

2

3

RESUMEN

El objetivo principal de este trabajo es la realización de un plugin que permita procesar sonido

binaural (audio en 3D) dentro del programa Unity, destinado al diseño y desarrollo de videojuegos

en 3D.

Actualmente Unity cuenta con herramientas simples de generación de sonido espacial. Estas

herramientas permiten atenuar el sonido en función de la distancia y generar diferentes espacios

de reverberación para simular distintos ambientes sonoros.

Sin embargo, no dispone de ninguna herramienta de posicionamiento realista de la fuente de

sonido. Este es el objetivo principal del proyecto. Dotar a Unity de la capacidad de

posicionamiento y posterior reproducción de una fuente de sonido en el espacio.

El desarrollo del trabajo se ha llevado a cabo primero en el entorno Matlab, ya que facilita la

depuración y corrección de errores además de ofrecer la posibilidad de representar las distintas

variables, para después traspasarlo al lenguaje C#, con el que se compila el plugin final.

4

Contenido

1. INTRODUCCIÓN ... 7

2. PRINCIPIOS TEÓRICOS.. 8

2.1 AUDIO 3D. AUDIO BINAURAL .. 8

2.2 HRTF .. 9

2.3 DISCONTINUIDADES ... 11

2.3.1 OVERLAP-ADD ... 13

2.3.2 WEIGHTED OVERLAP-ADD ... 14

2.4 INTERPOLACIÓN ... 15

2.4.1 TRIANGULACIÓN DE DELAUNAY .. 16

2.4.2 BÚSQUEDA DEL TRIÁNGULO .. 17

2.4.3 CÁLCULO DE LOS PESOS Y DE LA INTERPOLACIÓN 18

2.5 AUDIO EN UNITY ... 19

2.5.1 AudioSource .. 19

2.5.2 AudioClip ... 20

2.5.3 AudioListener .. 20

2.6 FUNCIÓN OnAudioFilterRead (UNITY) .. 20

3. DESARROLLO DEL TRABAJO ... 22

3.1 MATLAB .. 22

3.1.1 PRIMERA FASE .. 22

3.1.2 SEGUNDA FASE ... 24

3.1.3 TERCERA FASE ... 24

3.2 VISUAL STUDIO ... 25

3.2.1 ESTRUCTURA DEL PLUGIN .. 25

3.3 UNITY .. 28

3.3.1 PRIMEROS PASOS ... 28

3.3.2 INTEGRACIÓN DE LA DLL .. 28

3.3.3 CÁLCULO DEL ACIMUT Y DE LA ELEVACIÓN .. 29

3.3.4 PROYECTO FINAL EN UNITY .. 30

3.4 CONCLUSIÓN FINAL DEL TRABAJO .. 30

Bibliografía.. 32

ANEXOS .. 34

I. ARCHIVOS MATLAB .. 35

5

I.I VERSIÓN INTERMEDIA .. 35

I.II VERSIÓN FINAL ... 46

II. FUNCIONES GetData() y SetData().UNITY ... 49

III. CÓMO USAR EL PLUGIN EN UNITY .. 51

IV. CONTENIDO DEL SCRIPT “AudioFilter2”. UNITY ... 52

6

7

1. INTRODUCCIÓN

 El objetivo principal de este trabajo es la realización de un plugin que permita procesar

sonido binaural (audio en 3D) dentro del programa Unity, destinado al diseño de videojuegos 3D.

Actualmente Unity cuenta con herramientas simples de generación de sonido espacial. Estas

herramientas permiten atenuar el sonido en función de la distancia y generar diferentes espacios

de reverberación para simular distintos ambientes sonoros.

Sin embargo, no dispone de ninguna herramienta de posicionamiento realista de la fuente de

sonido. Este es el objetivo principal del proyecto. Dotar a Unity de la capacidad de

posicionamiento y posterior reproducción de una fuente de sonido en el espacio.

 Este informe se ha estructurado en dos partes muy diferenciadas. La primera de ellas se

basa en explicar teórica y detalladamente las ideas más importantes del trabajo como pueden ser

los principios del audio en 3D o el método de interpolación utilizado.

Tras esto, se comentará en orden cronológico, las 3 fases seguidas para el desarrollo del trabajo.

La primera de ellas, se basa en el entorno Matlab, herramienta muy útil para realizar una primera

aproximación al problema, aprendiendo de manera más visual, gracias a sus gráficas, cómo

funcionan los filtros HRTF. La segunda fase se desarrolla dentro del entorno de desarrollo Visual

Studio, con el que programaremos el plugin final basado en el lenguaje de programación C#.

Finalmente, la tercera fase se centra en Unity, con la elaboración de una escena en la que se pueda

testar y demostrar el correcto funcionamiento del plugin.

8

2. PRINCIPIOS TEÓRICOS

2.1 AUDIO 3D. AUDIO BINAURAL

Para realizar un plugin que implemente sonido binaural dentro del entorno de desarrollo de

videojuegos Unity, lo primero de todo es saber que el sonido binaural hace referencia al sonido

en 3D elaborado mediante los filtros HRTF. Dichos filtros se explican detalladamente en el

apartado 2.2.

Ahora bien, el sonido 3D no es más que una modificación llevaba a cabo sobre el sonido estéreo,

otorgando al receptor la posibilidad de distinguir distintas posiciones de la fuente sonora dentro

del espacio tridimensional. Para ello, hay que saber que en el sistema auditivo, la sensación

tridimensional está relacionada con la diferencia de amplitud y tiempo con la que recibe cada

oído la señal sonora. Es decir, la localización de los sonidos en el espacio se consigue con el

procesamiento por separado de la información de cada oreja y con la posterior comparación

de fase y nivel entre ambas señales (Wikipedia. Escucha Binaural s.f.).

En definitiva, para conseguir un sonido en 3D, tenemos que ‘engañar’ al cerebro humano,

modificando de alguna forma las propiedades de una determinada señal de audio. En el caso del

sonido binaural, los filtros HRTF son los encargados de modificar la señal.

El espacio tridimensional, cuando estamos hablando de audio 3D, y más concretamente del uso

de los filtros HRTF, se hace uso de las coordenadas esféricas, mediante las cuales podemos situar

cada punto del espacio mediante los ángulos ‘phi’ (Ψ), ‘theta’ (ϕ) y el radio ‘r’. Ver Figura 2.1.

Figura 2.1.- Representación de las coordenadas esféricas.

9

2.2 HRTF

 Los filtros HRTF, “Head-Related Transfer Function”, que en español se podrían traducir

como funciones de transferencia relacionadas con la cabeza, son filtros que caracterizan la

respuesta en frecuencia del sistema hombros-cabeza-oído frente a una fuente de audio. (Mengqiu

Zhang 23–25 November 2009)

Midiéndose en campo lejano, las HRTF son funciones del valor de acimut (Ver Figura 2.2) y la

elevación de la fuente (Ver Figura 2.3), y esto permite al oyente determinar la dirección del

emisor. (Beltrán Blázquez)

 Ambas variables, acimut y elevación, se corresponden respectivamente a las variables

theta (ϕ) y phi (Ψ), que junto al radio r, representan el espacio tridimensional en coordenadas

esféricas tal y como se mostró en la Figura 2.1. El valor del radio está normalizado para las distintas

HRTF. En caso de querer modificar la distancia, habría que atenuar o amplificar convenientemente

la señal.

 Es importante destacar que las HRTF se obtienen realizando medidas del sistema

hombros-cabeza-oído sobre distintos maniquís dentro de una cámara anecoica. Estas medidas

varían bastante según las características de cada sujeto, por lo que hay que tener en cuenta que

las bases de datos o bien, ofrecen varios filtros, uno por cada sujeto o maniquí, o bien

proporcionan un único conjunto de filtros HRTF, los cuales son el resultado de promediar todos

los demás.

En las bases de datos que se proporcionan varios sujetos distintos, es importante elegir aquel que

mejor se adapte a nuestras características físicas, ya que de lo contrario, no percibiremos la

sensación tridimensional de forma óptima. Siguiendo esta idea, hay que tener en cuenta que

debido a la asimetría del cuerpo humano, también se distingue entre la oreja derecha e izquierda,

y se proporcionarán filtros distintos para cada una de ellas.

Figura 2.2.- Representación Acimut

Figura 2.3.- Representación Elevación

10

 El espacio tridimensional está constituido por infinitos puntos, pero obviamente, las bases

de datos HRTF no pueden contener un filtro por cada uno de ellos. Únicamente se proporcionan

los filtros asociados a un número finito de puntos del espacio, los cuales varían según el creador

de la base de datos HRTF. Si se desea obtener el filtro de un punto del espacio que no está

disponible en la base de datos HRTF, será necesario elegir aquel punto más cercano que sí este

determinado por un filtro HRTF de la base de datos, o bien, realizar un método de interpolación.

En el caso de este trabajo, se va a realizar un método de interpolación para obtener los filtros

HRTF de aquellos puntos no disponibles en la base de datos. El método utilizado se explica en el

apartado 2.4.

 Una vez elegido un punto del espacio y obtenido su filtro HRTF mediante los valores de

acimut y elevación, el siguiente paso para la obtención del audio binaural consiste en filtrar la

señal de audio con el filtro HRTF obtenido. De esta forma, el sonido generado simulará provenir

del lugar elegido.

 Actualmente, dependiendo de quien haya sido el creador, existen varias bases de datos
HRTF. A continuación se van a explicar la CIPIC y la MIT ya que fueron las dos principales
candidatas para ser usadas en este trabajo, aunque finalmente se decidió usar la CIPIC.

 CIPIC Database (CIPIC- Center for Image Processing and Integrated Computing University

of California 1 Shields Avenue Davis)

La base de datos CIPIC HRTF es una base de datos de dominio público, con mediciones HRTF

de alta resolución espacial de 45 sujetos diferentes, incluyendo el maniquí KEMAR con orejas

tanto grandes como pequeñas.

Esta base de datos clasifica los distintos filtros según la persona o sujeto y distingue entre 50

valores distintos de elevación y de 25 en acimut, abarcando desde los -45 a los 275 grados, y

de los -80 a los 80 grados respectivamente. Además, incluye las medidas antropométricas de

los distintos sujetos para su uso en estudios técnicos.

Una de las ventajas de esta base de datos es que se encuentra disponible en lenguaje Matlab,

proporcionando además un script de apoyo que muestra su comportamiento tanto en tiempo

como en frecuencia ayudando considerablemente a la comprensión de las HRTF.

Su desventaja es que se encuentra únicamente escrito en Matlab presentando un gran

problema a la hora usar dicha base de datos dentro de un entorno de desarrollo con otro

lenguaje de programación distinto, como puede ser C#. Esto ha obligado a que a la hora de

crear el plugin se haya traducido únicamente los filtros relacionados a un sujeto,

concretamente el 18, ya que hacerlo con toda la base de datos entera (45 sujetos) se

presentaba inviable en tiempo.

11

 MIT Database (Gardner y Martin)

Al igual que CIPIC, la base de datos MIT es de dominio público con mediciones HRTF de alta

resolución. Abarca hasta 710 posiciones diferentes del espacio recorriendo elevaciones desde

los -40 hasta los 90 grados. Es importante destacar, que para cada valor de elevación, hay un

rango distinto de valores de acimut. Esto hace que la distribución en el espacio no sea regular,

y se convierte en una desventaja ya que complica la realización de la triangulación de

Delaunay, necesaria dentro del método de interpolación.

Como ventaja se podría destacar que esta base de datos está implementada en el lenguaje

de programación C++, por lo que el desarrollo del plugin se podría haber realizado

directamente en dicho lenguaje, evitando traducciones de lenguajes. Además, C++ es

bastante más universal y popular que C# dentro de la comunidad de programadores, por lo

que la búsqueda de algunas funciones como la FFT o la triangulación de Delaunay en versión

free para su uso dentro del plugin hubiera sido más fácil. Por otro lado, hay que decir que en

Unity, la importación de plugins basados en C#, se puede hacer tanto con la versión Indie

como con la Pro, mientras que los basados en C++ únicamente se pueden importar usando la

versión Pro de Unity.

 Una vez vistas las ventajas y desventajas de cada una, la elección de la base de datos CIPIC

está motivada principalmente por el hecho de que la distribución en el espacio de los puntos con

un filtro HRTF asociado es regular. Eso hace que más tarde el método de interpolación sea mucho

más sencillo y rápido.

2.3 DISCONTINUIDADES

 Tal y como se explica en el Apartado 2.1, el sonido binaural se obtiene aplicando los filtros

HRTF sobre una señal de audio. Con ellos modificamos la señal, simulando la posición de la fuente

sonora en un punto concreto del espacio tridimensional.

 Ahora bien, si queremos simular que la fuente sonora se desplaza de posición, deberemos

trocear o dividir la señal del audio en varios fragmentos, y aplicar a cada uno de ellos un filtro que

simule una posición diferente. A cada uno de los fragmentos de la señal los denominaremos

‘frames’. En el caso de Unity, cada frame consta de 1024 muestras, siendo la frecuencia de

muestreo de 44100Hz.

12

 El problema de aplicar varios filtros distintos sobre una señal de audio, es la aparición de

discontinuidades producidas por el cambio de filtro a lo largo del tiempo. Para solucionarlo se ha

optado por utilizar el método “Weighted Overlap-add”.

 Tal como se puede apreciar en la Figura 2.4.a, al aplicar un filtro HRTF determinado sobre
un frame de audio, en este caso un seno puro, aparece al final del mismo un trozo de tamaño
igual al tamaño del filtro menos uno, correspondiente al transitorio. Si a dos frames consecutivos
se le aplica el mismo filtro a cada uno de ellos por separado, y se solapan con un número de
muestras igual al tamaño del filtro menos uno, obtenemos la señal b) de la Figura 2.4, en la que
podemos observar que no hay ningún tipo de problema en la unión de frames.
En cambio, si a dos frames consecutivos, se le aplica a cada uno de ellos un filtro distinto y se
solapan con el número de muestras indicado anteriormente, obtenemos la gráfica c) de la Figura
2.4, en la que podemos ver como aparece una discontinuidad entre frames. Esto se traduce en
un ruido bastante audible de la señal, en forma de golpes o ‘clicks’ sonoros.
La última gráfica de la Figura 2.4, es decir, la d), muestra como la introducción del método
“Weighted Overlap-add”, reduce en gran medida la discontinuidad existente en la anterior
gráfica.

Figura 2.4- Representación HRTF

a) Filtro HRTF aplicado sobre un frame.
b) Overlap-Add aplicado sobre dos frames filtrados con el mismo filtro.
c) Overlap-Add aplicado sobre dos frames filtrados con filtros distintos.
d) Weighted Overlap-Add, aplicado sobre dos frames filtrados con filtros distintos.

13

2.3.1 OVERLAP-ADD

 El método “Overlap-add” (Wikipedia. Overlap-Add) es una forma de realizar el filtrado
sobre una señal digital de manera mucho más eficiente. En vez de realizar la convolución del filtro
con toda la señal de audio, éste método divide la señal en varios trozos, llamados frames, y realiza
una convolución por separado con cada uno de ellos. De esta forma, el cálculo es mucho más
eficiente ya que pasamos de realizar una única convolución sobre una señal de gran tamaño, a
realizar varias convoluciones sobre señales mucho más pequeñas. Finalmente, se unen los frames
filtrados, realizando un pequeño solapamiento de las muestras finales, tal y como se puede ver
en la Figura 2.5.

 Para entender perfectamente el funcionamiento de este método hay que recordar, que

al realizar la convolución de una señal de tamaño L, con un filtro de tamaño M, el resultado será

un vector de tamaño igual a L+M-1. Este exceso de tamaño respecto al vector inicial, es el que

está asociado al transitorio, y por tanto será el trozo de señal que se solapará al siguiente frame.

 Para que el método “Overlap-Add” funcione correctamente, y el resultado final sea el

mismo que en el caso de haber aplicado el filtrado sobre la señal completa, el tamaño del vector

yk, al que llamaremos N, debe cumplir lo siguiente. N ≥ L+M-1.

 Ahora bien, esto será así siempre y cuando se aplique el mismo filtro a todos los frames.

En caso de querer aplicar un filtro distinto a cada uno de los frames, el método “Overlap-add”, no

arreglará por sí solo el problema de las discontinuidades y sus respectivos ‘clicks’ sonoros. Esto se

aprecia perfectamente en la Figura 2.4, concretamente en las gráficas b) y c), ya que ambas

muestran la aplicación del método “Overlap-Add” sobre dos frames consecutivos, con la

diferencia de que en la primera gráfica el filtro aplicado es el mismo para los dos frames, mientras

que en la segunda se han aplicado dos filtros distintos sobre los dos frames de audio.

Figura 2.5.- Representación gráfica del método de Overlap-Add

14

2.3.2 WEIGHTED OVERLAP-ADD

 Para minimizar las discontinuidades aparecidas, debemos aplicar el método “Weighted

Overlap-add” (Smith), cuyo resultado se puede ver en la gráfica d) de la Figura 2.4.

 Dicho método se basa en el “Overlap-Add” y la única diferencia entre ellos es que ahora

se realiza un enventanado después del filtrado y antes del solapamiento con el objetivo de

suavizar la discontinuidad entre un frame y otro. Por lo tanto, el procedimiento a seguir se basa

en trocear la señal en varios frames, y aplicarle a cada uno de ellos un filtro HRTF. El vector

resultante del filtrado lo multiplicamos por una ventana de Hanning como la mostrada en la

gráfica a) de la Figura 2.8, para después realizar el solapamiento.

Figura 2.8.- Método “Weighted Overlap-Add” aplicado sobre dos frames de audio.

a). Ventana de Hanning.

b). Frame de audio a enventanar.

c). Demostración solapamiento con

enventanado.

d). Resultado final tras la suma.

15

 En la Figura 2.8 podemos ver todos los pasos seguidos para realizar correctamente el

“Weighted Overlap-Add”. Partimos de una señal de audio, en este caso un seno como el de la

gráfica b), el cual filtramos con un filtro HRTF. Después se multiplica con la ventana de Hanning

de la gráfica a) y obtenemos los frames suavizados de la gráfica c).

Si sumamos las muestras de ambos frames, obtenemos la señal de la gráfica d) ya que la ventana

que hemos usado, la de Hanning, está diseñada de tal forma que la suma de sus colas dan como

resultado 1, evitando alterar la escala de amplitud de la señal.

2.4 INTERPOLACIÓN

 El objetivo final de este trabajo es poder realizar una interpolación de los filtros HRTF, de

tal forma que podamos obtener cualquier punto que queramos del espacio tridimensional. Tras

una pequeña fase de investigación y búsqueda de información, se pueden destacar 4 métodos

distintos (Gamper):

a) “The normalised VBAP weights”.
b) “Inverse distance weighting”.
c) “Bilinear interpolation of 3 measurement points”.
d) “Bilinear interpolation of 4 measurement points”.

De entre todos ellos, el elegido para este trabajo ha sido el tercero, “Bilinear Interpolation of 3

measurements points” debido a su efectividad y facilidad de adaptación tanto al entorno Matlab

como el de Unity. El esquema a seguir para llevar a cabo este método, se puede ver en la Figura

2.9.

Figura 2.11.- Triangulación sobre una esfera.

Figura 2.10.- Interpolación de 3 y 4 puntos.

Figura 2.9. - Pasos a seguir en la
interpolación.

Realizar Triangulación de
Delaunay

Busqueda del triángulo en que
se encuadra la posición deseada

Cálculo de los pesos de cada
vértice

Cáculo de la Interpolación

16

 Como su propio nombre indica, el método “Bilinear Interpolation of 3 measurements

points” realiza la interpolación basándose en tres puntos distintos de medida y calculando sus

pesos. Para escoger los tres puntos de medida, lo primero que tenemos que hacer es realizar la

triangulación de Delaunay partiendo de los puntos del espacio en los que existe un filtro HRTF

disponible en la base de datos. Una vez realizada la triangulación, los tres puntos de medida se

corresponderán con los tres vértices del triángulo en que se encuentra inscrito el punto que

queremos interpolar. La Figura 2.10 muestra una ‘X’ que representa el punto en el que queremos

obtener el filtro interpolado, inscrita dentro de un cuadrado negro (“Bilinear Interpolation of 4

measurements points”), y de un triángulo verde (“Bilinear Interpolation of 3 measurements

points”). Sabiendo que el triángulo que lo encuadra es el de color verde, deberemos obtener los

filtros HRTF que se encuentren en los puntos marcados por sus tres vértices, es decir los puntos

(5,0), (10,0) y (10,10) y calcular el filtro interpolado con la suma ponderada de los tres. El peso

que se aplica a cada filtro está determinado por la distancia euclidea existente entre el punto ‘X’

y el vértice correspondiente.

2.4.1 TRIANGULACIÓN DE DELAUNAY

 La triangulación de Delaunay (Wikipedia. Triangulación de Delaunay), es una red de

triángulos que cumple la condición de Delaunay. Esta condición dice que la circunferencia

circunscrita de cada triángulo de la red no debe contener ningún vértice de otro triangulo. Un

ejemplo de triangulación realizada sobre una esfera, se puede ver en la Figura 2.11.

 Como ya se ha comentado anteriormente, la base de datos CIPIC proporciona sus filtros

HRTF distribuidos de una forma regular a lo largo del espacio tridimensional. Esto quiere decir,

que para cada valor de elevación, tenemos siempre el mismo número de valores de acimut, lo

que hace que se obtenga una triangulación de Delaunay como la mostrada en la Figura 2.12.

Figura 2.12.- Triangulación de Delaunay realizada sobre la base de datos CIPIC.

17

2.4.2 BÚSQUEDA DEL TRIÁNGULO

 Una vez obtenida la triangulación de Delaunay, ya

tenemos el espacio perfectamente delimitado en varios

triángulos cuyos vértices se corresponden con aquellos puntos

del espacio que contienen un filtro HRTF.

Por lo tanto, cualquier dupla de acimut y elevación, tendrá

siempre un triángulo que la encuadre, siendo sus vértices los

tres puntos de medida necesarios para realizar el método de

interpolación elegido, el “Bilinear Interpolation of 3

measurements points”.

Sabiendo esto, el siguiente paso consiste en conocer o calcular

dentro de qué triángulo se encuentra el punto que queremos

interpolar.

 El algoritmo seguido en este trabajo se basa en el concepto de orientación

(Departamento de Matemática Aplicada. Universidad Politécnica de Madrid). La orientación de

cada triángulo se determina de acuerdo a la dirección del movimiento cuando se visitan los

vértices en el orden especificado.

Fijándonos en la Figura 2.13, el punto P se encuentra dentro del triángulo formado por los vértices

ABC, pero no está dentro del triángulo ABQ. Visualmente es fácil, pero a la hora de calcularlo con

ordenador ya no es tan intuitivo.

 El algoritmo que se va a seguir consiste en comprobar si la orientación de los triángulos

formados por dos vértices más el punto P es la misma que la del triángulo principal. En caso de

no coincidir todas las orientaciones, se deduce que el punto no está inscrito en ese triángulo.

Es decir, para el caso del triángulo ABC de la Figura 2.13, la orientación del mismo ha de coincidir

con la orientación del triángulo ABP, el BCP, y el CAP. Mientras que para el caso del triángulo ABQ,

la orientación debe coincidir con la de los triángulos ABP, BQP y QAP.

Ambos triángulos principales ABQ y ABC comparten el subtriángulo ABP, por lo tanto sabiendo la

orientación de cada uno de ellos, y viendo cual coincide, sabremos a qué triangulo pertenece el

punto P. Fijándonos de nuevo en la Figura 2.13, se puede ver que el triángulo ABC tiene su

orientación en sentido horario, mientras que el triángulo ABQ tiene sentido anti horario. Sabiendo

que el subtriángulo ABP tiene sentido horario, podemos descartar que el punto P se encuentre

dentro del triángulo ABQ, ya que sus orientaciones no coinciden.

 Ahora bien, que ABP y ABC coincidan en su orientación no asegura que P pertenezca a

ese triángulo, ya que aún faltan por comprobar los otros dos subtriángulos CAP y BCP. En este

caso, ambos subtriángulos tienen orientación en sentido horario por lo que ahora sí, al coincidir

las tres orientaciones, podemos asegurar que el punto P pertenece al triángulo ABC.

Figura 2.13. Representación
de dos triángulos y un punto P
inscrito dentro de uno de ellos.

18

 Una vez comprendido visualmente el método, pasamos a explicar el algoritmo

importante, el que usaremos después en nuestro programa para conocer las orientaciones de

cada triángulo y así deducir en qué triangulo se encuentra el punto P. La fórmula es la siguiente:

 (A1.x – A3.x)*(A2.y – A3.y) – (A1.y – A3.y)*(A2.x – A3.x)

Si el resultado de la ecuación es mayor o igual que cero, la orientación es positiva. En cambio, si

el resultado es menor que cero, quiere decir que la orientación del triángulo es negativa.

Hay que tener en cuenta que ‘A1’, ‘A2’ y ‘A3’ representan los tres vértices del triángulo que

estemos calculando en ese momento, y que las indicaciones ‘.x’ e ‘.y’ indican las coordenadas en

abscisas o en ordenadas del vértice correspondiente.

Por ejemplo, si el triángulo ABC, se encuentra en las siguientes coordenadas cartesianas. A =

(0,10), B= (0,0) y C = (10,0), la orientación obtenida sería positiva, y se habría calculado de la

siguiente forma:

 (0 - 10)*(0 - 0) – (10 - 0)*(0 - 10) = 100 ≥ 0

 Éste cálculo se realizaría con todos los triángulos, y de esa forma, comparando todas las

orientaciones obtenidas, se deduciría cuál es la ubicación del punto P.

 Una vez conocido el triángulo en cuestión, ya sabemos cuáles son los tres puntos de

medida que necesitábamos para realizar la interpolación, ya que éstos se corresponden con los

filtros determinados por los valores de acimut y elevación de los tres vértices.

2.4.3 CÁLCULO DE LOS PESOS Y DE LA INTERPOLACIÓN

 Tras realizar la triangulación de Delaunay, y haber encontrado el triángulo que contiene

el punto objetivo, hay que calcular los pesos de cada uno de sus vértices. En este caso, el cálculo

de los pesos (Gamper) se basa en medir la distancia Euclidiana existente entre el punto ‘P’ y los

tres vértices del triángulo ‘ABC’. Después se normalizan los valores obtenidos. Las fórmulas

seguidas son las siguientes:

𝑑(𝐴, 𝑃) = √(𝑃. 𝑥 − 𝐴. 𝑥)2 + (𝑃. 𝑦 − 𝐴. 𝑦)2

 𝑃𝑒𝑠𝑜(𝐴) =

𝑑(𝐴, 𝑃)

𝑑(𝐴, 𝑃) + 𝑑(𝐵, 𝑃) + 𝑑(𝐶, 𝑃)

 Con los pesos ya calculados, únicamente falta realizar la interpolación. Esto es tan sencillo

como obtener los filtros HRTF de cada uno de los vértices del triángulo, y realizar una suma

ponderada aplicando los pesos calculados. Recordar que se tiene que hacer por separado el canal

izquierdo y derecho, ya que los filtros no son los mismos.

19

2.5 AUDIO EN UNITY

 El audio en Unity está compuesto por 3 grupos principales. Los “AudioSource” que son

los objetos emisores, los “AudioListener” que son los receptores u oyentes, y los “AudioClip” que

son los que contienen los archivos de audio. (Beltrán Blázquez)(Unity)

2.5.1 AudioSource

 “AudioSource” es la clase encargada de
reproducir un “AudioClip”. En la Figura 2.15 podemos
apreciar en su parte superior, como el “AudioClip” que
tiene asociado en este caso el “AudioSource” es
“helicopteroLa”, el cual es un sonido 2D. La reproducción
de sonido 2D o 3D se elige dentro del “AudioClip”.

El “AudioSource” tiene varias propiedades destinadas a
configurar la emisión del sonido de tal forma que
podemos aplicar filtros, seleccionar la reproducción en
bucle o asignar un volumen adecuado al sonido. Además,
según sea un sonido 2D o 3D, se podrán seleccionar unos
ajustes u otros.

Dentro de una escena puede haber múltiples
“AudioSources”.

Figura 2.14.- Propiedades de un “AudioClip”.

Figura 2.15.- Propiedades de un
“AudioSource”.

20

2.5.2 AudioClip

 Clase que contiene el archivo de audio que se va a reproducir en el “AudioSource”. Unity
es capaz de importar los siguientes formatos: .aif, .wav, .mp3 y .ogg.
Fijándonos en la Figura 2.14, podemos ver como marcando la casilla correspondiente, indicamos
a Unity que queremos que reproduzca el archivo de audio en 3D.
En cambio, si generamos el audio 3D mediante el plugin creado en este trabajo, es necesario
indicarle a Unity que el archivo es 2D.

2.5.3 AudioListener

 Es la clase destinada a recibir el sonido generado por los “AudioSources” actuando como
un micrófono. Solo puede haber un “AudioListener” por escena, y éste siempre estará por defecto
asociado a la cámara.

2.6 FUNCIÓN OnAudioFilterRead (UNITY)

 El objetivo que se busca con el desarrollo del plugin, es el procesado de audio 3D en

tiempo real. El propio Unity, si queremos disponer de las muestras de audio en tiempo real, nos

ofrece la posibilidad de obtenerlas gracias a la función OnAudioFilterRead, aunque ésta no existió

hasta la versión 3 de Unity. En antiguas versiones era necesario hacer uso de las funciones

getData() y setData() para poder tener acceso a las muestras de audio, y procesarlas según

convenga. Con la primera de ellas se obtiene un array que contiene la señal de audio de un clip

de sonido concreto, mientras que con la segunda función podemos establecer o asignar nuestro

propio array de sonido dentro del clip de sonido elegido. Con estas funciones, estamos cambiando

el propio clip de audio, por lo que en caso de configurar una reproducción en bucle, y procesar

audio en tiempo real, una vez que lleguemos al segundo ciclo, las muestras que obtendremos

serán las modificadas en el primer bucle, y no las muestras originales del clip de sonido.

 A partir de la versión 3 de Unity, se introdujo la función ‘OnAudioFilterRead’ con la que

podemos obtener y modificar el array de audio proveniente del AudioListener, insertando nuestro

propio filtro dentro de la cadena de audio del DSP. En este caso estamos modificando las muestras

del buffer de salida de la cadena de audio, por lo que no afectará al propio clip de sonido, y

evitamos problemas en las reproducciones en bucle.

21

 Fijándonos en la página de referencia de Unity (Unity), podemos ver que esta función se

hereda de la clase MonoBehaviour, y que tiene dos parámetros.

MonoBehaviour.OnAudioFilterRead(float[], int)

El primero de ellos, es un array de audio pasado por referencia, y que contiene valores

comprendidos entre -1.0f y 1.0f. Al estar pasado por referencia, las modificaciones que hagamos

sobre esta variable, serán las que se reproduzcan después en la cadena de audio. Para evitar

problemas, lo que hacemos dentro del script de Unity, es copiar los valores de dicha variable sobre

una auxiliar, la cual procesamos con el plugin, para finalmente copiar el array procesado en el

array inicial proporcionado por la propia función.

El segundo parámetro es un número de tipo entero que indica el número de canales que se está

reproduciendo. En nuestro proyecto va a ser siempre estéreo con dos canales. Para gestionar

estos dos canales, Unity entrelaza las muestras de cada canal dentro de un único array, siendo las

muestras pares las correspondientes al canal izquierdo, y las muestras impares las

correspondientes al canal derecho.

 La función OnAudioFilterRead se activa cada vez que el buffer de audio está completo, y

teniendo en cuenta que la frecuencia de muestreo es de 44100Hz, y el tamaño del buffer de cada

canal es de 1024 muestras, la función se activará aproximadamente cada 23ms. Hay que recordar,

que al ser estéreo se realiza un entrelazado de los dos canales, por lo que el tamaño final del array

que proporciona la función OnAudioFilterRead es de 2048 muestras.

https://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.html

22

3. DESARROLLO DEL TRABAJO

 Una vez explicados las principales ideas que se aplican en este trabajo, pasamos a explicar

el desarrollo que se ha seguido durante su elaboración.

 Como al principio los filtros HRTF y el audio en 3D era un tema desconocido, se prefirió

dividir el trabajo en 2 fases, de tal forma que al principio se invirtiera tiempo en familiarizarse con

la base de datos HRTF y realizar distintas pruebas, para después, programar el plugin final.

Siguiendo esta idea, empezaremos con el programa Matlab, con el que se ha realizado una

primera pequeña aproximación al objetivo final, y seguiremos con la programación del plugin en

el lenguaje de programación C#, mediante el entorno de desarrollo de Visual Studio. Éste último

plugin será el que importemos finalmente en una escena creada dentro de Unity.

3.1 MATLAB

 Matlab es un lenguaje de alto nivel y un entorno interactivo para el cálculo numérico, la

visualización y la programación. La elección de este programa está motivada por su gran sencillez

de uso, la posibilidad de representar gráficamente las variables, y el hecho de tener muchas

funciones importantes ya implementadas de forma predeterminada como son la transformada

de Fourier directa e inversa, o la triangulación de Delaunay.

 El desarrollo en Matlab se ha llevado a cabo realizando pequeños hitos, para poco a poco

llegar al objetivo final.

3.1.1 PRIMERA FASE

 La primera fase consiste en introducirnos en el mundo de las HRTF, aprender qué son,

cómo se utilizan y para qué sirven. Como ya se ha explicado dentro del Apartado 2.1, existen varias

bases de datos HRTF distintas, y en este trabajo se ha optado por la CIPIC.

23

 La ventaja principal de la CIPIC HRTF Database es que está implementada en lenguaje

Matlab, y por lo tanto podemos hacer uso de cualquiera de los filtros que hay disponibles para

cada sujeto. (En el desarrollo del plugin únicamente se ha traducido la base de datos del sujeto

número 18, ya que hacerlo con todos era inviable). La diferencia entre un sujeto y otro está en

que cada persona se sentirá más o menos identificada con cada uno de ellos en función de sus

características físicas y en consonancia, apreciará mejor o peor el sonido binaural. La importación

dentro de Matlab se realiza con la siguiente sentencia:

load 'subject_018\hrir_final.mat';

 Una vez cargada la base de datos, solo falta obtener los filtros que buscamos en función

del acimut y de la elevación. Recordar que se deben obtener por separado los filtros

correspondientes a cada uno de los canales, puesto que las orejas de las personas no son

perfectamente simétricas y hay ligeras diferencias entre los filtros:

h_l = squeeze(hrir_l(nAcimut, nElevacion, :));

 En las sentencias anteriores hay que tener en cuenta que los valores de acimut y elevación

que introduzcamos deben corresponderse con alguno de los que ofrece la base de datos, ya que

si no saltará un error. También hay que tener en cuenta que no hay que introducir el valor de

acimut y elevación en grados, sino que hay que indicar la posición que ocupa la elevación y el

acimut deseados dentro del vector de acimuts y elevaciones. Dicho vector consta de 25 valores

comprendidos entre -80° y 80° en acimut, y de 50 valores comprendidos entre -45° y 230’625°

en elevación.

 Una vez obtenidos ambos filtros, filtramos la señal de audio completa para simular que

una fuente de audio se encuentra en una posición concreta y estática del espacio. Para filtrar la

señal se ha tenido en cuenta dos posibles métodos. El primero de ellos se basa en la convolución

de la señal de audio con el filtro HRTF, mientras que el segundo método consiste en hacer uso de

la transformada Fourier y multiplicar ambas señales en el dominio transformado. Es decir:

y_l = conv (audio, h_l); y_l = ifft(fft(audio)*fft(h_l));

 Finalmente, cuando ya se han filtrado ambos canales, hay que unirlos dentro de una única

variable para poder reproducirlo en formato estéreo.

24

3.1.2 SEGUNDA FASE

 En la primera fase, se aplicó un único filtro a toda la señal de audio por lo que el resultado

era la simulación de una fuente estática, sin movimiento. En la segunda fase pasamos a aplicar

varios filtros a lo largo de la señal con el objetivo de obtener un efecto de movimiento de la fuente

sonora. Para conseguirlo, debemos trocear la señal en pequeños trozos, llamados frames, y

aplicarle a cada uno de ellos un filtro distinto.

 Las primeras pruebas se basaron en movimientos circulares, tanto horizontales como

verticales alrededor del emisor. Al reproducir estos movimientos, se podía apreciar perfectamente

el desplazamiento de la fuente de sonido, pero aparecía un pequeño ruido en forma de ‘clicks’ o

golpes cada vez que había un cambio de filtro. Este problema debido a las discontinuidades ha

sido bastante importante a lo largo del trabajo ya que costó bastante dar con la solución de forma

efectiva, y por eso se explica detalladamente en el Apartado 2.3. En dicho apartado también se

explica el método seguido para corregir el problema, y que finalmente consistió en aplicar un

“Weighted Overlap-Add” usando la ventana de Hanning.

3.1.3 TERCERA FASE

 Una vez conseguido filtrar una señal de audio con varios filtros distintos proporcionando

algo de movimiento a la fuente, es el momento de realizar el objetivo final del trabajo, la

interpolación de los filtros. El método seguido se explica en el Apartado 2.4.

 Para realizar esta tarea, se ha creado dentro de Matlab una función llamada

“interpolador”. Dicha función es ejecutada por otra función a la que se ha llamado “Audio3D” y

que es la encargada de realizar el Overlap-Add y el enventanado. Ambos archivos se pueden

encontrar en los ficheros adjuntos de este trabajo junto a un script con el nombre “main”.

 Los resultados obtenidos con este método de interpolación junto al Overlap-Add y el

enventanado con la ventana de Hanning, son bastante satisfactorios, dando como resultado un

sonido binaural muy convincente y libre de ruidos. En la programación en C# se adoptará el

modelo de programación seguido en estos ficheros de Matlab.

25

3.2 VISUAL STUDIO

 Microsoft Visual Studio es un entorno de desarrollo integrado (IDE) para sistemas

operativos Windows. Soporta múltiples lenguajes de programación tales como C++, C#, Visual

Basic .NET, F#, Java, Python, Ruqby, PHP.

 Visual Studio permite a los desarrolladores crear aplicaciones, sitios y aplicaciones web,

así como servicios web en cualquier entorno que soporte la plataforma .NET. Así se pueden crear

aplicaciones que se comuniquen entre estaciones de trabajo, páginas web, dispositivos móviles,

dispositivos embebidos, consolas, etc. (Wikipedia. Microsoft Visual Studio)

3.2.1 ESTRUCTURA DEL PLUGIN

 El objetivo principal en Visual Studio, es la de desarrollar un plugin que podamos importar

en Unity3D y que procese audio binaural en tiempo real. Para ello, vamos a seguir la estructura

utilizada anteriormente en Matlab, con la diferencia de que ahora no disponemos de funciones

como la convolución o la transformada de Fourier. Para poder realizar dichos cálculos, vamos a

hacer uso de la librería Alglib (ALGLIB® - numerical analysis library, 1999-2014.), la cual ofrece una

enorme cantidad de funciones para el cálculo matemático de todo tipo. Esta librería tiene licencia

gratuita y se encuentra disponible en Internet.

 El leguaje elegido para la programación del plugin dentro de Visual Studio es C#. El motivo

de la elección de este lenguaje frente a C++, se basa principalmente en el hecho de que es

necesario disponer de la versión Unity PRO para poder importar un plugin que esté basado en

C++. En cambio un plugin que esté programado en C# se podrá importar tanto en la versión Indie

como en la PRO.

 En la Figura 3.1, se muestra la estructura que se ha seguido para elaborar el plugin. En

dicha figura, se han representado tanto las clases como los métodos, diferenciándose en que las

primeras están coloreadas en naranja claro, mientras que las segundas tienen un color azulado.

Las dos clases llamadas “DatabaseIzq” y “DatabasDer”, están destinadas a almacenar los filtros

HRTF de la base de datos CIPIC correspondientes al sujeto 18. Recordar que la base de datos

estaba disponible en lenguaje Matlab, y se ha tenido que traducir al lenguaje C#, siendo éste el

motivo de que sólo se encuentren los filtros correspondientes a un sujeto.

Para poder acceder a los filtros almacenados dentro de “DatabaseIzq” y de “DatabaseDer” desde

otras clases, se ha creado el método público “getFiltro”.

 La tercera clase en cuestión, llamada “Audio3D” es la clase principal, y contiene el método

“aplicarAudio3D()” el cuál se encarga internamente de invocar al resto de métodos necesarios

para llevar a cabo el procesado del audio binaural.

26

 A continuación se explica brevemente la función que desempeña cada uno de los

métodos que se han creado dentro del plugin:

 aplicarAudio3D (ref audio, acimut, elevación, audioNext, out cola): método público
encargado de llevar a cabo el procesado del sonido binaural.
Parámetros:

I. ref audio: Vector de floats pasado por referencia que contiene el audio a
procesar. Devuelve el sonido ya filtrado.

II. acimut: Entero que contiene el valor del acimut en grados.
III. elevacion: Entero que contiene el valor de la elevación en grados.
IV. audioNext: Vector de floats que contiene el frame de audio posterior.
V. out cola: Devuelve el trozo de señal que habrá que sumar al siguiente frame

para realizar el “Overlap-Add”.

Éste método, tal como se ve en el esquema anterior, llama a la función “boolInterpolar”

y según su resultado, realiza unas acciones u otras, hasta obtener el filtro adecuado, y

devolver el audio debidamente filtrado.

 interpolar = boolInterpolar (acimut, elevacion, out nAcimut, out nElevacion): método
privado, encargado de comprobar si es necesario realizar la interpolación.
Parámetros:

I. interpolar: Booleano que vale ‘true’ en caso de ser necesaria la interpolación.
De no ser necesario, valdría ‘false’.

II. acimut: Entero que contiene el valor del acimut en grados.
III. elevacion: Entero que contiene el valor de la elevación en grados.
IV. nAcimut: Entero que contiene el índice dentro del vector de acimuts

disponibles dentro de las HRTF.

Figura 3.1.- Estructura seguida en la programación del plugin. El color naranja representa
las Clases, mientras que el azul representa métodos de la Clase.

27

V. nElevacion: Entero que contiene el índice dentro del vector de acimuts
disponibles dentro de las HRTF.

 hacerInterpolacion (acimut, elevacion, out filtroIzq, out filtroDer): método de carácter
privado, utilizado por el método “aplicarAudio3D” para realizar el algoritmo de
interpolación y obtener el filtro adecuado.
Parámetros:

I. acimut: Entero que contiene el valor del acimut en grados.
II. elevacion: Entero que contiene el valor de la elevación en grados.

III. filtroIzq: Vector que contiene el filtro interpolado del canal izquierdo.
IV. filtroDer: Vector que contiene el filtro interpolado del canal derecho.

 Internamente realiza los algoritmos descritos en el Apartado 2.4, correspondientes a la
 triangulación de Delaunay, búsqueda del triángulo que encuadra al punto objetivo,
 cálculo de los pesos, y obtención del filtro interpolado.

 aplicarFiltro (ref audio, filtroIzq, filtroDer): método de carácter privado, utilizado en última
instancia para aplicar el filtro adecuado a la señal de audio correspondiente.
Parámetros:

I. audio: Vector que contiene el audio a procesar.
II. filtroIzq: Vector que contiene el filtro a aplicar en el canal izquierdo.

III. filtroDer: Vector que contiene el filtro a aplicar en el canal derecho.

El filtrado se puede realizar tanto con una convolución como con una multiplicación en
el dominio transformado de Fourier. Para poder realizar dichas operaciones, se ha
contado con la plataforma de análisis numérico y biblioteca de extracción de datos Alglib
(ALGLIB® - numerical analysis library, 1999-2014.), la cual se encuentra disponible en
varios lenguajes de programación (C++, C#, Pascal, VBA) y cuenta con licencia gratuita.

 Una vez que se ha programado todo lo descrito anteriormente, llega el momento de

compilar el código y generar el plugin que usaremos dentro de Unity.

28

3.3 UNITY

 Unity es un ecosistema de desarrollo de juegos: un poderoso motor de renderizado

totalmente integrado con un conjunto completo de herramientas intuitivas y flujos de trabajo

rápido para crear contenido 3D interactivo; publicación multiplataforma sencilla; miles de activos

de calidad, listos para usar en la Tienda de Activos y una Comunidad donde se intercambian

conocimientos (Unity).

3.3.1 PRIMEROS PASOS

 Una vez creado el plugin destinado a procesar el audio binaural, es el momento de crear

un proyecto en Unity con el que poder testear y probar su correcto funcionamiento. Es importante

destacar que Unity es una plataforma que cuenta con una comunidad de gente muy activa a la

hora de compartir, y ayudarse mutuamente en la elaboración y programación dentro de los

proyectos. Esto hace que haya un montón de videos y de foros con tutoriales y referencias de

código que ayudan de gran manera a iniciarnos en este mundo.

 Con todas estas ayudas, y después de algún proyecto de prueba, se abordó la creación

del proyecto final con un modelo de carácter sencillo, y usando siempre formas predefinidas o de

forma gratuita dentro de la UnityStore.

3.3.2 INTEGRACIÓN DE LA DLL

 Una vez creada la escena, pasamos a integrar nuestro plugin dentro del proyecto. Como

ya se ha comentado anteriormente, el propio Unity ofrece una gran cantidad de información y

tutoriales acerca de su plataforma, además de disponer de un foro oficial en el que personas de

todo el mundo participan activamente resolviendo las dudas de lo demás por muy simples que

sean. Gracias a todo esto, y al propio canal de Unity en Youtube (www.youtube.com), en el que

se cuelgan una gran variedad de video tutoriales, la integración del plugin en el proyecto ha sido

bastante sencilla.

La fórmula consiste en crear una carpeta llamada ‘plugins’ dentro del directorio ‘Assets’, e incluir

el plugin en su interior. Después se crea un script en lenguaje C#, y siguiendo las indicaciones de

la página de referencia de Unity, se importa la librería con el siguiente comando:

Proyecto.Audio3D miAudio = new Proyecto.Audio3D();

http://www.youtube.com/

29

 Con esta sentencia lo que estamos haciendo es declarar una variable de la clase

“Audio3D” con la que podremos invocar al método “aplicarAudio3D”

miAudio.aplicarAudio3D(ref audioActual, acimut, elevación, audioNext, out cola);

 El motivo de incluir como parámetros tanto el “audioActual” como el “audioNext”, junto

a una variable “cola”, se debe al método “Weighted Overlap-Add” explicado en el Apartado 2.3.2.

Dichas variables, “audioActual” y “audioNext” hacen referencia tal y como indican sus nombres,

a los vectores que contienden el frame de audio actual, y el inmediatamente posterior. Como en

Unity nos encontramos con audio en tiempo real, no es posible obtener el frame futuro de forma

directa, sino que tenemos que aplicar un delay de un frame de audio dentro de nuestro script.

La variable “cola” es un parámetro de salida del método “aplicarAudio3D” que contiene las

muestras sobrantes de realizar la convolución del frame actual con el filtro HRTF interpolado, ya

que hay que recordar que el tamaño del vector de salida en una convolución es igual a la suma

de los tamaños de las dos variables de entrada, menos uno. Es decir, si tenemos conv(A,B) = C, el

tamaño de C, será igual a tam(A)+tam(B)-1. Como el tamaño del frame de audio es de 1024

muestras, y el vector de audio de salida será mayor que esas 1024 muestras, las sobrantes se

guardan en la variable “cola”. Dicha variable ya se encuentra apropiadamente enventanada, y

habrá que sumarla dentro del propio script de Unity, a las muestras iniciales del próximo frame,

para así realizar el “Weighted Overlap-Add”.

3.3.3 CÁLCULO DEL ACIMUT Y DE LA ELEVACIÓN

 Al principio, los valores de acimut y elevación que introducíamos en la llamada al método

“aplicarAudio3D”, se escogían de tal forma que se realizara un barrido circular alrededor del

oyente manteniendo la elevación constante y variando el acimut. Después se repetía el

procedimiento variando los valores de elevación pero manteniendo los valores de acimut. Esto se

hacía estableciendo los valores dentro del propio script antes de ejecutarlo.

 Tras esas primeras pruebas, se pasó a obtener en tiempo real los valores de acimut y

elevación de un objeto respecto a la “MainCamera” que es donde se encuentra el “AudioListener”.

Debido a que tiene que ser en tiempo real, vamos a calcular continuamente los valores de acimut

y elevación dentro de la función Update(). Esta función se ejecuta en cada frame de imagen, por

lo que siempre tendremos los valores actualizados para su uso dentro de la función

“OnAudioFilterRead” la cual se activa cada 20 milisegundos.

 El proyecto creado en Unity, se ha diseñado con un “first person controller”, lo que quiere

decir que el usuario maneja un personaje en primera persona, teniendo la capacidad de mover la

cámara a su antojo. Esto repercute en que el cálculo del acimut y de la elevación no hay que

hacerlo respecto al propio muñeco, sino que también hay que tener en cuenta el movimiento de

la cámara.

30

Sabiendo esto, el cálculo del acimut y la elevación se basa en obtener el vector que apuntadesde

nuestra “MainCamera” hasta el objeto que contiene el “AudioSource”. Una vez obtenido dicho

vector, usando relaciones trigonométricas podemos calcular tanto θ como φ, que se

corresponden respectivamente a la elevación y el acimut.

 Para conocer el vector que apunta desde nuestra cámara hasta el objeto en cuestión,

Unity dispone de una función llamada “InverseTransformPoint” dentro de la clase “Transform”.

Como parámetro hay que introducir el “GameObject” al que está asociado el “AudioSource”. El

resultado es una variable de tipo “Vector3”.

VectorRelativo = Camera.main.transform.InverseTransformPoint(transform.position);

3.3.4 PROYECTO FINAL EN UNITY

 El proyecto final se ha dividido en 2 escenas, sin contar el menú interactivo encargado de

seleccionar una u otra. Ambas escenas cuentan con un único “AudioSource” y un único

“AudioListener”. La diferencia radica en que en la primera escena, el “AudioSource” se encuentra

fijo y sin ningún tipo de movimiento, y el objetivo es encontrarlo guiándote por el audio que él

mismo genera. La segunda escena consta de un “AudioSource” asociado a un helicóptero que se

desplaza de forma continua y predeterminada a lo largo del mapa.

En ambas escenas el “AudioListener” está asociado al usuario, concretamente a la “MainCamera”.

3.4 CONCLUSIÓN FINAL DEL TRABAJO

 Como ya se comentó en el apartado de Matlab, al usar varios filtros distintos sobre una

señal dividida en trozos, aparece el problema de las discontinuidades en cada cambio de filtro

HRTF. Estas discontinuidades se traducen en ‘clicks’ o golpes que resultan muy molestos

auditivamente.

 La solución aportada fue el “Weighted Overlap-add”, con la dificultad de que en Unity,

estamos procesando audio en tiempo real con la función “OnAudioFilterRead”, por lo que

únicamente disponemos de las muestras correspondientes al frame de audio actual. La solución

31

adoptada es retrasar un frame completo el procesado del audio, de tal forma que el frame de

audio que tratamos y devolvemos a la cadena de audio, no es el que nos da en ese instante la

función “OnAudioFilterRead”, sino que es la que nos dio en el anterior ciclo, y que hemos

guardado en una variable auxiliar.

 Hay que destacar también que al usar la función “OnAudioFilterRead” estamos cogiendo

las muestras del buffer de salida de audio, por lo que en caso de haber más de un “AudioSource”

en la escena, el buffer tendría los sonidos de todos los “AudioSources” ya mezclados. Esto es una

limitación, ya que el plugin creado procesa el audio binaural respecto a una dupla de acimut y

elevación concreta determinada por un único “GameObject”.

Si quisiéramos tratar audio binaural sobre varios objetos distintos, deberíamos aplicar nuestro

plugin sobre cada uno de ellos por separado, y siempre antes de que hayan sido mezclados. Esto

se podría intentar realizar con las funciones “getData()” y “setData()” explicadas en la parte de

Anexos, pero su implementación se deja para posteriores proyectos.

32

Bibliografía

ALGLIB® - numerical analysis library, 1999-2014. s.f. http://www.alglib.net/.
Beltrán Blázquez, JoséRamón. «Audio Inmersivo para entornos de realidad virtual.»

Oculus day.
CIPIC- Center for Image Processing and Integrated Computing University of California 1

Shields Avenue Davis, CA 95616-8553. The CIPIC HRTF Database.
http://interface.cipic.ucdavis.edu/sound/hrtf.html.

Departamento de Matemática Aplicada. Universidad Politécnica de Madrid. Punto
interior de un triángulo.
http://www.dma.fi.upm.es/mabellanas/tfcs/kirkpatrick/Aplicacion/algoritmos.ht
m#puntoInterior.

Gamper, Hannes. «Selection and Interpolation of head-realted transfer functions for
rendering moving virtual sound sources.» Proc. of the 16th Int. Conference on
Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013.

Gardner, Bill, y Keith Martin. HRTF Measurements of a KEMAR Dummy-Head
Microphone. s.f. http://sound.media.mit.edu/resources/KEMAR.html.

Mengqiu Zhang, Wen Zhang, Rodney A. Kennedy, and Thushara D. Abhayapala. «HRTF
measurement on KEMAR manikin.» 23–25 November 2009.

Smith, Julius Orion. Weighted Overlap Add.
http://www.dsprelated.com/dspbooks/sasp/Weighted_Overlap_Add.html.

Unity. s.f. www.unity3d.com.
—. Unity. OnAudioFilterRead.

https://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnA
udioFilterRead.html.

Wikipedia. Escucha Binaural. http://es.wikipedia.org/wiki/Escucha_binaural.
Wikipedia. Microsoft Visual Studio.

http://es.wikipedia.org/wiki/Microsoft_Visual_Studio.
Wikipedia. Overlap-Add. s.f. http://en.wikipedia.org/wiki/Overlap_add.
Wikipedia. Triangulación de Delaunay.

http://es.wikipedia.org/wiki/Triangulaci%C3%B3n_de_Delaunay.

33

34

ANEXOS

35

I. ARCHIVOS MATLAB

 En el CD adjunto se puede encontrar el path de Matlab con los scripts finales, además de

una versión intermedia que se ha querido incluir para demostrar los problemas que surgieron a

mitad de trabajo y la forma de resolverlos. Todos los scripts creados están debidamente

comentados para facilitar su entendimiento.

 El path se divide en tres carpetas distintas. La primera de ellas, con el nombre

“CIPIC_hrtf_database” contiene la base de datos CIPIC con los filtros HRTF, además de algún script

en el que se muestran de forma gráfica el funcionamiento de estos filtros. Esta carpeta no ha sido

modificada, y se puede descargar desde internet de forma gratuita a través del siguiente enlace:

 http://interface.cipic.ucdavis.edu/sound/hrtf.html

I.I VERSIÓN INTERMEDIA

 La segunda carpeta “Versión intermedia” contiene un script en el que aún no se ha

incluido la interpolación de filtros, únicamente realiza el filtrado de una señal de audio con varios

filtros distintos. La razón por la que se ha incluido es que en ella aparece el problema de los ‘clicks’

o golpes ruidosos debidos a las distintas discontinuidades. La solución a este problema es como

ya se ha comentado, el método “Weighted Overlap-add”.

 Dentro de la carpeta hay un script y una función. Ejecutando el primero, estamos

llamando internamente al segundo. Nótese que el archivo de audio por defecto es SilbidoOeste,

incluido en el path, pero se puede poner otro distinto siempre y cuando sea un archivo .wav.

 Los parámetros de entrada de la función son cuatro, de los que hay que destacar el

segundo mediante el cual se puede elegir si queremos que la función filtre la señal de audio entera

con los mismos valores de acimut y elevación, o si queremos que simule el movimiento de la

fuente sonora alrededor del oyente, en cuyo caso podrá ser un barrido horizontal o un barrido

vertical empezando en la parte delantera y finalizando en la parte trasera.

 A continuación se incluyen gráficas tanto de la señal original como de las filtradas con el

fin de visualizar los cambios generados con los filtros HRTF.

http://interface.cipic.ucdavis.edu/sound/hrtf.html

36

Figura I.I.1. Representación temporal.

Figura I.I.2. Representación frecuencial.

SEÑAL --> Seno.wav
Toda la señal con el mismo filtro. Acimut = 0°, Elevación = 0°.

37

Figura I.I.3. Representación temporal.

Figura I.I.4. Representación frecuencial.

SEÑAL --> Seno.wav
Toda la señal con el mismo filtro. Acimut = -65°, Elevación = 0°.

38

Figura I.I.5. Representación temporal.

Figura I.I.6. Representación frecuencial.

SEÑAL --> Seno.wav
Toda la señal con el mismo filtro. Acimut = 0°, Elevación = 180°.

39

Figura I.I.7. Representación temporal.

Figura I.I.8. Representación frecuencial.

SEÑAL --> SilbidoOeste.wav
Toda la señal con el mismo filtro. Acimut = 0°, Elevación = 0°.

40

Figura I.I.9. Representación temporal.

Figura I.I.10. Representación frecuencial.

SEÑAL --> SilbidoOeste.wav
Toda la señal con el mismo filtro. Acimut = 35°, Elevación = 0°.

41

Figura I.I.11. Representación temporal.

Figura I.I.12. Representación frecuencial.

SEÑAL --> SilbidoOeste.wav
Toda la señal con el mismo filtro. Acimut = 0°, Elevación = -45°.

42

Figura I.I.13. Representación temporal.

Figura I.I.14. Espectrograma.

SEÑAL --> Seno.wav
Recorrido vertical alrededor del oyente, empezando en -45°, y terminando en 230° pasando
por 0°, 90° y 180° en elevación.

43

Figura I.I.15. Representación temporal.

Figura I.I.16. Espectrograma.

SEÑAL --> SilbidoOeste.wav
Recorrido vertical alrededor del oyente, empezando en -45°, y terminando en 230° pasando
por 0°, 90° y 180° en elevación.

44

Figura I.I.17. Representación temporal.

Figura I.I.18. Espectrograma.

SEÑAL --> Seno.wav
Recorrido horizontal alrededor del oyente, empezando en -80°, y terminando en -80°
pasando por 0°, 80° y 180° en acimut.

45

Figura I.I.19. Representación temporal.

Figura I.I.20. Espectrograma.

SEÑAL --> SilbidoOeste.wav
Recorrido horizontal alrededor del oyente, empezando en -80°, y terminando en -80°
pasando por 0°, 80° y 180° en acimut.

46

I.II VERSIÓN FINAL

 La tercera carpeta en cuestión corresponde a la versión final en la que ya se realiza la

interpolación de los filtros HRTF. Dentro de la carpeta se encuentran un script llamado “main” y

una función llamada “Audio3D”.

 La función “Audio3D” es la encargada de realizar todo el proceso de interpolación y de

filtrado de la señal. Así mismo, en su interior también se realiza la triangulación de Delaunay,

aunque en el plugin basado en C# omitimos este paso, ya que el resultado de la triangulación va

a ser siempre el mismo, y por lo tanto, no es necesario realizarlo continuamente. Basta con cargar

el resultado obtenido previamente cuando sea necesario.

 El script “main” se encarga de llamar a la función “Audio3D”, y de representar al final los

resultados obtenidos en gráficas adecuadas para la tarea.

Nótese que el archivo de audio por defecto es SilbidoOeste, incluido dentro del path adjunto, pero

se puede cualquier otro siempre y cuando sea un archivo .wav.

 A continuación se incluyen gráficas tanto de la señal original como de las filtradas con el

fin de visualizar los cambios generados con los filtros HRTF.

47

Figura I.II.1. Representación temporal.

Figura I.II.2. Espectrograma.

SEÑAL --> SilbidoOeste.wav
Recorrido horizontal alrededor del oyente, empezando en -80°, y terminando en -80°
pasando por 0°, 80° y 180° en acimut.

48

Figura I.II.3. Representación temporal.

Figura I.II.4. Espectrograma.

SEÑAL --> SilbidoOeste.wav
Recorrido vertical alrededor del oyente, empezando en -45°, y terminando en 230° pasando
por 0°, 90° y 180° en elevación.

49

II. FUNCIONES GetData() y SetData().UNITY

 Aunque finalmente estas funciones no se han usado en el proyecto final, sí que han sido

de gran relevancia en el proceso de desarrollo del plugin, y por lo tanto se merecen un pequeño

inciso.

 Ambas funciones han sido importantes a la hora de buscar una solución al problema de

la disponibilidad de muestras futuras, lo cual es un requisito imprescindible para aplicar el método

“Weighted Overlap-Add” y así evitar el ruido producido por las discontinuidades de los filtros

HRTF.

Las funciones “getData()” y “setData()”, a diferencia de la función “OnAudioFilterRead”, no están

relacionadas con el buffer de audio de salida, sino que están relacionadas con el propio clip de

audio que tiene asociado un “GameObject” concreto. Por lo tanto, la principal diferencia con

respecto a la función “OnAudioFilterRead”, es que ahora sí que podríamos procesar cada

“AudioSource” por separado ya que no estamos obteniendo el buffer de salida de audio donde ya

están todas las “AudioSource” mezcladas, si no que estamos modificando directamente las

muestras del clip de audio asociado al “GameObject” del “AudioSource”.

 Con la función GetData(float[], int) obtenemos las muestras del clip de audio, mientras

que con la función SetData(float[], int) hacemos lo contrario, establecemos las muestras que

queramos dentro del clip de audio, modificándolo.

El vector en el que queremos guardar o con el que queremos modificar el audio, se introduce

como primer parámetro, y de su tamaño dependerá el número de muestras que se tomarán o

modificarán en el clip de sonido. El segundo parámetro está destinado a indicar el offset, es decir,

el número de la primera muestra a partir de la cual tomaremos las restantes del clip de sonido.

Por ejemplo, si nuestro vector tiene un tamaño de 1024, y establecemos la variable offset en 5,

con la función “GetData()”, estaremos guardando en nuestro vector de tamaño 1024, aquellas

muestras del clip de sonido comprendidas entre la muestra 5 y la 1029. Con la función “SetData()”

modificamos las muestras del clip de audio comprendidas entre la muestra 5 y la 1029 con los

valores del vector que le introduzcamos como parámetro.

De esta forma, haciendo uso de la variable de offset, podemos acceder a las muestras futuras,

procesarlas, y devolvérselas al clip de audio.

 Las dificultades que presentan estas funciones, y que han motivado que se descarten su

uso son por un lado la reproducción en bucle, ya que el hecho de estar modificando el propio clip

de audio, hace que en la segunda reproducción del archivo, las muestras ya no se correspondan

con el clip original, y sí a las modificadas en el primera reproducción, por lo que estaríamos

filtrando una señal ya filtrada anteriormente con otros valores de acimut y elevación.

Otro problema que acarrean estas funciones es que éstas no cuentan con una interrupción como

la de “OnAudioFilterRead” que hace que se active cada vez que el buffer está completo (1024

muestras), por lo que si queremos que sea un procesado de audio en tiempo real, debemos

marcarnos nosotros nuestro propio ‘timing’ ya sea creando nuestras propias interrupciones, o

50

usando las funciones de delay de Unity de tal forma que se activen aproximadamente cada 20

milisegundos y así podamos realizar el procesado del audio cada 1024 muestras.

También hay que tener en cuenta que “OnAudioFilterRead” se ejecuta en un hilo distinto al

principal, por lo que la carga de procesado que tenga el plugin el cual invocamos dentro de dicha

función, no afectará en principio al hilo principal. Al usar las funciones “getData()” y “setData()”

tendríamos que tener en cuenta esto, y crear los hilos nosotros mismos con el fin de que el plugin

creado no afecte en exceso al transcurso del programa principal.

51

III. CÓMO USAR EL PLUGIN EN UNITY

 Lo primero que tenemos que hacer, si queremos

usar el plugin de procesado de audio en 3D dentro de Unity,

es crear una carpeta llamada ‘Plugins’ dentro de la carpeta

principal ‘Assets’, e incluir en su interior el plugin tal y como

se puede ver en la Figura III.1. Se recomienda usar el mismo

nombre ‘Proyecto’ para el plugin, ya que las siguientes

directrices se explican siguiendo esta nomenclatura. En caso

de cambiarlo, habrá que tener en cuenta que será necesario

cambiar otros campos para que funcione correctamente.

 Una vez añadido el plugin al proyecto, debemos

crear un script basado en C# que se encargará de importar

el plugin y de realizar las operaciones oportunas para

ponerlo en marcha.

Éste script debe adjuntarse a aquel “GameObject” que

contenga el “AudioListerner”, acordándose siempre de que

no puede haber más de un “AudioListener” en la escena si

queremos evitar problemas. Normalmente el

“AudioListener” está asociado a la “MainCamera” tal como

se puede ver en la Figura III.2.

En dicha figura también podemos apreciar que el nombre

del script en este caso es ”AudioFilter2” aunque puede

tener cualquier nombre, y que el script tiene dos

parámetros públicos llamados “Mi Audio Source” y

“Distancia Max”. En el primero de ellos hay que introducir el

“GameObject” que tenga asociado el “AudioSource”, en

este caso un helicóptero, mientras que el segundo

parámetro se usa para determinar la distancia máxima a

partir de la cual ya no se oirá el sonido del objeto.

 Añadiendo dichos archivos y siguiendo las pautas indicadas, el plugin creado se podrá

usar en cualquier proyecto de Unity, siempre y cuando haya un único “AudiosSource” en la escena.

Figura III.1.- Incluir el plugin del proyecto
dentro de la carpeta “Assets/Plugins”.

Figura III.2.- Script que importa el plugin
adjunto al “GameObject” que contiene el
“AudioListener”.

52

IV. CONTENIDO DEL SCRIPT “AudioFilter2”. UNITY

 El script “Audio Filter 2” ha sido creado para poder llevar a cabo la importación del plugin

en cualquier escena, encargándose de que todo se ejecute correctamente. Como se ha explicado

en el anexo anterior y se puede apreciar en su Figura III.4, este script debe estar asociado a la

cámara, para que así el procesado de audios se haga adecuadamente.

 El contenido de dicho script se puede ver dividido en tres figuras distintas, concretamente

en la Figura IV.1, IV.2 y IV.3.

 La primera de ellas muestra la clase principal con todas las variables declaradas entre las

que destacan dos, ambas de carácter público. Una de ellas es de tipo “MiObjeto”, y que hemos

creado nosotros mismos para poder pasar como variable el objeto respecto al que estamos

procesando el audio. Es decir, ésta variable será con la que obtenemos los valores de acimut y

elevación del objeto que contiene el “AudioSource” de la escena.

La otra variable importante del Script “Audio Filter 2”, es la declarada en la línea 9 de la Figura

IV.1. En ella estamos creando una variable de nombre “miDll” de la clase “Audio3D”. Esta clase es

la clase principal creada dentro del plugin, por lo que declarando esta variable es como si

estuviéramos importando el plugin.

 El resto de variables creadas están destinadas a almacenar las distintas muestras de audio,

con el fin de realizar el delay necesario para ejecutar correctamente el “Weighted Overlap-Add”.

Figura IV.1.- Captura del Script ‘Audio Filter 2’.

53

 Una vez creada la variable “miDll”, ya podremos invocar su método interno

“aplicarAudio3D()” dentro de la función “OnAudioFilterRead”, tal y como se puede ver en la Figura

IV.2. Los dos bucles ‘for’ sirven para copiar los distintos vectores según convenga y realizar con

ello el delay de un frame de audio.

 Por otro lado, en la línea 48 de la Figura IV.2, se puede apreciar el cálculo realizado para

la atenuación del audio en función de la distancia máxima, la cual es un parámetro público que se

puede cambiar desde la propia escena de Unity. La atenuación sigue una distribución lineal.

Figura IV.2.- Captura del Script ‘Audio Filter 2’.

54

 Finalmente en la Figura IV.3, se puede ver la función “coordenadas()” que ha sido creada

para realizar el cálculo de las variables de acimut y elevación del objeto que contiene el

“AudioSource” respecto a la cámara, además de calcular su distancia. La función “coordenadas()”

se invoca continuamente desde la función “Update()”, por lo que sus valores van a estar siempre

actualizados.

 En la línea 81 de la Figura IV.3 se calcula el vector que apunta desde la “MainCamera”

hasta el “GameObject” que contiene el “AudioSource” de la escena. Con ese vector, ya podemos

calcular en las líneas 82 y 83, los valores de phi y theta mediante cálculos trigonométricos, así

como el valor de la distancia, que no es más que la magnitud del propio vector.

De la línea 87 a la 98 de la Figura IV.3, hay varios ‘if´s’ destinados a realizar los ajustes oportunos

para determinar los valores de acimut y elevación. Estos reajustes se deben por ejemplo a que el

valor de phi abarca un rango entre -180º y 180º, mientras que el acimut que el plugin maneja va

desde -90º hasta 90º; ya que los valores mayores de 90º y menores de -90º, que serían los que se

encuentran a la espalda del oyente, se procesan asignando una elevación mayor a los 180º.

Figura IV.3.- Captura del Script ‘Audio Filter 2’.

