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Resumen 

La finalidad de este trabajo es realizar un análisis econométrico univariante de una serie 

temporal. La variable objeto de estudio es la tasa de desempleo de las mujeres a nivel 

nacional, con datos trimestrales, desde el primer trimestre de 2002 hasta el cuarto 

trimestre de 2023, es decir, 88 observaciones, cuyos datos han sido obtenidos del Instituto 

Nacional de Estadística (INE). 

El objetivo de este trabajo es la aplicación de la metodología de Box-Jenkins para 

examinar el comportamiento de dicha serie temporal, identificar posibles patrones 

estacionales y tendencias a largo plazo, y poder identificación posibles modelos 

autorregresivos integrados de medias móviles (ARIMA) que han podido generar dicha 

serie con objeto de predecir de la mejor manera posible el comportamiento del paro 

femenino en España corto plazo.  

Abstract 

The purpose of this work is to perform a univariate econometric analysis of a time series. 

The variable under study is the national unemployment rate of women, with quarterly 

data from the first quarter of 2002 to the fourth quarter of 2023, i.e., 88 observations, 

obtained from the National Institute of Statistics (INE). 

The objective of this work is to apply the Box-Jenkins methodology to examine the 

behavior of this time series, identify possible seasonal patterns and long-term trends, and 

identify potential autoregressive integrated moving average (ARIMA) models that may 

have generated this series, in order to best predict the short-term behavior of female 

unemployment in Spain. 



 

1 
 

 

Índice 

1.-Introducción ................................................................................................................. 2 

2.-Búsqueda de datos en fuentes estadísticas ................................................................... 3 

3.-Explicación de la metodología de Box – Jenkins ......................................................... 4 

4.-Aplicación de la metodología de Box – Jenkins a la serie objeto de estudio ............... 5 

Identificación de los posibles procesos estocásticos lineales discretos ........................ 5 

Estimación de los procesos estocásticos ..................................................................... 17 

Chequeo ...................................................................................................................... 19 

Predicción ................................................................................................................... 35 

6.- Conclusiones ............................................................................................................. 37 

7.-Bibliografía ................................................................................................................ 38 

Anexo I ........................................................................................................................... 40 

 

 

 

 

 

 

 

 

 

 

 

 



 

2 
 

1.-Introducción 

La tasa de desempleo en España es uno de los indicadores macroeconómicos que mayor 

impacto genera en la economía y uno de los indicadores que más preocupa a la sociedad, 

por estos motivos, se han realizado numerosos estudios y artículos sobre esta variable. 

Algunos de estos trabajos son Dueñas Fernández, Iglesias Fernández y Llorente Heras 

(2016). donde a través de modelos ARIMA se pronostica el número de mujeres ocupadas 

y en paro en los últimos tres trimestres de 2014 en España y a través de modelos logit se 

analiza la probabilidad de que encuentren empleo o Millán Vázquez de la Torre, Santos 

Pita y Pérez Naranjo (2015) en el que se estudia la distribución laboral femenina en el 

año 2012 en el mercado de trabajo español según la metodología de descomposición 

Oaxaca-Blinder sobre las probabilidades que tienen hombres y mujeres de pertenecer a 

una ocupación masculinizada o feminizada. 

Actualmente las mujeres tienen un papel fundamental en el mercado laboral, pero a pesar 

de esto sigue siendo uno de los sectores más vulnerables en situaciones de crisis. La crisis 

económica y financiera de 2008 afectó especialmente a España lo que provocó un 

aumento de la tasa de paro, llegando a alcanzar en 2013 un 26%. Este aumento de la tasa 

de paro tuvo un impacto desigual ya que los más vulnerables a la pérdida de empleo 

fueron los jóvenes y en concreto las mujeres debido a la mayor precariedad laboral en 

sectores como la hostelería, el comercio minorista y los servicios, donde las mujeres 

estaban sobrerrepresentadas. A medida que la economía española se recuperaba de la 

crisis, se implementaron diversas políticas y programas para abordar las disparidades de 

género en el empleo. Se promulgaron leyes que promovían la igualdad de género y se 

incorporaron políticas de conciliación laboral y familiar, como el permiso parental 

igualitario y medidas de apoyo al cuidado infantil. 

Otro gran impacto en la economía española y en concreto en el mercado laboral se debe 

a la pandemia del Covid-19. Se produjo una pérdida masiva de empleos debido a las 

medidas de confinamiento y al cierre temporal o permanente de muchas empresas, los 

sectores como la hostelería y el turismo fueron los más afectados en este sentido. Pero sin 

duda el sector más afectado debido a la pandemia fue el sector sanitario, que está 

compuesto mayormente por mujeres, este sector se vio desbordado debido a la gran 

cantidad de personas afectadas que hubo. Además, con el confinamiento muchas mujeres 
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se vieron obligadas a asumir una mayor carga de trabajo en el hogar debido al cierre de 

escuelas y guarderías. 

A pesar de los avances que ha habido en los últimos años, siguen existiendo desafíos 

significativos en cuanto a la igualdad de género en el empleo en España. Las mujeres 

siguen enfrentándose a obstáculos para acceder a empleos de calidad y para avanzar en 

sus carreras, además la brecha salarial de género sigue siendo una preocupación 

importante. 

El trabajo, además de esta primera introducción se estructura en cuatro partes. En el 

apartado segundo se indica la fuente de los datos y se define la variable objeto de estudio. 

En un apartado tercero se explica la metodología utilizada para posteriormente en el 

apartado cuarto aplicarla a la variable objeto de estudio y finalmente acabar con unas 

conclusiones.   

2.-Búsqueda de datos en fuentes estadísticas 

La medición de la tasa de paro en España se realiza mediante la Encuesta de Población 

Activa que realiza trimestralmente el INE, y el paro registrado, es decir, el número de 

personas inscritas en el SEPE (Servicio Público de Empleo  Estatal). 

Los datos de la muestra que vamos a analizar se pueden encontrar en la base de datos del 

INE. El INE es un organismo público español, el cual pertenece al Ministerio de 

Economía, Comercio y Empresa. Este organismo tiene como finalidad la realización de 

estudios estadísticos sobre los datos estadísticos más notorios de nuestro país. 

Por lo tanto, nuestra muestra se ha obtenido con los datos de la Encuesta de Población 

Activa. Dicha encuesta divide a la población en dos grupos: 

• Población Económicamente Activa: dentro de este grupo están las personas en edad 

de trabajar que están empleadas o desempleadas, pero buscan empleo. Por lo tanto, se 

divide en otros dos subgrupos: 

o Ocupados: personas con un empleo remunerado. 

o Desempleados: personas que no están ocupadas, pero buscan empleo 

activamente. 
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• Población No Económicamente Activa: dentro de este grupo están las personas de 16 

años o más que están estudiando, realizan tareas domésticas, jubiladas, 

imposibilitadas para trabajar o que simplemente no están buscando trabajo. 

Y la tasa de desempleo se calcula dividiendo el número de desempleados dividido entre 

la población económicamente activa, expresado en porcentaje. 

En el Figura 1 se muestra la tasa de paro femenino y masculino para el período de estudio 

y se observa como en general la tasa de desempleo femenina tiende a ser más alta que la 

masculina excepto en el período de la crisis financiera de 2008 donde ambas tasas se 

disparan, llegando la tasa de paro masculina a una convergencia con la femenina. 

Figura 1: Tasa de paro trimestral femenino y masculino en España (2002:1-2023:4) 

 

3.-Explicación de la metodología de Box – Jenkins 
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debido a su flexibilidad y capacidad para capturar la complejidad de las series temporales 

y su eficiencia en predicciones a corto plazo. Dicha metodología está basada en 4 etapas: 

1.- Etapa de IDENTIFICACIÓN: consiste en utilizar los datos recogidos de la serie 

temporal e identificar el posible modelo ARIMA que sigue la serie. Para ello, el primer 

requisito que debe tenerse en cuenta es si la serie es estacionaria o no.  

Si no lo fuera, habría que decidir qué transformaciones aplicar para convertir la serie 

observada en una serie estacionaria en media y en varianza. 

Una vez que esta serie transformada es estacionaria, se tratara de averiguar los posibles 

ordenes tanto de la parte regular del modelo (autorregresiva, p, y medias móviles, q) como 

de la parte estacional (autorregresiva, P y medias móviles, Q). Por último, tendríamos que 

determinar si el modelo tiene término constante o no. 

2- Etapa de ESTIMACIÓN: una vez identificados los posibles modelos que han podido 

generar la serie temporal, en esta etapa, trataremos de cuantificar los parámetros de los 

mismos a través de la estimación por máxima verosimilitud. 

3.- Etapa de CHEQUEO: en esta etapa se comprueba la correcta especificación del 

modelo. Para ello comprobaremos el cumplimiento de las estimaciones de los parámetros 

de las condiciones de estacionariedad e invertibilidad y el análisis de los residuos, esto 

es, si puede afirmarse que son semejantes a un ruido blanco. 

4.- Etapa de PREDICCIÓN: una vez superada la etapa de chequeo, el modelo ya puede 

ser utilizado para la obtención de predicciones puntuales y/o por intervalo de la serie 

objeto de estudio. 

4.-Aplicación de la metodología de Box – Jenkins a la serie 

objeto de estudio 

Identificación de los posibles procesos estocásticos lineales discretos 

Como hemos explicado antes, uno de los requisitos que debe cumplir la serie objeto de 

estudio es que sea estacionaria, en este contexto la estacionariedad se define como un 

proceso que se mantiene constante a lo largo del tiempo y no muestra ninguna tendencia 



 

6 
 

o patrón discernible en términos de media, varianza o covarianza. Por lo tanto, se puede 

distinguir dos tipos de procesos en función de la estacionariedad: 

• Proceso estacionario en sentido estricto: la función de distribución conjunta del 

proceso se mantiene invariante ante desplazamientos en el tiempo. 

• Proceso estacionario en sentido débil: se verifica simultáneamente las siguientes 

tres condiciones sobre los momentos de primer y segundo orden: 

- 𝐸[𝑦𝑡]  =  𝜇   ∀𝑡  

- 𝑉 [𝑦𝑡]  =  𝜎2   ∀𝑡  

- Cov [𝑦𝑡, 𝑦𝑡±𝑠]  = 𝛾𝑠  ∀𝑡 

En nuestro caso vamos a verificar que se cumple que la serie temporal sea estacionaria en 

media para ello tiene que mantenerse el supuesto de que existe una única media para toda 

la serie temporal, es decir cuando esta fluctúe en torno a una única media. Y que sea 

estacionaria en varianza, es decir que la dispersión de la serie permanezca invariable a lo 

largo del tiempo y que las covarianzas sólo dependen de la diferencia temporal, s pero no 

de t. 

Una vez explicados estos conceptos, vamos a analizar si nuestra serie temporal objeto de 

estudio es estacionaria, para ello vamos a utilizar gráficos, correlogramas de la serie 

original y de distintas transformaciones de esta y el contraste del orden de integración de 

Dickey – Fuller. 

Figura 2: Gráfico de la tasa de paro femenina en España (1T de 2002 – 4T de 2022) 
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Observando la Figura 2 diríamos que la serie original no es estacionaria en media y 

presenta una tendencia estocástica ya que presenta periodos de crecimiento y 

decrecimiento a lo largo del tiempo, por lo que habría que diferenciar la serie el número 

de veces que fuera necesario hasta que desaparezca dicha tendencia.  

En la figura se ve como antes de que estallara la crisis de 2008, la tasa de desempleo 

estaba disminuyendo como consecuencia del crecimiento económico que se estaba 

experimentando en aquella época, además del empleo que se estaba creando en sectores 

como la construcción y el turismo. También hay que destacar que, tras la crisis financiera 

de 2008, la tasa de paro se dispara llegando a alcanzar un 26%. Por lo que se puede 

observar lo que se conoce en econometría como cambio estructural, que no es más que 

cuando existe un cambio inesperado en una serie temporal macroeconómica. 

Por último, se observa como a partir de 2014 se empieza a recuperar la economía, al igual 

que empieza a disminuir gradualmente la tasa de desempleo hasta llegar a 2020, año en 

el que comienza la pandemia del covid-19 causando un aumento de la tasa de paro como 

consecuencia del confinamiento y las medidas restrictivas que afectaron a mucho de los 

sectores clave en el mercado laboral español como la hostelería o el turismo. 

En la Figura 3 presentamos el diagrama rango-media con el cuál se pretende analizar la 

estacionariedad en varianza. 

Figura 3: Gráfico rango – media de la serie original 
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Este gráfico ajusta una recta y se contrasta si la pendiente es significativamente distinta 

de cero. Si el coeficiente de la recta estimada es significativamente distinto de cero, 

entonces la serie no es estacionaria en varianza. 

Figura 4: Estadísticos y contraste de rango – media de la serie original 

  

Como el p-valor es 0.222 > 0.05 podemos concluir que la serie es estacionaria en varianza 

y por lo tanto no habrá que transformarla con logaritmos. Sin embargo, sí que hay que 

diferenciarla, el correlograma de la serie original y de sus diferencias nos puede también 

ayudar a determinar el número de diferencias que tenemos que aplicar a la serie para 

convertirla en estacionaria. 



 

9 
 

Figura 5: Correlograma de la serie original

 

En la Figura 5 se presenta el correlograma y el correlograma parcial de la serie original, 

como la serie no es estacionaria la FACM disminuye muy lentamente y la FACPM tiene 

el primer coeficiente muy grande, cercano a 1 y los demás coeficientes son prácticamente 

nulos. 

Figura 6: Correlograma de la serie diferenciada una vez 

 

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20  25

retardo

Intervalo de 95%

FAC de v2

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20  25

retardo

+- 1.96/T^0.5

FACP de v2

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20

retardo

Intervalo de 95%

FAC de d_v2

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20

retardo

+- 1.96/T^0.5

FACP de d_v2



 

10 
 

Por último, como la tasa de paro es una variable que puede presentar un comportamiento 

estacional, debido a que en España hay épocas como el verano en la que disminuye la 

tasa de desempleo, vamos a analizar si la serie presenta este comportamiento estacional. 

Para ello observamos los correlogramas de la serie diferenciada, presentados en la Figura 

6, en el que podemos observar un patrón repetitivo en el cuarto trimestre, es decir, un 

comportamiento estacional. Para poder seguir con el análisis del orden de integración de 

la serie temporal con el contraste de  Dickey-Fuller, que  está desarrollado para series sin 

componente estacional, el primer paso que vamos a realizar es desestacionalizar la serie 

para ello se ha utilizado  la función  X13ARIMA de Gretl. 

Figura 7: Gráfico de la tasa de paro femenina en España desestacionalizada (1T de 2002 – 4T 

de 2022) 
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En la Figura 8 presentamos el diagrama rango-media con el cuál analizamos la 

estacionariedad en varianza. 
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Figura 8: Gráfico rango – media de la serie desestacionalizada 

 

Figura 9: Estadísticos y contraste de rango – media de la serie desestacionalizada 
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En la figura 10 se presenta el correlograma de la serie desestacionalizada, el cual sigue 

siendo el propio de una serie no estacionaria, al disminuir la FACM muy lentamente y al 

tener la FACPM un corte brusco en los primeros coeficientes. 

Figura 10: Correlograma de la serie desestacionalizada 
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Figura 11: Contraste Dickey – Fuller para la serie desestacionalizada 

 

Como el p- valor es 0.6663 > 0.05 se acepta la hipótesis nula, al menos la serie es I (1), 

por lo tanto, se confirma que la serie no es estacionaria en varianza, o que tiene una 

tendencia estocástica. 

Volvemos a realizar el contraste de Dickey- Fuller, pero usando las primeras diferencias 

de la variable para comprobar si la serie podría ser I (2) o si por el contrario se confirma 

que es I (1). 

Figura 12: Contraste Dickey – Fuller para la serie desestacionalizada diferenciada 

 

Como el p- valor es 0.0062 < 0.05 no se acepta la hipótesis nula de que al menos la serie 

es I (2), por lo tanto se confirma que la serie es I(1) y solo hay que realizar una diferencia 

regular. 
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Para analizar si es necesario diferenciar estacionalmente la serie utilizamos al gráfico de 

la serie sin desestacionalizar, con una diferencia regular, Figura 13. 

Figura 13: Gráfico de la serie original diferenciada 

 

Aparentemente la representación gráfica de la serie diferenciada, que puede verse en la 

figura 13, evoluciona como una serie estacionaria en media, ya que, sí que parece que 
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Figura 14: Correlograma de la serie original diferenciada 
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En el correlograma representado en la figura 14, se ve que hay un patrón repetitivo por el 

componente estacional de la tasa de desempleo y que la parte estacional no se anula tan 

rápidamente como una serie estacionaria, por lo tanto, volvemos a transformar la serie, 

esta vez con una diferencia estacional. La serie transformada mediante una diferencia 

regular (d=1) y una diferencia estacional (D=1) quedaría así:  

𝑤𝑡 = (1 − 𝐿4)(1 − 𝐿)𝑦𝑡 

Figura 15: Gráfico de la serie original con una diferencia regular y una estacional 

 

Figura 16: Gráfico de la serie original con una diferencia regular y una estacional 
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Para la identificación del Modelo ARIMA (p, d, q) x ARIMA (P, D, Q), se ha de realizar 

un estudio de los correlogramas de la figura 16. 

Observando la parte regular llegamos a la conclusión de que p=1 y q=0 ya que el 

comportamiento es típico de un esquema AR (1), es decir, un corte brusco en la FACP 

con un primer valor muy significativo y decrecimiento rápido en la FAC. Por lo tanto, la 

serie seguiría un proceso ARI (1,1). Sin embargo, si observamos la parte estacional no 

llegamos a una conclusión tan clara, por lo tanto, podemos identificar un Q=1 o Q=2 o 

P=1, en cualquier caso, D=1. Por tanto, identificamos tres modelos multiplicativos 

estacionales alternativos: 

ARIMA (p, d, q) x ARIMA (P, D, Q)4 

- Modelo 1: ARIMA (1,1,0) x ARIMA (0,1,1)4 

- Modelo 2: ARIMA (1,1,0) x ARIMA (1,1,0)4 

- Modelo 3: ARIMA (1,1,0) x ARIMA (0,1,2)4 

Antes de realizar la estimación de los tres modelos identificados, vamos a discutir si hay 

que incluir término independiente, para ello observamos la Figura 15, en principio, como 

la serie deambula alrededor de cero, los modelos no tendrían término constante, aunque 

para confirmar esto realizamos el contraste de si la media poblacional o esperanza es cero: 

H0: 𝐸[𝑤𝑡] = 0    𝛿 = 0 

Ha: 𝐸[𝑤𝑡] ≠ 0    𝛿 ≠ 0 

Figura 17: Contraste de si la media poblacional es cero 

 

Como 𝑡𝑤̅ =
𝑤̅

√𝑉(𝑤̅)
~𝑁(0; 1) es igual a -0.109 < N0.025 = 1.96 se acepta la hipótesis nula y 

por lo tanto los modelos no deberían incorporar término independiente. 
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Estimación de los procesos estocásticos 

Primer modelo 

ARIMA (1,1,0) x ARIMA (0,1,1)4 : (1 − 𝐿4)(1 − 𝐿)(1 − 𝜙1𝐿)𝑦𝑡 = (1 − Θ1𝐿4)𝑢𝑡  

En el siguiente cuadro mostramos la estimación máximo-verosímil del Modelo 1: 

Cuadro 1: Estimación del Modelo 1 

 

Segundo modelo  

ARIMA (1,1,0) x ARIMA (1,1,0)4: (1 − ΦL4)(1 − ϕ1L)(1 − L4)(1 − L)yt = ut 

En el siguiente cuadro mostramos la estimación máximo-verosímil del Modelo 2: 
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Cuadro 2: Estimación del Modelo 2 

 

Tercer modelo 

ARIMA (1,1,0) x ARIMA (0,1,2)4: (1 − 𝐿4)(1 − 𝐿)(1 − 𝜙1𝐿)𝑦𝑡 = (1 − Θ1𝐿4 −
Θ2𝐿8)𝑢𝑡  

En el siguiente cuadro mostramos la estimación máximo-verosímil del Modelo 3: 

Cuadro 3: Estimación del Modelo 3 
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Chequeo 

Una vez estimados los parámetros de los tres procesos estocásticos alternativos y 

siguiendo las etapas de la metodología Box-Jenkins, se trata de responder a la cuestión de 

si dichos modelos son adecuados. 

Para poder afirmar que los modelos resultan adecuados deben de cumplir: que las 

estimaciones de sus parámetros sean significativas, las condiciones de estacionariedad e 

invertibilidad y que los residuos se comporten como un ruido blanco, es decir que 

cumplan las condiciones de media nula, varianza constante u homocedasticidad, no 

autocorrelación y distribución normal. 

MODELO 1 

Empezamos estudiando si los residuos del Modelo 1 se comportan como un ruido blanco. 

• Media nula 

Figura 18: Evolución de la serie de residuos del modelo 1 

 

Para que la media de los residuos fuera nula, estos deberían fluctuar en torno a cero, sin 

embargo, en la Figura 18 vemos como estos llegan a alcanzar tanto pico por arriba 
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llegando hasta 1.5 tanto por abajo llegando hasta -1.5 Por lo tanto, vamos a realizar un 

contraste de significatividad sobre el valor esperado de la serie de residuos: 

H0:𝐸[𝑢̃𝑡] = 0 

HA: 𝐸[𝑢̃𝑡] ≠ 0 

Siendo el estadístico de contraste: 

𝑡 =
𝑢̃

√𝑉(𝑢̃)

~𝑁(0,1) 

Figura 19: Contraste de significatividad de la media de los residuos del modelo 1 

 

En conclusión, podemos aceptar que la media no difiere significativamente de cero. 

• Varianza constante 

Figura 20: Gráfica dispersión de los residuos Modelo 1 
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Para que la varianza de los residuos fuera constante, la dispersión de la Figura 20 debería 

ser constante a lo largo del tiempo, es decir tendría que haber homocedasticidad. Como 

la dispersión se mantiene constante, pero hay algunos datos atípicos realizamos el 

contraste de ARCH para contrastar si no hay heterocedasticidad condicionada a un 

autorregresivo hasta el orden 4: 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝑢𝑡−1

2 + ⋯ + 𝛼4𝑢𝑡−4
2  

H0: 𝜎𝑡
2 = 𝛼0 ∀𝑡 → Homocedasticidad 

HA: 𝜎𝑡
2 ≠  𝛼0 ∀𝑡   → Heterocedasticidad 

Con el estadístico de contraste: 

𝐿𝑀 = 𝑇𝑅𝑅.𝐴.
2 ~𝜒2(𝑝) 

Figura 21: Contraste de ARCH Modelo 1 

 

Como el p-valor 0.219 > 0.05 se acepta la hipótesis nula de homocedasticidad. 

• No autocorrelación 

Figura 22: Correlograma de los residuos del Modelo 1 
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Con el correlograma muestral de los residuos ya podemos confirmar que los coeficientes 

de autocorrelación poblacional de los residuos no son significativamente distintos de cero, 

es decir, que se cumple la no autocorrelación de los residuos. 

Esto se puede confirmar observando la Figura 22 ya que ningún valor de 𝑟𝑗(𝑢̂) supera las 

bandas de significatividad, para un nivel de significación del  5%. 

Otra manera de comprobar la ausencia de autocorrelación es realizando el contraste de 

significatividad conjunta de Ljung-Box (1978). 

Donde las hipótesis planteadas son: 

H0: 𝜌1(𝑢̃𝑡) = 𝜌2(𝑢̃𝑡) = ⋯  = 𝜌𝑀(𝑢̃𝑡) = 0  → No existe autocorrelación  

HA: Algún 𝜌𝑗(𝑢̃𝑡)  ≠ 0   → Existe autocorrelación  

El estadístico de contraste es: 

𝑄∗ = 𝑇 (𝑇 + 2) ∑
𝑟𝑗

2(𝑢̃𝑡)

(𝑇 − 𝑗)

𝑀

𝑗=1

~𝜒2(𝑀 − 𝑘) 

Figura 23: Contraste de Ljung – Box Modelo 1 

 

Atendiendo a los resultados del contraste de Ljung-Box de no autocorrelación hasta el 

orden 4 en la Figura 23, dado que el p-valor es 0.552 > 0.05 no se rechaza la hipótesis 

nula de no autocorrelación, para un nivel de significación del 5%. 

Por último, para terminar de confirmar esta condición, observamos la función de 

autocorrelación de los residuos. 
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Figura 24: Función de autocorrelación de los residuos del Modelo 1 

  

Dado que para cualquier retardo el contraste de Ljung-Box presenta unos p- valores muy 

grandes, esto nos lleva a no rechazar la hipótesis de no autocorrelación, para cualquier 

nivel de significación de los normalmente utilizados. 

• Distribución Normal 

La última condición que tiene que cumplir el modelo para pasar la etapa de chequeo en 

lo referente a la distribución de las perturbaciones es que estas se distribuyan de acuerdo 

a una Normal. 

𝑢𝑡~𝑁 (0, 𝜎2) 
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Figura 25: Gráfico contraste de normalidad de los residuos del Modelo 1 

 

Observando la Figura 24 vemos como los residuos se puede considerar que se aproximan 

a una distribución normal. 

Otra manera de comprobar si los residuos se distribuyen como una normal será calculando 

los coeficientes de asimetría y curtosis y realizar el contraste de Jarque-Bera (1980). 

𝑔1 =
𝑚3

𝑚2
3/2

= 0.44879  ;    𝑔2 =
𝑚4

𝑚2
2 −  3 = 0.28642 

H0: g1 = g2 = 0 → Normalidad 

HA: No normalidad 

Y siendo el estadístico de contraste y la distribución de este la siguiente: 

𝐿𝑀𝑁 = 𝑇(
𝑔1

2

6
 +

𝑔2
2

24
  )~𝑋2 (2)  
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Figura 26: Contraste de normalidad de los residuos del Modelo 1 

 

Como el p-valor 0.2212 > 0.05 se acepta la hipótesis nula de normalidad. 

Por último, para analizar si los coeficientes estimados son significativos tenemos que 

efectuar contrastes de significatividad de dichos coeficientes del modelo. 

𝐻0: 𝜙1 = 0                           𝐻0: Θ1 = 0 

𝐻𝐴: 𝜙1 ≠ 0                                   𝐻𝐴: Θ1 ≠ 0 

Y como para ambos coeficientes el p-valor del t-ratio es muy pequeño se rechazan las 

hipótesis nulas individuales de que los parámetros estimados no son significativos 

individualmente. 

Además, como este primer modelo tiene una parte AR y una MA, se deberá cumplir tanto 

la condición de estacionariedad como la de invertibilidad. Si el modelo no fuera 

estacionario habría que diferenciar una vez más y si no fuera invertible sería síntoma de 

sobrediferenciación. 

Para que el modelo sea estacionario se tiene que cumplir que |𝜙̂1| < 1 y para que sea 

invertible se tiene que cumplir que |Θ̂1| < 1, por lo tanto, ambas condiciones se cumplen 

ya que 0.522 < 1 y 0.670 < 1. 

Otra manera de comprobar estas condiciones es ver que las raíces características de los 

polinomios, tanto el correspondiente a la parte autorregresiva como el de medias móviles, 

caen fuera del círculo unitario ya que 1.917  > 1 y 1.492  > 1. 

Modelo 2 

Empezamos estudiando si los residuos del Modelo 2 se comportan como un ruido blanco. 

• Media nula 
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Figura 27: Evolución de la serie de residuos del modelo 2 

 

Como en la figura 26, los residuos sí que fluctúan en torno a cero, pero llegan a alcanzar 

en algunos puntos pico hasta 2 y -2 realizamos el contraste de significatividad sobre el 

valor esperado de la serie de residuos. 

H0:𝐸[𝑢̃𝑡] = 0 

HA: 𝐸[𝑢̃𝑡] ≠ 0 

Figura 28: Contraste de significatividad de la media de los residuos del modelo 2 

 

Tras este contraste aceptamos la hipótesis nula de media nula. 

• Varianza constante 
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Figura 29: Gráfico de dispersión de los residuos del Modelo 2 

 

Observando la figura 29, no podemos concluir que la dispersión de los residuos se 

mantenga constante a lo largo del tiempo ya que existen datos atípicos propios de 

momentos como la crisis financiera de 2008. Por lo tanto, para comprobar la presencia o 

no de homocedasticidad realizamos el contraste de ARCH. 

H0: 𝜎𝑡
2 = 𝛼0 ∀𝑡 → Homocedasticidad 

HA: 𝜎𝑡
2 ≠  𝛼0 ∀𝑡   → Heterocedasticidad 

Figura 30: Contraste ARCH Modelo 2 

 

Como el p-valor 0.531 > 0.05 se acepta la hipótesis nula de homocedasticidad. 

• No autocorrelación 
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Figura 31: Correlograma de los residuos del Modelo 2 

 

Observando la figura 31 vemos que hay algún valor de 𝑟𝑗(𝑢̂) que supera las bandas de 

significatividad. Esto no quiere decir que no se vaya a cumplir la no autocorrelación. 

Para comprobar esto realizamos el contraste de Ljung – Box, para M = 4: 

H0: 𝜌1(𝑢̃𝑡) = 𝜌2(𝑢̃𝑡) = ⋯  = 𝜌𝑀(𝑢̃𝑡) = 0  → No existe autocorrelación  

HA: Algún 𝜌𝑗(𝑢̃𝑡)  ≠ 0   → Existe autocorrelación  

Figura 32: Contraste de Ljung – Box Modelo 2 

 

Como el p-valor es 0.629> 0.05 se acepta la hipótesis nula de no autocorrelación. 

• Distribución Normal 
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Figura 33: Gráfico contraste de Normalidad de los residuos del Modelo 2 

 

Observando la figura 33 vemos como los residuos sí que se aproximan a una distribución 

normal. Para confirmar esto calculamos los coeficientes de asimetría y curtosis y 

realizamos el contraste de Jarque-Bera (1980) 

𝑔1 =
𝑚3

𝑚2
3/2

=  0.119 ;   𝑔2 =
𝑚4

𝑚2
2 −  3 = 0.103 

H0: g1 = g2 = 0 → Normalidad 

HA: No normalidad 

Y siendo el estadístico de contraste y la distribución de este: 

𝐿𝑀𝑁 = 𝑇(
𝑔1

2

6
 +

𝑔2
2

24
  ) ~ 𝑋2(2) 
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Figura 34: Contraste de Normalidad de los residuos del Modelo 2 

 

Como el p-valor 0.889 > 0.05 se acepta la hipótesis nula de normalidad. 

Por último, para analizar si los coeficientes estimados son significativos tenemos que 

efectuar contrastes de hipótesis respecto a dichos coeficientes del modelo. 

𝐻0: 𝜙1 = 0                           𝐻0: Φ1 = 0 

𝐻𝐴: 𝜙1 ≠ 0                                   𝐻𝐴: Φ1 ≠ 0 

Y como para ambos coeficientes el p-valor es muy pequeño se rechazan las hipótesis 

nulas de que los parámetros estimados no son significativos. 

Este segundo modelo solo tiene parte AR por lo tanto será invertible, y para que se cumpla 

la condición de estacionariedad se tiene que cumplir que |𝜙̂1| < 1 y |Φ̂1| < 1. Dicha 

condición se cumple ya que 0.480 < 1 y 0.358 < 1. Otra manera de comprobar estas 

condiciones es ver que las raíces características de los polinomios, las correspondiente a 

la parte autorregresiva caen fuera del círculo unitario ya que 2.083 > 1 y 2.786 > 1. 

Modelo 3 

Empezamos estudiando si los residuos del Modelo 3 se comportan como un ruido blanco. 

• Media nula 
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Figura 35: Evolución de la serie de residuos del modelo 3 

 

En la Figura 35 los residuos fluctúan en torno a cero, pero con ciertos picos en algunos 

períodos por eso realizamos el contraste de si el valor esperado de la serie de residuos es 

nulo. 

H0:𝐸[𝑢̃𝑡] = 0 

HA: 𝐸[𝑢̃𝑡] ≠ 0 

Figura 36: Contraste de significatividad de la media de los residuos del modelo 3 

 

Por lo tanto, se acepta la hipótesis nula de media nula de los residuos. 

• Varianza constante 
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Figura 37: Gráfico de dispersión de los residuos del Modelo 3 

 

Como los residuos fluctúan alrededor de cero, pero no podemos llegar a una conclusión 

sobre que la dispersión de los residuos se mantenga constante a lo largo del tiempo, 

realizamos el contraste de ARCH: 

H0: 𝜎𝑡
2 = 𝛼0 ∀𝑡 → Homocedasticidad 

HA: 𝜎𝑡
2 ≠  𝛼0 ∀𝑡   → Heterocedasticidad 

Figura 38: Contraste ARCH Modelo 3 

  

Como el p- valor 0.454 > 0.05 se acepta la hipótesis nula de homocedasticidad. 

• No autocorrelación 
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Figura 39: Correlograma de los residuos del Modelo 3 

 

Con la Figura 39 ya podemos concluir que se cumple la condición de no autocorrelación 

ya que todos los valores de 𝑟𝑗(𝑢̂) caen dentro de las bandas de no significatividad. 

• Distribución normal 

Figura 40: Gráfico contraste de Normalidad de los residuos del Modelo 3 
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Observando la Figura 40 ya podríamos afirmar que los residuos sí que siguen una 

distribución normal, pero para confirmar esto realizamos el contraste de Jarque Bera: 

H0: g1 = g2 = 0 → Normalidad 

HA: No normalidad 

Figura 41: Contraste de normalidad de los residuos del modelo 3 

 

Como el p-valor es 0.089 > 0.05 se acepta la hipótesis nula de normalidad de los residuos 

al 5%  pero  al  10% se rechazaría. 

Para analizar si los coeficientes estimados son significativos tenemos que efectuar 

contrastes de hipótesis respecto a dichos coeficientes del modelo. 

𝐻0: 𝜙1 = 0                           𝐻0: Θ1 = 0                                      𝐻0: Θ2 = 0 

𝐻𝐴: 𝜙1 ≠ 0                                   𝐻𝐴: Θ1 ≠ 0                                       𝐻𝐴: Θ2 ≠ 0 

Tanto para 𝜙1 como Θ1 el p-valor es muy pequeño y se rechazan las hipótesis nulas de 

que los parámetros estimados no son significativos. Sin embargo, para  Θ2 el p-valor es 

0.140, es decir, se acepta la hipótesis nula de que el parámetro estimado no es 

significativo, así que no pasaría el chequeo. 

Además, como el modelo tiene una parte AR y una MA, se deberá cumplir tanto la 

condición de estacionariedad como la de invertibilidad. Es decir, para que el modelo sea 

estacionario se tiene que cumplir que |𝜙̂1| < 1 y para que sea invertible se tiene que 

cumplir que; |Θ̂2| < 1; Θ̂1 + Θ̂2  <  1; Θ̂2 −  Θ̂1 <  1  condiciones que se cumplen ya 

que 0.500 < 1, 0.206 < 1, (- 0.602) + (-0.206) < 1, (-0.206) – (-0.602) < 1 

Una vez realizada la etapa de chequeo para los tres modelos estimados y al ver que los 

dos primeros pasan dicha etapa y que el modelo 3 no la pasa porque uno de sus parámetros 

no es  significativo, tendremos que realizar un análisis de los criterios  Schwarz, Akaike 

y Hannan-Quinn para tomar la decisión de que modelo resulta más adecuado para realizar 

las predicciones de la tasa de paro femenino para el  año siguiente. 
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 Criterio Schwarz Criterio Akaike Criterio Hannan-Quinn 

Modelo 1 174.24 166.989 169.905 

Modelo 2 183.016 175.759 178.675 

 

Para los tres criterios el modelo que resulta más adecuado es el modelo 1 ya que es el que 

menor valor de dichos criterios obtiene. 

Predicción 

Una vez identificados, estimados y validados los procesos estocásticos compatibles con 

la estructura de los datos se tratará de obtener predicciones para la serie temporal objeto 

de estudio, con el modelo seleccionado que es el  Modelo 1: 

ARIMA (1,1,0) x ARIMA (0,1,1)4 

(1 − 𝐿4)(1 − 𝐿)(1 − 𝜙1𝐿)𝑦𝑡 = (1 − Θ1𝐿4)𝑢𝑡  

Expresamos el modelo en términos de las variables originales: 

(1 − 𝐿4)(1 − 𝐿)(1 − 0,521𝐿)𝑦𝑡 = (1 ∓ (−0,670)𝐿4)𝑢𝑡 

(1 − 𝐿4 − 1,52𝐿 + 1,52𝐿5 + 0,52𝐿2 − 0,52𝐿6)𝑦𝑡 = (1 + 0,67𝐿4)𝑢𝑡  

𝑦𝑡 = 1,52𝑦𝑡−1 − 0,52𝑦𝑡−2 + 𝑦𝑡−4 − 1,52𝑦𝑡−5 + 0,52𝑦𝑡−6 + 𝑢𝑡 − 0,67𝑢𝑡−4 

Y a través de Gretl obtenemos las predicciones a un intervalo del 95% de confianza para 

el año siguiente en este caso 2024 

Figura 42: Predicción puntual para el año 2024 Modelo 1 

 

A continuación, para evaluar la capacidad predictiva de los dos modelos que han pasado 

la etapa de chequeo vamos a utilizar el error absoluto medio porcentual, el error 

cuadrático medio y el error absoluto medio. Pero para ello antes, como no tenemos los 

datos reales de 2024, vamos a reducir la muestra eliminado las 4 últimas observaciones, 

es decir las correspondientes al año 2023, quedándose de esta manera la muestra reducida 
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desde el primer trimestre de 2002 hasta el cuarto trimestre de 2022 y hacemos la 

predicción para el año 2023 

Para esta nueva muestra volvemos a estimar el modelo 1 modelo 2 y a calcular las 

predicciones para el año 2023. Nos aparecerán los principales estadísticos de evaluación 

de la predicción: 

Error Cuadrático Medio (ECM) 

 

Error Absoluto Medio (EAM) 

 

Error Absoluto Porcentual Medio (EAPM) 

 

 

Figura 43: Análisis de predicciones Modelo 1 (1T 2002 - 4T 2022) 
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En general un menor valor de dichos estadísticos indicará unas predicciones más precisas. 

Por lo tanto, también resulta importante calcular estos estadísticos a la hora de elegir el 

modelo más adecuado. 

 ECM EAM EAPM 

Modelo 1 0.511 0.624 4.659 

Modelo 2 0.309 0.434 3.235 

 

Hemos calculado los principales estadísticos de evaluación de la predicción para el 

modelo 2 en el Anexo I y según estos estadísticos el modelo que resulta más adecuado es 

el modelo 2, por lo que realizamos la predicción puntual para el año 2024 con este modelo 

también. 

Figura 44: Predicción puntual para el año 2024 Modelo 2 

 

6.- Conclusiones 

La finalidad de este trabajo era realizar un análisis de la serie temporal, tasa de desempleo 

femenina en España desde 2002 hasta 2023 con el objeto de estudiar su comportamiento 

y predecir con la mayor exactitud el posible comportamiento futuro a corto plazo de dicha 

variable. Para ello ha sido necesario transformar la serie ya que en un principio no era 

estacionaria y presentaba un comportamiento estacional, propio de la tasa de desempleo. 

Una vez transformada la serie he identificado y estimado tres modelos multiplicativos 

estacionales alternativos, de los cuales el tercero no ha pasado la etapa de chequeo al ser 

uno de los parámetros no significativo. Como el primer y el segundo modelo si que han 

pasado la etapa de chequeo, me he basado en los criterios de información para elegir cuál 

de ellos era el más adecuado, cuya conclusión ha sido el primer modelo. Sin embargo, 
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según los estadísticos de evaluación de la capacidad de predicción el modelo más 

adecuado es el modelo 2. 

Para decantarnos por un modelo u otro y resolver dicha contradicción podemos fijarnos 

en el dato real de la tasa de desempleo femenina para el primer trimestre de 2024 en 

España que ha sido del 13.73% y por tanto el modelo que más se acerca a dicho dato es 

el primer modelo. 

Las predicciones realizadas para el año 2024 nos indican que la tasa de desempleo 

femenina en España va a seguir el mismo comportamiento que tiene desde 2013, es decir 

decrecer ligeramente respecto al año anterior. 

Cabe destacar que para mejorar la capacidad predictiva habría que eliminar los datos 

atípicos que hemos podido observar en algunos gráficos y que se corresponden con la 

etapa de la pandemia del covid-19. 
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Anexo I 

Modelo 1 para (2002:1 – 2022:4) 

 

Modelo 2 para (2002:1 – 2022:4) 
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Figura 45: Análisis de predicciones Modelo 2 (1T 2002 - 4T 2022) 

 


