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CAPITULO 1

Introduccion

Las tecnologias cuénticas explotan fenémenos sin anélogo clasico como la superposiciéon o el
entrelazamiento. Entre ellas, destaca la computacién cuéntica por su potencial para revolucionar la
forma en la que procesamos la informaciéon. Mientras que la computacién convencional o “clasica”
tiene como unidad légica fundamental el “bit”, que puede estar en los estados ‘0" o0 ‘17, los ordenadores
cuénticos utilizan el “qubit”, capaz de encontrarse tanto en éstos como en una combinacién lineal de
los mismos [1, 2]. Esta nueva caracteristica permite explorar multiples estados en paralelo, lo que
otorga ciertas ventajas en la resolucién de problemas muy complejos relacionados con la investigacion
de materiales [3] o la busqueda en bases de datos [4] entre otros.

El principal reto de la computacion cuantica reside en conseguir una realizacion fisica que permita
operar con un numero suficiente de qubits. Los algoritmos cuéanticos sobrepasan la capacidad de los
superordenadores mas potentes a partir de un cierto volumen de procesamiento, que se estima
cercano a 50 qubits y se conoce como “supremacia cuantica” [5|. No obstante, los qubits deben ser
protegidos del ruido ambiental causado por la interacciéon con su entorno. Los cédigos cuénticos
de correccion de errores (QEC) requieren introducir redundancia a través de un mayor numero de
qubits fisicos [6], lo que aumenta el tamanio requerido del procesador a miles o millones para alcanzar

dicha supremacia [7].

Actualmente nos encontramos en la era de los dispositivos cuanticos ruidosos de tamano interme-
dio (Noisy Intermediate-Size Quantum devices, NISQs) |2], que no son capaces de aislar sus qubits
lo suficiente como para eliminar el ruido de sus resultados. Las principales propuestas se basan en
circuitos superconductores [8] o en espines electronicos encerrados en puntos cuénticos [9, 10]. Sin
embargo, nosotros nos centramos en sistemas de espin localizados en moléculas magnéticas [11],

concretamente en complejos polinucleares que contienen iones magnéticos.



Puesto que pueden incluir espines electronicos y nucleares grandes (mayor que el del electron,
S = 1/2), estos sistemas son capaces de contener multiples qubits o, en general, qudits de dimension
d > 2 en cada molécula. Esto abre la posibilidad de implementar algoritmos de pequefia escala,
en particular QEC [12|. En ese caso, cada molécula podria funcionar como un qubit logico y el
procesador se “cablearia” conectando unidades ya robustas frente al ruido, lo que constituye una
ventaja competitiva muy importante sobre otras plataformas (Figura 1.1).

a)'v.'r-v :

Figura 1.1: Comparacion entre la realizacion de un qubit légico basado en a) circuitos superconductores y en b)

qudits moleculares, donde cada molécula incluye algoritmos de correccion de errores.

El reto se convierte entonces en encontrar una arquitectura que permita realizar operaciones
bésicas sobre estos qudits y leer sus resultados [12]. Para ello, en este trabajo se explora la posibilidad
de importar técnicas actualmente utilizadas en otras plataformas de computacién cuantica, como
la Electrodinamica Cuantica de circuitos (cQED) [15]. Esta se basa en acoplar qudits moleculares
de espin a lineas de transmisién y resonadores superconductores para controlar y medir sus estados
[16, 17|, asi como comunicar distintos qudits entre si, posibilitando de esta manera la escalabilidad
(Figura 1.1).

El objetivo de este trabajo es estudiar la realizaciéon de un procesador cuéntico de 2 qubits en
una molécula y explorar su acoplo a resonadores superconductores. Concretamente, hemos elegido
el trimero molecular [DyLaDy]|, cuya estructura es idéntica a la de su analogo |[ErCeEr| [18|. Por
ende, la coordinacién local de cada atomo de Dy es ligeramente distinta, lo que diferencia su com-
portamiento frente a un campo magnético y permite acceder a cada qubit de forma independiente.
En comparacion a los dimeros [LnLn’| previamente estudiados [19], la inclusion del ion La®* deberia
reducir el acoplo entre los dos iones magnéticos, de forma que las energias de transiciéon relevantes

sean experimentalmente accesibles.

Este trabajo se divide en dos bloques principales, el primero dedicado a la caracterizacién del
trimero como un procesador cuantico de dos qubits y el segundo centrado en el estudio de su
acoplo a los resonadores superconductores. El Capitulo 2 introduce el sistema molecular y distintos
experimentos que permiten determinar los parametros de su Hamiltoniano de Espin. En el Capitulo
3 se describen los experimentos de acoplo a circuitos, con los que determinamos la viabilidad de la
cQED para medir nuestro sistema. Finalmente, en el Capitulo 4 realizamos unos primeros intentos
de experimentos con senales pulsadas, donde buscamos medir los tiempos caracteristicos del sistema.



CAPITULO 2

Trimero |[DyLaDy| como procesador de 2 qubits

2.1. Introduccion

El trimero molecular utilizado, mostrado en la Figura 2.1, es sintetizado por el equipo de Gui-
llem Aromi del departamento de Quimica Inorgéanica de la Universidad de Barcelona (Barcelona,
Espaifia). Esta constituido por dos iones magnéticos Dy>T y un ion diamagnético La3*t, rodeados
por un entorno de iones diamagnéticos O?>~ y N®* y una nube de ligandos organicos. En nuestros
experimentos, hemos utilizado muestras en polvo y cristales del compuesto puro, aunque en el fu-
turo se espera que sea posible acceder a muestras magnéticamente diluidas; es decir, en las que una
mayoria de moléculas hayan sido reemplazadas por un equivalente diamagnético como [YLaY] para

ayudar a reducir la decoherencia asociada con interacciones magnéticas entre moléculas diferentes.

Figura 2.1: Representacion 3D del trimero [DyLaDy], donde los iones verdes representan Dy*" y las flechas mostaza

sus espines, el beige La*t, los rojos O*~ y los azules N°V.



La configuracion electrénica de los iones Dy>* es [Xe| 4f°. Las reglas de Hund, provenientes del
Hamiltoniano libre f]o, predicen un momento angular total J = 15/2 y una degeneracion del nivel
fundamental electrénico de la capa incompleta (2J + 1) = 16. No obstante, cuando se situan en
la molécula, la interacciéon con los iones colindantes modifica los niveles energéticos y rompe esta
degeneracion. Utilizando la teoria de Campo Cristalino en aproximacién de campo débil, pues la
capa incompleta 4f de los iones de tierras raras estd apantallada por los electrones situados en los
orbitales 5s y 5p, podemos introducir esta interaccién como una perturbaciéon a H, y expresarla en
funcion de los operadores de Stevens de cada electréon Oq, donde k es par, ¢ € Zy k < 2J. Anadiendo
también la interaccién Zeeman con un campo magnético externo é, tenemos el Hamiltoniano W

(2.1.1), donde g; = 4/3 es el factor de Landé y up el magneton de Bohr.

k
W=> Y BlO{(J)-gusB-J (2.1.1)
k q=—k

El teorema de Jahn-Teller asegura que el nivel fundamental adaptado a la simetria es un singlete
orbital, de forma que so6lo presenta degeneracion por espin. Ademas, como el ion tiene un numero
impar de electrones en la capa incompleta, el teorema de Kramers impone una degeneraciéon par en
dicho nivel. De esta forma, podemos interpretar que este nivel es un doblete cuya degeneracién se
rompe en presencia de un campo magnético y puede, por tanto, codificar los estados logicos |0) y
|1) de un qubit.

Para nuestro objetivo s6lo nos interesa este nivel fundamental, por lo que serfa conveniente poder
describir la respuesta del sistema en funcién de un Hamiltoniano adaptado al subespacio de 2 x 2 es-
tados asociados a los dos niveles fundamentales de ambos iones. Esto puede conseguirse proyectando
Hy + W a dicho doblete fundamental, lo que da lugar al Hamiltoniano de Espin [20]. Suponiendo
que estamos trabajando en temperaturas Ty campos magnéticos B lo suficientemente bajos como
para que la energia térmica kT y el desglosamiento Zeeman sean pequenios en comparacién con la
energia del primer doblete Kramers excitado A, la aplicaciéon de segundo orden de perturbaciones
nos da la evolucion respecto al campo de cada ion aislado, que puede describirse con un espin efectivo
S’ =1/2 y un tensor giromagnético anisétropo g; en virtud de I;TZS

HS = upS;g;B (2.1.2)

Como los dos iones se encuentran a una distancia r = 7,9 A (Figura 2.1), van a interactuar
entre si. Podemos modelizar esta interacciéon como un acoplo bilineal entre sus momentos angulares
totales ng = ﬂé’ﬁ, donde C es un tensor de rango 2. Asi, suponiendo que la interacciéon es
lo suficientemente débil para considerarla una perturbacién del Hamiltoniano aislado de cada ion
Hy + W, un desarrollo en primer orden de perturbaciones sumado a la proyeccién sobre los estados

fundamentales nos da el término de interaccion en el formalismo del Hamiltoniano de Espin [19]

5 1 o o~ =
Hs,5, = 5191C 9252 (2.1.3)
971972




Suponiendo por simplicidad una interaccion de Canje tipo Heisenberg, se tiene que el tensor de

acoplo original es un escalar C' = Jia. Por ende, el Hamiltoniano de Espin de nuestra molécula es

A g~ 7 -5, Ji2
Hg = pupS1g1B + ppS2g2 B + o

51513255 (2.1.4)
gJj2

analogo al de otros dimeros [LnLn’| [19].

Este Hamiltoniano permite describir los estados que conforman el espacio “légico” si conocemos
sus parametros y su rango de aplicabilidad, lo que requiere varios experimentos de caracterizacion.
Sus resultados se discuten y analizan en las Secciones 2.4-2.6. En las dos secciones siguientes, intro-
ducimos las técnicas experimentales y la base tedrica necesaria para interpretarlos. Finalmente, en

la Seccién 2.7 estudiamos la viabilidad del trimero como procesador cuantico.

2.2. Meétodos experimentales

2.2.1. Experimentos de caracterizacién magnética: magnetometria SQUID

Los experimentos de susceptibilidad magnética se realizan en el Sistema de Medidas de Propie-
dades Magnéticas (MPMS) de Quantum Design operado por el Servicio de Apoyo a la Investiga-
cién (SAI) de la Universidad de Zaragoza. Este un magnetémetro comercial basado en un detector
SQUID-DC (Figura 2.2a), que acttia como un transductor de flujo magnético a voltaje. Su gran
sensibilidad permite medir la imanacién de muestras pequeinias en un amplio rango de temperatura,
0,4 K < T < 300 K, gracias a un criostato de He liquido y otro de 3He.

La muestra se mantiene fija en el soporte de cuarzo gracias a la grasa Apiezon N, que tiene una
buena conductividad térmica hasta bajas temperaturas y cuya senal diamagnética se ha determinado
en experimentos previos. Con el fin de facilitar la interpretacion de los resultados, utilizamos una
muestra en polvo, compuesta de muchos fragmentos policristalinos (Figura 2.2b).

a)

Figura 2.2: a) Esquema del sensor SQUID-DC, formado por dos uniones Josephson. b) Fotografia de la muestra

policristalina adherida al tubo de cuarzo con grasa apiezon N.



2.2.2. Experimentos de capacidad calorifica

Las medidas del calor especifico se realizan en el Sistema de Medida de Propiedades Fisicas
(PPMS) disenado por Quantum Design. Entre los distintos modos posibles, permite medir la capaci-
dad calorifica en funcién de la temperatura y el campo aplicado a presion constante. Concretamente,
nosotros utilizamos el modelo PPMS-14T del Servicio de Medidas Fisicas de la Universidad de Za-
ragoza, operado por el Servicio de Apoyo a la Investigacion (SAI). También permite acceder a bajas

temperaturas por el uso de un criostato de He liquido y otro de 3He.

Py

Heater power

T,

o« e~ (t=to)/T1

t=0 t=t,

Figura 2.3: a) Esquema del calorimetro, formado por un portamuestras (azul) conectado a un reservorio (magenta) a
través de hilos metdlicos (dorado). b) Fotografia del calorimetro, en cuyo centro estd suspendido el portamuestras por

los hilos metdlicos. ¢) Respuesta temporal del calorimetro a un pulso de potencia cuadrado.

La muestra en polvo se introduce en un calorimetro constituido por un portamuestras de zafiro,
un calentador y un termoémetro, conectado a un reservorio de temperatura a través de 4 finos hilos
metalicos que permite introducir gradientes de temperatura (Figura 2.3a). Las medidas se realizan
mediante el método de relajacion [21], que estudia la relajacion térmica del conjunto muestra-
calorimetro en respuesta a un pulso cuadrado de potencia (Figura 2.3c). Como el sistema es analogo
a un circuito RC, donde la capacidad calorifica actiia como condensador y los hilos metalicos como
resistencia, se va a tener una evolucién temporal analoga

T() T = L (1 - e—%t> (2.2.5)
K
siendo T'g la temperatura del reservorio, P la potencia de la sefial, K la conductividad de los hilos
y C' la capacidad calorifica total del sistema, suma de la del calorimetro C. y de la muestra Cp,.
Habiendo calibrado con anterioridad Ce, el estudio de la constante de decaimiento 7 = C'// K permite
determinar C,,, = C' — C..



2.2.3. Experimento de Resonancia Paramagnética Electréonica (EPR)

Por tltimo, el experimento de Resonancia Paramagnética Electronica (EPR) se realiza en un
espectrometro comercial Elexsys E-580 de Brucker Corporation, perteneciente al Instituto de Nano-
ciencia y Materiales de Aragéon (INMA). Esta formado por una cavidad resonante en cuyo interior
se coloca la muestra y que se irradia con microondas de frecuencias estdndar, generalmente 9,8
GHz (banda X)), para generar excitaciones en los niveles de espin a través de la absorcion de fotones

(Figura 2.4a). Esta situada en el centro de un electroiméan que genera el campo magnético constante.

a) b)

Cavidad

{Modulacion] C) i
| Detector l'—Bc:‘MALchislm |

Generador
de barrido

EPR signal amplitude

AI(Bo)

> B,

Figura 2.4: a) Esquema del espectrometro, donde se distinguen los imanes grandes que generan el campo continuo y
los pequerios que crean la modulacion para la técnica lock-in. b) Esquema de la técnica lock-in, que genera una

respuesta proporcional a la primera derivada del espectro de absorcion (c). Imdgenes b) y c) obtenidas de [22].

En el experimento de onda continua, la cavidad es irradiada de forma continua mientras el
campo magnético externo varia lentamente. Ademas, la medicién se realiza mediante la técnica lock-
in (Figura 2.4b), en la que se modula el campo en una frecuencia fija y se filtra la respuesta con
ésta misma frecuencia, lo que mejora enormemente la relacién senal-ruido y provoca que el espectro

medido sea la primera derivada del espectro de absorcion de la muestra (Figura 2.4c).

2.3. Marco tedrico

2.3.1. Experimentos de caracterizacién magnética: magnetometria SQUID

Supongamos que nos situamos en el rango de temperaturas tal que en cada ion so6lo el doblete
Kramers fundamental y el primer excitado, separados por una energia A, tienen poblaciones no
despreciables. Podemos describir la susceptibilidad magnética de la molécula usando el formalismo
general de Van Vleck para espines en un entorno anisotropo [23|. Introduciendo ademas la existencia

de interacciones y modeldndolas como un campo magnético molecular, se tiene



2\,,2
X1 ~ 2NA<g >MBS(S+1) r Co—i—Clzij tanh (

A A
ot 1 sz ) Gt (550 230

donde (g%) = (g2 + g; + 92)/3 involucra los valores principales de los tensores giromagnéticos del
Hamiltoniano de Espin (2.1.4), S = 1/2 es el espin efectivo de los iones, 6 es la temperatura de
Weiss, que parametriza la intensidad de las interacciones magnéticas entre iones, y Cpy, C1 y Cs son

parametros numéricos.

2.3.2. Experimentos de capacidad calorifica

Separando las contribuciones de la red y del sistema magnético, podemos expresar el calor espe-
cifico de la muestra como Cy, = Cpyag + Clan [21]. El primero viene dado por la expresion general
de Schottky

G _ 1 (it E?Qiefﬁgi) (>ito gz‘efﬁei) - (X Eigz‘e*ﬂsif (2.3.7)
ko (S gie 5 3

siendo g; la degeneraciéon del nivel ¢, €; su energia y m el nimero de niveles del espectro. Por su parte,

en el segundo se distinguen la contribuciéon de los fonones actisticos Cp, descritos con el modelo de
Debye (2.3.8), y la de los 6pticos Cg, con el modelo de Einstein (2.3.9)

Cp T\ [Op/T  gev T<Op T\°
— =9 — d 234 [ — 2.3.8
R <9D) /o (er—1)2™" <9D) (238)
Tg
Cg Tg 2 eT
R:3<T> (F 1) (23.9)
eT —

Como en este tipo de sistemas Op € [15,50] Ky Tg € [20 — 30] K [21], podemos aproximar

Clat x TP 3 B €263 (2.3.10)

2.4. Resultados de la caracterizacién magnética

Comencemos estudiando la dependencia de la susceptibilidad magnética con la temperatura,
manteniendo para ello el campo magnético externo constante H = 1 kOe. Teniendo en cuenta la
correccién de las masas my, y mgy,, y el reescalado asociado al cambio de criostato, que se detalla
en el Anexo A, se tiene la Figura 2.5, cuyas medidas se han ajustado a la férmula de Van Vleck
(2.3.6). Cabe destacar que las altas incertidumbres (atenuadas en un factor 5 en la figura) se deben
a la medida de la imanacion. Aunque se han tenido en cuenta en el ajuste, cabe comentar que se

podrian reducir hasta un orden de magnitud si cada punto se midiera miltiples veces.
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Figura 2.5: Representacion de las medidas del producto xT en funcion de la temperatura y ajuste a la formula de Van

Vieck (2.3.6). A la derecha, esquema de niveles energéticos de los iones aislados (0 = 0) e interactuantes (0 < 0).

A partir de este ajuste se obtiene A = (35 +9) K, 6 = (=45 +10) mK y g2 + gS + g2 = 8546,
cuyas elevadas incertidumbres podrian mejorarse si se consiguiera una mejor calibraciéon entre los
dos equipos, pues proceden principalmente de la discontinuidad en T' = 5 K. El primer pardmetro
nos indica que el primer doblete excitado Kramers se encuentra a una distancia de 35 K respecto
al fundamental, por lo que debemos trabajar a temperaturas T < 3 K para evitar su poblacion
térmica (Figura 2.5). En esas condiciones, la molécula puede considerarse como un sistema de dos
espines efectivos S = 1/2. Ademas, el valor de xT' en este régimen (entre 1 K < T < 3 K) nos
permite estimar (g?). Si consideramos, como es habitual en sistemas con Dy, que cada ion tiene
una anisotropfa predominantemente uniaxial [19], entonces g,,9y < 9. ¥ 9. = 9,2, lo que permite

asociar el doblete Kramers fundamental al estado m, = 7/2 del ion libre!.

Por su parte, la disminucién en x7" obtenida en 7' < 1 K indica la presencia de una interacciéon
antiferromagnética entre ambos iones (Ji2 > 0 en nuestro Hamiltoniano de Espin (2.1.4)), que rompe
la degeneracion cuadruple del estado fundamental de la molécula en dos dobletes separados por una
diferencia energética d Fjy; (Figura 2.5).

Discutamos a continuacién la dependencia de la imanacién con el campo magnético externo. En
la Figura 2.6a se muestran las isotermas medidas a diferentes temperatura. Como es de esperar,
se observa una saturaciéon mas rapida a medida que disminuye 7', pues la agitacién térmica de los

espines es menor.

'El desdoblamiento Zeeman del doblete Kramers cumple g.SupB = gymsjupB — mj = g—z]S ~T7/2.
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Figura 2.6: Representacion de la imanacion en funcion de H en régimen de a) temperaturas altas y b) bajas.

Realizando las mismas medidas en régimen de temperaturas bajas e introduciendo el reescalado
por el cambio de criostato desarrollado en el Anexo A, se tiene la Figura 2.6b, en la que se plasma
un comportamiento analogo al caso con T = 2 K de la Figura 2.6a, pero con una saturacién mas

definida conforme menor es la temperatura.

Asimismo, estas medidas pueden utilizarse para cerciorarnos del comportamiento paramagnético
de los dobletes fundamentales de los iones Dy3t, pues deben cumplir la funcién de Brillouin. Este
analisis se hace en el Anexo B, donde vemos una correspondencia practicamente perfecta con los
datos con T = 1 K, lo que nos indica que nuestros iones aislados se comportan como centros
paramagnéticos con S = 1/2. Ademés, el valor de saturacién nos sugiere que el campo consigue
polarizar los espines, pues Mg ~ 11,5up ~ 2g.S, lo que implica g,,g, # 0. Un analisis mas
detallado requeriria un modelo méas complejo que considere que la muestra se ha medido en polvo.

2.5. Resultados de la capacidad calorifica

Las medidas realizadas en el intervalo T' € [0, 36; 20] K para distintos valores de campo magnético
externo H se muestran en la Figura 2.7a. A temperaturas suficientemente altas (T' 2 2 K), el
calor especifico ¢ estd dominado por una contribucién creciente con T que se puede asociar a las
vibraciones cristalinas y moleculares. A menores temperaturas, se observa una contribucion adicional

que depende de H y proviene de los niveles de espin de la molécula.

Consideremos primero los datos medidos en ausencia de campo magnético. Para estudiar la
influencia de los modos actsticos de la red, realizamos un ajuste a (2.3.10) de las medidas tomadas
aT €[1,9;4,5] K para evitar las contribuciones del sistema magnético y de los modos 6pticos, pues
su contribuciéon deja de ser constante a temperaturas més altas siguiendo (2.3.9). Esta se muestra
en la Figura 2.7b como ¢4y, obteniendo 5 = (2,703 £0,026) y ©p = (24,01 £ 0,28) K, dentro de

los limites esperados [21].
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Figura 2.7: a) Medidas del calor especifico en bajas temperaturas para distintos valores de H. b) Representacion de

las medidas con H = 0 y ajuste a la contribucion de la red ciatr Y a la del sistema magnético csch.

Si nos centramos ahora en el rango de muy bajas temperaturas T < 1 K, la contribucién de
tipo Schottky proporciona evidencia de la existencia de un desdoblamiento, que asociamos a las
interacciones entre iones. Podemos analizar esta contribucion a través de la expresion general (2.3.7).
Como sabemos que en este régimen de temperatura tenemos dos dobletes separados por una energia
0E;n: (Figura 2.5), supondremos que tenemos un sistema de dos estados con degeneraciones dobles,
go = g1 = 2. Incluyendo la contribucién de la red anteriormente determinada, se tiene el ajuste de
la Figura 2.7b, denotado como cg.p, del que se obtiene 0 E;,; = (0,500 +0,003) K = (10,42 + 0, 06)
GHz, similar al encontrado en trimeros analogos [18]. Esta diferencia de energia impone una ligadura

en el término de interaccion Jia del Hamiltoniano de Espin (2.1.4).

Los resultados medidos para H > 0 muestran que la anomalia Schottky se desplaza gradualmente
hacia temperaturas mas elevadas. Esto nos indica que el desdoblamiento entre niveles de espin
aumentan con H. A pesar de que podria intentar usarse la expresion general de Schottky (2.3.7)
para estimar su evolucion, debe recordarse que estos experimentos se realizan con una muestra en
polvo y que los términos del Hamiltoniano de Espin dependientes del campo magnético externo lo
hacen con el vector B , no sblo con el médulo, por lo que se obtendria un promedio. Esta dependencia
se puede utilizar para sintonizar las transiciones a las frecuencias de una excitacién coherente, lo que

forma la base del control cuantico del procesador de 2 qubits.

2.6. Resultados de Resonancia Paramagnética Electrénica

Los resultados obtenidos sobre una muestra en polvo se muestran en la Figura 2.8. El espectro se
mide utilizando la banda X a T' = 15 K. Aunque hayamos visto que los primeros dobletes excitados
se encuentran a A = (35+9) K (Figura 2.5), sus transiciones no parecen afectar a nuestro espectro,
pues se obtenia la misma forma con 7' = 10 K y 7' = 7 K (aunque con mayor ruido). Por ello,

usaremos el Hamiltoniano de Espin (2.1.4).
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gi1 | 0,15£0,01
9|1 8,6+0,1
gi2 | 0,20£0,01
g|2 9,7+0,1
B[°] | 34,3+0,1

I [au]

Figura 2.9: Pardmetros de la simulacion

del espectro de la Figura 2.8.

0 100 200 300 400 500 600
B [mT]

Figura 2.8: Espectro de EPR medido a T = 15 K y simulado con los
pardmetros de la Tabla 2.9 con EasySpin [24].

Si nos situamos en el sistema de referencia de los ejes propios del tensor giromagnético §;, éste
vendra descrito inicamente por sus valores principales g;1, gy1 ¥ g1, los cuales pueden diferir de los
de go por tener un entorno local distinto. Puesto que los ejes propios de ambos tensores no tienen
por qué coincidir, supondremos que estan relacionadas por una matriz de rotacion R definida por

los tres angulos de Fuler extrinsecos a, 5y ~y

cosy siny 0 cosf 0 —sinf cosa  sina 0
R= | —siny cosy 0 0 1 0 —sina cosa 0 (2.6.11)
0 0 1 sin 0 cosf 0 0 1

donde no consideramos operaciones de inversiéon por simplicidad. De esta forma, si U es la matriz de
ejes propios normalizados del tensor §; y Uz la de g2, se tiene Uy = RUlRfl. Si suponemos ademas
simetria axial 0 # g = gyi = 910 < g = gz = 9,2 (Figura 2.5), entonces solo es relevante el
angulo 5 en la matriz R. Asimismo, como Jio2 & Ay - 1072 (ver Anexo C), estimamos J13 = 500
MHz (Figura 2.7b).

Utilizando el software EasySpin [24] para simular y ajustar nuestros parametros, se obtiene
la Figura 2.8, en la que se replica adecuadamente el espectro medido. Los parametros utilizados,
mostrados en la Tabla 2.9, son coherentes con los experimentos anteriores, pues (Qgi1 =+ gﬁl + 2gi2 +
gﬁz)/2 = (84,1 £ 1,3), y se tiene un factor de acoplo Ji2 ~ 515 MHz.
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2.7. Complejo [DyLaDy| como procesador de 2 qubits

Una vez conocidos los parametros del Hamiltoniano de Espin de nuestra molécula, podemos de-
terminar la evoluciéon de los niveles energéticos en funcién del campo magnético externo B. Ejemplos
obtenidos para dos orientaciones del campo magnético se muestran en las Figuras 2.10a y ¢, donde
vemos que dicha orientacién afecta en gran medida al espectro. Cabe comentar que tomamos como
referencia la direcciéon del tercer eje propio del tensor giromagnético §;; aunque seria mas practico
usar algin eje cristalino identificable macroscopicamente, desconocemos la orientacién relativa entre
estos ejes y dicho tensor ;. Conocerla requeriria hacer experimentos simultdneos de EPR sobre
monocristales indexados mediante difraccion de rayos X, lo que escapa de nuestras posibilidades

experimentales y del &mbito de este trabajo.

Asimismo, en las Figuras 2.10b y d se muestran las frecuencias de Rabi €);; para valores de
campo estatico B y dindmico B; concretos. Vemos que no todas las transiciones cumplen el criterio
de existencia €;; > 0 (ver Anexo D), por lo que no todas las puertas cuénticas son accesibles en
todo momento. Esto se debe a que deben cumplirse las reglas de transicion dipolar magnética, que
establecen AS,; = 1y AS,; =0parai # jy Sty =S1i ®1y Sr =81+ 8 es el espin total.
Como dichas frecuencias dependen de B , tener en los posteriores experimentos una orientaciéon tal
que todas las puertas logicas cuénticas sean accesibles mediante modulacion del campo es esencial

para la viabilidad del trimero como procesador de dos qubits.

a) —=0° o b) B =50mT, By =0,1mT
- 2 [11>
1) 3.0
10 5=
) 25
) 20 [10) 2.0
S 15
[o1)
20 1.0
-40 00) 0.5
|00>
60

0 50 100 150 200 250 300 350 400 450 500 “]n) ‘()1) ]“)) |ll>
B [T

C 0=—-72,5 0=0° d) B =410 mT, B, =0,1mT

) ==
B [11)
E 8
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Figura 2.10: Representacion de los niveles energéticos en funcion del campo magnético para las orientaciones a)
0=9p=0°yc)O=-T25°y¢=0° Los estados ldgicos se denominan en funcién del autoestado predominante de
espin, siendo |0) = | 1) y [1) =|1). En b) y d) se muestran las respectivas frecuencias de Rabi de las transiciones
entre estados calculadas con B =50 mT y B = 410 mT respectivamente, siendo posibles unicamente aquellas con

Qi; > 0. En ambos casos, B1 = 0,1 mT.
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CAPITULO 3

Acoplo a circuitos superconductores

3.1. Introducciéon

Como se menciona en el Capitulo 1, el siguiente paso para utilizar el trimero [DyLaDy| como
procesador cuantico consiste en integrarlo en circuitos. El grupo Q-MAD trabaja en una propuesta
que utiliza la Electrodinamica Cuéntica de circuitos (cQED) [15], basada en la interaccion qudit-
foton a través de lineas de transmision y resonadores superconductores en chip. Como el acoplo a una
sola molécula es demasiado pequeno como para poder ser detectado, es necesario utilizar cristales

moleculares, que poseen moléculas idealmente idénticas para aumentar el acoplo colectivo.

Por este motivo, en esta segunda parte del trabajo se describen los experimentos llevados a cabo
para explorar dicha interaccion para el caso de cristales de [DyLaDy| depositados sobre resonadores
LC. Ademés de determinar el acoplo Gy entre las N moléculas del cristal y los fotones del resonador,

estos experimentos ofrecen una forma de comprobar la validez de la propuesta de la Figura 2.10.

3.2. Montaje experimental

Los circuitos utilizados son disenados y fabricados por el equipo de Alicia Gomez, pertenecien-
te al Centro de Astrobiologia del INTA-CSIC (Madrid, Espafia). Estan constituidos por una o dos
lineas de transmision, por las que se introducen y extraen fotones del circuito, y multiples Resonado-
res de Elementos Concentrados (LERs), que son pequenios subcircuitos superconductores formados
por una inductancia y un condensador en paralelo (Figura 3.1a). Los cristales se depositan en la
inductancia, que genera el campo magnético en el resonador, y se fijan con aceite paratone, utilizado

en cristalografia y que tiene una mayor fluidez que la grasa apiezon a temperatura ambiente.
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Figura 3.1: a) Resonador LER representado como una inductancia y un condensador en paralelo con frecuencia
caracteristica wy. b) Espectro energético del resonador cuantizado, donde cada autoestado |n) representa el nimero

de fotones encerrados, con n € Z*. Imdgenes obtenidas de [25].

Para poder utilizar nuestro sistema cuantico, necesitamos que los qudits estén inicialmente en
su estado fundamental. Esto se consigue enfriandolo a temperaturas inferiores a A/kp y a dEint/kp
con un refrigerador de dilucion *He-*He LD250 de Bluefors (Figura 3.2b) operado por el Servicio de
Apoyo a la Investigacion (SAI) de la Universidad de Zaragoza, pues puede enfriar hasta temperaturas
T > 10 mK. Este equipo posee también un imén uniaxial superconductor de American Magnetics
que permite alcanzar campos magnéticos intensos (B < 1 T), necesarios para sintonizar los niveles
energéticos de los qudits. La senal de microondas, enviada y recibida del chip superconductor via
cables semirigidos coaxiales criogénicos, es generada y caracterizada por un analizador vectorial de
redes (VNA) ZVB14 de Rohde & Schwarz (Figura 3.2a), que mide cambios en la amplitud y fase.
El esquema general del montaje experimental se muestra en la Figura 3.2.

Figura 3.2: Las senales de microondas se generan en el VNA (a) y se transportan via cables coaziales criogénicos a
través del criostato (b) hasta el chip (c). A su salida, vuelven al VNA para su andlisis. d) Representacion de las

medidas de transmisidn y ajuste en régimen de acoplo débil (3.3.3). Imagen a) obtenida de [25].
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En estos experimentos, me he centrado en la colocacion de la muestra en los resonadores (Figura
3.3a) y en la realizacion de experimentos de transmision y resonancia (Figura 3.2d), asi como su

analisis e interpretacion.

3.3. Marco tedrico

El Hamiltoniano de nuestro cristal molecular serd la suma del Hamiltoniano de Espin (2.1.4) de
las N moléculas. Por su parte, tal y como se muestra en la Figura 3.1 y se discute en el Anexo E, el
Hamiltoniano de un LER corresponde con el de un oscilador arménico cuantico. Asi, si consideramos
que ambos sistemas interactian a través de la interaccién dipolar magnética, en la que la creacién o
destrucciéon de un foton esté ligada al descenso o promocién de una excitacidon de espin, se obtiene
el Hamiltoniano de Tavis-Cummings generalizado [25]

N N
Z Hgi+ Hr+ > Hsir (3.3.1)
]:V =1 1 N A A

_ Z (aﬁ& n 2) +> n(e8fa+Gisrat) (3.3.2)

i=1

donde a' y @ son los operadores de creacion y destrucciéon bosonicos de los fotones y Sii es un
operador que crea o elimina una excitaciéon de espin en la i-ésima molécula. Se ha impuesto que
todas las moléculas tengan el mismo espectro energético y el mismo acoplo con el resonador G1. Se

define la el acoplo colectivo como Gy = |G1]V N, que sera la magnitud macroscopicamente accesible.

Suponiendo que nos encontramos en régimen de acoplo débil, en el que domina los procesos de
decoherencia de las moléculas frente a la introducciéon de nuevos fotones al resonador desde la linea
de transmision, podemos utilizar la teoria Input-Output para conocer la transmision ¢ del resonador
en el circuito [25]. Si enviamos fotones con una frecuencia f cercana a alguna frecuencia de transicion
de nuestro sistema fg;, puede aproximarse a

- Ak
=|1—e?— (3.3.3)
k+i(fsi—f)
donde ¢ es una fase cualquiera, A es la visibilidad del resonador y k es la anchura efectiva del

resonador. Esta tltima puede escribirse como

Nﬂi
K= Ko+ g 3.3.4
(GeffitBBr)? +77 (3:3.4)

siendo kg la anchura intrinseca de la linea de transmisién, G'n; el acoplo colectivo qudit-foton en la
i-ésima transicion, gerr; su factor Landé efectivo y ; el ratio de decoherencia global, que incluye
todos los efectos disipativos. Por simplicidad, supondremos v; = v = 1/75, con T3 el tiempo de

decoherencia global.
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3.4. Resultados

Las primeras medidas de transmision del resonador con nuestro cristal molecular (Figura 3.3a)
se realizan con una senal de microondas con potencia P = —70 dBm debido a la baja visibilidad
del resonador, ya que potencias menores imposibilitaban distinguir los picos de resonancia del ruido.
Realizamos estas medidas para T' € {20, 100,500} mK con el fin de distinguir las transiciones desde
el estado fundamental o desde excitados. Un ejemplo se muestra en la Figura 3.3b, donde destaca
el pico de transmisién asociado al resonador cuya frecuencia disminuye con el campo magnético B.
Como esta evoluciéon es continua, podemos asegurar que el acoplo qudit-fotén se mantiene en el

régimen débil.

A (dB), T =20.0 mK

-30.0

=30.2

=304

-30.6

-30.8

-31.0

-31.2

— T =20mK 3.0
100 mK
T =500mK

'ﬂ “

L . . . 0.0 L— . . . . . . . .
0 100 200 300 400 500 0 50 100 150 200 250 300 350 400
B[mT)] B[mT]

K [MHz)
5 [MH:)

Figura 3.3: a) Fotografia del cristal molecular depositado sobre el resonador superconductor, donde se aprecia la
linea de transmision. b) Representacion 2D de la transmision del resonador medida a T = 20 mK, P = —70 dBm y
el campo magnético B perpendicular al resonador. ¢) Espectros de absorcion para distintas temperaturas. d)

Enumeracion de las transiciones identificadas en el espectro de absorcion con T = 20 mK.

Si ajustamos estos picos a (3.3.3) para cada valor de campo, salvo en el rango B € [400, 430]
mT por el cambio en la transmision dado por el VNA, se obtienen los espectros de absorciéon de
la Figura 3.3c. En éstos se vislumbra la influencia de la temperatura, cuya disminucién aumenta la
intensidad de los picos de resonancias debido a la reducciéon de la agitacion térmica de los espines.
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Utilizando el espectro obtenido a partir de las medidas con T' = 20 mK por su mayor contraste, se
distinguen varios picos asociados a transiciones de espin (Figura 3.3d). Habiendo visto en la Seccion
2.7 que en un monocristal pueden tenerse 1 o 2 transiciones permitidas para una frecuencia fija, este
espectro nos indica que tenemos varias orientaciones distintas de los tensores giromagnéticos dentro
del propio cristal. Ajustando cada uno a (3.3.4), se tiene en todos los casos v = (5+0,2) GHz, lo que
implica Ty = (0,200 0,008) ns, un resultado muy pobre para realizar cualquier algoritmo cuéntico
[11], probablemente asociado a una mala calidad del cristal. Asimismo, Gn; ¥ geffi dependen de
cada transicion, teniendo en general Gy ; € [70,110] MHz y gefy, € [1,9;2,3]. Esto también asegura
que nos encontramos en régimen de acoplo débil, pues Gy ;/v < 1 [25].

Estos experimentos se repitieron con dos nuevos cristales en resonadores distintos con una fre-
cuencia caracteristica menor, lo que esquiva el cambio en la transmision exportado por el VNA en
f = 8 GHz. No obstante, tuvieron que realizarse a T" = 3,7 K por averias en el refrigerador, lo que
nos impide eliminar las transiciones desde estados excitados de espin. Realizando el mismo analisis
sobre los datos de transimision (Figura 3.4a), se tienen los espectros de la Figura 3.4b. Su distinta
forma se asocia a distintas calidades de los cristales, siendo la del resonador con fg = 3,16 GHz
mucho mejor que el de fg = 3,52 GHz por su menor anchura en el pico asociado a una transicion.

a) 16 A (dB), T = 3700 mK b)

0.8 | —— fs=3.16 GHz
—— fs=13.,52 GHz

3.15

0.6

|
b
o
K [MH?)

f(GHz)

0.4

500 0 100 200 300 400 500
B (mT) B [mT)

Figura 3.4: a) Representacion 2D de la transmision del resonador medida a T = 3,7 K, P = —95 dBm y el campo
magnético B perpendicular al resonador. b) Espectros de absorcion de dos resonadores con frecuencia caracteristica
fs distinta.

Si estudiamos solo este espectro y ajustamos el pico localizado en B ~ 400 mT a (3.3.3), se
tiene v = (4,56 &+ 0,13) GHz, asociado a T5 = (0,219 +0,006) ns, Gn,; ~ 45 MHz y gerri = 1,1,
resultados similares a los del experimento anterior. Al contrario que el espectro de la Figura 3.3d,
éste es coherente con un monocristal donde la orientacién del campo Besladela Figura 2.10c, pues
es la tinica transicién con intensidad apreciable. Aunque su corto tiempo de decoherencia implique
que esta molécula no es adecuada para funcionar como procesador cuantico, es necesario determinar

las distintas contribuciones de esta decoherencia con experimentos de pulsos de microondas.
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CAPITULO 4

Primeros intentos de experimentos con pulsos

4.1. Introduccién

Hasta ahora se ha descrito la respuesta estacionaria del trimero [DyLaDy]| aislado (Capitulo 2) e
integrado en circuitos (Capitulo 3). No obstante, las operaciones con informacién cuantica se basan
en llevar al procesador fuera del equilibrio térmico, por lo que es de especial interés determinar el
comportamiento dindmico de nuestro sistema. Dicho estudio no ha podido ser realizado con ningan
cristal de [DyLaDy], pues como ya se ha visto en la Seccion 3.4 ninguno de los utilizados tenia una
calidad suficientemente buena. Por ende, se ha utilizado como sistema modelo la molécula PTMr
(Figura 4.1a).

Esta molécula se caracteriza por tener un radical atrapado; es decir, un electréon en un ambiente
cuasi-isotropo. Como su Hamiltoniano de Espin puede ser descrito tinicamente con una interaccion
Zeeman electronica isétropa, el Hamiltoniano del sistema integrado en el circuito viene dado por el
Hamiltoniano de Jaynes-Cummings [26], version simplificada del Hamiltoniano de Tavis-Cummings

(3.3.2)
; heg ¢ it NN
Hyo = =525, + hwgi a+h(GlS+a+GlS_a> (4.1.1)

& N . & N . . . .
donde S, = > .0 ,6.;y S+t = > ;. 6+, son los operadores de espin colectivos y se ha impuesto
la aproximacién de onda rotatoria para preservar el niimero de excitaciones en el sistema. Puede
demostrarse |25] que sus autovalores son

E* = hwgrn + g (5 +4/4G3n + 52) (4.1.2)

siendo n el nimero de fotones y 6 = wy; — wg.
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El objetivo es usar este sistema de espin, mucho maés sencillo que el trimero [DyLaDy]|, acoplado

a los circuitos para explorar su respuesta a pulsos de microondas.

4.2. Metodos experimentales

El montaje experimental utilizado es el mismo que el de los experimentos de acoplo (Figura 3.2),

pero sustituyendo el VNA por un Sistema de Control Cuantico (QCS). Este es un conversor digital

para la generacién y adquisicién de senales de microondas con miltiples formas. Permite disenar

y ejecutar secuencias de pulsos personalizadas para controlar procesadores cuanticos, asegurando

siempre sincronizacién temporal con precision inferior a los nanosegundos. El modelo utilizado es el

Keysight M9046A (Figura 4.1b).

a) cl
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Figura 4.1:

P
2
2
Z
Cl

; b)

a) Estructura de la molécula PTMr, donde el punto rojo indica el radical libre. b) Fotografia del QCS

modelo Keysight M9046A obtenida de [25].

4.3. Marco teodrico

Supongamos que los tnicos acoplos presentes son qubit-resonador y resonador-linea de transmi-

sion. Entonces, en el limite semi-clasico (N — o0) las evoluciones temporales de los operadores

que determinan la dindmica del resonador a y de cada molécula 64 j, 6. ; cuando estan sometidos

a una excitacion de frecuencia wq pueden expresarse como [25]

N
%@ — (iwr+ R)(@) — 13 G (6 5) — i/ Retrme it (4.3.3)
i=1
(6 5) = iy +71)(6 ) G (AP).a) (43.4)
%(&zﬁ = = ((625) + (AP)e) — 2iG1 ;{64 5) (@) + 2iG; ;{6 ;)(al) (4.3.5)
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donde k es el ratio de fuga de fotones a la linea de transmision, k. el de entrada, v, = 1/T5 el ratio de
decoherencia transversal (asociado a la relajacion espin-espin), v = 1/7} el longitudinal (asociado
a la relajacion espin-red) y (AP), = tanh(fw,/kpT) la diferencia de poblacion en equilibrio entre
el estado fundamental de espin y el primer excitado. La evolucion temporal de (64 ;) codifica la
informacion de los términos no diagonales de la matriz densidad de cada molécula p;, por lo que
. . . . . . A\ t—00
esté relacionada con los procesos de decoherencia. En ausencia de excitacion, (a) ——— 0, por lo que
t—>ro0 < ~ t—ro0

el resonador se queda sin fotones, y (6+ ;) —— 0, (6.,;) — (AP)., perdiendo la coherencia y
yendo al estado de equilibrio en las moléculas.

4.4. Resultados de los experimentos de acoplo

Previo a estudiar la respuesta dinamica del sistema, describamos brevemente la estacionaria.
Usando el montaje de la Seccién 3.2 se mide la transmisiéon del resonador a T' = 8 mK y para
distintos valores de potencia. Un ejemplo se muestra en la Figura 4.2a, donde el pico de la transmisiéon
evoluciona con B, desapareciendo en un intervalo. Esto se debe al acoplo espin-fotén: cuando aumenta
B dando § — 0, la diferencia entre E;" y E, en (4.1.2) incrementa, siendo méaxima cuando ¢ = 0.
En dicho caso, puede utilizarse para estimar G . Suponiendo n = 1 por estar utilizando potencias
muy pequenas, se tiene Gy = (1,0+0,1) MHz, mucho menor que en nuestro trimero (Figura 3.3).

a ) A (dB), P =-40 dBm, T = 8.0 mK b)
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Figura 4.2: a) Representacion 2D de la transmision del resonador medida a T =8 mK, P = —90 dBm y el campo

magnético B perpendicular al resonador. b) Espectros de absorcion para distintas potencias de senal.

Ajustando la transmision a (3.3.3) para los distintos valores de potencia, obtenemos los espectros
de absorciéon de la Figura 4.2b. Este ajuste no ha podido ser realizado en B € (48,49) mT para
potencias pequenas, pues el acoplo se vuelve tan intenso que desaparece la transmision y deja de ser
aplicable la expresion anterior. En general, vemos que la absorcion aumenta conforme disminuye la
potencia, lo que se relaciona con la saturaciéon del sistema: La fraccién de fotones absorbidos sera
mayor cuanto menor sea el nimero de fotones enviados por la linea de transmision, pues el sistema

puede absorber un ntmero finito por unidad de tiempo.
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Suponiendo que los valores de absorcién calculados corresponden al régimen de acoplo débil,
usamos (3.3.4) para estimar Gy = (1,2 £ 0,4) MHz, resultado compatible con el estimado en la
Figura 4.2a. Por su parte, v = (12+£9) MHz, lo que implica 75 = (80£60) ns. Las altas incertidumbres
nos indican que este método no es el 6ptimo para la determinaciéon de estos parametros, debido aque
no se cumple estrictamente la condicién de acoplo débil. Por ello, es necesario realizar experimentos

con pulsos para determinar fehacientemente la dindmica de este sistema.

4.5. Resultados de los experimentos con pulsos

En primer lugar se determina la carga y descarga del resonador, que depende del tiempo de
vida medio del foton ¢; = 1/k. Esto se consigue midiendo la transmisién durante la aplicaciéon de
un pulso de microondas de 1 ps de duracion y su respuesta posterior usando el QCS (Figura 4.1b).
En la Figura 4.3a se compara la respuesta a campo nulo, cuando los espines no estan sintonizados
con la energia de los fotones del resonador y su acoplo no juega ningin papel, y en presencia de
éste (B = 224 mT por el cambio de resonador). Ademas de desplazar la frecuencia del resonador
y aumentar la anchura de la transmision en el caso estacionario (Figura 4.2a), el acoplo también
modifica la dindmica del resonador: mientras que los fotones no acoplados tienen un tiempo de vida
medio t; ~ 10 ns, la resonancia disminuye este valor mas de un orden de magnitud #; < 1 ns. Este
rapido decaimiento asegura que las senales de los ecos de espin no van a ser atenuadas por la senal

asociada a los fotones, lo que es deseable en estos experimentos.

LER 6.2GHz@ 0 mT

LER 6.2GHz@ 224 mT LER 6.2GHz@ 224 mT
TRy e

-25 6.245
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: -50 6.215
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000 025 050 075 100 125 150 175 2.00
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Figura 4.3: a) Representacion 2D de la transmision del resonador medida durante la aplicacion de un pulso de
microondas de 1 us y su posterior respuesta con B =0 mT (izq.) y B =224 mT (dcha.) b) Representacion 2D de la

transmision del resonador medida durante la aplicacion de una secuencia de dos pulsos con B = 224 mT.

A continuacion, intentamos realizar una secuencia de dos pulsos para medir el eco de Hahn [27].
Eligiendo un pulso (g) de 500 ns seguido de un pulso (7) separado del anterior por 7 = 1 pus, se
espera medir una sefial tras un tiempo 7 una vez ha finalizado el segundo pulso. Desafortunadamente,
no se ha podido medir ninguna senal, tal y como se muestra en la Figura 4.3b. A pesar de que puede
estar relacionado con el ntiimero de espines excitados, y por tanto con la intensidad de los pulsos, es

un problema en el que se esta trabajando actualmente.
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CAPITULO 5

Conclusiones

En la primera parte de este trabajo se ha caracterizado y demostrado la capacidad del trimero
[DyLaDy]| para funcionar como un procesador cuantico de 2 qubits a temperaturas suficientemente
bajas. El distinto entorno local de los iones magnéticos Dy3t y su interaccién permite modelarlos
como dos espines efectivos S = 1/2 interactuantes gracias al formalismo del Hamiltoniano de Espin,
cuyos parametros han sido determinados con experimentos de susceptibilidad magnética, capacidad
calorifica y EPR. Ademaés, la dependencia del espectro energético con el campo magnético externo B
permite sintonizar las transiciones a las frecuencias de los resonadores de los circuitos, lo que forma

la base del control cuantico del sistema.

En la segunda parte se ha mostrado que los circuitos superconductores constituyen una buena
plataforma para la interaccién qudit-foton. Los experimentos realizados con cristales moleculares de
[DyLaDy| muestran la existencia de multiples resonancias de espin, que pueden ser explicadas con
su Hamiltoniano de Espin. No obstante, la anchura de los picos en los espectros de absorcién indican
la presencia de defectos cristalinos, por lo que deben ser utilizados cristales de mejor calidad.

Finalmente, se ha utilizado la molécula PTMr como qubit modelo para la realizaciéon de experi-
mentos con sefiales pulsadas. En los experimentos de acoplo se ha visto el régimen de acoplo fuerte
con el resonador, que provoca un desdoblamiento en su transmisiéon. Por su parte, en los de pulsado
se han caracterizado los cortos tiempos de vida medio de los fotones en el resonador en régimen de
acoplo fuerte y de desacoplo, pero no ha podido detectarse el eco de Hahn tras la secuencia de dos

pulsos por el bajo coeficiente senal-ruido presente.

Los actuales esfuerzos se centran en sintetizar un cristal con caracteristicas 6ptimas para su acoplo
al resonador y en medir los ecos de espin una vez se haya disminuido el ruido en los experimentos
con pulsos. Esto permitird determinar la dindmica de nuestro trimero, luego su viabilidad como

procesador cuantico, y realizar pequenas secuencias de pulsos que representen algoritmos cuénticos.
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APENDICE A

Correcciéon de masas y de cambio de equipo en
los experimentos de susceptibilidad magnética

A.1. Reestimacion de masas

Comencemos con el equipo con el criostato de He liquido y la reestimacién de las masas. Podemos
calcular la susceptibilidad magnética x a partir de la imanacién m, el campo externo H, la masa de
la muestra m,,, su masa molar M,, = 3077,50 g/mol, la masa de la grasa mg, (apiezonN en este
caso) y su susceptibilidad magnética por unidad de masa x4 = —1,0151 - 1076 % segin (A.1.1),
donde se tiene en cuenta que hay dos iones Dy?t en cada molécula.

m 2 (m B |Xgr| mng)
— = M All
H mmH " ( )

A pesar de disponer de una balanza de precision, se observaban tiempos de relajacion exagera-
damente largos, por lo que se estima inicialmente m,, = (1,0 £0,1) mg y m,, = (0,4 £0,1) mg.
Si representamos el producto x7 respecto a 1" con estos valores iniciales, se obtiene la Figura A.la,
que presenta una tendencia positiva incluso en altas temperaturas, lo que puede estar asociado a
una sobreestimacion de mg,. Ademas, como los iones lantanidos son centros paramagnéticos, deben

cumplir la ley de Curie en altas temperaturas

J(J+1)

XT = 2g5u% T

Ny (A.1.2)
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donde gy = 4/3 es el factor de Landé del ion libre, J = 15/2, pup es el magneton de Bohr, kp

es la constante de Boltzmann y N4 es el nimero de Avogadro. Sustituyendo, se tiene que x7T =

28,4 fnﬁl“ge, valor que no se alcanza en ningtin punto de la Figura A.la. Este resultado sugiere que

también se ha sobreestimado el valor de m,,, por lo que debe ser corregido.

| B 010y

23

26

22

5 21 f

5 20

20 19

0 50 100 150 200 250 300 0 50 100 150 200 250 300
T [K] T [K]

(a) Masas iniciales. (b) mg, corregida.

Figura A.1: Representaciones del producto xT' calculadas con a) los valores iniciales de las masas mm y mgr Yy b)

con mgy corregida.

Para corregir la primera, vamos a suponer que, en altas temperaturas, todos los niveles energéticos
adaptados a la simetria provenientes del estado fundamental electrénico de la capa incompleta 4f
de los iones Dy3T estan completamente ocupados o vacios. Descartamos la poblacion de estados
electronicos excitados por encontrarse a muy alta energia (> 5000 K) [28]. De esta forma, basta
con realizar un ajuste lineal en el rango de altas temperaturas (7' > 100 K) para reestimar dicha
masa, obteniendo asi mg, = (0,244 £ 0,004) mg y un plateau a altas temperaturas (Figura A.1b).
Comentar que no hemos considerado la incertidumbre estimada de m,, para el cilculo de mgy, ni

para x71', pues esta claramente sobreestimada.

Por su parte, para corregir la segunda masa, imponemos que se cumpla la ley de Curie a altas
temperaturas. De esta forma, obtenemos m,,, = (0,32840,018) mg y la Figura A.2, donde el plateau
de altas temperaturas cumple esta ley. Comentar que las incertidubres siguen siendo muy elevadas,

viniendo ahora la principal contribucién de la imanacion.
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Figura A.2: Representaciones del producto xT calculadas con los valores de las masas corregidas.

A.2. Calibracién de cambio de equipo

Pasemos ahora a la calibracién por el cambio de equipo con criostato de He liquido al de 3He.
Para ello, suponemos que se introduce una nueva componente diamagnética y un factor de propor-
cionalidad en la medida del nuevo equipo: Llamando m a la imanacién medida con el nuevo equipo,
M a la medida con el equipo anterior, Xgam @ la susceptibilidad diamagnética introducida por el
nuevo equipo respecto a la anterior y oo € R, se tiene

M — Xdiam * H

M=« M., (A.2.3)

Mm

Estos dos parametros se obtienen representando M /H respecto a m/H para iguales valores de
campo y temperatura. Dichos datos los obtenemos a partir de la dependencia de la susceptibilidad
magnética con el campo externo H, ya que se miden la imanacién respecto a varios barridos de campo
a distintas temperaturas. Usando las medidas tomadas a T' = 2 K en ambos equipos, realizamos una

interpolacion de los valores y los ajustamos a una recta, obteniendo la Figura A.3a.
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Figura A.3: a) Recta de calibracion entre los dos equipos para la determinacion del factor de proporcionalidad entre

ambas. b) Representacion del producto xT a baja temperatura con la correccion de cambio de equipo.

Cabe destacar que en esta Figura se han usado valores de M expresados en unidades de magnetén
de Bohr por molécula, por lo que la constante « se transforma en o/ = NAaMB
se despejan o = (1,74 £0,02) ¥ Xdiam = (3,57 £0,27) - 107 Be> v se tiene la Figura A.3b, cuyos

valores se incluyen en las incertidumbres de los exportados por el otro equipo.

. A partir de este ajuste,
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APENDICE B

Comportamiento paramagnético de los iones
DyS—I—

Como los iones Dy3* aislados son paramagnéticos, la imanacion deberfa cumplir la expresion de

Brillouin
M = NgrJupBj(x) (B.0.1)

siendo gy, el factor de Landé y B la funcién de Brillouin

Bjy(x) = 22; ! coth <W> _ L coth (£> (B.0.2)

_ grJpuppoH
con r = kT

No obstante, por la anisotropia, esta ley no se aplica al multiplete .J, sino a cada doblete S = 1/2.
Ademaés, suponiendo g, g, < g2, la imanacién de saturacion pasa a ser Mg = %N g-Sup. De esta
forma, se tiene la Figura B.1, donde N ~ 1,15 N4 y p =~ 0,9 up. Si comparamos con los datos de la
Figura 2.6b con T' = 1 K, pues s6lo se tiene poblado el doblete Kramers fundamental y la interaccion
no juega un gran papel, vemos una correspondencia practicamente perfecta, lo que nos indica que
nuestros iones aislados se comportan como centros paramagnéticos. Ademas, el valor de saturacion
nos sugiere que el campo consigue polarizar los espines, pues Mg =~ 11,5 up ~ 2¢,.5, lo que implica
9z, 9y 7 0. Un anédlisis mas detallado requeriria un modelo mas complejo que tenga en cuenta que

la muestra se ha medido en polvo.
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Figura B.1: Representacion de la imanacion en el paramagnetismo de Brillouin (B.0.1) con N = 1,15 N4 y

w~09up y comparacion con las medidas en T =1 K de la Figura 2.6b.
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APENDICE C

Estimaciéon factor de acoplo

Supongamos inicialmente que g = g,; = 0 y que la matriz de rotacion R solo depende del
angulo (. El término de interaccion del Hamiltoniano de Espin (2.1.4) es

X Jio = . a4 o=
Hint = ———S101 R 52 RS = (C.0.1)
gJ19J2
J 00 O cosf 0 —sinf 00 O cosf 0 sinf
-2 5100 o 0 1 0 00 0 0 1 0 |[&=
g9z 0 0 g sinf 0 cosf 0 0 g.0 —sinf8 0 cosf
(C.0.2)
J 0 0 0
=23 0 0 0 Sy = (C.0.3)
971972 *gzlgz2SinﬁCOSﬁ 0 921922(30825
z z. 1 .
= an [ sin(23)S,1 ® Sya + cos? 5,1 ® SZ2:| = (C.0.4)
9J1972 | 2
921922 1 . 9
= Ji2 ——sin(26)5.1 @ (S42 + S—2) + cos” 35,1 ® Sa2 (C.0.5)
gngse | 4

siendo S;2 y S_2 los operadores escalera del espin 2.

Definiendo C' = J12221%2 v suponiendo que el campo magnético externo B se orienta en la
971972
direccién del tercer eje propio de g1, los autoestados de los términos independientes del Hamiltoniano

pueden ser descritos por S?, S.1, 52,y S,2, de forma que usaremos la base {| 11),| 1), | 41), | 1)}
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Asi, la accion del Hamiltoniano de interaccion sobre ésta escrita en unidades naturales (A = 1) es

o 1) =  |eos? 51 11) = sn20)] 1) (C.0.6)
ol 1) = |~ cos? 8 1) = 5 sin(26)] 1) (€0.7)
ol 1) = 5 | —cos? 8 41) + g sin(26)] 40 (C08)
o 1) =  |eos? 51 41) +  sn8)] ) (€.0.9)
y escrito de forma matricial
cos? 8 —%sin(2p) 0 0
L TR I e
0 0 $sin(28)  cos?

Vemos que este Hamiltoniano es diagonal por cajas, siendo ademas ambos bloques idénticos
salvo signo general, lo que nos indica que va a haber una degeneracién en energias, tal y como

esperabamos. Si diagonalizamos el primer bloque para obtener el gap energético ¢ Fjpy

%COSQB—E —%sin(Zﬂ) _0 (C.0.11)
—%sin(28) —Scos?B—FE| o
8 4
c? 4 2 c? 2
16 <8 B —E°= — Sin (28) (C.0.12)
C 1,
E = iz cost B + 7 5in (28) (C.0.13)
C 1,
0Ein: = 5 cost B + 75 (28) (C.0.14)
podemos expresar el parametro de interaccion Jio respecto a éste
26Ezn —
Jip = 971972 ! ~ 6 By - 1072 (C.0.15)

921922 \/cos4 8+ %sin2(25)

donde se ha supuesto 3 < 57°.
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Si suponemos ahora simetria axial 0 # gz = gyi = 91i < g1 = gz, puede demostrarse de igual

forma que la matriz de interaccién es

g1 0 0 cosf 0 —sinfs gia 0 0 cosB 0 sinf
J=10 g1 0 0 1 0 0 gi2 O 0 1 0 |= (Co0.16)
0 0 gpn sin 0 cospf 0 0 g2 —sing 0 cosf
gir 0 0 gizcosf 0 —gjzsinp cosf 0 sinpf
=0 g1 0 0 gus 0 o 1 o0 |= (C.0.17)
0 0 g gi2sinff 0 gjgcosp —sinf 0 cosf
gir 0 0 g1ocos? 3 + 92 sin?3 0 sinBcosB(gio — g)2)
=10 g1 O 0 g19 0 = (C.0.18)
0 0 gp sinfBcosB(gi2 —gp2) 0  gi2 sin? 8 + 9|2 cos? B
g11(g12cos® B+ gjosin® ) 0 g11sinBeos B(g1a — g)2)
= 0 g119.12 0 (C.O.lg)
g|1sinBcos B(g12 — g)2) 0 gji(gLesin® B+ gjo cos® B)

y se rompe la degeneracion, salvo si § = 00 g1 = g12 =

0. No obstante, como la diferencia

energética introducida es muy pequena, podemos seguir considerando vélida la expresion (C.0.15).
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APENDICE D

Frecuencias de Rabi

Estudiemos la interacciéon de nuestro trimero con un campo magnético externo de microondas
By. Para que produzca transiciones entre estados, debe cumplirse que By L é, con B el campo
magnético estatico, por lo que basta con imponer que su angulo polar # respecto al tercer eje
propio del tensor giromagnético g; (2.1.4) cumpla 63 = 61 + 5, con ¢ el angulo polar de B, de
forma que B, = By cos(wt). Asimismo, como queremos que se trate como una perturbacion de
nuestro hamiltoniano inicial, debe cumplirse que dicho campo sea pequeno, By < B, condicién que
consideraremos cumplida si hay al menos un orden de magnitud de diferencia entre ambas.

Supuesto que cumplimos esta condicién, podemos escribir nuestro nuevo hamiltoniano H como

el inicial sumado a una perturbaciéon V que tendra la forma de una interacciéon Zeeman electronica.

ﬁ:ﬂ0+v:ﬂo+uBZ§i'gi-B‘1 (D.O.l)

Vamos a utilizar teorfa de perturbaciones dependientes del tiempo para estudiar las transiciones
entre dos autoestados de Ho. Si empezamos en el autoestado |i), siendo i = 0,1,...,7, podemos

suponer que el estado final serda una combiancion lineal de éste y otro estado |j), con j =0,1,...,7,
pero i # j

.E E;

) = ci(t)e ™R i) + cj(H)e T |5) (D.0.2)
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Introduciendo esta expresion en la ecuacion de Schrédinger y proyectando sobre los autoestados,

obtenemos un sistema de dos ecuaciones de primer orden para estos coeficientes

cj(t) coswt

i¢;(t) ~ 5 (i|V]5) €0t = Qic;(t) cos wt ot (D.0.3)
o aleoswt o
icj(t) ~ TMVU) e = Qjici(t) coswte (D.0.4)
donde hemos despreciado los términos (i|V|i) y hemos denotado wg = E’;EJ y Qij = %, siendo

esta tltima la frecuencia de Rabi. Evidentemente, €;; = €2;;.

Reorganizando estas ecuaciones y despreciando los términos que oscilan réapidamente, puede

/2. 482
2 2 ij
Qijsm (t)
2

demostrarse que

2

¢ ()" = 2 15 (D.0.5)

con 0 = w — wy. Puesto que podemos generar un campo de microondas con cualquier frecuencia del
orden de los GHz, vamos a suponer que é = 0, obteniendo asi

) = cos (%%) i) + €' sin <927t> |7) (D.0.6)

donde « es una fase relativa que no nos va a afectar, pues solo estamos interesados en las amplitudes
de probabilidades. Es importante darse cuenta que, partiendo del estado inicial |i), podemos pasar
al estado |j) simplemente aplicando el campo B durante un tiempo ¢ = o siempre que Q;; > 0,
ij

lo que nos va a posibilitar la realizacién de puertas cuanticas en nuestro sistema.
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APENDICE E

Derivacion del Hamiltoniano del Resonador LC

Comencemos con el resonador LC. Aplicando las ecuaciones de Kirchhoff al circuito de la Figura

3.1 se tiene

VO -LI) =0 v
1 scve —o 0 PO Fenel)=0 (E.0.1)

donde se ha definido el flujo ¢ como ¢ =V y w, = 1/vVLC.

Consideremos ahora las variables flujo ¢ y su momento canénico carga ¢ = dLg/ 8&), donde
Lp= %(]52 - iqﬁQ es el Lagrangiano clésico, como operadores. Si aplicamos la cuantizacién canoénica,
entonces deben cumplir la relacién de conmutacién [(i, g] = ih. Definiendo los operadores de creacion
al y destruccion a como

a= 27%2 (¢3 +iZ4) (E.0.2)
at = % (é . z’ch) (E.0.3)

donde Z = /L/C es la impedancia del resonador, se tiene que cumplen las reglas de conmutacion
bosoénicas [&,dT] = 1. Si los incluimos en el Hamiltoniano clasico Hr = qu — Lpg, se obtiene el

Hamiltoniano de un oscilador armonico cuantico
. a1
Hp =hwr | a'a+ 3 (E.0.4)

cuyos autoestados |n), pertenecientes al espacio de Fock, vienen designados por el nimero de fotones

encerrados en el resonador n € Z+.
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