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Summary

This report deals with Extreme Value Theory, a very important field in Probability and Statistics.
This theory focuses on the analysis of the largest and the smallest values of a variable. Even though these
extreme values have a very low probability of occurring, they can have a significant impact if they do
happen. Some examples of extreme events are floods, heat waves, and financial crises, so this theory
is widely used in fields such as engineering, hydrology or insurance companies, among many others.
From a theoretical point of view, it poses very interesting problems and requires specific techniques for
its study. In this paper, I will present the basic results of this theory, including key methodologies and
findings that highlight its practical applications and theoretical insights.

The main objective is to determine the convergence in distribution of the maximum of X1, . . . ,Xn, which
are independent identically distributed random variables with distribution function F . As well, we will
study its convergence in probability and almost sure convergence. The maximum is denoted as Mn. All
the results that are going to be mentioned are also valid for the study of the minimum, taking into account
that min(X1, . . . ,Xn) = max(−X1, . . . ,−Xn).
After studying all the above, a statistical analysis of a dataset is done in order to observe how the extreme
values manifest themselves in real data.

The first important fact to know is that there are three types of Extreme value distributions:

TYPE I (Gumbel distribution),

G(x) = exp(−e−x), −∞ < x <+∞.

TYPE II (Fréchet distribution), for α > 0:

G(x) =


0, x ≤ 0,

exp(−x−α), x > 0.

TYPE III (Weibull distribution), for α > 0:

G(x) =


exp(−(−x)α), x ≤ 0,

1, x > 0.

As mentioned earlier, we are interested in finding out sequences of real numbers, {an > 0}, {bn}, and a
distribution function G such that P(an(Mn−bn)≤ x)=Fn(a−1

n x+bn)
n→+∞−−−−→G(x), ∀x continuity point o f G.

This condition is equivalent to saying that F belongs to the maximum domain of attraction of G (F ∈
MDA(G)). Another important definition is that a non-degenerate distribution function G is considered to
be max-stable if and only if there are sequences {an > 0}, {bn} such that Gn(anx+bn) = G(x). Further-
more, two distribution functions are considered to be of the same type if their maximum domains of
attraction are equal.
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On the one hand, there is a theorem stating that a non-degenerate distribution function G is max-stable
if and only if MDA(G) is not the null set. On the other hand, another theorem states that a distribu-
tion function is max-stable if and only if it is of the same type as one of the extreme value distribu-
tions. Therefore, by combining these two last results we end up with the convergence in distribution
of Mn, there exist sequences, {an > 0}, {bn}, and a non-degenerate distribution function G such that
P(an(Mn −bn) ≤ x) n→+∞−−−−→ G(x), ∀x continuity point o f G, if and only if G is of the same type as one
of the extreme value distributions.

Moreover, there exists a result for a more general convergence. Let {un} be a sequence of real num-
bers and 0 ≤ τ ≤ ∞, then P(Mn ≤ un)

n→∞−−−→ e−τ if and only if n(1−F(un))
n→∞−−−→ τ . We will be focus on

the cases when τ /∈ {0,+∞} since these would imply a convergence to a degenerate distribution function.
By taking un = bn +a−1

n x, to determine whether there is convergence in distribution to a non degenerate
distribution function, it suffices to check that n(1−F(bn +a−1

n x)) n→∞−−−→ τ , with 0 < τ <+∞.

Necessary and sufficient conditions can be found on the distribution function to determine to which
of the three types of maximum domain of attraction, if any, it belongs to. Once the type has been deter-
mined, the normalising constants can be easily found.

Regarding the objective of determining the convergence in probability and almost sure convergence,
we distinguish two cases: distribution functions with a finite right endpoint (xF ) and those with an infini-
te finite right endpoint.
For the first type, xF < +∞, the convergences are straightforward: Mn converges almost surely and in
probability to its finite right end point.
For the second type, xF =+∞, there are two more complicated theorems:

Given a sequence {an}, the necessary and sufficient conditions for Mn/an to converge in
probability to 1 are: n(1−F(tan))

n→+∞−−−−→+∞, ∀t ∈ (0,1), and n(1−F(tan))
n→+∞−−−−→ 0, ∀t > 1.

Defining γn = ı́nf{y : F(y)≥ 1−1/n} and assuming n(1−F(1−ε)γn) ↑+∞, ∀ ε > 0. Then Mn/γn

converges almost surely to 1 if and only if ∀k > 1, ∑
+∞

n=1[1−F(kγn)]<+∞.

Finally, after seeing and proving the above results, we have carried out a statistical analysis of a dataset.
The dataset consists of the maximum wind gust recorded on each day of October for the years 1961 to
2019 at Almería airport. We took the maximum wind gust of each October for each year, so that we had
59 values of our maximum variable. Our data range is between 48 km/h and 163 km/h.
Our aim was to determine the extreme value type to which this distribution belongs to. After doing some
estimations, we concluded that our distribution belongs to the maximum domain of attraction of a Fré-
chet distribution of parameter α = 4,965.
This allowed us to estimate the tail of the distribution function as well as its quantiles. The latter is ex-
tremely important because it allows us to estimate outside the range of the data. The absence of recorded
gusts greater than 163 km/h does not mean that larger gusts will not be recorded in the future. Hence, af-
ter all the above, we were able to estimate the probability of having large wind gusts, which allows us to
calculate their return periods. The return period of extreme wind gusts is widely used in engineering (to
design infrastructures) and in insurance companies (to assess risk and determine insurance premiums).
We have seen how all this is used in an airport. Some of the considerations mentioned include that certain
structures, such as hangars or control towers, have to withstand wind gust with a return period of at least
200 years to ensure the long-term safety and functionality. According our results, wind gusts greater than
200 km/h have a return period of more than 200 years. Moreover, it is used in the planning of operational
procedures, such as take-off and landing operations in extreme wind conditions, to ensure an appropriate
response to infrequent events.
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Introducción

En el ámbito de la probabilidad, uno de los conceptos más fundamentales y estudiados es el compor-
tamiento de la suma de n variables aleatorias independientes idénticamente distribuidas (i.i.d.). Denota-
mos a estas variable como X1, . . . ,Xn.
La Ley fuerte de grandes números establece que si existe la esperanza de las variables, denotada como
µ , entonces la media de la suma tiende a converger casi seguramente a µ , es decir, Sn

n
c.s−→ µ .

Por otro lado, el Teorema central del límite establece que bajo ciertas condiciones, la normalización de
la suma converge en distribución a una variable aleatoria normal estándar, es decir, Sn−nµ

σ
√

n
D−→ Z, siendo

Z ∼ N(0,1).

La motivación central de este trabajo es extender estos resultados clásicos a la variable máximo de n
variables i.i.d., denotada como Mn. El objetivo es encontrar sucesiones de números reales {γn},{an},{bn},
de modo que la normalización de Mn cumpla resultados análogos a la suma, es decir, Mn

γn

c.s−→ 1 y que
an(Mn −bn) converja en distribución a una variable aleatoria no constante.

La base de este problema radica en la Teoría de Valores Extremos, un campo de estudio dedicado al
análisis de los valores más altos y más bajos de las variables, que suelen situarse en las colas de las
distribuciones de probabilidad.
A pesar de su baja probabilidad de ocurrencia, estos valores extremos pueden tener un impacto signi-
ficativo, especialmente en áreas como meteorología, finanzas y hidrología. La capacidad de estimar los
tiempos de retorno de sucesos extremos es crucial para comprender y mitigar los riesgos asociados a
eventos catastróficos, como inundaciones o crisis financieras.

El origen de la Teoría de Valores Extremos se remonta a 1928, cuando Fisher y Tippet sentaron las
bases de la teoría asintótica de las distribuciones de valores extremos. Posteriormente, en 1948, Gndenko
completó la caracterización de su teoría. Dese entonces, el estudio de los valores extremos ha experimen-
tado un crecimiento constante, tanto en el ámbito probabilístico como estadístico, siendo fundamental en
la compresión y gestión de eventos extremos en diversos campos de aplicación.
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Capítulo 1

Teoría de valores extremos

1.1. Preliminares

En todo este capítulo se va a considerar (Ω,F ,P) como el espacio de probabilidad y una sucesión
de variables aleatorias X1, . . . ,Xn independientes e idénticamente distribuidas con distribución F . La dis-
tribución de su máximo va a ser el principal objeto de estudio.

Definición 1. Sean X1, . . .Xn variables aleatorias independientes idénticamente distribuidas (i.i.d.), defi-
nimos Mn como la variable aleatoria del máximo de todas ellas:

Mn = máx(X1, . . . ,Xn)

Usando que las variables son i.i.d. su función de distribución viene dada por

P(Mn ≤ x) = P(X1 ≤ x, . . . ,Xn ≤ x) = P(X1 ≤ x) . . .P(Xn ≤ x) = Fn(x) (1.1)

Nota 1. Todos resultados que se van presentar serán también válidos para el estudio del mínimo, tenien-
do en cuenta que mn = mı́n(X1, . . . ,Xn) =−máx(−X1, . . . ,−Xn).

En primer lugar (Sección 1.2), analizaremos el problema de la convergencia del máximo debidamente
normalizado. Es decir, obtendremos condiciones necesarias y suficientes sobre F para la existencia de
sucesiones de números reales, {an > 0}, {bn} ∈R, y una distribución G tal que an(Mn −bn) converja en
distribución a G cuando n →+∞. Es decir,

P(an(Mn −bn)≤ x) n→∞−−−→ G(x), ∀x punto de continuidad de G. (1.2)

Vamos a definir una clase de distribuciones que jugarán un papel fundamental en esta teoría.

Definición 2. (Distribuciones de valores extremos):

TIPO I (Distribución de Gumbel),

G(x) = exp(−e−x), −∞ < x <+∞. (1.3)

TIPO II (Distribución de Fréchet), para α > 0:

G(x) =


0, x ≤ 0,

exp(−x−α), x > 0.
(1.4)

TIPO III (Distribución de Weibull), para α > 0:

G(x) =


exp(−(−x)α), x ≤ 0,

1, x > 0.
(1.5)
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2 Capítulo 1. Teoría de valores extremos

Proposición 1.1. La convergencia (1.2) es equivalente a:

Fn(a−1
n x+bn)

n→+∞−−−−→ G(x), ∀x punto de continuidad de G

Demostración. La demostración es inmediata utilizando (1.1) ya que

P(an(Mn −bn)≤ x) = P(Mn ≤ a−1
n x+bn) = Fn(a−1

n x+bn)

A continuación (Sección 1.3), demostraremos que si la función de distribución F satisface unas cier-
tas condiciones tendremos que Mn

γn

c.s−→ 1, siendo γn = ı́nf{y : F(y)≥ 1−1/n}.

En este capítulo va a ser fundamental un resultado dado por Khintchine (Teorema 1.3) sobre conver-
gencia en distribución. Antes de formularlo, se necesitan unas nociones básicas sobre funciones inversas
de funciones monótonas:

Definición 3. Sea ψ(x) una función no decreciente y continua por la derecha, definimos su inversa
ψ−1(y) en el intervalo (ı́nf{ψ(x)},sup{ψ(x)}) como:

ψ
−1(y) = ı́nf{x : ψ(x)≥ y}

Tomando una función con las propiedades de la definición se verifican las siguientes propiedades:

Lema 1.2. (Propiedades sobre inversas de funciones).

a) Sean a > 0,b,c constantes, H(x) = ψ(ax+b)− c, entonces H−1(y) = a−1(ψ−1(y+ c)−b).

b) Si ψ−1 es una función continua entonces ψ−1(ψ(x)) = x.

El resultado obtenido por Khintchine fue el siguiente:

Teorema 1.3. (Teorema de Convergencia de tipos).
Sea {Fn} una sucesión de funciones de distribución y sea G una función de distribución no degenerada.
Sean además {an > 0},{bn}, sucesiones de números reales tal que Fn(anx+ bn)

n→+∞−−−−→ G(x) ∀x punto
de continuidad de G.
Entonces existe una función de distribución H y unas sucesiones {αn > 0},{βn} que satisfacen
Fn(αnx+βn)

n→+∞−−−−→ H(x) ∀x punto de continuidad de H, si y solo si, a−1
n αn → a, a−1

n (βn − bn) → b,
para algún a > 0,b ∈ R.
En ese caso, H(x) = G(ax+b).

Demostración. Los detalles de esta demostración se pueden encontrar en [1] (pág. 7, Teorema 1.2.3).

1.2. Convergencia en distribución del máximo

En esta sección pasamos a ver cuándo, cómo y a qué convergen las distribuciones de máximo.
Primero, vamos a considerar una convergencia más específica, veremos a qué converge P(an(Mn−bn)≤
x) dadas unas constantes normalizadoras {an > 0}, {bn}.
Seguidamente, estudiaremos una convergencia en distribución más general, dada por P(Mn ≤ un), donde
{un} puede ser una función más complicada que una lineal e incluso no depender de x.
Finalmente, obtendremos condiciones suficientes y necesarias sobre la función de distribución para que
las convergencias anteriores ocurran.
Para poder llevar a cabo todo esto, necesitamos unos conocimientos sobre distribuciones max-estables y
dominios de atracción que se presentan a continuación.

1.2. Convergencia en distribución del máximo
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1.2.1. Distribuciones max-estables y máximos dominios de atracción

Las dos siguientes definiciones muestran los conceptos claves de esta sección.

Definición 4. Sean X1, . . .Xn variables aleatorias i.i.d. con función de distribución F y sea G una función
de distribución no degenerada. Si existen sucesiones {an > 0},{bn} tal que

Fn(a−1
n x+bn)

n→+∞−−−−→ G(x), ∀x punto de continuidad de G,

se dice que F pertenece al máximo dominio de atracción de G.
Lo denotamos como F ∈ MDA(G).

Es posible que una distribución pertenezca a su propio máximo dominio de atracción. Esto nos lleva
a la siguiente definición.

Definición 5. Sea G una función de distribución no degenerada, decimos que es max-estable si existen
sucesiones de números reales {an > 0}, {bn} tal que Gn(anx+bn)=G(x), ∀x punto de continuidad de G,
∀n ∈ N.

Las propiedades más importantes de este tipo de distribuciones son:

Proposición 1.4. Una función de distribución G es max-estable si y solo si existe una sucesión {Fn} de
funciones de distribución y sucesiones {an > 0}, {bn} de números reales tal que para todo k = 1,2, . . .

Fn(a−1
nk x+bnk)

n→+∞−−−−→ G1/k(x), ∀x punto de continuidad de G. (1.6)

Demostración. Sea G no degenerada.
⇐=) G1/k también es no degenerada, entonces si (1.6) se satisface para todo k, se satisface en particular
para k = 1. Por tanto, aplicando el Teorema 1.3 tenemos que G1/k(x) = G(αkx+βk), para algunas cons-
tantes αk > 0, βk. Hemos obtenido que G es max-estable.

=⇒) Definimos Fn = Gn,∀n ∈N. Por ser G max-estable tenemos que Fn(a−1
n x+bn) = Gn(a−1

n x+bn) =
G(x), con an > 0, bn. Por tanto,

Fn(a−1
nk x+bnk) = (Gn(a−1

nk x+bnk))
k. 1

k = (G(x))
1
k .

Es decir, se satisface (1.6).

Teorema 1.5. Sea G una función de distribución no degenerada, MDA(G) es distinto del vacío si y solo
si G es max-estable. En este caso, G ∈ MDA(G).

Demostración. ⇐=) Si G es max-estable, existen unas sucesiones {an > 0}, {bn} tal que Gn(anx+bn)=
G(x). Por lo que es inmediato que G ∈ MDA(G). En consecuencia, MDA(G) ̸= /0.

=⇒) Ahora suponemos que MDA(G) ̸= /0, es decir, ∃ F ∈ MDA(G) y sucesiones {an},{bn} tal que
Fn(a−1

n x+bn)
n→+∞−−−−→ G(x).

Por consiguiente, Fnk(a−1
nk x+bnk)

n→+∞−−−−→ G(x)⇒ Fn(a−1
nk x+bnk)

n→+∞−−−−→ G1/k(x).
Tomando Fn = Fn, la convergencia (1.6) se satisface. Basta aplicar la Proposición 1.4 para determinar
que G es max-estable.

Con este último resultado podemos establecer que las funciones que aparecen como distribuciones
límites en (1.2) son la clase de funciones max-estables.

Corolario 1.5.1. Sea G una distribución max-estable, entonces existen funciones reales a(s)> 0 y b(s)
definidas para s > 0 tal que:

Gs(a(s)x+b(s)) = G(x), ∀x ∈ R, s > 0.

1.2. Convergencia en distribución del máximo
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Otro concepto importante que tenemos que saber es:

Definición 6. Dos funciones de distribución (G1, G2) son del mismo tipo si existen constantes a > 0,
b ∈ R tal que G2(x) = G1(ax+b).

Con esta definición, aplicando el resultado de Khintchine ( Teorema 1.3), vemos que
MDA(G1) = MDA(G2)⇐⇒ G1 y G2 son del mismo tipo.

1.2.2. Teorema fundamental sobre los tipos de distribuciones de extremos

Para poder pasar a estudiar las posibles distribuciones asintóticas del máximo de variables i.i.d. ne-
cesitamos el resultado escrito a continuación.

Teorema 1.6. Una distribución es max-estable si y solo si es del mismo tipo que una de los 3 tipos de
distribución de valores extremos (Definción 2).

Demostración. Sea F una distribución no degenerada:
⇐=) Esta implicación es bastante directa.
Lo probamos para el caso de que F es del mismo tipo que la distribución de Gumbel (TIPO I, (1.3)). Es
decir, existen constantes a > 0, b ∈ R tal que F(x) = G(ax+b), con G en (1.3).
Sea αn = 1,β = log(n)

a , ∀n ∈ N, tenemos que:

F(αnx+βn) = F
(

x+
log(n)

a

)
= G(ax+ log(n)+b) = exp{−e−(ax+b+log(n))}.

Por tanto,
Fn(αnx+βn) = exp{−ne−(ax+b+log(n))}= G(ax+b) = F(x).

En definitiva, F es max-estable.
Las demostraciones de los otros dos tipos de distribuciones de valores extremos son análogas.

=⇒) Ahora suponemos que F es max-estable. Usando el Corolario 1.5.1 y teniendo en cuenta que
0 < F(s)< 1, podemos aplicar logaritmos obteniendo:

−s log(F(a(s)x+b(s))) =− log(F(x)),

y aplicando otra vez logaritmos

− logs− log(− log(F(a(s)x+b(s)))) =− log(− log(F(x))). (1.7)

Por otra parte, pasamos a ver que, por ser F max-estable, esta distribución no puede tener un salto ni en
xF = sup{x : F(x)< 1}, ni en xI = ı́nf{x : F(x)> 0}.
Consideramos que en xF hay un salto, es decir, F(xF) = 1 pero existe p ∈ (0,1) tal que F(x−F ) =
lı́m

y→x−F
F(y) = p.

Por ser F max-estable, definiendo H(x) = F(x− xF) esta también lo es. Por tanto, sin pérdida de gene-
ralidad, podemos suponer xF = 0.
Sean a2, b2 tal que F2(a2x+b2) = F(x),∀x ∈ R, se verifica que 1 = F(0) = F2(b2)⇒ b2 ≥ 0.
Si b2 > 0 tomando x = −b2

2a2
< 0 tenemos que

F2
(

a2
−b2

2a2
+b2

)
= F2

(
b2

2

)
= 1 ̸= F

(
−b2

2a2

)
< 1,

lo que contradice la propiedad de max-estable para n = 2. Por consiguiente, b2 = 0.
Ahora,

p = lı́m
x→0−

F(x) = lı́m
x→0−

F2(a2x) = p2 ⇒ p = p2 ⇒ p ∈ {0,1}.

1.2. Convergencia en distribución del máximo
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Si p = 0, obtendríamos que F es una función de distribución degenerada, lo que contradice nuestra hipó-
tesis inicial. También llegamos a contradicción si p = 1, habíamos considerado p < 1. Llevando a cabo
un razonamiento similar para xI , podemos afirmar que no F no tiene ningún salto en xI .

Entonces, definimos φ(x) =− log(− log(F(x))). Se trata de una función no decreciente con ı́nf{φ(x)}=
−∞, sup{φ(x)}=+∞. Por tanto, aplicando la Definición 3, φ tiene función inversa U(y) definida en R.
Teniendo en cuenta (1.7), tenemos que φ(a(s)x+b(s))− log(s) = φ(x). Aplicando la función inversa a
ambos lados de la ecuación, usando Lema 1.2 a) con H(x) = φ(a(s)x+b(s))− log(s), obtenemos:

U(y+ log(s))−b(s)
a(s)

=U(y).

Restando a ambos lados la expresión en y = 0 tenemos:

U(y+ log(s))−U(log(s))
a(s)

=U(y)−U(0).

Haciendo los cambios de variable z = log(s)⇒ a(s) = a(ez) = ã(z), Ũ(y) =U(y)−U(0):

Ũ(y+ z)−Ũ(z) = Ũ(y)ã(z). (1.8)

Intercambiando los valores de y, z obtenemos:

Ũ(z+ y)−Ũ(y) = Ũ(z)ã(y). (1.9)

Finalmente, restando (1.8), (1.9) llegamos a la siguiente expresión:

Ũ(y)(1− ã(z)) = Ũ(z)(1− ã(y)). (1.10)

Consideramos dos casos:

1) ã(z) = 1,∀z ∈ R. Sustituyendo en (1.8) obtenemos:

Ũ(y+ z) = Ũ(y)+Ũ(z).

Sabemos que la única solución creciente monótona de la expresión anterior viene dada por
Ũ(y) = py con p > 0. Entonces,

U(y)−U(0) = py ⇒ φ
−1(y) = py+ v, con v =U(0).

φ−1 es continua por ser una función lineal, por lo que, aplicando el Lema 1.2 (b) obtenemos:

x = φ
−1(φ(x)) = pφ(x)+ v ⇒ φ(x) =

x− v
p

⇒ F(x) = exp{−e−(x−v)/p}.

Efectivamente, F es una función de distribución sin saltos en xF y en xI . Además, F(x)=G
(

x
p −

v
p

)
,

siendo G la distribución de Gumbel (Tipo I, (1.3)).
Por tanto, F es del mismo tipo que uno de los tipos de distribuciones de valores extremos.

2) ã(z) ̸= 1 para algún z ∈ R. Tomando uno de esos z y despejando Ũ(y) en (1.10):

Ũ(y) =
Ũ(z)
1− z̃

(1− ã(y)) = c(1− ã(y)). (1.11)

Consideramos c = Ũ(z)
1−z̃ ̸= 0, ya que si c = 0 ⇒ Ũ(y) = 0, ∀y ∈ R ⇒ U(y) =U(0).

Esto supondría que U(y) sería constante y, por tanto, F sería una función de distribución degene-
rada.
Aplicando (1.11) en (1.8) llegamos a:

c(1− ã(y+ z))− c(1− ã(z)) = c(1− ã(y))ã(z)⇒ ã(y+ z) = ã(y)ã(z). (1.12)

1.2. Convergencia en distribución del máximo
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Al ser Ũ(y) monótona, por la ecuación (1.11) sabemos que ã(y) también lo es. La única solución
monótona no constante de (1.12) viene dada por ã(y) = epy, con p ̸= 0.
Por tanto,

φ
−1(y) =U(y) = v+ c(1− epy), con v =U(0) ⇒ x = φ

−1(φ(x)) = v+ c(1− epφ(x)).

Para la implicación se ha vuelto a usar el Lema 1.2 (b), ya que U es continua por ser una función
exponencial.
Lo anterior nos permite obtener la siguiente expresión,

F(x) = exp

{
−
(

1− x− v
c

)− 1
p
}
.

Con c < 0 si p > 0 y c > 0 si p < 0.
La razón de estas condiciones es que, al ser una función de distribución, F es no decreciente. Por
tanto, teniendo en cuenta la definición de φ , sabemos que esta, a su vez, es no decreciente y, en
consecuencia, su inversa, U , también lo es. A través de la expresión obtenida de U , obtenemos las
condiciones sobre p y c.

Finalmente, podemos ver que F es una función de distribución sin saltos en ningún punto final.
Asimismo, F(x) = G(− x

c +(1− v
c)), siendo G la distribución de Fréchet (Tipo II (1.4)) o la dis-

tribución de Weibull (Tipo III (1.5)), con α =+1/p o α =−1/p de acuerdo a p > 0 o p < 0.
En definitiva, F es del mismo tipo que una de los tipos de distribuciones de valores extremos.

A continuación presentamos el resultado fundamental de esta teoría.

Teorema 1.7. (Convergencia en distribución del máximo). Sean X1, . . . ,Xn variables i.i.d. y sea
Mn = máx(X1, . . . ,Xn). Si existen sucesiones {an > 0}, {bn} tal que,

P(an(Mn −bn)≤ x) n→+∞−−−−→ G(x), ∀x punto de continuidad de G, (1.13)

siendo G una función de distribución no degenerada. Entonces, G es una distribución de tipo valor
extremo, (Definición 2).
Asimismo, cada función de distribución G de tipo valor extremo puede aparecer como límite en (1.13),
de hecho, aparece cuando la propia G es la función de distribución de cada Xi.

Demostración. Si (1.13) se verifica, entonces, por la Proposición 1.4, tenemos que G es una distribución
max-estable. Basta aplicar el Teorema 1.6 para concluir que G es del mismo tipo que uno de los tipos de
distribuciones de valor extremo.
Por otra parte, suponemos que las variables están distribuidas según la distribución G, siendo G uno de los
tres tipos de la Definición 2. Al ser de tipo valor extremo es max-estable (Teorema 1.6). Finalmente, basta
aplicar el Teorema 1.5 para ver que G ∈ MDA(G). Esto implica que existen sucesiones {an > 0}, {bn}
tal que P(an(Mn −bn)≤ x) = Gn(a−1

n x+bn)
n→+∞−−−−→ G(x).

La condición de que G sea no degenerada es fundamental, en la Sección 1.2.3 veremos bajo qué
condición G es degenerada y qué valor toma en ese caso. Por otra parte, en la Sección 1.2.4 veremos bajo
qué condiciones ocurre la convergencia y cuáles son las expresiones de {an > 0}, {bn}, según el tipo de
distribución valor extremo al que converjan.

1.2. Convergencia en distribución del máximo
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1.2.3. Convergencia general

Como se mencionó previamente, en esta sección nos dedicaremos al estudio de la convergencia de
la probabilidad P(Mn ≤ un). Aquí, consideramos sucesiones {un} que pueden ser más complejas que la
sucesión lineal discutida en la Sección 1.2.2, e incluso pueden no depender de x.

Teorema 1.8. Sean X1, . . . ,Xn variables aleatorias i.i.d. y sea F su función de distribución. Sea 0 ≤ τ ≤
+∞ y sea {un} una sucesión de números reales entonces,

n(1−F(un))→ τ, cuando n →+∞ (1.14)

si y solo si
P(Mn ≤ un)→ e−τ , cuando n →+∞. (1.15)

Demostración. Vamos a considerar 2 casos:

1) 0 ≤ τ <+∞.

=⇒) Para que se cumpla (1.14) es necesario que 1−F(un)
n→+∞−−−−→ 0, ya que si no el límite (1.14)

tendería a infinito. Por tanto, tenemos que log{1−(1−F(un))} ∼−(1−F(un)), cuando n →+∞.
Además,

P(Mn ≤ un) = Fn(un) = {1− (1−F(un))}n. (1.16)

Luego,

P(Mn ≤ un) = en log{1−(1−F(un))} ∼ e−n(1−F(un)) → e−τ , cuando n →+∞.

⇐=) Bajo la hipótesis (1.15), pasamos a probar que se debe cumplir que 1−F(un)
n→+∞−−−−→ 0.

Si esto último no es cierto, existirá una subsucesión unk y un ε > 0 tal que 1−F(unk)> ε,∀k ∈N.
Equivalentemente, F(unk)< 1− ε,∀k ∈ N.
En consecuencia, P(Mnk ≤ unk)< (1− ε)nk → 0, si k →+∞. Por lo que llegamos a contradicción
con la hipótesis (1.15), estamos en el caso de τ <+∞.
Tomamos logaritmos en (1.15) y (1.16) obteniendo así:

n log{1− (1−F(un))}
n→+∞−−−−→−τ. (1.17)

Como 1−F(un)
n→+∞−−−−→ 0, tenemos que log{1− (1−F(un))} ∼ −(1−F(un)), cuando n →+∞.

Por tanto, (1.17) implica inmediatamente (1.14).

2) τ =+∞.

=⇒) Suponemos que n(1−F(un))
n→+∞−−−−→+∞, pero que (1.15) no se satisface, P(Mn ≤ un)↛ 0.

Entonces, existirá una subsucesión {nk} tal que P(Mnk ≤ unk)→ e−τ ′ , k →+∞ para algún τ ′ <+∞.
Esto implicaría que estaríamos en el caso (1).
Por tanto, (1.15) implica que nk(1−F(unk))→ τ ′ <+∞, contradiciendo nuestra hipótesis.
⇐=) Análogamente, se demuestra que (1.15) implica (1.14). Basta considerar que
n(1−F(un)) ↛ +∞, cuando n → +∞. Entonces, existirá una subsucesión {nk} tal que nk(1−
F(unk))

n→+∞−−−−→ τ ′ <+∞ y aplicar lo probado para el caso τ <+∞.

En el Teorema 1.7 hemos probado que si an(Mn − bn) converge en distribución a una función no
degenerada G, entonces G es del tipo distribución de valor extremo. A continuación, pasamos a ver un
caso en el que an(Mn −bn) converge a una distribución degenerada y no podremos aplicar el teorema (lo
hacemos para una sucesión más general {un} pero basta tomar un = x/an +bn).

Corolario 1.8.1. Sea F satisfaciendo que xF < +∞ y que lı́m
x→x−F

F(x) = F(x−F ) < 1, es decir, F con salto

en xF .
Si para alguna sucesión {un}, P(Mn ≤ un)

n→+∞−−−−→ p, entonces p = 0 o p = 1.

1.2. Convergencia en distribución del máximo
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Demostración. Sea {un} tal que P(Mn ≤ un)
n→+∞−−−−→ p, entonces 0 ≤ p ≤ 1. Por lo que p = e−τ para

algún 0 ≤ τ ≤+∞. Aplicando el Teorema 1.8, llegamos a que n(1−F(un))
n→+∞−−−−→ τ .

Podemos tener dos situaciones:

1) un < xF para infinitos valores de n: para estos valores tendremos 1−F(un)≥ 1−F(x−F )> 0. Por
tanto, τ =+∞ ⇒ p = 0.

2) un ≥ xF para infinitos valores de n: por tanto para esos valores de n tendremos que F(un) = 1 ⇒
n(1−F(un)) = 0 ⇒ τ = 0 ⇒ p = 1.

En el caso de distribuciones discretas se pueden encontrar condiciones necesarias para que la distri-
bución del máximo bajo alguna normalización lineal converja a una distribución no degenerada.

Teorema 1.9. Sea X1, . . . ,Xn variables i.i.d. con función de distribución F y sea 0 < τ <+∞.
Si existe una sucesión {un} satisfaciendo n(1−F(un))

n→+∞−−−−→ τ , (1.14), entonces

p(x)
1−F(x−)

→ 0, cuando x → xF , (1.18)

siendo F(x−) = lı́m
y→x−

F(y) y p(x) = F(x)−F(x−).

Por tanto, por el Teorema 1.8, la condición (1.18) es necesaria para que exista una sucesión {un} satis-
faciendo P(Mn ≤ un)

n→+∞−−−−→ e−τ , con 0 < τ <+∞.

Demostración. Vamos a demostrar por contradicción, suponemos que existe una sucesión {un} cum-
pliendo (1.14) pero no satisfaciendo (1.18). Esto implica la existencia de un ε > 0 y una sucesión {xn}
tal que xn

n→+∞−−−−→ xF y
p(xn)≥ 2ε(1−F(x−n )). (1.19)

Escogemos una sucesión de números enteros {n j} de modo que

1− τ

n j
≤

F(x−j )+F(x j)

2
≤ 1− τ

n j +1
. (1.20)

{un j}, {x j} son dos sucesiones, por tanto, al menos una de ella gana a la otra en un número infinito de j.
Luego, tenemos dos opciones:

1) un j ≤ x j para infinitos valores de j ⇒ n j(1−F(un j))≥ n j(1−F(x−j )), para esos valores de j.
Por otra parte,

n j(1−F(x−j ))= τ+n j

[(
1− τ

n j

)
−

F(x j)+F(x−j )

2
+

p(x j)

2

]
≥ τ+

n j p(x j)

2
−n j

(
τ

n j
− τ

n j +1

)
≥

≥ τ + εn j(1−F(x−j ))−
τ

n j +1
.

En la primera desigualdad hemos utilizado (1.20) y en la segunda (1.19).
Hemos llegado a que

(1− ε)n j(1−F(x−j ))≥ τ − τ

n j +1
=⇒ n j(1−F(x−j ))≥

τ

1− ε

(
1− 1

n j +1

)
.

Dado que n j →+∞ (ya que F(x−j )+F(x j)→ 2), tenemos que:

lı́msup
j→+∞

n j(1−F(x−j ))> τ.

Y a consecuencia,
lı́msup

j→+∞

n j(1−F(u−n j
))> τ.

Hemos llegado a contradicción con (1.14).

1.2. Convergencia en distribución del máximo
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2) un j ≥ x j para infinitos valores de j. Razonando de manera similar, pero cambiando las desigualda-
des, llegamos a la misma contradicción.

1.2.4. Condiciones necesarias y suficientes para pertenecer al dominio de atracción de
de una ley de extremo

Finalmente, en esta sección pasamos a ver las condiciones necesarias y suficientes que debe cumplir
la función de distribución F para pertenecer al dominio de atracción de una función de tipo valor extremo.

Teorema 1.10. Sea F una función de distribución. Las condiciones necesarias y suficientes para que F
pertenezca al máximo dominio de atracción de uno de los tres tipos de distribuciones de valores extremos
son:

TIPO I: existe g(t), una función positiva tal que lı́m
t↑xF

1−F(t+xg(t))
1−F(t) = e−x, ∀x ∈ R.

TIPO II:


xF =+∞,

∃ α > 0 tal que lı́m
t→∞

1−F(tx)
1−F(t) = x−α , ∀x > 0.

TIPO III:


xF <+∞,

∃ α > 0 tal que lı́m
h↓0

1−F(xF−xh)
1−F(xF−h) = xα , ∀x > 0.

En definitiva, observamos que el comportamiento asintótico de la cola de la distribución (1−F(x))
es el que determina el tipo dominio máximo de atracción al que pertenece una distribución.

Demostración. Pasamos a probar la parte de suficiencia, suponemos que la función de distribución F
satisface las condiciones de alguno de los tres tipos en el enunciado del teorema.
En primer lugar, demostramos la existencia de una sucesión no decreciente {γn} tal que n(1−F(γn))

n→+∞−−−−→
1 . Tomamos γn = F−1(1−1/n), por lo que

F(γ−n )≤ 1− 1
n
≤ F(γn),

siendo F(γ−n ) = lı́m
y→γ

−
n

F(y).

De aquí deducimos que lı́msupn(1−F(γn))≤ 1. Si verificamos que lı́minfn(1−F(γn))≥ 1, habremos
probado lo que queríamos. Tenemos que n(1−F(γ−n ))≥ 1, luego basta ver si

lı́minf
n→+∞

1−F(γn)

1−F(γ−n )
≥ 1. (1.21)

En particular, una vez visto esto último, llegamos a que lı́m
n→+∞

1−F(γn)

1−F(γ−n )
= 1, por ser lı́msup 1−F(γn)

1−F(γ−n )
≤ 1.

Lo demostramos para cada uno de los casos:

F satisface las condiciones del TIPO I: Tenemos que F(γn − a) ≤ F(γ−n ), ∀a > 0, por ser F no
decreciente. Por tanto, por ser g positiva, F(γn + xg(γn)) ≤ F(γ−n ), ∀x < 0. Luego, 1−F(γ−n ) ≤
1−F(γn + xg(γn)), ∀x < 0.
Notar que γn

n→+∞−−−−→ xF . Por consiguiente,

lı́minf
n→+∞

1−F(γn)

1−F(γ−n )
≥ lı́minf

n→+∞

1−F(γn)

1−F(γn + xg(γn))
= ex, ∀x < 0.

La última igualdad viene de nuestras hipótesis sobre F . Basta hacer tender x a 0 para ver que se
satisface la desigualdad (1.21).

1.2. Convergencia en distribución del máximo
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F satisface las condiciones del TIPO II: Considerando que F(xγn)≤F(γ−n ), ∀x< 1 y que γn → xF ,
tenemos que,

lı́minf
n→+∞

1−F(γn)

1−F(γ−n )
≥ lı́minf

n→+∞

1−F(γn)

1−F(γnx)
= xα , ∀x < 1.

La última igualdad viene de nuestra hipótesis sobre F . Basta hacer x → 1 para ver que se satisface
la desigualdad (1.21).

F satisface las condiciones del TIPO III: Definimos hn = xF − γn, (hn
n→+∞−−−−→ 0). Teniendo en

cuenta que xγn +(1− x)xF < γn, ∀x > 1, tenemos que F(xγn +(1− x)xF) ≤ F(γ−n ), ∀x > 1. A
consecuencia,

lı́minf
n→+∞

1−F(γn)

1−F(γ−n )
≥ lı́minf

n→+∞

1−F(γn)

1−F(γnx+(1− x)xF)
= lı́minf

n→+∞

1−F(xF −hn)

1−F(xF − xhn)
= x−α , ∀x > 1.

La última igualdad viene de nuestra hipótesis sobre F . Basta hacer x → 1 para ver que se satisface
la desigualdad (1.21)

Una vez definida y probada la existencia de {γn}, pasamos a ver que efectivamente las condiciones dadas
son suficientes para que F pertenezca a uno de los tres dominios de atracción. Lo demostramos para cada
uno de los casos:

F satisface las condiciones del TIPO I: Sabemos que γn → xF , luego por hipótesis, tomando t = γn

llegamos a que
n(1−F(γn + xg(γn))∼ n(1−F(γn))e−x n→+∞−−−−→ e−x.

Aplicando el Teorema 1.8, tenemos que P(Mn ≤ γn + xg(γn))
n→+∞−−−−→ exp{−e−x}. Por tanto, basta

tomar an = (g(γn))
−1, bn = γn para tener P(an(Mn−bn)≤ x) n→+∞−−−−→ G(x), siendo G la función de

distribución de Gumbel (TIPO I, 1.3).

F satisface las condiciones del TIPO II: Tomando t = γn y x > 0, razonando del mismo modo que
en el caso anterior, tenemos que

n(1−F(γnx))∼ n(1−F(γn))x−α n→+∞−−−−→ x−α .

Aplicando el Teorema 1.8, P(Mn ≤ γnx) n→+∞−−−−→ exp{−x−α}, si x > 0. Por otra parte, como
γn > 0 para n suficientemente grande (γn → +∞) , si x ↓ 0 obtenemos que P(Mn ≤ 0) n→+∞−−−−→ 0.
Finalmente, si x < 0, P(Mn ≤ γnx)≤ P(Mn ≤ 0) n→+∞−−−−→ 0.
Definiendo an = γ−1

n , bn = 0, llegamos a P(an(Mn−bn)≤ x) n→+∞−−−−→ G(x), siendo G la función de
distribución de Fréchet (TIPO II, 1.4).

F satisface las condiciones del TIPO III: Estableciendo hn como antes, observamos que hn → 0.
Llevando a cabo un procedimiento análogo, obtenemos que para x > 0,

n(1−F(xF − x(xF − γn)))∼ n(1−F(γn))xα n→+∞−−−−→ xα .

Remplazando x por -x:

lı́m
n→+∞

n(1−F(xF + x(xF − γn))) = (−x)α .

Por el Teorema 1.8, P(Mn ≤ xF +x(xF −γn))
n→+∞−−−−→ exp{−(−x)α}, si x < 0. Haciendo x ↑ 0 llega-

mos a que P(Mn ≤ xF)
n→+∞−−−−→ 1. Luego si x > 0, P(Mn ≤ xF +x(xF −γn))≥ P(Mn ≤ xF)

n→+∞−−−−→ 1,
debido a que xF > γn .
En definitiva, tomando an = (xF − γn)

−1, bn = xF, obtenemos P(an(Mn − bn) ≤ x) n→+∞−−−−→ G(x),
siendo G la función de distribución de Weibull (TIPO III, 1.5).

1.2. Convergencia en distribución del máximo
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La demostración de la necesidad de las condiciones se puede consultar en [5].

Nota 2. Tal y como hemos visto en la demostración del teorema anterior, sean {an > 0}, {bn} sucesiones
tal que P(an(Mn −bn)≤ x) n→+∞−−−−→ G(x). Una posible elección es:

TIPO I: an = [g(γn)]
−1, bn = γn.

TIPO II: an = γ−1
n , bn = 0.

TIPO III: an = (xF − γn)
−1, bn = xF .

con γn = F−1(1−1/n) y g la que aparece en el Teorema 1.10.

1.2.5. Ejemplos

En esta sección, pasamos a ver ejemplos de cómo podemos aplicar los resultados vistos hasta ahora.
Primero, veremos ejemplos de distribuciones que sí que pertenecen al máximo dominio de atracción de
alguno de los 3 tipos de distribuciones valores extremos, identificando a cuál de ellos y hallando las
constantes normalizadoras. A continuación, veremos un ejemplo en el que el máximo no converge en
distribución a ninguno de los tres tipos bajo ninguna normalización.

Ejemplo 1. (Distribución Weibull).
Pese a compartir nombre con el de la distribución de valor extremo de TIPO III (1.5), no se trata de la
misma distribución. La función de distribución de Weibull considerada en este ejemplo viene dada por

F(x) = 1− e−
(

X
β

)α

, si x > 0,F(x) = 0, si x ≤ 0, donde α > 0, β > 0 son los parámetros de forma y
escala, respectivamente.
Se trata de una distribución continua con xF = +∞, luego aplicando el Teorema 1.10, descartamos que
esta distribución pertenezca al máximo dominio de atracción de la distribución de Weibulll ( TIPO III
1.5).
Definimos g(t) = β α t1−α

α
, ∀t ≥ 0 y pasamos a ver que tα − (t + xg(t))α t→+∞−−−→−xβ α , ∀x ∈ R :

lı́m
t→+∞

(tα − (t + xg(t))α) = lı́m
t→+∞

1−
(

1+ xβ α t−α

α

)α

t−α
= lı́m

t→+∞

α

(
1+ xβ α t−α

α

)α−1 xβ α

α
αt−(α+1)

−αt−(α+1) =−xβ
α .

Por tanto,

lı́m
t→+∞

1−F(t + xg(t))
1−F(t)

= lı́m
t→+∞

e
tα−(t+xg(t))α

βα = e−x.

Aplicando el Teorema 1.10, concluimos que una variable Weibull pertenece al máximo dominio de
atracción de una distribución de Gumbel (TIPO I, 1.3). Es decir, existen sucesiones {an > 0},{bn} de
modo que P(Mn ≤ a−1

n x+bn)
n→+∞−−−−→ G(x),∀x ∈ R, siendo G(x) la función definida en (1.3).

Teniendo en cuenta la Nota 2, pasamos averiguar la expresión de γn:

F(γn) = 1− 1
n
⇐⇒ e−

(
γn
β

)α

=
1
n
⇐⇒ γn = β log(n)

1
α .

Llegamos a que an =
α

β
log(n)1− 1

α y bn = β log(n)
1
α .

La distribución exponencial es un caso particular de la distribución de Weibull (β = 1/λ , α = 1). Luego,
si Mn es el máximo de n variables Exp(λ ), se satisface que λMn − log(n) converge en distribución a una

1.2. Convergencia en distribución del máximo
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distribución de Gumbel, ya que an = λ , bn = log(n)/λ .
Con ayuda de R, hemos realizado una simulación de Monte Carlo de este último resultado con 200
repeticiones comprobando que se tiene un buen ajuste. En la Figura 1.1 se muestra una simulación con-
siderando una Exp(0.5) y n=1000.

Figura 1.1: Simulación de Monte Carlo con 200 repeticiones de la distribución de 0,5M1000− log(1000),
siendo M1000 el máximo de 1000 variables Exp(0,5). Se compara con la distribución de Gumbel.

Ejemplo 2. (Distribución de Cauchy).
La función de distribución de una distribución de Cauchy de parámetros x0 (posición) y γ (de escala)
viene dada por F(x) = 1

2 +
1
π

arc tg
(

x−x0
γ

)
, ∀x ∈ R.

Al ser xF =+∞, aplicando el Teorema 1.10, descartamos que la Cauchy pertenezca al máximo dominio
de atracción de la distribución de Weibull (TIPO III 1.5). Fijamos un x > 0, pasamos a calcular

lı́m
t→+∞

1−F(tx)
1−F(t)

= lı́m
t→+∞

π

2 − arc tg
(

tx−x0
γ

)
π

2 − arc tg
(

t−x0
γ

) = lı́m
t→+∞

(
x

(tx−x0)2+γ

)
(

1
(t−x0)2+γ

) =
1
x
.

En definitiva, teniendo en cuenta las condiciones del Teorema 1.10, llegamos a que la distribución de
Cauchy pertenece al dominio de atracción de la distribución de Fréchet de parámetro α = 1 (TIPO II,
(1.4)).
Calculamos γn:

F(γn) = 1− 1
n
⇐⇒ γn = γcotg

(
π

n

)
+ x0.

Aplicando la Nota 2, tenemos que an =
1

γcotg( π

n )+x0
y bn = 0.

Es decir, P
(

Mn
γcotg( π

n )+x0
≤ x
)

n→+∞−−−−→ e−
1
x , si x > 0 y P

(
Mn

γcotg( π

n )+x0
≤ x
)

n→+∞−−−−→ 0, si x ≤ 0.

Al igual que en el ejemplo anterior, hemos comprobado con una simulación de Monte Carlo con 200
repeticiones que el ajuste es bueno. En la Figura 1.2 se puede ver el resultado de una simulación de cómo

Mn
cotg( π

n )
converge en distribución a una Fréchet de parámetro α = 1.

Ejemplo 3. (Distribución Uniforme).
La función de distribución de U(a,b) viene dada por F(x) = x−a

b−a , ∀x ∈ (a,b). xF = b <+∞ y además:

lı́m
h↓0

1−F(xF − xh)
1−F(xF −h)

= lı́m
h↓0

xh
b−a

h
b−a

= x.

Por tanto, aplicando el Teorema 1.10, llegamos a que U(a,b) ∈ MDA(G), siendo G la función distribu-
ción de Weibull con α = 1 (TIPO III, (1.5)).

1.2. Convergencia en distribución del máximo
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Figura 1.2: Simulación de Monte Carlo con 200 repeticiones de la distribución de M1000/cotg(π/1000),
siendo M1000 el máximo de 1000 variables Cauchy estándar (γ = 1, x0 = 0). Se compara con la distribu-
ción de Fréchet de parámetro α = 1.

Utilizando la Nota 2, como γn = b− b−a
n , obtenemos que an =

n
b−a , bn = b.

Por tanto, P
(

n(Mn−b)
b−a ≤ x

)
n→+∞−−−−→ ex, si x < 0 y P

(
n(Mn−b)

b−a ≤ x
)

n→+∞−−−−→ 1, si x ≥ 0.

Realizando con R una simulación de Monte Carlo con 200 repeticiones, comprobamos que efectiva-
mente n(Mn−b)

b−a converge en distribución a la distribución de Weibull de parámetro 1. En la Figura 1.3
muestra una simulación considerando U(0,1) y n=1000.

Figura 1.3: Simulación de Monte Carlo con 200 repeticiones de la distribución de 1000(M1000 − 1),
siendo M1000 el máximo de 1000 variables U(0,1). Se compara con la distribución de Weibull con α = 1.

Ejemplo 4. (Distribución Geométrica).
La función de distribución de una Geométrica de parámetro p viene dada por F(x) = 1− (1− p)⌊x⌋,
∀x ≥ 0, siendo ⌊x⌋= max{k ∈ N | k ≤ x}. La función de probabilidad viene dada por
p(r) = P(X = r) = (1− p)r−1 p, si r = 1,2,3, . . . y 0 de otro modo. Tenemos que

p(n)
1−F(n−1)

=
(1− p)n−1 p
(1− p)n−1 = p.

Por tanto, como xF =+∞, no se cumple (1.18) del Teorema 1.9. Esto implica que no existe ninguna su-
cesión {un} tal que P{Mn ≤ un}

n→+∞−−−−→ p con p distinto de 0 o 1. En definitiva, el máximo de n variables

1.2. Convergencia en distribución del máximo
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Geométricas no converge en distribución y la distribución geométrica no pertenece al máximo dominio
de atracción de ninguna distribución max-estable.

Una observación interesante es que la distribución exponencial de parámetro λ = − log(p) puede con-
siderarse como la distribución continua equivalente a una distribución geométrica de parámetro p. De
hecho, tal como se puede ver en la Figura 1.4, las colas de sus distribuciones son prácticamente iguales.
Por lo que hemos estudiado, la convergencia en distribución del máximo se basa en el comportamiento de
la cola de la distribución. Sin embargo, el máximo de n variables exponenciales converge en distribución
pero el máximo de n variables geométricas no.

Figura 1.4: Distribución de una Exp(− log(p)) y una Geométrica de parámetro p.

1.3. Convergencia en probabilidad y convergencia casi segura para el má-
ximo

En esta sección vamos a considerar dos tipos de distribuciones, según si xF <+∞ o no. Estudiaremos
por separado en cada uno de los tipos la convergencia en probabilidad y casi segura del máximo.

En primer lugar, consideramos las distribuciones con xF <+∞. La siguiente proposición nos da el resul-
tado sobre las convergencias que andamos buscando.

Proposición 1.11. Sean X1, . . . ,Xn variables aleatorias i.i.d. con F su función de distribución y sea
xF <+∞. Tenemos que Mn

c.s−→ xF .

Demostración. Primero probamos que Mn
P−→ xF .

Esto es equivalente a ver que ∀ε > 0, P(Mn /∈ (xF − ε, xF + ε)) converge a 0. Teniendo en cuenta que
P(Mn /∈ (xF − ε, xF + ε)) = P(Mn ≤ xF − ε) +P(Mn ≥ xF + ε), demostramos que estos dos últimos
sumandos tienden ambos a 0:

Sea λ < xF , tenemos que 1− F(λ ) > 0. Por tanto, n(1− F(λ ))
n→+∞−−−−→ +∞. Luego, si aplicamos el

Teorema 1.8 con un = λ , ∀n ≥ 1, llegamos a que P(Mn ≤ λ )
n→+∞−−−−→ 0. Es decir, ∀ε > 0,

P(Mn ≤ xF − ε)→ 0, cuando n →+∞.
Por otra parte, sabemos que P(Mn > xF) = 0, ∀n ≥ 1. Entonces ∀ε > 0, P(Mn ≥ xF + ε)→ 0, cuando
n →+∞. Con esto probamos la convergencia en probabilidad.

Finalmente, como {Mn} es una sucesión no decreciente acotada, converge casi seguramente. Necesa-
riamente convergerá a xF casi seguramente, ya que la convergencia casi segura implica convergencia en
probabilidad.

1.3. Convergencia en probabilidad y convergencia casi segura para el máximo
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Por tanto, podemos establecer que si xF <+∞ entonces:

Mn

xF

P−→ 1 y
Mn

xF

c.s−→ 1. (1.22)

En segundo lugar, estudiamos la convergencia en probabilidad y casi segura del máximo de las distribu-
ciones con xF =+∞. A continuación, vemos condiciones sobre la sucesión {an} para que Mn

an

P−→ 1.

Teorema 1.12. (Convergencia en probabilidad).
Sean X1, . . . ,Xn variables aleatorias i.i.d. con F su función de distribución y sea xF = +∞. Dada una

sucesión {an}, las condiciones necesarias y suficientes para que Mn
an

P−→ 1 son:

n(1−F(tan))
n→+∞−−−−→+∞, ∀t ∈ (0,1), (1.23)

n(1−F(tan))
n→+∞−−−−→ 0, ∀t > 1. (1.24)

Demostración. Mn
an

P−→ 1 es equivalente a que ∀ε > 0, P
(

Mn
an

/∈ (1− ε,1+ ε]
)

n→+∞−−−−→ 0.

Por tanto, tenemos que ver las condiciones necesarias y suficientes para que P(Mn ≤ an(1−ε))
n→+∞−−−−→ 0

y P(Mn > an(1+ ε))
n→+∞−−−−→ 0.

Estas condiciones nos las da el Teorema 1.8:

P(Mn ≤ an(1− ε))
n→+∞−−−−→ 0 ⇐⇒ n(1−F(an(1− ε))

n→+∞−−−−→+∞, ∀ε > 0,

P(Mn < an(1+ ε))
n→+∞−−−−→ 1 ⇐⇒ n(1−F(an(1+ ε))

n→+∞−−−−→ 0, ∀ε > 0.

Las condiciones obtenidas son equivalentes a (1.23) y (1.24).

Definición 7. Sea {An} una sucesión de sucesos. Se define el suceso límite superior de {An} de la
siguiente manera:

lı́msup
n→+∞

An =
∞⋂

n=1

∞⋃
m=n

Am

También se denota lı́msup
n→+∞

An como {An i.o.}.

Pasamos a probar la existencia de números reales {an} tal que Mn
an

converja a 1 casi seguramente.

Esto es equivalente a probar que existe una sucesión {an} tal que ∀ε > 0, P
(∣∣∣Mn

an
−1
∣∣∣> ε i.o.

)
= 0. Es

decir, que se cumplan las dos siguientes condiciones ∀ε > 0:

P(Mn > (1+ ε)an i.o.) = 0 y P(Mn < (1− ε)an i.o.) = 0.

Antes de presentar la ley (Teorema 1.16), se necesita conocer unos resultados previos que están escritos a
continuación. El Teorema 1.14 nos dará condiciones necesarias y suficientes para probar la primera con-
dición, mientras que el Teorema 1.15 nos proporcionará condiciones suficientes para probar la segunda
condición.

Lema 1.13. (Lema de Borel-Cantelli). Sea {An} una sucesión de sucesos tal que ∑
∞
n=1 P(An) < +∞,

entonces P(An i.o.) = 0.
Si los An son independientes y ∑

∞
n=1 P(An) = +∞, entonces P(An i.o.) = 1

1.3. Convergencia en probabilidad y convergencia casi segura para el máximo
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Teorema 1.14. Sean X1, . . . ,Xn variables aleatorias i.i.d. con función de distribución F tal que xF =+∞.
Sea {un} una sucesión de números reales no decreciente tal que un

n→+∞−−−−→+∞. Entonces

P(Mn > un i.o.) = P(Xn > un i.o.). (1.25)

En particular,
P(Mn > un i.o.) = 0 si y solo si ∑

+∞

j=1[1−F(u j)]<+∞,
P(Mn > un i.o.) = 1 si y solo si ∑

+∞

j=1[1−F(u j)] = +∞.

Demostración. Consideramos los sucesos An = {Mn > un}, ∀n ∈ N. Si probamos que los sucesos An

ocurren para infinitos valores de n si y solo si los sucesos {X j > u j} ocurren para infinitos valores de j,
entonces habremos demostrado la igualdad (1.25).

⇐=) Esta implicación es inmediata: por definición del máximo Mn ≥ X j, con 1 ≤ j ≤ n, y por hipó-
tesis X j > u j para infinitos valores de j. Luego, An ocurrirá también para infinitos valores de n.
=⇒) Ahora suponemos que Mn > un para infinitos valores de n. Por la definición de máximo, esto impli-
ca la existencia de un j ≤ n de modo que X j > un. Al ser {un} una sucesión no decreciente, X j > un ≥ u j.
Para cada valor de n, definimos kn = k(n) = máx{ j ≤ n : X j > un}. Así obtenemos una subsucesión de
índices no decreciente. Al no estar la sucesión {un} acotada (un →+∞), tenemos que Xkn > un ≥ ukn .
Es decir, hemos encontrado infinitos valores de índices j para los que X j > u j.

Finalmente, los sucesos {X j > u j} son independientes entre sí por ser las variables independientes. Por
tanto, basta combinar los dos resultados del Lema de Borel Cantelli (Lema 1.13) junto a lo que acabamos
de probar:

0 = P(Mn > un i.o.) = P(Xn > un i.o.)⇐⇒+∞ > ∑
∞
j=1 P(X j > u j) = ∑

∞
j=1[1−F(u j)],

1 = P(Mn > un i.o.) = P(Xn > un i.o.)⇐⇒+∞ = ∑
∞
j=1 P(X j > u j) = ∑

∞
j=1[1−F(u j)].

Teorema 1.15. Sean X1, . . . ,Xn variables aleatorias i.i.d con F su función de distribución. Sea {un} una
sucesión no decreciente cumpliendo que 1−F(un)

n→+∞−−−−→ 0, n(1−F(un))
n→+∞−−−−→+∞ y

∑
+∞

n=1[1−F(un)]exp{−n[1−F(un)]}<+∞. Entonces P(Mn ≤ un i.o.) = 0.

Demostración. Los detalles de esta demostración se pueden encontrar en [4] (pág. 170, Teorema 3.5.2)

Pasamos a presentar las condiciones necesarias y suficientes sobre {an} para que Mn
an

c.s−→ 1.

Teorema 1.16. (Convergencia casi segura). Sean X1, . . . ,Xn variables aleatorias i.i.d. con función de
distribución F tal que xF =+∞. Sea {γn} la sucesión definida por γn = F−1

(
1− 1

n

)
, ∀n ∈ N, y supon-

gamos que n(1−F(1− ε)γn) ↑ ∞, ∀ε > 0.
Entonces

Mn

γn

c.s−→ 1 (1.26)

si y solo si, ∀k > 1,
+∞

∑
n=1

[1−F(kγn)]<+∞. (1.27)

Nota 3. La condición n(1−F(1− ε)γn) ↑ ∞, ∀ε > 0 es razonable. La convergencia a +∞ es necesaria
para que Mn

γn

P−→ 1, y la convergencia casi segura implica convergencia en probabilidad.

1.3. Convergencia en probabilidad y convergencia casi segura para el máximo
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Demostración. Empleando la definición de convergencia casi segura, tenemos que:

Mn
γn

c.s−→ 1 ⇐⇒∀ε > 0, P
(∣∣∣Mn

γn
−1
∣∣∣> ε i.o.

)
= 0 ⇐⇒∀ε > 0,


P(Mn > (1+ ε)γn i.o.) = 0 (1)

P(Mn < (1− ε)γn i.o.) = 0 (2)

Pasamos a ver qué condiciones son necesarias y suficientes para que se cumplan las condiciones (1)
y (2).
Aplicando el Teorema 1.14 (ya que γn → xF =+∞), obtenemos que ∑

+∞

n=1[1−F((1+ ε)γn)]<+∞,
∀ε > 0 es una condición necesaria y suficiente para que P(Mn > (1+ ε)γn i.o.) = 0. En particular,
∑
+∞

n=1[1−F(kγn)]<+∞, ∀k > 1 será una condición necesaria para que Mn
γn

c.s−→ 1 y suficiente para (1).

A continuación, demostramos que esta última condición también es suficiente para (2). Para cumplir
nuestro objetivo fijamos ε > 0 y aplicamos el Teorema 1.15 con un = (1−ε)γn, ∀n ∈N. Antes que nada,
comprobamos que {un} satisface las condiciones para poder aplicarlo:

1) {γn} es una sucesión no decreciente por definición, por tanto, {un} también lo será. Además
un →+∞, luego 1−F(un)

n→+∞−−−−→ 0.

2) Por hipótesis.

3) La parte complicada es ver que

+∞

∑
n=1

[1−F(un)]exp{−n[1−F(un)]}<+∞. (1.28)

Lo vamos a demostrar en el caso de que F sea absolutamente continua. En primer lugar probamos
que (1.27) ocurre si y solo si dado t ∈ (0,1)∫ +∞

1

f (y)
1−F(ty)

dy <+∞, (1.29)

siendo f la densidad de F .
Definimos G(y) = F−1 (1−1/y). Se trata de una función no decreciente con G(n) = γn,∀n ∈ N.
Por tanto, G(y)≥ G(n)⇒ 1−F(kG(y))≤ 1−F(kG(n)), ∀y ∈ [n,n+1], ∀k > 1. Esto implica que∫ n+1

n
(1−F [kG(y)])dy ≤ 1−F(kγn)≤

∫ n

n−1
(1−F [kG(y)])dy.

Aplicando sumatorios vemos que la condición (1.27) es equivalente a∫ +∞

1
(1−F [kG(y)])dy <+∞.

Desarrollamos esta última expresión:∫ +∞

1
(1−F [kG(y)]dy =

∫ +∞

1

(∫ +∞

kG(y)
f (x)

)
dy =

∫ +∞

kG(1)

(∫ 1
1−F(x/k)

1
dy

)
f (x)dx

=
∫ +∞

kG(1)

(
1

1−F(x/k)
−1
)

f (x)dx =
∫ +∞

kG(1)

f (x)dx
1−F(x/k)

+F(kG(1))−1.

La convergencia de esta integral está determinada por la convergencia de (1.29), (tomar t = 1/k).
A continuación, veremos que al verificarse (1.29) la condición que estamos buscando se satisface.

Antes que nada, demostramos que (1.28) es equivalente a que ∑
+∞

n=1[1−F(un+1)]exp{−(n+1)[1−F(un)]}
<+∞. Para ello, definimos xn = 1−F(un). Se cumple que xn

n→+∞−−−−→ 0. Por tanto,

lı́m
n→+∞

xn+1e−(n+1)xn

xn+1e−nxn
= 1.

1.3. Convergencia en probabilidad y convergencia casi segura para el máximo
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Es decir, el carácter de ∑
+∞

n=1 xn+1e−(n+1)xn es el mismo que el de ∑
+∞

n=1 xn+1e−nxn .
Por otra parte, basta ver que existen A, B > 0 tal que A < xn+1

xn
< B, ∀n ∈N, para determinar que a

su vez el comportamiento de ∑
+∞

n=1 xn+1e−nxn es equivalente al comportamiento de ∑
+∞

n=1 xne−nxn :

1
2
=

1
2

nxn

nxn
≤ 1

2
(n+1)xn+1

nxn
≤ xn+1

xn
≤ 1.

En la primera desigualdad aplicamos que n(1−F(un)) es una sucesión creciente (por la condición
2). En la segunda desigualdad usamos que (n+1)/n ≤ 2. En la tercera utilizamos que es xn es una
sucesión decreciente (por la condición 1).
En definitiva, ∑

+∞

n=1 xn+1e−(n+1)xn tiene el mismo carácter que ∑
+∞

n=1 xne−nxn .

Una vez vista la equivalencia de las series, razonando de una forma análoga a la llevada a ca-
bo previamente,

[1−F(un+1)]exp{−(n+1)[1−F(un)]} ≤
∫ n+1

n
(1−F [tG(y)])exp{−y[1−F(tG(y))]} dy.

Tendremos que la última serie convergerá si∫
∞

1
(1−F [tG(y)])exp{−y[1−F(tG(y))]} dy <+∞.

Desarrollamos la integral haciendo el cambio de variable x = G(y):∫
∞

1
(1−F [tG(y)])exp{−y[1−F(tG(y))]} dy =

∫
∞

G(1)

(
1−F(tx)
1−F(x)

)2

exp
{
−1−F(tx)

1−F(x)

}
f (x)

1−F(tx)
dx

≤ M
∫

∞

G(1)

f (x)
1−F(tx)

dx <+∞

Para la primera desigualdad basta definir u(x) = 1−F(tx)
1−F(x) ≥ 0, y ver que u2(x)e−u es una función

acotada, tomamos M como la cota. La segunda desigualdad es consecuencia de nuestra hipótesis
tal y como hemos visto previamente.
Queda probado que se satisface la tercera condición.

En conclusión, podemos aplicar el Teorema 1.15 y establecer que ∀ε > 0, P(Mn < (1− ε)γn i.o.) = 0.

1.3.1. Ejemplos

A continuación, empleando los conocimientos adquiridos en esta sección, vemos ejemplos de distri-
buciones en los que su máximo divido por una sucesión converge a 1 casi seguramente y distribuciones
en las que esta convergencia no ocurre.

Ejemplo 5. (Distribución Weibull).
Consideramos {Xn} variables i.i.d. con Xn ∼Weibull(β ,α), siendo β , α > 0.

La función de distribución es continua y viene dada por F(x) = 1−e−
(

X
β

)α

, si x > 0, F(x) = 0, si x ≤ 0.
Tenemos que xF =+∞ y que γn = β log(n)

1
α (calculado en el Ejemplo 1). Ahora fijamos k > 1 y vemos

si (1.27) converge:

+∞

∑
n=1

[
1−F

(
kβ log(n)

1
α

)]
=

+∞

∑
n=1

1−
(

1− e−kα log(n)
)
=

+∞

∑
n=1

1
nkα <+∞.

La convergencia se debe a que kα > 1, por ser k > 1, α > 0.
Basta aplicar Teorema 1.16 para determinar que Mn

log(n)
1
α

c.s−→ β .

1.3. Convergencia en probabilidad y convergencia casi segura para el máximo
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Recordando que la distribución exponencial es un caso particular de la distribución de Weibull (β =
1/λ , α = 1), podemos establecer lo siguiente: El máximo de n variables (independientes) exponenciales
de parámetro λ divididas por log(n) converge casi seguramente a su media (1/λ ).
Con la ayuda de R, tomamos λ = 0,5 y generamos 100 trayectorias para Mn/ log(n), cogiendo para cada
una 1000 datos de una Exp(0,5). Observando la Figura 1.5, vemos que las trayectorias convergen a 2, la
media de la distribución.

Figura 1.5: 100 trayectorias de la función Mn/ log(n), siendo Mn el máximo de n variables exponenciales
de parámetro 0,5.

Ejemplo 6. (Distribución Uniforme).
Consideramos {Xn} variables i.i.d con Xn ∼ U(a,b), 0 < a < b < +∞. La función de distribución es
F(x) = x−a

b−a , ∀x ∈ (a,b). Por tanto, xF = b <+∞. Aplicando la Proposición 1.11, Mn
c.s−→ b ⇒ Mn

P−→ b.
En la Figura 1.6 se puede ver una simulación donde se refleja la veracidad de este resultado para el
máximo de variables U(0,1), las 100 trayectorias generadas convergen a 1.

Figura 1.6: 100 trayectorias del máximo de n variables U(0,1).

Ejemplo 7. (Distribución Pareto).
Consideramos {Xn} variables i.i.d con Xn ∼ Pareto(α), α > 0.
La función de distribución es continua y viene dada por F(x) = 1− 1

xα , si x ≥ 1.
Tenemos que xF =+∞, calculamos γn, ∀n ∈ N:

F(γn) = 1− 1
n
⇐⇒ γn = n

1
α .

1.3. Convergencia en probabilidad y convergencia casi segura para el máximo
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Dado un ε ∈ (0,1), n(1−F((1− ε)γn) = (1− ε)−α . Por tanto, n(1−F((1− ε)γn)↛ ∞ cuando n → ∞.
Aplicando el Teorema 1.12 obtenemos que n−

1
α Mn no converge en probabilidad a 1. Por tanto, n−

1
α Mn

tampoco convergerá a 1 casi seguramente.
La Figura 1.7 muestra una simulación de 100 trayectorias de Mn, con α = 2. Efectivamente, observamos
que hay trayectorias que no convergen a 1 (línea roja).

Figura 1.7: 100 trayectorias de n−1/αMn, siendo Mn el máximo de n variables Pareto con α = 2.

Ahora pasamos a ver que no existe ninguna sucesión {un} tal que Mn
un

P−→ 1, y por lo tanto tampoco
c.s. Para ello vamos a emplear el Teorema 1.8:

Mn

un

P−→ 1 ⇐⇒∀ε > 0, P
(∣∣∣∣Mn

un
−1
∣∣∣∣> ε

)
→ 0 ⇐⇒∀ε > 0,


P(Mn ≤ (1+ ε)un)→ 1,

P(Mn ≤ (1− ε)un)→ 0.

⇐⇒∀ε > 0,


n(1−F((1+ ε)un)→ 0,

n(1−F((1− ε)un)→+∞.
⇐⇒∀ε > 0,


n

(1+ε)α uα
n
→ 0,

n
(1−ε)α uα

n
→+∞.

Esto último no puede ocurrir para ninguna sucesión {un}.

Ejemplo 8. (Distribución de Cauchy).
Consideramos {Xn} variables i.i.d con Xn ∼Cauchy(x0,γ), siendo x0, γ > 0. La función de distribución
es continua y viene dada por F(x) = 1

2 +
1
π

arc tg
(

x−x0
γ

)
, ∀x ∈ R. Tenemos que xF =+∞.

Razonando de manera análoga al Ejemplo 7, se demuestra que no existe ninguna sucesión {un} tal que
Mn
un

P−→ 1. Para que existiera se debería de satisfacer que:

∀ε > 0


n(1−F((1+ ε)un)∼ nγ

π[(1+ε)un−x0]
→ 0,

n(1−F((1− ε)un)∼ nγ

π[(1−ε)un−x0]
→+∞.

(La equivalencia viene de que π/2− arc tg(h)∼ 1/h, si h →+∞).
No existe ninguna sucesión que satisfaga esas dos condiciones a la vez.
Por tanto, Mn

γn
no converge casi seguramente a 1, siendo γn = γcotg

(
π

n

)
+x0. Si ocurriese esta convergen-

cia, ocurriría a su vez la convergencia en probabilidad.
La Figura 1.8 muestra una simulación de 100 trayectorias de Mn con x0 = 0, γ = 1. Observamos que las
trayectorias no convergen a 1 (línea roja).

Ejemplo 9. (Distribución Geométrica).
La función de distribución de una Geométrica de parámetro p viene dada por F(x) = 1− (1− p)⌊x⌋,

1.3. Convergencia en probabilidad y convergencia casi segura para el máximo
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Figura 1.8: 100 trayectorias de Mn/γn, siendo Mn el máximo de n variables Cauchy de parámetros
x0 = 0, γ = 1.

∀x ≥ 0, donde ⌊x⌋= máx{k ∈ N | k ≤ x}.
xF =+∞ y F no es continua al estar definida a trozos. En este caso resulta más laborioso sacar los valores
de γn:

γn = ı́nf
{

x | 1
n
≥ (1− p)⌊x⌋

}
⇐⇒ γn = ı́nf

{
x | ⌊x⌋ ≥ − log(n)

log(1− p)

}
⇐⇒ γn = ı́nf

{
x | ⌊x⌋=

⌊
− log(n)

log(1− p)

⌋
+1
}

⇐⇒ γn =

⌊
− log(n)

log(1− p)

⌋
+1 ⇐⇒ γn =

⌈
− log(n)

log(1− p)

⌉
.

Siendo ⌈x⌉= mı́n{k ∈ N | x ≤ k}.
Pasamos a ver que la serie (1.27) converge para todo k > 1:

∞

∑
n=1

(1− p)
⌊

k
⌈

− log(n)
log(1−p)

⌉⌋
≤

∞

∑
n=1

(1− p)k
⌈

− log(n)
log(1−p)

⌉
≤

≤
∞

∑
n=1

(1− p)k
(

− log(n)
log(1−p)+1

)
= (1− p)k

∞

∑
n=1

e
−k log(n)
log(1−p) log(1−p)

= (1− p)k
∞

∑
n=1

1
nk <+∞

Por tanto, aplicando el Teorema 1.16 llegamos a que Mn
log(n)

c.s−→ −1
log(1−p) .

Simulando con R, hemos generado 100 trayectorias de Mn/ log(n), siendo Mn el máximo de n variables
Geom(0,5), (Figura 1.9). Se observa la convergencia a la línea y = 1/ log(2), aunque dicha convergencia
resulta ser lenta.

Figura 1.9: 100 trayectorias de Mn/ log(n), siendo Mn el máximo de n variables Geom(0,5).

1.3. Convergencia en probabilidad y convergencia casi segura para el máximo





Capítulo 2

La estadística en valores extremos

2.1. Introducción

Tras haber estudiado en profundidad toda la base probabilística que hay detrás de la teoría de valores
extremos, en este capítulo pasamos a ver cómo se manifiestan los valores extremos en datos reales.
Para ello, vamos a analizar un conjunto de datos utilizando varias de las técnicas descritas en el Capítulo
6 de [4] y en el Capítulo 3 de [3].
Los estadísticos ordenados van a jugar un papel fundamental en este capítulo, los definimos de la si-
guiente manera:

Definición 8. Sea X1, . . . ,Xn una muestra aleatoria, se define Xi,n como el i-ésimo valor más grande de la
muestra (i ∈ {1, . . . ,n} ). Es decir, Xn,n ≤ ·· · ≤ X1,n.

2.2. Aplicación

Los datos con los que vamos a trabajar consisten en las rachas máximas de viento registradas diaria-
mente en el aeropuerto de Almería durante el mes de octubre, desde el año 1961 hasta el año 2019.
Para nuestro análisis, tomamos el valor máximo registrado en el mes de octubre de cada año, es decir,
el máximo de 31 datos, obteniendo así 59 valores para nuestra distribución máximo. Nuestro objetivo es
determinar si esta distribución pertenece al máximo dominio de atracción de uno de los tres tipos de dis-
tribuciones valores extremos. Esto nos permitirá realizar estimaciones fuera del rango de nuestros datos.

Es importante señalar que los datos diarios del mismo año no se pueden considerar independientes,
ya que la presencia de viento en un día puede influir en la presencia del viento el día siguiente. Sin em-
bargo, esta dependencia se considera débil, puesto que la influencia de un día no se extiende a muchos
días posteriores. Bajo esta hipótesis, los resultados discutidos en el Capítulo 1 se verifican de manera
aproximada. Por otro lado, las máximas rachas de viento en octubre de cada año sí son independientes
entre sí e igualmente distribuidas.

En primer lugar, analizamos nuestros datos, observando que su rango es considerable, variando entre
48 km/h y 163 km/h. Además, evaluamos si nuestra distribución es de cola pesada, es decir, con cola más
pesada que la distribución exponencial. Desde el punto de vista estadístico, estas son especialmente im-
portantes ya que permiten la posibilidad de valores extremos que pueden ser significativamente mayores
que los observados hasta ahora, lo que es crucial para realizar estimaciones y gestionar riesgos asociados
a eventos extremos.
La manera de detectarlo es utilizando la gráfica de la función de exceso medio empírica (definida en la
pág. 296 de [4]). En la Figura 2.1 se representa esta gráfica utilizando nuestros datos. A partir del valor
80 observamos un patrón creciente, lo cual indica que estamos ante una distribución de cola pesada.
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24 Capítulo 2. La estadística en valores extremos

Figura 2.1: Gráfica de la función de exceso medio empírica.

En el capítulo anterior se ha establecido que an(Mn − bn) converge a uno de los tres tipos de distri-
buciones de valores extremos, con an, bn adecuadas. El objetivo ahora es determinar a cuál de estas
distribuciones converge nuestros datos normalizados y estimar las constantes normalizadoras an y bn.
La manera de proceder para detectar a cuál de los tres tipos de máximos dominios de atracción pertenece
la distribución Mn es estimar el parámetro de forma de la distribución de valor extremo generalizada.

Definición 9. La función de distribución de valor extremo generalizada viene dada por:

Hε(x) =


exp{−(1+ εx)−1/ε} si ε ̸= 0

exp{−e−x} si ε = 0

siendo 1+ εx > 0.

Nota 4. Si ε = 0, entonces Hε se trata de la distribución de Gumbel (TIPO I, (1.3)). Si ε = α−1 > 0,
Hε se corresponde con la distribución de Fréchet (TIPO II, (1.4)), mientras que si ε = −α−1 < 0, Hε

se corresponde con la distribución de Weibull, (TIPO III, (1.5)).

Utilizamos el estimador de Hill para estimar el parámetro de forma, ya que, al tratarse de una distri-
bución de cola pesada, sabemos que el parámetro será no negativo. El estimador de Hill se define de la
siguiente manera:

Definición 10. (Estimador de Hill).
Sean X1, . . . ,Xn los datos muestrales y sea k ∈ {1, . . . ,n}:

ε̂k,n =
1
k

k

∑
j=1

log(X j,n)− log(Xk,n).

Nuestro objetivo es escoger el valor óptimo de k que mejor ajuste nuestros datos. Los resultados
teóricos relativos a este estimador indican que debe tomarse como una proporción (ni muy grande ni
muy pequeña) de k. Para seleccionar el k adecuado, representamos el estimador de Hill en función de k
(Figura 2.2), y elegimos un valor donde la gráfica se vea estable.

Observamos que al tomar un valor de k entre 20 y 40, el estimador se estabiliza entrono a 0.2. Deci-
dimos fijar k = 34 obteniendo así el siguiente parámetro de forma: ε̂34,59 = 0,2014.

Empleando el Lema 6.4.13 de la pág.346 de [4], escogiendo k = 34, obtenemos que nuestras cons-

2.2. Aplicación
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Figura 2.2: Estimador de Hill en función de k.

tantes normalizadoras son:

â34,59 =

(
1
34

34

∑
j=1

log(X j,n)− log(X34,59)

)−1

= (ε̂34,59)
−1 = 4,965.

b̂34,59 = log(1∨X34+1,59) = 4,331.

En definitiva, hemos obtenido que la distribución de nuestros datos máximos normalizados se aproxima
a una Fréchet de parámetro α = (ε̂34,59)

−1 = 4,965.

Para evaluar la calidad de esta aproximación, hemos realizado una QQ-plot (Figura 2.3). El compor-
tamiento lineal de la gráfico indica que nuestros resultados se ajustan bien a la teoría, lo que nos permite
afirmar que nuestra aproximación es buena.

Figura 2.3: QQ-plot de los cuantiles 60−k
60 de una Fréchet α = 4,965 frente a â34,59(Xk,59 − b̂34,59), con

k ∈ {1, . . . ,59}.

Lo anterior nos permite obtener una estimación de la cola de la distribución (F̄(x) = 1−F(x)) así
como una estimación de los cuantiles (xp = F−1(p)):

F̂(x) = 1− F̂(x) =
34
59

(
x

X34+1,59

)−â34,59

= 0,576
( x

76

)−4,965
, con x > 76. (2.1)

2.2. Aplicación
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x̂p = X34+1,59

(
59
34

(1− p)
)−1/â34,59

= 68,032(1− p)−0,201, con p ∈ (0,1). (2.2)

(Los detalles de cómo se obtienen estas expresiones se pueden encontrar en la pág. 347 de [4]).

Esta última estimación se utiliza para estimar cuantiles fuera del rango de nuestros datos. La razón
es que, para estimar cuantiles dentro del rango de nuestros datos, Xk,n se presenta como un estimador
natural del cuantil 1− k−1

n . Por tanto, dentro del rango de valores [48,163] podemos hallar, utilizando
nuestros datos, cuantiles hasta el cuantil 0,983. Sin embargo, lo que nos interesa estudiar son valores más
grandes de los registrados. No haber observado rachas de viento mayores que 163 km/h no significa que
no exista la probabilidad de que en un futuro haya rachas que superen este último valor. La probabilidad
de ocurrencia de una racha de viento mayor que 163 km/h puede ser estimada usando la estimación de la
cola de la distribución (2.1).

Pasamos a ver cómo emplea toda esta información en problemas de la vida real. Previamente, nece-
sitamos conocer qué es el periodo de retorno de un suceso (pág. 305 de [4]):

Definición 11. Sean X1, . . . ,Xn variables aleatorias igualmente distribuidas y u un valor umbral.
Definimos el tiempo del primer éxito como L(u) = mı́n{i ≤ 1 : Xi > u} y el periodo de retorno de los
sucesos {Xi > u} como EL(u) = (F̄(u))−1.

Los ingenieros utilizan los periodos de retorno para diseñar infraestructuras. A través de ellos eva-
lúan la probabilidad de ocurrencia de eventos extremos (como vientos fuertes), durante la vida útil de
una estructura para asegurar la seguridad y funcionalidad a largo plazo. La ISO 4354 [8], establece que
las estructuras críticas para la seguridad, la integridad operativa, y la protección de vidas humanas deben
soportar rachas de viento con un periodo de retorno de al menos 200 años. Dentro de un aeropuerto, se
considera que estructuras como los hangares, las torres de control y las torres de iluminación y antenas
están dentro del tipo mencionado anteriormente. Por tanto, si se quisiera construir un nuevo hangar en
el aeropuerto de Almería, utilizando nuestra estimación de la cola de la distribución (2.1), se llegaría a
que la probabilidad de que haya rachas mayores que 200 km/h es menor que 0,005. En consecuencia, el
periodo de retorno asociado a esas rachas extremas de viento es mayor que 200 años. En definitiva, cons-
truyendo un hangar que resistiera rachas de viento de hasta 200 km/h se aseguraría tanto la protección
de aeronaves como la seguridad del personal.
Los periodos de retorno de vientos extremos se utilizan en los aeropuertos no solo en el diseño de estruc-
turas, sino que también en la planificación de procedimientos operacionales. Algunos ejemplos son la
imposición de restricciones en las operaciones de despegue y aterrizaje en situaciones extremas de vien-
to, o el diseño de procedimientos de emergencia eficaces, con el fin de asegurar una respuesta apropiada
ante eventos poco frecuentes.
Por otra parte, las compañías de seguro también utilizan el periodo de retorno de rachas extremas de
viento para evaluar el riesgo y determinar las primas de seguro. Es así, ya que rachas de viento muy
grandes no registradas anteriormente pueden causar consecuencias catastróficas. Por lo que, haciendo un
análisis sobre la probabilidad de ocurrencia y la posible magnitud de los daños, se establecen las primas
adecuadas y se recomiendan acciones preventivas a los aeropuertos para reducir posibles pérdidas.

En conclusión, con el análisis hecho previamente, hemos podido aproximar la distribución de nuestros
datos normalizados, utilizando unas constantes estimadas, a una Fréchet de parámetro α = 4,965. Esto
nos ha permitido estimar tanto la cola de la distribución de nuestros datos (2.1) como los cuantiles (2.2).
Todo esto es imprescindible para el estudio de la probabilidad de ocurrencia de rachas de viento extre-
mas, lo cual nos permite calcular los periodos de retorno. Esta herramienta es comúnmente empleada en
la vida diaria en muchos ámbitos, entre los que se encuentran la ingeniería y las compañías de seguros.

2.2. Aplicación



Apéndices

Código R ejemplos Capítulo 1

A continuación se adjuntan los códigos de R que se han usado en cada una de las simulaciones de
los ejemplos.

Ejemplo 1

# D e f i n i c i o n de l a d i s t r i b u c i o n de Gumbel

pgumbel<− f u n c t i o n ( x )
{

Gx<−exp ( − exp ( −x ) )
re turn ( Gx )

}

qgumbel<− f u n c t i o n ( p )
{

xp<− − l o g ( − l o g ( p ) )
re turn ( xp )

}

dgumbel<− f u n c t i o n ( x )
{

dx<−exp ( − exp ( − x ) ) *exp ( −x )
re turn ( dx )

}
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

n<−1000
m<−200
lambda<− 0 . 5
M<−matrix ( rexp ( n*m, r a t e =lambda ) , nrow=n , nco l =m)
mn<−apply (M, MARGIN = 2 , FUN=max )
D<− lambda *mn− l o g ( n )

l i b r a r y ( RcmdrMisc )
par ( mfrow = c ( 1 , 1 ) )
h i s t (D , f r e q =FALSE , y l im =c ( 0 , 0 . 5 ) , x l im =c ( − 2 , 5 ) , b r e a k s = 20 ,

main=" His tog rama de Mn − l o g ( n ) " )
k f <− d e n s i t y (D)
l i n e s ( k f )
xx<−qgumbel ( seq ( 0 , 1 , l e n g t h . o u t =1000) )
l i n e s ( xx , dgumbel ( xx ) , c o l = ’ r e d ’ )

27
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l egend ( x= " t o p r i g h t " ,
l egend = c ( " Dens idad Mn − l o g ( n ) , n=1000 " ,
" Dens idad de l a d i s t r i b u c i o n de Gumbel " ) ,
c o l = c ( 1 , 2 ) ,
lwd = 2)

Ejemplo 2

# D e f i n i c i o n de l a d i s t r i b u c i o n de F r e c h e t

p f r e c h e t <− f u n c t i o n ( x , a l p h a )
{

i f ( x >0)
{Gx<−exp ( −( x ^( − a l p h a ) ) ) }
e l s e {Gx<−0}
re turn ( Gx) }

q f r e c h e t <− f u n c t i o n ( p , a l p h a )
{

xp<− ( − l o g ( p ) ) ^ ( − 1 / a l p h a )
re turn ( xp )

}

d f r e c h e t <− f u n c t i o n ( x , a l p h a )
{

dx<−exp ( −( x ^( − a l p h a ) ) ) * ( x ^( − a lpha − 1 ) ) * a l p h a
re turn ( dx )

}
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

n<−1000
m<−300
xo<−0 # parametro de p o s i c i o n
s igma <−1 # parametro de e s c a l a

a l p h a <−1 # parametro de l a d i s t r i b u c i o n de F r e c h e t

M<−matrix ( rcauchy ( n*m, l o c a t i o n =xo , s c a l e =sigma ) , nrow=n , nco l =m)
mn<−apply (M, MARGIN = 2 , FUN=max )
D<−mn / ( qcauchy (1 −(1 / n ) , l o c a t i o n = xo , s c a l e =sigma ) )

l i b r a r y ( RcmdrMisc )
par ( mfrow = c ( 1 , 1 ) )
h i s t (D , f r e q =FALSE , y l im =c ( 0 , 0 . 6 ) , x l im =c ( 0 , 6 ) , b r e a k s = 700 ,
main=" His tog rama de anMn" )
k f <− d e n s i t y (D)
l i n e s ( k f )
xx<− q f r e c h e t ( seq ( 0 , 1 , l e n g t h . o u t =1000) , a l p h a = a l p h a )
l i n e s ( xx , d f r e c h e t ( xx , a l p h a = a l p h a ) , c o l = ’ r e d ’ )
l egend ( x= " t o p r i g h t " ,

l egend = c ( " Dens idad anMn , n=1000 " ,
" Dens idad de l a d i s t r i b u c i o n de F r e c h e t , =1 " ) ,

.
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c o l = c ( 1 , 2 ) ,
lwd = 2)

Ejemplo 3

# D e f i n i c i o n de l a d i s t r i b u c i o n de W e i b u l l

pWeibu l l <− f u n c t i o n ( x , a l p h a )
{

i f ( x >0)
{

Gx<−1
}
e l s e {Gx<−exp ( −( ( − x )^ ( − a l p h a ) ) ) }
re turn ( Gx )

}

qWeibu l l <− f u n c t i o n ( p , a l p h a )
{

xp<− −(( − l o g ( p ) ) ^ ( 1 / a l p h a ) )
re turn ( xp )

}

dWeibu l l <− f u n c t i o n ( x , a l p h a )
{

dx<−exp ( −( ( − x ) ^ ( a l p h a ) ) ) * ( x ^ ( a lpha − 1 ) ) * a l p h a
re turn ( dx )

}
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

n<−1000
m<−300
# Consideramos U( a , b )
a<−2
b<−6

a l p h a <−1 # parametro de l a d i s t r i b u c i o n de W e i b u l l

M<−matrix ( r u n i f ( n*m, min=a , max=b ) , nrow=n , nco l =m)
mn<−apply (M, MARGIN = 2 , FUN=max )
D<−n* (mn−b ) / ( b−a )

l i b r a r y ( RcmdrMisc )
par ( mfrow = c ( 1 , 1 ) )
h i s t (D , f r e q =FALSE , y l im =c ( 0 , 1 ) ,

main=" His tog rama de n (Mn−b ) / ( b−a ) " )
k f <− d e n s i t y (D)
l i n e s ( k f )
xx<− qWeibu l l ( seq ( 0 , 1 , l e n g t h . o u t =1000) , a l p h a = a l p h a )
l i n e s ( xx , dWeibu l l ( xx , a l p h a = a l p h a ) , c o l = ’ r e d ’ )
l egend ( x= " t o p r i g h t " ,

.
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l egend = c ( " Dens idad 1000(Mn− 1) , n=1000 " ,
" Dens idad de l a d i s t r i b u c i o n de Weibul l , =1 " ) ,

c o l = c ( 1 , 2 ) ,
lwd = 2)

Ejemplo 5

n<−1000
m<−100
lambda<− 0 . 5 # parametro de l a e x p o n e n c i a l
Maxdebi l <− f u n c t i o n ( n , x ) # x es un v e c t o r
{

mx<−max ( x [ 1 : n ] )
an<− l o g ( n )
Mn<−mx / an
re turn (Mn)

}
s e q d e b i l <− f u n c t i o n ( x , nn )
{

seqD<− sapply ( nn ,FUN=Maxdebil , x=x )
re turn ( seqD )

}

M<−matrix ( rexp ( n*m, r a t e =lambda ) , nrow=n , nco l =m)
nn<−c ( 1 : n )

Maxd<−apply (M,MARGIN=2 ,FUN= s e q d e b i l , nn=nn )

p l o t ( nn , Maxd [ , 1 ] , pch =16 , y l im =c ( 0 , 7 ) , t y p e = ’ l ’ )
aux<− f u n c t i o n ( y , nn ) { l i n e s ( nn , y ) }
baux<−apply ( Maxd [ , 2 : nco l ( Maxd ) ] , MARGIN=2 , FUN=aux , nn=nn )
a b l i n e ( h=1 / lambda , c o l = ’ r e d ’ )

Ejemplo 6

Maxdebi l <− f u n c t i o n ( n , x ) # x es un v e c t o r
{

mx<−max ( x [ 1 : n ] )
re turn (mx)

}
s e q d e b i l <− f u n c t i o n ( x , nn )
{

seqD<− sapply ( nn ,FUN=Maxdebil , x=x )
re turn ( seqD )

}

n<−1000
m<−100
a<−0
b<−1

.
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M<−matrix ( r u n i f ( n*m, min=a , max=b ) , nrow=n , nco l =m)
nn<−c ( 1 : n )

Maxd<−apply (M,MARGIN=2 ,FUN= s e q d e b i l , nn=nn )
p l o t ( nn , Maxd [ , 1 ] , pch =16 , y l im =c ( 0 . 5 , 1 . 0 5 ) , t y p e = ’ l ’ )
aux<− f u n c t i o n ( y , nn ) { l i n e s ( nn , y ) }
baux<−apply ( Maxd [ , 2 : nco l ( Maxd ) ] , MARGIN=2 , FUN=aux , nn=nn )
a b l i n e ( h=b , c o l = ’ r e d ’ )

Ejemplo 7

Maxdebi l <− f u n c t i o n ( n , x , a l p h a ) # x es un v e c t o r
{

mx<−max ( x [ 1 : n ] )
an<−n ^ (1 / a l p h a ) # q p a r e t o (1 −1 / n )
Mn<−mx / an
re turn (Mn)

}
s e q d e b i l <− f u n c t i o n ( x , nn , a l p h a )
{

seqD<− sapply ( nn ,FUN=Maxdebil , x=x , a l p h a = a l p h a )
re turn ( seqD )

}

l i b r a r y ( E n v S t a t s )
n<−1000
m<−100
a l p h a <−2

M<−matrix ( r p a r e t o ( n*m, l o c a t i o n =1 , shape = a l p h a ) , nrow=n , nco l =m)
nn<−c ( 1 : n )

Maxd<−apply (M,MARGIN=2 ,FUN= s e q d e b i l , nn=nn , a l p h a = a l p h a )
p l o t ( nn , Maxd [ , 1 ] , pch =16 , y l im =c ( 0 , 1 5 ) , t y p e = ’ l ’ )
aux<− f u n c t i o n ( y , nn ) { l i n e s ( nn , y ) }
baux<−apply ( Maxd [ , 2 : nco l ( Maxd ) ] , MARGIN=2 , FUN=aux , nn=nn )
a b l i n e ( h =1 , c o l = ’ r e d ’ )

Ejemplo 8

n<−1000
m<−100
xo<−0 # parametro de p o s i c i o n
s igma <−1 # parametro de e s c a l a
Maxdebi l <− f u n c t i o n ( n , x , xo , s igma ) # x es un v e c t o r
{

mx<−max ( x [ 1 : n ] )
an<−qcauchy (1 −(1 / n ) , l o c a t i o n =xo , s c a l e =sigma )
Mn<−mx / an
re turn (Mn)

}
s e q d e b i l <− f u n c t i o n ( x , nn , xo , s igma )

.
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{
seqD<− sapply ( nn ,FUN=Maxdebil , x=x , xo=xo , s igma=sigma )
re turn ( seqD )

}

M<−matrix ( rcauchy ( n*m, l o c a t i o n =xo , s c a l e =sigma ) , nrow=n , nco l =m)
nn<−c ( 1 : n )

Maxd<−apply (M,MARGIN=2 ,FUN= s e q d e b i l , nn=nn , s igma=sigma , xo=xo )
p l o t ( nn , Maxd [ , 1 ] , pch =16 , y l im =c ( 0 , 1 5 ) , t y p e = ’ l ’ )
aux<− f u n c t i o n ( y , nn ) { l i n e s ( nn , y ) }
baux<−apply ( Maxd [ , 2 : nco l ( Maxd ) ] , MARGIN=2 , FUN=aux , nn=nn )
a b l i n e ( h =1 , c o l = ’ r e d ’ )

Ejemplo 9

n<−10000
m<−100
p<− 0 . 5
Maxdebi l <− f u n c t i o n ( n , x , p ) # x es un v e c t o r
{

mx<−max ( x [ 1 : n ] )
an<− l o g ( n )
Mn<−mx / an
re turn (Mn)

}
s e q d e b i l <− f u n c t i o n ( x , nn , p )
{

seqD<− sapply ( nn ,FUN=Maxdebil , x=x , p=p )
re turn ( seqD )

}
par ( mfrow = c ( 1 , 1 ) )
M<−matrix ( rgeom ( n*m, prob =p ) , nrow=n , nco l =m)
nn<−c ( 1 : n )

Maxd<−apply (M,MARGIN=2 ,FUN= s e q d e b i l , nn=nn , p=p )
p l o t ( nn , Maxd [ , 1 ] , pch =16 , y l im =c ( 0 , 4 ) , t y p e = ’ l ’ )
aux<− f u n c t i o n ( y , nn ) { l i n e s ( nn , y ) }
baux<−apply ( Maxd [ , 2 : nco l ( Maxd ) ] , MARGIN=2 , FUN=aux , nn=nn )
a b l i n e ( h=−1 / l o g (1 − p ) , c o l = ’ r e d ’ )

Código R aplicación estadística

Seguidamente se adjunta el código de R implementado para llevar a cabo la aplicación estadística.

##FUNCIONES NECESARIAS
# Funcion de e x c e s o medio
mean_ fun <− f u n c t i o n ( x , u )
{

i <−0
sum<−0

.
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f o r ( j i n x ) {

i f ( j >u )
{

sum=sum+( j −u )
i = i +1

}
}
e _n=sum / i
re turn ( e _n )

}

# Es t imador de P i c k a n d s
p i c k a n d s <− f u n c t i o n ( k , x )
{

order <− s o r t ( x , d e c r e a s i n g =TRUE) # ordenamos de mayor a menor
p i c k <− l o g ( ( order [ k ] − order [2 *k ] ) / ( order [2 *k ] − order [4 *k ] ) ) / l o g ( 2 )
re turn ( p i c k )

}

# Es t imador DedH
Dedh<− f u n c t i o n ( k , x )
{

order <− s o r t ( x , d e c r e a s i n g =TRUE)
H_1<−0
H_2<−0
f o r ( j i n 1 : k )
{

H_1=H_1+ l o g ( order [ j ] ) − l o g ( order [ k + 1 ] )
H_2=H_ 2+( l o g ( order [ j ] ) − l o g ( order [ k + 1 ] ) ) ^ 2

}
H_1=H_1 / k
H_2=H_2 / k
e s t =1+H_1+1 / (2 * (H_ 1^2 /H_ 2 −1))
re turn ( e s t )

}

# Es t imador de H i l l
H i l l s <− f u n c t i o n ( k , x )
{

e s t <−0
order <− s o r t ( x , d e c r e a s i n g =TRUE) # de mas a menos
f o r ( j i n 1 : k )
{

e s t = e s t + l o g ( order [ j ] )
}
e s t = e s t / k− l o g ( order [ k ] )
re turn ( e s t )

}

# E s t i m a c i o n de l o s c u a n t i l e s

.
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c u a n t i l <− f u n c t i o n ( p , k , x )
{

n<− l e n g t h ( x )
order <− s o r t ( x , d e c r e a s i n g =TRUE)
c u a n t i l =( n / k* (1 − p ) )^ − H i l l s ( k=k , x=x ) * order [ k +1]
re turn ( c u a n t i l )

}

# E s t i m a c i n de l a c o l a de l a d i s t r i b u c i n
c o l a F <− f u n c t i o n ( k , x )
{

order <− s o r t ( Datos _TFG$ Almeria , d e c r e a s i n g = TRUE)
e s t =( k / 59) * ( x / order [ k +1] )^ ( −1 / H i l l s ( k=k , x= Datos _TFG$ Almer ia ) )
re turn ( e s t )

}

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##EXTRACCION DE LOS DATOS QUE NOS INTERESAN
l i b r a r y ( r e a d x l )
l i b r a r y ( d p l y r )
Datos <− read _ e x c e l ( "C : / Users / U s u a r i o / OneDrive / E s c r i t o r i o / 4 Matematicas
/ TFG / S i m u l a c i o n e s con R / A p l i c a c i n e s t a d i s t i c a / Datos _TFG . x l s x " )
View ( Datos )
New_ data <− s e l e c t ( Datos , " Date " , " 6325O" ) # S e l e c c i o n a r s o l o l a base de A lmer ia
colnames (New_ data ) <−c ( " Fecha " , " Almer ia " )
New_ data <− f i l t e r (New_ data ,

s u b s t r ( Fecha , s t a r t =6 , s top =7)== " 10 " ) # s e l e c c i o n a r s o l o Octubre

y e a r s <−seq ( 1 9 6 1 , 2 0 1 9 )
max_ a i r e <−rep ( 0 , 5 9 )
i <−1
f o r ( y e a r i n y e a r s ) {

v a l o r e s <−as . i n t e g e r (New_ data $ Almer ia
[ which ( s u b s t r (New_ data $ Fecha , s t a r t =1 , s top =4)== y e a r ) ] )

# s e l e c c i o n a r l o s d i a s de o c t u b r e d e l mismo ano
max_ a i r e [ i ]=max ( v a l o r e s )
i = i +1

}

# Datos con l o s que vamos a t r a b a j a r
Datos _TFG<−data . frame ( " A o "= y e a r s , " Almer ia "=max_ a i r e )
View ( Datos _TFG)

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

## ANALISIS
par ( mfrow=c ( 2 , 2 ) )
summary ( Datos _TFG$ Almer ia ) # v a l o r e s e n t r e 48 y 163
#qqnorm ( Datos _TFG$ Almer ia )

.



Teoría de valores extremos - Alba Abbad Rodés 35

l i b r a r y ( r s t a t i x )
i d e n t i f y _ o u t l i e r s ( Datos _TFG , v a r i a b l e =" Almer ia " )

# Detec tamos s i e s de c o l a pesada o no
e _n<−rep ( 0 , 5 9 )
f o r ( i i n 1 : 5 9 ) {

e _n [ i ]=mean_ fun ( x= Datos _TFG$ Almeria , u= Datos _TFG$ Almer ia [ i ] )
}
p l o t ( Datos _TFG$ Almeria , e _n )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# G r a f i c a e s t i m a d o r P i c k a n d s
k<−seq ( 1 , f l o o r (59 / 4 ) )
e s t _ p i c k <− sapply ( k ,FUN= p ickands , x= Datos _TFG$ Almer ia )
p l o t ( k , e s t _ pick , t y p e =" l " ) # pa re ce que t i e n d a a −1

# G r a f i c a e s t i m a d o r de H i l l
par ( mfrow=c ( 1 , 1 ) )
k<−seq ( 1 , 5 5 ) # se t i e n e que c u m p l i r l a c o n d i c i o n de k / n −>0
e s t _ h i l l s <− sapply ( k ,FUN = H i l l s , x= Datos _TFG$ Almer ia )
p l o t ( k , e s t _ h i l l s , t y p e =" l " , y l a b =" E s t i m a d o r de H i l l " )

# G r a f i c a e s t i m a d o r DedH
k<−seq ( 1 , 5 5 ) # se t i e n e que c u m p l i r l a c o n d i c i o n de k / n −>0
e s t _DedH<− sapply ( k ,FUN = Dedh , x= Datos _TFG$ Almer ia )
p l o t ( k , e s t _DedH , t y p e =" l " ) # tomando k e n t r e 44 y 45 se e s t a b i l i z a en −1

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#Q_Q p l o t para v e r s i s e aproxima b i e n a l a F r e c h e t
par ( mfrow=c ( 1 , 1 ) )
K_ f i x <−34
order <− s o r t ( Datos _TFG$ Almeria , d e c r e a s i n g = TRUE)
c u a n t i l <−rep ( 0 , 5 9 )
e s t <− H i l l s (K_ f i x , x= Datos _TFG$ Almer ia )
f o r ( k i n 1 : 5 9 )
{

c u a n t i l [ k ]=( − l o g ( (59 − k +1) / ( 5 9 + 1 ) ) ) ^ ( − e s t )
}
p l o t ( c u a n t i l , ( order − l o g ( order [K_ f i x + 1 ] ) ) / e s t )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

q u a n t i l e ( Datos _TFG$ Almeria , p = 0 . 9 6 ) # c u a n t i l e s e n t r e n u e s t r o s d a t o s
c u a n t i l ( 0 . 9 9 5 , k =34 , x= Datos _TFG$ Almer ia )

# Per iodo de r e t o r n o
T<− ( c o l a F (K_ f i x , 1 9 8 ) ) ^ ( − 1 )
T

.
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