Trabajo Fin de Grado

Implementacién de sonido binaural para
aplicaciones de realidad aumentada

Autor

Ignacio Ayora Morante

Director

José Ramon Beltran Blazquez
Departamento de Ingenieria Electronica y Comunicaciones

Escuela de Ingenieria y Arquitectura
2013/2014

Repositorio de la Universidad de Zaragoza - Zaguan http://zaguan.unizar.es

Implementacién de sonido binaural para
aplicaciones de realidad aumentada

RESUMEN

El objetivo principal de este trabajo es la realizacién de un plugin que permita procesar sonido
binaural (audio en 3D) dentro del programa Unity, destinado al disefio y desarrollo de videojuegos
en 3D.

Actualmente Unity cuenta con herramientas simples de generacién de sonido espacial. Estas
herramientas permiten atenuar el sonido en funcién de la distancia y generar diferentes espacios
de reverberacién para simular distintos ambientes sonoros.

Sin embargo, no dispone de ninguna herramienta de posicionamiento realista de la fuente de
sonido. Este es el objetivo principal del proyecto. Dotar a Unity de la capacidad de
posicionamiento y posterior reproduccién de una fuente de sonido en el espacio.

El desarrollo del trabajo se ha llevado a cabo primero en el entorno Matlab, ya que facilita la
depuracioén y correccidn de errores ademas de ofrecer la posibilidad de representar las distintas
variables, para después traspasarlo al lenguaje C#, con el que se compila el plugin final.

Contenido

1. INTRODUCCION ..o 7
2. PRINCIPIOS TEORICOS.........omeeeeeeeeeeeeeeeeeeeee e, 8
2.1 AUDIO 3D. AUDIO BINAURALc.oovoeiiieeeeeeeeeeeeeeeeeeeee e 8
2.2 HRTF et 9
2.3 DISCONTINUIDADEScooooieeeeeeeeeeeeeee e, 11
2.3 1 OVERLAP-ADDooieiiiceeeeeeeeeeee e 13
2.3.2 WEIGHTED OVERLAP-ADDoooeieieeeeeeeeeeeeeeeeeee e 14

2.4 INTERPOLACION ...t 15
241 TRIANGULACION DE DELAUNAYoooiviiieieeeeeeeeeeeeeeeeeeeeeee e 16
242 BUSQUEDA DEL TRIANGULOcooovoiveeeeeeeeeeeeeeeeeeeeeeeeeeee e 17
2.43 CALCULO DE LOS PESOS Y DE LA INTERPOLACIONcoooveverceececans 18

2.5 AUDIO EN UNITY oo, 19
A T R YU [1o R Yo T [ol SRR 19
2.5.2 AUIOCHD oo 20
2.5.3 AUAIOLISTENO i 20

2.6 FUNCION OnAUdioFilterRead (UNITY) ..o, 20
3. DESARROLLO DELTRABAJOoovoiiiiceeieieeee e 22
3.1 MATLAB oo 22
311 PRIMERA FASE oot 22
3.1.2 SEGUNDA FASE .o 24
313 TERCERA FASE .o 24

3.2 VISUAL STUDIO .o 25
321 ESTRUCTURA DEL PLUGIN ...oovoviiviieieeeee e 25

3.3 UNITY oottt 28
3.3.1 PRIMEROS PASOSooooieieieeeeeeeeeeeee e 28
3.3.2 INTEGRACION DE LA DLL ..o 28
3.3.3 CALCULO DEL ACIMUTY DE LA ELEVACION ..o 29
3.3.4 PROYECTO FINAL EN UNITY .ooiiioioiieeeeeeteeeeeeeeeee e 30

3.4 CONCLUSION FINAL DEL TRABAJO w..ooovevceeeeeeeeeeeeeeeeeeeeeee e 30
BIblIOGIrafia......cc.viieiiee e 32
ANEXOS ..ottt 34
| ARCHIVOS MATLAB ..ottt 35

Il VERSION INTERMEDIA ..., 35

LI VERSION FINAL oo 46
. FUNCIONES GetData() y SetData().UNITY ...o.vcoeeeereeeoeeeeeeeeeeeeeeeeeeseeseee e 49
. COMO USAR EL PLUGIN EN UNITY w.ooooeveeeeeeeeeeeeeeeee e eeeeeee e 51
IV. CONTENIDO DEL SCRIPT “AUdiOFilter2”. UNITY w...coveeemeeeeeeeeeeeeeeceeeeeeeeeee 52

1. INTRODUCCION

El objetivo principal de este trabajo es la realizacion de un plugin que permita procesar
sonido binaural (audio en 3D) dentro del programa Unity, destinado al disefio de videojuegos 3D.

Actualmente Unity cuenta con herramientas simples de generacién de sonido espacial. Estas
herramientas permiten atenuar el sonido en funcién de la distancia y generar diferentes espacios
de reverberacion para simular distintos ambientes sonoros.

Sin embargo, no dispone de ninguna herramienta de posicionamiento realista de la fuente de
sonido. Este es el objetivo principal del proyecto. Dotar a Unity de la capacidad de
posicionamiento y posterior reproduccién de una fuente de sonido en el espacio.

Este informe se ha estructurado en dos partes muy diferenciadas. La primera de ellas se
basa en explicar tedrica y detalladamente las ideas mas importantes del trabajo como pueden ser
los principios del audio en 3D o el método de interpolacién utilizado.

Tras esto, se comentard en orden cronoldégico, las 3 fases seguidas para el desarrollo del trabajo.
La primera de ellas, se basa en el entorno Matlab, herramienta muy Util para realizar una primera
aproximacion al problema, aprendiendo de manera mas visual, gracias a sus graficas, cémo
funcionan los filtros HRTF. La segunda fase se desarrolla dentro del entorno de desarrollo Visual
Studio, con el que programaremos el plugin final basado en el lenguaje de programacion C#.
Finalmente, la tercera fase se centra en Unity, con la elaboracién de una escena en la que se pueda
testar y demostrar el correcto funcionamiento del plugin.

2. PRINCIPIOS TEORICOS

2.1 AUDIO 3D. AUDIO BINAURAL

Para realizar un plugin que implemente sonido binaural dentro del entorno de desarrollo de
videojuegos Unity, lo primero de todo es saber que el sonido binaural hace referencia al sonido
en 3D elaborado mediante los filtros HRTF. Dichos filtros se explican detalladamente en el
apartado 2.2.

Ahora bien, el sonido 3D no es mas que una modificacién llevaba a cabo sobre el sonido estéreo,
otorgando al receptor la posibilidad de distinguir distintas posiciones de la fuente sonora dentro
del espacio tridimensional. Para ello, hay que saber que en el sistema auditivo, la sensacion
tridimensional esta relacionada con la diferencia de amplitud y tiempo con la que recibe cada
oido la sefial sonora. Es decir, la localizacién de los sonidos en el espacio se consigue con el
procesamiento por separado de la informacion de cada oreja y con la posterior comparacion
de fase y nivel entre ambas sefiales (Wikipedia. Escucha Binaural s.f.).

En definitiva, para conseguir un sonido en 3D, tenemos que ‘engafiar’ al cerebro humano,
modificando de alguna forma las propiedades de una determinada sefial de audio. En el caso del
sonido binaural, los filtros HRTF son los encargados de modificar la sefial.

El espacio tridimensional, cuando estamos hablando de audio 3D, y mas concretamente del uso
de los filtros HRTF, se hace uso de las coordenadas esféricas, mediante las cuales podemos situar
cada punto del espacio mediante los angulos ‘phi’ (W), ‘theta’ (¢) y el radio ‘r’. Ver Figura 2.1.

Figura 2.1.- Representacidon de las coordenadas esféricas.

2.2 HRTF

Los filtros HRTF, “Head-Related Transfer Function”, que en espafiol se podrian traducir
como funciones de transferencia relacionadas con la cabeza, son filtros que caracterizan la
respuesta en frecuencia del sistema hombros-cabeza-oido frente a una fuente de audio. (Menggiu
Zhang 23-25 November 2009)

Midiéndose en campo lejano, las HRTF son funciones del valor de acimut (Ver Figura 2.2) y la
elevacién de la fuente (Ver Figura 2.3), y esto permite al oyente determinar la direccion del
emisor. (Beltran Blazquez)

Sound Source Above Front

dB

20}
10}
— [a 8 /™ ot
El asin g :

\ H H s . J

0.1 1 10 0.1 1 10

Frequency (kHz) Frequency (kHz)

Figura 2.2.- Representacion Acimut Figura 2.3.- Representacion Elevacion

Ambas variables, acimut y elevacion, se corresponden respectivamente a las variables
theta (d) y phi (W), que junto al radio r, representan el espacio tridimensional en coordenadas
esféricas tal y como se mostré en la Figura 2.1. El valor del radio estd normalizado para las distintas
HRTF. En caso de querer modificar la distancia, habria que atenuar o amplificar convenientemente
la sefial.

Es importante destacar que las HRTF se obtienen realizando medidas del sistema
hombros-cabeza-oido sobre distintos maniquis dentro de una camara anecoica. Estas medidas
varian bastante segun las caracteristicas de cada sujeto, por lo que hay que tener en cuenta que
las bases de datos o bien, ofrecen varios filtros, uno por cada sujeto o maniqui, o bien
proporcionan un Unico conjunto de filtros HRTF, los cuales son el resultado de promediar todos
los demas.

En las bases de datos que se proporcionan varios sujetos distintos, es importante elegir aquel que
mejor se adapte a nuestras caracteristicas fisicas, ya que de lo contrario, no percibiremos la
sensacion tridimensional de forma déptima. Siguiendo esta idea, hay que tener en cuenta que
debido a la asimetria del cuerpo humano, también se distingue entre la oreja derecha e izquierda,
y se proporcionaran filtros distintos para cada una de ellas.

El espacio tridimensional esta constituido por infinitos puntos, pero obviamente, las bases
de datos HRTF no pueden contener un filtro por cada uno de ellos. Unicamente se proporcionan
los filtros asociados a un numero finito de puntos del espacio, los cuales varian segun el creador
de la base de datos HRTF. Si se desea obtener el filtro de un punto del espacio que no esta
disponible en la base de datos HRTF, serd necesario elegir aquel punto mas cercano que si este
determinado por un filtro HRTF de la base de datos, o bien, realizar un método de interpolacion.
En el caso de este trabajo, se va a realizar un método de interpolacién para obtener los filtros
HRTF de aquellos puntos no disponibles en la base de datos. El método utilizado se explica en el
apartado 2.4.

Una vez elegido un punto del espacio y obtenido su filtro HRTF mediante los valores de
acimut y elevacion, el siguiente paso para la obtencidn del audio binaural consiste en filtrar la
sefial de audio con el filtro HRTF obtenido. De esta forma, el sonido generado simulara provenir
del lugar elegido.

Actualmente, dependiendo de quien haya sido el creador, existen varias bases de datos
HRTF. A continuacién se van a explicar la CIPIC y la MIT ya que fueron las dos principales
candidatas para ser usadas en este trabajo, aunque finalmente se decidié usar la CIPIC.

e CIPIC Database (CIPIC- Center for Image Processing and Integrated Computing University
of California 1 Shields Avenue Davis)

La base de datos CIPIC HRTF es una base de datos de dominio publico, con mediciones HRTF
de alta resolucién espacial de 45 sujetos diferentes, incluyendo el maniqui KEMAR con orejas
tanto grandes como pequefias.

Esta base de datos clasifica los distintos filtros segln la persona o sujeto y distingue entre 50
valores distintos de elevacion y de 25 en acimut, abarcando desde los -45 a los 275 grados, vy
de los -80 a los 80 grados respectivamente. Ademas, incluye las medidas antropométricas de
los distintos sujetos para su uso en estudios técnicos.

Una de las ventajas de esta base de datos es que se encuentra disponible en lenguaje Matlab,
proporcionando ademas un script de apoyo que muestra su comportamiento tanto en tiempo
como en frecuencia ayudando considerablemente a la comprension de las HRTF.

Su desventaja es que se encuentra Unicamente escrito en Matlab presentando un gran
problema a la hora usar dicha base de datos dentro de un entorno de desarrollo con otro
lenguaje de programacion distinto, como puede ser C#. Esto ha obligado a que a la hora de
crear el plugin se haya traducido uUnicamente los filtros relacionados a un sujeto,
concretamente el 18, ya que hacerlo con toda la base de datos entera (45 sujetos) se
presentaba inviable en tiempo.

10

e MIT Database (Gardner y Martin)

Al igual que CIPIC, la base de datos MIT es de dominio publico con mediciones HRTF de alta
resolucion. Abarca hasta 710 posiciones diferentes del espacio recorriendo elevaciones desde
los -40 hasta los 90 grados. Es importante destacar, que para cada valor de elevacion, hay un
rango distinto de valores de acimut. Esto hace que la distribucién en el espacio no sea regular,
y se convierte en una desventaja ya que complica la realizacion de la triangulacion de
Delaunay, necesaria dentro del método de interpolacion.

Como ventaja se podria destacar que esta base de datos esta implementada en el lenguaje
de programacién C++, por lo que el desarrollo del plugin se podria haber realizado
directamente en dicho lenguaje, evitando traducciones de lenguajes. Ademads, C++ es
bastante mas universal y popular que C# dentro de la comunidad de programadores, por lo
que la busqueda de algunas funciones como la FFT o la triangulacién de Delaunay en version
free para su uso dentro del plugin hubiera sido mas facil. Por otro lado, hay que decir que en
Unity, la importacion de plugins basados en C#, se puede hacer tanto con la version Indie
como con la Pro, mientras que los basados en C++ Unicamente se pueden importar usando la
versiéon Pro de Unity.

Una vez vistas las ventajas y desventajas de cada una, la eleccion de la base de datos CIPIC
esta motivada principalmente por el hecho de que la distribucion en el espacio de los puntos con
un filtro HRTF asociado es regular. Eso hace que mas tarde el método de interpolacién sea mucho
mas sencillo y rapido.

2.3 DISCONTINUIDADES

Tal y como se explica en el Apartado 2.1, el sonido binaural se obtiene aplicando los filtros
HRTF sobre una sefial de audio. Con ellos modificamos la sefial, simulando la posicion de la fuente
sonora en un punto concreto del espacio tridimensional.

Ahora bien, si queremos simular que la fuente sonora se desplaza de posicién, deberemos
trocear o dividir la sefial del audio en varios fragmentos, y aplicar a cada uno de ellos un filtro que
simule una posicién diferente. A cada uno de los fragmentos de la sefial los denominaremos
‘frames’. En el caso de Unity, cada frame consta de 1024 muestras, siendo la frecuencia de
muestreo de 44100Hz.

11

08 T T T T T r 08

06 . 06}
04} . 04}
o2f - 02
o | .
02F 1 02}
04 g 04}
06} 1 06}
08+ ‘ 1 08} 1
1 At J
12 20 200 500 800 o0 200 180 92 500 7000 1500 2000 2500

08
06 n 4
04
02H o
i .
02} 4
04+ 1
06} U B

08 o

s L s s L L
400 600 8OO 1000 1200 1400 1600 1800

500 1000 1500 2000 250 R 200

Figura 2.4- Representacién HRTF
a) Filtro HRTF aplicado sobre un frame.
) Overlap-Add aplicado sobre dos frames filtrados con el mismo filtro.
) Overlap-Add aplicado sobre dos frames filtrados con filtros distintos.
) Weighted Overlap-Add, aplicado sobre dos frames filtrados con filtros distintos.

QO T

El problema de aplicar varios filtros distintos sobre una sefial de audio, es la aparicién de
discontinuidades producidas por el cambio de filtro a lo largo del tiempo. Para solucionarlo se ha
optado por utilizar el método “Weighted Overlap-add”.

Tal como se puede apreciar en la Figura 2.4.a, al aplicar un filtro HRTF determinado sobre
un frame de audio, en este caso un seno puro, aparece al final del mismo un trozo de tamafio
igual al tamafio del filtro menos uno, correspondiente al transitorio. Si a dos frames consecutivos
se le aplica el mismo filtro a cada uno de ellos por separado, y se solapan con un nimero de
muestras igual al tamafio del filtro menos uno, obtenemos la sefial b) de la Figura 2.4, en la que
podemos observar que no hay ningun tipo de problema en la unién de frames.

En cambio, si a dos frames consecutivos, se le aplica a cada uno de ellos un filtro distinto y se
solapan con el nimero de muestras indicado anteriormente, obtenemos la gréfica c) de la Figura
2.4, en la que podemos ver como aparece una discontinuidad entre frames. Esto se traduce en
un ruido bastante audible de la sefial, en forma de golpes o ‘clicks’ sonoros.

La Ultima grafica de la Figura 2.4, es decir, la d), muestra como la introduccion del método
“Weighted Overlap-add”, reduce en gran medida la discontinuidad existente en la anterior
grafica.

12

2.3.1 OVERLAP-ADD

El método “Overlap-add” (Wikipedia. Overlap-Add) es una forma de realizar el filtrado
sobre una sefial digital de manera mucho mas eficiente. En vez de realizar la convolucién del filtro
con toda la sefial de audio, éste método divide la sefial en varios trozos, llamados frames, y realiza
una convolucion por separado con cada uno de ellos. De esta forma, el calculo es mucho mas
eficiente ya que pasamos de realizar una Unica convolucion sobre una sefial de gran tamafio, a
realizar varias convoluciones sobre sefiales mucho mas pequefias. Finalmente, se unen los frames
filtrados, realizando un peqguefio solapamiento de las muestras finales, tal y como se puede ver
en la Figura 2.5.

L L
z(t)] [l
! | AM—-1 5
w(t) 7
Ol 777277 mmm 777772
| o+
(t) 722222
' U—1(t)]
L S L+ 1 L+s»m (E—1)L+1 kL+1 EL M
Figura 2.5 - Representacion grafica del método de Overlap-Add

Para entender perfectamente el funcionamiento de este método hay que recordar, que
al realizar la convolucién de una sefial de tamafio L, con un filtro de tamafio M, el resultado serd
un vector de tamafio igual a L+M-1. Este exceso de tamafio respecto al vector inicial, es el que
estd asociado al transitorio, y por tanto serd el trozo de sefial que se solapara al siguiente frame.

Para que el método “Overlap-Add” funcione correctamente, y el resultado final sea el
mismo que en el caso de haber aplicado el filtrado sobre la sefial completa, el tamafio del vector
Yk, al que llamaremos N, debe cumplir lo siguiente. N > L+M-1.

Ahora bien, esto serd asi siempre y cuando se aplique el mismo filtro a todos los frames.
En caso de querer aplicar un filtro distinto a cada uno de los frames, el método “Overlap-add”, no
arreglara por si solo el problema de las discontinuidades y sus respectivos ‘clicks’ sonoros. Esto se
aprecia perfectamente en la Figura 2.4, concretamente en las graficas b) y c), ya que ambas
muestran la aplicaciéon del método “Overlap-Add” sobre dos frames consecutivos, con la
diferencia de que en la primera grafica el filtro aplicado es el mismo para los dos frames, mientras
gue en la segunda se han aplicado dos filtros distintos sobre los dos frames de audio.

13

2.3.2 WEIGHTED OVERLAP-ADD

Para minimizar las discontinuidades aparecidas, debemos aplicar el método “Weighted
Overlap-add” (Smith), cuyo resultado se puede ver en la grafica d) de la Figura 2.4.

Dicho método se basa en el “Overlap-Add” y la Unica diferencia entre ellos es que ahora
se realiza un enventanado después del filtrado y antes del solapamiento con el objetivo de
suavizar la discontinuidad entre un frame y otro. Por lo tanto, el procedimiento a seguir se basa
en trocear la sefial en varios frames, y aplicarle a cada uno de ellos un filtro HRTF. El vector
resultante del filtrado lo multiplicamos por una ventana de Hanning como la mostrada en la
grafica a) de la Figura 2.8, para después realizar el solapamiento.

07

06}

05f

04}

01F

08

1 L
200 400

L L
600 800 1000 1200

a). Ventana de Hanning.

06

0.4

02

-0.2

-0.4

06

\: V

08
0

c).

) 1 L
200 400 600

. L . L
800 1000 1200 1400 1600

Demostracion solapamiento con
enventanado.

Figura 2.8.-

04t .

D6 B

08 E

08} 3

0.6 b

0.4 J

02 J

L 1 1 L 1
0 200 400 600 800 1000 1200

b). Frame de audio a enventanar.

08r B

06 b

04} 1

02r 1

08F b

¥ L L L L L L .
0 200 400 600 800 1000 1200 1400 1600

d). Resultado final tras la suma.

Método “Weighted Overlap-Add” aplicado sobre dos frames de audio.

14

En la Figura 2.8 podemos ver todos los pasos seguidos para realizar correctamente el
“Weighted Overlap-Add”. Partimos de una sefial de audio, en este caso un seno como el de la
grafica b), el cual filtramos con un filtro HRTF. Después se multiplica con la ventana de Hanning
de la grafica a) y obtenemos los frames suavizados de la grafica c).

Si sumamos las muestras de ambos frames, obtenemos la sefial de la grafica d) ya que la ventana
gue hemos usado, la de Hanning, estd disefiada de tal forma que la suma de sus colas dan como
resultado 1, evitando alterar la escala de amplitud de la sefial.

2.4 INTERPOLACION

El objetivo final de este trabajo es poder realizar una interpolacién de los filtros HRTF, de
tal forma que podamos obtener cualquier punto que queramos del espacio tridimensional. Tras
una pequefia fase de investigacion y blusqueda de informacion, se pueden destacar 4 métodos
distintos (Gamper):

a) “The normalised VBAP weights”.

b) “Inverse distance weighting”.

c) “Bilinear interpolation of 3 measurement points”.
d) “Bilinear interpolation of 4 measurement points”.

De entre todos ellos, el elegido para este trabajo ha sido el tercero, “Bilinear Interpolation of 3
measurements points” debido a su efectividad y facilidad de adaptacion tanto al entorno Matlab

como el de Unity. El esquema a seguir para llevar a cabo este método, se puede ver en la Figura
2.9.

Realizar Triangulacién de 20 4 . . .
Delaunay 154

Elevation [deg]
(=] LA
7

R X R
Busqueda del triangulo en que NS NG TG NE TG Na
se encuadra la posicién deseada 5+
—10 ¥ + ’
1] 5 10 15
Azimuth [deg]
Calculo de los pesos de cada Figura 2.10.- Interpolacién de 3y 4 puntos.

vértice

Caculo de la Interpolacion

Figura 2.9.- Pasos a seguir en la) . B
interpolacién Figura 2.11- Triangulacién sobre una esfera.

15

Como su propio nombre indica, el método “Bilinear Interpolation of 3 measurements
points” realiza la interpolacion basandose en tres puntos distintos de medida y calculando sus
pesos. Para escoger los tres puntos de medida, lo primero que tenemos que hacer es realizar la
triangulacion de Delaunay partiendo de los puntos del espacio en los que existe un filtro HRTF
disponible en la base de datos. Una vez realizada la triangulacion, los tres puntos de medida se
corresponderan con los tres vértices del tridngulo en que se encuentra inscrito el punto que
gueremos interpolar. La Figura 2.10 muestra una ‘X’ que representa el punto en el que queremos
obtener el filtro interpolado, inscrita dentro de un cuadrado negro (“Bilinear Interpolation of 4
measurements points”), y de un triangulo verde (“Bilinear Interpolation of 3 measurements
points”). Sabiendo que el triangulo que lo encuadra es el de color verde, deberemos obtener los
filtros HRTF que se encuentren en los puntos marcados por sus tres vértices, es decir los puntos
(5,0), (10,0) y (10,10) y calcular el filtro interpolado con la suma ponderada de los tres. El peso
gue se aplica a cada filtro esta determinado por la distancia euclidea existente entre el punto ‘X’
y el vértice correspondiente.

2.4.1 TRIANGULACION DE DELAUNAY

La triangulacion de Delaunay (Wikipedia. Triangulacion de Delaunay), es una red de
triangulos que cumple la condicién de Delaunay. Esta condicion dice que la circunferencia
circunscrita de cada triangulo de la red no debe contener ningln vértice de otro triangulo. Un
ejemplo de triangulacién realizada sobre una esfera, se puede ver en la Figura 2.11.

Como vya se ha comentado anteriormente, la base de datos CIPIC proporciona sus filtros
HRTF distribuidos de una forma regular a lo largo del espacio tridimensional. Esto quiere decir,
gue para cada valor de elevacién, tenemos siempre el mismo nimero de valores de acimut, lo
gue hace que se obtenga una triangulacion de Delaunay como la mostrada en la Figura 2.12.

Triangulacion de Delaunay
T

250 - :

200 = =

150 F= =

100

Elevacion (°)

50

-1 60 40 20 [20 a0 60 80
Acimut (°)

Figura 2.12.- Triangulacién de Delaunay realizada sobre la base de datos CIPIC.

16

2.4.2 BUSQUEDA DEL TRIANGULO 0

Una vez obtenida la triangulacién de Delaunay, ya
tenemos el espacio perfectamente delimitado en varios
triangulos cuyos vértices se corresponden con aquellos puntos
del espacio que contienen un filtro HRTF.

ABQ

Por lo tanto, cualquier dupla de acimut y elevacion, tendra
siempre un tridngulo que la encuadre, siendo sus vértices los
tres puntos de medida necesarios para realizar el método de
interpolacion elegido, el “Bilinear Interpolation of 3
measurements points”.

C
Sabiendo esto, el siguiente paso consiste en conocer o calcular Figyra 2.13. Representacion

dentro de qué triangulo se encuentra el punto que queremos de dos triangulos y un punto P

interpolar. inscrito dentro de uno de ellos.

El algoritmo seguido en este trabajo se basa en el concepto de orientacién
(Departamento de Matematica Aplicada. Universidad Politécnica de Madrid). La orientacién de
cada triangulo se determina de acuerdo a la direcciéon del movimiento cuando se visitan los
vértices en el orden especificado.

Fijandonos en la Figura 2.13, el punto P se encuentra dentro del tridngulo formado por los vértices
ABC, pero no esta dentro del tridngulo ABQ. Visualmente es facil, pero a la hora de calcularlo con
ordenador ya no es tan intuitivo.

El algoritmo que se va a seguir consiste en comprobar si la orientacion de los tridangulos
formados por dos vértices mas el punto P es la misma que la del tridngulo principal. En caso de
no coincidir todas las orientaciones, se deduce que el punto no esta inscrito en ese triangulo.

Es decir, para el caso del tridngulo ABC de la Figura 2.13, la orientacién del mismo ha de coincidir
con la orientacion del triangulo ABP, el BCP, y el CAP. Mientras que para el caso del tridngulo ABQ,
la orientacién debe coincidir con la de los tridngulos ABP, BQP y QAP.

Ambos triangulos principales ABQy ABC comparten el subtriangulo ABP, por lo tanto sabiendo la
orientacién de cada uno de ellos, y viendo cual coincide, sabremos a qué triangulo pertenece el
punto P. Fijdndonos de nuevo en la Figura 2.13, se puede ver que el tridngulo ABC tiene su
orientacién en sentido horario, mientras que el tridngulo ABQ tiene sentido anti horario. Sabiendo
que el subtridngulo ABP tiene sentido horario, podemos descartar que el punto P se encuentre
dentro del tridngulo ABQ, ya que sus orientaciones no coinciden.

Ahora bien, que ABP y ABC coincidan en su orientacidon no asegura que P pertenezca a
ese triangulo, ya que aun faltan por comprobar los otros dos subtridngulos CAP y BCP. En este
caso, ambos subtridngulos tienen orientacién en sentido horario por lo que ahora si, al coincidir
las tres orientaciones, podemos asegurar que el punto P pertenece al triangulo ABC.

17

Una vez comprendido visualmente el método, pasamos a explicar el algoritmo
importante, el que usaremos después en nuestro programa para conocer las orientaciones de
cada tridngulo y asi deducir en qué triangulo se encuentra el punto P. La férmula es la siguiente:

(Al.x—A3.x)*(A2.y —A3.y)— (Aly —A3.y)*(A2.x —A3.x)

Si el resultado de la ecuacion es mayor o igual que cero, la orientacién es positiva. En cambio, si
el resultado es menor que cero, quiere decir que la orientacion del tridngulo es negativa.

Hay que tener en cuenta que ‘Al’, ‘A2’ y ‘A3’ representan los tres vértices del triangulo que
estemos calculando en ese momento, y que las indicaciones ‘x’ e “y’ indican las coordenadas en
abscisas o en ordenadas del vértice correspondiente.

Por ejemplo, si el tridngulo ABC, se encuentra en las siguientes coordenadas cartesianas. A =
(0,10), B= (0,0) y C = (10,0), la orientacion obtenida seria positiva, y se habria calculado de la
siguiente forma:

(0 -10)*(0 -0)—(10 -0)*(0 - 10) =100=>0

Este célculo se realizaria con todos los tridngulos, y de esa forma, comparando todas las
orientaciones obtenidas, se deduciria cudl es la ubicacion del punto P.

Una vez conocido el triangulo en cuestion, ya sabemos cuales son los tres puntos de
medida que necesitdbamos para realizar la interpolacidn, ya que éstos se corresponden con los
filtros determinados por los valores de acimut y elevacion de los tres vértices.

2.4.3 CALCULO DE LOS PESOS Y DE LA INTERPOLACION

Tras realizar la triangulacion de Delaunay, y haber encontrado el tridngulo que contiene
el punto objetivo, hay que calcular los pesos de cada uno de sus vértices. En este caso, el calculo
de los pesos (Gamper) se basa en medir la distancia Euclidiana existente entre el punto ‘P’ y los
tres vértices del triangulo ‘ABC’. Después se normalizan los valores obtenidos. Las férmulas
seguidas son las siguientes:

d(4,P)
d(4,P) +d(B,P) + d(C,P)

d(A,P)= J(P.x —A.x)2+ (P.y — A.y)? Peso(A) =

Con los pesos ya calculados, Unicamente falta realizar la interpolacién. Esto es tan sencillo
como obtener los filtros HRTF de cada uno de los vértices del tridngulo, y realizar una suma
ponderada aplicando los pesos calculados. Recordar que se tiene que hacer por separado el canal
izquierdo y derecho, ya que los filtros no son los mismos.

18

2.5 AUDIO EN UNITY

El audio en Unity estd compuesto por 3 grupos principales. Los “AudioSource” que son
los objetos emisores, los “Audiolistener” que son los receptores u oyentes, y los “AudioClip” que
son los que contienen los archivos de audio. (Beltran Blazquez)(Unity)

2.5.1 AudioSource

io Source M %,
“AudioSource” es la clase encargada de ' - % helicopterola ©
reproducir un “AudioClip”. En la Figura 2.15 podemos This i s 20 Sound.
apreciar en su parte superior, como el “AudioClip” que Mute
tiene asociado en este caso el “AudioSource” es Bypass Effects
“helicopteroLa”, el cual es un sonido 2D. La reproduccion Bypass Listener Ef

Bypass Reverb Zo
Play On Awake W
Loop v

de sonido 2D o 3D se elige dentro del “AudioClip”.

El “AudioSource” tiene varias propiedades destinadas a
configurar la emision del sonido de tal forma que
podemos aplicar filtros, seleccionar la reproduccién en
bucle o asignar un volumen adecuado al sonido. Ademas,
segln sea un sonido 2D o 3D, se podran seleccionar unos
ajustes u otros.

Priority

Volume
Pitch

Doppler Level

Volume Rolloff

L Min Distance
Dentro de una escena puede haber multiples

Pan Lewvel

“AudioSources”. Spread

Max Distance

@ Inspector

Settings

Open

Load into memory

Volume Pan

und Settings

Figura 2.15.- Propiedades de un
Figura 2.14.- Propiedades de un “AudioClip”. “AudioSource”.

19

2.5.2 AudioClip

Clase que contiene el archivo de audio que se va a reproducir en el “AudioSource”. Unity
es capaz de importar los siguientes formatos: .aif, .wav, .mp3y .ogg.
Fijandonos en la Figura 2.14, podemos ver como marcando la casilla correspondiente, indicamos
a Unity que queremos que reproduzca el archivo de audio en 3D.
En cambio, si generamos el audio 3D mediante el plugin creado en este trabajo, es necesario
indicarle a Unity que el archivo es 2D.

2.5.3 Audiolistener

Es la clase destinada a recibir el sonido generado por los “AudioSources” actuando como
un microfono. Solo puede haber un “Audiolistener” por escena, y éste siempre estara por defecto
asociado a la camara.

2.6 FUNCION OnAudioFilterRead (UNITY)

El objetivo que se busca con el desarrollo del plugin, es el procesado de audio 3D en
tiempo real. El propio Unity, si queremos disponer de las muestras de audio en tiempo real, nos
ofrece la posibilidad de obtenerlas gracias a la funcién OnAudioFilterRead, aunque ésta no existio
hasta la version 3 de Unity. En antiguas versiones era necesario hacer uso de las funciones
getData() y setData() para poder tener acceso a las muestras de audio, y procesarlas seguin
convenga. Con la primera de ellas se obtiene un array que contiene la sefial de audio de un clip
de sonido concreto, mientras que con la segunda funcion podemos establecer o asignar nuestro
propio array de sonido dentro del clip de sonido elegido. Con estas funciones, estamos cambiando
el propio clip de audio, por lo que en caso de configurar una reproduccion en bucle, y procesar
audio en tiempo real, una vez que lleguemos al segundo ciclo, las muestras que obtendremos
seran las modificadas en el primer bucle, y no las muestras originales del clip de sonido.

A partir de la version 3 de Unity, se introdujo la funcion ‘OnAudioFilterRead’ con la que
podemos obtener y modificar el array de audio proveniente del AudioListener, insertando nuestro
propio filtro dentro de la cadena de audio del DSP. En este caso estamos modificando las muestras
del buffer de salida de la cadena de audio, por lo que no afectara al propio clip de sonido, y
evitamos problemas en las reproducciones en bucle.

20

Fijandonos en la pagina de referencia de Unity (Unity), podemos ver que esta funcion se
hereda de la clase MonoBehaviour, y que tiene dos pardmetros.

MonoBehaviour.OnAudioFilterRead(float[], int)

El primero de ellos, es un array de audio pasado por referencia, y que contiene valores
comprendidos entre -1.0f y 1.0f. Al estar pasado por referencia, las modificaciones que hagamos
sobre esta variable, seran las que se reproduzcan después en la cadena de audio. Para evitar
problemas, lo que hacemos dentro del script de Unity, es copiar los valores de dicha variable sobre
una auxiliar, la cual procesamos con el plugin, para finalmente copiar el array procesado en el
array inicial proporcionado por la propia funcién.

El segundo parametro es un nimero de tipo entero que indica el nimero de canales que se esta
reproduciendo. En nuestro proyecto va a ser siempre estéreo con dos canales. Para gestionar
estos dos canales, Unity entrelaza las muestras de cada canal dentro de un Unico array, siendo las
muestras pares las correspondientes al canal izquierdo, y las muestras impares las
correspondientes al canal derecho.

La funcién OnAudioFilterRead se activa cada vez que el buffer de audio estd completo, y
teniendo en cuenta que la frecuencia de muestreo es de 44100Hz, y el tamafio del buffer de cada
canal es de 1024 muestras, la funcion se activara aproximadamente cada 23ms. Hay que recordar,
gue al ser estéreo se realiza un entrelazado de los dos canales, por lo que el tamafio final del array
gue proporciona la funcién OnAudioFilterRead es de 2048 muestras.

21

https://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.html

3. DESARROLLO DEL TRABAJO

Una vez explicados las principales ideas que se aplican en este trabajo, pasamos a explicar
el desarrollo que se ha seguido durante su elaboracion.

Como al principio los filtros HRTF y el audio en 3D era un tema desconocido, se prefirid
dividir el trabajo en 2 fases, de tal forma que al principio se invirtiera tiempo en familiarizarse con
la base de datos HRTF y realizar distintas pruebas, para después, programar el plugin final.

Siguiendo esta idea, empezaremos con el programa Matlab, con el que se ha realizado una
primera pequefia aproximacion al objetivo final, y seguiremos con la programacion del plugin en
el lenguaje de programacién C#, mediante el entorno de desarrollo de Visual Studio. Este Gltimo
plugin serd el que importemos finalmente en una escena creada dentro de Unity.

3.1 MATLAB

Matlab es un lenguaje de alto nivel y un entorno interactivo para el calculo numérico, la
visualizacion y la programacion. La eleccion de este programa estd motivada por su gran sencillez
de uso, la posibilidad de representar graficamente las variables, y el hecho de tener muchas
funciones importantes ya implementadas de forma predeterminada como son la transformada
de Fourier directa e inversa, o la triangulacion de Delaunay.

El desarrollo en Matlab se ha llevado a cabo realizando pequefios hitos, para poco a poco
llegar al objetivo final.

3.1.1 PRIMERA FASE

La primera fase consiste en introducirnos en el mundo de las HRTF, aprender qué son,
como se utilizan y para qué sirven. Como ya se ha explicado dentro del Apartado 2.1, existen varias
bases de datos HRTF distintas, y en este trabajo se ha optado por la CIPIC.

22

La ventaja principal de la CIPIC HRTF Database es que esta implementada en lenguaje
Matlab, y por lo tanto podemos hacer uso de cualquiera de los filtros que hay disponibles para
cada sujeto. (En el desarrollo del plugin Unicamente se ha traducido la base de datos del sujeto
numero 18, ya que hacerlo con todos era inviable). La diferencia entre un sujeto y otro esta en
que cada persona se sentirda mas o menos identificada con cada uno de ellos en funcion de sus
caracteristicas fisicas y en consonancia, apreciard mejor o peor el sonido binaural. La importacién
dentro de Matlab se realiza con la siguiente sentencia:

load 'subject _018\hrir_final.mat’;

Una vez cargada la base de datos, solo falta obtener los filtros que buscamos en funcién
del acimut y de la elevacion. Recordar que se deben obtener por separado los filtros
correspondientes a cada uno de los canales, puesto que las orejas de las personas no son
perfectamente simétricas y hay ligeras diferencias entre los filtros:

h_| =squeeze(hrir_I{ nAcimut, nElevacion, :));

En las sentencias anteriores hay que tener en cuenta que los valores de acimut y elevacion
que introduzcamos deben corresponderse con alguno de los que ofrece la base de datos, ya que
si no saltard un error. También hay que tener en cuenta que no hay que introducir el valor de
acimut y elevacion en grados, sino que hay que indicar la posicidon que ocupa la elevacion y el
acimut deseados dentro del vector de acimuts y elevaciones. Dicho vector consta de 25 valores
comprendidos entre -80°y 80° en acimut, y de 50 valores comprendidos entre -45°y 230°625°
en elevacion.

Una vez obtenidos ambos filtros, filtramos la sefial de audio completa para simular que
una fuente de audio se encuentra en una posicidon concreta y estatica del espacio. Para filtrar la
sefial se ha tenido en cuenta dos posibles métodos. El primero de ellos se basa en la convolucién
de la sefial de audio con el filtro HRTF, mientras que el segundo método consiste en hacer uso de
la transformada Fourier y multiplicar ambas sefiales en el dominio transformado. Es decir:

y_|=conv (audio, h_I); y_I =ifft(fft(audio)*fft(h_l));

Finalmente, cuando ya se han filtrado ambos canales, hay que unirlos dentro de una Unica
variable para poder reproducirlo en formato estéreo.

23

3.1.2 SEGUNDA FASE

En la primera fase, se aplicé un Unico filtro a toda la sefial de audio por lo que el resultado
era la simulacion de una fuente estatica, sin movimiento. En la segunda fase pasamos a aplicar
varios filtros a lo largo de la sefial con el objetivo de obtener un efecto de movimiento de la fuente
sonora. Para conseguirlo, debemos trocear la sefial en pequefios trozos, llamados frames, vy
aplicarle a cada uno de ellos un filtro distinto.

Las primeras pruebas se basaron en movimientos circulares, tanto horizontales como
verticales alrededor del emisor. Al reproducir estos movimientos, se podia apreciar perfectamente
el desplazamiento de la fuente de sonido, pero aparecia un pequefio ruido en forma de ‘clicks’ o
golpes cada vez que habia un cambio de filtro. Este problema debido a las discontinuidades ha
sido bastante importante a lo largo del trabajo ya que costd bastante dar con la solucién de forma
efectiva, y por eso se explica detalladamente en el Apartado 2.3. En dicho apartado también se
explica el método seguido para corregir el problema, y que finalmente consistid en aplicar un
“Weighted Overlap-Add” usando la ventana de Hanning.

3.1.3 TERCERA FASE

Una vez conseguido filtrar una sefial de audio con varios filtros distintos proporcionando
algo de movimiento a la fuente, es el momento de realizar el objetivo final del trabajo, la
interpolacion de los filtros. El método seguido se explica en el Apartado 2.4.

Para realizar esta tarea, se ha creado dentro de Matlab una funcidon llamada
“interpolador”. Dicha funcién es ejecutada por otra funcién a la que se ha llamado “Audio3D” y
que es la encargada de realizar el Overlap-Add y el enventanado. Ambos archivos se pueden
encontrar en los ficheros adjuntos de este trabajo junto a un script con el nombre “main”.

Los resultados obtenidos con este método de interpolacion junto al Overlap-Add vy el
enventanado con la ventana de Hanning, son bastante satisfactorios, dando como resultado un
sonido binaural muy convincente vy libre de ruidos. En la programacion en C# se adoptara el
modelo de programacion seguido en estos ficheros de Matlab.

24

3.2 VISUAL STUDIO

Microsoft Visual Studioes unentorno de desarrollo integrado (IDE) para sistemas
operativos Windows. Soporta multiples lenguajes de programacion tales como C++, C#, Visual
Basic .NET, F#, Java, Python, Rugby, PHP.

Visual Studio permite a los desarrolladores crear aplicaciones, sitios y aplicaciones web,
asi como servicios web en cualquier entorno que soporte la plataforma .NET. Asi se pueden crear
aplicaciones que se comuniquen entre estaciones de trabajo, paginas web, dispositivos moviles,
dispositivos embebidos, consolas, etc. (Wikipedia. Microsoft Visual Studio)

3.2.1 ESTRUCTURA DEL PLUGIN

El objetivo principal en Visual Studio, es la de desarrollar un plugin que podamos importar
en Unity3D y que procese audio binaural en tiempo real. Para ello, vamos a seguir la estructura
utilizada anteriormente en Matlab, con la diferencia de que ahora no disponemos de funciones
como la convolucién o la transformada de Fourier. Para poder realizar dichos célculos, vamos a
hacer uso de la libreria Alglib (ALGLIB®- numerical analysis library, 1999-2014.), la cual ofrece una
enorme cantidad de funciones para el calculo matematico de todo tipo. Esta libreria tiene licencia
gratuita y se encuentra disponible en Internet.

El leguaje elegido para la programacion del plugin dentro de Visual Studio es C#. El motivo
de la eleccién de este lenguaje frente a C++, se basa principalmente en el hecho de que es
necesario disponer de la version Unity PRO para poder importar un plugin que esté basado en
C++. En cambio un plugin que esté programado en C# se podra importar tanto en la versién Indie
como en la PRO.

En la Figura 3.1, se muestra la estructura que se ha seguido para elaborar el plugin. En
dicha figura, se han representado tanto las clases como los métodos, diferencidandose en que las
primeras estadn coloreadas en naranja claro, mientras que las segundas tienen un color azulado.
Las dos clases llamadas “Databaselzq” y “DatabasDer”, estan destinadas a almacenar los filtros
HRTF de la base de datos CIPIC correspondientes al sujeto 18. Recordar que la base de datos
estaba disponible en lenguaje Matlab, y se ha tenido que traducir al lenguaje C#, siendo éste el
motivo de que sélo se encuentren los filtros correspondientes a un sujeto.

Para poder acceder a los filtros almacenados dentro de “Databaselzq” y de “DatabaseDer” desde
otras clases, se ha creado el método publico “getFiltro”.

La tercera clase en cuestion, llamada “Audio3D” es la clase principal, y contiene el método
“aplicarAudio3D()” el cudl se encarga internamente de invocar al resto de métodos necesarios
para llevar a cabo el procesado del audio binaural.

25

Databaselzq Audio3D

U

DatabaseDer i

3

TRUE I I FALSE

i—d h—d

Figura 3.1.- Estructura seguida en la programacion del plugin. El color naranja representa
las Clases, mientras que el azul representa métodos de la Clase.

A continuacion se explica brevemente la funcién que desempefia cada uno de los
métodos que se han creado dentro del plugin:

e aplicarAudio3D (ref audio, acimut, elevacion, audioNext, out cola): método publico
encargado de llevar a cabo el procesado del sonido binaural.
Pardmetros:
l. ref audio: Vector de floats pasado por referencia que contiene el audio a
procesar. Devuelve el sonido ya filtrado.
Il. acimut: Entero que contiene el valor del acimut en grados.
M. elevacion: Entero que contiene el valor de la elevacion en grados.
IV. audioNext: Vector de floats que contiene el frame de audio posterior.
V. outcola: Devuelve el trozo de sefial que habra que sumar al siguiente frame
para realizar el “Overlap-Add”.

Este método, tal como se ve en el esquema anterior, llama a la funcién “boolinterpolar”
y segun su resultado, realiza unas acciones u otras, hasta obtener el filtro adecuado, y
devolver el audio debidamente filtrado.

e interpolar = boollnterpolar (acimut, elevacion, out nAcimut, out nElevacion): método
privado, encargado de comprobar si es necesario realizar la interpolacién.
Pardmetros:
l. interpolar: Booleano que vale ‘true’ en caso de ser necesaria la interpolacion.
De no ser necesario, valdria ‘false’.
I. acimut: Entero que contiene el valor del acimut en grados.
[, elevacion: Entero que contiene el valor de la elevacion en grados.
V. nAcimut: Entero que contiene el indice dentro del vector de acimuts
disponibles dentro de las HRTF.

26

V. nElevacion: Entero que contiene el indice dentro del vector de acimuts
disponibles dentro de las HRTF.

¢ hacerinterpolacion (acimut, elevacion, out filtrolzg, out filtroDer): método de caracter
privado, utilizado por el método “aplicarAudio3D” para realizar el algoritmo de
interpolacion y obtener el filtro adecuado.
Pardmetros:
I. acimut: Entero que contiene el valor del acimut en grados.

Il. elevacion: Entero que contiene el valor de la elevacién en grados.

. Afiltrolzq: Vector que contiene el filtro interpolado del canal izquierdo.

IV. filtroDer: Vector que contiene el filtro interpolado del canal derecho.

Internamente realiza los algoritmos descritos en el Apartado 2.4, correspondientes a la
triangulacion de Delaunay, busqueda del tridangulo que encuadra al punto objetivo,
calculo de los pesos, y obtencion del filtro interpolado.

e aplicarFiltro (ref audio, filtrolzq, filtroDer): método de caracter privado, utilizado en dltima
instancia para aplicar el filtro adecuado a la sefial de audio correspondiente.
Pardmetros:

I. audio: Vector que contiene el audio a procesar.
Il. filtrolzq: Vector que contiene el filtro a aplicar en el canal izquierdo.
. filtroDer: Vector que contiene el filtro a aplicar en el canal derecho.

El filtrado se puede realizar tanto con una convolucidon como con una multiplicacion en
el dominio transformado de Fourier. Para poder realizar dichas operaciones, se ha
contado con la plataforma de andlisis numérico y biblioteca de extraccion de datos Alglib
(ALGLIB® - numerical analysis library, 1999-2014.), la cual se encuentra disponible en
varios lenguajes de programacion (C++, C#, Pascal, VBA) y cuenta con licencia gratuita.

Una vez que se ha programado todo lo descrito anteriormente, llega el momento de
compilar el cédigo y generar el plugin que usaremos dentro de Unity.

27

3.3 UNITY

Unity es un ecosistema de desarrollo de juegos: un poderoso motor de renderizado
totalmente integrado con un conjunto completo de herramientas intuitivas y flujos de trabajo
rdpido para crear contenido 3D interactivo; publicacién multiplataforma sencilla; miles de activos
de calidad, listos para usar en la Tienda de Activos y una Comunidad donde se intercambian
conocimientos (Unity).

3.3.1 PRIMEROS PASOS

Una vez creado el plugin destinado a procesar el audio binaural, es el momento de crear
un proyecto en Unity con el que poder testear y probar su correcto funcionamiento. Es importante
destacar que Unity es una plataforma que cuenta con una comunidad de gente muy activa a la
hora de compartir, y ayudarse mutuamente en la elaboracién y programacion dentro de los
proyectos. Esto hace que haya un montdn de videos y de foros con tutoriales y referencias de
cddigo que ayudan de gran manera a iniciarnos en este mundo.

Con todas estas ayudas, y después de algin proyecto de prueba, se abordd la creacién
del proyecto final con un modelo de cardacter sencillo, y usando siempre formas predefinidas o de
forma gratuita dentro de la UnityStore.

3.3.2 INTEGRACION DE LA DLL

Una vez creada la escena, pasamos a integrar nuestro plugin dentro del proyecto. Como
ya se ha comentado anteriormente, el propio Unity ofrece una gran cantidad de informacién y
tutoriales acerca de su plataforma, ademads de disponer de un foro oficial en el que personas de
todo el mundo participan activamente resolviendo las dudas de lo demds por muy simples que
sean. Gracias a todo esto, y al propio canal de Unity en Youtube (www.youtube.com), en el que
se cuelgan una gran variedad de video tutoriales, la integraciéon del plugin en el proyecto ha sido
bastante sencilla.

La formula consiste en crear una carpeta llamada ‘plugins’ dentro del directorio ‘Assets’, e incluir
el plugin en su interior. Después se crea un script en lenguaje C#, y siguiendo las indicaciones de
la pagina de referencia de Unity, se importa la libreria con el siguiente comando:

Proyecto.Audio3D miAudio = new Proyecto.Audio3D();

28

http://www.youtube.com/

Con esta sentencia lo que estamos haciendo es declarar una variable de la clase
“Audio3D” con la que podremos invocar al método “aplicarAudio3D”

miAudio.aplicarAudio3D(ref audioActual, acimut, elevacion, audioNext, out cola);

| “ |u | “

El motivo de incluir como pardmetros tanto el “audioActual” como el “audioNext”, junto
a una variable “cola”, se debe al método “Weighted Overlap-Add” explicado en el Apartado 2.3.2.
Dichas variables, “audioActual” y “audioNext” hacen referencia tal y como indican sus nombres,
a los vectores que contienden el frame de audio actual, y el inmediatamente posterior. Como en
Unity nos encontramos con audio en tiempo real, no es posible obtener el frame futuro de forma
directa, sino que tenemos que aplicar un delay de un frame de audio dentro de nuestro script.

La variable “cola” es un pardmetro de salida del método “aplicarAudio3D” que contiene las
muestras sobrantes de realizar la convolucién del frame actual con el filtro HRTF interpolado, ya
gue hay que recordar que el tamafio del vector de salida en una convolucién es igual a la suma
de los tamafios de las dos variables de entrada, menos uno. Es decir, si tenemos conv(A,B) =C, el
tamafio de C, serd igual a tam(A)+tam(B)-1. Como el tamafio del frame de audio es de 1024
muestras, y el vector de audio de salida sera mayor que esas 1024 muestras, las sobrantes se
guardan en la variable “cola”. Dicha variable ya se encuentra apropiadamente enventanada, y
habra que sumarla dentro del propio script de Unity, a las muestras iniciales del préximo frame,
para asi realizar el “Weighted Overlap-Add”.

3.3.3 CALCULO DEL ACIMUT Y DE LA ELEVACION

Al principio, los valores de acimut y elevacién que introduciamos en la llamada al método
“aplicarAudio3D”, se escogian de tal forma que se realizara un barrido circular alrededor del
oyente manteniendo la elevacidon constante y variando el acimut. Después se repetia el
procedimiento variando los valores de elevacién pero manteniendo los valores de acimut. Esto se
hacia estableciendo los valores dentro del propio script antes de ejecutarlo.

Tras esas primeras pruebas, se pasd a obtener en tiempo real los valores de acimut y
elevacién de un objeto respecto a la “MainCamera” que es donde se encuentra el “Audiolistener”.

Debido a que tiene que ser en tiempo real, vamos a calcular continuamente los valores de acimut
y elevacién dentro de la funcién Update(). Esta funcidn se ejecuta en cada frame de imagen, por
lo que siempre tendremos los valores actualizados para su uso dentro de la funcidén
“OnAudioFilterRead” la cual se activa cada 20 milisegundos.

El proyecto creado en Unity, se ha disefiado con un “first person controller”, lo que quiere
decir que el usuario maneja un personaje en primera persona, teniendo la capacidad de mover la
cdmara a su antojo. Esto repercute en que el célculo del acimut y de la elevacién no hay que
hacerlo respecto al propio mufieco, sino que también hay que tener en cuenta el movimiento de
la cdmara.

29

Sabiendo esto, el cdlculo del acimut y la elevacion se basa en obtener el vector que apuntadesde
nuestra “MainCamera” hasta el objeto que contiene el “AudioSource”. Una vez obtenido dicho
vector, usando relaciones trigonométricas podemos calcular tanto 8 como ¢, que se
corresponden respectivamente a la elevacién y el acimut.

Para conocer el vector que apunta desde nuestra cdmara hasta el objeto en cuestidn,
Unity dispone de una funcién llamada “InverseTransformPoint” dentro de la clase “Transform”.

Como pardmetro hay que introducir el “GameObject” al que esta asociado el “AudioSource”. El
resultado es una variable de tipo “Vector3”.

VectorRelativo = Camera.main.transform.InverseTransformPoint(transform.position);

3.3.4 PROYECTO FINAL EN UNITY

El proyecto final se ha dividido en 2 escenas, sin contar el menu interactivo encargado de
seleccionar una u otra. Ambas escenas cuentan con un Unico “AudioSource” y un unico
“Audiolistener”. La diferencia radica en que en la primera escena, el “AudioSource” se encuentra
fijo y sin ningun tipo de movimiento, y el objetivo es encontrarlo guidandote por el audio que él
mismo genera. La segunda escena consta de un “AudioSource” asociado a un helicdptero que se
desplaza de forma continua y predeterminada a lo largo del mapa.

En ambas escenas el “AudioListener” estd asociado al usuario, concretamente a la “MainCamera”.

3.4 CONCLUSION FINAL DEL TRABAJO

Como ya se comentd en el apartado de Matlab, al usar varios filtros distintos sobre una
sefial dividida en trozos, aparece el problema de las discontinuidades en cada cambio de filtro
HRTF. Estas discontinuidades se traducen en ‘clicks’ o golpes que resultan muy molestos
auditivamente.

La solucidon aportada fue el “Weighted Overlap-add”, con la dificultad de que en Unity,
estamos procesando audio en tiempo real con la funcién “OnAudioFilterRead”, por lo que
Unicamente disponemos de las muestras correspondientes al frame de audio actual. La solucion

30

adoptada es retrasar un frame completo el procesado del audio, de tal forma que el frame de
audio gque tratamos y devolvemos a la cadena de audio, no es el que nos da en ese instante la
funcion “OnAudioFilterRead”, sino que es la que nos dio en el anterior ciclo, y que hemos
guardado en una variable auxiliar.

Hay que destacar también que al usar la funcion “OnAudioFilterRead” estamos cogiendo
las muestras del buffer de salida de audio, por lo que en caso de haber mds de un “AudioSource”
en la escena, el buffer tendria los sonidos de todos los “AudioSources” ya mezclados. Esto es una
limitacion, ya que el plugin creado procesa el audio binaural respecto a una dupla de acimut y
elevacién concreta determinada por un Unico “GameObject”.

Si quisiéramos tratar audio binaural sobre varios objetos distintos, deberiamos aplicar nuestro
plugin sobre cada uno de ellos por separado, y siempre antes de que hayan sido mezclados. Esto
se podria intentar realizar con las funciones “getData()” v “setData()” explicadas en la parte de
Anexos, pero su implementacion se deja para posteriores proyectos.

31

Bibliografia

ALGLIB® - numerical analysis library, 1999-2014. s.f. http://www.alglib.net/.

Beltran Blazquez, JoséRamon. «Audio Inmersivo para entornos de realidad virtual.»
Oculus day.

CIPIC- Center for Image Processing and Integrated Computing University of California 1
Shields Avenue Davis, CA 95616-8553. The CIPIC HRTF Database.
http://interface.cipic.ucdavis.edu/sound/hrtf.html.

Departamento de Matematica Aplicada. Universidad Politécnica de Madrid. Punto
interior de un tridngulo.
http://www.dma.fi.upm.es/mabellanas/tfcs/kirkpatrick/Aplicacion/algoritmos.ht
m#puntolnterior.

Gamper, Hannes. «Selection and Interpolation of head-realted transfer functions for
rendering moving virtual sound sources.» Proc. of the 16th Int. Conference on
Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013.

Gardner, Bill, y Keith Martin. HRTF Measurements of a KEMAR Dummy-Head
Microphone. s.f. http://sound.media.mit.edu/resources/KEMAR.html.

Menggiu Zhang, Wen Zhang, Rodney A. Kennedy, and Thushara D. Abhayapala. «<HRTF
measurement on KEMAR manikin.» 23—-25 November 2009.

Smith, Julius Orion. Weighted Overlap Add.
http://www.dsprelated.com/dspbooks/sasp/Weighted Overlap_Add.html.

Unity. s.f. www.unity3d.com.

—. Unity. OnAudioFilterRead.
https://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnA
udioFilterRead.html.

Wikipedia. Escucha Binaural. http://es.wikipedia.org/wiki/Escucha_binaural.

Wikipedia. Microsoft Visual Studio.
http://es.wikipedia.org/wiki/Microsoft_Visual_Studio.

Wikipedia. Overlap-Add. s.f. http://en.wikipedia.org/wiki/Overlap_add.

Wikipedia. Triangulacion de Delaunay.
http://es.wikipedia.org/wiki/Triangulaci%C3%B3n_de_Delaunay.

32

33

ANEXOS

. ARCHIVOS MATLAB

En el CD adjunto se puede encontrar el path de Matlab con los scripts finales, ademas de
una versién intermedia que se ha querido incluir para demostrar los problemas que surgieron a
mitad de trabajo y la forma de resolverlos. Todos los scripts creados estdn debidamente
comentados para facilitar su entendimiento.

El path se divide en tres carpetas distintas. La primera de ellas, con el nombre
“CIPIC_hrtf database” contiene la base de datos CIPIC con los filtros HRTF, ademds de algun script
en el que se muestran de forma gréfica el funcionamiento de estos filtros. Esta carpeta no ha sido
modificada, y se puede descargar desde internet de forma gratuita a través del siguiente enlace:

http://interface.cipic.ucdavis.edu/sound/hrtf.html

Il VERSION INTERMEDIA

La segunda carpeta “Version intermedia” contiene un script en el que aun no se ha
incluido la interpolacion de filtros, Unicamente realiza el filtrado de una sefial de audio con varios
filtros distintos. La razon por la que se ha incluido es que en ella aparece el problema de los ‘clicks’
o golpes ruidosos debidos a las distintas discontinuidades. La solucién a este problema es como
ya se ha comentado, el método “Weighted Overlap-add”.

Dentro de la carpeta hay un script y una funcion. Ejecutando el primero, estamos
llamando internamente al segundo. Notese que el archivo de audio por defecto es SilbidoOeste,
incluido en el path, pero se puede poner otro distinto siempre y cuando sea un archivo .wav.

Los parametros de entrada de la funcién son cuatro, de los que hay que destacar el
segundo mediante el cual se puede elegir si queremos que la funcién filtre la sefial de audio entera
con los mismos valores de acimut y elevacion, o si queremos que simule el movimiento de la
fuente sonora alrededor del oyente, en cuyo caso podra ser un barrido horizontal o un barrido
vertical empezando en la parte delantera y finalizando en la parte trasera.

A continuacién se incluyen graficas tanto de la sefial original como de las filtradas con el
fin de visualizar los cambios generados con los filtros HRTF.

35

http://interface.cipic.ucdavis.edu/sound/hrtf.html

SENAL --> Seno.wav
Toda la sefial con el mismo filtro. Acimut = 0°, Elevacion = 0°.

Sefal entrada MONO

Amplitud

Muestras 4
Sefial salida Canal IZQUIERDO

el
=
=]
£
< 1 1 1 1 1 1 1
0 2 4 B 8 10 12
Muestras % 105
Sefial salida Canal DERECHO
= 1 T T T T T T
=
=]
£
c(1 1 1 1 1 1 1
0 2 4 B 8 10 12
Muestras % 105

Figura I.1.1. Representacion temporal.

Sefial entrada MONO

T T T T T T T

g 40 -
& 20f -
{ D 1 1 L L 1 [} L
-1.5 -1 05 0 05 1 15
Frecuencia (rad/s)
Sefial salida Canal IZQUIERDO
_g 40 B T T T T T T T]
%— 20 .
< ol : . : . .
-1.5 -1 05 0 05 1 1.5
Frecuencia (rad/s)
Sefial salida Canal DERECHO
-g 40 N T T T T T T T i
& 0t .
<L 0 b) :))
-1.5 -1 05 0 05 1 15

Frecuencia (rad/s)

Figura I.1.2. Representacion frecuencial.

36

SENAL --> Seno.wav
Toda la sefial con el mismo filtro. Acimut = -65°, Elevacion = 0°.

Sefial entrada MONO

Amplitud

Muestras 5
Sefial salida Canal IZQUIERDO

Armplitud

'
-y

Muestras 5
Sefial salida Canal DERECHO

- T T T
=
E—
{ 1 1 1 1 1 1 1
0 2 4 6 g 10 12
Muestras % 105
Figura 1.1.3. Representacion temporal.
Sefial entrada MONO
3 40+ -
? 20} o
D ! [} L L 1 [} 1
-1.5 -1 05 0 0.5 1 15
Frecuencia (rad/s)
Sefial salida Canal IZQUIERDO
g 40+ 5
? 20} .
D L & TR — 1 o~ sk & 1
-1.5 -1 05 0 0.5 1 15
Frecuencia (rad/s)
Sefial salida Canal DERECHO
g 40+ .
? 20} :
0t ! : L : . :
-1.5 -1 05 0 05 1 15

Frecuencia (rad/s)

Figura I.1.4. Representacion frecuencial.

37

SENAL --> Seno.wav
Toda la sefial con el mismo filtro. Acimut = 0°, Elevacion = 180°.

Sefial entrada MONO

Armplitud

Muestras 5
Sefial salida Canal IZQUIERDO

Armplitud

Muestras ; 105
Sefial salida Canal DERECHO
- 1 T T T T T T
=
%-
£
T
Muestras % 105
Figura I.1.5. Representacién temporal.
Sefial entrada MONO
_g 40 -l T T T T T I-
%‘E; 20 e
<(U 1 1 L 1 1 1 1
-1.56 -1 05 0 04 1 1.5
Frecuencia (rad/s)
Sefial salida Canal IZQUIERDO
g 40 -l T T T T T I-
i‘é 20 .
=L ok ; — y — . ,
-1.58 -1 05 0 05 1 15
Frecuencia (rad/s)
Sefial salida Canal DERECHO
g 40 -l T T T T T I-
%— 201 s
< ok , , : , , ,
-1.5 -1 05] 04 1 1.5

Frecuencia (rad/s)

Figura I.1.6. Representacion frecuencial.

38

SENAL --> SilbidoOeste.wav
Toda la sefial con el mismo filtro. Acimut = 0°, Elevacion = 0°.

Sefial entrada MONO

Amplitud

Muestras 5
Sefial salida Canal IZQUIERDO

Armplitud

Muestras 5
Sefial salida Canal DERECHO

Arnplitud

Muestras % 105

Figura 1.1.7. Representacion temporal.

Sefial entrada MONO

5000 T T T
=
=
=4
=
=y
D 1 1 1 1
-1.5 -1 1 1.5
Frecuencia (rad/s)
Sefial salida Canal IZQUIERDO
10000 T T T T T T T
el
=
= 5000 F =
£
-1.5 -1 0.5 0 05 1 1.5
Frecuencia {rad/s)
Sefial salida Canal DERECHO
SDDD T T T T T T T
=
=
=]
£
{ D L L L L L 1 L
-1.5 -1 0.5 0 05 1 15

Frecuencia {rad/s)

Figura 1.1.8. Representacion frecuencial.

39

SENAL --> SilbidoOeste.wav
Toda la sefial con el mismo filtro. Acimut = 35°, Elevacion = 0°.

Sefial entrada MOMNO

Arnplitud

Muestras 5
Sefial salida Canal IZQUIERDO

Arnplitud
o

Muestras 5
Sefial salida Canal DERECHO

Arnplitud

Muestras % 105

Figura 1.1.9. Representacion temporal.

Sefial entrada MONO
SUDD T T T T
=
=
i
£
=T
U 1 1 1 1
-1.5 -1 1 155
Frecuencia (rad/s)
Sefial salida Canal IZQUIERDO
4000 T T T T T T T
=
=
= 2000+ ’ l .
g
c(D 1 L L L L 1
-1.5 -1 -0.5 0 0.5 1 15
Frecuencia (rad/s)
Sefial salida Canal DERECHO
10000 T T T T T T T
=
=
= 5000 .
£
{ D L L i il il L
-1.5 -1 -0.5 0 0.5 1 15
Frecuencia (rad/s)
Figura 1.1.10. Representacion frecuencial.

40

SENAL --> SilbidoOeste.wav
Toda la sefial con el mismo filtro. Acimut = 0°, Elevacion = -45°.

Sefial entrada MONO

Armplitud

Muestras 5
Sefial salida Canal IZQUIERDO

Amplitud

Muestras 5
Sefal salida Canal DERECHO

Armplitud

Muestras

¥ 10
Figura 1.1.11. Representacion temporal.
Sefial entrada MONO
5000 T T T
=
=
£
£
=
D 1 1 1 1
-1.5 -1 1 155
Frecuencia (rad/s)
Sefial salida Canal IZQUIERDO
5000 T T T T T T T
=
=
£
£
(D 1 il il 1 1 L
-1.5 -1 05 0 05 1 1.5
Frecuencia {rad/s)
Sefial salida Canal DERECHO
5000 T T T T T T T
=
o=
£
£
{ D L L i L I L
-1.5 -1 05 0 0.5 1 15

Frecuencia (rad/s)

Figura 1.1.12. Representacion frecuencial.

41

SENAL --> Seno.wav
Recorrido vertical alrededor del oyente, empezando en -45°, y terminando en 230° pasando
por 0°,90° y 180° en elevacion.

Sefial entrada MONO
=
=
=
£
Y
Muestras 2 105
Sefial salida Canal IZQUIERDO
e
=
£
£
T
Muestras > 105
Sefial salida Canal DERECHO
]
=
=
£
<
Muestras % 105
Figura 1.1.13. Representacion temporal.
5 p
%10 e ._Sepal entra.da
%’ 1.5 : 1
= 1 (RN]
0 0.05 0.1 0.15 0.2 0.25 03
Mormalized Frequency (xxrad/sample)
X 105 Sefial salida Canal IZQUIERDO
? T TR NG R TR IO)
& 15 o .;. kY i {
£ qB s B B
[As e R
0 0.05 01 015 0.2 0.25 03
Mormalized Frequency (xx rad/sample)
X 105 Sefial salida Canal DERECHO
° 1.5 5500 9 1 e 4 Y | HTNE 1.4,’;.,
£ 1 LE; g
= I,) Bl 4
0.5 i R A I R R e i e 403N
0 0.05 0.1 0.15 0.2 0.25 03
Mormalized Frequency (xxrad/sample)
Figura 1.1.14. Espectrograma.

42

SENAL --> SilbidoOeste.wav
Recorrido vertical alrededor del oyente, empezando en -45°, y terminando en 230° pasando
por 0°,90° y 180° en elevacion.

Arnplitud

Amplitud

Armplitud

Sefial entrada MONO

Muestras 2 105
Sefial salida Canal IZQUIERDO

Muestras 5
Sefial salida Canal DERECHO

Muestras % 105

Figura I.1.15. Representacion temporal.

Time

Time

Time

%10 Sefial salida Canal IZQUIERDO

e TR L R Bl B P

S 0m5 01 015

SUR A Y T ARG NI 92 A R Y NG L E L b i IER
D15 02 025 03 035 04 045 05
Mormalized Frequency (xn rad/sample)

 F1 R ST Tl o) v T AT
02 025 03 035 04 045 05
Mormalized Frequency (xm rad/sample)

Sefial salida Canal DERECHO

Ji SRR GRS RO T Y IR)PP

D15 02 025 03 035 04 045 05
MNormalized Frequency (xn rad/sample)

Figura 1.1.16. Espectrograma.

43

SENAL --> Seno.wav
Recorrido horizontal alrededor del oyente, empezando en -80°, y terminando en -80°
pasando por 0°, 80° y 180° en acimut.

Sefial entrada MONO

Amplitud

Muestras 5
Sefial salida Canal IZQUIERDO

Armplitud

Muestras 5
Sefial salida Canal DERECHO

Arnplitud

Muestras 5

Figura 1.1.17. Representacion temporal.

% 10 Sefial entrada

Time

o 005 01 015 02 0% 03
Mormalized Frequency (xn rad/sample)

X 1.0 PRy

Time

U.SI' Lt T gl U]
i I

o 005 01 02 0% 03
Mormalized Frequency (xn rad/sample)
X 105 Sefial salida Canal DERECHO
o 150 e
£ i
0.5 fie it BN MR S NGB RO R N
0 0.05 0.1 015 0.2 0.25 0.3

Mormalized Frequency (xm rad/sample)

Figura 1.1.18. Espectrograma.

44

SENAL --> SilbidoOeste.wav
Recorrido horizontal alrededor del oyente, empezando en -80°, y terminando en -80°
pasando por 0°, 80° y 180° en acimut.

Sefial entrada MONO

Amplitud

Muestras 5
Sefial salida Canal IZQUIERDO

Armplitud

Muestras 5
Sefial salida Canal DERECHO

Arnplitud

Muestras % 105

Figura 1.1.19. Representacion temporal.

% 10 Sefal entrada

e e % """" T
5[:1_”{& B b i e R NS e T S
0 oos 01 015 02 025 03 035 04 045 05
Normalized Frequency (xx rad/sample)

Sefial salida Canal IZQUIERDO

Time

: ,ig;: Fa TR R Lt iy 1.;. AT .ll

e e Foe B EER R I T TG T R e
\CIN TR 3RS AL O TP T PR

015 02 025 03 035 04 045 05

Normalized Frequency (xx rad/sample)

%10 Sefial salida Canal DERECHO

Time

Time

JJ P PEENEE e e e s e

Df 0615 D02 025 03 035 04 025 05
MNormalized Frequency (xxn rad/sample)

Figura 1.1.20. Espectrograma.

45

11 VERSION FINAL

La tercera carpeta en cuestion corresponde a la version final en la que ya se realiza la
interpolacion de los filtros HRTF. Dentro de la carpeta se encuentran un script llamado “main” y
una funcién llamada “Audio3D”.

La funcion “Audio3D” es la encargada de realizar todo el proceso de interpolacion y de
filtrado de la sefial. Asi mismo, en su interior también se realiza la triangulacién de Delaunay,
aunque en el plugin basado en C# omitimos este paso, ya que el resultado de la triangulacién va
a ser siempre el mismo, y por lo tanto, no es necesario realizarlo continuamente. Basta con cargar
el resultado obtenido previamente cuando sea necesario.

El script “main” se encarga de llamar a la funcion “Audio3D”, y de representar al final los
resultados obtenidos en graficas adecuadas para la tarea.

Notese que el archivo de audio por defecto es SilbidoOeste, incluido dentro del path adjunto, pero
se puede cualquier otro siempre y cuando sea un archivo .wav.

A continuacién se incluyen gréficas tanto de la sefial original como de las filtradas con el
fin de visualizar los cambios generados con los filtros HRTF.

46

SENAL --> SilbidoOeste.wav

Recorrido horizontal alrededor del oyente, empezando en -80°, y terminando en -80°

pasando por 0°, 80° y 180° en acimut.

Sefial entrada MONO

=i
=
£
£
Y
Muestras 2 105
Sefial salida Canal IZQUIERDO
e
=
£
£
T
Muestras > 105
Sefial salida Canal DERECHO
]
=
£
£
=L

Mormalized Frequency (xn rad/sample)

Figura 1.11.2. Espectrograma.

Muestras % 105
Figura I.11.1. Representacion temporal.
Senal emrada
& il puaealle . o
= ‘. !1 e g SN CIEEY L AT) 2 .
5 ERACHITHE R He) : ST T R |)| Sk B R me W L1 TSR 3
1] 0. 05 0.1 0.15 02 0.25 03
Mormalized Frequency (xx rad/sample)
% 105 Sefial sallda Canal IZQUIERDO
., l I i l
@ | . :
£ W fj il Ik DAL LA LA B ST B Rl) LU
0 l:) : n i i 455 b Tl A M iy
0 0.05 0.1 D 15 0.2 0.25 0.3
Normalized Frequency (xn rad/sample)
X 105 Sefial salida Canal DERECHO
m‘ ; ‘ AT HIHM!N T ORI
11} | \ X
£ 1568 4 i '
= g) i T
5 Rt ‘1 “ kM- udd TRk R Sl T,
0 IJ.EIS 0.1 N 0.25 0.3

47

SENAL --> SilbidoOeste.wav
Recorrido vertical alrededor del oyente, empezando en -45°, y terminando en 230° pasando

por 0°,90°y 180° en e

levacion.

Sefial entrada MONO

Amplitud

Muestras
Sefial salida Canal IZQUIERDO

Armplitud

Muestras 5
Sefial salida Canal DERECHO

Arnplitud

Muestras 5

Figura 1.11.3. Representacion temporal.

Time

Time

Time

RN |3 HREY 1110 JET] [B R
¥y

AL L L TN e N i S I e
0.05 0.1 0.15 0.2 0.25 0.3
Mormalized Frequency (xa rad/sample)
Sefial salida Canal IZQUIERDO

; VB e AT e
0.1 0.15 02 0.25 03
Normalized Frequency (xxn rad/sample)

VAR S AE T T L ISEELAT R S

0.25 0.3

0.05 i R
MNormalized Frequency (xxn rad/sample)

Figura I.11.4. Espectrograma.

48

II. FUNCIONES GetData() y SetData().UNITY

Aunque finalmente estas funciones no se han usado en el proyecto final, si que han sido
de gran relevancia en el proceso de desarrollo del plugin, y por lo tanto se merecen un pequefio
inciso.

Ambas funciones han sido importantes a la hora de buscar una solucién al problema de
la disponibilidad de muestras futuras, lo cual es un requisito imprescindible para aplicar el método
“Weighted Overlap-Add” vy asi evitar el ruido producido por las discontinuidades de los filtros
HRTF.

Las funciones “getData()” y “setData()”, a diferencia de la funcion “OnAudioFilterRead”, no estan
relacionadas con el buffer de audio de salida, sino que estan relacionadas con el propio clip de
audio que tiene asociado un “GameQObject” concreto. Por lo tanto, la principal diferencia con
respecto a la funcién “OnAudioFilterRead”, es que ahora si que podriamos procesar cada
“AudioSource” por separado ya que no estamos obteniendo el buffer de salida de audio donde ya
estan todas las “AudioSource” mezcladas, si no que estamos modificando directamente las
muestras del clip de audio asociado al “GameObject” del “AudioSource”.

Con la funcién GetData(float[], int) obtenemos las muestras del clip de audio, mientras
que con la funcion SetData(float[], int) hacemos lo contrario, establecemos las muestras que
gueramos dentro del clip de audio, modificandolo.

El vector en el que queremos guardar o con el que queremos modificar el audio, se introduce
como primer parametro, y de su tamafio dependera el nimero de muestras que se tomaran o
modificaradn en el clip de sonido. El segundo parametro estd destinado a indicar el offset, es decir,
el nimero de la primera muestra a partir de la cual tomaremos las restantes del clip de sonido.

Por ejemplo, si nuestro vector tiene un tamafio de 1024, y establecemos la variable offset en 5,
con la funcién “GetData()”, estaremos guardando en nuestro vector de tamafio 1024, aquellas
muestras del clip de sonido comprendidas entre la muestra 5 y la 1029. Con la funcién “SetData()”
modificamos las muestras del clip de audio comprendidas entre la muestra 5 y la 1029 con los
valores del vector que le introduzcamos como pardmetro.

De esta forma, haciendo uso de la variable de offset, podemos acceder a las muestras futuras,
procesarlas, y devolvérselas al clip de audio.

Las dificultades que presentan estas funciones, y que han motivado que se descarten su
uso son por un lado la reproduccion en bucle, ya que el hecho de estar modificando el propio clip
de audio, hace que en la segunda reproduccion del archivo, las muestras ya no se correspondan
con el clip original, y si a las modificadas en el primera reproduccion, por lo que estariamos
filtrando una sefial ya filtrada anteriormente con otros valores de acimut y elevacién.

Otro problema que acarrean estas funciones es que éstas no cuentan con una interrupcion como
la de “OnAudioFilterRead” que hace que se active cada vez que el buffer estd completo (1024
muestras), por lo que si queremos que sea un procesado de audio en tiempo real, debemos
marcarnos nosotros nuestro propio ‘timing’ ya sea creando nuestras propias interrupciones, o

49

usando las funciones de delay de Unity de tal forma que se activen aproximadamente cada 20
milisegundos y asi podamos realizar el procesado del audio cada 1024 muestras.

También hay que tener en cuenta que “OnAudioFilterRead” se ejecuta en un hilo distinto al
principal, por lo que la carga de procesado que tenga el plugin el cual invocamos dentro de dicha
funcién, no afectara en principio al hilo principal. Al usar las funciones “getData()” y “setData()”
tendriamos que tener en cuenta esto, y crear los hilos nosotros mismos con el fin de que el plugin
creado no afecte en exceso al transcurso del programa principal.

50

. COMO USAR EL PLUGIN EN UNITY

Lo primero que tenemos que hacer, si queremos
usar el plugin de procesado de audio en 3D dentro de Unity,
es crear una carpeta llamada ‘Plugins’ dentro de la carpeta
principal ‘Assets’, e incluir en su interior el plugin tal y como
se puede ver en la Figura lll.1. Se recomienda usar el mismo
nombre ‘Proyecto’ para el plugin, ya que las siguientes
directrices se explican siguiendo esta nomenclatura. En caso
de cambiarlo, habra que tener en cuenta que sera necesario
cambiar otros campos para que funcione correctamente.

Una vez afadido el plugin al proyecto, debemos
crear un script basado en C# que se encargara de importar
el plugin y de realizar las operaciones oportunas para
ponerlo en marcha.

Este script debe adjuntarse a aquel “GameObject” que
contenga el “Audiolisterner”, acorddandose siempre de que
no puede haber mas de un “Audiolistener” en la escena si
gueremos evitar problemas. Normalmente el
“Audiolistener” estd asociado a la “MainCamera” tal como
se puede ver en la Figura ll1.2.

En dicha figura también podemos apreciar que el nombre
del script en este caso es "AudioFilter2” aunque puede
tener cualquier nombre, y que el script tiene dos
parametros publicos llamados “Mi Audio Source” vy
“Distancia Max”. En el primero de ellos hay que introducir el
“GameObject” que tenga asociado el “AudioSource”, en
este caso un helicéptero, mientras que el segundo
parametro se usa para determinar la distancia maxima a
partir de la cual ya no se oird el sonido del objeto.

(-] Animation

Plugins

Figura lll.1.- Incluir el plugin del proyecto
dentro de la carpeta “Assets/Plugins”.

¥ Camera

B ¥ GUILayer

* W Flare Layer

v Mouse Look (Script)
(® ¥ Audio Listener

¥ Audio Filter 2 (Script)
Script & Au
Mi Audio Source @ Helicoptero (Mil ©
Distancia Max 150

ponent

Figura I1l.2.- Script que importa el plugin
adjunto al “GameObject” que contiene el
“Audiolistener”.

Afladiendo dichos archivos y siguiendo las pautas indicadas, el plugin creado se podra
usar en cualquier proyecto de Unity, siempre y cuando haya un Unico “AudiosSource” en la escena.

51

V. CONTENIDO DEL SCRIPT “AudioFilter2”. UNITY

El script “Audio Filter 2” ha sido creado para poder llevar a cabo la importacién del plugin
en cualquier escena, encargandose de que todo se ejecute correctamente. Como se ha explicado
en el anexo anterior y se puede apreciar en su Figura lll.4, este script debe estar asociado a la
camara, para que asi el procesado de audios se haga adecuadamente.

El contenido de dicho script se puede ver dividido en tres figuras distintas, concretamente
en la Figura IV.1, IV.2 y IV.3.

La primera de ellas muestra la clase principal con todas las variables declaradas entre las
gue destacan dos, ambas de caracter publico. Una de ellas es de tipo “MiObjeto”, y que hemos
creado nosotros mismos para poder pasar como variable el objeto respecto al que estamos
procesando el audio. Es decir, ésta variable serd con la que obtenemos los valores de acimut y
elevacion del objeto que contiene el “AudioSource” de la escena.

La otra variable importante del Script “Audio Filter 2”, es la declarada en la linea 9 de la Figura
IV.1. En ella estamos creando una variable de nombre “miDIl” de la clase “Audio3D”. Esta clase es
la clase principal creada dentro del plugin, por lo que declarando esta variable es como si
estuviéramos importando el plugin.

El resto de variables creadas estan destinadas a almacenar las distintas muestras de audio,
con el fin de realizar el delay necesario para ejecutar correctamente el “Weighted Overlap-Add”.

1 using UnityEngine;

2 using System.Collections;

3 using System.Runtime.InteropServices;

4

5

& public class AudioFilter2 : MonoBehaviour {
7

& public MiObjeto miAudioSource;

g public Proyecto.Audio3D miDLl = new Proyecto.Audio3D(]);
10

11 double acimut = 8;

12 double elevacion = 8;

13

14 float[] misudio = new float[zp4s];:
15 float[] audio0ld = new floatlze43];
16 float[] audicNext = new floatl[le24];
17

18 float[] cola = new float[im24];

15 float[] auxCola = new float[1e24];
20

Figura IV.1.- Captura del Script ‘Audio Filter 2.

52

Una vez creada la variable “miDIl”, ya podremos invocar su método interno
“aplicarAudio3D()” dentro de la funcién “OnAudioFilterRead”, tal y como se puede ver en la Figura
IV.2. Los dos bucles ‘for’ sirven para copiar los distintos vectores segin convenga y realizar con
ello el delay de un frame de audio.

Por otro lado, en la linea 48 de la Figura IV.2, se puede apreciar el célculo realizado para
la atenuacién del audio en funcion de la distancia maxima, la cual es un pardmetro publico que se
puede cambiar desde la propia escena de Unity. La atenuacion sigue una distribucién lineal.

24
25 void OnAudioFilterRead(float[] data. int channels) {

25 float _atenuacion = 0;

a7

23 for (int 1 = 6; 1 < 2848; 1++)

29

40 misudiolil = audioOld[il:

41 audio0ld[1] = datalil:

a2 if({1 < 1924} {

43 audioNext[i] = datalil:

44 H

45 H

45

a7 if (distancia = 5} {

43 _atenuacion = (float}(1l - (distancia - S)/distanciaMax):
49 } else {

50 _atenuacion = 1f;

51 }

52 if (_atenuacion < 8) {

52 _atenuacion = of;

54

55

56 f/Debug. Log("Acimut " + acimut + " Elevacion " + elevacion);
57 //pebug. Log(_atenuacion +" " + distancia):

s8

55 mibll.aplicarAudio3l (ref miAudie, acimut, elevacion, audioNext, out cola);:
&0

61

g2 for (int 1 = 6; 1 < 1824; i++)

63 {

64 datali]l = _atenuacion * (mifudic[1i] + auxColalil}:

&5 auxColalil = colalil:

66

&7 datalle24 + 1] = _atenuacion * midudio[lE24 + i]:

3 }

&9

70 Y} /44 Fin OndudiofFilterRead

Figura IV.2.- Captura del Script ‘Audio Filter 2".

53

Finalmente en la Figura IV.3, se puede ver la funcién “coordenadas()” que ha sido creada
para realizar el célculo de las variables de acimut y elevacion del objeto que contiene el
“AudioSource” respecto a la cdmara, ademas de calcular su distancia. La funcion “coordenadas()”
se invoca continuamente desde la funcion “Update()”, por lo que sus valores van a estar siempre
actualizados.

En la linea 81 de la Figura IV.3 se calcula el vector que apunta desde la “MainCamera”
hasta el “GameObject” que contiene el “AudioSource” de la escena. Con ese vector, ya podemos
calcular en las lineas 82 y 83, los valores de phiy theta mediante célculos trigonométricos, asi
como el valor de la distancia, que no es mas que la magnitud del propio vector.

De la linea 87 a la 98 de la Figura IV.3, hay varios ‘if's’ destinados a realizar los ajustes oportunos
para determinar los valores de acimut y elevacién. Estos reajustes se deben por ejemplo a que el
valor de phi abarca un rango entre-1802 y 1802, mientras que el acimut que el plugin maneja va
desde-909 hasta 909; ya que los valores mayores de 902 y menores de-90¢, que serian los que se
encuentran a la espalda del oyente, se procesan asignando una elevacion mayor a los 1802.

73

74 vold coordenadas { out double acimut. out double elevacion){

75 Vector3 cameraRelative;

76 float phi;

77 float theta;

72

79

g0

21 cameraRelative = Camera.main.transform.InverseTransformPoint (midudioSource.transform.position);
22 phi = Mathf.Atan2{cameraRelative.x, cameraRelative.z) * Mathf.Rad2Deg:
a2 theta = S8- Mathf.Acos(cameraRelative.y / cameraRelative.magnitude} * Mathf.Rad2Deg:
24

25 distancia = {double}cameraRelative.magnitude;

g5

a7 _acimut = phi;

88 if {phi = -50) {

23 _acimut = -180 - phi;

30 }

51 if {phi = 5B} {

52 _acimut = 188 - phi;

53 1

94 if {phi = %0 [| phi = -%B} {

55 _elevacion = 180 - theta;

95 } else {

57 _elevacion = theta;

E }

55

100 } //Fin coordenadas()

Figura IV.3.- Captura del Script ‘Audio Filter 2".

54

