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1. Introduccion

A lo largo del siglo XX, la Fisica sufrié una gran revolucion: se desarrollaron nuevas teorias
para describir la realidad, como la Relatividad Especial o la Mecanica Cudntica. En el proceso
de combinar ambas, surgié la Teoria Cudntica de Campos (QFT - del inglés Quantum Field
Theory). En este marco, el resultado més existoso es el Modelo Estdndar, que describe la
materia y sus interacciones en términos de particulas fundamentales. Sin embargo, el modelo
no permitia que estas particulas tuvieran masa. Faltaba una pieza para completar la teoria.
Peter Higgs (1929-2024) propuso una forma de resolver este problema [1, 2]. A su vez, Robert
Brout (1928-2011) y Frangois Englert (1932-presente) hicieron propuestas similares [3]. La
soluciéon que dieron se conoce como mecanismo de Higgs, y ademés de permitir introducir la
masa de las particulas en el Modelo Estandar, predice la existencia de una nueva particula
fundamental, llamada bosén de Higgs. Esta particula fue encontrada en 2012 en el LHC del
CERN y le vali6 el premio Nobel a Peter Higgs y Francois Englert.

En el capitulo 2 estudiaremos las principales caracteristicas del Modelo Estandar, sus
simetrias y el problema de introducir la masa de las particulas en la teoria, motivando
la necesidad de un mecanismo de ruptura de simetria. En el capitulo 3, explicaremos el
funcionamiento del mecanismo de Higgs a través de ejemplos sencillos, exponiendo en el
capitulo 4 la forma de introducirlo en el Modelo Estandar. En el capitulo 5 analizaremos las
distintas vias de desintegracién del bosén de Higgs, y en el capitulo 6 veremos la relacién
entre el mecanismo de Higgs y las transiciones de fase. En el capitulo final presentamos las

conclusiones. La mayoria de los célculos realizados se incluyen en los anexos.

2. Modelo Estandar

El Modelo Estéandar (SM - del inglés Standard Model) es una teoria cuéntica de campos
relativista que describe el universo a través de particulas fundamentales y las interacciones
entre ellas. Esta basada en una serie de simetrias, que veremos en mas detalle mas adelante. Es
la teoria fisica con mayor capacidad de prediccién que se ha desarrollado, siendo confirmada
experimentalmente con una precisiéon mayor del uno por mil. No obstante, deja cuestiones
sin resolver, como, por ejemplo, la existencia de materia oscura en el universo, el problema

de las jerarquias, la masa de los neutrinos, etc.

2.1. Particulas e interacciones fundamentales

Las particulas fundamentales que conforman la materia se denominan fermiones. E1 SM
incluye 12 fermiones, agrupados en 3 generaciones distintas. Cada generacién cuenta con 2
quarks y 2 leptones. El modelo introduce tres interacciones fundamentales entre las particulas

que lo constituyen: la interaccién electromagnética, la interaccién débil y la interaccién fuerte.



Las dos primeras interacciones estan unificadas en la denominada teoria electrodébil. Para
cada una de las interacciones, existen particulas mediadoras que se denominan bosones de

gauge. No se incluye la gravedad, por lo que el SM no puede ser una teoria completa.
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Figura 1: Clasificacién de las particulas del Modelo Estédndar [4].

En la figura 1 se presenta un esquema de las particulas del SM, que comentamos a

continuacion:

= Los quarks son los fermiones que interaccionan fuerte. En cada generacion existe un
quark con carga positiva y uno con carga negativa. No se encuentran nunca aislados,
sino que se agrupan formando hadrones.

= Los leptones son los fermiones que no interaccionan fuerte. En cada generacion existe
un leptén con carga negativa y un leptén neutro llamado neutrino.

= Kl fotdn, sin carga, es el bosén de gauge mediador de la interaccién electromagnética.

» Los bosones de gauge W* (cargados) y Z (neutro) median la interaccién débil.

= El gluén es el bosén de gauge mediador de la interaccién fuerte.

Cada uno de los fermiones tiene su correspondiente antifermion, que es una particula con
propiedades exactamente iguales, excepto la carga de distinto signo.

El contenido en particulas del SM se completa con el bosén de Higgs, de naturaleza
distinta a todas las anteriores. Esta particula aparece como consecuencia de introducir el
mecanismo de Higgs, que dota de masa a las particulas (excepto al fotén, al gluén y a los

neutrinos) respetando las simetrias de la teoria.

2.2. Campos que describen particulas

En el SM, que es una teoria cuantica de campos, las particulas estdn descritas por campos,
que son funciones de las coordenadas del espacio-tiempo que transforman de una determinada
manera bajo transformaciones de Lorentz.

La dindmica de un campo ¢ se describe mediante una densidad Lagrangiana £(¢), que en

adelante llamaremos simplemente Lagrangiano. Las ecuaciones del movimiento se obtienen



aplicando las ecuaciones de Euler-Lagrange:

oL oL
ag O <a(au¢>> =0 W

Para cada clase de particulas existe un Lagrangiano que describe su dindmica libre.

Fermiones. Estas particulas, de espin 1/2, estdn descritas por campos espinoriales ().

Su dindmica se recoge en el Lagrangiano de Dirac y su correspondiente ecuacién’.

L= B 0 —m) = (7", —m)p =0, (2)

donde m es la masa de la particula y 1) = 1T~ se llama espinor adjunto.

Bosones escalares. Estas particulas, de espin 0, estdn descritas por campos escalares ¢(z).
Su dindmica se recoge en el Lagrangiano de Klein-Gordon y su correspondiente ecuacién. Para
el caso de un campo real es:

L= %@@2 - %m%? = (0"9, +m*)p =0, (3)

donde m es la masa de la particula. El bosén de Higgs es un bosén escalar.

Bosones vectoriales. Estas particulas, de espin 1, estan descritas por campos vectoriales
V(). El término de masa de estos campos en el Lagrangiano es de la forma %M Vf, donde

M es la masa de la particula. Los bosones de gauge son particulas de este tipo.

2.3. Electrodinamica cuantica

Antes de seguir con la estructura del SM, veamos como se formula la teoria cuantica de
campos del electromagnetismo a partir de las ecuaciones de Maxwell [5]. La Electrodindmica
Cudantica (QED - del inglés Quantum Electrodynamics) combina la ecuacién de Dirac para
describir el electrén y las ecuaciones de Maxwell para el foton, y resulta de imponer el principio

gauge local basado en una determinada simetria a la ecuacién de Dirac.

2.3.1. Ecuaciones de Maxwell e invariancia gauge

Partimos de las ecuaciones clasicas del electromagnetismo,

—

V-E=p, V-B=0,
. . . OF . . 0B (4)
VxB=jt+ 2 VxB=_-22

XE=TT g % ot

siendo p la densidad de carga y ; la densidad de corriente.
Gracias a las dos ecuaciones de Maxwell homogéneas, podemos escribir el campo eléctrico

y magnético en funcién de un potencial escalar ¢(Z,t) y un potencial vector A(Z,t):

Lo ~ - A
Bovxid, FBe-ve-24 (5)

'En estas ecuaciones se utilizan unidades naturales, es decir, i = ¢ = 1. Este sistema de unidades va a ser
el utilizado durante todo el trabajo, e implica que [M] = [E] = [p] = [L]"* = [t]*.



Con esta definicion las ecuaciones homogéneas se satisfacen automaéticamente. Se debe

notar que E y B son invariantes bajo la siguiente transformacién de los potenciales?:

0 L. .
d=pt A, A=Ay, (6)

siendo f(Z,t) una funcién arbitraria. Estas transformaciones se denominan transformaciones
de gauge de segundo tipo, y son locales porque la funcién f depende de las coordenadas del
espacio-tiempo. La invarianza gauge se debe a la discrepancia entre los grados de libertad de
la teorfa (4 componentes del campo en total) y los grados de libertad fisicos de la particula

que describen (el fotén tiene solo 2 estados de polarizacién).

2.3.2. Formulacién covariante

Para expresar las ecuaciones de Maxwell de forma covariante, se incluyen los potenciales

en el cuadrivector A# = (¢, A), y se define el tensor electromagnético®:
FH = grAY — 9V AF . (7)

Con esta definicién del potencial A las transformaciones de gauge (6) se pueden escribir en
forma covariante:

Al = A+ 8,f. 8)

Las ecuaciones de Maxwell homogéneas y no homogéneas se pueden escribir a partir del

tensor electromagnético como:

OPFM 4 PN 4 9V FM =0, 9, F" = j*, (9)

-,

donde j# = (p,7) es el cuadrivector de corriente electromagnética.

El tensor F#¥ es invariante bajo tranformaciones de gauge, pues solo depende del campo
eléctrico y magnético, que son invariantes. Ademads, las ecuaciones de Maxwell escritas de
forma covariante manifiestan su invariancia frente a transformaciones de Lorentz.

Podemos recoger la dindmica del campo A* en un Lagrangiano, con invariancia gauge
e invariancia Lorentz, cuyas ecuaciones de Euler-Lagrange nos devuelvan la ecuacién no

homogénea dada en (9). Este Lagrangiano es:

1
L= = F"Fy — A, (10)

2.3.3. Acoplamiento minimo y Lagrangiano invariante

Clasicamente, la corriente electromagnética estd asociada a particulas cargadas, por lo

que deberfa estar relacionada con los campos de los fermiones [6]. Como ya hemos visto,

2 Ambas demostraciones se recogen en el anexo A.1l.
3En el anexo A.2 se puede ver que este tensor solo depende del campo eléctrico y magnético. También se
demuestra ahi la formulacién covariante de las ecuaciones de Maxwell y el Lagrangiano asociado.



estdn descritos por el Lagrangiano de Dirac. Este Lagrangiano tiene simetria U(1) global,
pero no local. Es decir, no es invariante frente a la transformacién
W' = ey, (11)
donde a(x) es una funcién arbitraria de las coordenadas, que se conoce como parametro de
la transformacion. Por otro lado, el Lagrangiano de Maxwell sin fuentes es invariante bajo la
transformacion de gauge,
A= A, - éaua(m) . (12)
Podemos construir un Lagrangiano invariante al realizar las dos transformaciones

simultdneamente, sustituyendo la derivada usual por la derivada covariante:
D,=0,+iQA,, (13)

donde e es la constante de acoplamiento de la QED. El Lagrangiano queda®:
1 - 1 . - _
L= _ZF“ F+ d}(VYMDu —m)Y = _ZF“ Fu + T;Z)(Z'Yuau —m)y —e QAWW"T/)- (14)

El primer término del Lagrangiano representa la dindmica libre del campo
electromagnético, el segundo la dindmica libre de los fermiones; con un término cinético
y uno de masa, y el ultimo término representa la interaccién entre el campo fermiénico y el
campo electromagnético (acoplamiento minimo). Este tltimo es de la forma —j*A,,, como en
el Lagrangiano (10), al identificar j# = e Q ¥y*1). Esta no es més que la corriente conservada

asociada a la simetria U(1) global del Lagrangiano de Dirac.

En resumen, tratando de que el Lagrangiano de los fermiones respete una simetria local,
surgen naturalmente las interacciones entre los fermiones y un campo gauge. En el caso de la
QED, el grupo de simetria local es U(1), y el campo gauge es el campo electromagnético. En
este procedimiento, es fundamental la simetria gauge que presenta este campo, que proviene
de un exceso de grados de libertad en la teoria respecto a los grados de libertad fisicos que
describe. Sustituyendo la derivada usual por una derivada covariante adecuada, la simetria
gauge garantiza la simetria local de un Lagrangiano que recoge la dindmica de los fermiones,
el campo gauge y sus interacciones. Concluimos, por tanto, que el Lagrangiano de la QED

con simetria U(1) local y simetria gauge es precisamente el dado en (14).

2.4. Simetrias en el Modelo Estandar

Todas las interacciones en el SM estan asociadas a un grupo de simetria: la interaccién
electromagnética al grupo U(1), la interaccién débil al grupo SU(2) y la interaccién fuerte
al grupo SU(3). Por tanto, el SM es una teoria gauge basada en el grupo de simetria G =
SU(3)c x SU(2)r, x U(1)y, donde el subindice L representa la componente levégira de los

campos, C' se refiere a la carga de color e Y al nimero cuéantico de hipercarga débil.

1La demostracién de la invarianza se recoge en el anexo A.3.



2.4.1. Simetria SU(2) local

Andlogamente al procedimiento desarrollado en QED, veamos cémo aparecen las
interacciones al imponer la invarianza del Lagrangiano ante transformaciones locales del
grupo SU(2) [7]. Este grupo tiene tres generadores infinitesimales Tj (el grupo U(1) solo tiene
uno) y es no abeliano (es decir, las transformaciones no conmutan). Estas son las principales
diferencias entre ambos casos. Una transformacién genérica del grupo SU(2) sobre un campo

fermionico se escribira como:

—

W = Ty (15)

—

siendo ((z) los pardmetros de la transformacién. El Lagrangiano de Dirac es invariante bajo
transformaciones globales de este tipo, pero no locales. Por tanto, al igual que en QED,

sustituiremos la derivada usual por la derivada covariante:
D,=08,+igT -G, (16)

donde g serd la constante de acoplamiento de esta teorfa. Debido a que el grupo SU(2) tiene

3 generadores, son necesarios 3 campos gauge Gﬂ. La transformacién gauge de los campos es:
. | )
Gl =Gl — p 1B (x) + e B (2) Gl (17)

donde gji; es el tensor de Levi-Civita, que recoge las constantes de estructura del grupo
SU(2). El dltimo término que aparece no lo tenfamos en QED, y se debe a que el grupo no
es abeliano. Ademas, de forma similar al tensor del campo electromagnético, podemos definir

un tensor para cada uno de estos nuevos campos:
G = 0,Gy — 0,G), —ig |G, Gy, (18)

donde el nuevo término, proporcional a g, es debido a que el grupo no es abeliano.

Podemos ahora construir un Lagrangiano total con simetria SU(2) local y simetria gauge,
1~ = -
L= _ZGW -G + (V" Dy —m)y. (19)

Al desarrollar este Lagrangiano, se obtienen términos que describen la dindmica libre de
los campos gauge y de los fermiones, asi como la interaccién entre ellos. Debido al tltimo
término en (18), los campos gauge interaccionan entre ellos, algo que no ocurre con el campo

electromagnético.

2.4.2. Teoria electrodébil

En el SM, las interacciones electromagnética y débil estan unificadas. Esta interaccion
electrodébil estd asociada al grupo de simetria SU(2); x U(1)y. Experimentalmente, se

observé que la interaccién débil solo actia sobre particulas levégiras (y antiparticulas



dextrégiras) [8]. Bajo el grupo de simetria SU(2)r, las componentes levigiras se transforman
de forma distinta que las dextrégiras: los primeros son dobletes y los segundos son singletes

de isoespin débil (no existen los neutrinos dextrégiros):
€rR MR TR
e 1 T
L L L
t
w ¢ ur dr cr Sr tr br.
d s b
L L L

Los campos espinoriales de Dirac se pueden dividir en sus partes levégira y dextrogira,

Y = Y1, + YR, de forma que la transformacién se escribe:
(3 Y .Y
i = TF@T5a@)y -yl = 3@y, (20)

donde T = %aj son los generadores del grupo SU(2)r, e Y es el generador del grupo U(1)y.
De manera andloga a como hemos procedido anteriormente, se introduce un campo gauge
por cada una de los generadores infinitesimales: tres bosones vectoriales Wu = (Wl}, Wi, Wg)

para SU(2)r y un campo B,, para el grupo U(1)y. La transformacién de gauge es:

) 1 ) 1
Wi =Ww)] - Eauﬁj(a:) +eju Bt (x)W), Bj, =B, — ?a“a(x) , (21)

siendo ahora g y ¢’ las constantes de acoplamiento de la teoria electrodébil. La derivada

covariante D, que se debe introducir para respetar la invariancia estd dada por:

|
D,=0,+igT -W,+ zg’iYB#. (22)
El Lagrangiano queda:
1 1 = - LT .-
Low = —7B" By = ZWH - Wy, + iy Dlpr + iy Dfivg, (23)

donde hemos introducido el término libre de los campos gauge. Este Lagrangiano tiene
simetria SU(2);, x U(1)y y es invariante gauge. Sin embargo, no aparece el término de masa
de los fermiones, ni tampoco para los bosones de gauge. Esto se debe a que dichos términos

romperian la simetria del Lagrangiano. Veamos dos ejemplos:

» Un término de masa para el campo B,, serfa de la forma %M ng, que no es invariante
gauge. El fotén no tiene masa, por lo que en la QED esto no es un problema, pero se
sabe que los bosones W y Z son masivos.

» Un término de masa para un fermién serfa de la forma —min) = —m(¢Prir + PrYR).
Debido a la diferente transformacién de la parte levogira y dextrégira en la teoria

electrodébil, este término tampoco es invariante.

Por tanto, no es trivial incluir términos de masa en el Lagrangiano. Se debe encontrar

una forma de dotar de masa a las particulas que la tienen, como los bosones masivos y los



fermiones (menos los neutrinos®). La solucién a este problema la ofrece el mecanismo de

Higgs, que estudiaremos en el siguiente apartado.

3. Ruptura espontanea de simetria. Mecanismo de Higgs

El mecanismo de Higgs se basa en el fenémeno de la ruptura espontdnea de simetria. Se
tiene un Lagrangiano invariante bajo un grupo de simetria, al que se anade un potencial V (¢)
que depende de un nuevo campo escalar ¢. Este potencial debe respetar la invariancia bajo
el grupo de simetria. Sin embargo, si el minimo de este potencial (vacio) no es invariante, se
consigue dotar de masa a las particulas.

Antes de exponer algunos ejemplos sencillos [9], conviene recordar que la masa de una
particula escalar aparece en el Lagrangiano en el término cuadratico del campo asociado, al

realizar un desarrollo en torno al minimo de energia.

3.1. Campo escalar real

Tomamos un campo escalar real ¢ cuya dindmica viene dada por el Lagrangiano siguiente:

1

£(8) = 50,006~ V(9), (24)

donde el potencial toma la forma:
1 1
V(g) = Su'¢" + ;Ao (25)
El Lagrangiano es invariante bajo la transformacién ¢ — —¢, esta es la simetria global.

La constante A debe ser positiva para que exista un minimo absoluto del potencial. El distinto

comportamiento del potencial depende del signo de 2.

(a) p*> >0 (b) u2 <0

Figura 2: Forma del potencial V(¢) en funcién del signo de p2.

Para encontrar un espectro de excitacion del sistema descrito por el Lagrangiano, primero
debemos encontrar los minimos del potencial V(¢). Este minimo sera el estado fundamental
(vacio) del sistema. Estudiando pequenas perturbaciones en torno al mismo encontraremos

los estados excitados®. En la figura 2 se muestra la diferencia cualitativa entre ambos casos.

5 Aunque muy pequena, se sabe que los neutrinos tienen una masa distinta de cero. Sin embargo, el SM
predice masa nula para ellos. Este es una de las cuestiones que no explica esta teoria.
6Los célculos explicitos para los casos pu? > 0y u? < 0 se presentan en el anexo B.1.1.



3.1.1. Particula libre: u? > 0

El potencial presenta en este caso un tinico minimo, en ¢g = 0. El Lagrangiano es simétrico
respecto al minimo: no se rompe la simetria. El espectro de la particula asociada se obtiene

directamente, ya que el Lagrangiano ya se presenta como un desarrollo en torno al minimo.

£(6) = 5(0u0) - 5126 — A" (26)
~——

particula de masa p interaccion

Se trata de una particula libre de masa u: el primer término es el término cinético y el
segundo el término de masa. Ademas, la particula presenta una autointeraccion de 4 puntos

caracterizada por la constante de acoplo A.

3.1.2. Ruptura de simetria: u? <0

En este caso el potencial tiene dos estados de minima energia (vacios) en ¢y = +v, donde

V=4 —— (27)

es el denominado valor esperado en el vacio (v.e.v. - del inglés vacuum expectation value).
Para interpretar el Lagrangiano, debemos realizar un desarrollo en torno al minimo. No

tiene sentido hacerlo en torno a ¢ = 0, ya que al no ser un minimo estable el desarrollo no

convergerd. Elegimos el minimo ¢y = v e introducimos un campo n = ¢ — v, que esta centrado

en el mismo. Expandimos el Lagrangiano en términos de este nuevo campo’.

1 1 1
L(n) = 5@m)* = ' —don® = " +7x00 (28)
particula de masa my, interacciones constante

El primer término es el término cinético del campo 7. La masa de la particula asociada,
dada por el término cuadratico, es m, = v2Av2. El Lagrangiano describe, por tanto, una
particula escalar con autointeracciones caracterizadas por las constantes A y v. El dltimo
término es una constante, que no afecta a las ecuaciones del movimiento y no tiene ninguna
relevancia.

Es importante destacar que si bien el Lagrangiano sigue siendo simétrico en el campo ¢
original, las perturbaciones en torno al minimo no son simétricas en el campo 7 puesto que
V(n) # V(—n) (existen términos de orden impar en 7). Este es el ejemplo mas simple de
ruptura espontdnea de la simetria: se ha roto la simetria global ya que el vacio no posee la

simetria del Lagrangiano original.

"Los célculos estan recogidos en el anexo B.1.2.



3.2. Campo escalar complejo

Consideramos ahora un campo escalar complejo ¢ = \/Li(% + i¢2), cuya dindmica viene

dada por el Lagrangiano siguiente:

L(¢) = (0"9)"(0u9) = V(0), (29)

donde el potencial toma la forma:

V(g) = 126"+ Mo )?. (30)

Se observa que el Lagrangiano es invariante ante transformaciones del tipo ¢ — €?¢, ya
que ¢*¢ permanece invariante y 0,0 = 0 (al tratarse de una simetria global).

FEl Lagrangiano se puede reescribir en funcién de las dos componentes reales del campo:
1 1 1 1 2
L(g1,62) = 5(060)% + 5(0ub0)® = 512 (B +03) = A (e’ (B

De nuevo tenemos A > 0 para que exista un minimo absoluto del potencial, y el distinto
comportamiento del potencial® depende del signo de 2. La diferencia cualitativa entre ambos

casos se muestra en la figura 3.

s TR,
1l 1

(a) u2 >0 (b) u?2 <0

Figura 3: Forma del potencial V(¢) en funcién del signo de p?.

3.2.1. Dos particulas libres: y? > 0

El potencial presenta un tnico minimo estable en ¢; = ¢ = 0, respecto al cual el

Lagrangiano es simétrico.

1 1 1 1 1 1 1
L(91,02) = 5(0ud1)” = SH01 +5(0ud2)” — G701 —JA01 — 7202 — JAGIGy  (32)

-~ -~ -~

particula de masa p particula de masa p interacciones
Aparece el término cinético y de masa de dos particulas escalares de masa i, asociadas
a los campos ¢; y ¢2. Cada una de ellas presenta una autointeraccién de cuatro puntos
e interaccionan entre ellas (ultimo término). Las interacciones estdn caracterizadas por la

constante .

8Los célculos explicitos estdn incluidos en el anexo B.2.1.
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3.2.2. Ruptura de simetria: % <0

Ahora, el potencial presenta infinitos minimos a lo largo de la circunferencia qb% + ¢% =~
Para analizar las particulas descritas por el modelo, elegimos un minimo en torno al cual
realizar un desarrollo del Lagrangiano. Tomamos, por ejemplo, aquel con ¢; = v, ¢2 =0 e

introducimos los campos 11 = ¢1 — v y € = ¢o. La expresién del Lagrangiano toma la forma?®:

L(1.) = 5 @)~ MPr? + (0,67 0 €

g

particula de masa m,  particula sin masa

1 1 1 1 (33)
N3 Ayoa Ly 2 Ly 9.0 Ly 4
Avn 4)\17 4)\5 Avné 2)\775 +4)\v

interacciones constante

Aparece el término cinético de las particulas asociadas a los campos 7 y €. Sin embargo,
solo el campo n presenta término de masa, m, = V2Mv? (como en el caso del campo
real). La particula asociada al campo £ no tiene masa. Las particulas descritas presentan
autointeracciones de tres y cuatro puntos, asi como interacciones entre ellas, caracterizadas
por las constantes A y v. El dltimo término no afecta a la dindmica del sistema y es irrelevante.

La particula sin masa que describe el Lagrangiano es consecuencia directa del teorema de
Goldstone, que establece que cuando una simetria global se rompe espontaneamente aparecen
bosones sin masa, concretamente uno por cada generador del grupo de simetria que conecta
estados de vacio. El campo 1 esta asociado a oscilaciones radiales, direccion en la cual existe
variacion del valor del potencial. En cambio, el campo £ representa oscilaciones tangenciales:

no existe variaciéon del potencial a lo largo de ese eje. Por ello, la particula £ tiene masa nula.

3.3. Ruptura de simetria gauge local

Cuando tenemos ruptura de una simetria global, la transformacién no depende de
las coordenadas. Veamos qué ocurre si consideramos una simetria local, en la que la
transformacion si depende del punto del espacio-tiempo. Para ello consideramos la QED,
con una simetria local U(1), y la aplicamos a un campo escalar complejo ¢ = %(qﬁl + ip2).

El Lagrangiano toma la forma:
* 1 14
£ = (D) (D) = {FuF"” (34)

donde la derivada covariante es D,, = 0, —ieA,. Igual que hemos visto para la QED aplicada

a un campo espinorial, este Lagrangiano es invariante frente a la transformacion:

18#04(:10) . (35)

(&

¢ = e_m(x)d% A:L =A,—

Un potencial de la forma (30) es invariante frente a la transformacién anterior. Por tanto,

lo anadimos al Lagrangiano preservando su simetria. Tendremos que:

L= (D"0)"(Dud) — {Fu ™ — 126°6 — N6 (36)

9Los cdlculos asociados estdn incluidos en el anexo B.2.1.
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Como hemos visto en el apartado 3.2, si u? > 0 el vacio estard en ¢ = 0. Se tratard del

Lagrangiano de la QED con un fotén sin masa, y dos particulas escalares ¢ y ¢o de masa p.

Sin embargo, si u? < 0, existen infinitos minimos del potencial, que satisfacen ¢? + ¢3 = v2.

Debemos elegir un minimo para realizar un desarrollo en torno a este y poder interpretarlo.

Introducimos los campos 1 = gzﬁl — vy & = ¢o. Se obtiene el Lagrangiano'?:

1 1
L(0.) = L (@) — NP1 4508 — [ Fu P+ LAY

2 2
partl"crula 77 particula & Campo?ﬂl}l fotén
1 2 42 2 2 3 1 4 1 4 2 1 2¢2
—ePPA? A2 A2 Py =
—|—2e i + e 26242 4 2o A2 — oy 4)\77 4>\£ Avné 2)\77 (S, (37)
interacciones con el fotén interacciones de las particulas n y £
1
+ ! —evd(9"€) — end(9'€) + e§Au (")
~— 297
constante U

El Lagrangiano describe una particula escalar masiva 7, una particula escalar sin masa &
y una particula vectorial A, que tiene masa. Aparecen también términos de interaccién de
estos campos. Sin embargo, los iltimos términos mezclan campos y sus derivadas y no tienen
una clara interpretacion. Para encontrar una solucion a este problema, recordamos que el

Lagrangiano es invariante frente a la transformacién (35). Podemos observar que:

1 1 2
( ) + S0P A% — ev A, (01€) = —ev® <A# — a“g> .
ev
Esto invita a tomar a(z) = ¢ (a;) /v y realizar una transformacién de los campos,
1 »
A=A, - —Ou€, ¢ =e %/, (38)
Esta eleccion de fase es denominada gauge unitario. Si operamos con el campo ¢, se obtiene:

¢ = e~ (1 —if/v) —=(v +n +1if)

.
B wli(””“f i —inG/u & /v) = jﬁwmz‘nzs/wf?/v) ~ %mm,

que es valido para perturbaciones en torno al minimo ya que £ < v. De esta forma, las
dependencias en el campo & se han eliminado, siendo absorbidas en el campo AL gracias a la
simetria gauge.

Si escribimos el Lagrangiano en términos de los nuevos campos, llamando al campo AL

de nuevo A, y en vez de n utilizamos la notacioén h, obtenemos!!:

1 1
L(h) = 5(8%)2 — M?h? = B "+ 2@ 2P A7

particula masiva h fotén con masa

1 1 1
+§€2h2Ai + 62’UhAi —\vh3 — 1)\/14 +Z>\v4

(39)

interacciones con el fotén interacciones de h constante

107,05 célculos correspondientes se recogen en el anexo B.3.1.
"10s célculos se recogen en el anexo B.3.2.
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Los primeros dos términos son el término cinético y de masa del campo h, identificando a una
particula escalar de masa mj, = V2Av2. Los siguientes dos términos corresponden al campo
del fotén; el primero es el término cinético y el segundo el de masa, que tiene un valor no
nulo m~ = ev. Aparecen interacciones entre los dos campos. En particular %thQAZ es una
interaccion de tres puntos entre una particula h y dos fotones, y eQUhAi es una interaccién
de cuatro puntos entre dos particulas h y dos fotones. También tenemos autointeracciones de

la particula h, y el dltimo término es una constante, que como ya hemos visto es irrelevante.

Aunque realmente el fotén no tiene masa, con este ejemplo sencillo hemos aprendido los
ingredientes necesarios para dotar de masa a las particulas de una teoria de campos gauge,
en la que la ruptura de una simetria local genera una particula escalar h adicional: el bosén
de Higgs. Un procedimiento similar permite dar masa a los bosones de gauge mediadores de

la interaccién débil: el mecanismo de Higgs, que se presenta en el apartado 4.

3.4. Otros posibles potenciales

Un potencial definido como en los apartados anteriores, con un término cuadrético y un
término de orden 4 (figura 4a), al que llamaremos potencial de Higgs, no es el inico posible.
Es logico preguntarse qué ocurre si se incluyen términos de otros érdenes en un potencial

polinémico. Vamos a verlo en el caso del campo escalar real.

0.8 2.0
0.6 1.5
0.4 Lo
s s 0.5
s 02 S o0
0.0 o5
—0.2 -1.0
045 70 o5 00 05 10 15 “1315 10 05 00 05 1o 15
] ]
2 4 2
(a) V(¢) = —¢"+ ¢ (b) V(¢) = —¢* + ¢°
2 2.0
15
1
1.0
§ 0 § 0.5
> > 00
-0.5
-2
-1.0

315 —10 —05 00 05 10 15 -1

15 -10 -05 00 05 10 15

¢
(€) V(¢) = = + ¢* + ¢ (d) V(¢) = —¢* — 6" + ¢°

Figura 4: Ejemplos de distintos potenciales polinémicos.

Términos de orden impar. Un término proporcional a ¢™ con n impar no es simétrico
respecto a la transformacién ¢ — —¢ (figuras 4b y 4c). Por tanto, este tipo de términos

no se pueden incluir al no preservar la simetria del Lagrangiano. Ademas, si el término de
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mayor grado en el potencial es de grado impar, no existird un minimo absoluto y la teoria

serd inestable (figura 4c), lo cual carece de sentido fisico.

Términos de orden par mayores. Los términos de orden par, por otra parte, si que
preservan la simetria del Lagrangiano respecto a la transformacién ¢ — —¢ (figura 4d).

Veamos con un ejemplo lo que ocurre si incluimos un término de grado 6. Sea el potencial:

V(g) = gut¢? — Aot + 06, (10)

con 2 <0, A >0y d=—2X2/u? Con estos valores'?, el minimo'?

se produce en ¢g = £v
y la masa de la particula es m, = v6Av2. El minimo estd en la misma posicién que para
el potencial (25), mientras que la masa difiere en un factor v/3. Sin embargo, como X es
un parametro libre, se puede ajustar para que las predicciones con ambos potenciales sean
iguales. Por tanto, incluir un término de grado 6 simplemente anade interacciones de un
orden mayor. El mecanismo de ruptura de simetria se consigue igualmente con el potencial

estudiado en los apartados anteriores. Se puede observar como las gréaficas de las figuras 4a

y 4d tienen cualitativamente el mismo comportamiento.

Por tanto, un potencial con términos de orden 2 y 4 es la forma més sencilla de reproducir
el mecanismo de ruptura de simetria y dotar de masa a las particulas. Es por ello que es el

potencial de Higgs que se utiliza en el SM.

4. Mecanismo de Higgs en el Modelo Estandar

Vamos a ver como se puede incluir en el SM el mecanismo de ruptura espontidnea de

simetria que hemos estudiado de forma simplificada, dando lugar al mecanismo de Higgs [9].

4.1. Ruptura de simetria en la teoria electrodébil

La teoria electrodébil presenta una simetria SU(2)y x U(1)y. En primer lugar, se aniade

un campo nuevo en forma de doblete:

6= oF\ _ 1 (¢1+ige
¢ V2 \ b3 +ids)

La carga eléctrica de las dos componentes del doblete se toma de forma que Y = 1, luego
veremos la razén. Al Lagrangiano de la teoria se le anade el término asociado a este nuevo

campo, que como hemos visto anteriormente sera:

Lys(¢) = (D"¢)'(Dugp) — V (), (41)

128e toma § = —2A?/u? para que la resolucién analitica sea mds sencilla. Todos los pardmetros son libres,

asi que siempre se pueden ajustar a las observaciones.
13 . , ,o. . .
En el anexo B.4 se incluyen los calculos para encontrar el minimo de potencial y la masa de la particula
asociada a las oscilaciones en torno a ese minimo.
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donde D,, es la derivada covariante definida en (22) para la teorfa electrodébil y V(¢) es un

potencial de la forma que ya hemos analizado, pero para un doblete:

V(g) =128+ Aol9)?, p?<0. (42)

De esta forma, ya disponemos de los ingredientes necesarios para la ruptura de la simetria.

114

Los minimos de este potencial™* son aquellos que cumplen gb%+gbg+¢§+¢i = v2. Para observar

la ruptura de simetria, tomaremos un vacio ¢g concreto, de forma que sea neutro:

_ 1 (0 1 [ &G+l _ 1[0
¢°_ﬁ<v) - ¢_ﬁ<v+n+i§4> — ¢ \/§<v+h>'

Debido a la simetria gauge asociada a los campos Wﬁ y By, las dependencias en &1, {2 ¥ &3
desaparecen. Ademads, se ha renombrando n = h. Solo hay un nuevo grado de libertad, el
campo h que representa el bosén de Higgs.

Antes de observar las consecuencias de la ruptura espontdnea de simetria, veamos que
efectivamente se ha producido. Es decir, comprobaremos que los generadores del grupo de

simetria aplicados al vacio ya no dan un valor nulo'®:
0 1\ 1 {0 1 (o 0 —\ 1 (0 —i (v
e ETO R
1 0 1 {0 -1{0 1 0y 1 (0 1 (0
e 3020 o050 50

Por tanto, el vacio no es invariante frente a transformaciones del grupo de simetria. Sin

embargo, veamos qué ocurre con la simetria U(1)gas, cuyo generador es @ = T3 + %Y:

1 0\ 1 (0 0
(R0 -

La simetria U(1) gas no se ha roto, ya que el vacio es invariante bajo transformaciones de este

grupo. Esto es porque el vacio es neutro, ya que tiene Is =1/2e¢ Y = 1.

En resumen, el nuevo campo ¢ rompe la simetria SU(2);, x U(1)y, pero no la simetria
U(1)gp. Como veremos a continuacion, esto provocard que los campos adquieran masa,

excepto el campo del fotén, asociado al grupo U(1)gay.

4.1.1. Masa de los bosones de gauge

Para estudiar las consecuencias de la ruptura de simetria en la teoria electrodébil,

desarrollamos el término cinético del campo ¢ en torno al vacio'®. Puesto que para encontrar

1T a sencilla determinacién de la condicién de minimo se incluye en el anexo C.1.

15G8i se tiene una transformacién cuyos generadores infinitesimales son 7T,, la invariancia bajo dicha
transformacién se traduce de forma infinitesimal en (1 +i0,7,)¢p = ¢ = Tap = 0.

16T,0s célculos se incluyen en el anexo C.2. Ahora no nos interesan los términos de interaccién, pero mas
adelante los recuperaremos para escribir el Lagrangiano completo.
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las masas de los bosones de gauge tenemos que buscar los términos cuadraticos en los campos,

nos centramos en esa parte, que es proporcional a v2. El resultado es:

’1)2

(D“gb)T(Dugb) =3 (92 ((Wlu)2 + (WZM)Q) + (—gWs, + g'Y¢Bu)2) + otros términos. (44)

Debemos ahora reescribir estos términos en funcién de los bosones que se observan
experimentalmente, los bosones fisicos. En primer lugar, se pueden combinar los bosones
W1 y Wy para dar los operadores escalera de los dobletes de SU(2)r:

1 1
Wi = f(Wlu — ’L'Wgu), W, =—

p - p \/i(W“‘ +iWa,) . (45)

Se tiene la relacion:

(Wip)? + (Wau)? = (W52 + (W,)? =2W W, (46)

Por otro lado, los bosones W3 y B no son autoestados de masa, ya que aparecen términos

cuadraticos que los mezclan. El término cuadratico en cuestién es:

2 /
vt (5 P
Se debe notar que si Y, = 0, los campos W3 y B son autoestados de masa y no se mezclan.
Por otro lado, para que uno de los autoestados tenga masa 0, se debe anular el determinante
de la matriz. Es decir,
3?d? — (99'Yy) =0 & Yy=+1.

Se habia elegido Y = +1, por lo que se cumple esta condicién'”.

Diagonalizamos la matriz para obtener los autoestados de masa'®. En base a ello, podemos

definir los bosones vectoriales (autoestados de masa normalizados):

1 1
Ay = —=——=gWau +9B), Zp=—=—=(9Ws.— 39 Bu),
I H H w \/W w H

donde A, se interpreta como el fotén, mediador de la interacciéon electromagnética y sin masa,

(48)

y 4, como el bosén neutro masivo mediador de la interaccién débil.
Ahora, reescribimos (44) en funcién de los campos Wui, Z, y A, Se tiene:
2

(D*¢) (D) = % (WP + g (W, )2+ (9° + g”°)Z2 + 0+ A2) + otros términos.  (49)

Obtenemos asi que no existe término de masa para el fotén; su masa es nula, y los términos

de masa de los bosones WT, W~ y Z nos indican que:

1 1
Mwi = 51}97 MZ = §’U \V g2 + 9/2 . (50)

17Si se elige Yy = —1, el fotén también tiene masa nula, pero en ese caso no se acopla a la carga eléctrica.
En lugar de acoplarse a Q = Ts + %Y, se acopla a Q = —T5 + %Y. Msés detalle sobre esto en el anexo C.5.
18Ge realiza explicitamente en el anexo C.3
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Por otro lado, reescribir el potencial en funcién del campo h es completamente idéntico al
calculo desarrollado para el modelo sencillo del fotén con masa. Podemos, entonces, escribir

la parte que hemos anadido al Lagrangiano de la teoria electrodébil en funcién del campo h:

1 1 1 1
Lo(h) = 5(@"h)? = MPh? + 0P (W + 02 (W,)? + 5026 + ) 22

8 8 8 "
particula masiva h términos de masa de los bosones de gauge
1, 1 o 1 1 _
- h W+ 2 - 2h %% 2 - 2h2 W+ 2 - 2h2 W 2
109 W)™ + qugh(W0)" + cg”h (W)™ + cg"h™ (W) (51)

interacciones de los bosones W con la particula h

[ 2 2, 1, o 1272 772 3 1yoa 1y
n + Z5+ —(g° + Z5 — S -
+4v(g g°)h L 8(9 g°)h p Avh 4)\h —1—4)\1)

interacciones de los bosones Z con la particula h interacciones de h constante

Notése que tenemos las masas de los bosones de gauge dadas en (50) y para el bosén de Higgs
mp = V2 . Como g, ¢’ y A son pardmetros libres, el SM no predice un valor absoluto para
las masas de los bosones W* y Z, ni para la masa del bosén de Higgs. Experimentalmente,

se han medido estas masas: My = 80,4 GeV, Mz = 91,2 GeV y my, = 125,3 GeV.

Las interacciones en el Lagrangiano anterior se pueden escribir en funcién de las masas':
2M2 M3 M2 M3 m2 m2

Lint = —YhWHW, + =LRPWHHW, + —ZhZ) + —Zh*Z) - hnd - —Apt (52

n v vt v2 pt v K + 202 T 8v?2 (52)

Angulo de Weinberg. Si escribimos la mezcla de los bosones W3, y B, en los bosones

Z, y A, por medio de una matriz de rotacién, se tiene:

Zuy\  [cosby —senby W3, (53)
A, ~ \senfy  cosOy B, ’

donde Ay se denomina angulo de Weinberg. Escrito en funcién de las constantes de
acoplamiento de la teoria electrodébil:

/ /

tanHW:g—, sen Oy = g g
g

Observamos que el angulo de Weinberg se puede determinar a partir de la relacion entre

cos Oy = (54)

las masas de los bosones W y Z:

cosby = ——. (55)

El d4ngulo de Weinberg también relaciona las constantes de acoplamiento g, ¢’ y e. Si
escribimos la derivada covariante de la teoria electrodébil en funcién de los campos fisicos Z,,

y A, y comparamos con la derivada covariante de la QED, obtenemos?’:

e =g cosOy = gsen By . (56)

19Ge han agrupado los bosones cargados de forma que los vértices de interaccién son neutros, es decir, en

ellos se conserva la carga.
20,05 célculos explicitos se incluyen en el anexo C.4.
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4.2. Masa de los fermiones

Como se ha comentado en el apartado 2.4.2, los términos de masa de la forma —m) =
—m(rYr + YrYr) no son permitidos en el Lagrangiano de la teoria electrodébil pues no
preservan la simetria gauge. Sin embargo, se demuestra que un término de la forma 1 ¢yr

si es invariante?!. Por tanto, podemos anadir en el Lagrangiano términos de la forma:

Ly =—Aj(brovr + VroYL) (57)

donde Ay se denomina constante de acoplamiento de Yukawa.

Masa de los leptones. Para los leptones, se tiene:

Y

I )
L

g, =

Yr=1Ir, conl=e, pu, T

Si realizamos un desarrollo del término (57) asociado a una generacién de leptones en torno

al minimo ¢, se tiene??:

AU = A
L =—"—=1l— —=nhll. 58
NG, (58)

El primer término es el término de masa del leptén cargado, y el segundo término es una
interaccion de un bosén de Higgs con un leptén y un antileptén. Se deduce que la masa del
lepton cargado es m; = ’\\}9 El término de interaccién es proporcional a esta, — lhl_l.

Se observa que solo los leptones cargados (electrén, muén y tau) adquieren masa e
interaccionan con el campo de Higgs. Los neutrinos no adquieren masa en el SM. Por otro

lado, como A; es un parametro libre, no se predice un valor para las masas de los leptones.

Masa de los quarks. Siguiendo un procedimiento analogo y anadiendo al Lagrangiano
nuevos términos que involucran al campo de Higgs, todos los quarks adquieren masa. En este
caso se sabe que existe mezcla de quarks, ya que los autoestados de masa y autoestados de

sabor son diferentes. No lo estudiaremos en este trabajo.

4.3. Interacciones del bosén de Higgs en la teoria electrodébil

A modo de resumen de las interacciones que presenta el bosén de Higgs en la teoria

23 correspondientes en la figura 5. Se trata de

electrodébil, se recogen las reglas de Feynman
la interacciones del Lagrangiano (52) y la interaccién con fermiones que aparece en (58). Para

los bosones de gauge, se utiliza la notaciéon V =W, Z.

21Se demuestra en el anexo C.6.

*2Los calculos se recogen en el anexo C.7.

2La regla de Feynman de un vértice de interaccién se obtiene multiplicando el término del Lagrangiano que
involucra los campos por ¢ y por un factor n! por cada n particulas idénticas.
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Figura 5: Vértices de interaccion del bosén de Higgs en la teoria electrodébil.

5. Desintegracion del bosén de Higgs

Vamos a estudiar los canales de desintegracién del bosén de Higgs [9, 10]. Esta informacién
permite estudiar la forma de detectar bosones de Higgs en los experimentos, demostrar su
existencia y ver sus propiedades. Nos centramos en calcular la anchura de desintegracién del
bosén de Higgs a fermiones y a bosones de gauge, expresada en funcién de las masas. En una
desintegraciéon a dos cuerpos, la anchura de desintegracion viene dada por:

ar _ |MP?
dQ  32m2s

pslS, (59)

donde M es el elemento de matriz del proceso, p; es el momento de las particulas producidas,
s es el invariante cinemético del proceso y S es un factor de simetria, que toma valor 1/2 si
las particulas producidas son idénticas y 1 si no lo son. Tomando como sistema de referencia
1 en el 1 bosén de Hi tra inicialment tend = m}
aquel en el que el bosén de Higgs se encuentra inicialmente en reposo, tendremos s = my,

siendo my, la masa del bosén de Higgs.

5.1. Desintegracion a fermiones y a bosones de gauge.

Hemos visto que el bosén de Higgs interacciona con un fermién y un antifermién (hff) y

2

s . .y .m

con dos bosones de gauge (hVV, donde V = W, Z), cuyos vértices de interaccién son —sz
M2 . . . . .

Y 2i—g,w, respectivamente. Estas interacciones dan lugar a dos canales de desintegracion,

cuyos diagramas de Feynman corresponden a las figuras 5a y 5b. A partir de las reglas de
Feynmann de estos vértices, un célculo perturbativo de primer orden permite obtener el
elemento de matriz del proceso, con lo que se puede calcular la anchura de desintegracién de

los procesos utilizando (59).
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Para la anchura de desintegracién a fermiones, obtenemos?*:

_ N. 4m?2
Lh— ff)= Wmfcmh(l —2)%?,  conz= m—Qf , (60)
h

y donde N, es el niimero de color (1 para leptones y 3 para quarks) y my la masa del fermion.

Para la desintegracién a bosones de gauge, la anchura queda?®:

S 3 AM
I'h—VV)= 1677;/1)27”}21 (1 -+ 4x2) (1—2)Y2, conx= m2v . (61)
h

En la expresién anterior Sy es el factor de simetria?® (1 para bosones W y 1/2 para bosones
Z), y My la masa del bosén de gauge.

En las desintegraciones se debe conservar la energia, de modo que en el primer caso se
debe cumplir my > 2my, y en el segundo m; > 2My. Es entonces cuando x < 1 y las

ecuaciones correspondientes tienen sentido matematico.

5.2. Otras desintegraciones

Ademés de los procesos h — ff y h — V'V, el bosén de Higgs presenta otros canales
de desintegracién. Si consideramos términos de orden superior en teoria de perturbaciones
(diagramas a un loop) se puede desintegrar a fotones y a gluones. Estas contribuciones seran
incluidas en el anélisis numérico, aunque el célculo explicito no se ha realizado®”. Se toman

expresiones de la literatura [9].

5.3. Branching ratios del bosén de Higgs

Una vez conocemos los canales de desintegracién del bosén de Higgs y la anchura de
desintegracion I'; correspondiente a cada uno, podemos calcular el branching ratio o razén
de desintegracion.

I‘.
BR; = ﬁ con FT:Zi:ri. (62)

BR; representa la probabilidad de que dada una desintegracion del bosén de Higgs, esta se
haya producido mediante el proceso i.

Mediante un programa de Python?®, se han calculado las anchuras de desintegracién, en
el rango de my, entre 60 y 250 MeV, de los siguientes procesos: h — ff (para f = u, 7, ¢, b*9),
h—VV (paraV =W, Z), h - vy y h — gg. Los valores de las masas de las particulas y

24E] cslculo del diagrama de Feynman y la anchura de desintegracién se incluye en el anexo D.1.

2 C4lculo recogido en el anexo D.2.

26Notar que cuando la desintegracién es a bosones W, como el bosén de Higgs es neutro, se produce un
bosén W y un W™, que son particulas distinguibles.

?"Los diagramas de Feynman correspondientes a estos procesos (figura 9) y las anchuras de desintegracién
se presentan en el anexo D.3.

28En el anexo D.4 se incluye el cédigo utilizado.

PLos fermiones v, e,u,d,s tienen una masa demasiado pequefia y su anchura de desintegracién es
despreciable. El quark t tiene una masa demasiado grande y la desintegracién es imposible ya que my < 2m;.
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las constantes de acoplamiento en el SM dependen de la escala de energia a la que estemos
trabajando. En este caso, la escala de energia viene dada por el rango de my, en el que vamos
a realizar los cédlculos. Los valores para las masas que utilizamos se recogen en la tabla 1,
fijados a la escala de energia p = Mz ~ 91 GeV. En la figura 6 se presentan los resultados
de los branching ratios asociados a cada uno de los procesos.

Tabla 1: Valores de las masas de las particulas y de las constantes de acoplamiento en la
escala de energia p = My [11].

My (GeV) | 80,379 my, (GeV) [ 0,102877 +0,000018 | | v (GeV) [ 248,404 + 0,036

My (GeV) | 91,1876 | | m, (GeV) | 1,74743 +0,00012 as | 0,1176 +0,0010
me (GeV) 0,628 + 0,018 ol [ 127,754 £0,026
my, (GeV) 2,866 + 0,026

B S S s B S —
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Figura 6: Branching ratios del bosén de Higgs.

Se distinguen tres rangos de energia en los que las desintegraciones méas probables del
bosén de Higgs son notablemente distintas, entre los cuales hay un salto abrupto. Para
myp, < 2Myy, la desintegracién maés probable es al quark bottom, aunque también se produce
al tau, al charm y a gluones (esta ultima probabilidad aumenta con mj). En este caso la
desintegracion a fotones y al muén son despreciables. En el rango 2My < mp < 2My,
la desintegracion a bosones W es dominante, siendo el resto de canales de desintegracion
despreciable. Si my > 2My, las desintegraciones dominantes son a bosones W o Z, con
mayor probabilidad a los primeros. El resto de procesos son muy poco probables.

Vamos a comparar nuestros resultados con los presentados en la literatura [12], que
se muestran en la figura 7. Se observa la misma dependencia cualitativa, excepto para
los bosones de gauge. Esto es porque la desintegracién a bosones W y Z es posible para
myp < 2My, siempre que uno de ellos esté off-shell, es decir, sea un bosén virtual que se
desintegra inmediatamente en otras particulas. En este trabajo no hemos considerado estas
contribuciones. Una consecuencia de estos canales de desintegracion es que las curvas sean

suaves, ya que no se produce el salto abrupto en mjy, = 2Mw y en my, = 2M.
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Figura 7: Branching ratios del bosén de Higgs [12].

6. Transiciones de fase y mecanismo de Higgs

La ruptura espontdnea de simetria no es un fenémeno exclusivo del SM. Previamente a la
propuesta del mecanismo de Higgs, ya se habia estudiado en Fisica de la Materia Condensada.

En particular, estd estrechamente relacionada con las transiciones de fase [13].

6.1. Teoria de Landau de las transiciones de fase

La teoria de Landau explica de forma general las transiciones de fase. Por concretar, vamos
a estudiar la transicién ferromagnética. Se observa que los materiales ferromagnéticos solo
presentan magnetizacién espontanea por debajo de una temperatura critica 7., mientras que
por encima de ella esta magnetizaciéon desaparece y su comportamiento es paramagnético.
En la fase paramagnética, los momentos magnéticos en el material estan orientados
aleatoriamente, por lo que la contribucién a la magnetizaciéon total se anula. En la fase
ferromagnética, los momentos magnéticos de atomos vecinos se alinean en la misma direccién
y la magnetizaciéon neta es distinta de cero. Podemos observar claramente cémo en la
transicién se pierde la simetria. En la fase paramagnética, no existe una direccién privilegiada
(hay simetria de inversién), mientras que en la fase ferromagnética esta simetria desaparece.

En la teoria de Landau se utiliza un parametro de orden, que toma valor cero en una fase
y no nulo en la otra. Para este caso, se toma la magnetizacién M, que como hemos dicho es
nula en la fase paramagnética. En torno a la temperatura critica, se expande la energia del
sistema en potencias de M,

E(M) = aM? 4+ gM*. (63)

Solo tenemos potencias pares, ya que el sistema tiene simetria de inversién. Se pueden anadir

términos de orden superior, pero con dos es suficiente para capturar la transicién de fase®C.

39La transicién de fase que se produce en este caso es de segundo orden, es decir, el pardmetro de orden no
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Los coeficientes o y 5 dependen de la temperatura. 8 > 0 para que la energia tenga un minimo
absoluto. Si a < 0 paraT < T,y a > 0 para T > T, se captura el distinto comportamiento
en las dos fases®'. En la figura 8 se observa la energfa de Landau a distintas temperaturas.
Para T > T., el minimo de energia se produce en My = 0. No hay magnetizacion
espontanea. Para T < T, el minimo de energia estd en My = i\/T/ﬂ. El sistema caerd en

uno de estos dos minimos, en cualquier caso, con magnetizacién espontanea.

E(M)

0
M
Figura 8: Energia de Landau a diferentes temperaturas.

Como vemos, la teoria de Landau recoge adecuadamente la caracteristica distintiva de
cada fase. Es un caso de ruptura espontanea de simetria, ya que la energia que describe el
sistema preserva siempre la simetria de inversion, pero el estado de minima energia pierde

esa simetria en la fase ferromagnética.

6.2. Transicion de fase electrodébil

Puede ocurrir una transiciéon de fase en el marco del SM. En una fase, el campo de Higgs
tendria un v.e.v. nulo, mientras que en la otra este valor pasaria a ser no nulo. En analogia
con la teoria de Landau, el parametro de orden seria el v.e.v. del potencial de Higgs.

De hecho, se cree que las particulas elementales adquirieron masa unos nanosegundos
después del Big Bang debido a esta transicién de fase en el campo de Higgs, a una temperatura
critica T, ~ 160 GeV. Ademds, como hemos visto en este trabajo, los bosones de la teoria
electrodébil también se diferenciarian, separando la interaccién electrodébil en la interaccién
electromagnética de largo alcance (cuya particula mediadora tiene masa nula) y la interaccién
débil, de corto alcance y mediada por tres bosones masivos.

Esta transicién se puede capturar en el potencial de Higgs, anadiendo la dependencia de

presenta una discontinuidad en la transicién (hay discontinuidades en la derivada). Si se quiere capturar una
transicién de primer orden, en la que existe esta discontinuidad en el pardmetro de orden, es necesario anadir
al menos un término de orden 6.

31En torno a la transicién, podemos asumir que o tiene una dependencia lineal con la temperatura,
pasando por cero en la temperatura critica. Por ello, el valor My en el que se produce el minimo no presenta
discontinuidad.
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la temperatura’?:

V(T,¢) = (12 + bT%) T + AT 9)2. (64)

El coeficiente o = p? 4 bT? serd positivo en los momento iniciales del Universo, cuando
estaba por encima de la temperatura critica. Por debajo de ella, es negativo. Por tanto, el
valor de la temperatura critica es T, = y/—u?/b. Actualmente, la temperatura del universo

es cercana al cero absoluto, por lo que o = p? y recuperamos el potencial de Higgs habitual.

7. Conclusiones

El bosén de Higgs es la pieza que completa el SM, una de las teorias més exitosas de la
Fisica. Su existencia es consecuencia de un inteligente mecanismo que da masa a las particulas
del modelo preservando sus simetrias.

En una breve introduccién al SM, hemos visto la forma de construir las interacciones a
partir de la imposicion de una simetria local a la teoria. Esto se puede realizar debido a la
invarianza gauge de los campos mediadores de las interacciones, causada por un exceso de
grados de libertad en la teoria respecto a la realidad. Desarrollado con detalle para la simetria
U(1) y la interaccién electromagnética, hemos podido entender la estrategia para introducir
la interaccién débil como consecuencia de la simetria SU(2). Las simetrias tienen un papel
central en el SM, sin embargo, son las que impiden a las particulas adquirir masa.

Para solucionar este problema, se introduce el concepto de ruptura espontanea de simetria.
Se produce cuando una teoria con cierta simetria no la presenta en el estado de minima
energia, el vacio. A través de ejemplos sencillos, para los que se han realizado los cédlculos
con detalle, hemos comprendido este mecanismo y la forma mas simple de implementarlo.
Ademas, gracias a la invariancia gauge, la ruptura de simetria solamente introduce un nuevo
grado de libertad: una particula escalar masiva. Esto se ha comprobado con un modelo de
un fotén con masa, que aunque no es correcto, sirve para entender el mecanismo de Higgs.

Al implementar el mecanismo de Higgs en el SM, y romper la simetria de la teoria
electrodébil, los bosones de gauge mediadores de la interaccién débil adquieren masa mientras
que el fotén permanece sin masa. Ademads, se pueden introducir términos de masa para los
fermiones. Todo este desarrollo se ha podido seguir en detalle. La nueva particula escalar no
es otra que el bosén de Higgs. Ademds de introducir términos de masa, hemos visto como
aparecen interacciones de las particulas con el bosén de Higgs. En particular, interacciones
con fermiones y bosones de gauge que dan lugar a canales de desintegracion del bosén de
Higgs, cuyas anchuras de desintegracion se han calculado en este trabajo. Hemos comparado

los resultados con los que aparecen en la literatura.

32 Aunque aqui se modelice como una transicién de segundo orden, se cree que la transicién de fase
electrodébil no es de primer ni de segundo orden, sino una transiciéon de crossover en la que la primera
derivada del parametro de orden tampoco presenta discontinuidad.
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Por ultimo, es importante destacar la relacién de la ruptura espontanea de simetria con
otros fenémenos fisicos muy diversos. En este trabajo lo hemos relacionado con la teoria
de Landau para las transiciones de fase, basada en la bifurcacién de los puntos estables de
una funcién energia. Esta teoria puede ser aplicada al propio SM: se conoce como transicién
de fase electrodébil. Esta ultima parte del trabajo refleja la importancia de la cooperacién
entre disciplinas, ya que una idea de una rama del conocimiento puede resultar crucial en el

desarrollo de otra muy diferente.
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Anexos

A. Modelo Estandar

A.1. Potenciales electromagnéticos e invariancia gauge

Veamos en primer lugar que las ecuaciones de Maxwell homogéneas se satisfacen

automédticamente al introducir los potenciales electromagnéticos (5):

O, . 9A ) = OB
Gx B =V (T 22) 22 (v a)= 2L,
ot
donde se ha utilizado que el rotacional del gradiente y la divergencia del rotacional son siempre
nulos, y que las derivadas conmutan.
Ahora, comprobamos que el campo eléctrico y magnético son invariantes frente a la

transformacion de gauge (6).

o900 (on ) D (a )

ot at) ot
B of 9A -of A
Vp-Vo - +Vo =-Vo-— =E,

Se han utilizado las mismas propiedades que antes.

A.2. Formulaciéon covariante de las ecuaciones de Maxwell

En primer lugar, vamos a comprobar que la expresiéon (7) del tensor F* a partir del

potencial A* da lugar a la matriz siguiente, dependiente de los campos eléctrico y magnético:

0 -E, —E, —E.
E. 0 —B. B,
E, B. 0 -B,
E. —B, B, 0

8

FH = (65)

Se toma la métrica g, = diag(1,—1,—1,—1). Las coordenadas son a* = (t,Z), y por tanto
Op = (0, V).
Como la expresion de FH¥ es antisimétrica, basta comprobar las 6 componentes

independientes del tensor:
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FOL =904 —9*A° = 9,A, + 0,0 = —E,,

F2 =947 - 9?A° = 0, A, + Oyp = —E,,

FB =943 —93A° = 9,A, + 0.0 = —E.,

F2=0'4> - 9°A' = 9, Ay + 0yA; = —B.

FP=9'4* - 9*A' = —9,A, + 0. A, = By,

FB =0%4% - 934% = —0yA, +0.Ay = —B,.
Por tanto, la definicién en forma de matriz es correcta.

Ahora, veamos que las ecuaciones covariantes (9) son equivalentes a las ecuaciones de
Maxwell (4).

Para la ecuacion no homogénea, es conveniente notar que todas las permutaciones de
los mismos tres indices dan la misma ecuacion, debido a su forma ciclica, su homogeneidad
y la antisimetria del tensor electromagnético. Por tanto, se trata tan solo de 4 ecuaciones
independientes:

A=0,p=1v=2: FF24+9'F* +9*F" = -9,B, - 0,F, +0,E, =0,
=0, p=2,v=3: FB+0*F* +9*F? =-9,B, - 0,E, +09.E, =0,
=0, p=3v=1: F*+PFP+o'F® = _-9,B, - 0.FE, +0,E. =0,
A=1lp=2v=3: IFB+?F* +9*F?=0,B,+09,B, +9.B,=0.
Las primeras tres ecuaciones corresponden a las tres componentes de la ecuacion de Maxwell
para el rotacional del campo eléctrico. La tltima es la ecuacion para la divergencia del campo
magnético.

Para la ecuacién no homogénea, se tiene:

p=0: FC +oF 4 9FP 4+ uFP =4 o 0,E, +0,E,+9.E.=p,
p=1: OpF" + o F" 4 0,F?' + 03F3 = & —O,E, +9,B, —8.B, = j.
p=2: QFP+0F?+0F?+:,F? =5 & —0E,—0,B.+0.B, = jy,
o

2: F2 + W F2 4 F? 4 0:F%? =2 & —0E,+0,By—0yBy = j..

La ecuacion para p = 0 es la ecuacién de Maxwell para la divergencia del campo eléctrico. Las
ecuaciones para g = ¢ son las tres componentes de la ecuacion de Maxwell para el rotacional
del campo magnético.

Por tltimo, vamos a comprobar que el Lagrangiano (10) recoge la ecuacién no homogénea

anterior. En primer lugar, notar que:
FHF,, =("A” —0"A")(0,A, — 0,A,) = 0'AY0,A, — 0" A0, A,
- 0"A"9, A, + 0"A 9, A, = 20" AY0, A, — 201 AY0, A, .

27



Entonces:

oL o ‘ "
0A. DA (=" Au) = =57,
oc 0 1 1 )
g _ j22% _ _ - v " v B M v
apa(a/’Aﬂ) apa(apAcr) ( 4F FW) 28”3(3;)140) (0" A"0, A, — 0"A"0, Ay)

1
= —§6p (20P A% —207AP) = —0,(0P A% — 0° AP) = —0,F" .
Por lo tanto, las ecuaciones de Euler-Lagrange quedan:
—J7+ 0, F =0 & 0,F =j7,

que es efectivamente la ecuacién no homogénea.

A.3. Acoplamiento minimo en la QED

Queremos demostrar que el Lagrangiano (14) tiene simetria U(1) local. Sabemos que el
tensor electromagnético es invariante gauge, ya que solo depende de campo A,,. Veamos cémo

transforma la derivada covariante del campo:
1 A . A
D,’ﬂﬁl = (0u + ieQAL)%Z’, = <au +ieQ <Au - eaua>> i) = eZQaalﬂl) + iQ(@ua)e’Qad}

+ ieQA#eiQo‘w — iQ(aua)eiQo‘w = eiQo‘(?uw + ieQA#eiQav,/J = eiQo‘Duw .

Por tanto,
/ 1 r7anl AT S o VAN / 1 1% 7 o—iQa s iQa Qo
L :_ZF B, + ' ("D —mw):—zF Fu + e (ivMe' Dy — me™ )
1 -
= 1FWFW + Y(iv'Dyp —mip) = L.

El Lagrangiano es invariante bajo transformaciones U (1) locales.

B. Ruptura espontanea de simetria. Mecanismo de Higgs

B.1. Campo escalar real

B.1.1. Minimos del potencial
Buscamos los minimos de la funcién potencial (25).
V'(¢) = 12p + A¢8° = p(u* + 1¢?) = 0.

La derivada se anula siempre para ¢ = 0, pero también para ¢ = +/—pu2/X\ si p? < 0.

Veamos si se trata de minimos o maximos.
V"(¢) = pu® + 3%
» Si 2 > 0, la funcién presenta un minimo en ¢g = 0 ya que V”(0) = p? > 0.

» Si p? <0, la funcién presenta dos minimos en ¢g = 4+/—pu2/\ = £v, ya que V" (+v) =

—2412 > 0. En este caso, V"(0) = u? < 0, por lo que en ¢g = 0 tiene un maximo.
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B.1.2. Desarrollo del Lagrangiano en torno al minimo

En el caso u? < 0, realizamos un desarrollo del Lagrangiano (24) en torno a ¢y = v.

Introduciendo el campo 17 = ¢ — v centrado en dicho minimo, se tiene:

1 1 1
53;@ oMo = iau(v +n)0H(v+n) = 58,m ot'n,

V(9) = g(w -+ + A+ )’

1 1
= —5/\112 (7]2 + 2um + vz) + Z)\ (7]4 + 4vn3 + 6vn% + 403y + v4)

Ly 9 o 30 Lyg4 1,4 3,3, 9 3 L4
:—5/\1)77 — Av’n —5)\1) —1—1)\17 + Avn —|—§)\v + v 77—1—1)\1)

1 1
= —Z/\v4 + 2?0 + o + 1/\774'

Se ha utilizado que p? = —\v?.

Finalmente, el Lagrangiano en torno al minimo queda:

1 1 1
L(n) = 5(6”77)2 —\?n? = aon? — Z)\nA‘ + Z)\v4. (66)

B.2. Campo escalar complejo

B.2.1. Minimos del potencial
Tratamos el potencial (30) como una funcién de dos variables reales:
V(gr02) = 31u® (61 +63) + 1A (63 +63)°
Observamos que esta funcién no es mas que el potencial escalar real ya estudiado, evaluado

en \/¢7 + ¢3. Por tanto, se tendran dos situaciones:

= Si 2 > 0, la funcién presenta un minimo en los puntos en los que Vi +¢3 =0, es
decir, en ¢g = 0.
» Si pu? < 0, la funcién presenta un minimo en los puntos en los que \/¢? + ¢3 = v, es

decir, si |¢o| = v/v/2. En este caso, en ¢y = 0 tiene un maximo.

B.2.2. Desarrollo del Lagrangiano en torno al minimo

En el caso pu? < 0, realizamos un desarrollo del Lagrangiano (31) en torno a ¢; = v,
¢2 = 0. Introducimos para ello los campos n = ¢1 — v y £ = ¢2, que estan centrados en ese

minimo. Se tiene, por tanto:
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1 1 1
20ud1 oMoy =§8u(v+77) Mw+n) = 3 1 0'n

1 1
58“¢2 Moy = 5%5 e,

Vg1, ¢2) =%u2 (v+n)?+&)+ ((v+n) 1+ e2)?
- %“Q (n* +20m +0* + 52) + ZA ((w+m)* +2(v+n)°¢C +¢*)
Av? (n? + 2un + 0% + €2)

+ =X (174 + 411173 + 61}2 2 4 411377 +ot + 27]252 + 4117752 + 21;252 + 54)

|
el CY

Mt + 20?4+ o + )\77 + \oné? + )\n2§2+ )\54

»JMH

Se ha utilizado que p? = —\v2.

Finalmente, el Lagrangiano en torno al minimo queda:
Lo e, Lo oy 20 3 1y 4 o Lo 1oy 1,4
L(n,€) = 5(8um)” + 5(0u€)” = Avn” = dvnp” = 2 A" = don€” — S A€ — AL+ Avt. (67)

B.3. Ruptura de simetria U(1) local
B.3.1. Desarrollo del Lagrangiano en torno al minimo
Realizamos un desarrollo del Lagrangiano (36) en torno a ¢ = v, ¢ = 0. Como en casos

anteriores, utilizamos los campos n = ¢1 — v y £ = ¢2, que estan centrados en este minimo.

Se tiene:

1 .
ﬁ(v+77—z§)(8 —ieA, )ﬂ

((9“ — 10ME +iev Al 4 ienAt 4 e£A")(0,n + 10,6 — ievA, —ienA, + e£A,)

(D" ¢)" (Do) = (0" + ieA”) (v+n+ i)
= S0+ eﬁA“) (01 + evd¥ + enar)?
= (O 4 SR T EAD Y + (D) + AL+ A

2
- evAua‘Lg —enA 0t +e vnAi.

El potencial en funcién de estos campos ya lo hemos calculado anteriormente. Con todo

ello, el Lagrangiano en torno al minimo queda:

1 1
L(0,) = 5 (00)" + SPEAL + LA+ (O + LR AL 4 LA
— v AIE — enALOME + Pun Al — ZF,WF“” — v = A (68)

1 1 1 1
_7)\4_)\ 2_7)\22_7>\4 7)\4‘
A T AunET = ALY — S AT+ T
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B.3.2. Lagrangiano en el gauge unitario

Reescribimos el Lagrangiano (36) en el gauge unitario, es decir, en funcién del campo
¢ = (v + h). Para no repetir los cdlculos, basta evaluar el Lagrangiano (68) en n = h,

&= Se obtiene:
1 1 1
L(h) = 5(8“h)2 + 56202143 + §€2h2Ai + ezthi )
1 1 1
= P " — M?h? — \vh3 — Zw‘ + Zw :

B.4. Potencial con término de grado 6

Tenemos el potencial (40), con p? < 0. En primer lugar, buscamos sus minimos.

V'(¢) = pPdp — A\¢® + 6¢° = ¢p(u* — Mp® + 6¢*) =0

con § = —2)2/u?. La derivada se anula en ¢g = 0, o si
2\ 42 4 _ 9 AE )\2—4u26_)\j: A2 + 8)2
pe— A+ 6" =0 = ¢ = = 53
—4N
1i3
== = o=t =0t

es decir, en ¢g = Fv. Si evaluamos la segunda derivada:
V"(0) = p? <0,
V(@) = p? — 3\p* + 50t =
V"(v) = p? 4+ 6p? — 10p® = —3u> > 0.
Por tanto, el minimo se encuentra en ¢g = f+v. Podemos realizar un desarrollo en torno
al minimo para encontrar la masa de la particula asociada. Para ello, introducimos el campo

n = ¢ — v. En lugar de evaluar el potencial con este cambio de variable, podemos extraer

solamente el coeficiente que acompana a n? utilizando el binomio de Newton.

L g 2 L g Ly oo
- = —A
SH (v +m) S H - — AV
1 1 3 1
— v+t = —SxePE =Sl = f'm???f =3\,
4 4 2 2
1 1
65(U +n)°¢ = 66 -150n? = 5 v?n?

Por tanto, en este caso la masa de la particula n es m, = vV6Av?.

C. Mecanismo de Higgs en el Modelo Estandar

C.1. Minimos del potencial

Si tratamos el potencial (42) como una funcién de 4 variables reales, tenemos:

V(¢1, d2, 3, ¢4) = (¢1 + ¢+ o3 + <l54) + )\ (¢1 + 5+ o3 + ¢4) . (70)

No es mas que el potencial real, ya estudiado, evaluado en \/ d)% + ¢2 + qz53 + <Z>?1. Como

p? < 0, los minimos estén en aquellos puntos que cumplan que ¢? + ¢3 + qb% + 3 = v2.
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C.2. Desarrollo del témino cinético

Debemos aplicar la derivada covariante en torno al vacio que hemos escogido. Asi,

N 1 1 0
1

10 0 1 0 —i 10
—— |20 W W W
2/2 “(0 1)“9 “‘(1 0)“9 2"<z’ 0)“9 3“(0 —1)

| 10 0

_ 1 20, + igWs, +ig'Yy B, ig(Why — iWo,) 0
2v/2 ig(Why + iWay,) 20, — igWs, +1ig'YyB, ) \v+h
1 . .
— 0 + L(U + h) g(Wlﬂ ZYV2M) 7
V2 \o.h]  2v2 —gW3, +¢'YyB,
.|_
1 . /J/ _ . u
(D)t = | — 0 + L(v +h) g(W}L Z,W2 )
V2 \o*h) 22 —gW4' + ¢'Yy,B*

1 ? .
=7 (0 8“h> SNl (g(W{” FAWE) —gWE g’Yd)B“) :
Finalmente, el término cinético queda:
1 1
(D'$)T (D) = 5(0uh)?* + g (v + )* (¢* (Wi, + W5,) + (—gWay + ¢'V6B,)?) . (T1)

C.3. Mezcla de los bosones de gauge W3y B

Queremos diagonalizar la matriz siguiente:

z)\2—(92+g'2)/\=0-

Las soluciones son A\; = 0 y Ay = ¢ + ¢’>. Buscamos ahora los vectores propios asociados:

?-M  —gg z\ (¢ —g9\[=\ [0
—g9 ¢*-M) \y —g9" 9% ) \y 0

/
g
Pr—ggy=0 = z=4,y=9 = v1=<>,

g
9 =X —gg \(xz\_ (-9 -9\ (x| _ [0
—g9 g% =) \y —g9 —¢*) \y 0



C.4. Relacion entre los parametros de la teoria electrodébil

Sabemos que la mezcla de los bosones W3 y B estd dada por una matriz de rotacién (53),

por lo que la matriz inversa serd la de una rotacion en sentido contrario. Entonces:

Wgu— gA +gZ)

Wz, [ cosOw senbw )\ (Z, _ \/m
B, ~ \ —senfy cosby A, B
" \/ng

Podemos reescribir el término de la derivada covariante que involucra a estos campos:

— g’ZN).

. 1 .
1gT3Wsy, + 19/§YB/L = 1913 (9"Au+92,) +ig’ Y -4'7Z,)

1
T (943
/g% 1 g /¢ + " H
. ! Y
:Z%(Tg"‘Q)AM‘F’l g_|_g (2T3—g >Z'u

Por tanto, la derivada covariante de la teoria electrodébil en funcién de los campos Z,, y

A, resulta:

D, = 8u + g Ti Wiy, +igTaWa,

/
.99 Y o1 2 pY (72)
+ 27—92 7 <T3 + 2> Ay + 1772 " (g T3 —g 5 Zy -

Sabemos que la derivada covariante en la QED es D, = 9, + ieQA,. Identificando

términos, se tiene:

/

99
N7

Y

Se recupera la relacién de la carga con el isospin débil y la hipercarga. Ademds, encontramos

una relacion entre las constantes de acoplamiento g, ¢’ y e:

e =g cosOy = gsenfy . (73)
C.5. [ Qué ocurre si se toma Y, = —17
Si tomamos Yy = —1 pero escogemos el mismo vacio, es decir, ¢g = % (9), llegaremos a

la matriz relacién siguiente:

2 !
- (9 9.
99 g
El polinomio caracteristico de esta matriz es el mismo que en el anexo C.3, por lo que

los valores propios son los mismos. Uno de los dos autoestados no tendra masa (el que

identificamos como el fotén). Los vectores propios, procediendo de manera analoga, resultan:

-9 g
AM=0= v = , )\2292+g/2:>212: ]
g g
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Por tanto, se definen en este caso los bosones vectoriales:

~ 1 1 - -

Ay = ——=—=(—9¢'Wau +9B,), Wi = ————=(-g'Au +92,),
K 2+ g7 K K - K 2+ g7 K K
~ 1 1 - -

Zy = 7<9W3 +9/B ) B, = 7(914 +9/Z )
K 2+ g7 K K K 2+ g7 K K

Podemos expresar el término de la derivada covariante que involucra a los campos W3, y
B, en funcién de A, y Z,, tal como hemos hecho en el anexo C.4:

- . 1 . .
(—9'Au+92,) +ig' Y —(9Au +9'2)

, 1 )

92 + 9/2
/
.99 < Y> -1 ( 2 nY
=t | DB+ - Ay ti—m 9 T3+9" = | Z,.

/92 +g/2 2 /92 + g/2 2
En este caso, identificamos que el fotén se acopla a Q = —T5 + % Seria la simetria U(1)
asociada al generador Q la que no se romperfa. Como se sabe que el acoplamiento del fotén
es a la carga, el vacio ¢g debe tener hipercarga Y, = 1, ya que es asf como la teoria describe

la realidad experimental. Con esa eleccién el vacio es neutro, y es la simetria U(1)gs la que

no se rompe.

C.6. Invariancia del término &L@bg

Veamos la simetria SU(2);, x U(1)y por separado. Bajo una transformacién del grupo
SU(2), tendremos:
&ILZ’IELUTv ¢/:U¢7 1/’%{:1/11%;

porque ¢, y ¢ son dobletes de SU(2)r, y ©¥r es un singlete. Por tanto,
D¢k = LU UdYR = Provr,

ya que la transformacién U es unitaria. La combinacién de campos tiene simetria SU(2),
Bajo una transformacién del grupo U(1)y, por otro lado:

_ — .1 -1 -1
O, = dre B0y, ¢ =30, g = i3 Ry,

Por tanto,
P/ = e 2YE0 200 a YRy = 2 (VIR G

El término serd invariante si se cumple —Y7, + Y, + Yr = 0. Hemos escogido el campo ¢ de
forma que Yy = 1, por lo que la condicién es Y, — Yr = 1. Si nos fijamos en la componente
con T3 = —1/2 de un doblete del SM,

1 Y, Yr
2+2 Q 0+2 = L —Yr ;

por lo que se verifica la condicion.
Por tanto, el término 17,¢)r es invariante frente a transformaciones conjuntas del grupo

SU(2)r, x U(1)y. Andlogamente, se puede ver que el término 1r¢tyr también es invariante.
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C.7. Término de masa de los fermiones

Realizamos el desarrollo en torno al minimo en el caso de los leptones:

L= =Xe(rd¥r +YrOYL) = =N [(’71 Z_)L \2 (U 3 h) ln+1n (0 v h) (?) ]
)\lv— )\l ’

A - - A — _
=——(w+h)(lp+ilgly) = ——(v+ h)ll = ——=Il — —hll.
ﬂ( YLl + IRlL) U( ) /2 /2

D. Desintegraciéon del boson de Higgs

D.1. Desintegraciéon h — ff

Vamos a calcular la amplitud de probabilidad del proceso h — ff, representado mediante
el diagrama de Feynman de la figura 5a. El vértice de interaccién viene caracterizado por el
factor —i-L. Identificamos el fermién con el espinor u(p1) y el antifermién con v(ps). Como

el bosén de Higgs es una particula escalar, el elemento de matriz queda:

—imy

—iM = u(p1)

v(p2)

iME = 5(p) " Lu(py)

MP = ()5 37 (2t (1) (1) )

51,52

- (%)2 Zu31(p1)ﬂsl(1)1) 22752 (p2)vs, (p2) = (%)2 o [(pl ), - mf)}

52
m

= () (1e(pyp,) — g Te(py) + g TeCy) = 15 (D) = (ML) (pr - pa — amd).

[

Se han utilizado propiedades de los espinores de Dirac y las matrices 7y, como son:
L Y us(p)s(p) = p+ my
2. Y, vs(p)vs(p) = p —my
3. Tr(A) =0
4. Tr(AB) =4A-B

Para estudiar la cinemética del proceso y obtener los valores que necesitamos, utilizaremos
el sistema de referencia centro de masas. En el estado inicial, el bosén de Higgs estara en
reposo, por lo que su cuadrimomento es (my,0). En el estado final, se tendré P = (E1,p1)

para el fermién y pa, = (E2,p2) para el antifermion. Por la conservacién del momento,

Pitie=0 = pi=—ph=7p.



Como la masa del fermion y el antifermién es la misma, y sus momentos tienen el mismo

modulo, sus energias también son iguales. Por la conservacion de la energia,

m
mp=F1+FEy = EleQZTh.

Por tanto, se tiene: )
2 2 =2 2_Mm 2
my = El —|p1|° = [Pl :Th_mf-

Ya podemos calcular el producto escalar que necesitamos:

L. mp\ 2
Pl'p2=E1E2—p1'p2:<7h> +1p* =

2
My 2

El elemento de matriz resulta, por tanto:

M2 = (%)2 (4 : (ﬂ;i - m§> - 4m§> =2 (%)2 (m} — 4m3). (74)

Con todos los valores necesarios conocidos, podemos aplicar (59). El factor de simetria
valdra 1 ya que fermién y antifermién son particulas distinguibles. Hay que anadir el nimero
de color en el caso de que los fermiones sean quarks (N, = 3), ya que la desintegracién tiene

tres posibilidades. Lo incluiremos en la expresién general, que cuando se aplique a leptones

simplemente serd N, = 1.

dar N, my\ 2 m? 1/2
e o () (g am3) (h_m;>

aa - 32m2m? v 4
9\ 3/2
Ne mpNZ o 213/2 Ne 2 Amy
- 32772m}21 (7) (my, = dmp)™ = 3op2p2 T ST m% '

Por 1ltimo, integramos a todo el dngulo sélido. Simplemente hay que multiplicar por 47w
ya que la expresion obtenida es constante. La anchura de desintegracion del bosén de Higgs

a femiones queda:

_ N, 4m> 3/2
T(h— ff) = W;mﬁmh ( - m;’) . (75)

D.2. Desintegracion h — VV

Ahora, vamos a calcular la amplitud de probabilidad del proceso h — V'V, donde V
representa al bosén W o al bosén Z. Su diagrama de Feynman aparece en la figura 5b. En
este caso, el vértice de interaccién esté caracterizado por el factor ZiMT‘Q/ 9w Identificamos uno
de los bosones de gauge con el vector de polarizacién e’; (p1) , y el otro con € (p2). Los indices
1y v corresponden al espacio de Minkowski, mientras que los indices A y § se refieren a los

distintos vectores de polarizacién. De nuevo, al ser el bosén de Higgs una particula escalar,

el elemento de matriz queda:
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) M2 M2
—iM = éi(p1) QZTVQW €5 (p2) = e\ (p1) 227‘/ esu(p2)
2 2

«Q

iME =~ (1) 2= g €5 (p2)” = —e(p1)" 2= csa(p2)”.

M| = > hp)esu(p2)es (p1)* esalp2)”
W

)

()

— (2]\5‘2/)2;6’1(191)6?(171)*Zéay(m)ﬁéa(m)*
()
()

MV MV MV

2 2
_ (2M} 4_ Mg M n (p1-p2)?\ _ (2M7 94 (p1 - p2)?
MZ MZ T ME v ML)

Se han utilizado las siguientes propiedades:

L Yr @) = —g" + B
2. p1upY = pouph = M2

El anélisis de la cinemética es equivalente al del proceso h — ff (desintegracién a dos

cuerpos de igual masa), por lo que los resultados son los mismos. Es decir:

2
my

2 2
2
m
propa =t — My

Por tanto, el elemento de matriz queda:

2 2
2 Mh _ Af2 2
M = (B0 2+(2 V) _(2MEN (L () (e (76)
v M‘4, v 4 \ My My .

Tenemos ya todos los valores necesarios para aplicar (59). El factor de simetria Sy valdré

1 para bosones W (no son idénticos, ya que se produce un W+ y un W~) y 1/2 para bosones

Z (se producen dos iguales). Con esto:
a1\ cm N B md LN
aQ — 32m2m? \ w 4\ My My 4 v v
1/2
_ Sy o (MYt L (M N
8r2p2  h mp, 4 mp, 4 v

Sv_ o)AMY, 3 (4M} N\ (4 1z
= m - — - .
64r2p2 " mZ 4\ m2 m2




Finalmente, integramos a todo el angulo sélido. De nuevo, solo hay que multiplicar por 47
ya que la expresion obtenida es constante. La anchura de desintegracion del bosén de Higgs

a bosones de gauge queda:

Sy AMZ 3 4M2 AM2N Y2
h h h

D.3. Desintegraciones h — vy y h — gg

Los diagramas de Feynman para la desintegracién del Higgs a fotones y gluones, a un

loop, se muestran en la figura 9:

{4
b t Y B 14 i t 9
----- t w t
t Y w Y t g

(a) h — vy (b) h — gg

Figura 9: Desintegracién del bosén de Higgs a fotones y a gluones

Estas anchuras de desintegracion no las calculamos en este trabajo, simplemente
utilizaremos el resultado [9].
La anchura de desintegracién del bosén de Higgs a fotones es:

2
2

I'(h — vyy) = 725671'31)2 Z N, ef -7 ,

donde « es la constante de estructura fina y ey la carga eléctrica de los fermiones.

La anchura de desintegracién del bosén de Higgs a gluones es:

o2 95 TN 2
P(h%gg)_727r32}2m‘2(1+<4_ 6f) 7T+> )

donde o es la constante de acoplamiento de la fuerza fuerte, y Ny es el nimero de
fermiones. Los puntos suspensivos hacen referencia a términos de orden mayor en teoria

de perturbaciones.

D.4. Cédigo para realizar las representaciones

import numpy as np

import matplotlib.pyplot as plt
plt.close('all')

# Constantes
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v = 248.4 #Gel
alpha = 1/127.8
alpha_s = 0.1176
PI = np.pi

# Masas (GeV) en la escala de energias EW
m_mu = 0.1029

m_tau = 1.747

m_charm = 0.628

m_bot = 2.866
m_W = 80.38
m_Z = 91.19

# Particulas: masa, tipo y etiqueta
particles = {
'muon': [m_mu,'l', r'$\mu\mu$'],
'tau': [m_tau,'l', r'$\tau\taus$'],
"charm': [m_charm,'q', r'$c\bar c$'],
'bottom': [m_bot,'q', r'$b\bar b$'],
W' [m_W,'W', r'$ww$'],
'Z': m_Z,'Z', r'ZZ'],
'photon': [0,'ph', r'$\gamma\gamma$'],
'gluon': [0,'g', r'$gg$']

# Anchuras de desintegracion (GeV)
def hff(m_h, m_f):
x = 4dxm_f**2/m_h**2
if x<1:
return 1/(8*PI*v**2)*m_f**2xm_h* (1-x)**(3/2)
else:

return O

def hVV(m_h, m_V):
X = 4*xm_V**2/m_h**2
if x<1:
return 1/(16*PI+v**2)*m_h**3% (1-x+3/4*x**2)* (1-x)**(1/2)
else:

return O
def hpp(m_h):
Sf = 3+2%3%(2/3) **2+3%3% (-1/3) *x*2

return alpha**2/(256*PI**3*%v**2)+m_h**3* (4/3+Sf-7)**2
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def hgg(m_h):
Nf = 8
return alpha_s**2/(72*PIx*3*v**2)*m_h**3* (1+(95/4-7*Nf/6)*alpha_s/PI)**2

def anchura(m_h, p):

m = particles[p][0]
tipo = particles[p] [1]
if tipo=='q':

return 3*hff(m_h, m)
elif tipo=='1l":

return hff(m_h, m)
elif tipo=='W':

return hVV(m_h, m)
elif tipo=='Z"':

return hVV(m_h, m)/2
elif tipo=='ph':

return hpp(m_h)
elif tipo=='g':

return hgg(m_h)

def anchura_total(m_h):
gamma = O
for p in particles:
gamma += anchura(m_h, p)

return gamma

# Branching ratio
def BR(m_h, p):

return anchura(m_h, p)/anchura_total(m_h)

# Representacion de los branching ratio
m_h = np.linspace(60, 250, 1000)

br = np.zeros(len(m_h))

plt.figure(figsize=(10,7))
# plt.title('Branching ratios del bosdén de Higgs')
for p in particles:

for i in range(len(m_h)):

br[i] = BR(m_h[il, p)

plt.plot(m_h, br, label=particles[p][2], 1lw=2)
plt.legend(loc=(0.08,0.22), fontsize=18, ncol=2)
plt.xlabel(r'$m_h$ (GeV)', fontsize=24)
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plt.
plt.
plt.

plt

plt.
plt.
plt.
plt.
plt.

ylabel('Branching ratio', fontsize=24)
yscale('log')

x1lim(xmin=60, xmax=250)

.ylim(ymin=1e-4)

tick_params(axis='x', labelsize=22)
tick_params(axis='y', labelsize=22)
grid()

tight_layout ()

savefig('br.png', dpi=400)
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