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1. Introducción

La nanofotónica es la ciencia que estudia la interacción entre la luz y la materia en la escala
nanométrica. El interés de los fenómenos que surgen en esta escala reside en la coincidencia de
tamaño entre los objetos materiales (nanoestructuras) y las longitudes de onda de la luz visible.
Las interacciones que tienen lugar entre la luz y estas nanoestructuras hacen posible generar
campos electromagnéticos (EM) a escalas de tamaño por debajo del ĺımite de difracción, cuya
intensidad puede ser varios órdenes de magnitud mayor que la del campo EM incidente.

En las últimas décadas, la nanofotónica se ha alzado como uno de los campos de la f́ısica con
mayor actividad investigadora [1]. Sus perspectivas de futuro son muy prometedoras, pudiendo
ser la base de muchas aplicaciones tecnológicas revolucionarias. Entre las más relevantes, se
encuentra el diseño de filtros de color [2–4], la mejora de las tecnoloǵıas relacionadas con la
enerǵıa solar [5, 6] y la fotocatálisis [7], o la implementación de metasuperficies1 que actúen
como elementos ópticos bidimensionales [8].

Una nanoestructura puede ser excitada con un campo EM debido a la presencia de cargas
en su interior. Cuando esto ocurre, se dice que la nanoestructura presenta una respuesta óptica.
Esta respuesta se puede manifestar a través de un proceso de absorción o de un proceso de
scattering2. En el primero de ellos, la nanoestructura toma parte de la enerǵıa del campo EM
y, eventualmente, la convierte en calor. En el segundo, la nanoestructura radia la enerǵıa que
toma del campo EM. La suma de estos dos procesos se conoce como extinción.

Evidentemente, la respuesta óptica de una nanoestructura depende de la longitud de onda
del campo EM que la excite. De entre todas las longitudes de onda, puede existir una en donde
la respuesta óptica presente una resonancia. Si la respuesta óptica surge de un movimiento de
electrones libres, esta resonancia se conoce como plasmón (habitual en metales). En el caso de
que se deba a electrones ligados, se le llama modo de Mie (habitual en dieléctricos).

Si colocamos estas nanoestructuras en una red periódica cuadrada, la respuesta óptica de
cada una de ellas influye en las demás, lo cual puede dar lugar a modos colectivos que difieran
notablemente de las respuestas de las nanoestructuras individuales.

Los modos colectivos pueden ser modos superradiantes o modos subradiantes. En los primeros,
la radiación de toda la red es mucho más intensa que la suma de las radiaciones individuales
de las nanoestructuras cuando no interaccionan. En los segundos, la radiación de toda la red es
mucho menos intensa [9].

En este trabajo nos vamos a centrar en un tipo concreto de modos subradiantes conocidos
como modos fuera de plano (out-of-plane modes). La excitación de estos modos tiene lugar
cuando las nanoestructuras se polarizan en el eje perpendicular al plano de la red periódica,
de ah́ı el nombre de fuera de plano. Teniendo en cuenta que las nanoestructuras tienen que
polarizarse fuera de plano, el campo EM que las excite tiene que tener una componente en
esa misma dirección. Esto es imposible de conseguir con ondas planas que incidan de forma
perpendicular a la red, puesto que solo tienen componentes transversales a la dirección de
propagación. En nuestro caso, vamos a hacer uso de un haz de luz focalizado que tiene una
componente longitudinal significativa (componente paralela a la dirección de propagación) y

1Las metasuperficies son estructuras bidimensionales que no existen en la naturaleza.
2En español recibe el nombre de dispersión, pero en este trabajo vamos a usar el nombre en inglés debido a su

uso recurrente en este campo.

2



que va a permitir excitar estos modos fuera de plano incidiendo de forma perpendicular a la
red3.

Los modos fuera de plano son mucho más estrechos espectralmente que las resonancias
de las nanoestructuras individuales, por lo que pueden dar lugar a aplicaciones en sensado
óptico [10–12] o en el diseño de nanoláseres [13], ya que permiten filtrar longitudes de onda
muy concretas. El hecho de que sean capaces de reducir mucho las pérdidas radiativas implica
una amplificación en la absorción de enerǵıa EM. Esto puede abrir la puerta a aplicaciones en
terapias fototérmicas para el tratamiento de tumores [14].

Dicho todo esto, el objetivo de este trabajo es la caracterización de los modos fuera de
plano cuando son excitados con un haz de luz focalizado que tiene una componente longitudinal
significativa.

3El interés en que se pueda incidir de forma perpendicular a la red se encuentra en una mayor facilidad desde
un punto de vista práctico.
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2. Formalismo teórico

Los sistemas que vamos a estudiar presentan tres elementos de análisis: las nanoestructuras,
la red periódica y el haz de luz incidente. Todos ellos van a ser descritos a continuación.

2.1. Nanoestructuras

Cuando una onda EM interacciona con una nanoestructura, tiene lugar una respuesta óptica
debido a la presencia de cargas eléctricas en su interior. En el ĺımite en el que las nanoestructuras
son mucho más pequeñas que la longitud de onda, es posible aproximar su respuesta con un dipolo
eléctrico4. Estos dipolos se pueden describir utilizando una polarizabilidad, α, que codifica toda
su respuesta óptica a partir de la siguiente expresión [15]:

p = αE, (1)

donde p es el momento dipolar que tiene lugar cuando se excita con un campo eléctrico E.

En términos generales, la polarizabilidad no se va a comportar igual en todas las longitudes
de onda ni en todas las polarizaciones posibles del campo eléctrico incidente, de ah́ı que sea
posible extraer de ella mucha información f́ısica.

A partir de un modelo de oscilador armónico y teniendo en cuenta que las nanoestructuras
pueden radiar, la polarizabilidad eléctrica de los dipolos que modelan las nanoestructuras se
puede expresar como5 [16–20]

α = a0ω2
r

ω2
r − ω2 − iωγ − i2

3
ω3

c3 a0ω2
r

, (2)

donde a0 tiene unidades de volumen y cuantifica la intensidad de la respuesta óptica de la
nanoestructura. Aśı mismo, ω es la frecuencia del haz incidente, ωr es la frecuencia de resonancia
y γ define las pérdidas por absorción. Teniendo en cuenta que las pérdidas corresponden a la parte
imaginaria de la polarizabilidad, es sencillo comprobar cómo se reflejan las pérdidas por absorción
(tercer término del denominador) y las pérdidas radiativas (cuarto término del denominador).

Figura 1: Polarizabilidad de una nanoestructura con a0 = 2 · 105 nm3, ℏωr = 2 eV y ℏγ = 0.008 eV. La
curva azul muestra la parte real de la polarizabilidad, mientras que la roja representa la imaginaria.

4Esta aproximación recibe el nombre de aproximación dipolar eléctrica.
5En este trabajo se van a utilizar unidades gaussianas.
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En la Figura 1, se puede ver el comportamiento de la polarizabilidad para una nanoestructura
con a0 = 2 · 105 nm3, ℏωr = 2 eV y ℏγ = 0.008 eV. La amplitud y la anchura de la resonancia
dependen de los parámetros utilizados.

Como las nanoestructuras son finitas, sus respuestas ópticas se pueden describir a partir de
las secciones eficaces de extinción y de absorción [15], las cuales se definen como

σext = Pext

Io
, (3)

σabs = Pabs

Io
, (4)

donde Io es la intensidad del haz incidente, Pext es la potencia extinguida y Pabs es la potencia
absorbida. Como la intensidad tiene unidades de potencia/área, las secciones eficaces tienen
unidades de área.

En la aproximación dipolar, las secciones eficaces se expresan anaĺıticamente como [15]

σext = 4π
ω

c
Im{α}, (5)

σabs = 4π
ω

c

[
Im{α} − 2

3
ω3

c3 |α|2
]

. (6)

En la Figura 2, se pueden ver la sección eficaz de absorción y de extinción para la misma
nanoestructura estudiada en la Figura 1. Para esta nanoestructura, la sección eficaz de extinción
es mucho mayor que la de la absorción. El balance entre una y otra, aśı como la anchura de las
resonancias, depende de los parámetros de la polarizabilidad.

Si observamos la Ecuación 2, aumentando el valor de a0, crece la intensidad de la respuesta
y también se hacen más importantes las pérdidas radiativas. Esto implica que serán las pérdidas
radiativas las que dominarán la extinción. En el caso de que se aumente γ, la extinción será
gobernada por las pérdidas por absorción.

Figura 2: Sección eficaz de absorción (a) y sección eficaz de extinción (b) para la nanoestructura de la
Figura 1.

Teniendo en cuenta la finalidad de este trabajo de excitar modos subradiantes, vamos a
elegir valores de a0 altos y de γ bajos (e incluso nulos). En estas situaciones, la extinción de
cada nanoestructura es mucho mayor que la absorción, lo cual implica que el proceso de scattering
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domina. De esta forma, colocando las nanoestructuras en una red periódica, podremos analizar
cómo se reducen las pérdidas radiativas globales, aun teniendo nanoestructuras que radian mucho
individualmente.

2.2. Red periódica

Una vez descrita la nanoestructura individual, vamos a construir una red periódica cuadrada
de parámetro de red a en la que las nanoestructuras puedan interaccionar entre śı, de modo que
sus respectivas respuestas no solo dependan del campo EM incidente, sino también del resto de
nanoestructuras.

Debido a que pretendemos estudiar modos fuera de plano, lo que nos interesa es la oscilación
de los dipolos en el eje perpendicular al plano de la red. Por ello, asumiendo que la red se
encuentra en el plano xy, solo nos interesa la polarización de las nanoestructuras en el eje z,
de modo que vamos a asumir que las nanoestructuras se pueden polarizar únicamente en este
eje. Una consecuencia importante de esta elección es que todas las resonancias que se obtengan
serán necesariamente modos fuera de plano.

Para una red finita de N × N dipolos, el dipolo inducido en el eje z de la nanoestructura
situada en la posición Ri se obtiene mediante [15]

pi = αEi + α
N2∑
j ̸=i

Gijpj , (7)

donde α es la polarizabilidad, Ei es la amplitud de la componente z del campo EM incidente y
Gij es la componente zz del tensor de interacción dipolo-dipolo entre el dipolo i y el dipolo j.
Este tensor se define como

Gij = eikrij

r3
ij

[
k2r2

ij + ikrij − 1
]

, (8)

siendo rij = |Ri − Rj | y k = ω/c el número de onda del campo EM incidente.

Gracias a la periodicidad de la red, la Ecuación 7 presenta la siguiente solución:

pi =
N2∑
j

([
α−1I − G

]−1
)

ij
Ej , (9)

donde I es la matriz identidad N × N .

Al aumentar el número de nanoestructuras en la red, la complejidad de la resolución de la
Ecuación 7 se incrementa. Eventualmente, esta complejidad sobrepasa los ĺımites de los recursos
computacionales disponibles. En ese caso, es mucho más eficiente de resolver considerando la red
periódica infinita porque podemos hacer uso del Teorema de Bloch y describir todo el sistema en
la Primera Zona de Brillouin (PZB). A partir de la transformada de Fourier, se puede estudiar
cualquier función del espacio real, fi, en el espacio rećıproco, f(k∥), mediante las siguientes
relaciones:

fi = a2

4π2

∫
P ZB

dk∥f(k∥)eik∥·Ri , (10)
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f(k∥) =
∞∑
i

fie
−ik∥·Ri . (11)

De esta forma, la Ecuación 7 puede expresarse como

p(k∥) = αẼ(k∥) + αG(k∥)p(k∥), (12)

siendo p(k∥) y Ẽ(k∥), el dipolo inducido y el campo eléctrico incidente según la Ecuación 11,
respectivamente; y G(k∥), la suma de red, que en este caso toma la forma

G(k∥) =
∞∑

i ̸=0
Gi0e−ik∥·Ri . (13)

A partir de la Ecuación 12, se obtiene fácilmente la siguiente solución para el dipolo inducido:

p(k∥) = A(k∥)Ẽ(k∥), (14)

donde A(k∥) es la polarizabilidad de la red, la cual se expresa como

A(k∥) =
[
α−1 − G(k∥)

]−1
. (15)

No hay que perder de vista que queremos estudiar modos de toda la red y comparar
la extinción y la absorción de la misma con las de las nanoestructuras individuales. Para
ello, hay que calcular la eficiencia de extinción, E, y la eficiencia de absorción, A. Ambas
son magnitudes globales que representan el cociente de la potencia extinguida y la potencia
absorbida, respectivamente, con la potencia incidente, Po. Las expresiones toman la forma

E = Pext

Po
, (16)

A = Pabs

Po
. (17)

Para poder conocer el valor de estas magnitudes, es necesario saber calcular las potencias
que intervienen. La potencia incidente va a depender únicamente del campo eléctrico incidente.
Sin embargo, la potencia extinguida y la potencia absorbida van a depender también de las
nanoestructuras y de la red periódica.

Trabajando en el espacio rećıproco, la potencia extinguida puede expresarse como [21,22]

Pext =
∞∑
i

Pext,i = 2ωIm{piE
∗
i } = 2ωIm

{
a2

4π2

∫
P ZB

dk∥p(k∥)Ẽ∗(k∥)
}

, (18)

donde Ei es el campo eléctrico incidente sobre la nanoestructura i.

Similarmente, la potencia absorbida puede calcularse como [21,22]

7



Pabs =
∞∑
i

Pabs,i = 2ωIm{piE
a
i

∗} = 2ωIm
{

α−1 + i
2
3k3

}
a2

4π2

∫
P ZB

dk∥

∣∣∣p(k∥)
∣∣∣2 , (19)

donde Ea
i es el campo autoconsistente de la nanoestructura i, el cual se obtiene de la siguiente

forma:
Ea

i = Ei + i
2
3k3pi +

∞∑
j ̸=i

Gijpj . (20)

Este campo autoconsistente tiene en cuenta, a parte del campo incidente y el ejercido por el
resto de nanoestructuras de la red, el campo eléctrico generado por la propia nanoestructura i al
radiar. Este último se obtiene calculando el ĺımite del tensor dipolo-dipolo cuando la distancia
se hace cero de la siguiente forma:

ĺım
rij→0

Im{Gij} = 2
3k3. (21)

Solo falta conocer el campo eléctrico incidente para poder calcular todos los valores. Este
campo eléctrico lo va a definir el haz de luz focalizado que va a incidir sobre la red periódica.

2.3. Haz de luz focalizado

La respuesta de la red depende del campo eléctrico que incida sobre ella. En nuestro caso,
este campo lo va a definir el haz de luz focalizado con el que se incidirá sobre la red. Este
haz presenta una componente longitudinal significativa, es decir, una componente en la misma
dirección de propagación. Esto permite excitar las nanoestructuras fuera de plano aun incidiendo
con el haz de forma perpendicular a la red.

Siendo E0 la amplitud del campo eléctrico y w0 la anchura del haz, el campo eléctrico del
haz de luz focalizado se define como

E(R) =
∫

|k∥|≤k

dk∥
4π2

[
kx

k
,
ky

k
, −

k2
∥

kkz

]
f(k∥)eik∥·R, (22)

donde

f(k∥) = 2πw2
0e−

w2
ok2

∥
2 Eo. (23)

Si se observa, el campo eléctrico Ẽ(k∥) que aparece en la Ecuación 12 se ha obtenido a partir
de la transformación descrita por la Ecuación 10 sobre el campo eléctrico en el espacio real. Si
nos fijamos, esta transformación involucra una integral sobre la PZB. Sin embargo, el campo
eléctrico que hemos definido en la Ecuación 22 involucra una integral para todos los k∥ tales que

∣∣∣k∥

∣∣∣ ≤ k. (24)

Esta última forma de definir el campo eléctrico recibe el nombre de representación de espectro
angular. Se trata de un tipo de representación muy habitual y que es válida tanto para campos
paraxiales como para campos no paraxiales [21].

No obstante, el cálculo de las potencias de extinción y absorción se ha expresado en función
del campo Ẽ(k∥). Por ello, es fundamental encontrar la relación entre ambas formas de definir
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el campo en el espacio rećıproco. Esto puede hacerse a partir de las propiedades de periodicidad
de la red [21,22], obteniendo

Ẽ(k∥) = 1
a2

∑
q

E(k∥ + q), (25)

donde la suma se hace sobre todos los vectores de la red rećıproca q tales que
∣∣∣k∥ + q

∣∣∣ < k.

Conocido el campo eléctrico, ya es posible calcular todas las potencias involucradas en las
eficiencias de la Ecuación 16 y la Ecuación 17. Falta por conocer cómo calcular la potencia
incidente, la cual depende únicamente del campo eléctrico incidente.

Siendo S(R) el vector de Poynting del haz de luz incidente, y haciendo uso de las propiedades
que brinda la periodicidad de la red, la potencia que incide sobre el plano se expresa

Po =
∫

S(R) · ẑ dR = c

2π

∫
|k∥|≤k

k∥
4π2

∣∣∣E(k∥)
∣∣∣2 kz

k
. (26)

En el caso del campo eléctrico que hemos definido en la Ecuación 22 y haciendo uso de la
Ecuación 26, la potencia incidente puede ser calculada mediante la siguiente expresión:

Po = c

2π

∫
|k∥|≤k

dk∥
4π2

k2
∥

k2
z

∣∣∣f(k∥)
∣∣∣2 kz

k
. (27)

No obstante, se puede hacer un cambio a coordenadas polares que facilite computacionalmente
el cálculo del campo eléctrico y de la potencia mediante

k∥ =
[
k∥ cos(ϕ), k∥ sin(ϕ)

]
, (28)

R = [R cos(ϕR), R sin(ϕR)] . (29)

Haciendo esto, y con un poco de álgebra, la Ecuación 22 y la Ecuación 27, respectivamente,
se expresan de la siguiente forma:

E(R) =
∫ k

0

dk∥
2π

k2
∥

k

[
i cos(ϕR)J1(k∥R), i sin(ϕR)J1(k∥R), −

k∥
kz

J0(k∥R)
]

, (30)

Po = c

4π2

∫ k

0
dk∥

k3
∥

kzk

∣∣∣f(k∥)
∣∣∣2 . (31)

El haz de luz focalizado con el que vamos a excitar la red presenta distribuciones de intensidad
de sus componentes del campo eléctrico que no son uniformes. En la Figura 3 se observan las
distribuciones de intensidad de la componente transversal y de la componente longitudinal del
campo eléctrico de un haz de luz de λ = 600 nm y w0 = 400 nm.
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Figura 3: Intensidad del campo eléctrico transversal (a) y longitudinal (b) en el plano de la red para un
haz de λ = 600 nm y w0 = 400 nm.

Se puede comprobar cómo la distribución de la intensidad de la componente transversal
presenta máximos en forma de anillo, teniendo un mı́nimo de intensidad en la zona central. En
cuanto a la distribución de la intensidad de la componente longitudinal, que es la que nos importa,
tiene una estructura con un máximo de intensidad en la zona central y un decaimiento al alejarse.
Además, podemos ver cómo la distribución de la intensidad de la componente longitudinal es
mucho más estrecha que la de la componente transversal, lo cual indica que el haz está muy
focalizado.
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3. Resultados

El haz de luz focalizado que hemos definido en la Ecuación 22, al incidir sobre una red
periódica de nanoestructuras, va a excitar modos fuera de plano. Estos modos son modos
subradiantes y, por lo tanto, radian mucho menos que las nanoestructuras de forma aislada. Para
poder analizar estos comportamientos colectivos, tenemos que comparar las respuestas ópticas de
toda la red respecto a las de las nanoestructuras aisladas, para lo cual es necesario normalizarlas.
La forma más sencilla de hacer esto es normalizar la sección eficaz de una nanoestructura
individual al área de la celda unidad (a2). Haciendo esto, estaremos comparando la respuesta
óptica de una nanoestructura cuando se encuentra en una red en la que interacciona con el
resto, con la situación en la que se encuentra en una red en la que no interacciona con el resto
de nanoestructuras, que es lo que se está calculando al normalizar las secciones eficaces al área
de la celda unidad.

Dicho esto, vamos a presentar los resultados que hemos obtenido computacionalmente. Estos
resultados se han obtenido con un código escrito en Julia. Los dos puntos más importantes del
código son el cálculo de integrales y el cálculo de la suma de red de la Ecuación 13. Para el
primero, se ha hecho uso de la libreŕıa Cubature [23,24] y, para el segundo, se ha implementado
el algoritmo de Ewald [23].

Hemos decidido fijar el parámetro de red (a = 400 nm) y variar las caracteŕısticas de la
nanoestructura (a0 y γ) y del haz de luz focalizado (w0). Para una red periódica formada por
nanoestructuras con a0 = 2 · 105 nm3, ℏωr = 2 eV y ℏγ = 0.008 eV (igual que las figuras
anteriores), los resultados de la extinción variando la anchura del haz incidente se pueden ver
en la Figura 4.

Podemos ver cómo las eficiencias de extinción de la red también presentan una resonancia
para cada valor de w0, es decir, existe un modo fuera de plano. Estos modos presentan anchuras
y máximos que difieren de las nanoestructuras individuales. De modo que, en principio, mediante
la implementación de una red periódica, es posible modificar la respuesta óptica del sistema al
haberse suprimido las pérdidas radiativas.

Figura 4: Extinción de una red periódica de nanoestructuras de a0 = 2 · 105 nm3, ℏωr = 2 eV y
ℏγ = 0.008 eV para diferentes anchuras del haz de luz focalizado.
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Como las nanoestructuras que componen la red periódica tienen pérdidas por absorción
finitas (ℏγ ̸= 0), la excitación de modos fuera de plano permite que exista una mayor absorción
de enerǵıa por parte de la red. En la Figura 5 se muestran los resultados de la absorción de la
red cuando se vaŕıa la anchura del haz focalizado.

Como puede verse, la excitación de estos modos subradiantes aumenta mucho la absorción
de enerǵıa por parte de la red. Eventualmente, esta enerǵıa se transforma en calor, lo cual puede
ser útil en diversas aplicaciones tecnológicas que puedan sacarle rendimiento.

Figura 5: Absorción de una red periódica de nanoestructuras de a0 = 2 · 105 nm3, ℏωr = 2 eV y
ℏγ = 0.008 eV para diferentes anchuras del haz de luz focalizado.

El principio f́ısico que se encuentra detrás de la excitación de los modos fuera de plano es que,
debido a que las nanoestructuras oscilan fuera de plano, se logran suprimir las pérdidas radiativas
y la radiación no es capaz de escapar del plano de la red. Por ello, estos modos colectivos también
pueden presentarse en redes compuestas por nanoestructuras que no presentan pérdidas por
absorción, en donde ℏγ = 0.

Hecha esta visión global de los resultados que se obtienen, en este trabajo vamos a caracterizar
este tipo de modos subradiantes, tanto para nanoestructuras que śı presentan pérdidas por
absorción como para las que no tienen pérdidas por absorción (transparentes).

Para llevar a cabo esta caracterización se va a hacer uso de la extinción máxima, Emax, y
del factor de calidad, Q, el cual se define como

Q = λres
∆λ

, (32)

donde λres es la longitud de onda del máximo de la resonancia y ∆λ es la anchura a media
altura de la resonancia. Atendiendo a esta definición, puede comprobarse que anchuras pequeñas
corresponderán con valores de Q altos, y viceversa. Las anchuras de las resonancias están
relacionadas con las pérdidas: a mayores pérdidas, las anchuras aumentan y Q disminuye.

Comenzamos con el caso de nanoestructuras con pérdidas por absorción, que es el caso
de las figuras que se han presentado hasta el momento. Vamos a variar tanto a0 como la
anchura del haz focalizado, w0, pero vamos a mantener ℏγ = 0.008 eV en todos los casos.
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Si aumentamos este último valor, la radiación total de la red va a disminuir, pero el motivo
f́ısico será diferente a la excitación de modos fuera de plano. En el caso de aumentar ℏγ, seŕıan
las propias nanoestructuras las que absorban mucha enerǵıa, de ah́ı que disminuya la radiación.

En la Figura 6 y la Figura 7 se muestran los resultados de la extinción al variar w0 con
a0 = 4 · 105 y 6 · 105 nm3, respectivamente. Como puede verse, al aumentar la anchura del haz
focalizado, las resonancias presentan anchuras más pequeñas.

Figura 6: Extinción de una red periódica de nanoestructuras de a0 = 4 · 105 nm3, ℏωr = 2 eV y
ℏγ = 0.008 eV para diferentes anchuras del haz de luz focalizado.

Figura 7: Extinción de una red periódica de nanoestructuras de a0 = 6 · 105 nm3, ℏωr = 2 eV y
ℏγ = 0.008 eV para diferentes anchuras del haz de luz focalizado.

Al aumentar la anchura del haz de luz incidente, el número de nanoestructuras que intervienen
aumenta, lo cual repercute en una mayor supresión de las pérdidas radiativas con el consecuente
aumento del factor de calidad. No obstante, no solo existen pérdidas radiativas, sino que también
hay pérdidas por absorción. Esto implica que, aunque consigamos suprimir las pérdidas radiativas,
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siempre van a existir pérdidas que dependen del material de las nanoestructuras a través del
valor de ℏγ. Es por ello que, en la Figura 8, al aumentar w0, se observa que Q aumenta, pero
cada vez más lentamente. De hecho, si aumentamos mucho w0, Q tiende a una constante, la cual
queda establecida por las pérdidas no radiativas de las nanoestructuras.

Por otro lado, para un mismo valor de w0, no se puede saber con certeza qué valor de a0 va a
tener un mayor factor de calidad. Esto se debe a que existen pérdidas por absorción que compiten
con las pérdidas radiativas y que, en función de a0, pueden ser más o menos dominantes. Además,
podemos ver cómo para valores de w0 cercanos al parámetro de red, el factor de calidad es mayor
cuanto menor es a0. Sin embargo, para valores de w0 mucho mayores que el parámetro de red,
el factor de calidad es mayor cuanto mayor es a0.

A partir de la Figura 9, podemos ver que al aumentar la anchura de haz incidente, la
extinción máxima va disminuyendo. Esto se debe a que, aunque al aumentar w0 excitamos más
nanoestructuras, la intensidad de la componente longitudinal disminuye. Teniendo en cuenta
que presentan pérdidas radiativas, esto se traduce en una interacción colectiva menor y en una
disminución de la respuesta total de la red.

Figura 8: Factor de calidad de la extinción en función de la anchura del haz incidente para
nanoestructuras con diferente valor de a0 y con ℏωr = 2 eV y ℏγ = 0.008 eV.

Figura 9: Extinción máxima de la red periódica en función de la anchura del haz incidente para
nanoestructuras con diferente valor de a0 y con ℏωr = 2 eV y ℏγ = 0.008 eV.
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Como se ha dicho, al tener nanoestructuras que absorben enerǵıa, tiene sentido estudiar
cómo afecta la excitación de los modos fuera de plano en la absorción de la red. Los resultados
de la absorción al variar w0 se pueden ver en la Figura 10 y en la Figura 11. En ambos casos,
podemos ver cómo la excitación de modos fuera de plano conlleva un aumento en la absorción
de la red.

Figura 10: Absorción de una red periódica de nanoestructuras de a0 = 4 · 105 nm3, ℏωr = 2 eV y
ℏγ = 0.008 eV para diferentes anchuras del haz de luz focalizado.

Figura 11: Absorción de una red periódica de nanoestructuras de a0 = 6 · 105 nm3, ℏωr = 2 eV y
ℏγ = 0.008 eV para diferentes anchuras del haz de luz focalizado.

Al igual que en el caso de la extinción, al aumentar la anchura del haz incidente, el factor
de calidad aumenta, puesto que el modo fuera de plano se hace más colectivo. Esto se muestra
en la Figura 12. No obstante, pese a que en la extinción máxima no exista una anchura óptima
del haz de luz focalizado, en el caso de la absorción máxima śı que existe para valores de a0

suficientemente altos, tal y como puede verse en la Figura 13. En el caso de a0 = 2 · 105 nm3

no existe una anchura óptima, pero śı que existe para a0 = 4 · 105 y 6 · 105 nm3. Al aumentar
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a0, las pérdidas radiativas de las nanoestructuras se hacen lo suficientemente importantes como
para que el máximo de absorción tenga un óptimo con w0. Este óptimo es consecuencia de la
competición entre excitar más nanoestructuras, pero hacerlo con una menor intensidad de la
componente longitudinal sobre cada una de ellas.

Figura 12: Factor de calidad de la absorción en función de la anchura del haz incidente para
nanoestructuras con diferente valor de a0 y con ℏωr = 2 eV y ℏγ = 0.008 eV.

Figura 13: Absorción máxima de la red periódica en función de la anchura del haz incidente para
nanoestructuras con diferente valor de a0 y con ℏωr = 2 eV y ℏγ = 0.008 eV.

Una vez estudiado el caso de las nanoestructuras con pérdidas por absorción, pasamos al
estudio de las nanoestructuras transparentes (ℏγ = 0). En este caso, no tiene sentido estudiar
la absorción de la red, puesto que va a ser nula. Las nanoestructuras son incapaces de absorber
enerǵıa, pero śı que son capaces de suprimir las pérdidas radiativas manteniendo la radiación
dentro de la red.

En las Figuras 14, 15 y 16, se muestran los resultados de la extinción al variar w0 para
a0 = 2 · 105 , 4 · 105 y 6 · 105 nm3, respectivamente.

Calculando el valor de Q para cada caso y en cada tipo de nanoestructura, se obtienen los
resultados que se muestran en la Figura 17.

En los tres casos estudiados, observamos cómo al aumentar la anchura del haz de luz
focalizado, el factor de calidad aumenta, es decir, la resonancia óptica de la red se hace más
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estrecha. Al aumentar la anchura del haz incidente, se excitan más nanoestructuras y el fenómeno
se hace más colectivo, lo cual permite suprimir más las pérdidas radiativas. Como la anchura
de la resonancia se hace más estrecha al tener menos pérdidas, eso implica un aumento de Q.
Debido a que en este caso solo existen pérdidas radiativas, en principio, podemos hacer el factor
de calidad tan grande como queramos, simplemente aumentando w0. Esta ausencia de ĺımite en
el factor de calidad puede verse en la Figura 17, en el que Q cada vez crece más con w0.

Figura 14: Extinción de una red periódica de nanoestructuras de a0 = 2 · 105 nm3, ℏωr = 2 eV y
ℏγ = 0 eV para diferentes anchuras del haz de luz focalizado.

Figura 15: Extinción de una red periódica de nanoestructuras de a0 = 4 · 105 nm3, ℏωr = 2 eV y
ℏγ = 0 eV para diferentes anchuras del haz de luz focalizado.
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Figura 16: Extinción de una red periódica de nanoestructuras de a0 = 6 · 105 nm3, ℏωr = 2 eV y
ℏγ = 0 eV para diferentes anchuras del haz de luz focalizado.

Figura 17: Factor de calidad de la extinción en función de la anchura del haz incidente para
nanoestructuras con diferente valor de a0 y con ℏωr = 2 eV y ℏγ = 0 eV.

Por otra parte, en la Figura 17 también vemos que para una misma anchura del haz incidente,
el factor de calidad disminuye al aumentar a0. Si nos fijamos en la polarizabilidad definida en la
Ecuación 2, al aumentar a0 se está dando un mayor peso a las pérdidas radiativas, que en este
caso son las únicas que hay. Por lo que si aumentamos a0, aumentan las pérdidas, la anchura de
la resonancia se hace mayor y ello se traduce en un menor factor de calidad.

Además de la anchura, otro valor que caracteriza a la resonancia es la extinción máxima,
cuyos resultados se muestran en la Figura 18 para los diferentes valores de a0 y w0.

En la Figura 18 podemos ver cómo en los tres casos hay un comportamiento similar. En
primera instancia, al aumentar la anchura del haz incidente, la extinción máxima aumenta. Este
comportamiento se debe a que hacemos el fenómeno más colectivo. No obstante, la componente
longitudinal se hace menos intensa, de modo que tenemos una competición entre tener más
nanoestructuras que participen, pero con una participación más débil. Esto puede llevar a
pensar que existe un valor de w0 óptimo en el que la extinción es máxima. Sin embargo, se
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ha observado que en este caso, la extinción máxima tiende a un valor constante, lo cual es
sorprendente. Creemos que puede deberse a que existe una compensación exacta entre el aumento
del número de nanoestructuras y la participación más débil de cada una de ellas en el fenómeno
colectivo. Esta compensación exacta se rompe en el caso de tener nanoestructuras con pérdidas
por absorción, tal y como puede comprobarse en la Figura 9, en donde la extinción máxima no
tiene el mismo comportamiento.

Figura 18: Extinción máxima de la red periódica en función de la anchura del haz incidente para
nanoestructuras con diferente valor de a0 y con ℏωr = 2 eV y ℏγ = 0 eV.
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4. Conclusiones

A lo largo de este trabajo hemos explorado una forma original de excitar un tipo de modos
subradiantes conocidos como modos fuera de plano. En concreto, hemos hecho uso de un haz
de luz focalizado que tiene una componente longitudinal significativa y que permite excitar las
nanoestructuras en el eje perpendicular al plano de la red.

Hemos caracterizado las resonancias ópticas de la red en el caso de tener nanoestructuras
que presenten pérdidas por absorción y en el caso en el que sean transparentes.

En todos los casos, hemos visto que la excitación de modos fuera de plano lleva asociado
un aumento en el factor de calidad de las resonancias, lo cual es una consecuencia de la
naturaleza colectiva de estos modos y de la supresión de las pérdidas radiativas. Hemos estudiado
cómo depende el factor de calidad con la anchura del haz focalizado incidente para diferentes
nanoestructuras. En el caso de nanoestructuras transparentes, el factor de calidad no deja de
crecer con la anchura del haz debido a que cada vez se suprimen más pérdidas radiativas. En el
caso de nanoestructuras con pérdidas por absorción, estas pérdidas determinan el valor constante
al que tiende el factor de calidad.

Hemos estudiado la extinción máxima de todos los casos. En el caso de las nanoestructuras
con pérdidas por absorción también hemos caracterizado la absorción máxima. Hemos visto
cómo en el caso de las nanoestructuras con pérdidas por absorción, la extinción máxima decrece
al aumentar la anchura del haz incidente, pero en el caso de la absorción máxima se tiene una
anchura óptima. En cuanto a las nanoestructuras transparentes, hemos visto cómo la extinción
máxima tiende a un valor constante al aumentar la anchura del haz. Esto indica que existe
una compensación exacta entre el aumento del número de nanoestructuras que intervienen en el
fenómeno colectivo y la participación más débil de cada una de ellas. Esta participación más débil
se debe a que la intensidad de la componente longitudinal del campo EM decrece al aumentar
la anchura del haz.

En definitiva, este trabajo ha servido para llevar a cabo una descripción de un tipo de modos
subradiantes que puede tener muchas aplicaciones tecnológicas. Es evidente que la nanofotónica
está muy presente y todo indica a que va a seguir estándolo en el futuro.
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