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D.4 Código para realizar las representaciones . . . . . . . . . . . . . . . . . . . . . 38



1. Introducción

A lo largo del siglo XX, la F́ısica sufrió una gran revolución: se desarrollaron nuevas teoŕıas

para describir la realidad, como la Relatividad Especial o la Mecánica Cuántica. En el proceso

de combinar ambas, surgió la Teoŕıa Cuántica de Campos (QFT - del inglés Quantum Field

Theory). En este marco, el resultado más existoso es el Modelo Estándar, que describe la

materia y sus interacciones en términos de part́ıculas fundamentales. Sin embargo, el modelo

no permit́ıa que estas part́ıculas tuvieran masa. Faltaba una pieza para completar la teoŕıa.

Peter Higgs (1929-2024) propuso una forma de resolver este problema [1, 2]. A su vez, Robert

Brout (1928-2011) y François Englert (1932-presente) hicieron propuestas similares [3]. La

solución que dieron se conoce como mecanismo de Higgs, y además de permitir introducir la

masa de las part́ıculas en el Modelo Estándar, predice la existencia de una nueva part́ıcula

fundamental, llamada bosón de Higgs. Esta part́ıcula fue encontrada en 2012 en el LHC del

CERN y le valió el premio Nobel a Peter Higgs y François Englert.

En el caṕıtulo 2 estudiaremos las principales caracteŕısticas del Modelo Estándar, sus

simetŕıas y el problema de introducir la masa de las part́ıculas en la teoŕıa, motivando

la necesidad de un mecanismo de ruptura de simetŕıa. En el caṕıtulo 3, explicaremos el

funcionamiento del mecanismo de Higgs a través de ejemplos sencillos, exponiendo en el

caṕıtulo 4 la forma de introducirlo en el Modelo Estándar. En el caṕıtulo 5 analizaremos las

distintas v́ıas de desintegración del bosón de Higgs, y en el caṕıtulo 6 veremos la relación

entre el mecanismo de Higgs y las transiciones de fase. En el caṕıtulo final presentamos las

conclusiones. La mayoŕıa de los cálculos realizados se incluyen en los anexos.

2. Modelo Estándar

El Modelo Estándar (SM - del inglés Standard Model) es una teoŕıa cuántica de campos

relativista que describe el universo a través de part́ıculas fundamentales y las interacciones

entre ellas. Está basada en una serie de simetŕıas, que veremos en más detalle más adelante. Es

la teoŕıa f́ısica con mayor capacidad de predicción que se ha desarrollado, siendo confirmada

experimentalmente con una precisión mayor del uno por mil. No obstante, deja cuestiones

sin resolver, como, por ejemplo, la existencia de materia oscura en el universo, el problema

de las jerarqúıas, la masa de los neutrinos, etc.

2.1. Part́ıculas e interacciones fundamentales

Las part́ıculas fundamentales que conforman la materia se denominan fermiones. El SM

incluye 12 fermiones, agrupados en 3 generaciones distintas. Cada generación cuenta con 2

quarks y 2 leptones. El modelo introduce tres interacciones fundamentales entre las part́ıculas

que lo constituyen: la interacción electromagnética, la interacción débil y la interacción fuerte.
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Las dos primeras interacciones están unificadas en la denominada teoŕıa electrodébil. Para

cada una de las interacciones, existen part́ıculas mediadoras que se denominan bosones de

gauge. No se incluye la gravedad, por lo que el SM no puede ser una teoŕıa completa.

Figura 1: Clasificación de las part́ıculas del Modelo Estándar [4].

En la figura 1 se presenta un esquema de las part́ıculas del SM, que comentamos a

continuación:

Los quarks son los fermiones que interaccionan fuerte. En cada generación existe un

quark con carga positiva y uno con carga negativa. No se encuentran nunca aislados,

sino que se agrupan formando hadrones.

Los leptones son los fermiones que no interaccionan fuerte. En cada generación existe

un leptón con carga negativa y un leptón neutro llamado neutrino.

El fotón, sin carga, es el bosón de gauge mediador de la interacción electromagnética.

Los bosones de gauge W± (cargados) y Z (neutro) median la interacción débil.

El gluón es el bosón de gauge mediador de la interacción fuerte.

Cada uno de los fermiones tiene su correspondiente antifermión, que es una part́ıcula con

propiedades exactamente iguales, excepto la carga de distinto signo.

El contenido en part́ıculas del SM se completa con el bosón de Higgs, de naturaleza

distinta a todas las anteriores. Esta part́ıcula aparece como consecuencia de introducir el

mecanismo de Higgs, que dota de masa a las part́ıculas (excepto al fotón, al gluón y a los

neutrinos) respetando las simetŕıas de la teoŕıa.

2.2. Campos que describen part́ıculas

En el SM, que es una teoŕıa cuántica de campos, las part́ıculas están descritas por campos,

que son funciones de las coordenadas del espacio-tiempo que transforman de una determinada

manera bajo transformaciones de Lorentz.

La dinámica de un campo ϕ se describe mediante una densidad Lagrangiana L(ϕ), que en

adelante llamaremos simplemente Lagrangiano. Las ecuaciones del movimiento se obtienen
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aplicando las ecuaciones de Euler-Lagrange:

∂L
∂ϕ

− ∂µ

(
∂L

∂(∂µϕ)

)
= 0 . (1)

Para cada clase de part́ıculas existe un Lagrangiano que describe su dinámica libre.

Fermiones. Estas part́ıculas, de esṕın 1/2, están descritas por campos espinoriales ψ(x).

Su dinámica se recoge en el Lagrangiano de Dirac y su correspondiente ecuación1.

L = ψ̄(iγµ∂µ −m)ψ ⇒ (iγµ∂µ −m)ψ = 0 , (2)

donde m es la masa de la part́ıcula y ψ̄ = ψ†γ0 se llama espinor adjunto.

Bosones escalares. Estas part́ıculas, de esṕın 0, están descritas por campos escalares ϕ(x).

Su dinámica se recoge en el Lagrangiano de Klein-Gordon y su correspondiente ecuación. Para

el caso de un campo real es:

L =
1

2
(∂µϕ)

2 − 1

2
m2ϕ2 ⇒ (∂µ∂µ +m2)ϕ = 0 , (3)

donde m es la masa de la part́ıcula. El bosón de Higgs es un bosón escalar.

Bosones vectoriales. Estas part́ıculas, de esṕın 1, están descritas por campos vectoriales

Vµ(x). El término de masa de estos campos en el Lagrangiano es de la forma 1
2MV 2

µ , donde

M es la masa de la part́ıcula. Los bosones de gauge son part́ıculas de este tipo.

2.3. Electrodinámica cuántica

Antes de seguir con la estructura del SM, veamos como se formula la teoŕıa cuántica de

campos del electromagnetismo a partir de las ecuaciones de Maxwell [5]. La Electrodinámica

Cuántica (QED - del inglés Quantum Electrodynamics) combina la ecuación de Dirac para

describir el electrón y las ecuaciones de Maxwell para el fotón, y resulta de imponer el principio

gauge local basado en una determinada simetŕıa a la ecuación de Dirac.

2.3.1. Ecuaciones de Maxwell e invariancia gauge

Partimos de las ecuaciones clásicas del electromagnetismo,

∇⃗ · E⃗ = ρ ,

∇⃗ × B⃗ = j⃗ +
∂E⃗

∂t
,

∇⃗ · B⃗ = 0 ,

∇⃗ × E⃗ = −∂B⃗
∂t

,
(4)

siendo ρ la densidad de carga y j⃗ la densidad de corriente.

Gracias a las dos ecuaciones de Maxwell homogéneas, podemos escribir el campo eléctrico

y magnético en función de un potencial escalar φ(x⃗, t) y un potencial vector A⃗(x⃗, t):

B⃗ = ∇⃗ × A⃗ , E⃗ = −∇⃗φ− ∂A⃗

∂t
. (5)

1En estas ecuaciones se utilizan unidades naturales, es decir, ℏ = c = 1. Este sistema de unidades va a ser

el utilizado durante todo el trabajo, e implica que [M ] = [E] = [p] = [L]−1 = [t]−1.
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Con esta definición las ecuaciones homogéneas se satisfacen automáticamente. Se debe

notar que E⃗ y B⃗ son invariantes bajo la siguiente transformación de los potenciales2:

φ′ = φ+
∂f

∂t
, A⃗′ = A⃗− ∇⃗f , (6)

siendo f(x⃗, t) una función arbitraria. Estas transformaciones se denominan transformaciones

de gauge de segundo tipo, y son locales porque la función f depende de las coordenadas del

espacio-tiempo. La invarianza gauge se debe a la discrepancia entre los grados de libertad de

la teoŕıa (4 componentes del campo en total) y los grados de libertad f́ısicos de la part́ıcula

que describen (el fotón tiene solo 2 estados de polarización).

2.3.2. Formulación covariante

Para expresar las ecuaciones de Maxwell de forma covariante, se incluyen los potenciales

en el cuadrivector Aµ = (φ, A⃗), y se define el tensor electromagnético3:

Fµν = ∂µAν − ∂νAµ . (7)

Con esta definición del potencial Aµ las transformaciones de gauge (6) se pueden escribir en

forma covariante:

A′
µ = Aµ + ∂µf . (8)

Las ecuaciones de Maxwell homogéneas y no homogéneas se pueden escribir a partir del

tensor electromagnético como:

∂λFµν + ∂µF νλ + ∂νF λµ = 0 , ∂νF
νµ = jµ , (9)

donde jµ = (ρ, j⃗) es el cuadrivector de corriente electromagnética.

El tensor Fµν es invariante bajo tranformaciones de gauge, pues solo depende del campo

eléctrico y magnético, que son invariantes. Además, las ecuaciones de Maxwell escritas de

forma covariante manifiestan su invariancia frente a transformaciones de Lorentz.

Podemos recoger la dinámica del campo Aµ en un Lagrangiano, con invariancia gauge

e invariancia Lorentz, cuyas ecuaciones de Euler-Lagrange nos devuelvan la ecuación no

homogénea dada en (9). Este Lagrangiano es:

L = −1

4
FµνFµν − jµAµ . (10)

2.3.3. Acoplamiento mı́nimo y Lagrangiano invariante

Clásicamente, la corriente electromagnética está asociada a part́ıculas cargadas, por lo

que debeŕıa estar relacionada con los campos de los fermiones [6]. Como ya hemos visto,

2Ambas demostraciones se recogen en el anexo A.1.
3En el anexo A.2 se puede ver que este tensor solo depende del campo eléctrico y magnético. También se

demuestra ah́ı la formulación covariante de las ecuaciones de Maxwell y el Lagrangiano asociado.
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están descritos por el Lagrangiano de Dirac. Este Lagrangiano tiene simetŕıa U(1) global,

pero no local. Es decir, no es invariante frente a la transformación

ψ′ = eiQα(x)ψ , (11)

donde α(x) es una función arbitraria de las coordenadas, que se conoce como parámetro de

la transformación. Por otro lado, el Lagrangiano de Maxwell sin fuentes es invariante bajo la

transformación de gauge,

A′
µ = Aµ − 1

e
∂µα(x) . (12)

Podemos construir un Lagrangiano invariante al realizar las dos transformaciones

simultáneamente, sustituyendo la derivada usual por la derivada covariante:

Dµ = ∂µ + ieQAµ , (13)

donde e es la constante de acoplamiento de la QED. El Lagrangiano queda4:

L = −1

4
FµνFµν + ψ̄(iγµDµ −m)ψ = −1

4
FµνFµν + ψ̄(iγµ∂µ −m)ψ − eQAµψ̄γ

µψ . (14)

El primer término del Lagrangiano representa la dinámica libre del campo

electromagnético, el segundo la dinámica libre de los fermiones; con un término cinético

y uno de masa, y el último término representa la interacción entre el campo fermiónico y el

campo electromagnético (acoplamiento mı́nimo). Este último es de la forma −jµAµ, como en

el Lagrangiano (10), al identificar jµ = eQ ψ̄γµψ. Esta no es más que la corriente conservada

asociada a la simetŕıa U(1) global del Lagrangiano de Dirac.

En resumen, tratando de que el Lagrangiano de los fermiones respete una simetŕıa local,

surgen naturalmente las interacciones entre los fermiones y un campo gauge. En el caso de la

QED, el grupo de simetŕıa local es U(1), y el campo gauge es el campo electromagnético. En

este procedimiento, es fundamental la simetŕıa gauge que presenta este campo, que proviene

de un exceso de grados de libertad en la teoŕıa respecto a los grados de libertad f́ısicos que

describe. Sustituyendo la derivada usual por una derivada covariante adecuada, la simetŕıa

gauge garantiza la simetŕıa local de un Lagrangiano que recoge la dinámica de los fermiones,

el campo gauge y sus interacciones. Concluimos, por tanto, que el Lagrangiano de la QED

con simetŕıa U(1) local y simetŕıa gauge es precisamente el dado en (14).

2.4. Simetŕıas en el Modelo Estándar

Todas las interacciones en el SM están asociadas a un grupo de simetŕıa: la interacción

electromagnética al grupo U(1), la interacción débil al grupo SU(2) y la interacción fuerte

al grupo SU(3). Por tanto, el SM es una teoŕıa gauge basada en el grupo de simetŕıa G =

SU(3)C × SU(2)L × U(1)Y , donde el sub́ındice L representa la componente levógira de los

campos, C se refiere a la carga de color e Y al número cuántico de hipercarga débil.

4La demostración de la invarianza se recoge en el anexo A.3.
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2.4.1. Simetŕıa SU(2) local

Análogamente al procedimiento desarrollado en QED, veamos cómo aparecen las

interacciones al imponer la invarianza del Lagrangiano ante transformaciones locales del

grupo SU(2) [7]. Este grupo tiene tres generadores infinitesimales Tj (el grupo U(1) solo tiene

uno) y es no abeliano (es decir, las transformaciones no conmutan). Estas son las principales

diferencias entre ambos casos. Una transformación genérica del grupo SU(2) sobre un campo

fermiónico se escribirá como:

ψ′ = ei T⃗ ·β⃗(x)ψ , (15)

siendo β⃗(x) los parámetros de la transformación. El Lagrangiano de Dirac es invariante bajo

transformaciones globales de este tipo, pero no locales. Por tanto, al igual que en QED,

sustituiremos la derivada usual por la derivada covariante:

Dµ = ∂µ + ig T⃗ · G⃗µ , (16)

donde g será la constante de acoplamiento de esta teoŕıa. Debido a que el grupo SU(2) tiene

3 generadores, son necesarios 3 campos gauge Gj
µ. La transformación gauge de los campos es:

Gj
µ
′ = Gj

µ − 1

g
∂µβ

j(x) + εjkl β
k(x)Gl

µ , (17)

donde εjkl es el tensor de Levi-Civita, que recoge las constantes de estructura del grupo

SU(2). El último término que aparece no lo teńıamos en QED, y se debe a que el grupo no

es abeliano. Además, de forma similar al tensor del campo electromagnético, podemos definir

un tensor para cada uno de estos nuevos campos:

Gµν = ∂µGν − ∂νGµ − ig [Gµ, Gν ] , (18)

donde el nuevo término, proporcional a g, es debido a que el grupo no es abeliano.

Podemos ahora construir un Lagrangiano total con simetŕıa SU(2) local y simetŕıa gauge,

L = −1

4
G⃗µν · G⃗µν + ψ̄(iγµDµ −m)ψ . (19)

Al desarrollar este Lagrangiano, se obtienen términos que describen la dinámica libre de

los campos gauge y de los fermiones, aśı como la interacción entre ellos. Debido al último

término en (18), los campos gauge interaccionan entre ellos, algo que no ocurre con el campo

electromagnético.

2.4.2. Teoŕıa electrodébil

En el SM, las interacciones electromagnética y débil están unificadas. Esta interacción

electrodébil está asociada al grupo de simetŕıa SU(2)L × U(1)Y . Experimentalmente, se

observó que la interacción débil solo actúa sobre part́ıculas levógiras (y antipart́ıculas

6



dextrógiras) [8]. Bajo el grupo de simetŕıa SU(2)L las componentes levógiras se transforman

de forma distinta que las dextrógiras: los primeros son dobletes y los segundos son singletes

de isoesṕın débil (no existen los neutrinos dextrógiros):(
νe

e

)
L

(
νµ

µ

)
L

(
ντ

τ

)
L

eR µR τR(
u

d

)
L

(
c

s

)
L

(
t

b

)
L

uR dR cR sR tR bR .

Los campos espinoriales de Dirac se pueden dividir en sus partes levógira y dextrógira,

ψ = ψL + ψR, de forma que la transformación se escribe:

ψ′
L = ei(T⃗ ·β⃗(x)+Y

2
α(x))ψL , ψ′

R = ei
Y
2
α(x)ψR , (20)

donde Tj =
1
2σj son los generadores del grupo SU(2)L e Y es el generador del grupo U(1)Y .

De manera análoga a como hemos procedido anteriormente, se introduce un campo gauge

por cada una de los generadores infinitesimales: tres bosones vectoriales W⃗µ = (W 1
µ ,W

2
µ ,W

3
µ)

para SU(2)L y un campo Bµ para el grupo U(1)Y . La transformación de gauge es:

W j
µ
′ =W j

µ − 1

g
∂µβ

j(x) + εjklβ
k(x)W l

µ , B′
µ = Bµ − 1

g′
∂µα(x) , (21)

siendo ahora g y g′ las constantes de acoplamiento de la teoŕıa electrodébil. La derivada

covariante Dµ que se debe introducir para respetar la invariancia está dada por:

Dµ = ∂µ + ig T⃗ · W⃗µ + ig′
1

2
Y Bµ . (22)

El Lagrangiano queda:

LEW = −1

4
BµνBµν −

1

4
W⃗µν · W⃗µν + iψ̄Lγ

µDL
µψL + iψ̄Rγ

µDR
µ ψR , (23)

donde hemos introducido el término libre de los campos gauge. Este Lagrangiano tiene

simetŕıa SU(2)L ×U(1)Y y es invariante gauge. Sin embargo, no aparece el término de masa

de los fermiones, ni tampoco para los bosones de gauge. Esto se debe a que dichos términos

rompeŕıan la simetŕıa del Lagrangiano. Veamos dos ejemplos:

Un término de masa para el campo Bµ seŕıa de la forma 1
2M

2B2
µ, que no es invariante

gauge. El fotón no tiene masa, por lo que en la QED esto no es un problema, pero se

sabe que los bosones W y Z son masivos.

Un término de masa para un fermión seŕıa de la forma −mψ̄ψ = −m(ψ̄LψR + ψ̄LψR).

Debido a la diferente transformación de la parte levógira y dextrógira en la teoŕıa

electrodébil, este término tampoco es invariante.

Por tanto, no es trivial incluir términos de masa en el Lagrangiano. Se debe encontrar

una forma de dotar de masa a las part́ıculas que la tienen, como los bosones masivos y los
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fermiones (menos los neutrinos5). La solución a este problema la ofrece el mecanismo de

Higgs, que estudiaremos en el siguiente apartado.

3. Ruptura espontánea de simetŕıa. Mecanismo de Higgs

El mecanismo de Higgs se basa en el fenómeno de la ruptura espontánea de simetŕıa. Se

tiene un Lagrangiano invariante bajo un grupo de simetŕıa, al que se añade un potencial V (ϕ)

que depende de un nuevo campo escalar ϕ. Este potencial debe respetar la invariancia bajo

el grupo de simetŕıa. Sin embargo, si el mı́nimo de este potencial (vaćıo) no es invariante, se

consigue dotar de masa a las part́ıculas.

Antes de exponer algunos ejemplos sencillos [9], conviene recordar que la masa de una

part́ıcula escalar aparece en el Lagrangiano en el término cuadrático del campo asociado, al

realizar un desarrollo en torno al mı́nimo de enerǵıa.

3.1. Campo escalar real

Tomamos un campo escalar real ϕ cuya dinámica viene dada por el Lagrangiano siguiente:

L(ϕ) = 1

2
∂µϕ∂

µϕ− V (ϕ) , (24)

donde el potencial toma la forma:

V (ϕ) =
1

2
µ2ϕ2 +

1

4
λϕ4 . (25)

El Lagrangiano es invariante bajo la transformación ϕ → −ϕ, esta es la simetŕıa global.

La constante λ debe ser positiva para que exista un mı́nimo absoluto del potencial. El distinto

comportamiento del potencial depende del signo de µ2.

(a) µ2 > 0 (b) µ2 < 0

Figura 2: Forma del potencial V (ϕ) en función del signo de µ2.

Para encontrar un espectro de excitación del sistema descrito por el Lagrangiano, primero

debemos encontrar los mı́nimos del potencial V (ϕ). Este mı́nimo será el estado fundamental

(vaćıo) del sistema. Estudiando pequeñas perturbaciones en torno al mismo encontraremos

los estados excitados6. En la figura 2 se muestra la diferencia cualitativa entre ambos casos.

5Aunque muy pequeña, se sabe que los neutrinos tienen una masa distinta de cero. Sin embargo, el SM

predice masa nula para ellos. Este es una de las cuestiones que no explica esta teoŕıa.
6Los cálculos expĺıcitos para los casos µ2 > 0 y µ2 < 0 se presentan en el anexo B.1.1.
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3.1.1. Part́ıcula libre: µ2 > 0

El potencial presenta en este caso un único mı́nimo, en ϕ0 = 0. El Lagrangiano es simétrico

respecto al mı́nimo: no se rompe la simetŕıa. El espectro de la part́ıcula asociada se obtiene

directamente, ya que el Lagrangiano ya se presenta como un desarrollo en torno al mı́nimo.

L(ϕ) = 1

2
(∂µϕ)

2 − 1

2
µ2ϕ2︸ ︷︷ ︸

part́ıcula de masa µ

−1

4
λϕ4︸ ︷︷ ︸

interacción

(26)

Se trata de una part́ıcula libre de masa µ: el primer término es el término cinético y el

segundo el término de masa. Además, la part́ıcula presenta una autointeracción de 4 puntos

caracterizada por la constante de acoplo λ.

3.1.2. Ruptura de simetŕıa: µ2 < 0

En este caso el potencial tiene dos estados de mı́nima enerǵıa (vaćıos) en ϕ0 = ±v, donde

v =

√
−µ2
λ

(27)

es el denominado valor esperado en el vaćıo (v.e.v. - del inglés vacuum expectation value).

Para interpretar el Lagrangiano, debemos realizar un desarrollo en torno al mı́nimo. No

tiene sentido hacerlo en torno a ϕ = 0, ya que al no ser un mı́nimo estable el desarrollo no

convergerá. Elegimos el mı́nimo ϕ0 = v e introducimos un campo η = ϕ−v, que está centrado

en el mismo. Expandimos el Lagrangiano en términos de este nuevo campo7.

L(η) = 1

2
(∂µη)

2 − λv2η2︸ ︷︷ ︸
part́ıcula de masa mη

−λvη3 − 1

4
λη4︸ ︷︷ ︸

interacciones

+
1

4
λv4︸ ︷︷ ︸

constante

(28)

El primer término es el término cinético del campo η. La masa de la part́ıcula asociada,

dada por el término cuadrático, es mη =
√
2λv2. El Lagrangiano describe, por tanto, una

part́ıcula escalar con autointeracciones caracterizadas por las constantes λ y v. El último

término es una constante, que no afecta a las ecuaciones del movimiento y no tiene ninguna

relevancia.

Es importante destacar que si bien el Lagrangiano sigue siendo simétrico en el campo ϕ

original, las perturbaciones en torno al mı́nimo no son simétricas en el campo η puesto que

V (η) ̸= V (−η) (existen términos de orden impar en η). Este es el ejemplo más simple de

ruptura espontánea de la simetŕıa: se ha roto la simetŕıa global ya que el vaćıo no posee la

simetŕıa del Lagrangiano original.

7Los cálculos están recogidos en el anexo B.1.2.
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3.2. Campo escalar complejo

Consideramos ahora un campo escalar complejo ϕ = 1√
2
(ϕ1 + iϕ2), cuya dinámica viene

dada por el Lagrangiano siguiente:

L(ϕ) = (∂µϕ)∗(∂µϕ)− V (ϕ) , (29)

donde el potencial toma la forma:

V (ϕ) = µ2ϕ∗ϕ+ λ(ϕ∗ϕ)2 . (30)

Se observa que el Lagrangiano es invariante ante transformaciones del tipo ϕ → eiθϕ, ya

que ϕ∗ϕ permanece invariante y ∂µθ = 0 (al tratarse de una simetŕıa global).

El Lagrangiano se puede reescribir en función de las dos componentes reales del campo:

L(ϕ1, ϕ2) =
1

2
(∂µϕ1)

2 +
1

2
(∂µϕ2)

2 − 1

2
µ2
(
ϕ21 + ϕ22

)
− 1

4
λ
(
ϕ21 + ϕ22

)2
. (31)

De nuevo tenemos λ > 0 para que exista un mı́nimo absoluto del potencial, y el distinto

comportamiento del potencial8 depende del signo de µ2. La diferencia cualitativa entre ambos

casos se muestra en la figura 3.

(a) µ2 > 0 (b) µ2 < 0

Figura 3: Forma del potencial V (ϕ) en función del signo de µ2.

3.2.1. Dos part́ıculas libres: µ2 > 0

El potencial presenta un único mı́nimo estable en ϕ1 = ϕ2 = 0, respecto al cual el

Lagrangiano es simétrico.

L(ϕ1, ϕ2) =
1

2
(∂µϕ1)

2 − 1

2
µ2ϕ21︸ ︷︷ ︸

part́ıcula de masa µ

+
1

2
(∂µϕ2)

2 − 1

2
µ2ϕ21︸ ︷︷ ︸

part́ıcula de masa µ

−1

4
λϕ41 −

1

4
λϕ42 −

1

2
λϕ21ϕ

2
2︸ ︷︷ ︸

interacciones

(32)

Aparece el término cinético y de masa de dos part́ıculas escalares de masa µ, asociadas

a los campos ϕ1 y ϕ2. Cada una de ellas presenta una autointeracción de cuatro puntos

e interaccionan entre ellas (último término). Las interacciones están caracterizadas por la

constante λ.
8Los cálculos expĺıcitos están incluidos en el anexo B.2.1.
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3.2.2. Ruptura de simetŕıa: µ2 < 0

Ahora, el potencial presenta infinitos mı́nimos a lo largo de la circunferencia ϕ21+ϕ
2
2 = v2.

Para analizar las part́ıculas descritas por el modelo, elegimos un mı́nimo en torno al cual

realizar un desarrollo del Lagrangiano. Tomamos, por ejemplo, aquel con ϕ1 = v, ϕ2 = 0 e

introducimos los campos η = ϕ1 − v y ξ = ϕ2. La expresión del Lagrangiano toma la forma9:

L(η, ξ) = 1

2
(∂µη)

2 − λv2η2︸ ︷︷ ︸
part́ıcula de masa mη

+
1

2
(∂µξ)

2 − 0 · ξ2︸ ︷︷ ︸
part́ıcula sin masa

−λvη3 − 1

4
λ η4 − 1

4
λ ξ4 − λvηξ2 − 1

2
λη2ξ2︸ ︷︷ ︸

interacciones

+
1

4
λv4︸ ︷︷ ︸

constante

(33)

Aparece el término cinético de las part́ıculas asociadas a los campos η y ξ. Sin embargo,

solo el campo η presenta término de masa, mη =
√
2λv2 (como en el caso del campo

real). La part́ıcula asociada al campo ξ no tiene masa. Las part́ıculas descritas presentan

autointeracciones de tres y cuatro puntos, aśı como interacciones entre ellas, caracterizadas

por las constantes λ y v. El último término no afecta a la dinámica del sistema y es irrelevante.

La part́ıcula sin masa que describe el Lagrangiano es consecuencia directa del teorema de

Goldstone, que establece que cuando una simetŕıa global se rompe espontáneamente aparecen

bosones sin masa, concretamente uno por cada generador del grupo de simetŕıa que conecta

estados de vaćıo. El campo η está asociado a oscilaciones radiales, dirección en la cual existe

variación del valor del potencial. En cambio, el campo ξ representa oscilaciones tangenciales:

no existe variación del potencial a lo largo de ese eje. Por ello, la part́ıcula ξ tiene masa nula.

3.3. Ruptura de simetŕıa gauge local

Cuando tenemos ruptura de una simetŕıa global, la transformación no depende de

las coordenadas. Veamos qué ocurre si consideramos una simetŕıa local, en la que la

transformación śı depende del punto del espacio-tiempo. Para ello consideramos la QED,

con una simetŕıa local U(1), y la aplicamos a un campo escalar complejo ϕ = 1√
2
(ϕ1 + iϕ2).

El Lagrangiano toma la forma:

L = (Dµϕ)∗(Dµϕ)−
1

4
FµνF

µν , (34)

donde la derivada covariante es Dµ = ∂µ− ieAµ. Igual que hemos visto para la QED aplicada

a un campo espinorial, este Lagrangiano es invariante frente a la transformación:

ϕ′ = e−iα(x)ϕ , A′
µ = Aµ − 1

e
∂µα(x) . (35)

Un potencial de la forma (30) es invariante frente a la transformación anterior. Por tanto,

lo añadimos al Lagrangiano preservando su simetŕıa. Tendremos que:

L = (Dµϕ)∗(Dµϕ)−
1

4
FµνF

µν − µ2ϕ∗ϕ− λ(ϕ∗ϕ)2 . (36)

9Los cálculos asociados están incluidos en el anexo B.2.1.
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Como hemos visto en el apartado 3.2, si µ2 > 0 el vaćıo estará en ϕ = 0. Se tratará del

Lagrangiano de la QED con un fotón sin masa, y dos part́ıculas escalares ϕ1 y ϕ2 de masa µ.

Sin embargo, si µ2 < 0, existen infinitos mı́nimos del potencial, que satisfacen ϕ21 + ϕ22 = v2.

Debemos elegir un mı́nimo para realizar un desarrollo en torno a este y poder interpretarlo.

Introducimos los campos η = ϕ1 − v y ξ = ϕ2. Se obtiene el Lagrangiano10:

L(η, ξ) = 1

2
(∂µη)

2 − λv2η2︸ ︷︷ ︸
part́ıcula η

+
1

2
(∂µξ)

2︸ ︷︷ ︸
part́ıcula ξ

−1

4
FµνF

µν +
1

2
e2v2A2

µ︸ ︷︷ ︸
campo del fotón

+
1

2
e2η2A2

µ +
1

2
e2ξ2A2

µ + e2vηA2
µ︸ ︷︷ ︸

interacciones con el fotón

−λvη3 − 1

4
λη4 − 1

4
λξ4 − λvηξ2 − 1

2
λη2ξ2︸ ︷︷ ︸

interacciones de las part́ıculas η y ξ

+
1

4
λv4︸ ︷︷ ︸

constante

−evAµ(∂
µξ)− eηAµ(∂

µξ) + eξAµ(∂
µη)︸ ︷︷ ︸

???

(37)

El Lagrangiano describe una part́ıcula escalar masiva η, una part́ıcula escalar sin masa ξ

y una part́ıcula vectorial Aµ que tiene masa. Aparecen también términos de interacción de

estos campos. Sin embargo, los últimos términos mezclan campos y sus derivadas y no tienen

una clara interpretación. Para encontrar una solución a este problema, recordamos que el

Lagrangiano es invariante frente a la transformación (35). Podemos observar que:

1

2
(∂µξ)

2 +
1

2
e2v2A2

µ − evAµ(∂
µξ) =

1

2
e2v2

(
Aµ − 1

ev
∂µξ

)2

.

Esto invita a tomar α(x) = ξ(x)/v y realizar una transformación de los campos,

A′
µ = Aµ − 1

ev
∂µξ , ϕ′ = e−iξ/vϕ . (38)

Esta elección de fase es denominada gauge unitario. Si operamos con el campo ϕ′, se obtiene:

ϕ′ = e−iξ/vϕ ≈ (1− iξ/v)
1√
2
(v + η + iξ)

=
1√
2
(v + η + iξ − iξ − iηξ/v + ξ2/v) =

1√
2
(v + η − iηξ/v + ξ2/v) ≈ 1√

2
(v + η) ,

que es válido para perturbaciones en torno al mı́nimo ya que ξ ≪ v. De esta forma, las

dependencias en el campo ξ se han eliminado, siendo absorbidas en el campo A′
µ gracias a la

simetŕıa gauge.

Si escribimos el Lagrangiano en términos de los nuevos campos, llamando al campo A′
µ

de nuevo Aµ, y en vez de η utilizamos la notación h, obtenemos11:

L(h) = 1

2
(∂µh)2 − λv2h2︸ ︷︷ ︸
part́ıcula masiva h

−1

4
FµνF

µν +
1

2
e2v2A2

µ︸ ︷︷ ︸
fotón con masa

+
1

2
e2h2A2

µ + e2vhA2
µ︸ ︷︷ ︸

interacciones con el fotón

−λvh3 − 1

4
λh4︸ ︷︷ ︸

interacciones de h

+
1

4
λv4︸ ︷︷ ︸

constante

(39)

10Los cálculos correspondientes se recogen en el anexo B.3.1.
11Los cálculos se recogen en el anexo B.3.2.
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Los primeros dos términos son el término cinético y de masa del campo h, identificando a una

part́ıcula escalar de masa mh =
√
2λv2. Los siguientes dos términos corresponden al campo

del fotón; el primero es el término cinético y el segundo el de masa, que tiene un valor no

nulo mγ = ev. Aparecen interacciones entre los dos campos. En particular 1
2e

2h2A2
µ es una

interacción de tres puntos entre una part́ıcula h y dos fotones, y e2vhA2
µ es una interacción

de cuatro puntos entre dos part́ıculas h y dos fotones. También tenemos autointeracciones de

la part́ıcula h, y el último término es una constante, que como ya hemos visto es irrelevante.

Aunque realmente el fotón no tiene masa, con este ejemplo sencillo hemos aprendido los

ingredientes necesarios para dotar de masa a las part́ıculas de una teoŕıa de campos gauge,

en la que la ruptura de una simetŕıa local genera una part́ıcula escalar h adicional: el bosón

de Higgs. Un procedimiento similar permite dar masa a los bosones de gauge mediadores de

la interacción débil: el mecanismo de Higgs, que se presenta en el apartado 4.

3.4. Otros posibles potenciales

Un potencial definido como en los apartados anteriores, con un término cuadrático y un

término de orden 4 (figura 4a), al que llamaremos potencial de Higgs, no es el único posible.

Es lógico preguntarse qué ocurre si se incluyen términos de otros órdenes en un potencial

polinómico. Vamos a verlo en el caso del campo escalar real.

(a) V (ϕ) = −ϕ2 + ϕ4 (b) V (ϕ) = −ϕ2 + ϕ3

(c) V (ϕ) = −ϕ2 + ϕ3 + ϕ4 (d) V (ϕ) = −ϕ2 − ϕ4 + ϕ6

Figura 4: Ejemplos de distintos potenciales polinómicos.

Términos de orden impar. Un término proporcional a ϕn con n impar no es simétrico

respecto a la transformación ϕ → −ϕ (figuras 4b y 4c). Por tanto, este tipo de términos

no se pueden incluir al no preservar la simetŕıa del Lagrangiano. Además, si el término de
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mayor grado en el potencial es de grado impar, no existirá un mı́nimo absoluto y la teoŕıa

será inestable (figura 4c), lo cual carece de sentido f́ısico.

Términos de orden par mayores. Los términos de orden par, por otra parte, śı que

preservan la simetŕıa del Lagrangiano respecto a la transformación ϕ → −ϕ (figura 4d).

Veamos con un ejemplo lo que ocurre si incluimos un término de grado 6. Sea el potencial:

V (ϕ) =
1

2
µ2ϕ2 − 1

4
λϕ4 +

1

6
δ ϕ6 , (40)

con µ2 < 0, λ > 0 y δ = −2λ2/µ2. Con estos valores12, el mı́nimo13 se produce en ϕ0 = ±v

y la masa de la part́ıcula es mη =
√
6λv2. El mı́nimo está en la misma posición que para

el potencial (25), mientras que la masa difiere en un factor
√
3. Sin embargo, como λ es

un parámetro libre, se puede ajustar para que las predicciones con ambos potenciales sean

iguales. Por tanto, incluir un término de grado 6 simplemente añade interacciones de un

orden mayor. El mecanismo de ruptura de simetŕıa se consigue igualmente con el potencial

estudiado en los apartados anteriores. Se puede observar como las gráficas de las figuras 4a

y 4d tienen cualitativamente el mismo comportamiento.

Por tanto, un potencial con términos de orden 2 y 4 es la forma más sencilla de reproducir

el mecanismo de ruptura de simetŕıa y dotar de masa a las part́ıculas. Es por ello que es el

potencial de Higgs que se utiliza en el SM.

4. Mecanismo de Higgs en el Modelo Estándar

Vamos a ver cómo se puede incluir en el SM el mecanismo de ruptura espontánea de

simetŕıa que hemos estudiado de forma simplificada, dando lugar al mecanismo de Higgs [9].

4.1. Ruptura de simetŕıa en la teoŕıa electrodébil

La teoŕıa electrodébil presenta una simetŕıa SU(2)L × U(1)Y . En primer lugar, se añade

un campo nuevo en forma de doblete:

ϕ =

(
ϕ+

ϕ0

)
=

1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
.

La carga eléctrica de las dos componentes del doblete se toma de forma que Y = 1, luego

veremos la razón. Al Lagrangiano de la teoŕıa se le añade el término asociado a este nuevo

campo, que como hemos visto anteriormente será:

Lϕ(ϕ) = (Dµϕ)†(Dµϕ)− V (ϕ) , (41)

12Se toma δ = −2λ2/µ2 para que la resolución anaĺıtica sea más sencilla. Todos los parámetros son libres,

aśı que siempre se pueden ajustar a las observaciones.
13En el anexo B.4 se incluyen los cálculos para encontrar el mı́nimo de potencial y la masa de la part́ıcula

asociada a las oscilaciones en torno a ese mı́nimo.
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donde Dµ es la derivada covariante definida en (22) para la teoŕıa electrodébil y V (ϕ) es un

potencial de la forma que ya hemos analizado, pero para un doblete:

V (ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2 , µ2 < 0 . (42)

De esta forma, ya disponemos de los ingredientes necesarios para la ruptura de la simetŕıa.

Los mı́nimos de este potencial14 son aquellos que cumplen ϕ21+ϕ
2
2+ϕ

2
3+ϕ

2
4 = v2. Para observar

la ruptura de simetŕıa, tomaremos un vaćıo ϕ0 concreto, de forma que sea neutro:

ϕ0 =
1√
2

(
0

v

)
−→ ϕ =

1√
2

(
ξ1 + iξ2

v + η + iξ4

)
−→ ϕ =

1√
2

(
0

v + h

)
.

Debido a la simetŕıa gauge asociada a los campos W j
µ y Bµ, las dependencias en ξ1, ξ2 y ξ3

desaparecen. Además, se ha renombrando η = h. Solo hay un nuevo grado de libertad, el

campo h que representa el bosón de Higgs.

Antes de observar las consecuencias de la ruptura espontánea de simetŕıa, veamos que

efectivamente se ha producido. Es decir, comprobaremos que los generadores del grupo de

simetŕıa aplicados al vaćıo ya no dan un valor nulo15:

σ1ϕ0 =

(
0 1

1 0

)
1√
2

(
0

v

)
=

1√
2

(
v

0

)
̸= 0 , σ2ϕ0 =

(
0 −i
i 0

)
1√
2

(
0

v

)
=

−i√
2

(
v

0

)
̸= 0 ,

σ3ϕ0 =

(
1 0

0 −1

)
1√
2

(
0

v

)
=

−1√
2

(
0

v

)
̸= 0 , Y ϕ0 =

(
1 0

0 1

)
1√
2

(
0

v

)
=

1√
2

(
0

v

)
̸= 0 .

Por tanto, el vaćıo no es invariante frente a transformaciones del grupo de simetŕıa. Sin

embargo, veamos qué ocurre con la simetŕıa U(1)EM , cuyo generador es Q = T3 +
1
2Y :

Qϕ0 =

(
1 0

0 0

)
1√
2

(
0

v

)
=

(
0

0

)
= 0 . (43)

La simetŕıa U(1)EM no se ha roto, ya que el vaćıo es invariante bajo transformaciones de este

grupo. Esto es porque el vaćıo es neutro, ya que tiene I3 = 1/2 e Y = 1.

En resumen, el nuevo campo ϕ rompe la simetŕıa SU(2)L × U(1)Y , pero no la simetŕıa

U(1)EM . Como veremos a continuación, esto provocará que los campos adquieran masa,

excepto el campo del fotón, asociado al grupo U(1)EM .

4.1.1. Masa de los bosones de gauge

Para estudiar las consecuencias de la ruptura de simetŕıa en la teoŕıa electrodébil,

desarrollamos el término cinético del campo ϕ en torno al vaćıo16. Puesto que para encontrar

14La sencilla determinación de la condición de mı́nimo se incluye en el anexo C.1.
15Si se tiene una transformación cuyos generadores infinitesimales son Ta, la invariancia bajo dicha

transformación se traduce de forma infinitesimal en (1 + iθaTa)ϕ = ϕ ⇒ Taϕ = 0.
16Los cálculos se incluyen en el anexo C.2. Ahora no nos interesan los términos de interacción, pero más

adelante los recuperaremos para escribir el Lagrangiano completo.
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las masas de los bosones de gauge tenemos que buscar los términos cuadráticos en los campos,

nos centramos en esa parte, que es proporcional a v2. El resultado es:

(Dµϕ)†(Dµϕ) =
v2

8

(
g2
(
(W1µ)

2 + (W2µ)
2
)
+ (−gW3µ + g′YϕBµ)

2
)
+ otros términos . (44)

Debemos ahora reescribir estos términos en función de los bosones que se observan

experimentalmente, los bosones f́ısicos. En primer lugar, se pueden combinar los bosones

W1 y W2 para dar los operadores escalera de los dobletes de SU(2)L:

W+
µ =

1√
2
(W1µ − iW2µ) , W−

µ =
1√
2
(W1µ + iW2µ) . (45)

Se tiene la relación:

(W1µ)
2 + (W2µ)

2 = (W+
µ )2 + (W−

µ )2 = 2W+µW−
µ . (46)

Por otro lado, los bosones W3 y B no son autoestados de masa, ya que aparecen términos

cuadráticos que los mezclan. El término cuadrático en cuestión es:

(−gW3µ + g′YϕBµ)
2 =

(
W3µ Bµ

)( g2 −gg′Yϕ
−gg′Yϕ g′2

)(
W3µ

Bµ

)
. (47)

Se debe notar que si Yϕ = 0, los camposW3 y B son autoestados de masa y no se mezclan.

Por otro lado, para que uno de los autoestados tenga masa 0, se debe anular el determinante

de la matriz. Es decir,

g2g′2 − (gg′Yϕ)
2 = 0 ⇔ Yϕ = ±1 .

Se hab́ıa elegido Yϕ = +1, por lo que se cumple esta condición17.

Diagonalizamos la matriz para obtener los autoestados de masa18. En base a ello, podemos

definir los bosones vectoriales (autoestados de masa normalizados):

Aµ =
1√

g2 + g′2
(g′W3µ + gBµ) , Zµ =

1√
g2 + g′2

(gW3µ − g′Bµ) , (48)

donde Aµ se interpreta como el fotón, mediador de la interacción electromagnética y sin masa,

y Zµ como el bosón neutro masivo mediador de la interacción débil.

Ahora, reescribimos (44) en función de los campos W±
µ , Zµ y Aµ. Se tiene:

(Dµϕ)†(Dµϕ) =
v2

8

(
g2(W+

µ )2 + g2(W−
µ )2 + (g2 + g′2)Z2

µ + 0 ·A2
µ

)
+ otros términos . (49)

Obtenemos aśı que no existe término de masa para el fotón; su masa es nula, y los términos

de masa de los bosones W+, W− y Z nos indican que:

MW± =
1

2
vg , MZ =

1

2
v
√
g2 + g′2 . (50)

17Si se elige Yϕ = −1, el fotón también tiene masa nula, pero en ese caso no se acopla a la carga eléctrica.

En lugar de acoplarse a Q = T3 +
1
2
Y , se acopla a Q̃ = −T3 +

1
2
Y . Más detalle sobre esto en el anexo C.5.

18Se realiza expĺıcitamente en el anexo C.3
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Por otro lado, reescribir el potencial en función del campo h es completamente idéntico al

cálculo desarrollado para el modelo sencillo del fotón con masa. Podemos, entonces, escribir

la parte que hemos añadido al Lagrangiano de la teoŕıa electrodébil en función del campo h:

Lϕ(h) =
1

2
(∂µh)2 − λv2h2︸ ︷︷ ︸
part́ıcula masiva h

+
1

8
v2g2(W+

µ )2 +
1

8
v2g2(W−

µ )2 +
1

8
v2(g2 + g′2)Z2

µ︸ ︷︷ ︸
términos de masa de los bosones de gauge

1

4
vg2h(W+

µ )2 +
1

4
vg2h(W−

µ )2 +
1

8
g2h2(W+

µ )2 +
1

8
g2h2(W−

µ )2︸ ︷︷ ︸
interacciones de los bosones W con la part́ıcula h

+
1

4
v(g2 + g′2)hZ2

µ +
1

8
(g2 + g′2)h2Z2

µ︸ ︷︷ ︸
interacciones de los bosones Z con la part́ıcula h

−λvh3 − 1

4
λh4︸ ︷︷ ︸

interacciones de h

+
1

4
λv4︸ ︷︷ ︸

constante

(51)

Notése que tenemos las masas de los bosones de gauge dadas en (50) y para el bosón de Higgs

mh =
√
2λv. Como g, g′ y λ son parámetros libres, el SM no predice un valor absoluto para

las masas de los bosones W± y Z, ni para la masa del bosón de Higgs. Experimentalmente,

se han medido estas masas: MW = 80,4 GeV, MZ = 91,2 GeV y mh = 125,3 GeV.

Las interacciones en el Lagrangiano anterior se pueden escribir en función de las masas19:

Lint =
2M2

W

v
hW+µW−

µ +
M2

W

v2
h2W+µW−

µ +
M2

Z

v
hZ2

µ +
M2

Z

2v2
h2Z2

µ −
m2

h

2v
h3 −

m2
h

8v2
h4. (52)

Ángulo de Weinberg. Si escribimos la mezcla de los bosones W3µ y Bµ en los bosones

Zµ y Aµ por medio de una matriz de rotación, se tiene:(
Zµ

Aµ

)
=

(
cos θW − sen θW

sen θW cos θW

)(
W3µ

Bµ

)
, (53)

donde θW se denomina ángulo de Weinberg. Escrito en función de las constantes de

acoplamiento de la teoŕıa electrodébil:

tan θW =
g′

g
, sen θW =

g′√
g2 + g′2

, cos θW =
g√

g2 + g′2
. (54)

Observamos que el ángulo de Weinberg se puede determinar a partir de la relación entre

las masas de los bosones W y Z:

cos θW =
MW

MZ
. (55)

El ángulo de Weinberg también relaciona las constantes de acoplamiento g, g′ y e. Si

escribimos la derivada covariante de la teoŕıa electrodébil en función de los campos f́ısicos Zµ

y Aµ, y comparamos con la derivada covariante de la QED, obtenemos20:

e = g′ cos θW = g sen θW . (56)

19Se han agrupado los bosones cargados de forma que los vértices de interacción son neutros, es decir, en

ellos se conserva la carga.
20Los cálculos expĺıcitos se incluyen en el anexo C.4.
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4.2. Masa de los fermiones

Como se ha comentado en el apartado 2.4.2, los términos de masa de la forma −mψ̄ψ =

−m(ψ̄LψR + ψ̄LψR) no son permitidos en el Lagrangiano de la teoŕıa electrodébil pues no

preservan la simetŕıa gauge. Sin embargo, se demuestra que un término de la forma ψ̄LϕψR

śı es invariante21. Por tanto, podemos añadir en el Lagrangiano términos de la forma:

Lf = −λf (ψ̄LϕψR + ψ̄Rϕ̄ψL) , (57)

donde λf se denomina constante de acoplamiento de Yukawa.

Masa de los leptones. Para los leptones, se tiene:

ψL =

(
νl

l

)
L

, ψR = lR , con l = e, µ, τ .

Si realizamos un desarrollo del término (57) asociado a una generación de leptones en torno

al mı́nimo ϕ0, se tiene22:

Ll = −λlv√
2
l̄l − λl√

2
hl̄l . (58)

El primer término es el término de masa del leptón cargado, y el segundo término es una

interacción de un bosón de Higgs con un leptón y un antileptón. Se deduce que la masa del

leptón cargado es ml =
λlv√
2
. El término de interacción es proporcional a esta, −ml

v hl̄l.

Se observa que solo los leptones cargados (electrón, muón y tau) adquieren masa e

interaccionan con el campo de Higgs. Los neutrinos no adquieren masa en el SM. Por otro

lado, como λl es un parámetro libre, no se predice un valor para las masas de los leptones.

Masa de los quarks. Siguiendo un procedimiento análogo y añadiendo al Lagrangiano

nuevos términos que involucran al campo de Higgs, todos los quarks adquieren masa. En este

caso se sabe que existe mezcla de quarks, ya que los autoestados de masa y autoestados de

sabor son diferentes. No lo estudiaremos en este trabajo.

4.3. Interacciones del bosón de Higgs en la teoŕıa electrodébil

A modo de resumen de las interacciones que presenta el bosón de Higgs en la teoŕıa

electrodébil, se recogen las reglas de Feynman23 correspondientes en la figura 5. Se trata de

la interacciones del Lagrangiano (52) y la interacción con fermiones que aparece en (58). Para

los bosones de gauge, se utiliza la notación V =W, Z.

21Se demuestra en el anexo C.6.
22Los cálculos se recogen en el anexo C.7.
23La regla de Feynman de un vértice de interacción se obtiene multiplicando el término del Lagrangiano que

involucra los campos por i y por un factor n! por cada n part́ıculas idénticas.
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(a) hff̄ ≡ −im
2
f

v
(b) hV V ≡ 2i

M2
V

v gµν (c) hhV V ≡ 2i
M2

V

v2 g
µν

(d) hhh ≡ −3i
m2

h

v (e) hhhh ≡ −3i
m2

h

v2

Figura 5: Vértices de interacción del bosón de Higgs en la teoŕıa electrodébil.

5. Desintegración del bosón de Higgs

Vamos a estudiar los canales de desintegración del bosón de Higgs [9, 10]. Esta información

permite estudiar la forma de detectar bosones de Higgs en los experimentos, demostrar su

existencia y ver sus propiedades. Nos centramos en calcular la anchura de desintegración del

bosón de Higgs a fermiones y a bosones de gauge, expresada en función de las masas. En una

desintegración a dos cuerpos, la anchura de desintegración viene dada por:

dΓ

dΩ
=

|M|2

32π2s
|pf |S , (59)

donde M es el elemento de matriz del proceso, pf es el momento de las part́ıculas producidas,

s es el invariante cinemático del proceso y S es un factor de simetŕıa, que toma valor 1/2 si

las part́ıculas producidas son idénticas y 1 si no lo son. Tomando como sistema de referencia

aquel en el que el bosón de Higgs se encuentra inicialmente en reposo, tendremos s = m2
h,

siendo mh la masa del bosón de Higgs.

5.1. Desintegración a fermiones y a bosones de gauge.

Hemos visto que el bosón de Higgs interacciona con un fermión y un antifermión (hff̄) y

con dos bosones de gauge (hV V , donde V = W, Z), cuyos vértices de interacción son −im
2
f

v

y 2i
M2

V
v gµν , respectivamente. Estas interacciones dan lugar a dos canales de desintegración,

cuyos diagramas de Feynman corresponden a las figuras 5a y 5b. A partir de las reglas de

Feynmann de estos vértices, un cálculo perturbativo de primer orden permite obtener el

elemento de matriz del proceso, con lo que se puede calcular la anchura de desintegración de

los procesos utilizando (59).
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Para la anchura de desintegración a fermiones, obtenemos24:

Γ(h→ ff̄) =
Nc

8πv2
m2

fmh(1− x)3/2 , con x =
4m2

f

m2
h

, (60)

y donde Nc es el número de color (1 para leptones y 3 para quarks) y mf la masa del fermión.

Para la desintegración a bosones de gauge, la anchura queda25:

Γ(h→ V V ) =
SV

16πv2
m2

h

(
1− x+

3

4
x2
)
(1− x)1/2 , con x =

4M2
V

m2
h

. (61)

En la expresión anterior SV es el factor de simetŕıa26 (1 para bosones W y 1/2 para bosones

Z), y MV la masa del bosón de gauge.

En las desintegraciones se debe conservar la enerǵıa, de modo que en el primer caso se

debe cumplir mh > 2mf , y en el segundo mh > 2MV . Es entonces cuando x < 1 y las

ecuaciones correspondientes tienen sentido matemático.

5.2. Otras desintegraciones

Además de los procesos h → ff̄ y h → V V , el bosón de Higgs presenta otros canales

de desintegración. Si consideramos términos de orden superior en teoŕıa de perturbaciones

(diagramas a un loop) se puede desintegrar a fotones y a gluones. Estas contribuciones serán

incluidas en el análisis numérico, aunque el cálculo expĺıcito no se ha realizado27. Se toman

expresiones de la literatura [9].

5.3. Branching ratios del bosón de Higgs

Una vez conocemos los canales de desintegración del bosón de Higgs y la anchura de

desintegración Γi correspondiente a cada uno, podemos calcular el branching ratio o razón

de desintegración.

BRi =
Γi

ΓT
, con ΓT =

∑
i

Γi . (62)

BRi representa la probabilidad de que dada una desintegración del bosón de Higgs, esta se

haya producido mediante el proceso i.

Mediante un programa de Python28, se han calculado las anchuras de desintegración, en

el rango demh entre 60 y 250 MeV, de los siguientes procesos: h→ ff̄ (para f = µ, τ, c, b29),

h → V V (para V = W, Z), h → γγ y h → gg. Los valores de las masas de las part́ıculas y

24El cálculo del diagrama de Feynman y la anchura de desintegración se incluye en el anexo D.1.
25Cálculo recogido en el anexo D.2.
26Notar que cuando la desintegración es a bosones W , como el bosón de Higgs es neutro, se produce un

bosón W+ y un W−, que son part́ıculas distinguibles.
27Los diagramas de Feynman correspondientes a estos procesos (figura 9) y las anchuras de desintegración

se presentan en el anexo D.3.
28En el anexo D.4 se incluye el código utilizado.
29Los fermiones νl, e, u, d, s tienen una masa demasiado pequeña y su anchura de desintegración es

despreciable. El quark t tiene una masa demasiado grande y la desintegración es imposible ya que mh < 2mt.
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las constantes de acoplamiento en el SM dependen de la escala de enerǵıa a la que estemos

trabajando. En este caso, la escala de enerǵıa viene dada por el rango de mh en el que vamos

a realizar los cálculos. Los valores para las masas que utilizamos se recogen en la tabla 1,

fijados a la escala de enerǵıa µ = MZ ≈ 91 GeV. En la figura 6 se presentan los resultados

de los branching ratios asociados a cada uno de los procesos.

Tabla 1: Valores de las masas de las part́ıculas y de las constantes de acoplamiento en la

escala de enerǵıa µ =MZ [11].

MW (GeV) 80,379 mµ (GeV) 0,102877± 0,000018 v (GeV) 248,404± 0,036

MZ (GeV) 91,1876 mτ (GeV) 1,74743± 0,00012 αs 0,1176± 0,0010

mc (GeV) 0,628± 0,018 α−1 127,754± 0,026

mb (GeV) 2,866± 0,026

Figura 6: Branching ratios del bosón de Higgs.

Se distinguen tres rangos de enerǵıa en los que las desintegraciones más probables del

bosón de Higgs son notablemente distintas, entre los cuales hay un salto abrupto. Para

mh < 2MW , la desintegración más probable es al quark bottom, aunque también se produce

al tau, al charm y a gluones (esta última probabilidad aumenta con mh). En este caso la

desintegración a fotones y al muón son despreciables. En el rango 2MW < mh < 2MZ ,

la desintegración a bosones W es dominante, siendo el resto de canales de desintegración

despreciable. Si mh > 2MZ , las desintegraciones dominantes son a bosones W o Z, con

mayor probabilidad a los primeros. El resto de procesos son muy poco probables.

Vamos a comparar nuestros resultados con los presentados en la literatura [12], que

se muestran en la figura 7. Se observa la misma dependencia cualitativa, excepto para

los bosones de gauge. Esto es porque la desintegración a bosones W y Z es posible para

mh < 2MV , siempre que uno de ellos esté off-shell, es decir, sea un bosón virtual que se

desintegra inmediatamente en otras part́ıculas. En este trabajo no hemos considerado estas

contribuciones. Una consecuencia de estos canales de desintegración es que las curvas sean

suaves, ya que no se produce el salto abrupto en mh = 2MW y en mh = 2MZ .
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Figura 7: Branching ratios del bosón de Higgs [12].

6. Transiciones de fase y mecanismo de Higgs

La ruptura espontánea de simetŕıa no es un fenómeno exclusivo del SM. Previamente a la

propuesta del mecanismo de Higgs, ya se hab́ıa estudiado en F́ısica de la Materia Condensada.

En particular, está estrechamente relacionada con las transiciones de fase [13].

6.1. Teoŕıa de Landau de las transiciones de fase

La teoŕıa de Landau explica de forma general las transiciones de fase. Por concretar, vamos

a estudiar la transición ferromagnética. Se observa que los materiales ferromagnéticos solo

presentan magnetización espontánea por debajo de una temperatura cŕıtica Tc, mientras que

por encima de ella esta magnetización desaparece y su comportamiento es paramagnético.

En la fase paramagnética, los momentos magnéticos en el material están orientados

aleatoriamente, por lo que la contribución a la magnetización total se anula. En la fase

ferromagnética, los momentos magnéticos de átomos vecinos se alinean en la misma dirección

y la magnetización neta es distinta de cero. Podemos observar claramente cómo en la

transición se pierde la simetŕıa. En la fase paramagnética, no existe una dirección privilegiada

(hay simetŕıa de inversión), mientras que en la fase ferromagnética esta simetŕıa desaparece.

En la teoŕıa de Landau se utiliza un parámetro de orden, que toma valor cero en una fase

y no nulo en la otra. Para este caso, se toma la magnetización M , que como hemos dicho es

nula en la fase paramagnética. En torno a la temperatura cŕıtica, se expande la enerǵıa del

sistema en potencias de M ,

E(M) = αM2 + βM4 . (63)

Solo tenemos potencias pares, ya que el sistema tiene simetŕıa de inversión. Se pueden añadir

términos de orden superior, pero con dos es suficiente para capturar la transición de fase30.

30La transición de fase que se produce en este caso es de segundo orden, es decir, el parámetro de orden no
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Los coeficientes α y β dependen de la temperatura. β > 0 para que la enerǵıa tenga un mı́nimo

absoluto. Si α < 0 para T < Tc y α > 0 para T > Tc, se captura el distinto comportamiento

en las dos fases31. En la figura 8 se observa la enerǵıa de Landau a distintas temperaturas.

Para T > Tc, el mı́nimo de enerǵıa se produce en M0 = 0. No hay magnetización

espontánea. Para T < Tc, el mı́nimo de enerǵıa está en M0 = ±
√

−α/β. El sistema caerá en

uno de estos dos mı́nimos, en cualquier caso, con magnetización espontánea.

Figura 8: Enerǵıa de Landau a diferentes temperaturas.

Como vemos, la teoŕıa de Landau recoge adecuadamente la caracteŕıstica distintiva de

cada fase. Es un caso de ruptura espontánea de simetŕıa, ya que la enerǵıa que describe el

sistema preserva siempre la simetŕıa de inversión, pero el estado de mı́nima enerǵıa pierde

esa simetŕıa en la fase ferromagnética.

6.2. Transición de fase electrodébil

Puede ocurrir una transición de fase en el marco del SM. En una fase, el campo de Higgs

tendŕıa un v.e.v. nulo, mientras que en la otra este valor pasaŕıa a ser no nulo. En analoǵıa

con la teoŕıa de Landau, el parámetro de orden seŕıa el v.e.v. del potencial de Higgs.

De hecho, se cree que las part́ıculas elementales adquirieron masa unos nanosegundos

después del Big Bang debido a esta transición de fase en el campo de Higgs, a una temperatura

cŕıtica Tc ∼ 160 GeV. Además, como hemos visto en este trabajo, los bosones de la teoŕıa

electrodébil también se diferenciaŕıan, separando la interacción electrodébil en la interacción

electromagnética de largo alcance (cuya part́ıcula mediadora tiene masa nula) y la interacción

débil, de corto alcance y mediada por tres bosones masivos.

Esta transición se puede capturar en el potencial de Higgs, añadiendo la dependencia de

presenta una discontinuidad en la transición (hay discontinuidades en la derivada). Si se quiere capturar una

transición de primer orden, en la que existe esta discontinuidad en el parámetro de orden, es necesario añadir

al menos un término de orden 6.
31En torno a la transición, podemos asumir que α tiene una dependencia lineal con la temperatura,

pasando por cero en la temperatura cŕıtica. Por ello, el valor M0 en el que se produce el mı́nimo no presenta

discontinuidad.
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la temperatura32:

V (T, ϕ) = (µ2 + bT 2)ϕ†ϕ+ λ(ϕ†ϕ)2 . (64)

El coeficiente α = µ2 + bT 2 será positivo en los momento iniciales del Universo, cuando

estaba por encima de la temperatura cŕıtica. Por debajo de ella, es negativo. Por tanto, el

valor de la temperatura cŕıtica es Tc =
√

−µ2/b. Actualmente, la temperatura del universo

es cercana al cero absoluto, por lo que α = µ2 y recuperamos el potencial de Higgs habitual.

7. Conclusiones

El bosón de Higgs es la pieza que completa el SM, una de las teoŕıas más exitosas de la

F́ısica. Su existencia es consecuencia de un inteligente mecanismo que da masa a las part́ıculas

del modelo preservando sus simetŕıas.

En una breve introducción al SM, hemos visto la forma de construir las interacciones a

partir de la imposición de una simetŕıa local a la teoŕıa. Esto se puede realizar debido a la

invarianza gauge de los campos mediadores de las interacciones, causada por un exceso de

grados de libertad en la teoŕıa respecto a la realidad. Desarrollado con detalle para la simetŕıa

U(1) y la interacción electromagnética, hemos podido entender la estrategia para introducir

la interacción débil como consecuencia de la simetŕıa SU(2). Las simetŕıas tienen un papel

central en el SM, sin embargo, son las que impiden a las part́ıculas adquirir masa.

Para solucionar este problema, se introduce el concepto de ruptura espontánea de simetŕıa.

Se produce cuando una teoŕıa con cierta simetŕıa no la presenta en el estado de mı́nima

enerǵıa, el vaćıo. A través de ejemplos sencillos, para los que se han realizado los cálculos

con detalle, hemos comprendido este mecanismo y la forma más simple de implementarlo.

Además, gracias a la invariancia gauge, la ruptura de simetŕıa solamente introduce un nuevo

grado de libertad: una part́ıcula escalar masiva. Esto se ha comprobado con un modelo de

un fotón con masa, que aunque no es correcto, sirve para entender el mecanismo de Higgs.

Al implementar el mecanismo de Higgs en el SM, y romper la simetŕıa de la teoŕıa

electrodébil, los bosones de gauge mediadores de la interacción débil adquieren masa mientras

que el fotón permanece sin masa. Además, se pueden introducir términos de masa para los

fermiones. Todo este desarrollo se ha podido seguir en detalle. La nueva part́ıcula escalar no

es otra que el bosón de Higgs. Además de introducir términos de masa, hemos visto cómo

aparecen interacciones de las part́ıculas con el bosón de Higgs. En particular, interacciones

con fermiones y bosones de gauge que dan lugar a canales de desintegración del bosón de

Higgs, cuyas anchuras de desintegración se han calculado en este trabajo. Hemos comparado

los resultados con los que aparecen en la literatura.

32Aunque aqúı se modelice como una transición de segundo orden, se cree que la transición de fase

electrodébil no es de primer ni de segundo orden, sino una transición de crossover en la que la primera

derivada del parámetro de orden tampoco presenta discontinuidad.
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Por último, es importante destacar la relación de la ruptura espontánea de simetŕıa con

otros fenómenos f́ısicos muy diversos. En este trabajo lo hemos relacionado con la teoŕıa

de Landau para las transiciones de fase, basada en la bifurcación de los puntos estables de

una función enerǵıa. Esta teoŕıa puede ser aplicada al propio SM: se conoce como transición

de fase electrodébil. Esta última parte del trabajo refleja la importancia de la cooperación

entre disciplinas, ya que una idea de una rama del conocimiento puede resultar crucial en el

desarrollo de otra muy diferente.
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Anexos

A. Modelo Estándar

A.1. Potenciales electromagnéticos e invariancia gauge

Veamos en primer lugar que las ecuaciones de Maxwell homogéneas se satisfacen

automáticamente al introducir los potenciales electromagnéticos (5):

∇⃗ · B⃗ = ∇⃗ ·
(
∇⃗ × A⃗

)
= 0 ,

∇⃗ × E⃗ = ∇⃗ ×

(
−∇⃗φ− ∂A⃗

∂t

)
= − ∂

∂t

(
∇× A⃗

)
= −∂B⃗

∂t
,

donde se ha utilizado que el rotacional del gradiente y la divergencia del rotacional son siempre

nulos, y que las derivadas conmutan.

Ahora, comprobamos que el campo eléctrico y magnético son invariantes frente a la

transformación de gauge (6).

E⃗′ = −∇⃗φ′ − ∂A⃗′

∂t
= −∇⃗

(
φ+

∂f

∂t

)
− ∂

∂t

(
A⃗− ∇⃗f

)
= −∇⃗φ− ∇⃗∂f

∂t
− ∂A⃗

∂t
+ ∇⃗∂f

∂t
= −∇⃗φ− ∂A⃗

∂t
= E⃗ ,

B⃗′ = ∇⃗ × A⃗′ = ∇⃗ ×
(
A⃗− ∇⃗f

)
= ∇⃗ × A⃗ = B⃗ .

Se han utilizado las mismas propiedades que antes.

A.2. Formulación covariante de las ecuaciones de Maxwell

En primer lugar, vamos a comprobar que la expresión (7) del tensor Fµν a partir del

potencial Aµ da lugar a la matriz siguiente, dependiente de los campos eléctrico y magnético:

Fµν =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 . (65)

Se toma la métrica gµν = diag(1,−1,−1,−1). Las coordenadas son xµ = (t, x⃗), y por tanto

∂µ = (∂t, ∇⃗).

Como la expresión de Fµν es antisimétrica, basta comprobar las 6 componentes

independientes del tensor:
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F 01 = ∂0A1 − ∂1A0 = ∂tAx + ∂xφ = −Ex ,

F 02 = ∂0A2 − ∂2A0 = ∂tAy + ∂yφ = −Ey ,

F 03 = ∂0A3 − ∂3A0 = ∂tAz + ∂zφ = −Ez ,

F 12 = ∂1A2 − ∂2A1 = −∂xAy + ∂yAx = −Bz ,

F 13 = ∂1A3 − ∂3A1 = −∂xAz + ∂zAx = By ,

F 23 = ∂2A3 − ∂3A2 = −∂yAz + ∂zAy = −Bx .

Por tanto, la definición en forma de matriz es correcta.

Ahora, veamos que las ecuaciones covariantes (9) son equivalentes a las ecuaciones de

Maxwell (4).

Para la ecuación no homogénea, es conveniente notar que todas las permutaciones de

los mismos tres ı́ndices dan la misma ecuación, debido a su forma ćıclica, su homogeneidad

y la antisimetŕıa del tensor electromagnético. Por tanto, se trata tan solo de 4 ecuaciones

independientes:

λ = 0, µ = 1, ν = 2 : ∂0F 12 + ∂1F 20 + ∂2F 01 = −∂tBz − ∂xEy + ∂yEx = 0 ,

λ = 0, µ = 2, ν = 3 : ∂0F 23 + ∂2F 30 + ∂3F 02 = −∂tBx − ∂yEz + ∂zEy = 0 ,

λ = 0, µ = 3, ν = 1 : ∂0F 31 + ∂3F 10 + ∂1F 03 = −∂tBy − ∂zEx + ∂xEz = 0 ,

λ = 1, µ = 2, ν = 3 : ∂1F 23 + ∂2F 31 + ∂3F 12 = ∂xBx + ∂yBy + ∂zBz = 0 .

Las primeras tres ecuaciones corresponden a las tres componentes de la ecuación de Maxwell

para el rotacional del campo eléctrico. La última es la ecuación para la divergencia del campo

magnético.

Para la ecuación no homogénea, se tiene:

µ = 0 : ∂0F
00 + ∂1F

10 + ∂2F
20 + ∂3F

30 = j0 ⇔ ∂xEx + ∂yEy + ∂zEz = ρ ,

µ = 1 : ∂0F
01 + ∂1F

11 + ∂2F
21 + ∂3F

31 = j1 ⇔ −∂tEx + ∂yBz − ∂zBy = jx

µ = 2 : ∂0F
02 + ∂1F

12 + ∂2F
22 + ∂3F

32 = j2 ⇔ −∂tEy − ∂xBz + ∂zBx = jy ,

µ = 2 : ∂0F
02 + ∂1F

12 + ∂2F
22 + ∂3F

32 = j2 ⇔ −∂tEz + ∂xBy − ∂yBx = jz .

La ecuación para µ = 0 es la ecuación de Maxwell para la divergencia del campo eléctrico. Las

ecuaciones para µ = i son las tres componentes de la ecuación de Maxwell para el rotacional

del campo magnético.

Por último, vamos a comprobar que el Lagrangiano (10) recoge la ecuación no homogénea

anterior. En primer lugar, notar que:

FµνFµν =(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) = ∂µAν∂µAν − ∂µAν∂νAµ

− ∂νAµ∂µAν + ∂νAµ∂νAµ = 2∂µAν∂µAν − 2∂µAν∂νAµ .
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Entonces:

∂L
∂Aσ

=
∂

∂Aσ
(−jµAµ) = −jσ ,

∂ρ
∂L

∂(∂ρAµ)
= ∂ρ

∂

∂(∂ρAσ)

(
−1

4
FµνFµν

)
= −1

2
∂ρ

∂

∂(∂ρAσ)
(∂µAν∂µAν − ∂µAν∂νAµ)

= −1

2
∂ρ (2∂

ρAσ − 2∂σAρ) = −∂ρ(∂ρAσ − ∂σAρ) = −∂ρF ρσ .

Por lo tanto, las ecuaciones de Euler-Lagrange quedan:

−jσ + ∂ρF
ρσ = 0 ⇔ ∂ρF

ρσ = jσ ,

que es efectivamente la ecuación no homogénea.

A.3. Acoplamiento mı́nimo en la QED

Queremos demostrar que el Lagrangiano (14) tiene simetŕıa U(1) local. Sabemos que el

tensor electromagnético es invariante gauge, ya que solo depende de campo Aµ. Veamos cómo

transforma la derivada covariante del campo:

D′
µψ

′ =(∂µ + ieQA′
µ)ψ

′ =

(
∂µ + ieQ

(
Aµ − 1

e
∂µα

))
eiQαψ = eiQα∂µψ + iQ(∂µα)e

iQαψ

+ ieQAµe
iQαψ − iQ(∂µα)e

iQαψ = eiQα∂µψ + ieQAµe
iQαψ = eiQαDµψ .

Por tanto,

L′ = −1

4
F ′µνF ′

µν + ψ̄′(iγµD′
µψ

′ −mψ′) = −1

4
FµνFµν + ψ̄e−iQα(iγµeiQαDµψ −meiQαψ)

=
1

4
FµνFµν + ψ̄(iγµDµψ −mψ) = L .

El Lagrangiano es invariante bajo transformaciones U(1) locales.

B. Ruptura espontánea de simetŕıa. Mecanismo de Higgs

B.1. Campo escalar real

B.1.1. Mı́nimos del potencial

Buscamos los mı́nimos de la función potencial (25).

V ′(ϕ) = µ2ϕ+ λϕ3 = ϕ(µ2 + λϕ2) = 0 .

La derivada se anula siempre para ϕ = 0, pero también para ϕ = ±
√
−µ2/λ si µ2 < 0.

Veamos si se trata de mı́nimos o máximos.

V ′′(ϕ) = µ2 + 3λϕ2 .

Si µ2 > 0, la función presenta un mı́nimo en ϕ0 = 0 ya que V ′′(0) = µ2 > 0.

Si µ2 < 0, la función presenta dos mı́nimos en ϕ0 = ±
√
−µ2/λ = ±v, ya que V ′′(±v) =

−2µ2 > 0. En este caso, V ′′(0) = µ2 < 0, por lo que en ϕ0 = 0 tiene un máximo.
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B.1.2. Desarrollo del Lagrangiano en torno al mı́nimo

En el caso µ2 < 0, realizamos un desarrollo del Lagrangiano (24) en torno a ϕ0 = v.

Introduciendo el campo η = ϕ− v centrado en dicho mı́nimo, se tiene:

1

2
∂µϕ∂

µϕ =
1

2
∂µ(v + η) ∂µ(v + η) =

1

2
∂µη ∂

µη ,

V (ϕ) =
1

2
µ2(v + η)2 +

1

4
λ(v + η)4

= −1

2
λv2

(
η2 + 2vη + v2

)
+

1

4
λ
(
η4 + 4vη3 + 6v2η2 + 4v3η + v4

)
= −1

2
λv2η2 − λv3η2 − 1

2
λv4 +

1

4
λη4 + λvη3 +

3

2
λv2 + λv3η +

1

4
λv4

= −1

4
λv4 + λv2η2 + λvη3 +

1

4
λη4 .

Se ha utilizado que µ2 = −λv2.

Finalmente, el Lagrangiano en torno al mı́nimo queda:

L(η) = 1

2
(∂µη)

2 − λv2η2 − λvη3 − 1

4
λη4 +

1

4
λv4 . (66)

B.2. Campo escalar complejo

B.2.1. Mı́nimos del potencial

Tratamos el potencial (30) como una función de dos variables reales:

V (ϕ1, ϕ2) =
1

2
µ2
(
ϕ21 + ϕ22

)
+

1

4
λ
(
ϕ21 + ϕ22

)2
.

Observamos que esta función no es más que el potencial escalar real ya estudiado, evaluado

en
√
ϕ21 + ϕ22. Por tanto, se tendrán dos situaciones:

Si µ2 > 0, la función presenta un mı́nimo en los puntos en los que
√
ϕ21 + ϕ22 = 0, es

decir, en ϕ0 = 0.

Si µ2 < 0, la función presenta un mı́nimo en los puntos en los que
√
ϕ21 + ϕ22 = v, es

decir, si |ϕ0| = v/
√
2. En este caso, en ϕ0 = 0 tiene un máximo.

B.2.2. Desarrollo del Lagrangiano en torno al mı́nimo

En el caso µ2 < 0, realizamos un desarrollo del Lagrangiano (31) en torno a ϕ1 = v,

ϕ2 = 0. Introducimos para ello los campos η = ϕ1 − v y ξ = ϕ2, que están centrados en ese

mı́nimo. Se tiene, por tanto:
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1

2
∂µϕ1 ∂

µϕ1 =
1

2
∂µ(v + η) ∂µ(v + η) =

1

2
∂µη ∂

µη ,

1

2
∂µϕ2 ∂

µϕ2 =
1

2
∂µξ ∂

µξ ,

V (ϕ1, ϕ2) =
1

2
µ2
(
(v + η)2 + ξ2

)
+

1

4
λ
(
(v + η)2 + ξ2

)2
=

1

2
µ2
(
η2 + 2vη + v2 + ξ2

)
+

1

4
λ
(
(v + η)4 + 2(v + η)2ξ2 + ξ4

)
= − 1

2
λv2

(
η2 + 2vη + v2 + ξ2

)
+

1

4
λ
(
η4 + 4vη3 + 6v2η2 + 4v3η + v4 + 2η2ξ2 + 4vηξ2 + 2v2ξ2 + ξ4

)
= − 1

4
λv4 + λv2η2 + λvη3 +

1

4
λη4 + λvηξ2 +

1

2
λη2ξ2 +

1

4
λξ4 .

Se ha utilizado que µ2 = −λv2.

Finalmente, el Lagrangiano en torno al mı́nimo queda:

L(η, ξ) = 1

2
(∂µη)

2+
1

2
(∂µξ)

2−λv2η2−λvη3− 1

4
λη4−λvηξ2− 1

2
λη2ξ2− 1

4
λξ4+

1

4
λv4 . (67)

B.3. Ruptura de simetŕıa U(1) local

B.3.1. Desarrollo del Lagrangiano en torno al mı́nimo

Realizamos un desarrollo del Lagrangiano (36) en torno a ϕ1 = v, ϕ2 = 0. Como en casos

anteriores, utilizamos los campos η = ϕ1 − v y ξ = ϕ2, que están centrados en este mı́nimo.

Se tiene:

(Dµϕ)∗(Dµϕ) = (∂µ + ieAµ)
1√
2
(v + η − iξ)(∂µ − ieAµ)

1√
2
(v + η + iξ)

=
1

2
(∂µη − i∂µξ + ievAµ + ieηAµ + eξAµ)(∂µη + i∂µξ − ievAµ − ieηAµ + eξAµ)

=
1

2
(∂µη + eξAµ)2 +

1

2
(−∂µξ + evAµ + eηAµ)2

=
1

2
(∂µη)2 +

1

2
e2ξ2A2

µ + eξAµ∂
µη +

1

2
(∂µξ)2 +

1

2
e2v2A2

µ +
1

2
e2η2A2

µ

− evAµ∂
µξ − eηAµ∂

µξ + e2vηA2
µ .

El potencial en función de estos campos ya lo hemos calculado anteriormente. Con todo

ello, el Lagrangiano en torno al mı́nimo queda:

L(η, ξ) = 1

2
(∂µη)2 +

1

2
e2ξ2A2

µ + eξAµ∂
µη +

1

2
(∂µξ)2 +

1

2
e2v2A2

µ +
1

2
e2η2A2

µ

− evAµ∂
µξ − eηAµ∂

µξ + e2vηA2
µ − 1

4
FµνF

µν − λv2η2 − λvη3

− 1

4
λη4 − λvηξ2 − 1

2
λη2ξ2 − 1

4
λξ4 +

1

4
λv4 .

(68)
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B.3.2. Lagrangiano en el gauge unitario

Reescribimos el Lagrangiano (36) en el gauge unitario, es decir, en función del campo

ϕ = 1√
2
(v + h). Para no repetir los cálculos, basta evaluar el Lagrangiano (68) en η = h,

ξ = 0. Se obtiene:

L(h) = 1

2
(∂µh)2 +

1

2
e2v2A2

µ +
1

2
e2h2A2

µ + e2vhA2
µ

− 1

4
FµνF

µν − λv2h2 − λvh3 − 1

4
λh4 +

1

4
λv4 .

(69)

B.4. Potencial con término de grado 6

Tenemos el potencial (40), con µ2 < 0. En primer lugar, buscamos sus mı́nimos.

V ′(ϕ) = µ2ϕ− λϕ3 + δϕ5 = ϕ(µ2 − λϕ2 + δϕ4) = 0 ,

con δ = −2λ2/µ2. La derivada se anula en ϕ0 = 0, o si

µ2 − λϕ2 + δϕ4 = 0 ⇒ ϕ2 =
λ±

√
λ2 − 4µ2δ

2δ
=
λ±

√
λ2 + 8λ2

−4λ2/µ2

= −1± 3

4
· µ2/λ ⇒ ϕ2 = −µ2/λ = v2 ,

es decir, en ϕ0 = ±v. Si evaluamos la segunda derivada:

V ′′(ϕ) = µ2 − 3λϕ2 + 5δϕ4 ⇒
V ′′(0) = µ2 < 0 ,

V ′′(v) = µ2 + 6µ2 − 10µ2 = −3µ2 > 0 .

Por tanto, el mı́nimo se encuentra en ϕ0 = ±v. Podemos realizar un desarrollo en torno

al mı́nimo para encontrar la masa de la part́ıcula asociada. Para ello, introducimos el campo

η = ϕ − v. En lugar de evaluar el potencial con este cambio de variable, podemos extraer

solamente el coeficiente que acompaña a η2 utilizando el binomio de Newton.

1

2
µ2(v + η)2 → 1

2
µ2 · η2 = −1

2
λv2η2

−1

4
λ(v + η)4 → −1

4
λ · 6v2η2 = −3

2
λv2η2

1

6
δ(v + η)6 → 1

6
δ · 15v4η2 = 5λv2η2

⇒ 1

2
m2

ηη
2 = 3λv2η2 .

Por tanto, en este caso la masa de la part́ıcula η es mη =
√
6λv2.

C. Mecanismo de Higgs en el Modelo Estándar

C.1. Mı́nimos del potencial

Si tratamos el potencial (42) como una función de 4 variables reales, tenemos:

V (ϕ1, ϕ2, ϕ3, ϕ4) =
1

2
µ2
(
ϕ21 + ϕ22 + ϕ23 + ϕ24

)
+

1

4
λ
(
ϕ21 + ϕ22 + ϕ23 + ϕ24

)2
. (70)

No es más que el potencial real, ya estudiado, evaluado en
√
ϕ21 + ϕ22 + ϕ23 + ϕ24. Como

µ2 < 0, los mı́nimos están en aquellos puntos que cumplan que ϕ21 + ϕ22 + ϕ23 + ϕ24 = v2.

31



C.2. Desarrollo del témino cinético

Debemos aplicar la derivada covariante en torno al vaćıo que hemos escogido. Aśı,

Dµϕ =

[
∂µ + ig

1

2
σ⃗ · W⃗µ + ig′

1

2
Y Bµ

]
1√
2

(
0

v + h

)

=
1

2
√
2

[
2∂µ

(
1 0

0 1

)
+ igW1µ

(
0 1

1 0

)
+ igW2µ

(
0 −i
i 0

)
+ igW3µ

(
1 0

0 −1

)

+ig′YϕBµ

(
1 0

0 1

)](
0

v + h

)

=
1

2
√
2

(
2∂µ + igW3µ + ig′YϕBµ ig(W1µ − iW2µ)

ig(W1µ + iW2µ) 2∂µ − igW3µ + ig′YϕBµ

)(
0

v + h

)

=
1√
2

(
0

∂µh

)
+

i

2
√
2
(v + h)

(
g(W1µ − iW2µ)

−gW3µ + g′YϕBµ

)
,

(Dµϕ)† =

[
1√
2

(
0

∂µh

)
+

i

2
√
2
(v + h)

(
g(Wµ

1 − iWµ
2 )

−gWµ
3 + g′YϕB

µ

)]†
=

1√
2

(
0 ∂µh

)
− i

2
√
2
(v + h)

(
g(Wµ

1 + iWµ
2 ) −gWµ

3 + g′YϕB
µ
)
.

Finalmente, el término cinético queda:

(Dµϕ)† (Dµϕ) =
1

2
(∂µh)

2 +
1

8
(v + h)2

(
g2(W 2

1µ +W 2
2µ) + (−gW3µ + g′YϕBµ)

2
)
. (71)

C.3. Mezcla de los bosones de gauge W3 y B

Queremos diagonalizar la matriz siguiente:

M =

(
g2 −gg′

−gg′ g′2

)
.

Primero obtenemos sus valores propios:

det(M − λI) = 0 ⇒

∣∣∣∣∣g2 − λ −gg′

−gg′ g′2 − λ

∣∣∣∣∣ = (g2 − λ)(g′2 − λ)− g2g′2

= λ2 − (g2 + g′2)λ = 0 .

Las soluciones son λ1 = 0 y λ2 = g2 + g′2. Buscamos ahora los vectores propios asociados:(
g2 − λ1 −gg′

−gg′ g′2 − λ1

)(
x

y

)
=

(
g2 −gg′

−gg′ g′2

)(
x

y

)
=

(
0

0

)

g2x− gg′y = 0 ⇒ x = g′, y = g ⇒ v1 =

(
g′

g

)
,

(
g2 − λ2 −gg′

−gg′ g′2 − λ2

)(
x

y

)
=

(
−g′2 −gg′

−gg′ −g2

)(
x

y

)
=

(
0

0

)

−g′2x− gg′y = 0 ⇒ x = g, y = −g′ ⇒ v2 =

(
g

−g′

)
.
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C.4. Relación entre los parámetros de la teoŕıa electrodébil

Sabemos que la mezcla de los bosones W3 y B está dada por una matriz de rotación (53),

por lo que la matriz inversa será la de una rotación en sentido contrario. Entonces:

(
W3µ

Bµ

)
=

(
cos θW sen θW

− sen θW cos θW

)(
Zµ

Aµ

)
⇒

W3µ =
1√

g2 + g′2
(g′Aµ + gZµ) ,

Bµ =
1√

g2 + g′2
(gAµ − g′Zµ) .

Podemos reescribir el término de la derivada covariante que involucra a estos campos:

igT3W3µ + ig′
1

2
Y Bµ = igT3

1√
g2 + g′2

(g′Aµ + gZµ) + ig′
1

2
Y

1√
g2 + g′2

(gA3µ − g′Zµ)

= i
gg′√
g2 + g′2

(
T3 +

Y

2

)
Aµ + i

1√
g2 + g′2

(
g2T3 − g′2

Y

2

)
Zµ .

Por tanto, la derivada covariante de la teoŕıa electrodébil en función de los campos Zµ y

Aµ resulta:

Dµ = ∂µ + igT1W1µ + igT2W2µ

+ i
gg′√
g2 + g′2

(
T3 +

Y

2

)
Aµ + i

1√
g2 + g′2

(
g2T3 − g′2

Y

2

)
Zµ .

(72)

Sabemos que la derivada covariante en la QED es Dµ = ∂µ + ieQAµ. Identificando

términos, se tiene:

gg′√
g2 + g′2

= e ,

T3 +
Y

2
= Q .

Se recupera la relación de la carga con el isosṕın débil y la hipercarga. Además, encontramos

una relación entre las constantes de acoplamiento g, g′ y e:

e = g′ cos θW = g sen θW . (73)

C.5. ¿Qué ocurre si se toma Yϕ = −1?

Si tomamos Yϕ = −1 pero escogemos el mismo vaćıo, es decir, ϕ0 =
1√
2
( 0v ), llegaremos a

la matriz relación siguiente:

M̃ =

(
g2 gg′

gg′ g′2

)
.

El polinomio caracteŕıstico de esta matriz es el mismo que en el anexo C.3, por lo que

los valores propios son los mismos. Uno de los dos autoestados no tendrá masa (el que

identificamos como el fotón). Los vectores propios, procediendo de manera análoga, resultan:

λ1 = 0 ⇒ v1 =

(
−g′

g

)
, λ2 = g2 + g′2 ⇒ v2 =

(
g

g′

)
.
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Por tanto, se definen en este caso los bosones vectoriales:

Ãµ =
1√

g2 + g′2
(−g′W3µ + gBµ) ,

Z̃µ =
1√

g2 + g′2
(gW3µ + g′Bµ) .

⇔
W3µ =

1√
g2 + g′2

(−g′Ãµ + gZ̃µ) ,

Bµ =
1√

g2 + g′2
(gÃµ + g′Z̃µ) .

Podemos expresar el término de la derivada covariante que involucra a los campos W3µ y

Bµ en función de Ãµ y Z̃µ, tal como hemos hecho en el anexo C.4:

igT3W3µ + ig′
1

2
Y Bµ = igT3

1√
g2 + g′2

(−g′Ãµ + gZ̃µ) + ig′
1

2
Y

1√
g2 + g′2

(gÃµ + g′Z̃µ)

= i
gg′√
g2 + g′2

(
−T3 +

Y

2

)
Aµ + i

1√
g2 + g′2

(
g2T3 + g′2

Y

2

)
Zµ .

En este caso, identificamos que el fotón se acopla a Q̃ = −T3 + Y
2 . Seŕıa la simetŕıa U(1)

asociada al generador Q̃ la que no se rompeŕıa. Como se sabe que el acoplamiento del fotón

es a la carga, el vaćıo ϕ0 debe tener hipercarga Yϕ = 1, ya que es aśı como la teoŕıa describe

la realidad experimental. Con esa elección el vaćıo es neutro, y es la simetŕıa U(1)EM la que

no se rompe.

C.6. Invariancia del término ψ̄LϕψR

Veamos la simetŕıa SU(2)L × U(1)Y por separado. Bajo una transformación del grupo

SU(2)L, tendremos:

ψ̄′
L = ψ̄LU

† , ϕ′ = Uϕ , ψ′
R = ψR ,

porque ψL y ϕ son dobletes de SU(2)L, y ψR es un singlete. Por tanto,

ψ̄′
Lϕ

′ψ′
R = ψ̄LU

†UϕψR = ψ̄LϕψR ,

ya que la transformación U es unitaria. La combinación de campos tiene simetŕıa SU(2)L

Bajo una transformación del grupo U(1)Y , por otro lado:

ψ̄′
L = ψ̄Le

−i 1
2
YLαψL , ϕ′ = ei

1
2
Yϕαϕ , ψ′

R = ei
1
2
YRαψR .

Por tanto,

ψ̄′
Lϕ

′ψ′
R = ψ̄Le

−i 1
2
YLα ei

1
2
Yϕαϕ ei

1
2
YRαψR = ei

1
2
(−YL+Yϕ+YR)αψ̄LϕψR .

El término será invariante si se cumple −YL + Yϕ + YR = 0. Hemos escogido el campo ϕ de

forma que Yϕ = 1, por lo que la condición es YL − YR = 1. Si nos fijamos en la componente

con T3 = −1/2 de un doblete del SM,

−1

2
+
YL
2

= Q = 0 +
YR
2

⇒ YL − YR = 1 ,

por lo que se verifica la condición.

Por tanto, el término ψ̄LϕψR es invariante frente a transformaciones conjuntas del grupo

SU(2)L × U(1)Y . Análogamente, se puede ver que el término ψ̄Rϕ̄ψL también es invariante.
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C.7. Término de masa de los fermiones

Realizamos el desarrollo en torno al mı́nimo en el caso de los leptones:

Ll = −λe(ψ̄LϕψR + ψ̄Rϕ̄ψL) = −λl

[(
ν̄l l̄

)
L

1√
2

(
0

v + h

)
lR + l̄R

(
0 v + h

)(νl
l

)
L

]

= − λl√
2
(v + h)(l̄LlR + l̄RlL) = −λl

v
(v + h)l̄l = −λlv√

2
l̄l − λl√

2
hl̄l .

D. Desintegración del bosón de Higgs

D.1. Desintegración h→ ff̄

Vamos a calcular la amplitud de probabilidad del proceso h→ ff̄ , representado mediante

el diagrama de Feynman de la figura 5a. El vértice de interacción viene caracterizado por el

factor −imf

v . Identificamos el fermión con el espinor u(p1) y el antifermión con v(p2). Como

el bosón de Higgs es una part́ıcula escalar, el elemento de matriz queda:

−iM = ū(p1)
−imf

v
v(p2) ,

iM† = v̄(p2)
imf

v
u(p1) ,

|M|2 =
(mf

v

)2 ∑
s1,s2

v̄s2(p2)us1(p1)ūs1(p1)vs2(p2)

=
(mf

v

)2∑
s1

us1(p1)ūs1(p1)
∑
s2

v̄s2(p2)vs2(p2) =
(mf

v

)2
Tr
[
(/p1 +mf )(/p2 −mf )

]
=
(mf

v

)2 (
Tr(/p1/p2)−mfTr(/p1) +mfTr(/p2)−m2

fTr(I)
)
=
(mf

v

)2
(4p1 · p2 − 4m2

f ) .

Se han utilizado propiedades de los espinores de Dirac y las matrices γ, como son:

1.
∑

s us(p)ūs(p) = /p+mf

2.
∑

s vs(p)v̄s(p) = /p−mf

3. Tr( /A) = 0

4. Tr( /A/B) = 4A ·B

Para estudiar la cinemática del proceso y obtener los valores que necesitamos, utilizaremos

el sistema de referencia centro de masas. En el estado inicial, el bosón de Higgs estará en

reposo, por lo que su cuadrimomento es (mh, 0⃗). En el estado final, se tendrá p1µ = (E1, p⃗1)

para el fermión y p2µ = (E2, p⃗2) para el antifermión. Por la conservación del momento,

p⃗1 + p⃗2 = 0⃗ ⇒ p⃗1 = −p⃗2 = p⃗ .
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Como la masa del fermión y el antifermión es la misma, y sus momentos tienen el mismo

módulo, sus enerǵıas también son iguales. Por la conservación de la enerǵıa,

mh = E1 + E2 ⇒ E1 = E2 =
mh

2
.

Por tanto, se tiene:

m2
f = E2

1 − |p⃗1|2 ⇒ |p⃗|2 =
m2

h

4
−m2

f .

Ya podemos calcular el producto escalar que necesitamos:

p1 · p2 = E1E2 − p⃗1 · p⃗2 =
(mh

2

)2
+ |p⃗|2 =

m2
h

2
−m2

f .

El elemento de matriz resulta, por tanto:

|M|2 =
(mf

v

)2(
4 ·
(
m2

h

2
−m2

f

)
− 4m2

f

)
= 2

(mf

v

)2
(m2

h − 4m2
f ) . (74)

Con todos los valores necesarios conocidos, podemos aplicar (59). El factor de simetŕıa

valdrá 1 ya que fermión y antifermión son part́ıculas distinguibles. Hay que añadir el número

de color en el caso de que los fermiones sean quarks (Nc = 3), ya que la desintegración tiene

tres posibilidades. Lo incluiremos en la expresión general, que cuando se aplique a leptones

simplemente será Nc = 1.

dΓ

dΩ
=

Nc

32π2m2
h

· 2
(mf

v

)2
(m2

h − 4m2
f ) ·

(
m2

h

4
−m2

f

)1/2

=
Nc

32π2m2
h

(mf

v

)2
(m2

h − 4m2
f )

3/2 =
Nc

32π2v2
m2

fmh

(
1−

4m2
f

m2
h

)3/2

.

Por último, integramos a todo el ángulo sólido. Simplemente hay que multiplicar por 4π

ya que la expresión obtenida es constante. La anchura de desintegración del bosón de Higgs

a femiones queda:

Γ(h→ ff̄) =
Nc

8πv2
m2

fmh

(
1−

4m2
f

m2
h

)3/2

. (75)

D.2. Desintegración h→ V V

Ahora, vamos a calcular la amplitud de probabilidad del proceso h → V V , donde V

representa al bosón W o al bosón Z. Su diagrama de Feynman aparece en la figura 5b. En

este caso, el vértice de interacción está caracterizado por el factor 2i
M2

V
v gµν . Identificamos uno

de los bosones de gauge con el vector de polarización ϵµλ(p1) , y el otro con ϵνδ (p2). Los ı́ndices

µ y ν corresponden al espacio de Minkowski, mientras que los ı́ndices λ y δ se refieren a los

distintos vectores de polarización. De nuevo, al ser el bosón de Higgs una part́ıcula escalar,

el elemento de matriz queda:

36



−iM = ϵµλ(p1) 2i
M2

V

v
gµν ϵ

ν
δ (p2) = ϵµλ(p1) 2i

M2
V

v
ϵδµ(p2) ,

iM† = −ϵαλ(p1)∗ 2i
M2

V

v
gαβ ϵ

β
δ (p2)

∗ = −ϵαλ(p1)∗ 2i
M2

V

v
ϵδα(p2)

∗ ,

|M|2 =
(
2M2

V

v

)2∑
λ,δ

ϵµλ(p1)ϵδµ(p2)ϵ
α
λ(p1)

∗ϵδα(p2)
∗

=

(
2M2

V

v

)2∑
λ

ϵµλ(p1)ϵ
α
λ(p1)

∗
∑
δ

ϵδµ(p2)ϵδα(p2)
∗

=

(
2M2

V

v

)2(
−gµα +

pµ1p
α
1

M2
V

)(
−gµα +

p2µp2α
M2

V

)
=

(
2M2

V

v

)2(
gµαgµα − gµα

p2µp2α
M2

V

− gµα
pµ1p

α
1

M2
V

+
pµ1p2µp

α
1 p2α

M4
V

)
=

(
2M2

V

v

)2(
4−

M2
V

M2
V

−
M2

V

M2
V

+
(p1 · p2)2

M4
V

)
=

(
2M2

V

v

)2(
2 +

(p1 · p2)2

M4
V

)
.

Se han utilizado las siguientes propiedades:

1.
∑

λ ϵ
µ
λ(p)ϵ

ν
λ(p)

∗ = −gµν + pµpν

M2
V

2. p1µp
µ
1 = p2µp

µ
2 =M2

V

El análisis de la cinemática es equivalente al del proceso h → ff̄ (desintegración a dos

cuerpos de igual masa), por lo que los resultados son los mismos. Es decir:

|p⃗|2 =
m2

h

4
−M2

V ,

p1 · p2 =
m2

h

2
−M2

V .

Por tanto, el elemento de matriz queda:

|M|2 =
(
2M2

V

v

)2

2 +

(
m2

h
2 −M2

V

)2
M4

V

 =

(
2M2

V

v

)2
(
3 +

1

4

(
mh

MV

)4

−
(
mh

MV

)2
)
. (76)

Tenemos ya todos los valores necesarios para aplicar (59). El factor de simetŕıa SV valdrá

1 para bosones W (no son idénticos, ya que se produce un W+ y un W−) y 1/2 para bosones

Z (se producen dos iguales). Con esto:

dΓ

dΩ
=

1

32π2m2
h

·
(
2M2

V

v

)2
(
3 +

1

4

(
mh

MV

)4

−
(
mh

MV

)2
)

·
(
m2

h

4
−M2

V

)1/2

· SV

=
SV

8π2v2
m2

h

(
3

(
MV

mh

)4

+
1

4
−
(
MV

mh

)2
)(

m2
h

4
−M2

V

)1/2

=
SV

64π2v2
m3

h

(
1−

4M2
V

m2
h

+
3

4

(
4M2

V

m2
h

)2
)(

1−
4M2

V

m2
h

)1/2

.
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Finalmente, integramos a todo el ángulo sólido. De nuevo, solo hay que multiplicar por 4π

ya que la expresión obtenida es constante. La anchura de desintegración del bosón de Higgs

a bosones de gauge queda:

Γ(h→ V V ) =
SV

16πv2
m3

h

(
1−

4M2
V

m2
h

+
3

4

(
4M2

V

m2
h

)2
)(

1−
4M2

V

m2
h

)1/2

. (77)

D.3. Desintegraciones h→ γγ y h→ gg

Los diagramas de Feynman para la desintegración del Higgs a fotones y gluones, a un

loop, se muestran en la figura 9:

(a) h→ γγ (b) h→ gg

Figura 9: Desintegración del bosón de Higgs a fotones y a gluones

Estas anchuras de desintegración no las calculamos en este trabajo, simplemente

utilizaremos el resultado [9].

La anchura de desintegración del bosón de Higgs a fotones es:

Γ(h→ γγ) =
α2

256π3v2
m3

h

4

3

∑
f

Nce
2
f − 7

2

,

donde α es la constante de estructura fina y ef la carga eléctrica de los fermiones.

La anchura de desintegración del bosón de Higgs a gluones es:

Γ(h→ gg) =
α2
s

72π3v2
m3

h

(
1 +

(
95

4
−

7Nf

6

)
αs

π
+ · · ·

)2

,

donde αs es la constante de acoplamiento de la fuerza fuerte, y Nf es el número de

fermiones. Los puntos suspensivos hacen referencia a términos de orden mayor en teoŕıa

de perturbaciones.

D.4. Código para realizar las representaciones

import numpy as np

import matplotlib.pyplot as plt

plt.close('all')

# Constantes
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v = 248.4 #GeV

alpha = 1/127.8

alpha_s = 0.1176

PI = np.pi

# Masas (GeV) en la escala de energı́as EW

m_mu = 0.1029

m_tau = 1.747

m_charm = 0.628

m_bot = 2.866

m_W = 80.38

m_Z = 91.19

# Partı́culas: masa, tipo y etiqueta

particles = {

'muon': [m_mu,'l', r'$\mu\mu$'],

'tau': [m_tau,'l', r'$\tau\tau$'],

'charm': [m_charm,'q', r'$c\bar c$'],

'bottom': [m_bot,'q', r'$b\bar b$'],

'W': [m_W,'W', r'$WW$'],

'Z': [m_Z,'Z', r'ZZ'],

'photon': [0,'ph', r'$\gamma\gamma$'],

'gluon': [0,'g', r'$gg$']

}

# Anchuras de desintegración (GeV)

def hff(m_h, m_f):

x = 4*m_f**2/m_h**2

if x<1:

return 1/(8*PI*v**2)*m_f**2*m_h*(1-x)**(3/2)

else:

return 0

def hVV(m_h, m_V):

x = 4*m_V**2/m_h**2

if x<1:

return 1/(16*PI*v**2)*m_h**3*(1-x+3/4*x**2)*(1-x)**(1/2)

else:

return 0

def hpp(m_h):

Sf = 3+2*3*(2/3)**2+3*3*(-1/3)**2

return alpha**2/(256*PI**3*v**2)*m_h**3*(4/3*Sf-7)**2
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def hgg(m_h):

Nf = 8

return alpha_s**2/(72*PI**3*v**2)*m_h**3*(1+(95/4-7*Nf/6)*alpha_s/PI)**2

def anchura(m_h, p):

m = particles[p][0]

tipo = particles[p][1]

if tipo=='q':

return 3*hff(m_h, m)

elif tipo=='l':

return hff(m_h, m)

elif tipo=='W':

return hVV(m_h, m)

elif tipo=='Z':

return hVV(m_h, m)/2

elif tipo=='ph':

return hpp(m_h)

elif tipo=='g':

return hgg(m_h)

def anchura_total(m_h):

gamma = 0

for p in particles:

gamma += anchura(m_h, p)

return gamma

# Branching ratio

def BR(m_h, p):

return anchura(m_h, p)/anchura_total(m_h)

# Representación de los branching ratio

m_h = np.linspace(60, 250, 1000)

br = np.zeros(len(m_h))

plt.figure(figsize=(10,7))

# plt.title('Branching ratios del bosón de Higgs')

for p in particles:

for i in range(len(m_h)):

br[i] = BR(m_h[i], p)

plt.plot(m_h, br, label=particles[p][2], lw=2)

plt.legend(loc=(0.08,0.22), fontsize=18, ncol=2)

plt.xlabel(r'$m_h$ (GeV)', fontsize=24)
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plt.ylabel('Branching ratio', fontsize=24)

plt.yscale('log')

plt.xlim(xmin=60, xmax=250)

plt.ylim(ymin=1e-4)

plt.tick_params(axis='x', labelsize=22)

plt.tick_params(axis='y', labelsize=22)

plt.grid()

plt.tight_layout()

plt.savefig('br.png', dpi=400)
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