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Summary

This report deals with Extreme Value Theory, a very important field in Probability and Statistics.
This theory focuses on the analysis of the largest and the smallest values of a variable. Even though these
extreme values have a very low probability of occurring, they can have a significant impact if they do
happen. Some examples of extreme events are floods, heat waves, and financial crises, so this theory
is widely used in fields such as engineering, hydrology or insurance companies, among many others.
From a theoretical point of view, it poses very interesting problems and requires specific techniques for
its study. In this paper, I will present the basic results of this theory, including key methodologies and
findings that highlight its practical applications and theoretical insights.

The main objective is to determine the convergence in distribution of the maximum of X, ..., X,, which
are independent identically distributed random variables with distribution function F. As well, we will
study its convergence in probability and almost sure convergence. The maximum is denoted as M,,. All
the results that are going to be mentioned are also valid for the study of the minimum, taking into account
that min(Xj,...,X,) = max(—Xj,...,—Xp).

After studying all the above, a statistical analysis of a dataset is done in order to observe how the extreme
values manifest themselves in real data.

The first important fact to know is that there are three types of Extreme value distributions:

TYPE I (Gumbel distribution),
G(x) =exp(—e ™), —o0 < x < oo,

TYPE Il (Fréchet distribution), for o0 > 0:

As mentioned earlier, we are interested in finding out sequences of real numbers, {a, > 0}, {b,}, and a

distribution function G such that P(a, (M, —b,) < x) = F"(a; 'x+by,) 22> G(x), Vx continuity point of G.

This condition is equivalent to saying that F belongs to the maximum domain of attraction of G (F €
MDA(G)). Another important definition is that a non-degenerate distribution function G is considered to
be max-stable if and only if there are sequences {a, > 0}, {b,} such that G"(a,x+ b,) = G(x). Further-
more, two distribution functions are considered to be of the same type if their maximum domains of
attraction are equal.
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v Summary

On the one hand, there is a theorem stating that a non-degenerate distribution function G is max-stable
if and only if MDA(G) is not the null set. On the other hand, another theorem states that a distribu-
tion function is max-stable if and only if it is of the same type as one of the extreme value distribu-
tions. Therefore, by combining these two last results we end up with the convergence in distribution

of M, there exist sequences, {a, > 0}, {b,}, and a non-degenerate distribution function G such that

P(a,(M, — b,) < x) LimaseN G(x), Vx continuity point of G, if and only if G is of the same type as one

of the extreme value distributions.

Moreover, there exists a result for a more general convergence. Let {u,} be a sequence of real num-
bers and 0 < 7 < oo, then P(M,, < ) ~— ¢~ 7 if and only if n(1 — F (1)) ~—— 7. We will be focus on
the cases when 7 ¢ {0, +oo} since these would imply a convergence to a degenerate distribution function.
By taking u, = b, +a; 'x, to determine whether there is convergence in distribution to a non degenerate

distribution function, it suffices to check that n(1 — F (b, +a;, 'x)) 2= 7, with 0 < T < oo,

Necessary and sufficient conditions can be found on the distribution function to determine to which
of the three types of maximum domain of attraction, if any, it belongs to. Once the type has been deter-
mined, the normalising constants can be easily found.

Regarding the objective of determining the convergence in probability and almost sure convergence,
we distinguish two cases: distribution functions with a finite right endpoint (x7) and those with an infini-
te finite right endpoint.

For the first type, xp < +oo, the convergences are straightforward: M,, converges almost surely and in
probability to its finite right end point.

For the second type, xp = +oo, there are two more complicated theorems:

= Given a sequence {ay,}, the necessary and sufficient conditions for M, /a,, to converge in
n——+oo

probability to 1 are: n(1 — F(ta,)) 2= 4o, Vi € (0,1), and n(1 — F(ta,)) 2=+ 0, Vi > 1.
» Defining ¥, = inf{y: F(y) > 1—1/n} and assuming n(1 —F (1 —¢€)},) T +eo, V € > 0. Then M,/ 1,
converges almost surely to 1 if and only if Vk > 1, ¥.7 [1 — F(ky,)] < oo

Finally, after seeing and proving the above results, we have carried out a statistical analysis of a dataset.
The dataset consists of the maximum wind gust recorded on each day of October for the years 1961 to
2019 at Almeria airport. We took the maximum wind gust of each October for each year, so that we had
59 values of our maximum variable. Our data range is between 48 km/h and 163 km/h.

Our aim was to determine the extreme value type to which this distribution belongs to. After doing some
estimations, we concluded that our distribution belongs to the maximum domain of attraction of a Fré-
chet distribution of parameter & = 4,965.

This allowed us to estimate the tail of the distribution function as well as its quantiles. The latter is ex-
tremely important because it allows us to estimate outside the range of the data. The absence of recorded
gusts greater than 163 km/h does not mean that larger gusts will not be recorded in the future. Hence, af-
ter all the above, we were able to estimate the probability of having large wind gusts, which allows us to
calculate their return periods. The return period of extreme wind gusts is widely used in engineering (to
design infrastructures) and in insurance companies (to assess risk and determine insurance premiums).
We have seen how all this is used in an airport. Some of the considerations mentioned include that certain
structures, such as hangars or control towers, have to withstand wind gust with a return period of at least
200 years to ensure the long-term safety and functionality. According our results, wind gusts greater than
200 km/h have a return period of more than 200 years. Moreover, it is used in the planning of operational
procedures, such as take-off and landing operations in extreme wind conditions, to ensure an appropriate
response to infrequent events.
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Introduccion

En el ambito de la probabilidad, uno de los conceptos mas fundamentales y estudiados es el compor-
tamiento de la suma de n variables aleatorias independientes idénticamente distribuidas (i.i.d.). Denota-
mos a estas variable como Xj,...,X,.

La Ley fuerte de grandes niimeros establece que si existe la esperanza de las variables, denotada como
U, entonces la media de la suma tiende a converger casi seguramente a [, es decir, % =
Por otro lado, el Teorema central del limite establece que bajo ciertas condiciones, la normalizacién de

e . ) ) . S—nu D .
la suma converge en distribucién a una variable aleatoria normal estdndar, es decir, Z;\/n,;“ — Z, siendo

Z ~N(0,1).

La motivacién central de este trabajo es extender estos resultados clésicos a la variable maximo de n
variables i.i.d., denotada como M,,. El objetivo es encontrar sucesiones de nimeros reales { ¥, }, {a, }, {bn}.
de modo que la normalizacién de M, cumpla resultados andlogos a la suma, es decir, % 1y que
an(M,, — by,) converja en distribucién a una variable aleatoria no constante.

La base de este problema radica en la Teoria de Valores Extremos, un campo de estudio dedicado al
andlisis de los valores més altos y mds bajos de las variables, que suelen situarse en las colas de las
distribuciones de probabilidad.

A pesar de su baja probabilidad de ocurrencia, estos valores extremos pueden tener un impacto signi-
ficativo, especialmente en dreas como meteorologia, finanzas y hidrologia. La capacidad de estimar los
tiempos de retorno de sucesos extremos es crucial para comprender y mitigar los riesgos asociados a
eventos catastroficos, como inundaciones o crisis financieras.

El origen de la Teoria de Valores Extremos se remonta a 1928, cuando Fisher y Tippet sentaron las
bases de la teoria asintética de las distribuciones de valores extremos. Posteriormente, en 1948, Gndenko
complet6 la caracterizacién de su teoria. Dese entonces, el estudio de los valores extremos ha experimen-
tado un crecimiento constante, tanto en el &mbito probabilistico como estadistico, siendo fundamental en
la compresion y gestion de eventos extremos en diversos campos de aplicacion.
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Capitulo 1

Teoria de valores extremos

1.1. Preliminares

En todo este capitulo se va a considerar (Q,.%#,P) como el espacio de probabilidad y una sucesién
de variables aleatorias Xi,. .., X, independientes e idénticamente distribuidas con distribucién F'. La dis-
tribucién de su maximo va a ser el principal objeto de estudio.

Definicion 1. Sean X, ... X, variables aleatorias independientes idénticamente distribuidas (i.i.d.), defi-
nimos M,, como la variable aleatoria del maximo de todas ellas:

M, = max(Xi,...,X,)
Usando que las variables son i.i.d. su funcién de distribucién viene dada por
PM, <x)=P(X; <x,....X, <x)=P(X; <x)...P(X, <x)=F"(x) (1.1)

Nota 1. Todos resultados que se van presentar serdn también vdlidos para el estudio del minimo, tenien-
do en cuenta que m, = min(Xy,...,X,) = —max(—Xp,...,—X,).

En primer lugar (Seccidn 1.2), analizaremos el problema de la convergencia del méximo debidamente
normalizado. Es decir, obtendremos condiciones necesarias y suficientes sobre F' para la existencia de
sucesiones de nimeros reales, {a, > 0}, {b,} € R, y una distribucién G tal que a,(M, — b,) converja en
distribucién a G cuando n — 4-c0. Es decir,

P(ay(My —b,) <x) =5 G(x), Vx punto de continuidad de G. (1.2)
Vamos a definir una clase de distribuciones que jugardn un papel fundamental en esta teoria.

Definicion 2. (Distribuciones de valores extremos):

TIPO I (Distribucion de Gumbel),
G(x) =exp(—e ™), —oo < x < oo, (1.3)
TIPO II (Distribucion de Fréchet), para o > O:

0, x <0,
G(x) = 1.4)
exp(—x~%), x>0.
TIPO I (Distribucion de Weibull), para o > 0:
exp(—(—x)%), x<0,
G(x) = (1.5)
1, x> 0.



2 Capitulo 1. Teoria de valores extremos

Proposicion 1.1. La convergencia (1.2) es equivalente a:

F'(a; 'x4by) =52 G(x), Vx punto de continuidad de G

Demostracion. La demostracion es inmediata utilizando (1.1) ya que
P(a,(M, —b,) <x) = P(M, < a,'x+b,) = F"(a, 'x+b,)
O

A continuacién (Seccién 1.3), demostraremos que si la funcién de distribucidn F satisface unas cier-
tas condiciones tendremos que % % 1, siendo 7, = inf{y : F(y) > 1 — 1/n}.

En este capitulo va a ser fundamental un resultado dado por Khintchine (Teorema 1.3) sobre conver-
gencia en distribucién. Antes de formularlo, se necesitan unas nociones bdsicas sobre funciones inversas
de funciones mondtonas:

Definicién 3. Sea y(x) una funcion no decreciente y continua por la derecha, definimos su inversa
v !(y) en el intervalo (inf{y(x)},sup{y(x)}) como:

y () =mf{x: y(x) 2y}
Tomando una funcién con las propiedades de la definicién se verifican las siguientes propiedades:
Lema 1.2. (Propiedades sobre inversas de funciones).
a) Sean a > 0,b,c constantes, H(x) = y(ax+b) —c, entonces H'(y) =a ' (v~ (y+¢) —b).
b) Si w~! es una funcion continua entonces w~' (y(x)) = x.
El resultado obtenido por Khintchine fue el siguiente:

Teorema 1.3. (Teorema de Convergencia de tipos).

Sea {F,} una sucesion de funciones de distribucion y sea G una funcion de distribucion no degenerada.

Sean ademds {a, > 0},{b,}, sucesiones de niimeros reales tal que Fy(ayx+ by) == G(x) Vx punto

de continuidad de G.

Entonces existe una funcion de distribucion H y unas sucesiones {¢, > 0},{B,} que satisfacen

F,(otx+ Br) o, H(x) Yx punto de continuidad de H, si y solo si, a;' o, — a, a;' (B, —b,) — b,

para algiina > 0,b € R.
En ese caso, H(x) = G(ax+b).

Demostracion. Los detalles de esta demostracion se pueden encontraren [1] (pag. 7, Teorema 1.2.3). [

1.2. Convergencia en distribucion del maximo

En esta seccién pasamos a ver cudndo, como y a qué convergen las distribuciones de mdximo.
Primero, vamos a considerar una convergencia mds especifica, veremos a qué converge P(a, (M, —by,) <
x) dadas unas constantes normalizadoras {a, > 0}, {b,}.

Seguidamente, estudiaremos una convergencia en distribucion mds general, dada por P(M,, < u,), donde
{un} puede ser una funcién mas complicada que una lineal e incluso no depender de x.

Finalmente, obtendremos condiciones suficientes y necesarias sobre la funcién de distribucién para que
las convergencias anteriores ocurran.

Para poder llevar a cabo todo esto, necesitamos unos conocimientos sobre distribuciones max-estables y
dominios de atraccidn que se presentan a continuacion.

1.2. Convergencia en distribucion del maximo
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1.2.1. Distribuciones max-estables y maximos dominios de atraccion
Las dos siguientes definiciones muestran los conceptos claves de esta seccion.

Definicion 4. Sean X, ...X,, variables aleatorias i.i.d. con funcién de distribucién F'y sea G una funcién
de distribucién no degenerada. Si existen sucesiones {a, > 0}, {b,} tal que

F'(a;'x+by) =225 G(x), Vx punto de continuidad de G,
se dice que F pertenece al mdximo dominio de atraccion de G.
Lo denotamos como F € MDA(G).

Es posible que una distribucién pertenezca a su propio maximo dominio de atraccién. Esto nos lleva
a la siguiente definicion.

Definicion 5. Sea G una funcién de distribucién no degenerada, decimos que es max-estable si existen
sucesiones de nimeros reales {a, >0}, {b,} tal que G"(a,x+b,) = G(x), Vx punto de continuidad de G,
Vn e N.

Las propiedades més importantes de este tipo de distribuciones son:

Proposicion 1.4. Una funcion de distribucion G es max-estable si'y solo si existe una sucesion {F,} de
funciones de distribucion y sucesiones {a, > 0}, {b,} de niimeros reales tal que para todo k =1,2,...

Fn(a;klx—i—bnk) LimAsiaN Gl/k(x), Vx punto de continuidad de G. (1.6)

Demostracion. Sea G no degenerada.

) G'/¥ también es no degenerada, entonces si (1.6) se satisface para todo k, se satisface en particular
para k = 1. Por tanto, aplicando el Teorema 1.3 tenemos que G'/*(x) = G(ogx + ), para algunas cons-
tantes oy > 0, B. Hemos obtenido que G es max-estable.

=) Definimos F,, = G",Vn € N. Por ser G max-estable tenemos que F,(a, 'x+b,) = G"(a, 'x+b,) =
G(x), con a, > 0, b,. Por tanto,

i

_ _ 1
Fn(ank1x+bnk) = (G"(ank1x+bnk))k'k = (G(x))*.
Es decir, se satisface (1.6). ]

Teorema 1.5. Sea G una funcion de distribucion no degenerada, MDA(G) es distinto del vacio si y solo
si G es max-estable. En este caso, G € MDA(G).

Demostracion. <) Si G es max-estable, existen unas sucesiones {a, >0}, {b, } tal que G" (a,x+b,) =
G(x). Por lo que es inmediato que G € MDA(G). En consecuencia, MDA(G) # 0.

=) Ahora suponemos que MDA(G) # 0, es decir, 3 F € MDA(G) y sucesiones {a,},{b,} tal que
F'(a; x4 b,) =22 G(x).

Por consiguiente, F™(a_!x + by 2 Gx) = F" (a!x+bu) 22 GVK(x).

Tomando F,, = F", la convergencia (1.6) se satisface. Basta aplicar la Proposicion 1.4 para determinar
que G es max-estable. O

Con este tltimo resultado podemos establecer que las funciones que aparecen como distribuciones
Iimites en (1.2) son la clase de funciones max-estables.

Corolario 1.5.1. Sea G una distribucion max-estable, entonces existen funciones reales a(s) > 0y b(s)
definidas para s > 0 tal que:

G’(a(s)x+b(s)) =G(x), VxeR,s>0.

1.2. Convergencia en distribucion del maximo
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Otro concepto importante que tenemos que saber es:

Definicion 6. Dos funciones de distribucion (G, G») son del mismo tipo si existen constantes a > 0,
b € R tal que G(x) = Gy (ax+D).

Con esta definicidn, aplicando el resultado de Khintchine ( Teorema 1.3), vemos que
MDA(G,) = MDA(G;) <= G y G, son del mismo tipo.

1.2.2. Teorema fundamental sobre los tipos de distribuciones de extremos

Para poder pasar a estudiar las posibles distribuciones asintéticas del méximo de variables i.i.d. ne-
cesitamos el resultado escrito a continuacion.

Teorema 1.6. Una distribucion es max-estable si y solo si es del mismo tipo que una de los 3 tipos de
distribucion de valores extremos (Defincion 2).

Demostracion. Sea F una distribucion no degenerada:

<=) Esta implicaci6n es bastante directa.

Lo probamos para el caso de que F es del mismo tipo que la distribucion de Gumbel (TIPO I, (1.3)). Es
decir, existen constantes a > 0, b € R tal que F(x) = G(ax+b), con G en (1.3).

Seaa, = 1,5 = @, Vn € N, tenemos que:

Flapr+By) = F (x+ l°g<”>) — Glax+log(n) + b) = exp{ —¢~(@hrlogln)y
a

Por tanto,
F™(0ux + By) = exp{ —ne™ (@ H0H10e)Y — G(ax+b) = F(x).

En definitiva, F' es max-estable.
Las demostraciones de los otros dos tipos de distribuciones de valores extremos son andlogas.

—) Ahora suponemos que F es max-estable. Usando el Corolario 1.5.1 y teniendo en cuenta que
0 < F(s) < 1, podemos aplicar logaritmos obteniendo:

—slog(F (a(s)x+b(s))) = —log(F (x)),
y aplicando otra vez logaritmos
—logs —log(—1log(F(a(s)x+b(s)))) = —log(—log(F(x))). (1.7)

Por otra parte, pasamos a ver que, por ser F' max-estable, esta distribucidon no puede tener un salto ni en
xp =sup{x: F(x) < 1}, nienx; = inf{x: F(x) > 0}.

Consideramos que en xr hay un salto, es decir, F(xr) = 1 pero existe p € (0,1) tal que F(x;) =
lim F(y) = p.

y—>XF

Por ser F max-estable, definiendo H(x) = F(x —xp) esta también lo es. Por tanto, sin pérdida de gene-
ralidad, podemos suponer xr = 0.

Sean ay, b, tal que F2(axx+by) = F(x),Vx € R, se verifica que 1 = F(0) = F?(bhy) = by > 0.

Si by > 0 tomando x = ;71722 < 0 tenemos que

—by bs —by
FPlaoa—=+b, | =F> =) =14F| —= 1
<a22a2+ 2) (2) # <Zaz)< ’

lo que contradice la propiedad de max-estable para n = 2. Por consiguiente, b, = 0.
Ahora,
p = lim F(x) = lim F*(ayx) = p* = p=p> = p e {0,1}.

x—0~ x—0~

1.2. Convergencia en distribucion del maximo
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Si p =0, obtendriamos que F’ es una funcién de distribucién degenerada, lo que contradice nuestra hip6-
tesis inicial. También llegamos a contradiccién si p = 1, habiamos considerado p < 1. Llevando a cabo
un razonamiento similar para x;, podemos afirmar que no F no tiene ningtn salto en x;.

Entonces, definimos ¢ (x) = —log(—log(F(x))). Se trata de una funcién no decreciente con inf{¢(x)} =
—oo, sup{¢(x)} = +eo. Por tanto, aplicando la Definicion 3, ¢ tiene funcién inversa U (y) definida en R.
Teniendo en cuenta (1.7), tenemos que ¢ (a(s)x+ b(s)) —log(s) = ¢ (x). Aplicando la funcién inversa a
ambos lados de la ecuacién, usando Lema 1.2 a) con H(x) = ¢ (a(s)x+b(s)) —log(s), obtenemos:

U(y+log(s)) —b(s)

=U(y).
a(s) ()
Restando a ambos lados la expresién en y = 0 tenemos:
U((y+log(s)) —U(log(s
(v +log(s)) ~Ullog(s)) _ ;0

a(s)
Haciendo los cambios de variable z = log(s) = a(s) = a(e?) = a(z), U(y) =U(y) —U(0):

Uly+2)—U(z) =U(y)a(z). (1.8)

Intercambiando los valores de y, z obtenemos:

U(z+y)—U(y) =U(z)aly). (1.9)
Finalmente, restando (1.8), (1.9) llegamos a la siguiente expresion:
U(y)(1-a(2) = U(z)(1—a(y)). (1.10)

Consideramos dos casos:
1) a(z) =1,z € R. Sustituyendo en (1.8) obtenemos:
l7(y+z) = ﬁ(y) +l7(z).

Sabemos que la tnica solucidn creciente mondtona de la expresion anterior viene dada por
U(y) = py con p > 0. Entonces,

U(y)=U(0)=py=¢"'(y) = py+v, conv=U(0).
¢! es continua por ser una funcién lineal, por lo que, aplicando el Lema 1.2 (b) obtenemos:

—V o F(x) = exp{—e &/P},

x= ¢ (PE) = po(x) +v=9(x) ==

Efectivamente, F' es una funcién de distribucion sin saltos en xr y en x;. Ademés, F(x) =G ( ) ,
siendo G la distribucion de Gumbel (Tipo I, (1.3)).

Por tanto, F es del mismo tipo que uno de los tipos de distribuciones de valores extremos.

T =

X
P

2) d(z) # 1 para algin z € R. Tomando uno de esos z y despejando U (y) en (1.10):

~ U(z)
Z

U0) = —=(1-aly)) = c(l-a(y)). (1.11)

Consideramos ¢ = %ZZ) +0,yaquesic=0 = U(y)=0, V¥yeR = U(y) = U(0).
Esto supondria que U(y) seria constante y, por tanto, F' seria una funcién de distribucion degene-
rada.

Aplicando (1.11) en (1.8) llegamos a:
e(1-aly+2) —c(1-a(2)) = (1 —ay))a(s) = aly+2) =a)ak).  (1.12)

1.2. Convergencia en distribucion del maximo
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Al ser U (y) monétona, por la ecuacién (1.11) sabemos que @(y) también lo es. La tinica solucién
mondtona no constante de (1.12) viene dada por a(y) = e””, con p # 0.
Por tanto,

0 ') =U®G)=v+c(1—e”), conv=U(0) =x=0¢""(¢(x)) =v+c(l —e’?™).

Para la implicacion se ha vuelto a usar el Lema 1.2 (b), ya que U es continua por ser una funcién
exponencial.
Lo anterior nos permite obtener la siguiente expresion,

F(x):exp{— <1—XZV>;}.

Conc<0sip>0yc>0sip<O0.

La razén de estas condiciones es que, al ser una funcién de distribucién, F es no decreciente. Por
tanto, teniendo en cuenta la definicién de ¢, sabemos que esta, a su vez, es no decreciente y, en
consecuencia, su inversa, U, también lo es. A través de la expresion obtenida de U, obtenemos las
condiciones sobre p y c.

Finalmente, podemos ver que F es una funcién de distribucién sin saltos en ningtn punto final.
Asimismo, F(x) = G(—2 + (1 — 1)), siendo G la distribucién de Fréchet (Tipo II (1.4)) o la dis-
tribucion de Weibull (Tipo III (1.5)),con @ = +1/po o =—1/p de acuerdoa p > 00 p < 0.
En definitiva, F es del mismo tipo que una de los tipos de distribuciones de valores extremos.

O
A continuacién presentamos el resultado fundamental de esta teoria.
Teorema 1.7. (Convergencia en distribucion del mdximo). Sean X1, ...,X, variables i.i.d. y sea
M, = max(Xi,...,X,). Si existen sucesiones {a, > 0}, {b,} tal que,
P(an(M, — by) < x) =25 G(x), Vx punto de continuidad de G, (1.13)

siendo G una funcion de distribucion no degenerada. Entonces, G es una distribucion de tipo valor
extremo, (Definicién 2).

Asimismo, cada funcion de distribucion G de tipo valor extremo puede aparecer como limite en (1.13),
de hecho, aparece cuando la propia G es la funcion de distribucion de cada X;.

Demostracion. Si (1.13) se verifica, entonces, por la Proposicion 1.4, tenemos que G es una distribucion
max-estable. Basta aplicar el Teorema 1.6 para concluir que G es del mismo tipo que uno de los tipos de
distribuciones de valor extremo.

Por otra parte, suponemos que las variables estan distribuidas segtin la distribucién G, siendo G uno de los
tres tipos de la Definicién 2. Al ser de tipo valor extremo es max-estable (Teorema 1.6). Finalmente, basta
aplicar el Teorema 1.5 para ver que G € MDA(G). Esto implica que existen sucesiones {a, > 0}, {b,}

tal que P(an(M, — by,) < x) = G"(a; 'x+by) 22255 G(x). O

La condicién de que G sea no degenerada es fundamental, en la Seccién 1.2.3 veremos bajo qué
condicién G es degenerada y qué valor toma en ese caso. Por otra parte, en la Seccién 1.2.4 veremos bajo
qué condiciones ocurre la convergencia y cudles son las expresiones de {a, > 0}, {b,}, segtin el tipo de
distribucién valor extremo al que converjan.

1.2. Convergencia en distribucion del maximo
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1.2.3. Convergencia general

Como se menciond previamente, en esta seccién nos dedicaremos al estudio de la convergencia de
la probabilidad P(M,, < u,). Aqui, consideramos sucesiones {u,} que pueden ser mds complejas que la
sucesion lineal discutida en la Seccién 1.2.2, e incluso pueden no depender de x.

Teorema 1.8. Sean X, ...,X, variables aleatorias i.i.d. y sea F su funcion de distribucion. Sea 0 < 7 <
+oo y sea {u, } una sucesion de niimeros reales entonces,

n(l—F(uy)) -1, cuando n— +oo (1.14)

si y solo si
PM, <u,)—e ", cuando n— +oo. (1.15)

Demostracion. Vamos a considerar 2 casos:

1) 0< 7 < +oo.
—) Para que se cumpla (1.14) es necesario que 1 — F(uy) 220, ya que sino el limite (1.14)
tenderfa a infinito. Por tanto, tenemos que log{1— (1 —F(uy))} ~ —(1 — F (uy)), cuando n — +-co.
Ademas,
P(M, <up)=F"(uy) ={1—(1—F(uy))}". (1.16)

Luego,

P(M, <u,) = elog{l=(1=F(u))}  p=n(1=F(m)) _y e ', cuando n — oo,
<=) Bajo la hipétesis (1.15), pasamos a probar que se debe cumplir que 1 — F (u,,) 2.
Si esto tdltimo no es cierto, existird una subsucesion u,, y un € > 0 tal que 1 — F (u,, ) > €,Vk € N.
Equivalentemente, F(u, ) <1—¢,Vk € N.
En consecuencia, P(M,, <uy,, ) < (1 —€)™ — 0, si k — +oo. Por lo que llegamos a contradiccion
con la hipétesis (1.15), estamos en el caso de T < +-oo.
Tomamos logaritmos en (1.15) y (1.16) obteniendo asi:

nlog{l — (1 —F(u,))} == —1. (1.17)

Como 1 — F (u,) =22 0, tenemos que log{1 — (1 — F ()} ~ —(1 — F(u)), cuando n — oo,

Por tanto, (1.17) implica inmediatamente (1.14).

2) T = oo,
—) Suponemos que n(1 — F (i) “===5 o0, pero que (1.15) no se satisface, P(M,, < u,) - 0.
Entonces, existird una subsucesion {n; } tal que P(M,,, <y, ) — e " , k — oo para algiin 7/ < +oo,
Esto implicaria que estariamos en el caso (1).
Por tanto, (1.15) implica que ng (1 — F (uy,,)) — 7' < oo, contradiciendo nuestra hipdtesis.
<) Andlogamente, se demuestra que (1.15) implica (1.14). Basta considerar que
n(1 — F(u,)) + oo, cuando n — +oo. Entonces, existird una subsucesion {n;} tal que n;(1 —

F(uy,)) 2% 1/ < ooy aplicar lo probado para el caso T < oo,

O

En el Teorema 1.7 hemos probado que si a,(M, — b,) converge en distribucién a una funcién no
degenerada G, entonces G es del tipo distribucidn de valor extremo. A continuacidn, pasamos a ver un
caso en el que a, (M, — b,) converge a una distribucién degenerada y no podremos aplicar el teorema (lo
hacemos para una sucesiéon mds general {u, } pero basta tomar u, = x/a, + by).

Corolario 1.8.1. Sea F satisfaciendo que xp < +ooy que lim F(x) = F(xy) < 1, es decir, F con salto
X—Xp
en xr.

Si para alguna sucesion {u,}, P(M, <u,) Limasia p, entonces p=00 p=1.

1.2. Convergencia en distribucion del maximo
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Demostracion. Sea {u,} tal que P(M, < u,) == p, entonces 0 < p < 1. Por lo que p = ¢~ * para
alglin 0 < T < +oo. Aplicando el Teorema 1.8, llegamos a que n(1 — F (i,)) =25 1.

Podemos tener dos situaciones:
1) u, < xp para infinitos valores de n: para estos valores tendremos 1 — F (u,) > 1 — F (x5 ) > 0. Por
tanto, T = +oo = p =0.
2) u, > xg para infinitos valores de n: por tanto para esos valores de n tendremos que F (u,) =1 =
n(l—F(u,)=0=1=0=p=1.
O

En el caso de distribuciones discretas se pueden encontrar condiciones necesarias para que la distri-
bucién del mdximo bajo alguna normalizacién lineal converja a una distribucién no degenerada.

Teorema 1.9. Sea X1, ...,X, variables i.i.d. con funcion de distribucion F y sea 0 < T < oo,

Si existe una sucesion {u,} satisfaciendo n(1—F (u,)) “=== 1, (1.14), entonces

p(x)
1—F(x™)

siendo F(x™) = ylg)lcl— F(y)ypx)=F(x)—F(x").

— 0, cuando x — xp, (1.18)

Por tanto, por el Teorema 1.8, la condicion (1.18) es necesaria para que exista una sucesion {u,} satis-

faciendo P(M,, < uy,) IoH o=t con 0 < T < oo,

Demostracion. Vamos a demostrar por contradiccion, suponemos que existe una sucesioén {u,} cum-

pliendo (1.14) pero no satisfaciendo (1.18). Esto implica la existencia de un € > 0 y una sucesién {x,}
~+oo

tal que x, nore, XFy

pl) 2 26(1 - F(x,). (1.19)
Escogemos una sucesién de nimeros enteros {r;} de modo que
F(x;)+F(x;
1_£SMS v (1.20)
nj 2 n;j +1

{un;}, {x;} son dos sucesiones, por tanto, al menos una de ella gana a la otra en un nimero infinito de j.
Luego, tenemos dos opciones:
1) uy; < x;j para infinitos valores de j = n;j(1—F (un;)) > n;(1 —F(x})), para esos valores de j.
Por otra parte,

T F(x;)+F(x;) X; nip(x; T T
nj(1-F(x;)) =T+n; (1—”>— : 5 ! +p(2’) zw”éf)—nj(n.—n'ﬂ)z
J J J
>tten(1—F(x))— —
- n; — X — .
J J nj—i—l

En la primera desigualdad hemos utilizado (1.20) y en la segunda (1.19).
Hemos llegado a que

(1—&)n;(1-F(x})) zr—njil — (1= F () > 7 (1_n,-1+1>'

Dado que nj — o0 (ya que F(x; ) + F(x;) — 2), tenemos que:
limsupn;(1—F(x;)) > t.
J—rtoo
Y a consecuencia,

limsupn;(1—F(u,)) > T.
J—roo !

Hemos llegado a contradiccion con (1.14).

1.2. Convergencia en distribucion del maximo
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2) un; > xj para infinitos valores de j. Razonando de manera similar, pero cambiando las desigualda-
des, llegamos a la misma contradiccion.

O]

1.2.4. Condiciones necesarias y suficientes para pertenecer al dominio de atraccion de
de una ley de extremo

Finalmente, en esta seccion pasamos a ver las condiciones necesarias y suficientes que debe cumplir
la funcién de distribucién F para pertenecer al dominio de atraccién de una funcién de tipo valor extremo.

Teorema 1.10. Sea F una funcion de distribucion. Las condiciones necesarias y suficientes para que F
pertenezca al mdximo dominio de atraccion de uno de los tres tipos de distribuciones de valores extremos
son:

1-F(4xg() _

TIPO I: existe g(t), una funcion positiva tal que llgcrl: ) e, VxeR
Xp = +oo,

TIPO II:
Ja > 0tal que tlgg 1111;((;)) =x% Vx>0.
Xp < oo,

TIPO III:

J o > 0tal que Eﬁ%:xa’ Vx > 0.

En definitiva, observamos que el comportamiento asintético de la cola de la distribucién (1 — F(x))
es el que determina el tipo dominio maximo de atraccioén al que pertenece una distribucién.

Demostracion. Pasamos a probar la parte de suficiencia, suponemos que la funcién de distribucién F
satisface las condiciones de alguno de los tres tipos en el enunciado del teorema.

. . . ., . — o0
En primer lugar, demostramos la existencia de una sucesion no decreciente {¥, } tal que n(1—F (%)) 22—

1 . Tomamos ¥, = F~ (1 —1/n), por lo que

_ 1
FOp) < 1- <F(n),
siendo F(y, ) = lim F(y).
Y=
De aqui deducimos que limsupn(1 — F(%,)) < 1. Si verificamos que liminfrn(1 — F(7,)) > 1, habremos
probado lo que querfamos. Tenemos que n(1 — F(y, )) > 1, luego basta ver si

1-F
timinf L L) S (121)
n—te 1 —F ()
. . s o 1F(h) ‘ 1=F(%)
En particular, una vez visto esto dltimo, llegamos a que 113_1 —Fon) 1, por ser limsup ;— ) <.
n——+oo 1= n - n

Lo demostramos para cada uno de los casos:

» F satisface las condiciones del TIPO I: Tenemos que F (¥, —a) < F(Y, ), Ya > 0, por ser F no
decreciente. Por tanto, por ser g positiva, F(¥%, +xg(1%)) < F(¥, ), Vx < 0. Luego, 1 —F(y, ) <
1 —F(t+xg(m)), Vx <O.
Notar que 7, 22 xp. Por consiguiente,

minf L) e L= F0R)
nteo | — F () — nte 1—F (% +x8(%))

La dltima igualdad viene de nuestras hipétesis sobre F. Basta hacer tender x a 0 para ver que se
satisface la desigualdad (1.21).

=¢* Vx <O.

1.2. Convergencia en distribucion del maximo
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» F satisface las condiciones del TIPO II: Considerando que F (xy,) < F(7, ), Vx < 1y que ¥, — xr,
tenemos que,
liminf i(y")

— T —x% Vx< 1.
n—teo 1 —F (Y ) — no+o 1 —F () x5 Vs

La dltima igualdad viene de nuestra hipétesis sobre F. Basta hacer x — 1 para ver que se satisface
la desigualdad (1.21).

» F satisface las condiciones del TIPO III: Definimos h, = xrp — %, (hy, o, 0). Teniendo en

cuenta que x¥%, + (1 —x)xp < 1, Vx > 1, tenemos que F(x¥, + (1 —x)xp) < F(y,), Vx > 1. A
consecuencia,

F(%)

1—
liminf —————=

— > liminf - F(')/n) — liminf 1 _F(xF - hn)

— = x % Vx> L
n—teo 1 —F(yy) — note 1 —F(Yux+ (1 —x)xp)  n—+e 1 —F(xp —xhy,) * *

La dltima igualdad viene de nuestra hip6tesis sobre F'. Basta hacer x — 1 para ver que se satisface
la desigualdad (1.21)

Una vez definida y probada la existencia de {7, }, pasamos a ver que efectivamente las condiciones dadas
son suficientes para que F pertenezca a uno de los tres dominios de atraccién. Lo demostramos para cada
uno de los casos:

» Fsatisface las condiciones del TIPO I: Sabemos que ¥, — xr, luego por hipdtesis, tomando ¢ = 7,
llegamos a que

n(1—F (% +xg(1) ~n(l = F(h))e ™ == e

. n—+oo _
+O n=/(n n —e . ’
Aplicando el Teorema 1.8, tenemos que P(M,, < ¥, +xg(7,)) —— exp{—e *}. Por tanto, basta

tomar a, = (g(%)) !, bn = % para tener P(a, (M, —b,) < x) o, G(x), siendo G la funcion de

distribucion de Gumbel (TIPO I, 1.3).

» [ satisface las condiciones del TIPO II: Tomando t = ¥, y x > 0, razonando del mismo modo que
en el caso anterior, tenemos que

n(1—F(%x)) ~n(1 = F(y))x~ % 2252y,

Aplicando el Teorema 1.8, P(M,, < 1,x) “=== exp{—x~%}, si x > 0. Por otra parte, como

¥, > 0 para n suficientemente grande (¥, — +oo) , si x ] 0 obtenemos que P(M, < 0) 27,

Finalmente, si x < 0, P(M,, < y,x) < P(M, <0) novte o
Definiendo ay = %, !, bn = 0, llegamos a P(a, (M, — b,) < x) === G(x), siendo G la funcion de

distribucion de Fréchet (TIPO II, 1.4).

» F satisface las condiciones del TIPO III: Estableciendo &, como antes, observamos que /1, — 0.
Llevando a cabo un procedimiento andlogo, obtenemos que para x > 0,

o N—r+e o

n(l—F(xp—x(xp — 1)) ~n(l —F(y))x* ——x
Remplazando x por -x:

lim n(1—F(xp+x(xr — 1)) = (—x)*.

n—r+-o0

Por el Teorema 1.8, P(M,, < xp +x(xp — %)) == exp{—(—x)®}, si x < 0. Haciendo x 1 0 llega-
mos a que P(M,, < xr) 222 1. Luego si x > 0, P(M,, < xp +x(xp — %)) > P(M, < xp) =255 1,
debido a que xr > 7, .

En definitiva, tomando a, = (Xf — %) !, bn = Xg, obtenemos P(a,(M, — b,) < x) o,

siendo G la funcion de distribucion de Weibull (TIPO 111, 1.5).

G(x),

1.2. Convergencia en distribucion del maximo
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La demostracién de la necesidad de las condiciones se puede consultar en [5].
]

Nota 2. Tal y como hemos visto en la demostracion del teorema anterior, sean {a, >0}, {b, } sucesiones

tal que P(an(M, — b,) < x) “2*= G(x). Una posible eleccion es:

TIPOIL: a,=[g(v)]™", bu="%.
TIPOIl: a,=7%,', b,=0.
TIPO III:  a, = (xp — %), bn=xr.

con Y, = F~'(1—1/n)y g la que aparece en el Teorema 1.10.

1.2.5. Ejemplos

En esta seccién, pasamos a ver ejemplos de coémo podemos aplicar los resultados vistos hasta ahora.
Primero, veremos ejemplos de distribuciones que si que pertenecen al maximo dominio de atraccién de
alguno de los 3 tipos de distribuciones valores extremos, identificando a cudl de ellos y hallando las
constantes normalizadoras. A continuacién, veremos un ejemplo en el que el mdximo no converge en
distribucién a ninguno de los tres tipos bajo ninguna normalizacion.

Ejemplo 1. (Distribucion Weibull).
Pese a compartir nombre con el de la distribucién de valor extremo de TIPO III (1.5), no se trata de la
misma distribucién. La funcién de distribucién de Weibull considerada en este ejemplo viene dada por

F(x)=1- ef(%) , six>0,F(x)=0, si x <0, donde @ >0, B > 0 son los pardmetros de forma y
escala, respectivamente.

Se trata de una distribucién continua con xg = 4o, luego aplicando el Teorema 1.10, descartamos que
esta distribucion pertenezca al mdximo dominio de atraccion de la distribucion de Weibulll ( TIPO 111
1.5).

Definimos g(t) = B , Vi > 0y pasamos a ver que 1% — (1 +xg(t))% =5 —xB% VxR

o
o o
- (1+)‘T>

o (1 — ) g o (@+1)

(04 o

, o _ (04 — z e { = - ¢
[Mim (1% — (1 +xg(1))*) = lim_ pur Jm "o (@t xBY.
Por tanto,

I —F(t t 1 (rtg@)®
lim M — lim e ﬁag frnd e_x,
=00 1—F(t) 1o

Aplicando el Teorema 1.10, concluimos que una variable Weibull pertenece al mdximo dominio de
atraccion de una distribucion de Gumbel (TIPO I, 1.3). Es decir, existen sucesiones {a, > 0},{b, } de
n——+oo

modo que P(M,, < a; 'x+b,) 7" G(x),Vx € R, siendo G(x) la funcién definida en (1.3).
Teniendo en cuenta la Nota 2, pasamos averiguar la expresion de 7,:

T

F(Yn)zl—:l<:>e_(3) :%ﬁ%:ﬁlog(n)é

Llegamos a que a, = %log(n)l_é yb,=p log(n)é.

La distribucion exponencial es un caso particular de la distribucién de Weibull (8 = 1/A, oo = 1). Luego,
si M, es el maximo de n variables Exp(A), se satisface que AM,, —log(n) converge en distribucién a una

1.2. Convergencia en distribucion del maximo
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distribucién de Gumbel, ya que a, = 4, b, =log(n)/A.

Con ayuda de R, hemos realizado una simulacién de Monte Carlo de este dltimo resultado con 200
repeticiones comprobando que se tiene un buen ajuste. En la Figura 1.1 se muestra una simulacién con-
siderando una Exp(0.5) y n=1000.

Histograma de AMn-log(n)

05
]

— Densidad AMn-log(n), n=1000
—— Densidad de la distribucién de Gumbel

0.4

N

=~

Density
0.3
|

0.2
|

|

0.0
|

Figura 1.1: Simulacién de Monte Carlo con 200 repeticiones de la distribucién de 0,5M 00 —1og(1000),
siendo Moo el méaximo de 1000 variables Exp(0,5). Se compara con la distribucion de Gumbel.

Ejemplo 2. (Distribucion de Cauchy).

La funcién de distribucién de una distribucién de Cauchy de pardmetros xy (posicién) y v (de escala)
viene dada por F(x) = J + 1 arctg (x xo) , VxeR.

Al ser xp = oo, aphcando el Teorema 1.10, descartamos que la Cauchy pertenezca al maximo dominio
de atraccion de la distribucion de Weibull (TIPO III 1.5). Fijamos un x > 0, pasamos a calcular

T fx—xg x
Ii I_F(t'x) — 1im 2 arCtg< Y ) — lim ((txfx0)2+7> _ 1

im =l = _.
t=too | —F(t) t—=4o 1 _ arcte (=X t—roo 1 X
2 e\ =) +7

En definitiva, teniendo en cuenta las condiciones del Teorema 1.10, llegamos a que la distribucion de
Cauchy pertenece al dominio de atraccion de la distribucion de Fréchet de parametro o. = 1 (TIPO 11,

(1.4)).

Calculamos ¥;:

(yn)—l—l<:>7n—7c0tg< )+xo

Aplicando la Nota 2, tenemos que a, = W y b, =0.
M, n—+oo ! M, n—+
ESdCClI‘P(WS )—>e V,Slx>0yP<W%)+xO§ >—>O s1x<0

Al igual que en el ejemplo anterior, hemos comprobado con una simulacién de Monte Carlo con 200
repeticiones que el ajuste es bueno. En la Figura 1.2 se puede ver el resultado de una simulacién de cémo

wg(g) converge en distribucién a una Fréchet de pardmetro o = 1.
n

Ejemplo 3. (Distribucion Uniforme).
La funcién de distribucién de U (a,b) viene dada por F(x) = =%, Vx € (a,b). xp = b < 40y ademds:

xh

1-F —
lim (xr — xh) = lim 24 ” =2Xx.

no 1—F(xp—h) hio

—a

Por tanto, aplicando el Teorema 1.10, llegamos a que U (a,b) € MDA(G), siendo G la funcion distribu-
cion de Weibull con o« = 1 (TIPO 111, (1.5)).

1.2. Convergencia en distribucion del maximo
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Histograma de anMn
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Figura 1.2: Simulacién de Monte Carlo con 200 repeticiones de la distribucién de Mjgo/cotg(m/1000),
siendo Moo el mdximo de 1000 variables Cauchy estdndar (Y = 1, xo = 0). Se compara con la distribu-
cién de Fréchet de pardmetro o = 1.

Utilizando la Nota 2, como ¥, = b — %, obtenemos que a, = ;*—, b, = b.

Por tanto, P (”(lgzb) < x) BT ¥, six <0y P ("(/Kj;b) < x) MO, six > 0.

Realizando con R una simulacién de Monte Carlo con 200 repeticiones, comprobamos que efectiva-
mente % converge en distribucién a la distribucién de Weibull de pardmetro 1. En la Figura 1.3
muestra una simulacién considerando U(0,1) y n=1000.

Histograma de n(Mn-b)/(b-a)

1.0

— Densidad 1000(Mn-1), n=1000
—— Densidad de la distribucién de Weibull, a=1

Density

ﬁx
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Figura 1.3: Simulacién de Monte Carlo con 200 repeticiones de la distribucién de 1000(Mjpp0 — 1),
siendo Mo el maximo de 1000 variables U (0, 1). Se compara con la distribucion de Weibull con o = 1.

Ejemplo 4. (Distribucion Geométrica).
La funci6n de distribucién de una Geométrica de pardmetro p viene dada por F(x) = 1 — (1 — p)l¥/,
Vx > 0, siendo |x| = max{k € N | k <x}. La funcién de probabilidad viene dada por
p(r)=P(X=r)=(1—p)~'p, sir=1,2,3,... y 0de otro modo. Tenemos que
pn) _(=p)p_

1-F(n—1) (1—p)! ’
Por tanto, como xg = o0, no se cumple (1.18) del Teorema 1.9. Esto implica que no existe ninguna su-
cesion {uy, } tal que P{M, < u,} === p con p distinto de 0 o 1. En definitiva, el mdximo de n variables

1.2. Convergencia en distribucion del maximo
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Geométricas no converge en distribucion y la distribucién geométrica no pertenece al maximo dominio
de atraccion de ninguna distribucién max-estable.

Una observacién interesante es que la distribucién exponencial de pardmetro A = —log(p) puede con-
siderarse como la distribucién continua equivalente a una distribucién geométrica de pardmetro p. De
hecho, tal como se puede ver en la Figura 1.4, las colas de sus distribuciones son practicamente iguales.
Por lo que hemos estudiado, la convergencia en distribucién del médximo se basa en el comportamiento de
la cola de la distribucién. Sin embargo, el maximo de n variables exponenciales converge en distribucién
pero el médximo de n variables geométricas no.

0.7
1

Distribucion exponencial lambda=log(1/p)
—— Distribucién geométrica p

06

05

dexp(x, lambda)
0.3 04
I

0.2

0.1

Figura 1.4: Distribucién de una Exp(—1log(p)) y una Geométrica de parametro p.

1.3. Convergencia en probabilidad y convergencia casi segura para el ma-
Ximo

En esta seccién vamos a considerar dos tipos de distribuciones, segtin si xz < 4<< 0 no. Estudiaremos
por separado en cada uno de los tipos la convergencia en probabilidad y casi segura del mdximo.

En primer lugar, consideramos las distribuciones con xg < +oo. La siguiente proposicion nos da el resul-
tado sobre las convergencias que andamos buscando.

Proposicion 1.11. Sean Xi,...,X, variables aleatorias i.i.d. con F su funcion de distribucion y sea
Xp < +oo. Tenemos que M, R XF.

Demostracion. Primero probamos que M, LN Xp.

Esto es equivalente a ver que Ve > 0, P(M,, ¢ (xp — €, xp + €)) converge a 0. Teniendo en cuenta que
PM, & (xp — €, xp +€)) = P(M, < xp— &)+ PM, > xp+€), demostramos que estos dos ultimos
sumandos tienden ambos a 0:

n——+eo

Sea A < xp, tenemos que 1 — F(A) > 0. Por tanto, n(1 — F(1)) ——— +oo. Luego, si aplicamos el
Teorema 1.8 con u, = A, Vn > 1, llegamos a que P(M,, < 1) 22T 0. Bs decir, Ve > 0,

P(M, <xp—¢€) —0, cuando n — +oo.

Por otra parte, sabemos que P(M,, > xr) =0, Vn > 1. Entonces Ve > 0, P(M,, > xr + €) — 0, cuando
n — +o0. Con esto probamos la convergencia en probabilidad.

Finalmente, como {M,} es una sucesién no decreciente acotada, converge casi seguramente. Necesa-
riamente convergerd a xr casi seguramente, ya que la convergencia casi segura implica convergencia en

probabilidad. O

1.3. Convergencia en probabilidad y convergencia casi segura para el maximo
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Por tanto, podemos establecer que si xp < +oo entonces:

M,

M,

By 22 (1.22)
XF XF

En segundo lugar, estudiamos la convergencia en probabilidad y casi segura del maximo de las distribu-

. . . . . P
ciones con xp = +oo. A continuacién, vemos condiciones sobre la sucesioén {a, } para que Ig— — 1L
n

Teorema 1.12. (Convergencia en probabilidad).
Sean X1, ...,X, variables aleatorias i.i.d. con F su funcion de distribucion y sea xp = +oo. Dada una

. .. . . M, P
sucesion {ay, }, las condiciones necesarias y suficientes para que = Lson:
n

n(1 = F(tay)) =2 oo, Vi € (0,1), (1.23)
n(1—F(tay)) =220, Ve > 1. (1.24)

Demostracion. A:—: L les equivalente a que Ve > 0, P (%" ¢(l—e 1+ 8]> Umanay)}

Por tanto, tenemos que ver las condiciones necesarias y suficientes para que P(M,, < a,(1 —¢)) 20
y P(M, > a,(1+¢€)) =22 0.
Estas condiciones nos las da el Teorema 1.8:
P(M, < ap(1—¢)) =25 0= n(1 — F(a,(1—€)) =52 4o0, Ve >0,
P(M, < a,(1+¢€)) =521 = n(1 — F(an(1+€)) =520, Ve > 0.
Las condiciones obtenidas son equivalentes a (1.23) y (1.24).
O

Definicion 7. Sea {A,} una sucesion de sucesos. Se define el suceso limite superior de {A,} de la
siguiente manera:

limsupA,, = ﬂ U A

n——+oo n=1m=n

También se denota limsup A, como {A, i.0.}.
n—y—+oo

Pasamos a probar la existencia de nimeros reales {a,} tal que My converja a 1 casi seguramente.

an
Esto es equivalente a probar que existe una sucesion {a, } tal que Ve > 0, P ( % —1|>¢ i.o.) =0.Es

decir, que se cumplan las dos siguientes condiciones Ve > 0:

P(M, > (14+¢€)a, i.0.)=0 y PM,<(l—¢€)a, io.)=0.

Antes de presentar la ley (Teorema 1.16), se necesita conocer unos resultados previos que estin escritos a
continuacién. El Teorema 1.14 nos dard condiciones necesarias y suficientes para probar la primera con-
dicién, mientras que el Teorema 1.15 nos proporcionard condiciones suficientes para probar la segunda
condicion.

Lema 1.13. (Lema de Borel-Cantelli). Sea {A,} una sucesion de sucesos tal que Y, P(Ap) < oo,
entonces P(A, i.0.) =0.
Si los Ay, son independientes 'y Y, P(A,) = oo, entonces P(A, i.0.) =1

1.3. Convergencia en probabilidad y convergencia casi segura para el maximo
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Teorema 1.14. Sean X1, ...,X, variables aleatorias i.i.d. con funcion de distribucion F tal que xp = +oo.

Sea {u, } una sucesion de niimeros reales no decreciente tal que u, 22F% 4 oo, Entonces
P(M,, > uy i.0.) = P(X,, > uy i.0.). (1.25)

En particular,
P(M, > u, i.0.) =0 siy solo si 21201[1 — F(uj)] < oo,
P(M, > uy i.0.) =1 siy solo si Zj.:"l[l — F(uj)] = oo

Demostracion. Consideramos los sucesos A, = {M,, > u, }, Vn € N. Si probamos que los sucesos A,
ocurren para infinitos valores de 7 si y solo si los sucesos {X; > u;} ocurren para infinitos valores de j,
entonces habremos demostrado la igualdad (1.25).

<=) Esta implicacién es inmediata: por definicion del maximo M, > X, con 1 < j < n, y por hipo-
tesis X; > u; para infinitos valores de j. Luego, A, ocurrird también para infinitos valores de n.

—>) Ahora suponemos que M,, > u, para infinitos valores de n. Por la definicién de maximo, esto impli-
ca la existencia de un j < n de modo que X; > u,. Al ser {u, } una sucesién no decreciente, X > Uy > uj.
Para cada valor de n, definimos k, = k(n) = max{j <n: X; > u,}. Asi obtenemos una subsucesién de
indices no decreciente. Al no estar la sucesion {u,} acotada (1, — +o0), tenemos que Xy, > u, > uy, .
Es decir, hemos encontrado infinitos valores de indices j para los que X; > u;.

Finalmente, los sucesos {X; > u;} son independientes entre si por ser las variables independientes. Por
tanto, basta combinar los dos resultados del Lema de Borel Cantelli (Lema 1.13) junto a lo que acabamos
de probar:

0=P(M, > uyi.o0.)=PX,>uyi.o.)< 4o > ):,;f’:lP(Xj >uj) =Y 71— F(uj)],
1 =P(My > uyi.o.)=P(Xy >uyio.) = +oo=Y7 | P(X;>u;)=Y7[1—F(uj)]

]
Teorema 1.15. Sean X,,...,X, variables aleatorias i.i.d con F su funcion de distribucion. Sea {u, } una

sucesion no decreciente cumpliendo que 1 — F (1) 22250, n(1 — F(uy)) =255 400 y

[l — F(uy)])exp{—n[l — F(u,)]} < +oo. Entonces P(M,, < u, i.0.) = 0.

n=1

Demostracion. Los detalles de esta demostracion se pueden encontrar en [4] (pag. 170, Teorema 3.5.2)

O
. . . . C.S
Pasamos a presentar las condiciones necesarias y suficientes sobre {a,} para que ];ﬁ = 1.
n
Teorema 1.16. (Convergencia casi segura). Sean X1, ...,X, variables aleatorias i.i.d. con funcion de

distribucion F tal que xp = +oo. Sea {%,} la sucesion definida por ¥, = F~! (1 - l) , Vn €N, y supon-

gamos que n(1 —F (1 —¢€)y,) T oo, Ve > 0.

Entonces
M C.S
— =1 (1.26)
Y
siy solo si, Vk > 1,
—+oo
Y (1= F(ky)] < +eoo. (1.27)
n=1

Nota 3. La condicion n(1 —F(1 —€)%,) 1 e, Y& > 0 es razonable. La convergencia a +oo es necesaria

P . . L . e
para que % — 1, y la convergencia casi segura implica convergencia en probabilidad.
n

1.3. Convergencia en probabilidad y convergencia casi segura para el maximo
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Demostracion. Empleando la definicién de convergencia casi segura, tenemos que:
PM, > (14+¢&)ypio)=0 (1)

Mo 5 | = Ve > 0, P(‘%—l‘>ei.o.):0<:>V8>0,

PM, <(l—¢€)yio.)=0 (2)

Pasamos a ver qué condiciones son necesarias y suficientes para que se cumplan las condiciones (1)
y (2).

Aplicando el Teorema 1.14 (ya que %, — xp = +o0), obtenemos que Y7 [1 — F((1+€)%,)] < +eo,

Ve > 0 es una condicién necesaria y suficiente para que P(M,, > (1+ &)}, i.0.) = 0. En particular,

;1:"1 [l — F(kY,)] < +eo, Yk > 1 serd una condicién necesaria para que %1" % 1y suficiente para (1).

Y

A continuacion, demostramos que esta dltima condicién también es suficiente para (2). Para cumplir
nuestro objetivo fijamos € > 0 y aplicamos el Teorema 1.15 con u,, = (1 — €)7,, Vn € N. Antes que nada,
comprobamos que {u,} satisface las condiciones para poder aplicarlo:

1) {7} es una sucesién no decreciente por definicién, por tanto, {u,} también lo serd. Ademas

Uy — o0, luego 1 — F(u,) =15 0.

2) Por hipétesis.

3) La parte complicada es ver que

—+o0

Y (1= F(un)]exp{—n[l — F (u)]} < +eo. (1.28)

n=1

Lo vamos a demostrar en el caso de que F sea absolutamente continua. En primer lugar probamos
que (1.27) ocurre si y solo si dado 7 € (0,1)

e ) "
/1 T ray & <t (1.29)

siendo f la densidad de F.
Definimos G(y) = F~! (1 —1/y). Se trata de una funcién no decreciente con G(n) = ¥,,¥n € N.
Por tanto, G(y) > G(n) = 1 —F(kG(y)) < 1—F(kG(n)), Vy € [n,n+1], Yk > 1. Esto implica que

n+1 n
| a=FiGEdy < 1-Flm) < [ (1-FKGE))db.

Aplicando sumatorios vemos que la condicién (1.27) es equivalente a

/1+°°(1 —FIkG(y)])dy < +eo.

Desarrollamos esta tltima expresion:

/ - PG dy = / - ( k;; f(X)> av= [ ;:) < / T dy) F(x)dx

) g [ L0 )
_/kG(l) <1—F(x/k) 1> flx)d _/kG(l) 1—F(x/k) +F(kG(1)) - 1.

La convergencia de esta integral estd determinada por la convergencia de (1.29), (tomar ¢t = 1/k).
A continuacidén, veremos que al verificarse (1.29) la condicién que estamos buscando se satisface.

Antes que nada, demostramos que (1.28) es equivalente a que Y7 [1 — F (up+1)] exp{—(n+ 1)[1 — F (u,)]}

< oo, Para ello, definimos x, = 1 — F(u,). Se cumple que x;, 22F0 0. Por tanto,
xn+le—(n+l)x,,
Iim ———=1.
n—oo Xp e

1.3. Convergencia en probabilidad y convergencia casi segura para el maximo
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Es decir, el caricter de erjl Xpp1e” D% eg el mismo que el de Z 2 Xnp1e M.
Por otra parte, basta ver que existen A, B > O tal que A < x’)’j‘ < B, Vn € N, para determinar que a
su vez el comportamiento de Z;:l Xp41€” ™" es equivalente al comportamiento de Y% x,e "™ :

1: 1@ < l(n—i_l)x'”rl < Knt1 <1.

2 2nx, 2 nx, Xn

En la primera desigualdad aplicamos que n(1 — F(u,)) es una sucesién creciente (por la condicién
2). En la segunda desigualdad usamos que (n+ 1)/n < 2. En la tercera utilizamos que es x,, es una
sucesion decreciente (por la condicién 1).

En definitiva, Z;f:l Xpp1e” D% tiene el mismo cardcter que Z::‘x’l Xpe n,

Una vez vista la equivalencia de las series, razonando de una forma andloga a la llevada a ca-
bo previamente,

1= Flunlexp (- D~ Fla]) < [77 (1 FUGO)exp {1 - FUG0))) a.

Tendremos que la tltima serie convergerd si

[ (1= FeGO exp {51 - FUGO))]} dy < -+

Desarrollamos la integral haciendo el cambio de variable x = G(y):
° e X 2 — X X
[ a-rrcoen it -reco as= [ (1250 ) eo{-Th b s

<M/ fx()tx dx < +oo

Para la primera desigualdad basta definir u(x) = 1111;((?)) >0, y ver que u*(x)e " es una funcién

acotada, tomamos M como la cota. La segunda desigualdad es consecuencia de nuestra hipdtesis
tal y como hemos visto previamente.
Queda probado que se satisface la tercera condicion.

En conclusién, podemos aplicar el Teorema 1.15 y establecer que Ve > 0, P(M,, < (1 — €)%y, i.0.) =0.
O

1.3.1. Ejemplos

A continuacién, empleando los conocimientos adquiridos en esta seccién, vemos ejemplos de distri-
buciones en los que su maximo divido por una sucesion converge a 1 casi seguramente y distribuciones
en las que esta convergencia no ocurre.

Ejemplo 5. (Distribucion Weibull).
Consideramos {X, } variables i.i.d. con X,, ~ Weibull(B, o), siendo B, a > 0.

—(x
La funcién de distribucién es continua y viene dada por F(x) =1 —e (ﬁ) ,six>0, F(x) =0, six<0.

Tenemos que xp = +eo y que ¥, = B log(n)é (calculado en el Ejemplo 1). Ahora fijamos k > 1 y vemos
si (1.27) converge:

i[ F (kBlog(n)* )] = 21—( ) :gnllc“<+°°‘

La convergencia se debe a que k* > 1, por ser k > 1, o > 0.

Basta aplicar Teorema 1.16 para determinar que % = B.
og(n

1.3. Convergencia en probabilidad y convergencia casi segura para el maximo
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Recordando que la distribucién exponencial es un caso particular de la distribuciéon de Weibull (f =
1/A, oo = 1), podemos establecer lo siguiente: El mdximo de n variables (independientes) exponenciales
de pardmetro A divididas por log(n) converge casi seguramente a su media (1/1).

Con la ayuda de R, tomamos A = 0,5 y generamos 100 trayectorias para M,/ log(n), cogiendo para cada
una 1000 datos de una Exp(0,5). Observando la Figura 1.5, vemos que las trayectorias convergen a 2, la
media de la distribucién.

Mn/log(n)

0 200 400 600 800 1000

Figura 1.5: 100 trayectorias de la funcién M, /log(n), siendo M,, el méximo de n variables exponenciales
de pardmetro 0,5.

Ejemplo 6. (Distribucion Uniforme).
Consideramos {X,} variables i.i.d con X, ~ U(a,b), 0 < a < b < +oo. La funcién de distribucién es

F(x) = =% Vx € (a,b). Por tanto, xp = b < +oo. Aplicando la Proposicién 1.11, M,, < b = M, 5.

= b—a’
En la Figura 1.6 se puede ver una simulacién donde se refleja la veracidad de este resultado para el

mdaximo de variables U (0, 1), las 100 trayectorias generadas convergen a 1.

Mn

05 06 07 08 09 10

I I I I I I
0 200 400 600 800 1000

Figura 1.6: 100 trayectorias del méaximo de n variables U (0, 1).

Ejemplo 7. (Distribucion Pareto).

Consideramos {X,} variables i.i.d con X,, ~ Pareto(a.), o > 0.

La funcién de distribucion es continua y viene dada por F(x) =1 — x—la, six>1.
Tenemos que xp = 4o, calculamos %;,, Vn € N:

F(yn)zl—%@yn:né.

1.3. Convergencia en probabilidad y convergencia casi segura para el maximo
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Dadoun € € (0,1), n(1—F((1 —¢€)¥%) = (1—¢)~%. Por tanto, n(1 — F((1 — €)},) - oo cuando n — oo,
Aplicando el Teorema 1.12 obtenemos que n_éMn no converge en probabilidad a 1. Por tanto, n_éMn
tampoco convergerd a 1 casi seguramente.

La Figura 1.7 muestra una simulacién de 100 trayectorias de M,, con o = 2. Efectivamente, observamos
que hay trayectorias que no convergen a 1 (linea roja).

15

Mn/an

0 200 400 600 800 1000

Figura 1.7: 100 trayectorias de n~'/®M,, siendo M, el mdximo de n variables Pareto con o = 2.

. . ., M, P
Ahora pasamos a ver que no existe ninguna sucesién {u, } tal que = 1, y por lo tanto tampoco
c.s. Para ello vamos a emplear el Teorema 1.8:

P(M, < (1+&)u,) — 1,

M, M
P e ve >0, P( "—1'>e> — 0 < Ve >0,
tn tn P(M, < (1—¢€)u,) — 0.
n(l1—F((1+¢€)u,) — 0, W —0,
<~ Ve >0, <~ Ve >0,
n(1 = F((1— )ur) = oo g =+

Esto tltimo no puede ocurrir para ninguna sucesion {u, }.

Ejemplo 8. (Distribucion de Cauchy).

Consideramos {X,,} variables i.i.d con X, ~ Cauchy(xo,7), siendo xo, ¥ > 0. La funcién de distribucién
X—Xo
Y
Razonando de manera andloga al Ejemplo 7, se demuestra que no existe ninguna sucesioén {u, } tal que

es continua y viene dada por F(x) = % + % arctg ( ) , Vx € R. Tenemos que xp = +oo.

P . . .
% — 1. Para que existiera se deberia de satisfacer que:
n

ny
n(l —F(<1 +8)Mn) ~ m — 07
Ve >0
ny
n(1=F((1 = &)un) ~ zri=gym—g — T
(La equivalencia viene de que 7 /2 —arctg(h) ~ 1/h, si h — o).
No existe ninguna sucesion que satisfaga esas dos condiciones a la vez.
Por tanto, % no converge casi seguramente a 1, siendo 7y, = ycotg (%) +Xp. Si ocurriese esta convergen-
cia, ocurriria a su vez la convergencia en probabilidad.
La Figura 1.8 muestra una simulacién de 100 trayectorias de M,, con xo = 0, ¥ = 1. Observamos que las

trayectorias no convergen a 1 (linea roja).

Ejemplo 9. (Distribucion Geométrica).
La funcién de distribucién de una Geométrica de parametro p viene dada por F(x) =1 — (1 — p)l,

1.3. Convergencia en probabilidad y convergencia casi segura para el maximo
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Mn/an

0 200 400 600 800 1000

Figura 1.8: 100 trayectorias de M, /7,, siendo M,, el méaximo de n variables Cauchy de pardmetros
x0=0,y=1.

Vx >0, donde |x| = max{k € N | k <x}.
Xxp = —+ooy F no es continua al estar definida a trozos. En este caso resulta mds laborioso sacar los valores
de ¥,:

yn:fnf{x]iZ(l_p)M}@yn:mf{x\ | x] zm}@n_mf{x\ x| = Lo;((ig())JH}

—log(n) —log(n)
S h=|l— |l = —
1= |ty = |t
Siendo [x] = min{k € N | x < k}.
Pasamos a ver que la serie (1.27) converge para todo k > 1:

oo

Z(l_pﬂ LOg H i [log )—| <

n=1

had —log(n) —klog(n) oo
< Z (1 —p>k<"’g(]—l')+l) — k Z eoe(1-p) log(1—p) Z
n=1 =l
1 M, ¢S -1
Por tanto, aplicando el Teorema 1.16 llegamos a que ol — (15"

Simulando con R, hemos generado 100 trayectorias de M, /log(n), siendo M, el maximo de n variables
Geom(0,5), (Figura 1.9). Se observa la convergencia a la linea y = 1/1log(2), aunque dicha convergencia
resulta ser lenta.

Mn/log(n)
2

0 2000 4000 6000 8000 10000

Figura 1.9: 100 trayectorias de M, /log(n), siendo M,, el maximo de n variables Geom(0,5).

1.3. Convergencia en probabilidad y convergencia casi segura para el maximo






Capitulo 2

L.a estadistica en valores extremos

2.1. Introduccion

Tras haber estudiado en profundidad toda la base probabilistica que hay detrés de la teoria de valores
extremos, en este capitulo pasamos a ver como se manifiestan los valores extremos en datos reales.
Para ello, vamos a analizar un conjunto de datos utilizando varias de las técnicas descritas en el Capitulo
6 de [4] y en el Capitulo 3 de [3].
Los estadisticos ordenados van a jugar un papel fundamental en este capitulo, los definimos de la si-
guiente manera:

Definicion 8. Sea Xi,...,X, una muestra aleatoria, se define X; , como el i-ésimo valor mas grande de la
muestra (i € {1,...,n} ). Es decir, X, < -+ < Xj 5.

2.2. Aplicacion

Los datos con los que vamos a trabajar consisten en las rachas maximas de viento registradas diaria-
mente en el aecropuerto de Almeria durante el mes de octubre, desde el afio 1961 hasta el afio 2019.
Para nuestro andlisis, tomamos el valor mdximo registrado en el mes de octubre de cada afio, es decir,
el maximo de 31 datos, obteniendo asi 59 valores para nuestra distribucién maximo. Nuestro objetivo es
determinar si esta distribucién pertenece al maximo dominio de atraccién de uno de los tres tipos de dis-
tribuciones valores extremos. Esto nos permitird realizar estimaciones fuera del rango de nuestros datos.

Es importante sefialar que los datos diarios del mismo afio no se pueden considerar independientes,
ya que la presencia de viento en un dia puede influir en la presencia del viento el dia siguiente. Sin em-
bargo, esta dependencia se considera débil, puesto que la influencia de un dia no se extiende a muchos
dias posteriores. Bajo esta hipétesis, los resultados discutidos en el Capitulo 1 se verifican de manera
aproximada. Por otro lado, las maximas rachas de viento en octubre de cada afo si son independientes
entre si e igualmente distribuidas.

En primer lugar, analizamos nuestros datos, observando que su rango es considerable, variando entre
48 km/h y 163 km/h. Ademds, evaluamos si nuestra distribucion es de cola pesada, es decir, con cola més
pesada que la distribucion exponencial. Desde el punto de vista estadistico, estas son especialmente im-
portantes ya que permiten la posibilidad de valores extremos que pueden ser significativamente mayores
que los observados hasta ahora, lo que es crucial para realizar estimaciones y gestionar riesgos asociados
a eventos extremos.

La manera de detectarlo es utilizando la grafica de la funcién de exceso medio empirica (definida en la
pag. 296 de [4]). En la Figura 2.1 se representa esta gréifica utilizando nuestros datos. A partir del valor
80 observamos un patrén creciente, lo cual indica que estamos ante una distribucién de cola pesada.

23
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Funcién de exceso medio empirica

T T T T T
60 80 100 120 140

Maximas rachas viento octubre desde 1961-2019

Figura 2.1: Gréfica de la funcién de exceso medio empirica.

En el capitulo anterior se ha establecido que a,(M, — b,) converge a uno de los tres tipos de distri-
buciones de valores extremos, con a,, b, adecuadas. El objetivo ahora es determinar a cudl de estas
distribuciones converge nuestros datos normalizados y estimar las constantes normalizadoras a, y b,.
La manera de proceder para detectar a cudl de los tres tipos de mdximos dominios de atraccion pertenece
la distribucién M, es estimar el pardmetro de forma de la distribucion de valor extremo generalizada.

Definicion 9. La funcion de distribucion de valor extremo generalizada viene dada por:

exp{—(1+ex)"/¢} sie#0
He(x) =
exp{—e "} sie=0

siendo 1 +&x > 0.

Nota 4. Si € = 0, entonces H; se trata de la distribucién de Gumbel (TIPO I, (1.3)). Sie =o' >0,
H, se corresponde con la distribucion de Fréchet (TIPO II, (1.4)), mientras que si € = —a "' < 0, He
se corresponde con la distribucion de Weibull, (TIPO III, (1.5)).

Utilizamos el estimador de Hill para estimar el pardmetro de forma, ya que, al tratarse de una distri-
bucién de cola pesada, sabemos que el pardmetro serd no negativo. El estimador de Hill se define de la
siguiente manera:

Definicion 10. (Estimador de Hill).
Sean Xj,...,X, los datos muestrales y sea k € {1,...,n}:

N 1
Ekn = Z .

k
log(X; ) — log(Xi.n)-
j=1

Nuestro objetivo es escoger el valor ptimo de k que mejor ajuste nuestros datos. Los resultados
tedricos relativos a este estimador indican que debe tomarse como una proporcion (ni muy grande ni
muy pequefia) de k. Para seleccionar el k adecuado, representamos el estimador de Hill en funcién de k&
(Figura 2.2), y elegimos un valor donde la gréfica se vea estable.

Observamos que al tomar un valor de k entre 20 y 40, el estimador se estabiliza entrono a 0.2. Deci-
dimos fijar k = 34 obteniendo asf el siguiente parametro de forma: &34 59 = 0,2014.

Empleando el Lema 6.4.13 de la pag.346 de [4], escogiendo k = 34, obtenemos que nuestras cons-

2.2. Aplicacion
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Figura 2.2: Estimador de Hill en funcidn de k.

tantes normalizadoras son:

—1

. 1 34 R B
59 = | 35 Y log(X;,) —log(Xaas0) | = (Baas0)”' =4,965.
=

b3s.50 = log(1V X3411.50) = 4,331.
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En definitiva, hemos obtenido que la distribucién de nuestros datos maximos normalizados se aproxima
a una Fréchet de pardmetro o = (&34.59) ' = 4,965.

Para evaluar la calidad de esta aproximacién, hemos realizado una QQ-plot (Figura 2.3). El compor-
tamiento lineal de la grafico indica que nuestros resultados se ajustan bien a la teorfa, lo que nos permite

afirmar que nuestra aproximacion es buena.

800
I

700
I

e

™

2 g

T8

—~

(o2}

LO‘

< g |

i 3

X

n

©

°’. o
< 9 ™

s

300
L
8

1.0

T T
15 20

Cuantil (60-k)/60 de una Fréchet de parametro 4.965

Figura 2.3: QQ-plot de los cuantiles % de una Fréchet o = 4,965 frente a d34 59(Xj 50 — 1334759), con

ke{l,...,59}.

Lo anterior nos permite obtener una estimacion de la cola de la distribucion (F(x) =1 —F(x)) asi

como una estimacién de los cuantiles (x, = F
= — 34 x
Fx)=1-F(x) =

=170 =3

2.

X3441,59

“Hp)):

2. Aplicacion

—a34,59 X\ —4,965
> =0,576 <%> , con x>T76.

s

2.1
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59

—1/d3459
£p = X3411,59 <34(1 —P)> =68,032(1—p) "', con pe(0,1). (2.2)

(Los detalles de como se obtienen estas expresiones se pueden encontrar en la pag. 347 de [4]).

Esta tdltima estimacion se utiliza para estimar cuantiles fuera del rango de nuestros datos. La razén
es que, para estimar cuantiles dentro del rango de nuestros datos, X , se presenta como un estimador
natural del cuantil 1 — ]“Tl Por tanto, dentro del rango de valores [48,163] podemos hallar, utilizando
nuestros datos, cuantiles hasta el cuantil 0,983. Sin embargo, lo que nos interesa estudiar son valores mas
grandes de los registrados. No haber observado rachas de viento mayores que 163 km/h no significa que
no exista la probabilidad de que en un futuro haya rachas que superen este tltimo valor. La probabilidad
de ocurrencia de una racha de viento mayor que 163 km/h puede ser estimada usando la estimacién de la
cola de la distribucién (2.1).

Pasamos a ver como emplea toda esta informacién en problemas de la vida real. Previamente, nece-
sitamos conocer qué es el periodo de retorno de un suceso (pag. 305 de [4]):

Definicion 11. Sean X, ..., X, variables aleatorias igualmente distribuidas y # un valor umbral.
Definimos el tiempo del primer éxito como L(u) =min{i <1 : X; > u} y el periodo de retorno de los
sucesos {X; > u} como EL(u) = (F(u))~!.

Los ingenieros utilizan los periodos de retorno para disefiar infraestructuras. A través de ellos eva-
Idan la probabilidad de ocurrencia de eventos extremos (como vientos fuertes), durante la vida ttil de
una estructura para asegurar la seguridad y funcionalidad a largo plazo. La ISO 4354 [8], establece que
las estructuras criticas para la seguridad, la integridad operativa, y la proteccion de vidas humanas deben
soportar rachas de viento con un periodo de retorno de al menos 200 afios. Dentro de un aeropuerto, se
considera que estructuras como los hangares, las torres de control y las torres de iluminacién y antenas
estdn dentro del tipo mencionado anteriormente. Por tanto, si se quisiera construir un nuevo hangar en
el aeropuerto de Almeria, utilizando nuestra estimacion de la cola de la distribucién (2.1), se llegaria a
que la probabilidad de que haya rachas mayores que 200 km/h es menor que 0,005. En consecuencia, el
periodo de retorno asociado a esas rachas extremas de viento es mayor que 200 afios. En definitiva, cons-
truyendo un hangar que resistiera rachas de viento de hasta 200 km/h se aseguraria tanto la proteccién
de aeronaves como la seguridad del personal.

Los periodos de retorno de vientos extremos se utilizan en los aeropuertos no solo en el disefio de estruc-
turas, sino que también en la planificacién de procedimientos operacionales. Algunos ejemplos son la
imposicion de restricciones en las operaciones de despegue y aterrizaje en situaciones extremas de vien-
to, o el disefio de procedimientos de emergencia eficaces, con el fin de asegurar una respuesta apropiada
ante eventos poco frecuentes.

Por otra parte, las compaiifas de seguro también utilizan el periodo de retorno de rachas extremas de
viento para evaluar el riesgo y determinar las primas de seguro. Es asi, ya que rachas de viento muy
grandes no registradas anteriormente pueden causar consecuencias catastroficas. Por lo que, haciendo un
andlisis sobre la probabilidad de ocurrencia y la posible magnitud de los dafos, se establecen las primas
adecuadas y se recomiendan acciones preventivas a los aeropuertos para reducir posibles pérdidas.

En conclusién, con el andlisis hecho previamente, hemos podido aproximar la distribucién de nuestros
datos normalizados, utilizando unas constantes estimadas, a una Fréchet de pardmetro ¢ = 4,965. Esto
nos ha permitido estimar tanto la cola de la distribucién de nuestros datos (2.1) como los cuantiles (2.2).
Todo esto es imprescindible para el estudio de la probabilidad de ocurrencia de rachas de viento extre-
mas, lo cual nos permite calcular los periodos de retorno. Esta herramienta es comtiinmente empleada en
la vida diaria en muchos dmbitos, entre los que se encuentran la ingenieria y las compaiiias de seguros.

2.2. Aplicacion
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Codigo R ejemplos Capitulo 1

A continuacién se adjuntan los cédigos de R que se han usado en cada una de las simulaciones de
los ejemplos.

= Ejemplo 1

#Definicion de la distribucion de Gumbel

pgumbel<—function (x)
{
Gx<—exp(—exp(-x))
return (Gx)

}

gqgumbel<—function (p)
{
xp<— —-log(-log(p))
return (xp)

}

dgumbel<—function (x)

{
dx<—exp(—exp(—x))=zexp(—x)
return (dx)

}
# - - - -

n<-1000

m<-200

lambda<-0.5

M<-matrix (rexp (n=m, rate=lambda), nrow=n, ncol=m)
mn<—apply (M, MARGIN = 2, FUN=max)
D<-lambdasxmn-log (n)

library (RcmdrMisc)

par (mfrow = c¢(1, 1))

hist (D, freq=FALSE, ylim=c(0,0.5),xlim=¢(-2,5), breaks = 20,
main="Histograma_de_ Mn —-log(n)")

kf<—density (D)

lines (kf)

xx<—qgumbel (seq (0,1 ,length.out=1000))

lines (xx,dgumbel (xx), col="red’)
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legend ( x= "topright" ,
legend = c¢("Densidad_, Mn -log(n),_n=1000",
"Densidad_de_la_distribucion_de_Gumbel"),
col = c¢(1, 2),
lwd = 2)

Ejemplo 2

#Definicion de la distribucion de Frechet

pfrechet<—function(x, alpha)
{
if (x>0)
{Gx<—exp(—(x"(—alpha)))}
else {Gx<-0}
return (Gx) }

qfrechet<—function (p,alpha)
{
xp<- (-log(p))*(-1/alpha)
return (xp)

}

dfrechet<—function (x, alpha)

{
dx<-exp(—-(x"(—alpha)))=(x~(—-alpha —-1))=alpha
return (dx)

}
# -

n<-1000
m<-300
xo0<—0 #parametro de posicion
sigma<-1 #parametro de escala

alpha<-1 #parametro de la distribucion de Frechet

M<-matrix (rcauchy (nzm, location =xo0,scale=sigma), nrow=n, ncol=m)
mn<-—apply (M, MARGIN = 2, FUN=max)
D<-mn/ (qcauchy(1—-(1/n),location = xo, scale=sigma))

library (RcmdrMisc)

par (mfrow = c(1, 1))

hist (D, freq=FALSE, ylim=c(0,0.6), xlim=¢(0,6),breaks= 700,

main="Histograma_de_anMn")

kf<-density (D)

lines (kf)

xx<—qfrechet (seq(0,1,length.out=1000),alpha=alpha )

lines (xx,dfrechet (xx,alpha=alpha), col="red’)

legend ( x= "topright" ,
legend = c¢("Densidad_anMn, _n=1000",
"Densidad_de_,la_distribucion_de_Frechet,_ 6 =1_"),
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col
Iwd

c(l, 2),
2)

= Ejemplo 3
#Definicion de la distribucion de Weibull

pWeibull<-—function (x, alpha)
{
if (x>0)
{
Gx<-1
}
else {Gx<—exp(—-((-x)"(—-alpha)))}
return (Gx)

}

qWeibull<-—function (p,alpha)
{
xp<— —((-log(p))"(1/alpha))
return (xp)

}

dWeibull<—function (x, alpha)

{
dx<—exp(—-((-x)"(alpha)))=(x~(alpha—-1))=alpha
return (dx)

}

# - - - -

n<-1000

m<-300

#Consideramos U(a,b)
a<-2

b<-6

alpha<-1 #parametro de la distribucion de Weibull

M<—-matrix (runif (nsm, min=a ,max=b), nrow=n, ncol=m)
mn<-apply (M, MARGIN = 2, FUN=max)
D<-nx(mn-b)/(b-a)

library (RcmdrMisc)

par (mfrow = c(1, 1))

hist (D, freq=FALSE, ylim=c¢(0,1),
main="Histograma_de_n(Mn-b)/(b-a)")

kf<-density (D)

lines (kf)

xx<—qWeibull (seq (0,1 ,length.out=1000),alpha=alpha )

lines (xx,dWeibull (xx, alpha=alpha), col="red’)

legend ( x= "topright" ,
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legend = c("Densidad_1000(Mn-1),_n=1000",
"Densidad_de_la_distribucion_de_Weibull, 6 =1"),

col = ¢(1, 2),
Iwd = 2)
= Ejemplo 5
n<-1000
m<—100

lambda<-0.5 #parametro de la exponencial
Maxdebil<—function (n,x) #x es un vector
{

mx<-max(x[1:n])

an<-log (n)

Mn<—-mx/ an

return (Mn)

}

seqdebil<—function (x,nn)

{
seqD<-sapply (nn ,FUN=Maxdebil , x=x)
return (seqD)

}

M<—-matrix (rexp (nxm, rate=lambda), nrow=n, ncol=m)
nn<—c(1l:n)

Maxd<—-apply (M, MARGIN=2 ,FUN=seqdebil ,nn=nn)

plot(nn, Maxd[,1], pch=16, ylim=¢(0,7), type="1")
aux<—function(y,nn) {lines (nn,y)}
baux<—apply (Maxd[ ,2: ncol (Maxd)], MARGIN=2, FUN=aux, nn=nn)
abline (h=1/lambda, col="red’)

= Ejemplo 6

Maxdebil<—function(n,x) #x es un vector
{

mx<-max(x[1:n])

return (mx)

}

seqdebil<—function (x,nn)

{
seqD<-sapply (nn ,FUN=Maxdebil , x=x)
return (seqD)

}

n<-1000
m<—-100
a<-0
b<-1
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M<-matrix (runif (n+m, min=a ,max=b), nrow=n,ncol=m)
nn<—c(1l:n)

Maxd<—apply (M,MARGIN=2 ,FUN=seqdebil ,nn=nn)

plot (nn, Maxd[,1], pch=16, ylim=c¢(0.5,1.05), type="1")
aux<—function(y,nn) {lines(nn,y)}

baux<—apply (Maxd[,2: ncol (Maxd)], MARGIN=2, FUN=aux, nn=nn)
abline (h=b, col="red’)

= Ejemplo 7

Maxdebil<—function (n,x, alpha) #x es un vector
{

mx<-max(x[1:n])

an<-n”(1/alpha) #gpareto(I-1/n)

Mn<—mx/ an

return (Mn)

}

seqdebil<—function (x,nn, alpha)

{
seqD<-sapply (nn ,FUN=Maxdebil ,x=x, alpha=alpha)
return (seqD)

}

library (EnvStats)

n<-1000

m<-100

alpha<-2

M<-matrix (rpareto (n#m, location=1,shape=alpha), nrow=n, ncol=m)
nn<-c(1:n)

Maxd<—apply (M,MARGIN=2 ,FUN=seqdebil ,nn=nn, alpha=alpha)
plot(nn, Maxd[,1], pch=16, ylim=c(0,15), type="1")
aux<—function(y,nn) {lines(nn,y)}

baux<—apply (Maxd[,2: ncol (Maxd)], MARGIN=2, FUN=aux, nn=nn)
abline (h=1, col="red’)

= Ejemplo 8

n<-1000
m<—100
xo0<—0 #parametro de posicion
sigma<-1 #parametro de escala
Maxdebil<—function(n,x,xo0,sigma) #x es un vector
{
mx<-max(x[1:n])
an<—qcauchy(1—-(1/n),location=xo, scale=sigma)
Mn<-mx/ an
return (Mn)

}

seqdebil<—function (x,nn,xo0,sigma)
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{
seqD<-sapply (nn ,FUN=Maxdebil ,x=x,Xx0=x0,sigma=sigma)
return (seqD)

}

M<-matrix (rcauchy (n=m, location=xo0, scale=sigma), nrow=n,ncol=m)
nn<-c(1:n)

Maxd<—apply (M,MARGIN=2 ,FUN=seqdebil ,nn=nn, sigma=sigma , X0=X0)
plot(nn, Maxd[,1], pch=16, ylim=¢(0,15), type="1")
aux<—function(y,nn) {lines(nn,y)}

baux<—apply (Maxd[,2: ncol (Maxd)], MARGIN=2, FUN=aux, nn=nn)
abline (h=1, col="red’)

Ejemplo 9

n<—10000
m<-100
p<-0.5
Maxdebil<—function (n,x,p) #x es un vector
{
mx<-max(x[1:n])
an<—log (n)
Mn<-mx/an
return (Mn)

}

seqdebil<—function (x,nn,p)

{
seqD<-sapply (nn ,FUN=Maxdebil , x=x,p=p)
return (seqD)

}

par (mfrow = c¢(1, 1))

M<-matrix (rgeom (n=sm, prob=p), nrow=n, ncol=m)

nn<-c(1:n)

Maxd<—apply (M,MARGIN=2 ,FUN=seqdebil ,nn=nn, p=p)

plot(nn, Maxd[,1], pch=16, ylim=¢(0,4), type="1")
aux<—function(y,nn) {lines(nn,y)}
baux<-apply (Maxd[ ,2: ncol (Maxd)], MARGIN=2, FUN=aux, nn=nn)
abline (h=-1/log(1-p), col="red”’)

Codigo R aplicacion estadistica

Seguidamente se adjunta el cédigo de R implementado para llevar a cabo la aplicacién estadistica.

##FUNCIONES NECESARIAS
#Funcion de exceso medio
mean_fun<-function (x,u)

{

1<-0

sum<-0
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for (j in x){

if (j>u)
{
sum=sum+(j—u)
i=i+l1
}
}
e_n=sum/ i
return(e_n)

}

#Estimador de Pickands

pickands<—function (k,x)

{
order<-sort(x,decreasing=TRUE) #ordenamos de mayor a menor
pick<-log ((order[k]—order[2xk])/(order[2=xk]—order[4+k]))/log(2)
return ( pick)

}

#Estimador DedH
Dedh<—function (k,x)
{
order<-sort(x,decreasing=TRUE)
H_1<-0
H_2<-0
for (j in 1:k)
{
H_1=H_1+log(order[j])—-log(order[k+1])
H_2=H_2+(log(order[j])—-log(order[k+1]))"2
}
H_1=H_1/k
H 2=H 2/k
est=1+H_1+1/ (2= (H_172/H_2-1))
return(est)

}

#Estimador de Hill
Hills<-function (k,x)
{
est<—0
order<-sort(x,decreasing=TRUE) #de mas a menos
for (j in 1:k)
{

est=est+log(order[j])

}
est=est/k—log (order[k])

return(est)

}

#Estimacion de los cuantiles
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cuantil<—function (p,k,x)

{
n<-length (x)
order<-sort(x, decreasing=TRUE)
cuantil=(n/k%(1-p))*—Hills (k=k,x=x)=*order [k+1]
return(cuantil)

}

#Estimaci n de la cola de la distribuci n
colaF<—function (k,x)

{
order<-sort (Datos_TFG$ Almeria, decreasing = TRUE)
est=(k/59)%(x/order[k+1])*(—-1/Hills (k=k,x=Datos_TFG$ Almeria))
return(est)

}

He —_

##EXTRACCION DE LOS DATOS QUE NOS INTERESAN
library (readxl)
library (dplyr)
Datos <— read_excel ("C:/Users/Usuario/OneDrive/ Escritorio/4 Matematicas
/TFG/Simulaciones_con_R/ Aplicaci n_estadistica/Datos_TFG. xlsx")
View (Datos)
New_data<-select (Datos, "Date" ,"63250") #Seleccionar solo la base de Almeria
colnames (New_data)<—c("Fecha"," Almeria")
New_data<—filter (New_data
substr (Fecha , start=6,stop=7)=="10") #seleccionar solo Octubre

years<—seq(1961,2019)
max_aire<-rep(0,59)

i<—1

for (year in years){

valores<—as.integer (New_data$ Almeria
[ which (substr (New_data$Fecha, start=1,stop=4)==year)])
#seleccionar los dias de octubre del mismo ano
max_aire [i]=max(valores)
i=i+l
}
#Datos con los que vamos a trabajar
Datos_TFG<-data.frame(" A o "=years, "Almeria"=max_aire)

View (Datos_TFG)

H —

##ANALISIS

par (mfrow=c (2 ,2))

summary ( Datos_TFG$ Almeria) #valores entre 48 y 163
#qqnorm( Datos_TFG$Almeria )
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library (rstatix)
identify_outliers (Datos_TFG, variable="Almeria")

#Detectamos si es de cola pesada o no
e_n<-rep(0,59)
for (i in 1:59){
e_n[i]=mean_fun (x=Datos_TFG$Almeria ,u=Datos_TFG$ Almeria[i])

}
plot (Datos_TFG$ Almeria ,e_n)

H#— —_—

#Grafica estimador Pickands

k<-seq (1, floor (59/4))

est_pick<-sapply (k,FUN=pickands ,x=Datos_TFG$ Almeria)
plot(k,est_pick, type="1") #parece que tienda a -1

#Grafica estimador de Hill

par (mfrow=c(1,1))

k<-seq(1,55) #se tiene que cumplir la condicion de kiln —>0
est_hills<-sapply (k,FUN = Hills ,x=Datos_TFG$ Almeria)
plot(k,est_hills ,type="1",ylab="Estimador_de_Hill")

#Grafica estimador DedH

k<-seq(1,55) #se tiene que cumplir la condicion de kln —->0
est_DedH<-sapply (k,FUN = Dedh,x=Datos_TFG$ Almeria)

plot(k,est_DedH, type="1") #tomando k entre 44 y 45 se estabiliza en -1

H# —

#0_Q plot para ver si se aproxima bien a la Frechet
par (mfrow=c(1,1))
K _fix<-34
order<-sort (Datos_TFG$ Almeria, decreasing = TRUE)
cuantil<-rep(0,59)
est<—Hills (K_fix ,x=Datos_TFG$ Almeria)
for(k in 1:59)
{
cuantil [k]=(-log ((59-k+1)/(59+1)))"(—est)

}
plot(cuantil ,(order—log(order[K_fix+1]))/est)

H# -

quantile (Datos_TFG$ Almeria, p=0.96) #cuantiles entre nuestros datos
cuantil (0.995 ,k=34,x=Datos_TFG$ Almeria)

#Periodo de retorno
T<- (colaF (K_fix ,198))"(-1)
T
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