E.0.3)

donde Z =
√
L/C es la impedancia del resonador, se tiene que cumplen las reglas de conmutación

bosónicas [â, â†] = 1. Si los incluimos en el Hamiltoniano clásico HR = qϕ̇ − LR, se obtiene el
Hamiltoniano de un oscilador armónico cuántico

ĤR = ℏωR

(
â†â+

1

2

)
(E.0.4)

cuyos autoestados |n⟩, pertenecientes al espacio de Fock, vienen designados por el número de fotones
encerrados en el resonador n ∈ Z+.
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